Nothing Special   »   [go: up one dir, main page]

WO2005000513A1 - Reflow device - Google Patents

Reflow device Download PDF

Info

Publication number
WO2005000513A1
WO2005000513A1 PCT/JP2004/008876 JP2004008876W WO2005000513A1 WO 2005000513 A1 WO2005000513 A1 WO 2005000513A1 JP 2004008876 W JP2004008876 W JP 2004008876W WO 2005000513 A1 WO2005000513 A1 WO 2005000513A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling
reflow
flux
furnace body
Prior art date
Application number
PCT/JP2004/008876
Other languages
French (fr)
Japanese (ja)
Inventor
Fumihiro Yamashita
Kiyoshi Dozono
Original Assignee
Kabushiki Kaisha Tamura Seisakusho
Kabushiki Kaisha Tamura Fa System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Tamura Seisakusho, Kabushiki Kaisha Tamura Fa System filed Critical Kabushiki Kaisha Tamura Seisakusho
Publication of WO2005000513A1 publication Critical patent/WO2005000513A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Definitions

  • the present invention relates to a reflow device for cooling a high-temperature atmosphere.
  • a reflow apparatus in which a cooling means for cooling a high-temperature atmosphere is provided in a reflow heating section of a furnace body for reflow heating a work so that a work temperature profile at the time of reflow heating can be more finely controlled.
  • Reference 1 a cooling means for cooling a high-temperature atmosphere is provided in a reflow heating section of a furnace body for reflow heating a work so that a work temperature profile at the time of reflow heating can be more finely controlled.
  • Patent Document 1 JP-A-2000-188466 (page 1, FIG. 1)
  • the present invention has been made in view of the above points, and a reflow apparatus capable of reducing the temperature in a reflow heating section of a furnace body in a short time and preventing flux gas from adhering in the reflow heating section.
  • the purpose is to provide.
  • the invention described in claim 1 provides a furnace body having a reflow heating section for reflow heating a work, and a furnace body provided outside the furnace body and after taking out a high-temperature atmosphere from the reflow heating section to the outside. And a cooling means interposed in the circulation system for cooling the high-temperature atmosphere, wherein the high-temperature atmosphere in the reflow heating section is provided in the circulation system provided outside the furnace body. Because the cooling means for cooling the reflow heating unit is interposed, the ambient temperature in the reflow heating unit can be reduced in a short time according to the peak, and at this time, the atmosphere temperature is provided outside the furnace body. Since the high-temperature atmosphere is cooled by the circulation system, it is possible to prevent the possibility that the flux in the atmosphere is liquefied and adheres to the furnace during the cooling.
  • the invention described in claim 2 is a reflow apparatus according to claim 1, wherein the reflow apparatus has an atmosphere temperature.
  • the cooling capacity of the cooling means is made larger than usual, the high-temperature atmosphere temperature in the reflow heating section can be automatically lowered in a short time.
  • the invention described in claim 3 is the reflow apparatus according to claim 1 or 2, further comprising a flux recovery means for recovering the flux condensed from the circulating air cooled by the cooling means.
  • the flux contained in the high-temperature atmosphere in the furnace can be recovered by the above-mentioned flux recovery means.
  • the high-temperature atmosphere is cooled by a circulation system outside the furnace, so that the liquefied flux is removed from the furnace. Can be prevented.
  • the invention described in claim 4 is a reflow device according to any one of claims 1 to 3, wherein the cooling means is provided with a cooling capacitor that receives supply of cooling water and liquefies a vaporized flux.
  • a flow rate adjusting valve for adjusting a flow rate of the cooling water supplied to the cooling condenser; a temperature sensor for detecting a temperature of the circulating wind after passing through the cooling condenser; and a circulating wind detected by the temperature sensor.
  • Temperature control means for controlling the flow rate of the cooling water of the flow rate control valve so as to control the temperature to the set temperature.
  • the temperature of the circulating air after passing through the cooling capacitor is detected by the temperature sensor, and the temperature set by the temperature control unit is set as a target value.
  • the invention described in claim 5 provides a filter for removing the flux in the circulating system power circulating wind in the reflow device according to any one of claims 1 to 4, and a filter provided downstream of the filter. Since the circulating air from which the flux mist or the like has been removed by the filter is sucked into the blowing means, it is possible to prevent the possibility that the flux adheres to the blowing means.
  • the invention described in claim 6 is provided with a heating unit disposed downstream of the circulating system power cooling means in the reflow device according to claims 1 to 5, and includes a heating unit.
  • the cooling means for cooling the high-temperature atmosphere in the reflow heating section is interposed in the circulation system provided outside the furnace body, the reflow heating is performed according to the workpiece.
  • the temperature of the atmosphere inside the furnace can be reduced in a short time, and at this time, the high-temperature atmosphere is cooled by the circulation system provided outside the furnace body. The risk of adhering to the body can be prevented.
  • the control unit increases the cooling capacity of the cooling unit more than usual, so that the high-temperature ambient temperature in the reflow heating unit can be reduced in a short time. Can be lowered automatically.
  • the flux contained in the high-temperature atmosphere in the furnace can be recovered by the flux recovery means, and at this time, the high-temperature atmosphere is cooled by the circulation system outside the furnace.
  • the liquefied flux can be prevented from adhering to the inside of the furnace.
  • the temperature of the circulating air after passing through the cooling condenser is detected by the temperature sensor, and the temperature of the circulating air after passing through the cooling condenser is detected by the temperature sensor.
  • the temperature adjusting means controls the circulation amount of the cooling water by adjusting the flow control valve so that the detected temperature of the temperature sensor matches the set temperature.
  • the temperature of the circulating air can be feedback controlled with high precision, and the difference in the flux gas liquefaction temperature depending on the soldering material used can be handled.
  • the circulating air from which the flux mist or the like has been removed by the filter is sucked into the blowing means, so that the possibility that the flux adheres to the blowing means can be prevented.
  • the heating unit heats the circulating air returned to the reflow heating section of the furnace body and raises the temperature to the ambient temperature of the reflow heating section, so that the inside of the reflow heating section is heated. Temperature change can be reduced.
  • FIG. 1 is a circuit diagram showing a first embodiment of a reflow device according to the present invention.
  • Garden 2 is a sectional view showing an outline of the reflow device.
  • FIG. 3 is a circuit diagram showing a second embodiment of the reflow apparatus according to the present invention. Explanation of symbols
  • a reflow device is provided inside a furnace body 11 for preheating a workpiece W.
  • a pre-heat heating unit 12 There is provided a pre-heat heating unit 12, a reflow heating unit 13 for reflow heating the work W, and a work cooling unit 14 for cooling the work W.
  • a conveyor 15 that engages and transports the work W with the endless chains on both sides is provided so as to penetrate the preheat heating section 12, the reflow heating section 13 and the work cooling section 14.
  • the preheat heating unit 12 has a heater 16, a fan 17, and a temperature sensor 18 on the upper and lower sides of the conveyor 15, and radiates heat from the heater 16 and generates relatively low-temperature hot air by the fan 17.
  • the workpiece W is preheated by the heated atmosphere, and the reflow heating section 13 has a heater 21, a fan 22, and a temperature sensor 23 on the upper side and the lower side of the conveyor 15 to be heated to a higher temperature than the preheat heating section 12.
  • the work W is mainly heated by the radiant heat from 21 and the high-temperature atmosphere which has been turned into a relatively high-temperature hot air by the fan 22.
  • the work cooling unit 14 has a fan 24 on the upper side and the lower side of the conveyor 15, and this fan The cool air from 24 cools the peak W after the reflow heating.
  • the ambient temperatures of the preheat heating section 12 and the reflow heating section 13 are detected by the temperature sensors 18 and 23, respectively, and the heaters 16 and 16 are set so that the detected temperatures become the set target temperatures.
  • the amount of current to the power supply 21 is controlled.
  • each temperature sensor 23 for detecting the atmosphere temperature is connected to a controller 25 as a control means.
  • the amount of power to each heater 21 is controlled so that the temperature detected by the temperature sensor 23 matches the target set temperature.
  • a circulation system 26 is provided outside the furnace body 11 having the reflow heating section 13 to take out a high-temperature atmosphere from the reflow heating section 13 and then return it to the furnace body 11. It has been done.
  • the circulation system 26 has a plurality of pipes 27 drawn from the upper part of the furnace body 11 and cooling means 28 for cooling the high-temperature reflow atmosphere interposed therebetween.
  • a plurality of circulating air inlets 33 opened to the condenser body 32 of the cooling condenser 31 are connected to the pipe 27, respectively, and the cooling water is supplied into the condenser body 32 of the cooling condenser 31.
  • a cooling coil 34 for liquefying the vaporized flux by receiving the cooling water is provided, and a cooling water flow is supplied to the cooling coil 34 of the cooling condenser 31 in a pipe line 35 according to an electric signal.
  • An electric valve 36 is provided as a flow regulating valve for adjusting.
  • pipes 38 are respectively connected to a plurality of circulating air outlets 37 opened in the condenser main body 32 of the cooling condenser 31, and cooling is provided to a T-shaped pipe joint section 39 connecting these pipes 38.
  • a temperature sensor 41 for detecting the temperature of the circulating air after passing through the condenser 31 is connected, and the temperature sensor 41 is connected to a temperature indicating controller 42 as temperature adjusting means.
  • a control line 43 drawn from the temperature indicating controller 42 is connected to the operating portion 36a of the motor-operated valve 36, and the temperature of the circulating air detected by the temperature sensor 41 is indicated by the temperature indicating controller 42.
  • a function is provided for adjusting the flow rate of the cooling water throttled by the electric valve 36 so as to control the temperature to the indicated and set temperature.
  • the controller 25 sets the electric valve 36 of the cooling means 28 to the maximum (100 %) Is a control means for opening the valve to start the cooling operation in which the cooling capacity of the cooling condenser 31 is increased from that in the normal operation, that is, the cooling operation is started.
  • the control line 44 of the controller 25 is connected to the temperature indicating controller 42. It is connected to the.
  • the controller 25 automatically starts the cooling operation when the set value of the set temperature of the reflow heating unit 13 is changed to a desired temperature (for example, 10 ° C) which can be arbitrarily set, and the cooling operation is started.
  • a function is provided for automatically stopping the cooling operation when the error between the detected temperature of the reflow heating unit 13 and the set temperature falls within a arbitrarily settable predetermined temperature (for example, 5 ° C.).
  • a liquefied flux recovery port 45 is provided at the bottom of the condenser body 32 of the cooling condenser 31, and the liquefied flux recovery port 45 is condensed from the circulating air cooled by the cooling condenser 31 via a pipe 46.
  • a flux recovery tank 47 is connected as a flux recovery means for recovering the liquefied flux.
  • the circulation system 26 has a dedicated blower unit 51 for circulation, and the T-shaped fitting 39 is connected to the blower unit 51.
  • the blower unit 51 has a filter 52 for removing flux mist and dust that has not been liquefied in the circulating air, and a blower 53 provided as a blower provided downstream of the filter 52, which is integrated with a force S. It is.
  • the blow-out port 54 of the blower 53 is connected to a lower part of the furnace body 11 via a pipe 55.
  • the basic operation is as follows.
  • the suction force of the blower 53 extracts the high-temperature atmosphere from the reflow heating section 13 of the furnace body 11 and passes through the cooling condenser 31 to condense the vaporized flux components, and the liquefied flux
  • the circulating air from which the flux has been collected in the flux recovery tank 47 and whose flux has been removed is returned to the reflow heating section 13 through the filter 52 and the blower 53.
  • the setting temperature of the reflow heating section 13 is changed by more than 10 ° C (can be set arbitrarily) by input operation to the controller 25 due to the change of the workpiece W, the signal from the controller 25 is sent.
  • the received temperature indicating controller 42 automatically starts cooling operation.
  • the motor-operated valve 36 for controlling the cooling water amount is set to the output of 100%, that is, the fully opened state, and the cooling efficiency is increased.
  • the temperature in the reflow heating unit 13 is automatically decreased in a short time.
  • the temperature of the circulating air passing through the cooling condenser 31 is detected by the temperature sensor 41, and the temperature indication is set so that the detected temperature becomes equal to the temperature set by the temperature indication controller 42.
  • the controller 42 controls the amount of cooling water circulated by the motor-operated valve 36.
  • the cooling capacity of the cooling condenser 31 does not increase during the cooling operation, but the temperature of the circulating air can be reduced to a temperature sufficient to condense and recover the flux.
  • the condensing temperature of the flux gas in the circulating air that is, the liquefaction temperature is different depending on the soldering material (solder paste) used.
  • the cooling means 28 for cooling the high-temperature atmosphere in the reflow heating unit 13 is interposed in the circulation system 26 provided outside the furnace body 11, the reflow heating unit 13 in the reflow heating unit 13 set according to the work W is provided.
  • the ambient temperature can be significantly reduced in a short time.
  • the controller 25 allows the cooling function of the cooling means 28 to function to the utmost, so that the high-temperature ambient temperature in the reflow heating unit 13 can be automatically reduced in a short time. .
  • the flux recovery tank 47 can recover the flux contained in the high-temperature atmosphere in the furnace body 11, and can prevent the liquefied flux from adhering to the inner wall of the furnace body 11.
  • the temperature of the circulating air after passing through the cooling capacitor 31 is detected by the temperature sensor 41, and the temperature set in the temperature indicating controller 42 is detected.
  • the temperature indicating controller 42 controls the circulation amount of the cooling water by adjusting the electric valve 36 so that the temperature detected by the temperature sensor 41 matches the set temperature, thereby reducing the temperature of the circulating air. It can perform feedback control with high accuracy and can respond to differences in the flux gas liquefaction temperature depending on the soldering material used.
  • FIG. 3 a second embodiment shown in FIG. 3 will be described.
  • the same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • a heating unit 61 is provided downstream of the cooling means 28 of the circulation system 26.
  • an inlet 63 of a heating tank 62 is connected to each outlet 54 of the blower 53 via each pipe 55, and a circulating wind is provided inside the heating tank 62.
  • a heater 64 for heating the heater 64 is provided.
  • a temperature sensor 66 is provided at a T-shaped fitting section 65 connected to the heating tank 62, and the temperature sensor 66 provides a temperature instruction for controlling the heater 64. Connected to controller 67.
  • the temperature indicating controller 67 controls the amount of electricity supplied to the heater 64 such that the temperature of the circulating air detected by the temperature sensor 66 becomes equal to the temperature indicated and set by the temperature indicating controller 67. I do. Further, the T-shaped pipe joint portion 65 is connected to a lower portion of the furnace body 11 by a pipe line 55.
  • the high-temperature atmosphere is extracted from the reflow heating unit 13 by the suction force of the blower 53, and when passing through the cooling condenser 31, the flux components in the circulating air are condensed and collected.
  • the circulating air passing through 53 is passed through the heating tank 62 of the heating unit 61. After the temperature is raised, the temperature is returned to the reflow heating unit 13.
  • a signal output from the controller 25 The temperature indicating controller 42 automatically starts the cooling operation of the cooling means 28 and controls the motor-operated valve 36 for controlling the amount of cooling water to a fully open state.
  • the heating unit 61 does not function, and the circulating air that has passed through the filter 52 and the blower 53 is returned to the reflow heating unit 13 that does not need to heat the inside of the heating tank 62.
  • the controller 25 automatically starts the cooling operation. Is stopped, and the electric valve 36 for controlling the amount of cooling water is throttled through the temperature indicating controller 42.
  • the controller 25 throttle-controls the electric valve 36 for controlling the amount of cooling water via the temperature indicating controller 42 of the cooling means 28 and controls the temperature indicating controller 67 of the heating unit 61 by a control signal. Is sent to return the temperature of the circulating air lowered for the purpose of flux recovery to the set temperature of the reflow heating unit 13 and then return to the reflow heating unit 13.
  • the present invention can control the work temperature profile at the time of reflow heating, and can be applied to reflow using lead-free solder that requires strict temperature control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A reflow device capable of reducing in a short time the temperature in a reflow heating portion of a furnace body and preventing adhesion of a flux gas in the reflow heating portion. A circulation system (26) is provided outside a furnace body (11) for heating by reflow a work piece (W) in a reflow heating portion (13), where the circulation system (26) takes out a high-temperature atmosphere to the outside and then returning it to the furnace body (11). Cooling means (28) for cooling the high-temperature atmosphere is provided in the circulation system (26). The cooling means (28) has a cooling condenser (31) for liquefying vaporized-state flux by fed cooling water. A flow rate of the cooling water fed to the cooling condenser (31) is regulated by an electrically operated valve (36) operated according to an electric signal. The temperature of circulation air after it passed the cooling condenser (31) is detected by a temperature sensor (41). A temperature indicator/adjuster (42) that received the detected circulation air temperature from the temperature sensor (41) adjusts a flow rate of the cooling water flowing through the electrically operated valve (36) so that the detected temperature is adjusted to a temperature set by the temperature indicator/adjuster (42).

Description

明 細 書  Specification
リフロー装置  Reflow equipment
技術分野  Technical field
[0001] 本発明は、高温雰囲気を冷却するリフロー装置に関するものである。  The present invention relates to a reflow device for cooling a high-temperature atmosphere.
背景技術  Background art
[0002] ワークをリフロー加熱する炉体のリフロー加熱部内に、高温雰囲気を冷却する冷却 手段を設け、リフロー加熱時のワーク温度プロファイルを、より細かく制御できるように したリフロー装置がある (例えば、特許文献 1参照)。  [0002] There is a reflow apparatus in which a cooling means for cooling a high-temperature atmosphere is provided in a reflow heating section of a furnace body for reflow heating a work so that a work temperature profile at the time of reflow heating can be more finely controlled. Reference 1).
特許文献 1 :特開 2000 - 188466号公報(第 1頁、図 1)  Patent Document 1: JP-A-2000-188466 (page 1, FIG. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] このような炉体のリフロー加熱部内に冷却手段を設けたものは、炉体内でフラックス が凝縮して固化し、炉体内などに付着するおそれがある。 [0003] In the case where the cooling means is provided in the reflow heating section of such a furnace body, there is a possibility that the flux condenses and solidifies in the furnace body and adheres to the furnace body or the like.
[0004] 本発明は、このような点に鑑みなされたもので、炉体のリフロー加熱部内の温度を 短時間で下げることができるとともに、リフロー加熱部内でのフラックスガスの付着を 防止できるリフロー装置を提供することを目的とするものである。 [0004] The present invention has been made in view of the above points, and a reflow apparatus capable of reducing the temperature in a reflow heating section of a furnace body in a short time and preventing flux gas from adhering in the reflow heating section. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0005] 請求項 1に記載された発明は、ワークをリフロー加熱するリフロー加熱部を有する炉 体と、この炉体の外部に設けられ上記リフロー加熱部から高温雰囲気を外部へ取出 した後炉体に戻す循環系と、この循環系に介在され高温雰囲気を冷却する冷却手 段とを具備したリフロー装置であり、上記炉体の外部に設けられた上記循環系に上 記リフロー加熱部内の高温雰囲気を冷却する上記冷却手段を介在させたので、ヮー クに応じて、上記リフロー加熱部内の雰囲気温度を短時間で下げることができるととも に、このときに、上記炉体の外部に設けられた上記循環系で高温雰囲気を冷却する ので、この冷却時に雰囲気中のフラックスが液化して炉体内に付着するおそれを防 止できる。 [0005] The invention described in claim 1 provides a furnace body having a reflow heating section for reflow heating a work, and a furnace body provided outside the furnace body and after taking out a high-temperature atmosphere from the reflow heating section to the outside. And a cooling means interposed in the circulation system for cooling the high-temperature atmosphere, wherein the high-temperature atmosphere in the reflow heating section is provided in the circulation system provided outside the furnace body. Because the cooling means for cooling the reflow heating unit is interposed, the ambient temperature in the reflow heating unit can be reduced in a short time according to the peak, and at this time, the atmosphere temperature is provided outside the furnace body. Since the high-temperature atmosphere is cooled by the circulation system, it is possible to prevent the possibility that the flux in the atmosphere is liquefied and adheres to the furnace during the cooling.
[0006] 請求項 2に記載された発明は、請求項 1記載のリフロー装置において、雰囲気温度 の下げ幅が任意に設定可能の所望温度以上のときに、上記冷却手段の冷却能力を 通常より大きくする制御手段を具備したものであり、雰囲気温度の下げ幅が大きいと きに、上記制御手段が上記冷却手段の冷却能力を通常より大きくするので、リフロー 加熱部内の高温雰囲気温度を短時間で自動的に下げることができる。 [0006] The invention described in claim 2 is a reflow apparatus according to claim 1, wherein the reflow apparatus has an atmosphere temperature. Control means for making the cooling capacity of the cooling means larger than usual when the decrease in the temperature is equal to or higher than a desired temperature which can be arbitrarily set. However, since the cooling capacity of the cooling means is made larger than usual, the high-temperature atmosphere temperature in the reflow heating section can be automatically lowered in a short time.
[0007] 請求項 3に記載された発明は、請求項 1または 2記載のリフロー装置において、上 記冷却手段により冷却された循環風から凝縮されたフラックスを回収するフラックス回 収手段を具備したものであり、上記フラックス回収手段により、炉体内の高温雰囲気 中に含まれるフラックスを回収でき、その際、上記炉体の外部の循環系で高温雰囲 気を冷却するので、液化したフラックスが炉体内に付着することを防止できる。  [0007] The invention described in claim 3 is the reflow apparatus according to claim 1 or 2, further comprising a flux recovery means for recovering the flux condensed from the circulating air cooled by the cooling means. The flux contained in the high-temperature atmosphere in the furnace can be recovered by the above-mentioned flux recovery means. At that time, the high-temperature atmosphere is cooled by a circulation system outside the furnace, so that the liquefied flux is removed from the furnace. Can be prevented.
[0008] 請求項 4に記載された発明は、請求項 1乃至 3のいずれか記載のリフロー装置にお ける冷却手段が、冷却水の供給を受けて気化状態のフラックスを液化する冷却コン デンサと、この冷却コンデンサに供給される冷却水の流量を調整する流量調整弁と、 上記冷却コンデンサを通過した後の循環風の温度を検出する温度センサと、この温 度センサにより検出される循環風の温度を設定された温度に制御するように上記流 量調整弁の冷却水の流量を調節する温度調節手段とを具備したものであり、上記炉 体内の雰囲気温度下げ制御およびフラックス回収制御にぉレ、て、上記冷却コンデン サを通過した後の循環風の温度を上記温度センサで検出し、上記温度調節手段に 設定された温度を目標値として、この温度調節手段は、温度センサの検出温度が設 定温度に一致するように流量調整弁を調整して冷却水の循環量を制御することで、 循環風の温度を高精度にフィードバック制御でき、使用するはんだ付け材料によるフ ラックスガス液化温度の相違に対応できる。  [0008] The invention described in claim 4 is a reflow device according to any one of claims 1 to 3, wherein the cooling means is provided with a cooling capacitor that receives supply of cooling water and liquefies a vaporized flux. A flow rate adjusting valve for adjusting a flow rate of the cooling water supplied to the cooling condenser; a temperature sensor for detecting a temperature of the circulating wind after passing through the cooling condenser; and a circulating wind detected by the temperature sensor. Temperature control means for controlling the flow rate of the cooling water of the flow rate control valve so as to control the temperature to the set temperature. The temperature of the circulating air after passing through the cooling capacitor is detected by the temperature sensor, and the temperature set by the temperature control unit is set as a target value. By adjusting the flow control valve so that the temperature matches the set temperature and controlling the amount of cooling water circulation, the temperature of the circulating air can be feedback controlled with high accuracy, and the flux gas liquefaction by the soldering material used Compatible with temperature differences.
[0009] 請求項 5に記載された発明は、請求項 1乃至 4のいずれか記載のリフロー装置にお ける循環系力 循環風中のフラックスを除去するフィルタと、このフィルタの下流側に 設けられた送風手段とを具備したものであり、上記フィルタによりフラックスミストなどを 除去した循環風が上記送風手段に吸込まれるので、この送風手段にフラックスが付 着するおそれを防止できる。  [0009] The invention described in claim 5 provides a filter for removing the flux in the circulating system power circulating wind in the reflow device according to any one of claims 1 to 4, and a filter provided downstream of the filter. Since the circulating air from which the flux mist or the like has been removed by the filter is sucked into the blowing means, it is possible to prevent the possibility that the flux adheres to the blowing means.
[0010] 請求項 6に記載された発明は、請求項 1乃至 5記載のリフロー装置における循環系 力 冷却手段より下流側に配設された加熱ユニットを具備したものであり、加熱ュニッ トにより、炉体のリフロー加熱部に戻される循環風を加熱してリフロー加熱部の雰囲 気温度まで昇温させることで、リフロー加熱部内の温度変化を軽減できる。 [0010] The invention described in claim 6 is provided with a heating unit disposed downstream of the circulating system power cooling means in the reflow device according to claims 1 to 5, and includes a heating unit. By heating the circulating air returned to the reflow heating section of the furnace body by the heat and raising the temperature to the ambient temperature of the reflow heating section, the temperature change in the reflow heating section can be reduced.
発明の効果  The invention's effect
[0011] 請求項 1記載の発明によれば、炉体の外部に設けられた循環系にリフロー加熱部 内の高温雰囲気を冷却する冷却手段を介在させたので、ワークに応じて、リフロー加 熱部内の雰囲気温度を短時間で下げることができるとともに、このときに、炉体の外 部に設けられた循環系で高温雰囲気を冷却するので、この冷却時に雰囲気中のフラ ッタスが液化して炉体内に付着するおそれを防止できる。  According to the first aspect of the invention, since the cooling means for cooling the high-temperature atmosphere in the reflow heating section is interposed in the circulation system provided outside the furnace body, the reflow heating is performed according to the workpiece. The temperature of the atmosphere inside the furnace can be reduced in a short time, and at this time, the high-temperature atmosphere is cooled by the circulation system provided outside the furnace body. The risk of adhering to the body can be prevented.
[0012] 請求項 2記載の発明によれば、雰囲気温度の下げ幅が大きいときに、制御手段が 冷却手段の冷却能力を通常より大きくするので、リフロー加熱部内の高温雰囲気温 度を短時間で自動的に下げることができる。  [0012] According to the second aspect of the present invention, when the decrease in the ambient temperature is large, the control unit increases the cooling capacity of the cooling unit more than usual, so that the high-temperature ambient temperature in the reflow heating unit can be reduced in a short time. Can be lowered automatically.
[0013] 請求項 3記載の発明によれば、フラックス回収手段により、炉体内の高温雰囲気中 に含まれるフラックスを回収でき、その際、炉体の外部の循環系で高温雰囲気を冷却 するので、液化したフラックスが炉体内に付着することを防止できる。  [0013] According to the invention as set forth in claim 3, the flux contained in the high-temperature atmosphere in the furnace can be recovered by the flux recovery means, and at this time, the high-temperature atmosphere is cooled by the circulation system outside the furnace. The liquefied flux can be prevented from adhering to the inside of the furnace.
[0014] 請求項 4記載の発明によれば、炉体内の雰囲気温度下げ制御およびフラックス回 収制御にぉレ、て、冷却コンデンサを通過した後の循環風の温度を温度センサで検出 し、温度調節手段に設定された温度を目標値として、この温度調節手段は、温度セ ンサの検出温度が設定温度に一致するように流量調整弁を調整して冷却水の循環 量を制御することで、循環風の温度を高精度にフィードバック制御でき、使用するは んだ付け材料によるフラックスガス液化温度の相違に対応できる。  [0014] According to the invention described in claim 4, the temperature of the circulating air after passing through the cooling condenser is detected by the temperature sensor, and the temperature of the circulating air after passing through the cooling condenser is detected by the temperature sensor. With the temperature set in the adjusting means as a target value, the temperature adjusting means controls the circulation amount of the cooling water by adjusting the flow control valve so that the detected temperature of the temperature sensor matches the set temperature. The temperature of the circulating air can be feedback controlled with high precision, and the difference in the flux gas liquefaction temperature depending on the soldering material used can be handled.
[0015] 請求項 5記載の発明によれば、フィルタによりフラックスミストなどを除去した循環風 が送風手段に吸込まれるので、この送風手段にフラックスが付着するおそれを防止 できる。  According to the invention described in claim 5, the circulating air from which the flux mist or the like has been removed by the filter is sucked into the blowing means, so that the possibility that the flux adheres to the blowing means can be prevented.
[0016] 請求項 6記載の発明によれば、加熱ユニットにより、炉体のリフロー加熱部に戻され る循環風を加熱してリフロー加熱部の雰囲気温度まで昇温させることで、リフロー加 熱部内の温度変化を軽減できる。  [0016] According to the invention described in claim 6, the heating unit heats the circulating air returned to the reflow heating section of the furnace body and raises the temperature to the ambient temperature of the reflow heating section, so that the inside of the reflow heating section is heated. Temperature change can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は本発明に係るリフロー装置の第 1の実施の形態を示す回路図である。 園 2]図 2は同上リフロー装置の概要を示す断面図である。 FIG. 1 is a circuit diagram showing a first embodiment of a reflow device according to the present invention. Garden 2] FIG. 2 is a sectional view showing an outline of the reflow device.
園 3]図 3は本発明に係るリフロー装置の第 2の実施の形態を示す回路図である。 符号の説明  Garden 3] FIG. 3 is a circuit diagram showing a second embodiment of the reflow apparatus according to the present invention. Explanation of symbols
W ワーク  W work
11 炉体  11 Furnace
13 リフロー加熱部  13 Reflow heating section
25 制御手段としてのコントローラ  25 Controller as control means
26 循環系  26 Circulatory system
28 冷却手段  28 Cooling means
31 冷却コンデンサ  31 Cooling condenser
36 流量調整弁としての電動弁  36 Motorized valve as flow control valve
41 温度センサ  41 Temperature sensor
42 温度調節手段としての温度指示調節計  42 Temperature indicating controller as temperature adjusting means
47 フラックス回収手段としてのフラックス回収用タンク  47 Flux recovery tank as flux recovery means
52 フイノレタ  52 Huinoleta
53 送風手段としてのブロワ  53 Blower as blowing means
61 加熱ユニット  61 heating unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明を、図 1および図 2に示された第 1の実施の形態、図 3に示された第 2 の実施の形態を参照しながら詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the first embodiment shown in FIGS. 1 and 2, and the second embodiment shown in FIG.
[0020] 先ず、図 1および図 2に示された第 1の実施の形態を説明すると、図 2に示されるよ うに、リフロー装置は、炉体 11の内部に、ワーク Wを予加熱するためのプリヒート加熱 部 12と、ワーク Wをリフロー加熱するためのリフロー加熱部 13と、ワーク Wを冷却する ためのワーク冷却部 14とが設けられている。これらのプリヒート加熱部 12、リフロー加 熱部 13およびワーク冷却部 14を貫通するように、ワーク Wを両側の無端チェンに係合 して搬送するコンペャ 15が配設されてレ、る。  First, a first embodiment shown in FIGS. 1 and 2 will be described. As shown in FIG. 2, a reflow device is provided inside a furnace body 11 for preheating a workpiece W. There is provided a pre-heat heating unit 12, a reflow heating unit 13 for reflow heating the work W, and a work cooling unit 14 for cooling the work W. A conveyor 15 that engages and transports the work W with the endless chains on both sides is provided so as to penetrate the preheat heating section 12, the reflow heating section 13 and the work cooling section 14.
[0021] プリヒート加熱部 12は、コンペャ 15の上側および下側にヒータ 16、ファン 17および温 度センサ 18を有し、ヒータ 16からの輻射熱およびファン 17で比較的低温の熱風となつ た雰囲気によりワーク Wが予加熱され、また、リフロー加熱部 13は、コンペャ 15の上側 および下側にプリヒート加熱部 12より高温に加熱されるヒータ 21、ファン 22および温度 センサ 23を有し、ヒータ 21からの輻射熱およびファン 22で比較的高温の熱風となった 高温雰囲気によりワーク Wが本加熱され、さらに、ワーク冷却部 14は、コンペャ 15の 上側および下側にファン 24を有し、このファン 24からの冷風によりリフロー加熱後のヮ ーク Wが冷却される。 The preheat heating unit 12 has a heater 16, a fan 17, and a temperature sensor 18 on the upper and lower sides of the conveyor 15, and radiates heat from the heater 16 and generates relatively low-temperature hot air by the fan 17. The workpiece W is preheated by the heated atmosphere, and the reflow heating section 13 has a heater 21, a fan 22, and a temperature sensor 23 on the upper side and the lower side of the conveyor 15 to be heated to a higher temperature than the preheat heating section 12. The work W is mainly heated by the radiant heat from 21 and the high-temperature atmosphere which has been turned into a relatively high-temperature hot air by the fan 22. Further, the work cooling unit 14 has a fan 24 on the upper side and the lower side of the conveyor 15, and this fan The cool air from 24 cools the peak W after the reflow heating.
[0022] そして、プリヒート加熱部 12およびリフロー加熱部 13の雰囲気温度は、各温度セン サ 18, 23によりそれぞれ検出され、これらの検出温度が、設定された目標温度となる ように各ヒータ 16, 21への通電量がそれぞれ制御される。  [0022] The ambient temperatures of the preheat heating section 12 and the reflow heating section 13 are detected by the temperature sensors 18 and 23, respectively, and the heaters 16 and 16 are set so that the detected temperatures become the set target temperatures. The amount of current to the power supply 21 is controlled.
[0023] 例えば、図 1に示されるように、リフロー加熱部 13の雰囲気温度制御系は、雰囲気 温度を検出する各温度センサ 23が制御手段としてのコントローラ 25に接続され、この コントローラ 25は、各温度センサ 23による検出温度が、 目標となる設定温度と一致す るように各ヒータ 21への通電量をそれぞれ制御する。 For example, as shown in FIG. 1, in the atmosphere temperature control system of the reflow heating unit 13, each temperature sensor 23 for detecting the atmosphere temperature is connected to a controller 25 as a control means. The amount of power to each heater 21 is controlled so that the temperature detected by the temperature sensor 23 matches the target set temperature.
[0024] この図 1に示されるように、リフロー加熱部 13を有する炉体 11の外部に、リフロー加 熱部 13から高温雰囲気を外部へ取出した後、炉体 11に戻す循環系 26が設けられて いる。 As shown in FIG. 1, a circulation system 26 is provided outside the furnace body 11 having the reflow heating section 13 to take out a high-temperature atmosphere from the reflow heating section 13 and then return it to the furnace body 11. It has been done.
[0025] この循環系 26は、炉体 11の上部から引出された複数の管路 27中にリフロー高温雰 囲気を冷却する冷却手段 28が介在されてレ、る。  The circulation system 26 has a plurality of pipes 27 drawn from the upper part of the furnace body 11 and cooling means 28 for cooling the high-temperature reflow atmosphere interposed therebetween.
[0026] この冷却手段 28は、上記管路 27に冷却コンデンサ 31のコンデンサ本体 32に開口さ れた複数の循環風入口 33がそれぞれ接続され、この冷却コンデンサ 31のコンデンサ 本体 32内に、冷却水の供給を受けて気化状態のフラックスを液化する冷却コイル 34 が配設され、この冷却コンデンサ 31の冷却コイル 34に冷却水を供給する管路 35中に 、冷却水の流量を電気信号に応じて調整する流量調整弁としての電動弁 36が設けら れている。  In the cooling means 28, a plurality of circulating air inlets 33 opened to the condenser body 32 of the cooling condenser 31 are connected to the pipe 27, respectively, and the cooling water is supplied into the condenser body 32 of the cooling condenser 31. A cooling coil 34 for liquefying the vaporized flux by receiving the cooling water is provided, and a cooling water flow is supplied to the cooling coil 34 of the cooling condenser 31 in a pipe line 35 according to an electric signal. An electric valve 36 is provided as a flow regulating valve for adjusting.
[0027] さらに、冷却コンデンサ 31のコンデンサ本体 32に開口された複数の循環風出口 37 に、管路 38がそれぞれ接続され、これらの管路 38を接続する T形管継手部 39に、冷 却コンデンサ 31を通過した後の循環風の温度を検出する温度センサ 41が接続され、 この温度センサ 41は温度調節手段としての温度指示調節計 42に接続されている。 [0028] この温度指示調節計 42から引出され制御ライン 43は、電動弁 36の作動部 36aに接 続され、温度センサ 41より検出される循環風の温度を、この温度指示調節計 42で指 示設定された温度に制御するように、電動弁 36で絞られた冷却水の流量を調節する 機能を備えている。 [0027] Further, pipes 38 are respectively connected to a plurality of circulating air outlets 37 opened in the condenser main body 32 of the cooling condenser 31, and cooling is provided to a T-shaped pipe joint section 39 connecting these pipes 38. A temperature sensor 41 for detecting the temperature of the circulating air after passing through the condenser 31 is connected, and the temperature sensor 41 is connected to a temperature indicating controller 42 as temperature adjusting means. [0028] A control line 43 drawn from the temperature indicating controller 42 is connected to the operating portion 36a of the motor-operated valve 36, and the temperature of the circulating air detected by the temperature sensor 41 is indicated by the temperature indicating controller 42. A function is provided for adjusting the flow rate of the cooling water throttled by the electric valve 36 so as to control the temperature to the indicated and set temperature.
[0029] 前記コントローラ 25は、リフロー加熱部 13の雰囲気温度の下げ幅が任意に設定可 能の所望温度(例えば 10°C)以上のときに、冷却手段 28の電動弁 36を最大限(100 %)開弁させて、冷却コンデンサ 31の冷却能力を通常運転時より大きくする運転すな わち冷却運転を開始する制御手段であり、このコントローラ 25の制御ライン 44が、温 度指示調節計 42に接続されている。  [0029] The controller 25 sets the electric valve 36 of the cooling means 28 to the maximum (100 %) Is a control means for opening the valve to start the cooling operation in which the cooling capacity of the cooling condenser 31 is increased from that in the normal operation, that is, the cooling operation is started.The control line 44 of the controller 25 is connected to the temperature indicating controller 42. It is connected to the.
[0030] すなわち、コントローラ 25は、リフロー加熱部 13の設定温度の設定値を任意に定可 能の所望温度(例えば 10°C)以上下げる設定変更時に、 自動的に冷却運転を開始 し、一方、リフロー加熱部 13の検出温度と設定温度との誤差が、任意に設定可能な 所定温度(例えば 5°C)以内になった時点で、 自動的に冷却運転を停止させる機能を 備えている。  [0030] That is, the controller 25 automatically starts the cooling operation when the set value of the set temperature of the reflow heating unit 13 is changed to a desired temperature (for example, 10 ° C) which can be arbitrarily set, and the cooling operation is started. In addition, a function is provided for automatically stopping the cooling operation when the error between the detected temperature of the reflow heating unit 13 and the set temperature falls within a arbitrarily settable predetermined temperature (for example, 5 ° C.).
[0031] 冷却コンデンサ 31のコンデンサ本体 32の底部には液化フラックス回収口 45が設けら れ、この液化フラックス回収口 45に管路 46を介して、冷却コンデンサ 31により冷却さ れた循環風から凝縮された液化フラックスを回収するフラックス回収手段としてのフラ ックス回収用タンク 47が接続されている。  A liquefied flux recovery port 45 is provided at the bottom of the condenser body 32 of the cooling condenser 31, and the liquefied flux recovery port 45 is condensed from the circulating air cooled by the cooling condenser 31 via a pipe 46. A flux recovery tank 47 is connected as a flux recovery means for recovering the liquefied flux.
[0032] さらに、この循環系 26は、循環用の専用ブロワユニット 51を有しており、前記 T形管 継手部 39は、このブロワユニット 51に接続されている。このブロワユニット 51は、循環 風中の液化されなかったフラックスミストや塵埃を除去するフィルタ 52と、このフィルタ 52の下流側に設けられた送風手段としてのブロワ 53と力 S、一体化されたものである。  Further, the circulation system 26 has a dedicated blower unit 51 for circulation, and the T-shaped fitting 39 is connected to the blower unit 51. The blower unit 51 has a filter 52 for removing flux mist and dust that has not been liquefied in the circulating air, and a blower 53 provided as a blower provided downstream of the filter 52, which is integrated with a force S. It is.
[0033] このブロワ 53の吹出口部 54は、管路 55を経て炉体 11の下部に接続されている。  The blow-out port 54 of the blower 53 is connected to a lower part of the furnace body 11 via a pipe 55.
[0034] 次に、図 1に示された実施の形態の作用を説明する。  Next, the operation of the embodiment shown in FIG. 1 will be described.
[0035] 基本動作は、ブロワ 53の吸引力により、炉体 11のリフロー加熱部 13より高温雰囲気 を抜き出し、冷却コンデンサ 31を通過させることで気化しているフラックス成分を凝縮 させ、液化したフラックスはフラックス回収用タンク 47に溜め、フラックス除去された循 環風は、フィルタ 52およびブロワ 53を経て、リフロー加熱部 13に戻す。 [0036] (冷却運転) The basic operation is as follows. The suction force of the blower 53 extracts the high-temperature atmosphere from the reflow heating section 13 of the furnace body 11 and passes through the cooling condenser 31 to condense the vaporized flux components, and the liquefied flux The circulating air from which the flux has been collected in the flux recovery tank 47 and whose flux has been removed is returned to the reflow heating section 13 through the filter 52 and the blower 53. (Cooling operation)
ワーク Wの変更などにともなって、コントローラ 25への入力操作で、リフロー加熱部 13の設定温度を 10°C (任意設定可能)以上下げる設定変更がなされた場合は、コン トローラ 25からの信号を受けた温度指示調節計 42が、自動的に冷却運転を開始する  If the setting temperature of the reflow heating section 13 is changed by more than 10 ° C (can be set arbitrarily) by input operation to the controller 25 due to the change of the workpiece W, the signal from the controller 25 is sent. The received temperature indicating controller 42 automatically starts cooling operation.
[0037] この冷却運転では、冷却時間を短縮するために、冷却水量制御用の電動弁 36を出 力 100%すなわち全開状態とし、冷却効率を高める。 [0037] In this cooling operation, in order to shorten the cooling time, the motor-operated valve 36 for controlling the cooling water amount is set to the output of 100%, that is, the fully opened state, and the cooling efficiency is increased.
[0038] そして、リフロー加熱部 13の検出温度と、コントローラ 25での設定温度との誤差が、Then, an error between the temperature detected by the reflow heating unit 13 and the temperature set by the controller 25 is
5°C (任意設定可能)以内になった時点で、冷却運転を自動的に停止させる。 When the temperature falls below 5 ° C (can be set arbitrarily), the cooling operation is automatically stopped.
[0039] このようにして、冷却運転では、リフロー加熱部 13内の温度を短時間で自動的に下 げる。 As described above, in the cooling operation, the temperature in the reflow heating unit 13 is automatically decreased in a short time.
[0040] この冷却運転時に、冷却手段 28のフラックス回収能力は最大になる。  [0040] During this cooling operation, the flux collecting ability of the cooling means 28 is maximized.
[0041] (通常運転時)  [0041] (during normal operation)
冷却運転時以外の通常運転時には、冷却コンデンサ 31を通過した循環風の温度 を温度センサ 41で検出し、この検出温度が温度指示調節計 42にて設定された温度と 等しくなるように、温度指示調節計 42は電動弁 36により冷却水の循環量を絞り制御す る。  During normal operation other than the cooling operation, the temperature of the circulating air passing through the cooling condenser 31 is detected by the temperature sensor 41, and the temperature indication is set so that the detected temperature becomes equal to the temperature set by the temperature indication controller 42. The controller 42 controls the amount of cooling water circulated by the motor-operated valve 36.
[0042] これにより、冷却コンデンサ 31の冷却能力が冷却運転時ほど高くなることはなレ、が、 フラックスを凝縮させて回収するには十分な温度まで循環風の温度を下げることがで きる。  [0042] As a result, the cooling capacity of the cooling condenser 31 does not increase during the cooling operation, but the temperature of the circulating air can be reduced to a temperature sufficient to condense and recover the flux.
[0043] このような制御系により、循環風内のフラックスガスの凝縮温度すなわち液化温度 が、使用するはんだ付け材料 (ソルダペースト)により相違することに対応する。  With such a control system, the condensing temperature of the flux gas in the circulating air, that is, the liquefaction temperature is different depending on the soldering material (solder paste) used.
[0044] 次に、図 1に示された実施の形態の効果を説明する。 Next, effects of the embodiment shown in FIG. 1 will be described.
[0045] 炉体 11の外部に設けられた循環系 26にリフロー加熱部 13内の高温雰囲気を冷却 する冷却手段 28を介在させたので、ワーク Wに応じて設定されるリフロー加熱部 13内 の雰囲気温度を短時間で大幅に下げることができる。  [0045] Since the cooling means 28 for cooling the high-temperature atmosphere in the reflow heating unit 13 is interposed in the circulation system 26 provided outside the furnace body 11, the reflow heating unit 13 in the reflow heating unit 13 set according to the work W is provided. The ambient temperature can be significantly reduced in a short time.
[0046] このとき、炉体 11の外部に設けられた循環系 26の冷却手段 28で高温雰囲気を冷却 するので、この冷却時に雰囲気中のフラックスが液化して炉体 11内に付着するおそ れを防止できる。 At this time, since the high-temperature atmosphere is cooled by the cooling means 28 of the circulation system 26 provided outside the furnace body 11, the flux in the atmosphere liquefies during this cooling and is likely to adhere to the inside of the furnace body 11. Can be prevented.
[0047] 雰囲気温度の下げ幅が大きい場合に、コントローラ 25が冷却手段 28の冷却作用を 最大限に機能させるので、リフロー加熱部 13内の高温雰囲気温度を短時間で自動 的に下げることができる。  [0047] When the decrease in the ambient temperature is large, the controller 25 allows the cooling function of the cooling means 28 to function to the utmost, so that the high-temperature ambient temperature in the reflow heating unit 13 can be automatically reduced in a short time. .
[0048] フラックス回収用タンク 47により、炉体 11内の高温雰囲気中に含まれるフラックスを 回収でき、液化したフラックスが炉体 11の内壁に付着することを防止できる。  [0048] The flux recovery tank 47 can recover the flux contained in the high-temperature atmosphere in the furnace body 11, and can prevent the liquefied flux from adhering to the inner wall of the furnace body 11.
[0049] 炉体 11内の雰囲気温度下げ制御およびフラックス回収制御において、冷却コンデ ンサ 31を通過した後の循環風の温度を温度センサ 41で検出し、温度指示調節計 42 に設定された温度を目標値として、この温度指示調節計 42は、温度センサ 41の検出 温度が設定温度に一致するように電動弁 36を調整して冷却水の循環量を制御するこ とで、循環風の温度を高精度にフィードバック制御でき、使用するはんだ付け材料に よるフラックスガス液化温度の相違に対応できる。  In the atmosphere temperature lowering control and the flux recovery control in the furnace body 11, the temperature of the circulating air after passing through the cooling capacitor 31 is detected by the temperature sensor 41, and the temperature set in the temperature indicating controller 42 is detected. As a target value, the temperature indicating controller 42 controls the circulation amount of the cooling water by adjusting the electric valve 36 so that the temperature detected by the temperature sensor 41 matches the set temperature, thereby reducing the temperature of the circulating air. It can perform feedback control with high accuracy and can respond to differences in the flux gas liquefaction temperature depending on the soldering material used.
[0050] フィルタ 52によりフラックスミストなどを除去した循環風がブロワ 53に吸込まれるので 、このブロワ 53にフラックスが付着するおそれを防止できる。  [0050] Since the circulating air from which the flux mist or the like has been removed by the filter 52 is sucked into the blower 53, the possibility that the flux adheres to the blower 53 can be prevented.
[0051] 次に、図 3に示された第 2の実施の形態を説明する。なお、図 1に示された第 1の実 施の形態と同様の部分には、同一符号を付して、その説明を省略する。  Next, a second embodiment shown in FIG. 3 will be described. The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0052] 循環系 26の冷却手段 28より下流側には、加熱ユニット 61が配設されている。  [0052] A heating unit 61 is provided downstream of the cooling means 28 of the circulation system 26.
[0053] すなわち、この加熱ユニット 61は、ブロワ 53の各吹出口部 54に各管路 55を介して加 熱タンク 62の入口部 63がそれぞれ接続され、この加熱タンク 62の内部には循環風を 加熱するためのヒータ 64が設けられ、さらに、加熱タンク 62に接続された T形管継手 部 65に温度センサ 66が設けられ、この温度センサ 66は、ヒータ 64を制御するための温 度指示調節計 67に接続されている。  That is, in the heating unit 61, an inlet 63 of a heating tank 62 is connected to each outlet 54 of the blower 53 via each pipe 55, and a circulating wind is provided inside the heating tank 62. A heater 64 for heating the heater 64 is provided. Further, a temperature sensor 66 is provided at a T-shaped fitting section 65 connected to the heating tank 62, and the temperature sensor 66 provides a temperature instruction for controlling the heater 64. Connected to controller 67.
[0054] この温度指示調節計 67は、温度センサ 66により検出された循環風の温度が、この 温度指示調節計 67にて指示設定された温度と等しくなるようにヒータ 64の通電量を制 御する。また、 T形管継手部 65は、管路 55により炉体 11の下部に接続されている。  The temperature indicating controller 67 controls the amount of electricity supplied to the heater 64 such that the temperature of the circulating air detected by the temperature sensor 66 becomes equal to the temperature indicated and set by the temperature indicating controller 67. I do. Further, the T-shaped pipe joint portion 65 is connected to a lower portion of the furnace body 11 by a pipe line 55.
[0055] そして、ブロワ 53の吸込力によりリフロー加熱部 13より高温雰囲気を抜き出し、冷却 コンデンサ 31を通過させるときに、循環風中のフラックス成分を凝縮させて回収し、さ らにフィルタ 52およびブロワ 53を経た循環風を、加熱ユニット 61の加熱タンク 62内で 温度上昇させてから、リフロー加熱部 13に戻す。 [0055] Then, the high-temperature atmosphere is extracted from the reflow heating unit 13 by the suction force of the blower 53, and when passing through the cooling condenser 31, the flux components in the circulating air are condensed and collected. The circulating air passing through 53 is passed through the heating tank 62 of the heating unit 61. After the temperature is raised, the temperature is returned to the reflow heating unit 13.
[0056] その際、コントローラ 25への入力操作で、リフロー加熱部 13の設定温度を 10°C (任 意設定可能)以上下げる設定変更がなされたときは、コントローラ 25から出力された 信号により、温度指示調節計 42が、 自動的に冷却手段 28の冷却運転を開始し、冷却 水量制御用の電動弁 36を全開状態に制御する。  At that time, when a setting change is made by input operation to the controller 25 to lower the set temperature of the reflow heating unit 13 by 10 ° C. or more (optionally settable), a signal output from the controller 25 The temperature indicating controller 42 automatically starts the cooling operation of the cooling means 28 and controls the motor-operated valve 36 for controlling the amount of cooling water to a fully open state.
[0057] この冷却運転時、加熱ユニット 61は機能させず、フィルタ 52およびブロワ 53を経た循 環風は、加熱タンク 62内で加熱することなぐリフロー加熱部 13に戻される。  During the cooling operation, the heating unit 61 does not function, and the circulating air that has passed through the filter 52 and the blower 53 is returned to the reflow heating unit 13 that does not need to heat the inside of the heating tank 62.
[0058] 一方、リフロー加熱部 13の検出温度と設定温度との誤差が、任意に設定可能な所 定温度(例えば 5°C)以内になった時点で、コントローラ 25は、 自動的に冷却運転を 停止させ、温度指示調節計 42を通じて冷却水量制御用の電動弁 36を絞り制御する。  [0058] On the other hand, when the error between the detected temperature of the reflow heating unit 13 and the set temperature falls within the arbitrarily settable temperature (for example, 5 ° C), the controller 25 automatically starts the cooling operation. Is stopped, and the electric valve 36 for controlling the amount of cooling water is throttled through the temperature indicating controller 42.
[0059] そして、通常運転時は、コントローラ 25から冷却手段 28の温度指示調節計 42を通じ て冷却水量制御用の電動弁 36を絞り制御するとともに、加熱ユニット 61の温度指示 調節計 67に制御信号を送信して、フラックス回収のために低下させた循環風の温度 を、リフロー加熱部 13の設定温度に上昇復帰させてから、リフロー加熱部 13に戻すよ うにする。  During normal operation, the controller 25 throttle-controls the electric valve 36 for controlling the amount of cooling water via the temperature indicating controller 42 of the cooling means 28 and controls the temperature indicating controller 67 of the heating unit 61 by a control signal. Is sent to return the temperature of the circulating air lowered for the purpose of flux recovery to the set temperature of the reflow heating unit 13 and then return to the reflow heating unit 13.
[0060] このように、フラックス回収処理後、温度低下した循環風を炉体 11のリフロー加熱部 13 (高温部)に戻すに当って、加熱ユニット 61により循環風を加熱して、リフロー加熱 部 13内の雰囲気温度まで昇温させることで、リフロー加熱部 13内の温度変化を軽減 させること力 Sできる。  [0060] As described above, after returning the circulating air having the lowered temperature to the reflow heating section 13 (high temperature section) of the furnace body 11, the circulating air is heated by the heating unit 61, and the reflow heating section is heated. By raising the temperature to the ambient temperature in the chamber 13, it is possible to reduce the temperature change in the reflow heating section 13.
産業上の利用可能性  Industrial applicability
[0061] 本発明は、リフロー加熱時のワーク温度プロファイルを細力べ制御できるので、厳し い温度管理が要求される鉛フリーはんだによるリフローに適用できる。 The present invention can control the work temperature profile at the time of reflow heating, and can be applied to reflow using lead-free solder that requires strict temperature control.

Claims

請求の範囲 The scope of the claims
[1] ワークをリフロー加熱するリフロー加熱部を有する炉体と、  [1] a furnace body having a reflow heating unit for reflow heating the work,
この炉体の外部に設けられ上記リフロー加熱部から高温雰囲気を外部へ取出した 後炉体に戻す循環系と、  A circulating system provided outside the furnace body, for taking out the high-temperature atmosphere from the reflow heating section to the outside, and then returning to the furnace body;
この循環系に介在され高温雰囲気を冷却する冷却手段と  Cooling means interposed in the circulation system for cooling the high-temperature atmosphere;
を具備したことを特徴とするリフロー装置。  A reflow apparatus comprising:
[2] 雰囲気温度の下げ幅が任意に設定可能の所望温度以上のときに、上記冷却手段 の冷却能力を通常より大きくする制御手段  [2] Control means for increasing the cooling capacity of the cooling means above normal when the decrease in the ambient temperature is equal to or higher than a desired temperature which can be set arbitrarily
を具備したことを特徴とする請求項 1記載のリフロー装置。  The reflow apparatus according to claim 1, further comprising:
[3] 上記冷却手段により冷却された循環風から凝縮されたフラックスを回収するフラック ス回収手段 [3] Flux collecting means for collecting the flux condensed from the circulating wind cooled by the cooling means
を具備したことを特徴とする請求項 1または 2記載のリフロー装置。  The reflow apparatus according to claim 1 or 2, further comprising:
[4] 冷却手段は、  [4] The cooling means
冷却水の供給を受けて気化状態のフラックスを液化する冷却コンデンサと、 この冷却コンデンサに供給される冷却水の流量を調整する流量調整弁と、 上記冷却コンデンサを通過した後の循環風の温度を検出する温度センサと、 この温度センサにより検出される循環風の温度を設定された温度に制御するように 上記流量調整弁の冷却水の流量を調節する温度調節手段と  A cooling condenser that receives the supply of cooling water to liquefy the vaporized flux, a flow regulating valve that regulates a flow rate of the cooling water supplied to the cooling condenser, and a temperature of the circulating air that has passed through the cooling condenser. A temperature sensor for detecting, and a temperature adjusting means for adjusting a flow rate of the cooling water of the flow rate adjusting valve so as to control a temperature of the circulating air detected by the temperature sensor to a set temperature.
を具備したことを特徴とする請求項 1乃至 3のいずれか記載のリフロー装置。  The reflow apparatus according to any one of claims 1 to 3, further comprising:
[5] 循環系は、  [5] The circulatory system
循環風中のフラックスを除去するフィルタと、  A filter for removing the flux in the circulating wind,
このフィルタの下流側に設けられた送風手段と  A blower provided downstream of the filter;
を具備したことを特徴とする請求項 1乃至 4のいずれか記載のリフロー装置。  The reflow apparatus according to any one of claims 1 to 4, comprising:
[6] 循環系は、冷却手段より下流側に配設された加熱ユニットを具備した [6] The circulation system has a heating unit arranged downstream of the cooling means.
ことを特徴とする請求項 1乃至 5のいずれか記載のリフロー装置。  The reflow apparatus according to any one of claims 1 to 5, wherein:
PCT/JP2004/008876 2003-06-27 2004-06-24 Reflow device WO2005000513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-185395 2003-06-27
JP2003185395A JP2005014074A (en) 2003-06-27 2003-06-27 Reflowing plant

Publications (1)

Publication Number Publication Date
WO2005000513A1 true WO2005000513A1 (en) 2005-01-06

Family

ID=33549656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008876 WO2005000513A1 (en) 2003-06-27 2004-06-24 Reflow device

Country Status (2)

Country Link
JP (1) JP2005014074A (en)
WO (1) WO2005000513A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104972218A (en) * 2015-06-11 2015-10-14 德清县新高凌不锈钢材料有限公司 Temperature control device of vacuum brazing furnace
US10340045B2 (en) 2014-10-21 2019-07-02 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for autoimmune system conditions
US10347367B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics, and therapeutics for cardiovascular disease conditions
US10347379B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
US10347362B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10346588B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics
US10360348B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues
US10358682B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome functional features
US10366793B2 (en) 2014-10-21 2019-07-30 uBiome, Inc. Method and system for characterizing microorganism-related conditions
US10381112B2 (en) 2014-10-21 2019-08-13 uBiome, Inc. Method and system for characterizing allergy-related conditions associated with microorganisms
US10383519B2 (en) 2014-10-21 2019-08-20 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for conditions associated with functional features
US10388407B2 (en) 2014-10-21 2019-08-20 uBiome, Inc. Method and system for characterizing a headache-related condition
US20190381591A1 (en) * 2016-05-31 2019-12-19 Endress+Hauser SE+Co. KG Manufacturing line for soldering
US10789334B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbial pharmacogenomics
US10786195B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with mircrobiome taxonomic features
US10790060B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
US10795971B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784293B2 (en) * 2005-12-12 2011-10-05 千住金属工業株式会社 Reflow furnace
JP2008246515A (en) * 2007-03-29 2008-10-16 Tamura Seisakusho Co Ltd Reflow apparatus
WO2009019773A1 (en) * 2007-08-08 2009-02-12 Senju Metal Industry Co., Ltd. Reflow furnace
JP5192875B2 (en) * 2008-03-28 2013-05-08 株式会社日本サーモエナー Hot water system
JP5161628B2 (en) * 2008-03-28 2013-03-13 株式会社日本サーモエナー Hot water system
JP2009285719A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Flux applicator
JP6677844B1 (en) * 2019-04-26 2020-04-08 株式会社オリジン Heating device and method of manufacturing soldered object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319391A (en) * 1989-06-16 1991-01-28 Koki:Kk Reflow soldering device
JPH05111754A (en) * 1991-10-14 1993-05-07 Matsushita Electric Ind Co Ltd Nitrogen re-flow device
JPH0777346A (en) * 1993-09-08 1995-03-20 Nippon Dennetsu Keiki Kk Fume discharging device in soldering device
JPH07202405A (en) * 1993-12-28 1995-08-04 Nippon Dennetsu Keiki Kk Soldering equipment
JPH07212028A (en) * 1994-01-13 1995-08-11 Matsushita Electric Ind Co Ltd Reflowing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319391A (en) * 1989-06-16 1991-01-28 Koki:Kk Reflow soldering device
JPH05111754A (en) * 1991-10-14 1993-05-07 Matsushita Electric Ind Co Ltd Nitrogen re-flow device
JPH0777346A (en) * 1993-09-08 1995-03-20 Nippon Dennetsu Keiki Kk Fume discharging device in soldering device
JPH07202405A (en) * 1993-12-28 1995-08-04 Nippon Dennetsu Keiki Kk Soldering equipment
JPH07212028A (en) * 1994-01-13 1995-08-11 Matsushita Electric Ind Co Ltd Reflowing device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381112B2 (en) 2014-10-21 2019-08-13 uBiome, Inc. Method and system for characterizing allergy-related conditions associated with microorganisms
US10347368B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics, and therapeutics for cardiovascular disease conditions
US10388407B2 (en) 2014-10-21 2019-08-20 uBiome, Inc. Method and system for characterizing a headache-related condition
US10347379B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
US10347366B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics, and therapeutics for cardiovascular disease conditions
US10347362B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10346588B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics
US10383519B2 (en) 2014-10-21 2019-08-20 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for conditions associated with functional features
US10346589B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics
US10354757B2 (en) 2014-10-21 2019-07-16 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
US10354756B2 (en) 2014-10-21 2019-07-16 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
US10360348B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues
US10902938B2 (en) 2014-10-21 2021-01-26 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10360347B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues
US10358682B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome functional features
US10366793B2 (en) 2014-10-21 2019-07-30 uBiome, Inc. Method and system for characterizing microorganism-related conditions
US10366789B2 (en) 2014-10-21 2019-07-30 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues
US10366782B2 (en) 2014-10-21 2019-07-30 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics, and therapeutics for cardiovascular disease conditions
US10381117B2 (en) 2014-10-21 2019-08-13 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
US10380325B2 (en) 2014-10-21 2019-08-13 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics
US10360346B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived diagnostics
US10340045B2 (en) 2014-10-21 2019-07-02 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for autoimmune system conditions
US10347367B2 (en) 2014-10-21 2019-07-09 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics, and therapeutics for cardiovascular disease conditions
US10803992B2 (en) 2014-10-21 2020-10-13 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
US10789334B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbial pharmacogenomics
US10786195B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with mircrobiome taxonomic features
US10790060B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
US10790061B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
US10790042B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10786194B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome taxonomic features
US10787714B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome functional features
US10790043B2 (en) 2014-10-21 2020-09-29 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10795971B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions
US10796800B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions
US10795972B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions
US10795970B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions
US10796785B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10796786B2 (en) 2014-10-21 2020-10-06 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions
US10803991B2 (en) 2014-10-21 2020-10-13 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics
US10803147B2 (en) 2014-10-21 2020-10-13 Psomagen, Inc. Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions
CN104972218A (en) * 2015-06-11 2015-10-14 德清县新高凌不锈钢材料有限公司 Temperature control device of vacuum brazing furnace
US20190381591A1 (en) * 2016-05-31 2019-12-19 Endress+Hauser SE+Co. KG Manufacturing line for soldering

Also Published As

Publication number Publication date
JP2005014074A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
WO2005000513A1 (en) Reflow device
KR910001522B1 (en) Air conditioner apparatus with improved dehumidification control
US5259546A (en) Procedure and arrangement for reflow-soldering electronic components onto a printed board
US7380699B2 (en) Method and apparatus for vapour phase soldering
US8575522B2 (en) Hot-air supplying device and hot-air supplying method having bypass
CA2348307A1 (en) Method of and apparatus for producing power
CN106545940A (en) Shunting Wind-cooling type thermostatic and humidistatic air conditioning unit
US4246759A (en) Method and apparatus for conditioning air
JP2018533712A (en) Method and equipment for utilization of water heater waste heat recovery by built-in high temperature water source heat pump
CN104070254B (en) Substrate heating equipment and soft soldering apparatus
CN104180439A (en) High-temperature adjustable temperature dehumidifier and control method thereof
JP4290480B2 (en) Temperature control method
AU2009227990B2 (en) A device and method for utilising surplus cooling of water in a cooling tower
JP2016133290A (en) Refrigeration cycle device
CN210921728U (en) Cold and hot energy recovery fresh air handling unit prevent frosting system
CN106765965A (en) The control method of shunting water-cooling type thermostatic and humidistatic air conditioning unit
JP5008390B2 (en) Bearing cooling water heat recovery device
JPS6470634A (en) Constant temperature control device for air conditioning
WO2008120526A1 (en) Reflow device
JP3881572B2 (en) Heating furnace and method for starting operation thereof
NL1036365C2 (en) HEAT PUMP.
JP4555856B2 (en) Temperature control device
JP3782609B2 (en) High-pressure steam condensate system for heat recovery equipment attached to waste treatment equipment
US20160334163A1 (en) Device for driving and controlling a rotating machine of a processing plant, and processing plant comprising such a drive and control device
JP4553715B2 (en) Cooling water system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase