WO2004108835A1 - Magenta metal complex azo compounds and inks and their use in ink-jet printing - Google Patents
Magenta metal complex azo compounds and inks and their use in ink-jet printing Download PDFInfo
- Publication number
- WO2004108835A1 WO2004108835A1 PCT/GB2004/002200 GB2004002200W WO2004108835A1 WO 2004108835 A1 WO2004108835 A1 WO 2004108835A1 GB 2004002200 W GB2004002200 W GB 2004002200W WO 2004108835 A1 WO2004108835 A1 WO 2004108835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink
- water
- inks
- metal chelate
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/32—Inkjet printing inks characterised by colouring agents
- C09D11/328—Inkjet printing inks characterised by colouring agents characterised by dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B45/00—Complex metal compounds of azo dyes
- C09B45/34—Preparation from o-monohydroxy azo compounds having in the o'-position an atom or functional group other than hydroxyl, alkoxy, carboxyl, amino or keto groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B56/00—Azo dyes containing other chromophoric systems
- C09B56/04—Stilbene-azo dyes
Definitions
- UP ink-jet printing
- UP is a non-impact printing technique in which droplets of ink are ejected through a fine nozzle onto a substrate without bringing the nozzle into contact with the substrate.
- UP is a non-impact printing technique in which droplets of ink are ejected through a fine nozzle onto a substrate without bringing the nozzle into contact with the substrate.
- the inks are often required to dry quickly when applied to a substrate to prevent smudging, but they should not form a crust over the tip of an ink-jet nozzle because this will stop the printer from working.
- the inks should also be stable to storage over time without decomposing or forming a precipitate which could block the fine nozzle.
- Colour ink-jet printers typically use four inks of differing hues: magenta, yellow, cyan, and black. Colours other than these may be obtained using differing combinations of these inks.
- the colourants used must be able to form an ink with a specific precise hue. This can be achieved by mixing colourants but is advantageously achieved by used a single colourant with the exact hue required.
- the resultant images desirably do not fade rapidly on exposure to light or oxidising gases such as ozone.
- This invention relates to new magenta colorants able to be used in inks and meet the demanding technical requirements of ink-jet printing.
- a metal chelate compound obtainable from contacting a transition metal salt with a compound of the Formula (1 ) or a salt thereof:
- Sulfonation of the phenanthrene and/or pyridine ring may be at any susceptible position and in one embodiment p represents a number average reflecting that the metal chelate compound obtainable from a compound of Formula (1) is a mixture mainly comprising mono and di-substituted compounds.
- the compounds of Formula (1) provide prints which exhibit a high light-fastness and good optical density when incorporated into inks for ink-jet printing.
- the metal chelate compounds obtainable from of Formula (1 ) may be in the free acid or salt form.
- Preferred salts are water-soluble, for example alkali metal salts, especially lithium, sodium, potassium, ammonium, substituted ammonium and mixed salts thereof.
- Preferred alkali metal salts are those with sodium or lithium ammonium and substituted alkyl ammonium salts.
- Preferred ammonium and substituted ammonium salts have cations of the formula
- each V independently is H or optionally substituted alkyl, or two groups represented by V are H or optionally substituted alkyl and the remaining two groups represented by V, together with the N atom to which they are attached, form a 5- or 6- membered ring (preferably a morpholinyl, pyridinyl or piperidinyl ring).
- each V independently is H or C 1-4 -alkyl, more preferably H, CH 3 or CH 3 CH 2 , especially H.
- Examples of cations include + NH 4 , morpholinium, piperidinium, pyridinium, (CH 3 ) 3 N + H, (CH 3 ) 2 N + H 2 , H 2 N + (CH 3 )(CH 2 CH 3 ), CH 3 N + H 3 , CH 3 CH 2 N + H 3 , H 2 N + (CH 2 CH 3 ) 2 ,
- the compound is in the form of a sodium, lithium, potassium, ammonium, or substituted ammonium salt because we have found that these salts provide prints which exhibit a high light-fastness when incorporated into an ink-jet printing ink.
- the metal chelate compounds may be prepared using techniques analogous to those known for the preparation of metal chelate compounds.
- a suitable method comprises mixing a solution of a transition metal salt and a solution of a compound of Formula (1 ), preferably in water or an aqueous solution.
- the compounds of Formula (1) may be prepared by, for example, diazotising a 2- amino pyridine-N-oxide to give a diazonium salt and coupling the resultant diazonium salt with a sulphonated or non sulfonated phenanthrene.
- the N-oxide function is the reduced to give compounds according to the present invention.
- the diazotisation is preferably performed at a temperature below 6°C, more preferably at a temperature in the range -10°C to 5°C.
- the diazotisation is performed in water, preferably at a pH below 7.
- Dilute mineral acid e.g. HCI or H 2 SO 4 , are often used to achieve the desired acidic conditions.
- An alternative preparation of such compounds involves the condensation of a phenanthrenequinone (sulfonated or unsulfonated) and 2-hydrazinopyridine, to give rise to an azophenanthrene, which may be sulfonated using known methods and then metallised.
- the product of the above process may be converted to a salt by conventional techniques as hereinbefore described.
- the product may be isolated in its free acid form by acidifying the reaction mixture, preferably using a mineral acid, for example hydrochloric acid and when the product precipitates as a solid it may be separated from the mixture by filtration.
- the transition metal salt preferably comprises one or more of the following metals: nickel, chromium, cobalt, copper, zinc, iron or manganese.
- the transition metal salt comprises nickel or copper and more preferably nickel.
- the compound of Formula (1) is preferably chelated to the transition metal in the ratio 1 :1 , 2:1 , 2:2 or 2:3 respectively, especially in the ratio 1 :1 or 2:1 respectively.
- the ligands of Formula (1) may be the same or different but preferably they are the same.
- the metal chelate compound obtainable from a compound of Formula (1) may also comprise 1 or more additional ligands. These ligands may be coloured or colourless and when there is more than 1 they may be the same or different.
- the transition metal salt is a nickel salt because this results in good chroma properties for the resultant compound. It is also preferred that the transition metal is able to co-ordinate to the portion in square brackets in the ratio 1 :1 and 2:1.
- Compounds of Formula (1) and the metal chelate compounds obtainable from a compound of Formula (1), as described herein, may exist in tautomeric forms other than those shown in this specification. These tautomers are also included within the scope of the present inventions.
- the metal chelate compounds obtainable from compounds of Formula (1 ) may also exist in different geometries e.g. octahedral or square planar. These different geometric forms are also included in the scope of the present invention.
- the present invention also covers mixtures comprising two or more metal chelate compounds obtainable from compounds of Formula (1) or salts thereof.
- the metal chelate compounds of the may be mixed with other dyes, especially those listed in the International Colour Index, to adjust the shade or other properties as desired.
- composition comprising (a) one or more metal chelate compound(s) according to the first aspect of the present invention; and (b) a liquid medium.
- the liquid medium preferably comprises:
- the number of parts by weight of component (a) of the ink is preferably from 0.01 to 30, more preferably 0.1 to 20, especially from 0.5 to 15, and more especially from 1 to 5 parts.
- the number of parts by weight of component (b) is preferably from 99.99 to 70, more preferably from 99.9 to 80, especially from 99.5 to 85, and more especially from 99 to 95 parts.
- the number of parts (a) + (b) is 100 and all parts mentioned herein are by weight.
- component (a) is completely dissolved in component (b).
- component (a) has a solubility in component (b) at 20°C of at least 5%. This allows the preparation of concentrates which may be used to prepare more dilute inks and reduces the chance of the compound(s) of component (a) of the ink precipitating if evaporation of the liquid medium occurs during storage.
- the weight ratio of water to organic solvent is preferably from 99:1 to 1 :99, more preferably from 99:1 to 50:50 and especially from 95:5 to 80:20.
- the organic solvent present in the mixture of water and organic solvent is a water-miscible organic solvent or a mixture of such solvents.
- Preferred water-miscible organic solvents include C ⁇ -alkanols, preferably methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, cyclopentanol and cyclohexanol; linear amides, preferably dimethylformamide or dimethylacetamide; ketones and ketone-alcohols, preferably acetone, methyl ether ketone, cyclohexanone and diacetone alcohol; water-miscible ethers, preferably tetrahydrofuran and dioxane; diols, preferably diols having from 2 to 12 carbon atoms, for example pentane-1 ,5-diol, ethylene glyco
- Especially preferred water-soluble organic solvents are cyclic amides, especially 2- pyrrolidone, N-methyl-pyrrolidone and N-ethyl-pyrrolidone; diols, especially 1 ,5-pentane diol, ethyleneglycol, thiodiglycol, diethyleneglycol and triethyleneglycol; and mono- C ⁇ -alkyl and C M -alkyl ethers of diols, more preferably mono- C 1-4 -a!kyl ethers of diols having 2 to 12 carbon atoms, especially 2-methoxy-2-ethoxy-2-ethoxyethanol.
- ink media comprising a mixture of water and one or more organic solvents are described in US 4,963,189, US 4,703,113, US 4,626,284 and EP 4,251 , 50A.
- the solvent preferably has a boiling point of from 30° to 200°C, more preferably of from 40° to 150°C, especially from 50 to 125°C.
- the organic solvent may be water-immiscible, water-miscible or a mixture of such solvents.
- Preferred water-miscible organic solvents are any of the hereinbefore described water-miscible organic solvents and mixtures thereof.
- Preferred water-immiscible solvents include, for example, aliphatic hydrocarbons; esters, preferably ethyl acetate; chlorinated hydrocarbons, preferably CH 2 CI 2 ; and ethers, preferably diethyl ether; and mixtures thereof.
- the liquid medium comprises a water-immiscible organic solvent
- a polar solvent is included because this enhances solubility of the dye in the liquid medium.
- polar solvents include C 1-4 -alcohols.
- the liquid medium is an organic solvent free from water it comprises a ketone (especially methyl ethyl ketone) and/or an alcohol (especially a C 1-4 -alkanol, such as ethanol or propanol).
- the organic solvent free from water may be a single organic solvent or a mixture of two or more organic solvents. It is preferred that when the medium is an organic solvent free from water it is a mixture of 2 to 5 different organic solvents. This allows a medium to be selected which gives good control over the drying characteristics and storage stability of the ink.
- composition according to the second aspect of the invention is an ink suitable for use in an ink-jet printer.
- both the metal chelate compounds and the ink may be, and preferably are, purified to remove undesirable impurities.
- Conventional techniques may be employed for purification, for example ultrafiltration, reverse osmosis and/or dialysis.
- Ink media comprising an organic solvent free from water are particularly useful where fast drying times are required and particularly when printing onto hydrophobic and non-absorbent substrates, for example plastics, metal and glass.
- An especially preferred ink comprises:
- component (a) of the ink may comprise a compound as hereinbefore defined in relation to the first aspect of the invention.
- Preferred low melting solid media have a melting point in the range from 60°C to
- Suitable low melting point solids include long chain fatty acids or alcohols, preferably those with C 18-24 chains, and sulphonamides.
- the compound of the first aspect of the present invention may be dissolved in the low melting point solid or may be finely dispersed in it.
- the inks according to the present invention may also contain additional components conventionally used in ink-jet printing inks, for example viscosity and surface tension modifiers, corrosion inhibitors, biocides, kogation reducing additives, anti-cockle agents to reduce paper curling and surfactants which may be ionic or non-ionic.
- additional components conventionally used in ink-jet printing inks, for example viscosity and surface tension modifiers, corrosion inhibitors, biocides, kogation reducing additives, anti-cockle agents to reduce paper curling and surfactants which may be ionic or non-ionic.
- the pH of the ink is preferably from 4 to 11 , more preferably from 7 to 10.
- the viscosity of the ink at 25°C is preferably less than 50cP, more preferably less than 20 cP and especially less than 5cP.
- the inks according to the invention are used as ink-jet printing inks, the ink preferably has a concentration of less than 500 parts per million, more preferably less than 100 parts per million of halide ions.
- the ink has less than 100, more preferably less than 50 parts per million of divalent and trivalent metals (other than any divalent and trivalent metal ions bound to a compound of Formula (1) or any other component of the ink), wherein parts refer to parts by weight relative to the total weight of the ink.
- a third aspect of the present invention provides a process for printing an image, on a substrate comprising applying thereto by means of an ink-jet printer an ink as described in the second aspect of the invention.
- the ink used in this process is preferably as defined in the second aspect of the present invention.
- the ink-jet printer preferably applies the ink to the substrate in the form of droplets which are ejected through a small orifice onto the substrate.
- Preferred ink-jet printers are piezoelectric ink-jet printers and thermal ink-jet printers.
- thermal ink-jet printers programmed pulses of heat are applied to the ink in a reservoir by means of a resistor adjacent to the orifice, thereby causing the ink to be ejected in the form of small droplets directed towards the substrate during relative movement between the substrate and the orifice.
- the oscillation of a small crystal causes ejection of the ink from the orifice.
- the ink can be ejected by an electromechanical actuator connected to a moveable paddle or plunger, for example as described in International Patent Application WO 00/48938 and International Patent Application WO 00/55089.
- the substrate is preferably paper, plastic, a textile, metal or glass, more preferably paper, an overhead projector slide or a textile material, especially paper.
- Preferred papers are plain or treated papers which may have an acid, alkaline or neutral character. Glossy papers are especially preferred.
- More especially photographic quality paper is preferred
- commercially available papers include, HP Premium Coated Paper, HP Photopaper (all available from Hewlett Packard Inc.), Stylus Pro 720 dpi Coated Paper, Epson Photo Quality Glossy Film, Epson Photo Quality Glossy Paper (available from Seiko Epson Corp.), Canon HR 101 High Resolution Paper, Canon GP 201 Glossy Paper, Canon HG 101 High Gloss Film (all available from Canon Inc.), Wiggins Conqueror paper (available from Wiggins Teape Ltd), Xerox Acid Paper and Xerox Alkaline paper (available from Xerox).
- a fourth aspect of the present invention provides a substrate, preferably a paper, an overhead projector slide or a textile material, printed with a metal chelate compound according to the first aspect of the invention, printed with a composition or ink according to the second aspect of the invention or printed by means of a process according to the third aspect of the present invention.
- an ink-jet printer cartridge comprising a chamber and ink, wherein the ink is present in the chamber and is as described in the second aspect of the present invention.
- an ink-jet printer containing an ink-jet printer cartridge, wherein the ink-jet printer cartridge is as defined in the sixth aspect of the present invention
- Phenanthrenequinone (2.08g, 0.01 mol) and 2-hydrazinopyridine (1.09g, 0.01 mol) were added to stirred glacial acetic acid (25ml). The mixture was heated to 100°C for two hours and then allowed to cool to room temperature and filtered. The filtrate was evaporated under reduced pressure to leave a tarry material. This residue was ground under water and the resultant solid was collected by filtration. The product was washed with water and then dried in an oven at 50°C to give an orange/red solid. Stage Kb):
- stage (a) The azophenanthrene prepared in stage (a) (2.99g, 0.01 mol) was added to an ice- cold stirred solution of 98% sulphuric acid (35ml). The reaction mixture was heated to 100°C and stirred for a further 2 hours. The reaction mixture was poured carefully onto ice before increasing the pH to pH8 using concentrated sodium hydroxide, maintaining the temperature with an ice/water bath. The mixture was dialysed to low conductivity, filtered and the sulfonated ligand was obtained from evaporation of the filtrate under reduced pressure.
- the product was shown to be a mixture of mono and di-sulfonated material, by reverse phase HPLC using a octadecasilyl column and a gradient elution from 0.01 M ammonium acetate solution to a final solution of 90% acetonitrile:10% ammonium acetate.
- the relative amounts of the di- and tri-sulfonated species was estimated from the peaks corresponding to each species.
- Comparative Dye 1 was prepared as described in Example 4 of EP1270676A and is of Formula:
- Comparative Dye 2 Comparative Dye 2 was prepared as described for Example IV of EP0902064B and is of Formula:
- Example 2 Inks and Inkjet Printing
- the dyes described in Examples 1 and Comparative Dyes 1 and 2 were each converted into the corresponding inks by dissolving 3.5 parts of each in 96.5 parts of a liquid medium comprising: 5 parts 2-pyrrolidone; 5 parts thiodiglycol;
- the inks so prepared were designated as Ink 1 , Comparative Ink 1 and Comparative Ink 2 depending on which dye was incorporated therein
- Ink 1 and the Comparative Inks 1 and 2 were filtered through a 0.45 micron nylon filters and then incorporated into empty ink-jet print cartridges using a syringe. The inks were then printed using an HP560C printer onto both Hewlett-Packard
- Table 1 shows that the inks of the present invention have greatly improved ozone fastness and light fastness when compared to similar analogues.
- the inks described in Tables A and B may be prepared using as the dye the compound of Example 1. Numbers quoted in the second column onwards refer to the number of parts of the relevant ingredient and all parts are by weight.
- the inks may be applied to paper by thermal or piezo ink-jet printing.
- NMP N-methyl pyrollidone
- DMK dimethylketone
- IPA isopropanol
- MEOH methanol
- 2P 2-pyrollidone
- MIBK methylisobutyl ketone
- P12 propane-1 ,2-diol
- BDL butane-2,3-diol
- CET cetyl ammonium bromide
- PHO Na 2 HPO 4
- TBT tertiary butanol
- TDG thiodiglycol
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
- Pyridine Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/559,467 US7147697B2 (en) | 2003-06-06 | 2004-05-20 | Magenta metal complex azo compounds and inks and their use in ink-jet printing |
JP2006508372A JP2006527273A (en) | 2003-06-06 | 2004-05-20 | Magenta metal complex azo compounds and inks and their use in inkjet printing |
EP04734052A EP1636316B1 (en) | 2003-06-06 | 2004-05-20 | Magenta metal complex azo compounds and inks and their use in ink-jet printing |
DE602004003061T DE602004003061D1 (en) | 2003-06-06 | 2004-05-20 | MAGENTA METAL COMPLEXAZOFINS AND INK, AND ITS USE IN INK JET PRINTING |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0313013.5 | 2003-06-06 | ||
GBGB0313013.5A GB0313013D0 (en) | 2003-06-06 | 2003-06-06 | Processes, compositions and compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004108835A1 true WO2004108835A1 (en) | 2004-12-16 |
Family
ID=9959437
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/002189 WO2004108834A2 (en) | 2003-06-06 | 2004-05-20 | Magenta metal complex azo compounds and inks and their use in ink-jet printing |
PCT/GB2004/002200 WO2004108835A1 (en) | 2003-06-06 | 2004-05-20 | Magenta metal complex azo compounds and inks and their use in ink-jet printing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/002189 WO2004108834A2 (en) | 2003-06-06 | 2004-05-20 | Magenta metal complex azo compounds and inks and their use in ink-jet printing |
Country Status (8)
Country | Link |
---|---|
US (2) | US7147697B2 (en) |
EP (2) | EP1636316B1 (en) |
JP (2) | JP2006527273A (en) |
AT (1) | ATE344299T1 (en) |
DE (1) | DE602004003061D1 (en) |
GB (1) | GB0313013D0 (en) |
TW (2) | TW200516114A (en) |
WO (2) | WO2004108834A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0307695D0 (en) * | 2003-04-02 | 2003-05-07 | Avecia Ltd | Compounds,compositions and processes |
GB0314368D0 (en) * | 2003-06-20 | 2003-07-23 | Avecia Ltd | Composition, use and process |
GB0510821D0 (en) * | 2005-05-27 | 2005-07-06 | Avecia Inkjet Ltd | Magenta dyes and their use in ink-jet printing |
GB0706224D0 (en) * | 2007-03-30 | 2007-05-09 | Fujifilm Imaging Colorants Ltd | Dyes an their uses in ink-jet printing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423392A (en) * | 1964-08-05 | 1969-01-21 | Bayer Ag | Heterocyclic containing monoazo dyestuffs |
EP0902064A1 (en) * | 1997-08-29 | 1999-03-17 | Hewlett-Packard Company | Magenta dyes for ink-jet inks |
EP0995612A1 (en) * | 1997-07-14 | 2000-04-26 | Matsushita Electric Industrial Co., Ltd. | Optical recording medium and method of producing the same |
EP1270676A1 (en) * | 2001-06-19 | 2003-01-02 | Mitsubishi Chemical Corporation | Metal chelated dyestuff for inkjet recording, aqueous inkjet recording liquid comprising the same and inkjet recording method using the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2741655A (en) * | 1951-11-12 | 1956-04-10 | Ciba Ltd | Cupriferous azo-dyestuffs |
JPS62252483A (en) * | 1986-04-24 | 1987-11-04 | Fuji Photo Film Co Ltd | Recording fluid |
WO1991018950A1 (en) * | 1990-05-25 | 1991-12-12 | Mitsubishi Kasei Corporation | Dye composition and optical recording medium |
DE19831095A1 (en) * | 1998-07-10 | 2000-01-13 | Clariant Gmbh | Water-soluble black stilbene dyes, their production and use |
US6001161A (en) * | 1998-12-01 | 1999-12-14 | Eastman Kodak Company | Metal complex for ink jet ink |
US6551682B1 (en) * | 1999-03-16 | 2003-04-22 | Matsushita Electric Industrial Co., Ltd. | Metal-containing azo compound and optical recording media |
WO2001048090A1 (en) * | 1999-12-24 | 2001-07-05 | Mitsubishi Chemical Corporation | Metal chelate dyestuff for ink jet recording and water-base ink jet recording fluid containing the same |
JP3968936B2 (en) | 2000-02-10 | 2007-08-29 | 三菱化学株式会社 | Metal chelate dye for inkjet recording and water-based inkjet recording liquid using the same |
WO2004007620A1 (en) * | 2002-07-17 | 2004-01-22 | Mitsubishi Chemical Corporation | Water-soluble complex dye, recording fluid, and method of recording |
US7025815B2 (en) * | 2002-07-17 | 2006-04-11 | Mitsubishi Chemical Corporation | Water-soluble complex dye, recording fluid and recording method |
CN100345911C (en) * | 2002-07-17 | 2007-10-31 | 三菱化学株式会社 | Water-soluble complex dye, recording fluid and recording method |
US6969421B2 (en) * | 2002-07-27 | 2005-11-29 | Avecia Limited | Processes, compositions and compounds |
US6979364B2 (en) * | 2002-07-27 | 2005-12-27 | Avecia Limited | Metal chelate compounds and inks |
-
2003
- 2003-06-06 GB GBGB0313013.5A patent/GB0313013D0/en not_active Ceased
-
2004
- 2004-05-20 EP EP04734052A patent/EP1636316B1/en not_active Expired - Lifetime
- 2004-05-20 DE DE602004003061T patent/DE602004003061D1/en not_active Expired - Lifetime
- 2004-05-20 US US10/559,467 patent/US7147697B2/en not_active Expired - Fee Related
- 2004-05-20 JP JP2006508372A patent/JP2006527273A/en active Pending
- 2004-05-20 WO PCT/GB2004/002189 patent/WO2004108834A2/en active Application Filing
- 2004-05-20 WO PCT/GB2004/002200 patent/WO2004108835A1/en active IP Right Grant
- 2004-05-20 JP JP2006508369A patent/JP2007527436A/en active Pending
- 2004-05-20 EP EP04734042A patent/EP1636315A2/en not_active Withdrawn
- 2004-05-20 AT AT04734052T patent/ATE344299T1/en not_active IP Right Cessation
- 2004-05-20 US US10/559,470 patent/US7150782B2/en not_active Expired - Fee Related
- 2004-06-04 TW TW093116227A patent/TW200516114A/en unknown
- 2004-06-04 TW TW093116279A patent/TW200513502A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423392A (en) * | 1964-08-05 | 1969-01-21 | Bayer Ag | Heterocyclic containing monoazo dyestuffs |
EP0995612A1 (en) * | 1997-07-14 | 2000-04-26 | Matsushita Electric Industrial Co., Ltd. | Optical recording medium and method of producing the same |
EP0902064A1 (en) * | 1997-08-29 | 1999-03-17 | Hewlett-Packard Company | Magenta dyes for ink-jet inks |
EP1270676A1 (en) * | 2001-06-19 | 2003-01-02 | Mitsubishi Chemical Corporation | Metal chelated dyestuff for inkjet recording, aqueous inkjet recording liquid comprising the same and inkjet recording method using the same |
Also Published As
Publication number | Publication date |
---|---|
US7150782B2 (en) | 2006-12-19 |
WO2004108834A3 (en) | 2005-03-24 |
EP1636315A2 (en) | 2006-03-22 |
TW200516114A (en) | 2005-05-16 |
JP2007527436A (en) | 2007-09-27 |
GB0313013D0 (en) | 2003-07-09 |
US20060137571A1 (en) | 2006-06-29 |
US7147697B2 (en) | 2006-12-12 |
ATE344299T1 (en) | 2006-11-15 |
JP2006527273A (en) | 2006-11-30 |
US20060137572A1 (en) | 2006-06-29 |
TW200513502A (en) | 2005-04-16 |
WO2004108834A2 (en) | 2004-12-16 |
EP1636316A1 (en) | 2006-03-22 |
EP1636316B1 (en) | 2006-11-02 |
DE602004003061D1 (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1056808B1 (en) | Monoazo dyestuffs, a composition and an ink for ink jet printing comprising them | |
EP1920008A2 (en) | Disazodyes for ink-jet printing | |
WO2010041065A1 (en) | Disazo compounds and their use in ink-jet printing | |
EP1654329A1 (en) | Phthalocyanines and their use in ink-jet printers | |
WO2002034844A1 (en) | Composition containing an azaphthalocyanine and use | |
US7238228B2 (en) | Magenta metal chelate dyes and their use in ink-jet printers | |
WO2008142369A1 (en) | Magenta dyes and inks for use in ink-jet printing | |
EP1654328A1 (en) | Phthalocyanines and their use in ink-jet printers | |
EP1370618B1 (en) | Azo dyes containing a barbituric acid moiety, ink-jet printing inks and processes | |
WO2005014726A1 (en) | Phthalocyanines and their use in ink-jet printers | |
US7147697B2 (en) | Magenta metal complex azo compounds and inks and their use in ink-jet printing | |
US7238227B2 (en) | Magenta metal chelate dyes and their use in ink-jet printers | |
EP1639049B1 (en) | Magenta metal chelate dyes and their use in ink-jet printers | |
WO2001066649A1 (en) | Compound, composition and use | |
EP1603981B1 (en) | Magenta metal chelate dyes and their use in ink-jet printers | |
GB2461384A (en) | Compounds and use in ink-jet printing | |
US20090104417A1 (en) | Magenta Dyes and Their Use in Ink-Jet Printing | |
EP1370613A1 (en) | Disazo dyes, ink-jet printing inks and processes | |
GB2421027A (en) | Magenta anthanthrone dyes with at least one water solubilising substituent, and inks for use in ink-jet printing | |
US20060012653A1 (en) | Metal complexes of azo dyes and their uses in ink-jet printing | |
WO2004041940A1 (en) | Metal complex azo dyes and their use in ink-jet printing | |
GB2448042A (en) | 2-(Aryl-azo)- & 2-(heterocyclyl-azo)- 1,3,5-triazine dyes, and metal chelates thereof, for use in ink-jet inks and printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004734052 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006137572 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10559467 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006508372 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004734052 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10559467 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2004734052 Country of ref document: EP |