WO2005003169A2 - Modified antibody fab fragments - Google Patents
Modified antibody fab fragments Download PDFInfo
- Publication number
- WO2005003169A2 WO2005003169A2 PCT/GB2004/002810 GB2004002810W WO2005003169A2 WO 2005003169 A2 WO2005003169 A2 WO 2005003169A2 GB 2004002810 W GB2004002810 W GB 2004002810W WO 2005003169 A2 WO2005003169 A2 WO 2005003169A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody fab
- fab fragment
- antibody
- cysteine
- fragment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
Definitions
- the present invention relates to improved antibody fragments and more specifically provides improved antibody fragments to which one or more, preferably two or more, effector molecules are attached and methods for their production.
- the high specificity and affinity of antibody variable regions make them ideal diagnostic and therapeutic agents, particularly for modulating protein.protein interactions.
- -Antibody fragments are proving to be versatile therapeutic agents, as seen by the recent success of products such as ReoPro®.
- the targeting function encoded in Fv, Fab, Fab', F(ab) 2 and other antibody fragments can be used directly or can be conjugated to one or more effector molecules such as cytotoxic drugs, toxins or polymer molecules to increase efficacy.
- PEGylated antibody fragments such as CDP870 are currently undergoing clinical trials where the effect of the conjugated PEG is to bring the circulating half-life to acceptable levels for therapy.
- Effector molecules may be attached to antibody fragments by a number of different methods, including through aldehyde sugars or more commonly through any available amino acid side-chain or terminal amino acid functional group located in the antibody fragment, for example any free amino, imino, thiol, hydroxyl or carboxyl group.
- the site of attachment of effector molecules can be either random or site specific. Random attachment is often achieved through amino acids such as lysine and this results in effector molecules being attached at a number of sites throughout the antibody fragment depending on the position of the lysines.
- Suitable hinges either occur naturally in the fragment or may be created using recombinant DNA techniques (See for example US 5,677,425; WO98/25971; Leong et al, 2001 Cytokine, 16, 106-119; Chapman et al, 1999 Nature Biotechnology, 17, 780-783).
- site specific cysteines may be engineered into the antibody fragment for example to create surface exposed cysteine(s) (US 5,219,996).
- the target thiol in the antibody fragment is often capped by a small fermentation related peptide product such as glutathione or deliberately capped by a chemical additive used during antibody fragment extraction and purification such as 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB).
- DTNB 5,5'-dithiobis (2-nitrobenzoic acid)
- These capping agents need to be removed to activate the target (hinge or surface) thiol.
- Antibody fragments have a native interchain disulphide bond between the heavy and light chain constant regions (C H I and C L ) that has generally been regarded as critical in maintaining the stability and binding properties of the antibody.
- thiol based reductants such as ⁇ -mercaptoethanol ( ⁇ -ME), ⁇ - mercaptoethylamine ( ⁇ -MA) and dithiothreitol (DTT).
- each of these reductants is known to be able to react with and stay attached to the cysteine which it is meant to reduce (Begg and Speicher, 1999 Journal of Biomolecular techniques, 10,17-20) thereby reducing the efficiency of effector molecule attachment.
- cysteine which it is meant to reduce
- a large proportion of the antibody fragments do not have any effector molecules attached and these have to be purified away from the antibody fragments that have the correct number of effector molecules attached.
- This poor efficiency of modification is clearly a disadvantage during the large-scale production of modified therapeutic antibody fragments where it is important that maximum production efficiency is achieved.
- the present invention provides a new class of antibody Fab fragments to which effector molecules may be attached.
- a particular advantage of these fragments lies in the cysteine residues present in these fragments that may be used for site specific effector molecule attachment avoiding the need to engineer modified hinge regions and/or surface amino acid substitutions.
- effector molecules are attached to the antibody Fab fragments of the present invention there are no inter-chain covalent linkages between the heavy and light chain.
- the fragments of the present invention perform comparably with wild type fragments in a number of in vitro and in vivo tests.
- these novel fragments have the same affinity for antigen and similar in vivo and in vitro stability as wild type fragments.
- a further advantage of these fragments lies in the ease of attachment of effector molecules to the fragments, and in particular, the efficiency of attachment.
- the fragments thus provide a low cost alternative to currently available fragments in which the native inter-chain covalent linkages are retained following effector molecule attachment.
- an antibody Fab fragment characterized in that the heavy chain constant region terminates at the interchain cysteine of
- the antibody Fab fragment of the present invention may be any heavy chain and light chain pair having a variable (V H V L ) and constant region (CH/C L ).
- the heavy and light chain pair is V H /C H I and Ni/Q-, covalently linked through interchain cysteines in the heavy and light chain constant regions.
- the term 'interchain cysteine' as used herein refers to a cysteine in the heavy or light chain constant region that would be disulphide linked to a cysteine in the corresponding heavy or light chain constant region encoded in a naturally occurring germline antibody gene.
- interchain cysteines of the present invention are a cysteine in the constant region of the light chain (C L ) and a cysteine in the first constant region of the heavy chain (CHI) that are disulphide linked to each other in naturally occurring antibodies.
- cysteines may typically be found at position 214 of the light chain and 233 of the heavy chain of human IgGl, 127 of the heavy chain of human IgM, IgE, IgG2, IgG3, IgG4 and 128 of the heavy chain of human IgD and IgA2B, as defined by Kabat et al., 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, ⁇ IH, USA.
- interchain cysteines may be found at position 214 of the light chain and 235 of the heavy chain. It will be appreciated that the exact positions of these cysteines may vary from that of naturally occurring antibodies if any modifications, such as deletions, insertions and/or substitutions have been made to the antibody Fab fragment.
- the heavy chain constant region terminates at the interchain cysteme of C H I • Hence the last amino acid in the CHI domain of the antibody Fab fragment of the present invention is a cysteine.
- the antibody Fab fragment of the present invention in which the CHI domain is truncated may be prepared by any suitable method known in the art.
- the antibody Fab fragment of the present invention may be obtained from any whole antibody, especially a whole monoclonal antibody, using any suitable enzymatic cleavage and/or digestion techniques, for example by treatment with pepsin or papain and c-terminal proteases.
- the antibody Fab fragment of the present invention is prepared by the use of recombinant DNA techniques involving the manipulation and re-expression of DNA encoding antibody variable and constant regions. Standard molecular biology techniques may be used to modify, add or delete further amino acids or domains as desired. Any alterations to the variable or constant regions are still encompassed by the terms 'variable' and 'constant' regions as used herein.
- PCR is used to introduce a stop codon immediately following the codon encoding the interchain cysteine of CHI, such that translation of the C R I domain stops at the interchain cysteine.
- Methods for designing suitable PCR primers are well known in the art and the sequences of antibody C H I domains are readily available (Kabat et al, supra).
- stop codons may be introduced using site-directed mutagenesis techniques such as those described in White (Ed.), PCR Protocols: Current Methods and Applications (1993).
- the antibody fragment starting material of the present invention may be derived from any antibody isotype including for example IgG, IgM, IgA, IgD and IgE and subclasses thereof including for example IgGl, IgG2, IgG3 and IgG4.
- the antibody Fab fragment of the present invention is derived from IgGl .
- the antibody fragment starting material may be obtained from any species including for example mouse, rat, rabbit, pig, hamster, camel, llama, goat or human. Parts of the antibody fragment may be obtained from more than one species for example the antibody fragments may be cbimeric. In one example the constant regions are from one species and the variable regions from another.
- the antibody fragment starting material may also be modified.
- variable region of the antibody fragment has been created using recombinant DNA engineering techniques.
- engineered versions include those created for example from natural antibody variable regions by insertions, deletions or changes in or to the amino acid sequences of the natural antibodies.
- Particular examples of this type include those engineered variable region domains containing at least one CDR and optionally one or more framework amino acids from one antibody and the remainder of the variable region domain from a second antibody.
- the antibody fragment of the present invention will in general be capable of selectively binding to an antigen.
- the antigen may be any cell-associated antigen, for example a cell surface antigen on cells such as bacterial cells, yeast cells, T-cells, endothelial cells or tumour cells, or it may be a soluble antigen.
- Antigens may also be any medically relevant antigen such as those antigens upregulated during disease or infection, for example receptors and/or their corresponding ligands.
- Particular examples of cell surface antigens include adhesion molecules, for example integrins such as ⁇ l mtegrins e.g.
- NLA-4 E- selectin, P selectin or L-selectin, CD2, CD3, CD4, CD5, CD7, CD8, CDl la, CDllb, CD18, CD19, CD20, CD23, CD25, CD33, CD38, CD40, CD45, CDW52, CD69, carcinoembryonic antigen (CEA), human milk fat globulin (HMFG1 and 2), MHC Class I and MHC Class II antigens, and NEGF, and where appropriate, receptors thereof.
- CEA carcinoembryonic antigen
- HMFG1 and 2 human milk fat globulin
- MHC Class I and MHC Class II antigens MHC Class I and MHC Class II antigens
- NEGF NEGF
- Soluble antigens include interleukins such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-12, IL-16 or IL-17, viral antigens for example respiratory syncytial virus or cytomegalovirus antigens, immunoglobulins, such as IgE, interferons such as interferon ⁇ , interferon ⁇ or interferon ⁇ , tumour necrosis factor- ⁇ , tumor necrosis factor- ⁇ , colony stimulating factors such as G-CSF or GM-CSF, and platelet derived growth factors such as PDGF- ⁇ , and PDGF- ⁇ and where appropriate receptors thereof.
- interferons such as interferon ⁇ , interferon ⁇ or interferon ⁇
- tumour necrosis factor- ⁇ such as tumor necrosis factor- ⁇
- colony stimulating factors such as G-CSF or GM-CSF
- platelet derived growth factors such as PDGF- ⁇ , and PD
- the present invention provides an antibody Fab fragment characterized in that the heavy chain constant region terminates at the interchain cysteine of CHI •
- the heavy chain and light chain constant regions are derived from human IgGl.
- the present invention provides an antibody Fab fragment in which the heavy chain constant region comprises or consists of the amino acid sequence provided in SEQ ID NO: 1.
- the present invention also provides an antibody Fab fragment in which the heavy chain constant region comprises or consists of the amino acid sequence provided in SEQ ID NO:l and the light chain constant region comprises or consists of the amino acid sequence provided in SEQ ID NO:2. All sequences and their SEQ ID numbers are provided in Figure 5.
- the heavy and light chain constant regions are derived from murine IgGl .
- the present invention provides an antibody Fab fragment in which the heavy chain constant region comprises or consists of the amino acid sequence provided in SEQ LD NO: 3.
- the present invention also provides an antibody Fab fragment in which the heavy chain constant region comprises or consists of the amino acid sequence provided in SEQ ID NO:3 and the light chain constant region comprises or consists of the amino acid sequence provided in SEQ JJD NO:4.
- the present invention also provides an antibody Fab fragment wherein the constant region of the heavy chain comprises or consists of a sequence having at least 90% identity or similarity to the sequence given in SEQ LD NO: 1. "Identity”, as used herein, indicates that at any particular position in the aligned sequences, the amino acid residue is identical between the sequences.
- Similarity indicates that, at any particular position in the aligned sequences, the amino acid residue is of a similar type between the sequences.
- leucine may be substituted for isoleucine or valine.
- Other amino acids which can often be substituted for one another include but are not limited to: - phenylalanine, tyrosine and tryptophan (amino acids having aromatic side chains); - lysine, arginine and histidine (amino acids having basic side chains); - aspartate and glutamate (amino acids having acidic side chains); - asparagine and glutamine (amino acids having amide side chains); and - cysteine and methionine (amino acids having sulphur-containing side chains).
- the antibody Fab fragment of this aspect of the present invention comprises a heavy chain, wherein the constant region of the heavy chain comprises a sequence having at least 90%, 95% or 98% identity or similarity to the sequence given in SEQ ID NO:l.
- the present invention also provides an antibody Fab fragment wherein the constant region of the heavy chain comprises or consists of a sequence having at least 90% identity or similarity to the sequence given in SEQ JJD NO:l and the constant region of the light chain comprises or consists of a sequence having at least 90% identity or similarity to the sequence given in SEQ J-D NO:2.
- the antibody Fab fragment of this aspect of the present invention comprises a heavy chain, wherein the constant region of the heavy chain comprises a sequence having at least 90%o, 95% or 98%) identity or similarity to the sequence given in SEQ ID NO:l and a light chain wherein the constant region of the light chain comprises a sequence having at least 90%, 95% or 98% identity or similarity to the sequence given in SEQ LD NO:2.
- the present invention also provides an antibody Fab fragment wherein the constant region of the heavy chain comprises or consists of a sequence having at least 90%> identity or similarity to the sequence given in SEQ ID NO:3.
- the present invention provides an antibody Fab fragment wherein the constant region of the heavy chain comprises or consists of a sequence having at least 90% identity or similarity to the sequence given in SEQ LD NO:3 and the constant region of the light chain comprises or consists of a sequence having at least 90% identity or similarity to the sequence given in SEQ LD NO:4.
- the antibody Fab fragment of this aspect of the present invention comprises a heavy chain, wherein the constant region of the heavy chain comprises a sequence having at least 90%, 95% or 98%) identity or similarity to the sequence given in SEQ LD NO:3 and a light chain wherein the constant region of the light chain comprises a sequence having at least 90%, 95% or 98%) identity or similarity to the sequence given in SEQ J-D NO:4.
- Nucleic acid sequences which encode the the amino acid sequences provided in SEQ LD NOs 1-4 can be designed using known methods in the art.
- the invention provides isolated DNA sequences encoding the heavy and/or light chain constant regions provided in SEQ LD NOs 1-4.
- the nucleic acid sequences encoding the amino acid sequences provided in SEQ ID NOs 1, 2, 3 and 4 are those given in SEQ ID NOs 5, 6, 7 and 8 respectively.
- the present invention also relates to a cloning or expression vector comprising one or more DNA sequences of the present invention. Accordingly, provided is a cloning or expression vector comprising one or more DNA sequences encoding an antibody Fab fragment of the present invention.
- cloning or expression vectors of the present invention comprise one or more DNA sequences encoding the antibody constant regions of the present invention, as provided in SEQ ID NOs 5-8.
- the vector comprises the sequence given in SEQ J-D NO:5 and SEQ ID NO:6.
- the vector comprises the sequence given in SEQ LD NO: 7 and SEQ ID NO:8.
- General methods by which the vectors may be constructed, transfection methods and culture methods are well known to those skilled in the art. In this respect, reference is made to "Current Protocols in Molecular Biology", 1999, F. M. Ausubel (ed), Wiley Interscience, New York and the Maniatis Manual produced by Cold Spring Harbor Publishing
- a host cell expressing an antibody Fab fragment in which the C H I domain terminates at the interchain cysteine. Any suitable host cell/vector system may be used for the expression of the DNA sequences encoding the antibody Fab of the present invention.
- a host cell comprising one or more cloning or expression vectors comprising one or more DNA sequences encoding an antibody fragment of the present invention.
- host cells comprising cloning or expression vectors of the present invention comprising one or more DNA sequences encoding the antibody constant regions of the present invention, as provided in SEQ J-D NOs 5-8.
- Bacterial for example E.coli, and other microbial systems may be used or eukaryotic, for example mammalian host cell expression systems may also be used.
- Suitable E.coli strains for use in the present invention may be naturally occurring strains or mutated strains capable of producing recombinant proteins. Examples of specific host E.
- coli strains include MC4100, TGI, TG2, DHB4, DH5 ⁇ , DH1, BL21, XLlBlue and W3110 (ATCC 27,325).
- Suitable mammalian host cells include CHO, myeloma or hybridoma cells.
- a method of producing the antibody Fab fragment of the present invention comprising culturing the host cell expressing the antibody Fab fragment of the present invention and isolating said fragment. Once produced in the host cell the antibody Fab fragment may be extracted and purified using any suitable method known in the art. Heat extraction may be used as described in US 5,665,866 due to the presence of the interchain disulphide bond.
- Suitable purification methods include but are not limited to size exclusion, hydrophobic interaction chromatography, protein A, G or L affinity chromatography and ion exchange.
- the antibody Fab fragment of the present invention may have one or more effector molecules attached to it.
- effector molecule as used herein includes, for example, antineoplastic agents, drugs, toxins (such as enzymatically active toxins of bacterial or plant origin and fragments thereof e.g. ricin and fragments thereof) biologically active proteins, for example enzymes, other antibody or antibody fragments, synthetic or naturally occurring polymers, nucleic acids and fragments thereof e.g.
- radionuclides particularly radioiodide, radioisotopes, chelated metals, nanoparticles and reporter groups such as fluorescent compounds or compounds which may be detected by NMR or ESR spectroscopy.
- radionuclides particularly radioiodide, radioisotopes, chelated metals, nanoparticles and reporter groups such as fluorescent compounds or compounds which may be detected by NMR or ESR spectroscopy.
- antineoplastic agents include cytotoxic and cytostatic agents for example alkylating agents, such as nitrogen mustards (e.g.
- dactinomycin plicamyin, calichaemicin and derivatives thereof, or esperamicin and derivatives thereof; mitotic inhibitors, such as etoposide, vincristine or vinblastine and derivatives thereof; alkaloids such as ellipticine; polyols such as taxicin-I or taxicin-II; hormones, such as androgens (e.g. dromostanolone or testolactone), progestins (e.g. megestrol acetate or medroxyprogesterone acetate), estrogens (e.g.
- dimethylstilbestrol diphosphate polyestradiol phosphate or estramustine phosphate) or antiestrogens (e.g. tamoxifen); anthraquinones, such as mitoxantrone, ureas, such as hydroxyurea; hydrazines, such as procarbazine; or imidazoles, such as dacarbazine.
- Chelated metals include chelates of di- or tripositive metals having a coordination number from 2 to 8 inclusive.
- Such metals include technetium (Tc), rhenium (Re), cobalt (Co), copper (Cu), gold (Au), silver (Ag), lead (Pb), bismuth (Bi), indium (In), gallium (Ga), yttrium (Y), terbium (Tb), gadolinium (Gd), and scandium (Sc).
- Tc technetium
- Re rhenium
- Co cobalt
- Cu copper
- Au gold
- Au gold
- silver Ag
- Pb lead
- Bi bismuth
- In gallium
- Ga gallium
- Y yttrium
- Tb terbium
- Gd gadolinium
- Sc scandium
- the metal is preferably a radionuclide.
- radionuclides include 99m Tc, 186 Re, Re, 58 Co, 60 Co, 67 Cu, 195 Au, 199 Au, no Ag, 203 Pb, 206 Bi, 207 Bi, m In, 67 Ga, 68 Ga, 88 Y, 90 Y, 160 Tb, 153 Gd and 47 Sc.
- the chelated metal may be for example one of the above types of metal chelated with any suitable polydentate chelating agent, for example acyclic or cyclic polyamines, polyethers, (e.g. crown ethers and derivatives thereof); polyamides; porphyrins; and carbocyclic derivatives.
- the type of chelating agent will depend on the metal in use.
- One particularly useful group of chelating agents in conjugates according to the invention are acyclic and cyclic polyamines, especially polyaminocarboxylic acids, for example diethylenetriaminepentaacetic acid and derivatives thereof, and macrocyclic amines, e.g. cyclic tri-aza and tetra-aza derivatives (for example as described in International Patent Specification No. WO 92/22583); and polyamides, especially desferriox-amine and derivatives thereof.
- Other effector molecules include proteins, peptides and enzymes. Enzymes of interest include, but are not limited to, proteolytic enzymes, hydrolases, lyases, isomerases, transferases.
- Proteins, polypeptides and peptides of interest include, but are not limited to, immunoglobulins, toxins such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin, a protein such as insulin, tumour necrosis factor, ⁇ -interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor or tissue plasminogen activator, a thrombotic agent or an anti-angiogenic agent, e.g.
- angiostatin or endostatin or, a biological response modifier such as a lymphokine, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), nerve growth factor (NGF) or other growth factor and immunoglobulins .
- Other effector molecules may include detectable substances useful for example in diagnosis. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive nuclides, positron emitting metals (for use in positron emission tomography), and nonradioactive paramagnetic metal ions. See generally U.S. Patent No.
- Suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; suitable prosthetic groups include streptavidin, avidin and biotin; suitable fluorescent materials include umbelliferone, fiuorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride and phycoerythrin; suitable luminescent materials include luminol; suitable bioluminescent materials include luciferase, luciferin, and aequorin; and suitable radioactive nuclides include 125 1, 131 I, m In and 99 Tc.
- Synthetic or naturally occurring polymers for use as effector molecules include, for example optionally substituted straight or branched chain polyalkylene, polyalkenylene, or polyoxyalkylene polymers or branched or unbranched polysaccharides, e.g. a homo- or hetero- polysaccharide such as lactose, amylose, dextran or glycogen.
- Particular optional substituents which may be present on the above-mentioned synthetic polymers include one or more hydroxy, methyl or methoxy groups.
- synthetic polymers include optionally substituted straight or branched chain poly(ethyleneglycol), poly( ⁇ ropyleneglycol), poly(vinylalcohol) or derivatives thereof, especially optionally substituted poly(ethyleneglycol) such as methoxypoly(ethyleneglycol) or derivatives thereof.
- "Derivatives" as used herein is intended to include reactive derivatives, for example thiol-selective reactive groups such as an ⁇ -halocaraboxylic acid or ester, e.g. iodoacetamide, an imide, e.g. maleimide, a vinyl sulphone or disulphide maleimides and the like.
- the reactive group may be linked directly or through a linker segment to the polymer.
- the size of the polymer may be varied as desired, but will generally be in an average molecular weight range from 500Da to 50,000Da, preferably from 5,000 to 40,000Da and more preferably from 10,000 to 40,000Da and 20,000 to 40,000Da.
- the polymer size may in particular be selected on the basis of the intended use of the product for example ability to localize to certain tissues such as tumors or extend circulating half-life (for review see Chapman, 2002, Advanced Drug Delivery Reviews, 54, 531-545).
- a small molecular weight polymer for example with a molecular weight of around 5,000Da.
- a higher molecular weight polymer for example having a molecular weight in the range from 20,000Da to 40,000Da.
- Particularly preferred polymers include a polyalkylene polymer, such as a poly(ethyleneglycol) or, especially, a methoxypoly(ethyleneglycol) or a derivative thereof, and especially with a molecular weight in the range from about 10,000Da to about 40,000Da.
- the polymers of the present invention may be obtained commercially (for example from Nippon Oil and Fats; Nektar Therapeutics) or may be prepared from commercially available starting materials using conventional chemical procedures. Effector molecules may be attached using standard chemical or recombinant DNA procedures in which the antibody fragment is linked either directly or via a coupling agent to the effector molecule. Techniques for conjugating such effector molecules to antibodies are well known in the art (see, Hellstrom et al, Controlled Drug Delivery, 2nd Ed., Robinson et al, eds., 1987, pp. 623-53; Thorpe et al, 1982 , Immunol.
- the effector molecules may be attached to the antibody fragment of the present invention through any available amino acid side-chain or terminal amino acid functional group located in the antibody fragment, for example any free amino, imino, thiol, hydroxyl or carboxyl group. Such amino acids may occur naturally in the antibody fragment or may be engineered into the fragment using recombinant DNA methods. See for example US 5,219,996.
- effector molecules are covalently linked through a thiol group of a cysteine residue located in the antibody fragment, either naturally or engineered.
- the covalent linkage will generally be a disulphide bond or, in particular, a sulphur-carbon bond.
- thiol selective derivatives such as maleimides and cysteine derivatives may be used.
- two or more effector molecules attached to the antibody fragment these may be identical or different and may be attached to the antibody fragment at different sites.
- two or more effector molecules may be attached to the antibody fragment at a single site by the use for example of a branched connecting structure to link two or more effector molecules and provide a single site of attachment.
- at least one of the effector molecules attached to the antibody fragment is a polymer molecule, preferably PEG or a derivative thereof.
- the effector molecules attached to the Fab fragment of the present invention are PEG and each molecule is covalently linked via a maleimide group to one or more thiol groups in the antibody fragment.
- the PEG may be any straight or branched molecule in an average molecular weight range from 500Da to 50,000Da, preferably from 5,000 to 40,000Da and more preferably from 10,000 to 40,000Da and 20,000 to 40,000Da.
- a lysine residue is preferably covalently linked to the maleimide group.
- To each of the amine groups on the lysine residue is preferably attached a methoxypoly(ethyleneglycol) polymer.
- the molecular weight of each polymer attached to the lysine is approximately 20,000Da and the total molecular weight of the entire polymer molecule is therefore approximately 40,000Da.
- the PEG molecules attached to the Fab fragment of the present invention are linear.
- One or more effector molecules may be attached to the antibody Fab fragment of the present invention.
- at least two effector molecules are attached to the Fab fragment, one to a cysteine in the light chain constant region and one to a cysteine in the heavy chain constant region.
- the cysteine residues to which the effector molecules are attached would otherwise be linked to each other by a disulphide bond if the effector molecules were not attached.
- Suitable cysteines for attachment include naturally occurring cysteines present in the light and/or heavy chain constant region such as the interchain cysteines.
- an effector molecule is attached to the interchain cysteine of C L and the interchain cysteine of C H I in the antibody Fab fragment.
- the interchain cysteine of CL to which an effector molecule is attached is at position 214 of the light chain and the interchain cysteine of C H I to which an effector molecule is attached is at position 233 of the heavy chain.
- the interchain cysteine of C L to which an effector molecule is attached is at position 214 of the light chain and the interchain cysteine of CHI to which an effector molecule is attached is at position 235 of the heavy chain.
- suitable cysteines include those that have been engineered into the constant regions using recombinant DNA techniques.
- two cysteines may be engineered into the antibody fragment, one in each of the heavy and light chain constant regions, preferably at positions whereby they can form a disulphide linkage with each other.
- Particular fragments according to this aspect of the invention include those where: i (i) the cysteine residues in the heavy and light chain constant regions which are attached to effector molecules would otherwise be linked to each other via a disulphide bond if the effector molecules were not attached or (ii) the light chain cysteine to which an effector molecule is attached is the interchain cysteine of C L and the heavy chain cysteine to which an effector molecule is attached is the interchain cysteine of CHI During attachment of effector molecules to cysteines in the antibody Fab fragment of the present invention any covalent linkages between the cysteines are removed, as described herein, using a reducing agent.
- the heavy chain is no longer covalently bonded to the light chain and the disulphide linkage found in naturally occurring antibodies between the interchain cysteine of C L and the interchain cysteine of C H I is absent.
- a method for attaching effector molecules to the antibody Fab fragments of the present invention comprising: a) Treating an antibody Fab fragment of the present invention with a reducing agent capable of generating a free thiol group in a cysteine of the heavy and light chain constant region b) Reacting the treated fragment with an effector molecule
- the method comprises: a) Reducing the interchain disulphide bond between the interchain cysteine of C H I and the interchain cysteine of C L in the antibody Fab fragment of the present invention b) Reacting the treated fragment with an effector molecule
- the methods provided by the present invention enable one or more effector molecule(s) to be attached to cysteines in the antibody fragment, in particular to cysteines in the constant region.
- Two or more effector molecules can be attached to the antibody fragment using the methods described herein either simultaneously or sequentially by repeating the method. Additional effector molecules may be attached elsewhere in the antibody fragment, in particular the constant regions.
- the methods of the present invention therefore also extend to one or more steps before and/or after the reduction methods described above in which further effector molecules are attached to the antibody fragment using any suitable method as described previously, for example via other available amino acids side chains such as amino and imino groups.
- the reducing agent for use in the methods of the present invention is any reducing agent capable of reducing cysteines in the antibody Fab fragment of the present invention to produce free thiols.
- the reducing agent reduces the interchain disulphide bond between cysteines of the heavy and light chain constant regions, for example, between the interchain cysteine of C and the interchain cysteine of C H I, in order to allow attachment of effector molecules to said cysteines.
- the antibody Fab fragments of the present invention surprisingly have no requirement for the interchain disulphide bond stronger reducing agents can be used than are conventionally used with wild type antibody fragments which retain the interchain disulphide bond.
- the terminal interchain cysteine of C H I in the antibody Fab fragments of the present invention is more highly accessible for effector molecule attachment and reduction than in conventional Fab fragments where there may be steric or local electrostatic effects due to the presence of the upper hinge or other amino acids C-terminal to the C H I interchain cysteine.
- the antibody fragments of the present invention can therefore be modified more efficiently and cost effectively than conventional antibody fragments.
- suitable reducing agents may be identified by determining the number of free thiols produced after the antibody fragment is treated with the reducing agent. Methods for determining the number of free thiols are well known in the art, see for example Lyons et al, 1990, Protein Engineering, 3, 703. Reducing agents for use in the present invention are widely known in the art for example those described in Singh et al, 1995, Methods in
- Enzymology 251, 167-73.
- Particular examples include thiol based reducing agents such as reduced glutathione (GSH), ⁇ -mercaptoethanol ( ⁇ -ME), ⁇ -mercaptoethylamine ( ⁇ -MA) and dithiothreitol (DTT).
- GSH reduced glutathione
- ⁇ -ME ⁇ -mercaptoethanol
- ⁇ -MA ⁇ -mercaptoethylamine
- DTT dithiothreitol
- Other methods for reducing the antibody fragments of the present invention include using electrolytic methods, such as the method described in Leach et al, 1965, Div. Protein. Chem, 4, 23-27 and using photoreduction methods, such as the method described in Ellison et al, 2000, Biotechniques, 28 (2), 324-326.
- the reducing agent for use in the present invention is a non-thiol based reducing agent capable of liberating one or more thiols in an antibody fragment.
- the non-thiol based reducing agent is capable of liberating the interchain thiols in an antibody fragment.
- Preferred reducing agents for use in the present invention are trialkylphosphine reducing agents (Ruegg UT and Rudinger, J., 1977, Methods in Enzymology, 47, 111-126; Burns J et al, 1991, J.Org.Chem, 56, 2648-2650; Getz et al, 1999, Analytical Biochemistry, 273, 73- 80; Han and Han, 1994, Analytical Biochemistry, 220, 5-10; Seitz et al, 1999, Euro.J.Nuclear Medicine, 26, 1265-1273), particular examples of which include tris(2- carboxyethyl)phosphine (TCEP), tris butyl phosphine (TBP), tris-(2-cyanoethyl) phosphine, tris-(3-hydroxypropyl) phosphine (THP) and tris-(2-hydroxyethyl) phosphine.
- TCEP tris(2- carboxyethyl)phosphin
- the reducing agent for use in the present invention is either TCEP or THP.
- concentration of reducing agent for use in the present invention can be determined empirically, for example, by varying the concentration of reducing agent and measuring the number of free thiols produced.
- the reducing agent for use in the present invention is used in excess over the antibody fragment for example between 2 and 1000 fold molar excess.
- the reducing agent is in 2, 3, 4, 5, 10, 100 or 1000 fold excess.
- the reductant is used at between 2 and 5mM.
- the modified antibody Fab fragments according to the invention may be prepared by reacting an antibody Fab fragment as described herein containing at least one reactive cysteine residue with an effector molecule, preferably a thiol-selective activated effector molecule.
- the reactions in steps (a) and (b) of the method described above may generally be performed in a solvent, for example an aqueous buffer solution such as acetate or phosphate, at around neutral pH, for example around pH 4.5 to around pH 8.5, typically pH 4.5 to 8, suitably pH6 to 7.
- the reaction may generally be performed at any suitable temperature, for example between about 5°C and about 70°C, for example at room temperature.
- the solvent may optionally contain a chelating agent such as EDTA, EGTA, CDTA or DTP A.
- the solvent contains EDTA at between 1 and 5mM, preferably 2mM.
- the solvent may be a chelating buffer such as citric acid, oxalic acid, folic acid, bicine, tricine, tris or ADA.
- the effector molecule will generally be employed in excess concentration relative to the concentration of the antibody fragment. Typically the effector molecule is in between 2 and 100 fold molar excess, preferably 5, 10 or 50 fold excess.
- the desired product containing the desired number of effector molecules may be separated from any starting materials or other product generated during the production process by conventional means, for example by chromatography techniques such as ion exchange, size exclusion, protein A, G or L affinity chromatography or hydrophobic interaction chromatography.
- Also provided by the present invention is a mixture containing two or more antibody Fab fragments, characterized in that the mixture is enriched for Fab fragments in which the heavy chain constant domain terminates at the interchain cysteme of C H I, the heavy chains in the fragments are not covalently bonded to the light chains and the fragments have an effector molecule attached to a cysteine in the light chain and the heavy chain constant region.
- Said mixture may be produced using the methods provided by the present invention.
- 'enriched' we mean that the antibody Fab fragment with the desired number of effector molecules attached accounts for 50% or greater of the mixture.
- the antibody Fab fragment with the desired number of effector molecules attached accounts for between 50 and 99% of the mixture.
- the mixtures are enriched by greater than 50%, preferably greater than 60%, more preferably greater than 70%.
- the proportion of such mixtures containing the antibody Fab fragment with the desired number of effector molecules may be determined by using the size exclusion HPLC methods described herein.
- the antibody fragments according to the invention may be useful in the detection or treatment of a number of diseases or disorders.
- diseases or disorders may include those described under the general heading of infectious disease, e.g. bacterial infection; fungal infection; inflammatory disease/autoimmunity e.g. rheumatoid arthritis, osteoarthritis, inflammatory bowel disease; cancer; allergic/atopic disease e.g. asthma, eczema; congenital disease; e.g.
- cystic fibrosis sickle cell anemia
- dermatologic disease e.g.psoriasis
- neurologic disease e.g. multiple sclerosis
- transplants e.g. organ transplant rejection, graft-versus-host disease
- metabolic/idiopathic disease e.g. diabetes.
- the antibody fragments according to the invention maybe formulated for use in therapy and/or diagnosis and according to a further aspect of the invention we provide a pharmaceutical composition comprising an antibody Fab fragment in which the heavy chain constant region terminates at the interchain cysteine of C H I together with one or more pharmaceutically acceptable excipients, diluents or carriers.
- composition comprising an antibody Fab fragment in which the heavy chain constant region terminates at the interchain cysteine of C H I, the heavy chain is not covalently bonded to the light chain and the fragment has an effector molecule attached to a cysteine in the light chain and the heavy chain constant region, together with one or more pharmaceutically acceptable excipients, diluents or carriers.
- Figure 1 Non-reducing SDS-PAGE of PEGylated gl63 Fab in which the heavy chain constant region terminates at the interchain cysteine of C H I .
- Lane B shows gl63 Fab with PEG attached following reduction with TCEP.
- Lane D shows gl63 Fab with PEG attached following reduction with THP.
- Figure 2 Comparison of the reductants THP and TCEP on the PEGylation efficiency of Fab(B).
- Figure 3 SDS-PAGE ofPEGylated murine Fab, ml 3.
- Figure 4 Pharmacokinetics of 125 I labelled ml 3 Fab-DiPEG(2x20kDa) in mice.
- the antibody Fab molecule in Example 2 was gl63 which binds to baboon platelet-derived growth factor receptor (PDGFr).
- the antibody Fab molecule in Examples 3-6 was a human Fab (herein after referred to as FAB(B)) which binds a soluble cytokine.
- the antibody Fab molecule in Examples 7-8 was a murine Fab, ml3, which binds a soluble cytokine.
- FAB(B) human Fab
- ml3 murine Fab, ml3, which binds a soluble cytokine.
- the underlined cysteine residues indicate the interchain cysteines to which effector molecules may be attached.
- the Fab fragments were produced in E.coli strain W3110 and purified using standard methods (Humphreys et al., 2002, Protein Expression and Purification, 26, 309-320).
- Lane B corresponds to gl63 truncated Fab with two PEG molecules attached following reduction with TCEP.
- the two high molecular weight bands very close together around lOOkDa are composed of heavy and light chain with one PEG molecule attached.
- the lower band at around 45kDa is a small amount of unmodified Fab with no PEG attached.
- the lower band at around 25kDa is free heavy and light chains.
- Lane D is the same fragment reduced using TBP that is less compatible with aqueous buffers and proteins.
- the percentage of the gl63 truncated Fab to be diPEGylated using TCEP and TBP as reductants was 76% and 21% respectively, as determined by HPLC.
- TCEP is therefore a useful reducing agent for producing the modified antibody fragments of the present invention.
- Example 3 Comparison of efficiency of PEGylation of Fab(B) using the reducing agents TCEP and THP
- the interchain cysteines of a murine truncated Fab, ml 3 were PEGylated using 20kDa linear PEG. Reductions and PEGylations were performed in 50mM Tris.HCl 5mM EDTA pH 7.14 with Fab at 20.06mg/ml, lOmM TCEP (final) and 4 molar excess of 20kDa linear PEG, room temperature. The PEGylation of both sites was confirmed by SDS-PAGE ( Figure 3).
- Example 5 Pharmacokinetics of m!3 Fab-PEG (2x20kDa) in mice.
- 125 I labelled PEGylated Fab molecules were injected subcutaneously or intravenously into mice and the serum permanence determined.
- Mice were injected subcutaneously on the back of the neck or intravenously in the tail vein under light anaesthesia. The injection volume was lOO ⁇ l per mouse which was equivalent to 13 ⁇ g protein and 1.2 ⁇ Ci isotope dose (specific activity (O.l ⁇ Ci/ ⁇ g). 4 mice were bled by cardiac puncture at each time point. Heparanised blood was collected in preweighed tubes.
- the weight of the blood was determined before counting for radioactivity in the gamma counter.
- Time points studied iv; 0.5, 2, 4, 6, 24, 48, 72 and 144h post injection.
- sc 3, 6, -24, 30, 48, 72 and 144h post injection.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Pulmonology (AREA)
- Oncology (AREA)
- Hematology (AREA)
- Communicable Diseases (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Obesity (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Pain & Pain Management (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Biomedical Technology (AREA)
- Emergency Medicine (AREA)
- Transplantation (AREA)
- Endocrinology (AREA)
- Neurosurgery (AREA)
- Surgery (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04743158.0A EP1644412B2 (en) | 2003-07-01 | 2004-07-01 | Modified antibody fab fragments |
DK04743158.0T DK1644412T4 (en) | 2003-07-01 | 2004-07-01 | MODIFIED ANTIBODY-FAB FRAGMENTS |
PL04743158T PL1644412T5 (en) | 2003-07-01 | 2004-07-01 | Modified antibody fab fragments |
AU2004253738A AU2004253738A1 (en) | 2003-07-01 | 2004-07-01 | Modified antibody Fab fragments |
JP2006516487A JP2007536898A (en) | 2003-07-01 | 2004-07-01 | Modified antibody Fab fragment |
SI200432279T SI1644412T2 (en) | 2003-07-01 | 2004-07-01 | Modified antibody fab fragments |
CA002527020A CA2527020A1 (en) | 2003-07-01 | 2004-07-01 | Modified antibody fab fragments |
US10/562,746 US7989594B2 (en) | 2003-07-01 | 2004-07-01 | Modified antibody fab fragments |
ES04743158.0T ES2551439T5 (en) | 2003-07-01 | 2004-07-01 | Fab fragments of modified antibodies |
HRP20151252TT HRP20151252T4 (en) | 2003-07-01 | 2015-11-23 | Modified antibody fab fragments |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0315457.2 | 2003-07-01 | ||
GBGB0315457.2A GB0315457D0 (en) | 2003-07-01 | 2003-07-01 | Biological products |
GB0319588A GB0319588D0 (en) | 2003-08-20 | 2003-08-20 | Biological products |
GB0319588.0 | 2003-08-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005003169A2 true WO2005003169A2 (en) | 2005-01-13 |
WO2005003169A3 WO2005003169A3 (en) | 2005-05-06 |
Family
ID=33566544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/002810 WO2005003169A2 (en) | 2003-07-01 | 2004-07-01 | Modified antibody fab fragments |
Country Status (14)
Country | Link |
---|---|
US (1) | US7989594B2 (en) |
EP (1) | EP1644412B2 (en) |
JP (1) | JP2007536898A (en) |
AU (1) | AU2004253738A1 (en) |
CA (1) | CA2527020A1 (en) |
CY (1) | CY1116913T1 (en) |
DK (1) | DK1644412T4 (en) |
ES (1) | ES2551439T5 (en) |
HR (1) | HRP20151252T4 (en) |
HU (1) | HUE026278T2 (en) |
PL (1) | PL1644412T5 (en) |
PT (1) | PT1644412E (en) |
SI (1) | SI1644412T2 (en) |
WO (1) | WO2005003169A2 (en) |
Cited By (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007010231A1 (en) * | 2005-07-19 | 2007-01-25 | Ucb Pharma S.A. | Modified antibody fragments |
EP1983000A2 (en) | 2003-11-21 | 2008-10-22 | UCB Pharma, S.A. | Method for the treatment of multiple sclerosis by inhibiting IL-17 activity |
WO2008151319A2 (en) * | 2007-06-08 | 2008-12-11 | Dow Global Technologies Inc. | Expression of soluble antibody fragment by truncation of ch1 domain |
WO2009030936A1 (en) | 2007-09-06 | 2009-03-12 | Ucb Pharma S.A. | Method for the treatment of glomerulonephritis |
WO2009087380A2 (en) | 2008-01-08 | 2009-07-16 | Imagination Technologies Limited | Video motion compensation |
US7736635B2 (en) | 2003-12-23 | 2010-06-15 | Ucb Pharma S.A. | Branched molecular scaffolds for linking polymer residues to biologically active moieties |
WO2010079345A2 (en) | 2009-01-12 | 2010-07-15 | Ucb Pharma S.A. | Antibody-guided fragment growth |
WO2010096418A2 (en) | 2009-02-17 | 2010-08-26 | Ucb Pharma S.A. | Antibody molecules having specificity for human ox40 |
WO2010097435A1 (en) | 2009-02-25 | 2010-09-02 | Ucb Pharma, S.A. | Method for producing antibodies |
WO2010097437A1 (en) | 2009-02-25 | 2010-09-02 | Ucb Pharma, S.A. | Method for producing antibodies |
WO2011030107A1 (en) | 2009-09-10 | 2011-03-17 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011036460A1 (en) | 2009-09-25 | 2011-03-31 | Ucb Pharma S.A. | Disulfide stabilised multivalent antibodies |
EP2314626A1 (en) | 2005-12-09 | 2011-04-27 | UCB Pharma, S.A. | Antibody molecules having specificity for human IL-6 |
WO2011051351A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Method to generate antibodies to ion channels |
WO2011051349A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Antibodies to ion channels |
WO2011051350A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Function modifying nav 1.7 antibodies |
WO2011061492A2 (en) | 2009-11-17 | 2011-05-26 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011061246A2 (en) | 2009-11-19 | 2011-05-26 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011086091A1 (en) | 2010-01-12 | 2011-07-21 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011110604A1 (en) | 2010-03-11 | 2011-09-15 | Ucb Pharma, S.A. | Pd-1 antibody |
WO2011110621A1 (en) | 2010-03-11 | 2011-09-15 | Ucb Pharma, S.A. | Biological products: humanised agonistic anti-pd-1 antibodies |
WO2011117653A1 (en) | 2010-03-25 | 2011-09-29 | Ucb Pharma S.A. | Disulfide stabilized dvd-lg molecules |
WO2011117648A2 (en) | 2010-03-25 | 2011-09-29 | Ucb Pharma S.A. | Disulfide stabilised antibodies and fragments thereof |
US8129505B2 (en) | 2005-09-14 | 2012-03-06 | Ucb Pharma S.A. | Comb polymers |
WO2012095662A1 (en) | 2011-01-14 | 2012-07-19 | Ucb Pharma S.A. | Antibody molecules which bind il-17a and il-17f |
EP2514764A2 (en) | 2006-10-18 | 2012-10-24 | UCB Pharma, S.A. | Antibody molecules which bind IL-17A and IL-17F |
EP2535349A1 (en) | 2007-09-26 | 2012-12-19 | UCB Pharma S.A. | Dual specificity antibody fusions |
WO2013034579A1 (en) | 2011-09-05 | 2013-03-14 | Rheinische Friedrich-Wilhelms-Universität Bonn | Biosynthetic gene cluster for the production of peptide/protein analogues |
WO2013038156A1 (en) | 2011-09-16 | 2013-03-21 | Ucb Pharma S.A. | Neutralising antibodies to the major exotoxins tcda and tcdb of clostridium difficile |
WO2013068571A1 (en) | 2011-11-11 | 2013-05-16 | Ucb Pharma S.A. | Albumin binding antibodies and binding fragments thereof |
WO2013079701A2 (en) | 2011-11-30 | 2013-06-06 | University Of Bremen | Expression of mirnas in placental tissue |
WO2013110945A1 (en) | 2012-01-26 | 2013-08-01 | Imperial Innovations Ltd | Methods of treating pain by inhibition of vgf activity |
WO2014001557A1 (en) | 2012-06-28 | 2014-01-03 | Ucb Pharma S.A. | A method for identifying compounds of therapeutic interest |
WO2014019727A1 (en) | 2012-05-14 | 2014-02-06 | Ucb Pharma S.A. | Anti-fcrn antibodies |
US8691233B2 (en) | 2009-03-11 | 2014-04-08 | Ucb Pharma S.A. | Antibody molecules having binding specificity for human IL-13 |
WO2014114802A1 (en) | 2013-01-25 | 2014-07-31 | Charité - Universitätsmedizin Berlin | Non-invasive prenatal genetic diagnostic methods |
WO2015059303A1 (en) | 2013-10-25 | 2015-04-30 | Psioxus Therapeutics Limited | Oncolytic adenoviruses armed with heterologous genes |
WO2015071330A1 (en) | 2013-11-13 | 2015-05-21 | Ucb Biopharma Sprl | Antibodies specific to fcrn |
US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
WO2015155370A1 (en) | 2014-04-12 | 2015-10-15 | Psioxus Therapeutics Limited | Group b adenovirus modified in the e4orf4 region |
US9234037B2 (en) | 2009-10-27 | 2016-01-12 | Ucb Biopharma Sprl | Method to generate antibodies to ion channels |
EP2975048A2 (en) | 2008-04-23 | 2016-01-20 | UCB Biopharma SPRL | Epitopes of il-17a and il-17f and antibodies specific thereto |
EP3009448A1 (en) | 2006-07-25 | 2016-04-20 | UCB Biopharma SPRL | Single chain fc polypeptides |
WO2016176656A2 (en) | 2015-04-30 | 2016-11-03 | President And Fellows Of Harvard College | Anti-ap2 antibodies and antigen binding agents to treat metabolic disorders |
WO2016180765A1 (en) | 2015-05-13 | 2016-11-17 | Ucb Biopharma Sprl | Anti-fcrn antibodies |
WO2016189045A1 (en) | 2015-05-27 | 2016-12-01 | Ucb Biopharma Sprl | Method for the treatment of neurological disease |
WO2017005734A1 (en) | 2015-07-06 | 2017-01-12 | Ucb Biopharma Sprl | Tau-binding antibodies |
WO2017009473A1 (en) | 2015-07-16 | 2017-01-19 | Ucb Biopharma Sprl | Antibody molecules which bind cd45 |
WO2017060242A1 (en) | 2015-10-05 | 2017-04-13 | Ucb Biopharma Sprl | Molecular signatures for use in diagnosis and response to treatment analysis of autoimmune diseases |
WO2017096361A1 (en) | 2015-12-04 | 2017-06-08 | Merrimack Pharmaceuticals, Inc. | Disulfide-stabilized fabs |
WO2017137542A1 (en) | 2016-02-10 | 2017-08-17 | Nascient Limited | Human antibodies and binding fragments thereof to tenascin |
WO2017191062A1 (en) | 2016-05-01 | 2017-11-09 | Ucb Biopharma Sprl | Affinity engineered serum protein carrier binding domain |
WO2017211928A1 (en) | 2016-06-10 | 2017-12-14 | Ucb Biopharma Sprl | ANTI-IgE ANTIBODIES |
WO2018060462A1 (en) | 2016-09-29 | 2018-04-05 | Nascient Ltd | Tenascin epitope and antibodies thereto |
WO2018083257A1 (en) | 2016-11-03 | 2018-05-11 | Psioxus Therapeutics Limited | Oncolytic adenovirus encoding transgenes |
WO2018083258A1 (en) | 2016-11-03 | 2018-05-11 | Psioxus Therapeutics Limited | Oncolytic adenovirus encoding at least three transgenes |
WO2018115017A2 (en) | 2016-12-19 | 2018-06-28 | Ucb Biopharma Sprl | Gremlin-1 crystal structure and inhibitory antibody |
WO2018135572A1 (en) | 2017-01-18 | 2018-07-26 | 伸晃化学株式会社 | Device for evaluating chemical substances and method for evaluating chemical substances |
WO2018183366A1 (en) | 2017-03-28 | 2018-10-04 | Syndax Pharmaceuticals, Inc. | Combination therapies of csf-1r or csf-1 antibodies and a t-cell engaging therapy |
WO2018213665A1 (en) | 2017-05-19 | 2018-11-22 | Syndax Pharmaceuticals, Inc. | Combination therapies |
GB201817309D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
GB201817311D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
WO2018220207A1 (en) | 2017-06-01 | 2018-12-06 | Psioxus Therapeutics Limited | Oncolytic virus and method |
WO2019004943A1 (en) | 2017-06-30 | 2019-01-03 | Aslan Pharmaceuticals Pte Ltd | Method of treatment using il-13r antibody |
WO2019051002A1 (en) | 2017-09-05 | 2019-03-14 | GLAdiator Biosciences, Inc. | A method of intracellular delivery |
WO2019115745A1 (en) | 2017-12-14 | 2019-06-20 | CSL Behring Lengnau AG | RECOMBINANT igG Fc MULTIMERS FOR THE TREATMENT OF NEUROMYELITIS OPTICA |
US10344081B2 (en) | 2015-07-06 | 2019-07-09 | Ucb Biopharma Sprl | Tau-binding antibodies |
US10358493B2 (en) | 2014-05-29 | 2019-07-23 | Ucb Biopharma Sprl | Bispecific format suitable for use in high-through-put screening |
US10370447B2 (en) | 2014-07-16 | 2019-08-06 | Ucb Biopharma Sprl | Molecules with specificity for CD79 and CD22 |
EP3524626A1 (en) | 2007-03-22 | 2019-08-14 | Biogen MA Inc. | Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof |
CN110167966A (en) * | 2017-01-06 | 2019-08-23 | 克雷森多生物制剂有限公司 | The single domain antibody of apoptosis (PD-1) |
EP3549599A1 (en) | 2013-08-30 | 2019-10-09 | UCB Biopharma SPRL | Antibodies against csf-1r |
WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
WO2019243801A1 (en) | 2018-06-18 | 2019-12-26 | UCB Biopharma SRL | Gremlin-1 antagonist for the prevention and treatment of cancer |
WO2020011868A1 (en) | 2018-07-11 | 2020-01-16 | UCB Biopharma SRL | Antibodies comprising a polypeptide inserted in framework 3 region |
US10590197B2 (en) | 2015-07-16 | 2020-03-17 | Ucb Biopharma Sprl | Antibody molecules which bind CD22 |
US10618955B2 (en) | 2014-07-15 | 2020-04-14 | Kymab Limited | Methods for treating neurodegenerative disease using anti-PD-1 antibodies |
US10618979B2 (en) | 2015-12-03 | 2020-04-14 | Ucb Biopharma Sprl | Multispecific antibodies |
US10618957B2 (en) | 2015-07-16 | 2020-04-14 | Ucb Biopharma Sprl | Antibody molecules which bind CD79 |
WO2020079086A1 (en) | 2018-10-16 | 2020-04-23 | UCB Biopharma SRL | Method for the treatment of myasthenia gravis |
WO2020148554A1 (en) | 2019-01-18 | 2020-07-23 | UCB Biopharma SRL | Antibodies to ebola virus glycoprotein |
US10774152B2 (en) | 2014-07-16 | 2020-09-15 | Ucb Biopharma Sprl | Molecules with specificity for CD45 and CD79 |
US10774157B2 (en) | 2015-12-03 | 2020-09-15 | UCB Biopharma SRL | Multispecific antibodies |
WO2020197502A1 (en) | 2019-03-26 | 2020-10-01 | Aslan Pharmaceuticals Pte Ltd | Treatment employing anti-il-13r antibody or binding fragment thereof |
US10829565B2 (en) | 2015-04-22 | 2020-11-10 | Ucb Biopharma Sprl | Method for increasing the percentage of monomeric antibody Fab-dsFv multimeric species |
US10828366B2 (en) | 2015-04-22 | 2020-11-10 | Ucb Biopharma Sprl | Method of monomerisation of recombinant antibody molecules |
US10829566B2 (en) | 2015-12-03 | 2020-11-10 | UCB Biopharma SRL | Method employing bispecific antibodies |
WO2020236795A2 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Trispecific binding molecules against bcma and uses thereof |
WO2020236797A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Variant cd58 domains and uses thereof |
WO2020236792A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Cd19 binding molecules and uses thereof |
WO2021026409A1 (en) | 2019-08-08 | 2021-02-11 | Regeneron Pharmaceuticals, Inc. | Novel antigen binding molecule formats |
WO2021048330A1 (en) | 2019-09-13 | 2021-03-18 | CSL Behring Lengnau AG | Recombinant igg fc multimers for the treatment of immune complex-mediated kidney disorders |
US10954312B2 (en) | 2015-12-03 | 2021-03-23 | UCB Biopharma SRL | Method employing bispecific protein complex |
WO2021091953A1 (en) | 2019-11-05 | 2021-05-14 | Regeneron Pharmaceuticals, Inc. | N-terminal scfv multispecific binding molecules |
WO2021105669A1 (en) | 2019-11-29 | 2021-06-03 | Oxford University Innovation Limited | Antibodies |
WO2021123186A1 (en) | 2019-12-20 | 2021-06-24 | UCB Biopharma SRL | Multi-specific antibody with binding specificity for human il-13 and il-17 |
WO2021123190A1 (en) | 2019-12-20 | 2021-06-24 | UCB Biopharma SRL | Antibody with binding specificity for human il-13. |
WO2021127495A1 (en) | 2019-12-20 | 2021-06-24 | Regeneron Pharmaceuticals, Inc. | Novel il2 agonists and methods of use thereof |
WO2021156171A1 (en) | 2020-02-03 | 2021-08-12 | UCB Biopharma SRL | Antibodies against klk5 |
US11091542B2 (en) | 2015-12-18 | 2021-08-17 | UCB Biopharma SRL | Antibody molecules which bind TNF alpha |
WO2021160268A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 |
WO2021160266A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies binding hvem and cd9 |
WO2021160269A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Anti cd44-ctla4 bispecific antibodies |
WO2021160265A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd137 |
WO2021160267A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd7 |
WO2021164722A1 (en) | 2020-02-21 | 2021-08-26 | 江苏恒瑞医药股份有限公司 | Anti-il-2 antibody, and antigen-binding fragment thereof and medical use thereof |
WO2021195513A1 (en) | 2020-03-27 | 2021-09-30 | Novartis Ag | Bispecific combination therapy for treating proliferative diseases and autoimmune disorders |
WO2021191424A1 (en) | 2020-03-27 | 2021-09-30 | UCB Biopharma SRL | Autonomous knob domain peptides |
WO2021224369A1 (en) | 2020-05-08 | 2021-11-11 | UCB Biopharma SRL | Arrays and methods for identifying binding sites on a protein |
WO2021231447A1 (en) | 2020-05-12 | 2021-11-18 | Regeneron Pharmaceuticals, Inc. | Novel il10 agonists and methods of use thereof |
WO2021228218A1 (en) | 2020-05-14 | 2021-11-18 | 江苏恒瑞医药股份有限公司 | Anti-cd25 antibodies, antigen-binding fragments thereof, and medical uses thereof |
WO2022002249A1 (en) | 2020-07-02 | 2022-01-06 | 北京拓界生物医药科技有限公司 | Anti-fxi/fxia antibody, antigen-binding fragment thereof, and pharmaceutical use thereof |
US11225515B2 (en) | 2016-08-26 | 2022-01-18 | Agency For Science, Technology And Research | Macrophage stimulating protein receptor (or RON—recepteur d'Origine Nantais) antibodies and uses thereof |
WO2022022508A1 (en) | 2020-07-27 | 2022-02-03 | 上海拓界生物医药科技有限公司 | Anti-cd79b antibody-drug conjugate, and preparation method therefor and pharmaceutical use thereof |
US11286312B2 (en) | 2015-12-03 | 2022-03-29 | UCB Biopharma SRL | Multispecific antibodies |
WO2022079036A1 (en) | 2020-10-13 | 2022-04-21 | Almirall, S.A. | Bispecific molecules and methods of treatment using the same |
WO2022079199A1 (en) | 2020-10-15 | 2022-04-21 | UCB Biopharma SRL | Binding molecules that multimerise cd45 |
EP3988936A1 (en) | 2015-06-18 | 2022-04-27 | UCB Biopharma SRL | Antibody epitope |
WO2022097061A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
WO2022097060A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Cd19 binding molecules and uses thereof |
US11345760B2 (en) | 2014-06-25 | 2022-05-31 | UCB Biopharma SRL | Multispecific antibody constructs |
US11352414B2 (en) | 2014-03-05 | 2022-06-07 | UCB Biopharma SRL | Multimeric Fc proteins |
WO2022122652A1 (en) | 2020-12-07 | 2022-06-16 | UCB Biopharma SRL | Antibodies against interleukin-22 |
WO2022122654A1 (en) | 2020-12-07 | 2022-06-16 | UCB Biopharma SRL | Multi-specific antibodies and antibody combinations |
WO2022175275A1 (en) | 2021-02-17 | 2022-08-25 | UCB Biopharma SRL | Antibodies |
US11447556B2 (en) | 2018-08-13 | 2022-09-20 | Inhibex, Inc. | OX40-binding polypeptides and uses thereof |
WO2022228364A1 (en) | 2021-04-25 | 2022-11-03 | 江苏恒瑞医药股份有限公司 | Anti-masp2 antibody, antigen-binding fragment thereof and medical use thereof |
US11492396B2 (en) | 2015-10-27 | 2022-11-08 | UCB Biopharma SRL | Methods of treatment using anti-IL-17A/F antibodies |
WO2022235628A1 (en) | 2021-05-04 | 2022-11-10 | Regeneron Pharmaceuticals, Inc. | Multispecific fgf21 receptor agonists and their uses |
WO2022233764A1 (en) | 2021-05-03 | 2022-11-10 | UCB Biopharma SRL | Antibodies |
US11524997B2 (en) | 2018-02-15 | 2022-12-13 | UCB Biopharma SRL | Gremlin-1 inhibitor for the treatment of a bone fracture or bone defect |
WO2023274201A1 (en) | 2021-06-28 | 2023-01-05 | 江苏恒瑞医药股份有限公司 | Anti-cd40 antibody, antigen-binding fragment and medical use thereof |
WO2023285878A1 (en) | 2021-07-13 | 2023-01-19 | Aviation-Ophthalmology | Methods for detecting, treating, and preventing gpr68-mediated ocular diseases, disorders, and conditions |
WO2023004282A2 (en) | 2021-07-19 | 2023-01-26 | Regeneron Pharmaceuticals, Inc. | Il12 receptor agonists and methods of use thereof |
WO2023022965A2 (en) | 2021-08-16 | 2023-02-23 | Regeneron Pharmaceuticals, Inc. | Novel il27 receptor agonists and methods of use thereof |
WO2023021187A1 (en) | 2021-08-19 | 2023-02-23 | UCB Biopharma SRL | Anti-hla-g antibodies |
WO2023025249A1 (en) | 2021-08-25 | 2023-03-02 | 江苏恒瑞医药股份有限公司 | Pharmaceutical composition containing fusion protein |
WO2023040945A1 (en) | 2021-09-15 | 2023-03-23 | 江苏恒瑞医药股份有限公司 | Protein specifically binding to pd-1 and pharmaceutical use thereof |
WO2023075702A1 (en) | 2021-10-29 | 2023-05-04 | Aslan Pharmaceuticals Pte Ltd | Anti-il-13r antibody formulation |
WO2023086812A1 (en) | 2021-11-11 | 2023-05-19 | Regeneron Pharmaceuticals, Inc. | Cd20-pd1 binding molecules and methods of use thereof |
WO2023140780A1 (en) | 2022-01-24 | 2023-07-27 | Aslan Pharmaceuticals Pte Ltd. | Method of treating inflammatory disease |
WO2023151661A1 (en) | 2022-02-11 | 2023-08-17 | 江苏恒瑞医药股份有限公司 | Immunoconjugate and use thereof |
WO2023163659A1 (en) | 2022-02-23 | 2023-08-31 | Aslan Pharmaceuticals Pte Ltd | Glycosylated form of anti-il13r antibody |
US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
WO2023194583A1 (en) | 2022-04-08 | 2023-10-12 | UCB Biopharma SRL | Combination of a gremlin-1 antagonist with an inhibitor of ras-raf-mek-erk signalling |
WO2023194584A1 (en) | 2022-04-08 | 2023-10-12 | UCB Biopharma SRL | Combination of a gremlin-1 antagonist with a cytidine analogue or deoxycytidine analogue |
EP4273252A2 (en) | 2016-08-29 | 2023-11-08 | Akamis Bio Limited | Adenovirus armed with bispecific t cell engager (bite) |
WO2023220647A1 (en) | 2022-05-11 | 2023-11-16 | Regeneron Pharmaceuticals, Inc. | Multispecific binding molecule proproteins and uses thereof |
WO2023230594A1 (en) | 2022-05-27 | 2023-11-30 | Regeneron Pharmaceuticals, Inc. | Interleukin-2 proproteins and uses thereof |
WO2023235848A1 (en) | 2022-06-04 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Interleukin-2 proproteins and uses thereof |
WO2024040249A1 (en) | 2022-08-18 | 2024-02-22 | Regeneron Pharmaceuticals, Inc. | Interferon receptor agonists and uses thereof |
WO2024040247A1 (en) | 2022-08-18 | 2024-02-22 | Regeneron Pharmaceuticals, Inc. | Interferon proproteins and uses thereof |
WO2024043837A1 (en) | 2022-08-26 | 2024-02-29 | Aslan Pharmaceuticals Pte Ltd | High concentration anti-il13r antibody formulation |
US11926667B2 (en) | 2020-10-13 | 2024-03-12 | Janssen Biotech, Inc. | Bioengineered T cell mediated immunity, materials and other methods for modulating cluster of differentiation IV and/or VIII |
US11975046B2 (en) | 2016-12-20 | 2024-05-07 | UCB Biopharma SRL | Medical use of interferon-lambda for the treatment of fibrosis |
WO2024115393A1 (en) | 2022-11-28 | 2024-06-06 | UCB Biopharma SRL | Treatment of fibromyalgia |
WO2024130175A2 (en) | 2022-12-16 | 2024-06-20 | Regeneron Pharmaceuticals, Inc. | Antigen-binding molecules that bind to aav particles and uses |
WO2024138191A1 (en) | 2022-12-23 | 2024-06-27 | Regeneron Pharmaceuticals, Inc. | Ace2 fusion proteins and uses thereof |
WO2024152014A1 (en) | 2023-01-13 | 2024-07-18 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
WO2024151978A1 (en) | 2023-01-13 | 2024-07-18 | Regeneron Pharmaceuticals, Inc. | Il12 receptor agonists and methods of use thereof |
WO2024182455A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | Multivalent anti-spike protein binding molecules and uses thereof |
WO2024182540A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | T cell activators and methods of use thereof |
WO2024182451A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | Multivalent anti-spike protein binding molecules and uses thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009085106A1 (en) * | 2007-12-27 | 2009-07-09 | Duke University | Resin assisted capture of cysteine-modified proteins/peptides and determination of presence and location of modification |
US8859294B2 (en) * | 2010-03-17 | 2014-10-14 | Panasonic Corporation | Method for binding a protein consisting of protein A or consisting of at least one domain of the A to E domains of the protein A to the substrate |
JP4987165B2 (en) * | 2010-03-17 | 2012-07-25 | パナソニック株式会社 | Method for binding protein A or a protein comprising at least one of A to E domains of protein A to the surface of a substrate |
CA2859755C (en) | 2011-12-23 | 2021-04-20 | Pfizer Inc. | Engineered antibody constant regions for site-specific conjugation and methods and uses therefor |
US9914769B2 (en) | 2014-07-15 | 2018-03-13 | Kymab Limited | Precision medicine for cholesterol treatment |
US8992927B1 (en) | 2014-07-15 | 2015-03-31 | Kymab Limited | Targeting human NAV1.7 variants for treatment of pain |
US8986694B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Targeting human nav1.7 variants for treatment of pain |
US11364303B2 (en) | 2017-09-29 | 2022-06-21 | Pfizer Inc. | Cysteine engineered antibody drug conjugates |
US20230190799A1 (en) * | 2021-07-21 | 2023-06-22 | City Of Hope | Chimeric antigen receptor t cells targeting cea and anti-cea-il2 immunocytokines for cancer therapy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998025971A1 (en) * | 1996-12-10 | 1998-06-18 | Celltech Therapeutics Limited | Monovalent antibody fragments |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8720833D0 (en) | 1987-09-04 | 1987-10-14 | Celltech Ltd | Recombinant dna product |
US7018809B1 (en) | 1991-09-19 | 2006-03-28 | Genentech, Inc. | Expression of functional antibody fragments |
WO2003074679A2 (en) * | 2002-03-01 | 2003-09-12 | Xencor | Antibody optimization |
-
2004
- 2004-07-01 ES ES04743158.0T patent/ES2551439T5/en not_active Expired - Lifetime
- 2004-07-01 CA CA002527020A patent/CA2527020A1/en not_active Abandoned
- 2004-07-01 DK DK04743158.0T patent/DK1644412T4/en active
- 2004-07-01 WO PCT/GB2004/002810 patent/WO2005003169A2/en active Application Filing
- 2004-07-01 HU HUE04743158A patent/HUE026278T2/en unknown
- 2004-07-01 JP JP2006516487A patent/JP2007536898A/en active Pending
- 2004-07-01 SI SI200432279T patent/SI1644412T2/en unknown
- 2004-07-01 AU AU2004253738A patent/AU2004253738A1/en not_active Abandoned
- 2004-07-01 EP EP04743158.0A patent/EP1644412B2/en not_active Expired - Lifetime
- 2004-07-01 US US10/562,746 patent/US7989594B2/en active Active
- 2004-07-01 PT PT47431580T patent/PT1644412E/en unknown
- 2004-07-01 PL PL04743158T patent/PL1644412T5/en unknown
-
2015
- 2015-11-13 CY CY20151101023T patent/CY1116913T1/en unknown
- 2015-11-23 HR HRP20151252TT patent/HRP20151252T4/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998025971A1 (en) * | 1996-12-10 | 1998-06-18 | Celltech Therapeutics Limited | Monovalent antibody fragments |
Non-Patent Citations (4)
Title |
---|
CHAPMAN A P ET AL: "THERAPEUTIC ANTIBODY FRAGMENTS WITH PROLONGED IN VIVO HALF-LIVES" NATURE BIOTECHNOLOGY, NATURE PUBLISHING, US, vol. 17, no. 8, August 1999 (1999-08), pages 780-783, XP001199462 ISSN: 1087-0156 * |
KHAWLI LESLIE A ET AL: "Stable, genetically engineered F(ab')2 fragments of chimeric TNT-3 expressed in mammalian cells" HYBRIDOMA AND HYBRIDOMICS, vol. 21, no. 1, February 2002 (2002-02), pages 11-18, XP002314088 ISSN: 1536-8599 * |
LEONG STEVEN R ET AL: "Adapting pharmacokinetic properties of a humanized anti-interleukin-8 antibody for therapeutic applications using site-specific pegylation" CYTOKINE, vol. 16, no. 3, 7 November 2001 (2001-11-07), pages 106-119, XP002314089 ISSN: 1043-4666 * |
TOUT N L ET AL: "Phage display and bacterial expression of a recombinant Fab specific for Pseudomonas aeruginosa serotype O6 lipopolysaccharide" CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 4, no. 2, March 1997 (1997-03), pages 147-155, XP002258884 ISSN: 1071-412X * |
Cited By (239)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1983000A2 (en) | 2003-11-21 | 2008-10-22 | UCB Pharma, S.A. | Method for the treatment of multiple sclerosis by inhibiting IL-17 activity |
US7931900B2 (en) | 2003-11-21 | 2011-04-26 | Ucb Pharma S.A. | Method for the treatment of multiple sclerosis by inhibiting IL-17 activity |
US7736635B2 (en) | 2003-12-23 | 2010-06-15 | Ucb Pharma S.A. | Branched molecular scaffolds for linking polymer residues to biologically active moieties |
US8053562B2 (en) | 2005-07-19 | 2011-11-08 | Ucb Pharma S.A. | Modified antibody fragments |
WO2007010231A1 (en) * | 2005-07-19 | 2007-01-25 | Ucb Pharma S.A. | Modified antibody fragments |
US8129505B2 (en) | 2005-09-14 | 2012-03-06 | Ucb Pharma S.A. | Comb polymers |
US8486662B2 (en) | 2005-12-09 | 2013-07-16 | Ucb Pharma S.A. | DNA encoding antibody molecules having specificity for human IL-6 |
EP2336181A1 (en) | 2005-12-09 | 2011-06-22 | UCB Pharma, S.A. | Antibody molecules having specificity for human IL-6 |
US9096668B2 (en) | 2005-12-09 | 2015-08-04 | Ucb Pharma S.A. | Methods for making antibody molecules having specificity for human IL-6 |
US8075889B2 (en) | 2005-12-09 | 2011-12-13 | Ucb Pharma S.A. | Antibody molecules having specificity for human IL-6 |
US9631015B2 (en) | 2005-12-09 | 2017-04-25 | Ucb Pharma S.A. | Methods for treating IL-6 mediated diseases with antibody molecules specific for IL-6 |
EP2314626A1 (en) | 2005-12-09 | 2011-04-27 | UCB Pharma, S.A. | Antibody molecules having specificity for human IL-6 |
EP3009448A1 (en) | 2006-07-25 | 2016-04-20 | UCB Biopharma SPRL | Single chain fc polypeptides |
EP2514764A2 (en) | 2006-10-18 | 2012-10-24 | UCB Pharma, S.A. | Antibody molecules which bind IL-17A and IL-17F |
EP3524623A1 (en) | 2006-10-18 | 2019-08-14 | UCB Biopharma SPRL | Antibody molecules which bind il-17a and il-17f |
EP3524626A1 (en) | 2007-03-22 | 2019-08-14 | Biogen MA Inc. | Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof |
WO2008151319A2 (en) * | 2007-06-08 | 2008-12-11 | Dow Global Technologies Inc. | Expression of soluble antibody fragment by truncation of ch1 domain |
WO2008151319A3 (en) * | 2007-06-08 | 2009-03-26 | Dow Global Technologies Inc | Expression of soluble antibody fragment by truncation of ch1 domain |
WO2009030936A1 (en) | 2007-09-06 | 2009-03-12 | Ucb Pharma S.A. | Method for the treatment of glomerulonephritis |
EP2535349A1 (en) | 2007-09-26 | 2012-12-19 | UCB Pharma S.A. | Dual specificity antibody fusions |
EP2535351A2 (en) | 2007-09-26 | 2012-12-19 | UCB Pharma S.A. | Dual specificity antibody fusions |
EP2535350A1 (en) | 2007-09-26 | 2012-12-19 | UCB Pharma S.A. | Dual specificity antibody fusions |
WO2009087380A2 (en) | 2008-01-08 | 2009-07-16 | Imagination Technologies Limited | Video motion compensation |
EP2975048A2 (en) | 2008-04-23 | 2016-01-20 | UCB Biopharma SPRL | Epitopes of il-17a and il-17f and antibodies specific thereto |
WO2010079345A2 (en) | 2009-01-12 | 2010-07-15 | Ucb Pharma S.A. | Antibody-guided fragment growth |
US10017575B2 (en) | 2009-02-17 | 2018-07-10 | Ucb Pharma S.A. | Antibody molecules having specificity for human OX40 |
US9428570B2 (en) | 2009-02-17 | 2016-08-30 | Ucb Pharma S.A. | Antibody molecules having specificity for human OX40 |
WO2010096418A2 (en) | 2009-02-17 | 2010-08-26 | Ucb Pharma S.A. | Antibody molecules having specificity for human ox40 |
US8614295B2 (en) | 2009-02-17 | 2013-12-24 | Ucb Pharma S.A. | Antibody molecules having specificity for human OX40 |
WO2010097437A1 (en) | 2009-02-25 | 2010-09-02 | Ucb Pharma, S.A. | Method for producing antibodies |
WO2010097435A1 (en) | 2009-02-25 | 2010-09-02 | Ucb Pharma, S.A. | Method for producing antibodies |
US9394361B2 (en) | 2009-03-11 | 2016-07-19 | Ucb Biopharma Sprl | Isolated DNA sequences encoding, and methods for making, antibody molecules having binding specificity for human IL-13 |
EP3168235A1 (en) | 2009-03-11 | 2017-05-17 | UCB Biopharma SPRL | Antibody molecules having binding specificity for human il-13 |
US9957320B2 (en) | 2009-03-11 | 2018-05-01 | Ucb Biopharma Sprl | Isolated DNA sequences encoding, and methods for making, antibody molecules having binding specificity for human IL-13 |
US8691233B2 (en) | 2009-03-11 | 2014-04-08 | Ucb Pharma S.A. | Antibody molecules having binding specificity for human IL-13 |
WO2011030107A1 (en) | 2009-09-10 | 2011-03-17 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011036460A1 (en) | 2009-09-25 | 2011-03-31 | Ucb Pharma S.A. | Disulfide stabilised multivalent antibodies |
US9234037B2 (en) | 2009-10-27 | 2016-01-12 | Ucb Biopharma Sprl | Method to generate antibodies to ion channels |
US8926977B2 (en) | 2009-10-27 | 2015-01-06 | Ucb Pharma S.A. | Antibodies to the E1 extracellular loop of ion channels |
WO2011051350A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Function modifying nav 1.7 antibodies |
US9956274B2 (en) | 2009-10-27 | 2018-05-01 | Ucb Biopharma Sprl | Method to generate antibodies to ion channels |
US10112996B2 (en) | 2009-10-27 | 2018-10-30 | Ucb Biopharma Sprl | Function modifying NAv1.7 antibodies |
US9738710B2 (en) | 2009-10-27 | 2017-08-22 | Ucb Biopharma Sprl | Method of treating a patient for pain by administering an anti-ion channel antibody |
US9067995B2 (en) | 2009-10-27 | 2015-06-30 | Ucb Pharma S.A. | Method to generate antibodies to ion channels |
WO2011051349A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Antibodies to ion channels |
US8734798B2 (en) | 2009-10-27 | 2014-05-27 | Ucb Pharma S.A. | Function modifying NAv 1.7 antibodies |
WO2011051351A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Method to generate antibodies to ion channels |
US8986954B2 (en) | 2009-10-27 | 2015-03-24 | Ucb Pharma S.A. | DNA encoding function modifying Nav1.7 antibodies |
WO2011061492A2 (en) | 2009-11-17 | 2011-05-26 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011061246A2 (en) | 2009-11-19 | 2011-05-26 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011086091A1 (en) | 2010-01-12 | 2011-07-21 | Ucb Pharma S.A. | Multivalent antibodies |
WO2011110621A1 (en) | 2010-03-11 | 2011-09-15 | Ucb Pharma, S.A. | Biological products: humanised agonistic anti-pd-1 antibodies |
US8993731B2 (en) | 2010-03-11 | 2015-03-31 | Ucb Biopharma Sprl | PD-1 antibody |
WO2011110604A1 (en) | 2010-03-11 | 2011-09-15 | Ucb Pharma, S.A. | Pd-1 antibody |
US9102728B2 (en) | 2010-03-11 | 2015-08-11 | Ucb Biopharma Sprl | PD-1 antibodies |
WO2011117648A2 (en) | 2010-03-25 | 2011-09-29 | Ucb Pharma S.A. | Disulfide stabilised antibodies and fragments thereof |
US9045529B2 (en) | 2010-03-25 | 2015-06-02 | Ucb Pharma S.A. | Disulfide stabilized antibodies and fragments thereof |
US10759844B2 (en) | 2010-03-25 | 2020-09-01 | Ucb Biopharma Sprl | Disulfide stabilised antibodies and fragments thereof |
WO2011117653A1 (en) | 2010-03-25 | 2011-09-29 | Ucb Pharma S.A. | Disulfide stabilized dvd-lg molecules |
US10472426B2 (en) | 2010-03-25 | 2019-11-12 | Ucb Biopharma Sprl | Disulfide stabilized DVD-Ig molecules |
US9034600B2 (en) | 2011-01-14 | 2015-05-19 | Ucb Biopharma Sprl | DNA encoding antibody molecules which bind IL-17A and IL-17F |
US9988446B2 (en) | 2011-01-14 | 2018-06-05 | Ucb Biopharma Sprl | Methods of treatment using antibodies which bind IL-17A and IL-17F |
US11919950B2 (en) | 2011-01-14 | 2024-03-05 | UCB Biopharma SRL | Expression vector encoding antibody molecule which binds IL-17A and IL-17F |
US8580265B2 (en) | 2011-01-14 | 2013-11-12 | Ucb Pharma S.A. | Antibody molecules which bind IL-17A and IL-17F |
WO2012095662A1 (en) | 2011-01-14 | 2012-07-19 | Ucb Pharma S.A. | Antibody molecules which bind il-17a and il-17f |
EP3219728A1 (en) | 2011-01-14 | 2017-09-20 | UCB Biopharma SPRL | Antibody molecules which bind il-17a and il-17f |
WO2013034579A1 (en) | 2011-09-05 | 2013-03-14 | Rheinische Friedrich-Wilhelms-Universität Bonn | Biosynthetic gene cluster for the production of peptide/protein analogues |
US10752676B2 (en) | 2011-09-16 | 2020-08-25 | Ucb Biopharma Sprl | Neutralising antibodies to the major exotoxins TCDA and TCDB of Clostridium difficile |
EP3617227A2 (en) | 2011-09-16 | 2020-03-04 | UCB Biopharma SRL | Neutralising antibodies to the major exotoxin tcda of clostridium difficile |
WO2013038156A1 (en) | 2011-09-16 | 2013-03-21 | Ucb Pharma S.A. | Neutralising antibodies to the major exotoxins tcda and tcdb of clostridium difficile |
WO2013068571A1 (en) | 2011-11-11 | 2013-05-16 | Ucb Pharma S.A. | Albumin binding antibodies and binding fragments thereof |
US9803004B2 (en) | 2011-11-11 | 2017-10-31 | Ucb Biopharma Sprl | Albumin binding antibodies and binding fragments thereof |
US10023631B2 (en) | 2011-11-11 | 2018-07-17 | Ucb Biopharma Sprl | Albumin binding antibodies and binding fragments thereof |
WO2013079701A2 (en) | 2011-11-30 | 2013-06-06 | University Of Bremen | Expression of mirnas in placental tissue |
EP3190186A2 (en) | 2011-11-30 | 2017-07-12 | Jörn Bullerdiek | Expression of mirnas in placental tissue |
EP4349343A2 (en) | 2011-11-30 | 2024-04-10 | Jörn Bullerdiek | Expression of mirnas in placental tissue |
US9718879B2 (en) | 2012-01-26 | 2017-08-01 | Imperial Innovations Ltd. | Methods of treating pain by inhibition of VGF activity |
WO2013110945A1 (en) | 2012-01-26 | 2013-08-01 | Imperial Innovations Ltd | Methods of treating pain by inhibition of vgf activity |
EP3527588A1 (en) | 2012-05-14 | 2019-08-21 | UCB Biopharma SPRL | Anti-fcrn antibodies |
WO2014019727A1 (en) | 2012-05-14 | 2014-02-06 | Ucb Pharma S.A. | Anti-fcrn antibodies |
US11384148B2 (en) | 2012-05-14 | 2022-07-12 | UCB Biopharma SRL | Anti-FcRn antibodies |
US10233243B2 (en) | 2012-05-14 | 2019-03-19 | Ucb Biopharma Sprl | Anti-FcRn antibodies |
WO2014001557A1 (en) | 2012-06-28 | 2014-01-03 | Ucb Pharma S.A. | A method for identifying compounds of therapeutic interest |
US10048253B2 (en) | 2012-06-28 | 2018-08-14 | Ucb Biopharma Sprl | Method for identifying compounds of therapeutic interest |
WO2014114802A1 (en) | 2013-01-25 | 2014-07-31 | Charité - Universitätsmedizin Berlin | Non-invasive prenatal genetic diagnostic methods |
EP4282881A2 (en) | 2013-08-30 | 2023-11-29 | UCB Biopharma SRL | Antibodies against csf-1r |
EP3549599A1 (en) | 2013-08-30 | 2019-10-09 | UCB Biopharma SPRL | Antibodies against csf-1r |
EP3831398A1 (en) | 2013-10-25 | 2021-06-09 | PsiOxus Therapeutics Limited | Oncolytic adenoviruses armed with heterologous genes |
WO2015059303A1 (en) | 2013-10-25 | 2015-04-30 | Psioxus Therapeutics Limited | Oncolytic adenoviruses armed with heterologous genes |
US11220547B2 (en) | 2013-11-12 | 2022-01-11 | Ucb Biopharma Sprl | Antibodies specific to FCRN |
WO2015071330A1 (en) | 2013-11-13 | 2015-05-21 | Ucb Biopharma Sprl | Antibodies specific to fcrn |
EP3572433A1 (en) | 2013-11-13 | 2019-11-27 | UCB Biopharma SPRL | Antibodies specific to fcrn |
US10273302B2 (en) | 2013-11-13 | 2019-04-30 | Ucb Biopharma Sprl | Antibodies specific to FcRn |
US11773175B2 (en) | 2014-03-04 | 2023-10-03 | Kymab Limited | Antibodies, uses and methods |
US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
US11352414B2 (en) | 2014-03-05 | 2022-06-07 | UCB Biopharma SRL | Multimeric Fc proteins |
WO2015155370A1 (en) | 2014-04-12 | 2015-10-15 | Psioxus Therapeutics Limited | Group b adenovirus modified in the e4orf4 region |
US10358493B2 (en) | 2014-05-29 | 2019-07-23 | Ucb Biopharma Sprl | Bispecific format suitable for use in high-through-put screening |
EP3750915A1 (en) | 2014-05-29 | 2020-12-16 | UCB Biopharma SRL | New bispecific format suitable for use in high-through-put screening |
US11345760B2 (en) | 2014-06-25 | 2022-05-31 | UCB Biopharma SRL | Multispecific antibody constructs |
US10711059B2 (en) | 2014-07-15 | 2020-07-14 | Kymab Limited | Methods for treating neurodegenerative diseases using anti-PD-L1 antibodies |
US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
US10618955B2 (en) | 2014-07-15 | 2020-04-14 | Kymab Limited | Methods for treating neurodegenerative disease using anti-PD-1 antibodies |
US10774152B2 (en) | 2014-07-16 | 2020-09-15 | Ucb Biopharma Sprl | Molecules with specificity for CD45 and CD79 |
US10370447B2 (en) | 2014-07-16 | 2019-08-06 | Ucb Biopharma Sprl | Molecules with specificity for CD79 and CD22 |
US11261252B2 (en) | 2014-07-16 | 2022-03-01 | UCB Biopharma SRL | Molecules with specificity for CD79 and CD22 |
US10829565B2 (en) | 2015-04-22 | 2020-11-10 | Ucb Biopharma Sprl | Method for increasing the percentage of monomeric antibody Fab-dsFv multimeric species |
US10828366B2 (en) | 2015-04-22 | 2020-11-10 | Ucb Biopharma Sprl | Method of monomerisation of recombinant antibody molecules |
US11786593B2 (en) | 2015-04-22 | 2023-10-17 | UCB Biopharma SRL | Method of monomerisation of recombinant antibody molecules |
US11834514B2 (en) | 2015-04-22 | 2023-12-05 | UCB Biopharma SRL | Method for increasing the percentage of monomeric antibody Fab-dsFv multimeric species |
WO2016176656A2 (en) | 2015-04-30 | 2016-11-03 | President And Fellows Of Harvard College | Anti-ap2 antibodies and antigen binding agents to treat metabolic disorders |
WO2016180765A1 (en) | 2015-05-13 | 2016-11-17 | Ucb Biopharma Sprl | Anti-fcrn antibodies |
WO2016189045A1 (en) | 2015-05-27 | 2016-12-01 | Ucb Biopharma Sprl | Method for the treatment of neurological disease |
EP3988936A1 (en) | 2015-06-18 | 2022-04-27 | UCB Biopharma SRL | Antibody epitope |
EP3995831A1 (en) | 2015-06-18 | 2022-05-11 | UCB Biopharma SRL | Antibody |
WO2017005734A1 (en) | 2015-07-06 | 2017-01-12 | Ucb Biopharma Sprl | Tau-binding antibodies |
US10344081B2 (en) | 2015-07-06 | 2019-07-09 | Ucb Biopharma Sprl | Tau-binding antibodies |
US10287343B2 (en) | 2015-07-06 | 2019-05-14 | Ucb Biopharma Sprl | Tau-binding antibodies |
US10889640B2 (en) | 2015-07-06 | 2021-01-12 | Ucb Biopharma Sprl | Tau-binding antibodies |
US11732034B2 (en) | 2015-07-06 | 2023-08-22 | UCB Biopharma SRL | Tau-binding antibodies |
US10906966B2 (en) | 2015-07-06 | 2021-02-02 | UCB Biopharma SRL | Tau-binding antibodies |
US11746145B2 (en) | 2015-07-06 | 2023-09-05 | UCB Biopharma SRL | Tau-binding antibodies |
US10618957B2 (en) | 2015-07-16 | 2020-04-14 | Ucb Biopharma Sprl | Antibody molecules which bind CD79 |
US10590197B2 (en) | 2015-07-16 | 2020-03-17 | Ucb Biopharma Sprl | Antibody molecules which bind CD22 |
US11472879B2 (en) | 2015-07-16 | 2022-10-18 | UCB Biopharma SRL | Antibody molecules which bind CD22 |
US11692041B2 (en) | 2015-07-16 | 2023-07-04 | UCB Biopharma SRL | Antibody molecules which bind CD45 |
WO2017009473A1 (en) | 2015-07-16 | 2017-01-19 | Ucb Biopharma Sprl | Antibody molecules which bind cd45 |
WO2017060242A1 (en) | 2015-10-05 | 2017-04-13 | Ucb Biopharma Sprl | Molecular signatures for use in diagnosis and response to treatment analysis of autoimmune diseases |
US11492396B2 (en) | 2015-10-27 | 2022-11-08 | UCB Biopharma SRL | Methods of treatment using anti-IL-17A/F antibodies |
US10954312B2 (en) | 2015-12-03 | 2021-03-23 | UCB Biopharma SRL | Method employing bispecific protein complex |
US11286312B2 (en) | 2015-12-03 | 2022-03-29 | UCB Biopharma SRL | Multispecific antibodies |
US10829566B2 (en) | 2015-12-03 | 2020-11-10 | UCB Biopharma SRL | Method employing bispecific antibodies |
US10774157B2 (en) | 2015-12-03 | 2020-09-15 | UCB Biopharma SRL | Multispecific antibodies |
US10618979B2 (en) | 2015-12-03 | 2020-04-14 | Ucb Biopharma Sprl | Multispecific antibodies |
WO2017096361A1 (en) | 2015-12-04 | 2017-06-08 | Merrimack Pharmaceuticals, Inc. | Disulfide-stabilized fabs |
US11091542B2 (en) | 2015-12-18 | 2021-08-17 | UCB Biopharma SRL | Antibody molecules which bind TNF alpha |
WO2017137542A1 (en) | 2016-02-10 | 2017-08-17 | Nascient Limited | Human antibodies and binding fragments thereof to tenascin |
US11466076B2 (en) | 2016-05-01 | 2022-10-11 | UCB Biopharma SRL | Binding domain or antibody specific to a human serum albumin (HSA) |
WO2017191062A1 (en) | 2016-05-01 | 2017-11-09 | Ucb Biopharma Sprl | Affinity engineered serum protein carrier binding domain |
WO2017211928A1 (en) | 2016-06-10 | 2017-12-14 | Ucb Biopharma Sprl | ANTI-IgE ANTIBODIES |
US11225515B2 (en) | 2016-08-26 | 2022-01-18 | Agency For Science, Technology And Research | Macrophage stimulating protein receptor (or RON—recepteur d'Origine Nantais) antibodies and uses thereof |
EP4273252A2 (en) | 2016-08-29 | 2023-11-08 | Akamis Bio Limited | Adenovirus armed with bispecific t cell engager (bite) |
WO2018060462A1 (en) | 2016-09-29 | 2018-04-05 | Nascient Ltd | Tenascin epitope and antibodies thereto |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
WO2018083258A1 (en) | 2016-11-03 | 2018-05-11 | Psioxus Therapeutics Limited | Oncolytic adenovirus encoding at least three transgenes |
WO2018083257A1 (en) | 2016-11-03 | 2018-05-11 | Psioxus Therapeutics Limited | Oncolytic adenovirus encoding transgenes |
US11807680B2 (en) | 2016-12-19 | 2023-11-07 | UCB Biopharma SRL | Gremlin-1 crystal structure and inhibitory antibody |
WO2018115017A2 (en) | 2016-12-19 | 2018-06-28 | Ucb Biopharma Sprl | Gremlin-1 crystal structure and inhibitory antibody |
US10947304B2 (en) | 2016-12-19 | 2021-03-16 | UCB Biopharma SRL | Gremlin-1 antibody |
US11975046B2 (en) | 2016-12-20 | 2024-05-07 | UCB Biopharma SRL | Medical use of interferon-lambda for the treatment of fibrosis |
CN110167966A (en) * | 2017-01-06 | 2019-08-23 | 克雷森多生物制剂有限公司 | The single domain antibody of apoptosis (PD-1) |
WO2018135572A1 (en) | 2017-01-18 | 2018-07-26 | 伸晃化学株式会社 | Device for evaluating chemical substances and method for evaluating chemical substances |
WO2018183366A1 (en) | 2017-03-28 | 2018-10-04 | Syndax Pharmaceuticals, Inc. | Combination therapies of csf-1r or csf-1 antibodies and a t-cell engaging therapy |
WO2018213665A1 (en) | 2017-05-19 | 2018-11-22 | Syndax Pharmaceuticals, Inc. | Combination therapies |
WO2018220207A1 (en) | 2017-06-01 | 2018-12-06 | Psioxus Therapeutics Limited | Oncolytic virus and method |
EP4269438A2 (en) | 2017-06-01 | 2023-11-01 | Akamis Bio Limited | Oncolytic virus and method |
WO2019004943A1 (en) | 2017-06-30 | 2019-01-03 | Aslan Pharmaceuticals Pte Ltd | Method of treatment using il-13r antibody |
WO2019051002A1 (en) | 2017-09-05 | 2019-03-14 | GLAdiator Biosciences, Inc. | A method of intracellular delivery |
WO2019050998A1 (en) | 2017-09-05 | 2019-03-14 | GLAdiator Biosciences, Inc. | Method of targeting exosomes |
WO2019050997A1 (en) | 2017-09-05 | 2019-03-14 | GLAdiator Biosciences, Inc. | Delivery of payloads to stem cells |
WO2019115745A1 (en) | 2017-12-14 | 2019-06-20 | CSL Behring Lengnau AG | RECOMBINANT igG Fc MULTIMERS FOR THE TREATMENT OF NEUROMYELITIS OPTICA |
US11524997B2 (en) | 2018-02-15 | 2022-12-13 | UCB Biopharma SRL | Gremlin-1 inhibitor for the treatment of a bone fracture or bone defect |
WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
WO2019243801A1 (en) | 2018-06-18 | 2019-12-26 | UCB Biopharma SRL | Gremlin-1 antagonist for the prevention and treatment of cancer |
WO2020011868A1 (en) | 2018-07-11 | 2020-01-16 | UCB Biopharma SRL | Antibodies comprising a polypeptide inserted in framework 3 region |
US11999772B2 (en) | 2018-07-11 | 2024-06-04 | UCB Biopharma SRL | Antibodies comprising a polypeptide inserted in framework 3 region |
US12012459B2 (en) | 2018-08-13 | 2024-06-18 | Inhibrx, Inc. | OX40-binding polypeptides and uses thereof |
US11447556B2 (en) | 2018-08-13 | 2022-09-20 | Inhibex, Inc. | OX40-binding polypeptides and uses thereof |
WO2020079086A1 (en) | 2018-10-16 | 2020-04-23 | UCB Biopharma SRL | Method for the treatment of myasthenia gravis |
GB201817311D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
GB201817309D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
WO2020148554A1 (en) | 2019-01-18 | 2020-07-23 | UCB Biopharma SRL | Antibodies to ebola virus glycoprotein |
WO2020197502A1 (en) | 2019-03-26 | 2020-10-01 | Aslan Pharmaceuticals Pte Ltd | Treatment employing anti-il-13r antibody or binding fragment thereof |
WO2020236792A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Cd19 binding molecules and uses thereof |
WO2020236797A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Variant cd58 domains and uses thereof |
WO2020236795A2 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Trispecific binding molecules against bcma and uses thereof |
WO2021026409A1 (en) | 2019-08-08 | 2021-02-11 | Regeneron Pharmaceuticals, Inc. | Novel antigen binding molecule formats |
WO2021048330A1 (en) | 2019-09-13 | 2021-03-18 | CSL Behring Lengnau AG | Recombinant igg fc multimers for the treatment of immune complex-mediated kidney disorders |
WO2021091953A1 (en) | 2019-11-05 | 2021-05-14 | Regeneron Pharmaceuticals, Inc. | N-terminal scfv multispecific binding molecules |
WO2021105669A1 (en) | 2019-11-29 | 2021-06-03 | Oxford University Innovation Limited | Antibodies |
WO2021127487A2 (en) | 2019-12-20 | 2021-06-24 | Regeneron Pharmaceuticals, Inc. | Novel il2 agonists and methods of use thereof |
WO2021127495A1 (en) | 2019-12-20 | 2021-06-24 | Regeneron Pharmaceuticals, Inc. | Novel il2 agonists and methods of use thereof |
WO2021123190A1 (en) | 2019-12-20 | 2021-06-24 | UCB Biopharma SRL | Antibody with binding specificity for human il-13. |
WO2021123186A1 (en) | 2019-12-20 | 2021-06-24 | UCB Biopharma SRL | Multi-specific antibody with binding specificity for human il-13 and il-17 |
WO2021156171A1 (en) | 2020-02-03 | 2021-08-12 | UCB Biopharma SRL | Antibodies against klk5 |
WO2021156170A1 (en) | 2020-02-03 | 2021-08-12 | UCB Biopharma SRL | Antibodies against klk5 |
WO2021160267A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd7 |
WO2021160268A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 |
WO2021160265A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd137 |
WO2021160269A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Anti cd44-ctla4 bispecific antibodies |
WO2021160266A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies binding hvem and cd9 |
WO2021164722A1 (en) | 2020-02-21 | 2021-08-26 | 江苏恒瑞医药股份有限公司 | Anti-il-2 antibody, and antigen-binding fragment thereof and medical use thereof |
WO2021195513A1 (en) | 2020-03-27 | 2021-09-30 | Novartis Ag | Bispecific combination therapy for treating proliferative diseases and autoimmune disorders |
WO2021191424A1 (en) | 2020-03-27 | 2021-09-30 | UCB Biopharma SRL | Autonomous knob domain peptides |
WO2021224369A1 (en) | 2020-05-08 | 2021-11-11 | UCB Biopharma SRL | Arrays and methods for identifying binding sites on a protein |
WO2021231447A1 (en) | 2020-05-12 | 2021-11-18 | Regeneron Pharmaceuticals, Inc. | Novel il10 agonists and methods of use thereof |
WO2021228218A1 (en) | 2020-05-14 | 2021-11-18 | 江苏恒瑞医药股份有限公司 | Anti-cd25 antibodies, antigen-binding fragments thereof, and medical uses thereof |
WO2022002249A1 (en) | 2020-07-02 | 2022-01-06 | 北京拓界生物医药科技有限公司 | Anti-fxi/fxia antibody, antigen-binding fragment thereof, and pharmaceutical use thereof |
WO2022022508A1 (en) | 2020-07-27 | 2022-02-03 | 上海拓界生物医药科技有限公司 | Anti-cd79b antibody-drug conjugate, and preparation method therefor and pharmaceutical use thereof |
US11926667B2 (en) | 2020-10-13 | 2024-03-12 | Janssen Biotech, Inc. | Bioengineered T cell mediated immunity, materials and other methods for modulating cluster of differentiation IV and/or VIII |
WO2022079036A1 (en) | 2020-10-13 | 2022-04-21 | Almirall, S.A. | Bispecific molecules and methods of treatment using the same |
WO2022079199A1 (en) | 2020-10-15 | 2022-04-21 | UCB Biopharma SRL | Binding molecules that multimerise cd45 |
WO2022097060A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Cd19 binding molecules and uses thereof |
WO2022097061A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
WO2022122654A1 (en) | 2020-12-07 | 2022-06-16 | UCB Biopharma SRL | Multi-specific antibodies and antibody combinations |
WO2022122652A1 (en) | 2020-12-07 | 2022-06-16 | UCB Biopharma SRL | Antibodies against interleukin-22 |
WO2022175275A1 (en) | 2021-02-17 | 2022-08-25 | UCB Biopharma SRL | Antibodies |
WO2022228364A1 (en) | 2021-04-25 | 2022-11-03 | 江苏恒瑞医药股份有限公司 | Anti-masp2 antibody, antigen-binding fragment thereof and medical use thereof |
WO2022233764A1 (en) | 2021-05-03 | 2022-11-10 | UCB Biopharma SRL | Antibodies |
WO2022235628A1 (en) | 2021-05-04 | 2022-11-10 | Regeneron Pharmaceuticals, Inc. | Multispecific fgf21 receptor agonists and their uses |
WO2023274201A1 (en) | 2021-06-28 | 2023-01-05 | 江苏恒瑞医药股份有限公司 | Anti-cd40 antibody, antigen-binding fragment and medical use thereof |
WO2023285878A1 (en) | 2021-07-13 | 2023-01-19 | Aviation-Ophthalmology | Methods for detecting, treating, and preventing gpr68-mediated ocular diseases, disorders, and conditions |
WO2023004282A2 (en) | 2021-07-19 | 2023-01-26 | Regeneron Pharmaceuticals, Inc. | Il12 receptor agonists and methods of use thereof |
WO2023022965A2 (en) | 2021-08-16 | 2023-02-23 | Regeneron Pharmaceuticals, Inc. | Novel il27 receptor agonists and methods of use thereof |
WO2023021187A1 (en) | 2021-08-19 | 2023-02-23 | UCB Biopharma SRL | Anti-hla-g antibodies |
WO2023025249A1 (en) | 2021-08-25 | 2023-03-02 | 江苏恒瑞医药股份有限公司 | Pharmaceutical composition containing fusion protein |
WO2023040945A1 (en) | 2021-09-15 | 2023-03-23 | 江苏恒瑞医药股份有限公司 | Protein specifically binding to pd-1 and pharmaceutical use thereof |
WO2023075702A1 (en) | 2021-10-29 | 2023-05-04 | Aslan Pharmaceuticals Pte Ltd | Anti-il-13r antibody formulation |
WO2023086812A1 (en) | 2021-11-11 | 2023-05-19 | Regeneron Pharmaceuticals, Inc. | Cd20-pd1 binding molecules and methods of use thereof |
WO2023140780A1 (en) | 2022-01-24 | 2023-07-27 | Aslan Pharmaceuticals Pte Ltd. | Method of treating inflammatory disease |
WO2023151661A1 (en) | 2022-02-11 | 2023-08-17 | 江苏恒瑞医药股份有限公司 | Immunoconjugate and use thereof |
WO2023163659A1 (en) | 2022-02-23 | 2023-08-31 | Aslan Pharmaceuticals Pte Ltd | Glycosylated form of anti-il13r antibody |
WO2023194583A1 (en) | 2022-04-08 | 2023-10-12 | UCB Biopharma SRL | Combination of a gremlin-1 antagonist with an inhibitor of ras-raf-mek-erk signalling |
WO2023194584A1 (en) | 2022-04-08 | 2023-10-12 | UCB Biopharma SRL | Combination of a gremlin-1 antagonist with a cytidine analogue or deoxycytidine analogue |
WO2023220647A1 (en) | 2022-05-11 | 2023-11-16 | Regeneron Pharmaceuticals, Inc. | Multispecific binding molecule proproteins and uses thereof |
WO2023230594A1 (en) | 2022-05-27 | 2023-11-30 | Regeneron Pharmaceuticals, Inc. | Interleukin-2 proproteins and uses thereof |
WO2023235848A1 (en) | 2022-06-04 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Interleukin-2 proproteins and uses thereof |
WO2024040249A1 (en) | 2022-08-18 | 2024-02-22 | Regeneron Pharmaceuticals, Inc. | Interferon receptor agonists and uses thereof |
WO2024040247A1 (en) | 2022-08-18 | 2024-02-22 | Regeneron Pharmaceuticals, Inc. | Interferon proproteins and uses thereof |
WO2024043837A1 (en) | 2022-08-26 | 2024-02-29 | Aslan Pharmaceuticals Pte Ltd | High concentration anti-il13r antibody formulation |
WO2024115393A1 (en) | 2022-11-28 | 2024-06-06 | UCB Biopharma SRL | Treatment of fibromyalgia |
WO2024130175A2 (en) | 2022-12-16 | 2024-06-20 | Regeneron Pharmaceuticals, Inc. | Antigen-binding molecules that bind to aav particles and uses |
WO2024138191A1 (en) | 2022-12-23 | 2024-06-27 | Regeneron Pharmaceuticals, Inc. | Ace2 fusion proteins and uses thereof |
WO2024152014A1 (en) | 2023-01-13 | 2024-07-18 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
WO2024151978A1 (en) | 2023-01-13 | 2024-07-18 | Regeneron Pharmaceuticals, Inc. | Il12 receptor agonists and methods of use thereof |
WO2024182455A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | Multivalent anti-spike protein binding molecules and uses thereof |
WO2024182540A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | T cell activators and methods of use thereof |
WO2024182451A2 (en) | 2023-02-28 | 2024-09-06 | Regeneron Pharmaceuticals, Inc. | Multivalent anti-spike protein binding molecules and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2004253738A1 (en) | 2005-01-13 |
US7989594B2 (en) | 2011-08-02 |
PL1644412T5 (en) | 2019-01-31 |
CA2527020A1 (en) | 2005-01-13 |
US20060257394A1 (en) | 2006-11-16 |
HRP20151252T4 (en) | 2018-11-30 |
HUE026278T2 (en) | 2016-05-30 |
EP1644412B1 (en) | 2015-09-09 |
EP1644412A2 (en) | 2006-04-12 |
ES2551439T5 (en) | 2018-11-08 |
PL1644412T3 (en) | 2016-02-29 |
CY1116913T1 (en) | 2017-04-05 |
ES2551439T3 (en) | 2015-11-19 |
DK1644412T4 (en) | 2018-11-12 |
JP2007536898A (en) | 2007-12-20 |
HRP20151252T1 (en) | 2015-12-18 |
EP1644412B2 (en) | 2018-08-08 |
WO2005003169A3 (en) | 2005-05-06 |
SI1644412T2 (en) | 2018-11-30 |
PT1644412E (en) | 2015-12-23 |
SI1644412T1 (en) | 2015-12-31 |
DK1644412T3 (en) | 2015-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1644412B1 (en) | Modified antibody fab fragments | |
EP1644044B1 (en) | Modified antibody fragments | |
EP1913026B1 (en) | Modified antibody fragments | |
US20070014802A1 (en) | Modified antibody fragments | |
EP1912673B1 (en) | Process for attaching effector molecules to proteins | |
JP3497175B2 (en) | Monovalent antibody fragments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2527020 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004743158 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006516487 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004253738 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2004253738 Country of ref document: AU Date of ref document: 20040701 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004253738 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004743158 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006257394 Country of ref document: US Ref document number: 10562746 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10562746 Country of ref document: US |