Nothing Special   »   [go: up one dir, main page]

WO2004038034A1 - 新規なフルクトシルペプチドオキシダーゼとその利用 - Google Patents

新規なフルクトシルペプチドオキシダーゼとその利用 Download PDF

Info

Publication number
WO2004038034A1
WO2004038034A1 PCT/JP2003/013548 JP0313548W WO2004038034A1 WO 2004038034 A1 WO2004038034 A1 WO 2004038034A1 JP 0313548 W JP0313548 W JP 0313548W WO 2004038034 A1 WO2004038034 A1 WO 2004038034A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
peptide
fructosylated
plant
protein
Prior art date
Application number
PCT/JP2003/013548
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Ebinuma
Original Assignee
Daiichi Pure Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pure Chemicals Co., Ltd. filed Critical Daiichi Pure Chemicals Co., Ltd.
Priority to US10/531,305 priority Critical patent/US7329520B2/en
Priority to JP2004546460A priority patent/JP4323429B2/ja
Priority to DE60326259T priority patent/DE60326259D1/de
Priority to EP03758817A priority patent/EP1555325B1/en
Priority to AU2003275613A priority patent/AU2003275613A1/en
Publication of WO2004038034A1 publication Critical patent/WO2004038034A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/805Haemoglobins; Myoglobins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/725Haemoglobin using peroxidative activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates

Definitions

  • the present invention relates to a method for producing an enzyme from a fructosylated peptide or protein.
  • the present invention relates to a method for defructosylation, a novel enzyme having the action thereof, and a method for measuring fructosylated peptides or proteins by measuring a reaction product obtained by the method.
  • Hemoglobin (Hb) Ale is a non-enzymatically formed Amadori transfer after the non-enzymatic formation of a Schiff base between the amino group of the 3-chain N-terminal palin and the aldehyde group of Darcos. And, consequently, a glycoprotein having a structure in which fructose is bound to a palin residue.
  • HbAle is important as an indicator of diabetes management, because it reflects clinically the average blood glucose level in the past one to two months, and a rapid, simple, accurate, and practical quantification method is required. ing.
  • I FCC (.International Federation of Clinical Chemistry and Laboratory Medicine) is a 6-peptide N-terminal peptide that is suspected of fructosyl valine, obtained by hydrolyzing hemoglobin with endoprotease G1u-C. After the fragments are separated by HPLC, they can be quantified by capillary electrophoresis or mass spectrometry by the practical standard method of HbA1c (Kobold U., et al; Candidate reference methods for hemoglobinAlc based on peptide mapping. Clin Chem., 43, 1944-1951 (1997)). However, this method requires special equipment, so the operation is complicated, the economy is low, and it is not suitable for practical use.
  • an object of the present invention is to provide a defructosyl effect on fructosylated proteins such as HbAlc, and fructosylated peptides of various lengths that are cut out when the fructosylide protein is degraded by a protease.
  • An object of the present invention is to provide an enzyme having the same, a defructosylation method using the enzyme, and a method for measuring a fructosylated peptide or protein using the defructosylation reaction.
  • the present inventors have searched for enzymes from nature to achieve the above object, and found that enzymes having a defructosyl effect such as FA ⁇ D reported so far were derived from microorganisms. Thus, the present inventors have found that an enzyme having a defructosyl action also exists in a plant, and that an enzyme derived from the plant exerts a defructosyl action irrespective of the length of the peptide chain of the fructosyl peptide. completed.
  • an object of the present invention is to provide a method for defructosylation, which comprises using an enzyme having a defructosyl action extracted from a plant.
  • the present invention also provides an enzyme having a defructosyl action on a fructosylated peptide or protein, which is derived from a plant. .
  • the present invention provides a method for measuring fructosylated peptides or proteins, which comprises measuring one or more reaction products obtained by the above defructosylation method. It is.
  • N-terminal valine can be defructosylated from a fructosylated peptide or protein. Furthermore, by quantifying the reaction product, peptides, proteins, protein subunits, etc., in which N-terminal palin is fructosylated, such as HbAlc, can be accurately quantified.
  • FIG. 1 is a diagram showing the results of capillari electrophoresis of reaction solution 1 in which a defructosylation enzyme derived from a Gingeraceae plant was allowed to act on fructosyl triptide (f_VHL).
  • FIG. 2 is a diagram showing the results of capillary electrophoresis of control solution 1 in which purified water was allowed to act on fructosyl triptide (f-VHL).
  • FIG. 3 is a diagram showing the relative activities of the enzymes derived from Zingiberaceae plants at each pH.
  • FIG. 4 is a diagram showing the stability of each pH of the enzymes derived from the Zingiberaceae plant.
  • FIG. 5 is a diagram showing the relative activities of enzymes of the ginger family at various temperatures.
  • FIG. 6 is a diagram showing the temperature stability of an enzyme derived from a Zingiberaceae plant.
  • FIG. 7 is a view showing the results of measuring fructosyl peptides using the defructosylase derived from the plant of the present invention.
  • de-fructosyl refers to a fructosyl amino acid or a fructosyl peptide (ie, a fructosylated amino acid or peptide) in which the fructosyl moiety undergoes acidolysis and the like. To produce unreacted amino acids or peptides.
  • the enzyme used in the present invention (referred to as “defructosylase”) is not particularly limited as long as it has a defructosyl action on fructosylated peptides or proteins, but may be of various lengths.
  • a plant-derived defructosylase is preferable because it acts on the fructosyl peptide of the present invention.
  • an enzyme that produces glucosone and defructosyl peptide or protein from a fructosylated peptide or protein is preferable.
  • the plant containing the enzyme of the present invention is not particularly limited, but a plant belonging to the family Zingiberaceae is particularly preferred.
  • Plants belonging to the ginger family include ginger, myoga, and konkon.
  • the site is not particularly limited as long as it contains a defructosylase, and sites such as leaves, stems, flowers, rhizomes and roots can be used.
  • processed foods of these plants for example, juices of extract liquids and freeze-dried preparations can also be used.
  • an extract can be obtained by directly crushing the above plant and treating by squeezing or the like.However, crushing is performed after adding an appropriate buffer or the like. , You can also extract.
  • it is possible to use an extract but it is more preferable to purify the extract.
  • a purification method a known method can be used, and column chromatography such as ammonium sulfate fractionation ion exchange chromatography, hydrophobic chromatography, hydroxyapatite gel, and gel filtration can be appropriately used in combination.
  • column chromatography such as ammonium sulfate fractionation ion exchange chromatography, hydrophobic chromatography, hydroxyapatite gel, and gel filtration can be appropriately used in combination.
  • a combination of adding a reducing agent or treating with a polymer absorber is used. It is also possible.
  • An enzyme derived from a ginger plant which is one of the enzymes of the present invention, has the following physicochemical properties (a) to (g).
  • Optimum temperature range 60 ° C or higher.
  • this enzyme is considered to be fructosyl peptide oxidase.
  • Examples of the method for measuring the activity of the enzyme of the present invention include a method in which fructosyl peptide is used as a substrate, and the amount of any one of non-fructosyl peptide, dalcosone, and hydrogen peroxide generated by the enzyme reaction is measured. .
  • a method for measuring the amount of glycosone will be described below.
  • fructosyl valyl histidine is used as a substrate unless otherwise specified.
  • the enzyme titer is defined as 1 unit (U) of an enzyme that produces 1 ⁇ umol dalcosone per minute when fructosyl valyl histidine is measured as a substrate.
  • OmM phosphate buffer (pH 8.0) 1 50 ⁇ L ⁇ 360 ⁇ L of purified water and 1 OmM fructosyl valyl histidine as a substrate were mixed with 6 O ⁇ L, and the enzyme of the present invention was mixed. Add 30 ⁇ L of the solution, and heat at 37 ° C for 5 to 60 minutes.
  • the amount of the produced dye is converted to the amount of darcosone by using the diluted series of glucose as a substrate, adding purified water instead of the enzyme solution of the present invention, and producing per minute from the calibration curve created by performing the above operation. Calculate the micromol of darcosone, and use this value as the activity unit in the enzyme solution.
  • the enzyme of the present invention acts on all of them. However, it is not necessary to add another protease for shredding or to spend processing time, so that the efficiency of glycoprotein measurement can be improved. In addition to clinical tests, it can be applied to various fields such as medical care.
  • the defructosylase of the present invention when defructosylated from the fructosinolepeptide as a substrate, undergoes acidolytic degradation like FAD to generate hydrogen peroxide, dalcosone, etc.
  • the fructosylated peptide or fructosylated protein used in the defructosylation method of the present invention is not particularly limited as long as the defructosylase acts, but the ⁇ -chain ⁇ -terminal valine of hemoglobin is fructosyl. Particularly preferred are fructosyl peptides and HbAlc.
  • the peptide in which the N-terminal valine is fructosylated is not limited to the number of amino acids, Those whose sequences are represented by SEQ ID NOs: 1 to 5 are particularly preferred.
  • the peptide in which the N-terminal valine is fructosylated is prepared by treating a peptide or protein having such a sequence, for example, HbAlc with an appropriate endoprotease or exoprotease or the like. Can be done.
  • these proteases include elastase, proteinase, pepsin, alkaline protease, trypsin, proline-specific endoprotease, V8 protease, canoleboxyl peptidase A, carboxypeptidase B, and the like.
  • the amount of activity of these proteases for the above preparation is preferably from 0.05 to: 1000 U / mL, particularly preferably from 1 ° to 2000 UZmL.
  • the treatment temperature is 20 to 60 ° C, particularly 30 to 50 ° C. preferable.
  • the processing time is preferably 3 minutes to 100 hours, particularly 5 minutes to 20 hours.
  • the produced defructosyl peptide generated is separated by HPLC or capillary electrophoresis.
  • the detection may be performed by identification, or the released amino acid may be detected and measured by reacting an appropriate carboxypeptidase with the defructosyl peptide.
  • G1u glutamic acid
  • Pro peptide
  • T hr threonine
  • L eu leucine
  • His histidine
  • V a palin dehydration Using elementary enzymes
  • the generated hydrogen peroxide can be detected and measured using glucose oxidase using a known peroxidase coloring system.
  • a defructosylase that generates hydrogen peroxide is used during the defructosyl reaction, the directly generated hydrogen peroxide can be detected and measured using a peroxidase coloring system.
  • the peroxidase (POD) color-forming system is not particularly limited, but a method of adding a chromogen and POD to the reaction system, oxidizing the chromogen to generate a color-forming substance, and measuring this is preferable. is there.
  • the chromogen include a combination of 4-aminoantipyrine and a phenolic compound, a naphthol compound or an aniline compound, MBTH
  • trivalent cobalt ions generated by the reaction of hydrogen peroxide and divalent cobalt ion in the presence of POD are specific to trivalent cobalt ions.
  • a method for generating a color-forming chelate compound in combination with a typical indicator, for example, TASBB (2- (2-thiazolylazo) -5-disulfobutylamino benzoic acid trisodium salt), and measuring it can be used. According to this, a measurement sensitivity 5 to 10 times that of the above method can be obtained.
  • TPM-PS N, N, ⁇ ,, ⁇ ,, N ", N" monohexa (3-sulfopropyl) -4 , 4,, 4 "-triaminotripheninolemethane (manufactured by Dojin Chemical) can also be used.
  • peptides or proteins in which N-terminal palin is fructosylated for example, HbA1c can be quantified with extremely high precision.
  • examples of the test sample used for the quantification of HbAlc include whole blood, red blood cells, and the like.
  • the ginger rhizome was directly crushed with a juicer, and after standing, solids were removed by centrifugation to obtain a crude extract.
  • Ceraito 545 (trade name, manufactured by Nacalai Tesque, Inc.) was added to this crude extract as a filter aid, and the mixture was stirred and filtered by suction using a filter paper. The filtrate was centrifuged again to obtain an extract. An equal amount of cold ethanol was added to the obtained extract to form a precipitate. The obtained precipitate was dissolved in a small amount of 20 mM phosphate buffer ( ⁇ 70), added to a DEAE Toyopearl column (manufactured by Toso Ichisha), and the non-adsorbed fraction was collected. If necessary, ultrafiltration and concentration were performed, and this was used as a crudely purified enzyme.
  • reaction solution 1 (f-VHL: BioQuest) 500 ⁇ l; 40 ⁇ L of a uM aqueous solution, 20 ⁇ L of purified water, and 40 ⁇ L of a solution of the crude enzyme derived from the Zingiberaceae plant obtained in Example 1 were added; After mixing, the mixture was reacted at 37 ° C for 16 hours. The reaction solution was subjected to ultrafiltration with a molecular weight of 100,000, and the filtrate was separated (reaction solution 1).
  • the reaction solution 1 was applied to a capillary electrophoresis apparatus CAP 1-3200 (manufactured by Otsuka Electronics Co., Ltd.) using an electrophoresis buffer: 150 mM phosphate buffer (pH 2.0) and a voltage of 15 kv. Analysis was performed under the conditions of detection wavelength: 21 O.nm, and the peak position and peak area were measured.
  • Control test As a control, purified water was added in place of the crude enzyme solution, and the mixture was reacted under the same conditions to obtain a filtrate (control solution 1). The analysis result of this control solution 1 was compared with the result of the reaction solution 1.
  • the fructosyl peptide used in the enzyme reaction and the control test contained a non-fructosyl peptide, and the presence or absence of the enzyme activity was detected by changes in two peaks.
  • FIG. 1 shows the results of the reaction solution 1.
  • FIG. 2 shows the results of the control solution.
  • peaks derived from f-VHL area: 32 mABUXsec
  • peaks derived from VHL area: 22 mABUXsec
  • the f-VHL peak disappears. It was confirmed that the peak of VHL increased (area: 32 mABUXsec). From these results, it was found that the use of a defructosylation enzyme derived from a ginger plant enables defructosylation from fructosyl peptides.
  • the properties of the enzyme derived from the family Zingiberaceae, which is one of the enzymes of the present invention, were as follows.
  • the enzyme activity was measured using a fructosyl amino acid (fructosyl valine) solution and a fructosyl peptide solution (at least, SEQ ID NOS: 1 to 5) as substrates.
  • fructosyl valine and at least, fructosyl of SEQ ID NOs: 1 to 5 were determined. It was found to act on peptides.
  • the activity was measured at a reaction temperature of 0 ° C to 60 ° C.
  • Figure 5 shows the results. In the temperature range studied, the activity showed an increasing trend with the rise of the reaction temperature, and no decrease was observed. Therefore, the optimal temperature of the ginger plant-derived enzyme was set to 60 ° C or higher.
  • Fig. 6 shows the results. After heat treatment at 50 ° C for 15 minutes, 80% or more of the activity remained, and it was stable up to around 50 ° C.
  • fructosyl valyl histidine Since the concentration-dependent increase in absorbance of fructosyl valyl histidine was observed, it was confirmed that dalcosone was produced from the fructosyl peptide by the action of the ginger derived enzyme of the present invention. As a result, it was also found that fructosyl peptide can be measured.
  • Example 5 Contains 0.5 mM DA-64 (manufactured by Wako Pure Chemical Industries) at final concentration, 200 u / mL POD, 0.1% sodium azide and ImM fructosylparin or fructosyl peptide (SEQ ID NOS: 1 to 5) To a 50 mM phosphate buffer (pH 8.0), add 0.3 g / mL of the ginger enzyme solution as the final concentration, heat at 50 ° C for 30 minutes, and then adjust the purified water to 700 nm When the absorbance was measured, color development of DA-64 was observed (Table 1), indicating that hydrogen peroxide was generated.
  • a 50 mM phosphate buffer pH 8.0

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、植物由来の脱フルクトシル化酵素、これを用いたフルクトシル化ペプチド又はタンパク質からの脱フルクトシル化方法、及びフルクトシル化ペプチド及びタンパク質の測定方法に関する。

Description

新規なフルクトシルぺプチドォキシダーゼとその利用
技術分野
本発明は、 フルクトシル化されているペプチド又はタンパク質から、 酵素によ 明
り脱フルクトシル化する方法及びその作用を有する新規酵素、 並びに該方法によ り得られた反応生成物を測定することによる、 フルクトシルイ匕されているぺプチ ド又はタンパク質の測定方法に関する。
書 背景技術
ヘモグロビン (Hb) Al eは、 その ]3鎖 N末端パリンのァミノ基とダルコ一 スのアルデヒド基が、 非酵素的にシッフ塩基を形成した後、 アマドリ転移を生じ て安定ィ匕したアマドリ転移生成物であり、 結果的にパリン残基にフルクトースが 結合した構造を有する糖ィヒタンパク質である。 かかる Hb Al eは、 臨床的に過 去 1〜 2ヶ月の平均血糖値を反映すること力ゝら、 糖尿病管理の指標として重要で あり、 迅速、 簡便かつ正確で実用的な定量法が求められている。
I FCC (.International Federation of し linical Chemistry and Laboratory Medicine) は、 ヘモグロビンをエンドプロテアーゼ G 1 u— Cによ り加水分解して得られる、 フルク トシルバリンの存在が疑われる j3鎖 N末端の 6 ぺプチドフラグメントを H P L Cにより分離した後、 キヤビラリ一電気泳動法又 は質量分析法で定量する方法を Hb A 1 cの実用基準法 (Kobold U., et al ; Candidate reference methods for hemoglobinAlc based on peptide mapping. Clin. Chem., 43, 1944-1951(1997)) としているが、 この方法は、 特別な装置を 必要とするため、 操作が煩雑で経済性が悪く、 実用には不向きな方法である。 現在、 実用に供されている HbAl cの測定方法は、 疎水基あるいは陽イオン 交換基をもった特殊な硬質ゲルを担体として使用する HP L C、法ゃ抗 Hb A 1 c 抗体を使用するラテックス免疫凝集法などであるが、 高価な機器を必要とした り、 多段階の免疫反応を必要とするなど、 迅速性、 簡便性、 正確性を必ずしも満 足する方法ではなかった。
近年、 糖化タンパク質をプロテアーゼで分解し、 糖ィ匕アミノ酸に作用するフル クトシルアミノ酸ォキシダーゼ (FAOD) などの酵素を使用して、 HbA l c ゃグリコアルブミンなどの糠ィヒタンパク質を酵素法により測定しようとする方法 が報告されている (特開平 5— 1 9 2 1 9 3号、 特開平 7— 2 8 9 2 5 3号、 特 開平 8— 1 54 6 7 2号、 特開平 6— 046 846号、 特開平 8 _ 3 3 6 3 8 6 号、 W0 9 7 Z l 3 8 7 2、 WO 0 2 / 0 6 5 1 9、 特開 2 0 0 1 — 0 54 3 9 8号) 。
これらの方法は、 糖ィヒタンパク質が Hb A 1 c及びグリコアルブミンのいずれ の場合であっても、 FAODなどの酵素が、 糖化タンパク質のままでは作用する ことが困難であるため、 それぞれの糖化タンパク質に特徴的な糖化アミノ酸
(HbAl cにおけるフルク トシノレバリン、 ダリコアルブミンにおけるフルク ト シルリジン) を糖化ペプチドあるいは糖化タンパク質より切り出して、 FAOD などの基質とする方法である。 したがって、 FAODなどの基質となりうるよう に糖化アミノ酸を効率的に切り出す必要がある。
上記の目的のため、 糖ィ匕タンパク質から糖化ァミノ酸を効率的に切り出すプロ テアーゼの探索が試みられ、 多数のプロテアーゼが報告されているが、 これらが 実際に、 糖ィ匕アミノ酸あるいは糠ィヒアミノ酸を含むぺプチドをどのように糖化タ ンパク質から切り出している力、 例えば、 糖ィ匕タンパク質から、 どのような長さ のペプチド鎖が切り出されているかについては記載がなく、 その意味から、 前記 記載が実用的なものであるか否かは不明であつた。
一方、 試料をプロテアーゼ処理し、 遊離した糖ィヒペプチドに、 糖化ペプチドォ キシダーゼを作用させて、 糖ィ匕タンパク質を測定しょうとする方法が報告されて いる (特開 2 0 0 1— 0 9 5 5 9 8号) 。 し力 しながら、 この方法に使用されて いる糖化ペプチドォキシダーゼは、 実質的には、 フルクトシルジペプチドに対し て作用するものであり、 ジぺプチドよりも長いフルクトシルぺプチドに対しては 有効でなく、 従来の F AO Dなどを使用する場合と同様、 基質となりうるフルク トシルジぺプチドを効率よく切り出す必要があるという課題が残っていた。 また、 F A O Dを他の酵素と組み合わせて使用した報告もある (特開 2 0 0 0 一 3 3 3 6 9 6号) 。 し力 し、 この方法は、 プロテアーゼで切り出した糖化アミ ノ酸に F A O Dを作用させた時に発生する過酸化水素と、 同時に生成する糖化ァ ミノ酸分解産物であるダルコソンにグルコースォキシダーゼを作用させて生成す る過酸化水素の両方の過酸化水素を測定することによって、 測定感度を向上させ るものであり、 長さの異なる糖化ペプチドについて、 脱フルクトシル化を図るも のではない。 発明の開示
したがって、 本発明の目的は、 H b A l c等のフルクトシル化タンパク質や当 該フルクトシルイ匕タンパク質をプロテアーゼにより分解させた時に切り出される 種々の長さのフルクトシル化されたペプチドに対して、 脱フルクトシル作用を有 する酵素、 当該酵素を用いた脱フルクトシルイ匕方法及び当該脱フルクトシル化反 応を利用したフルクトシル化されたぺプチド又はタンパク質の測定方法を提供す ることにある。
本発明者らは、 上記目的を達成すべく、 酵素を自然界から探索した結果、 今ま でに報告されている F A〇 Dなどの脱フルクトシル作用を有する酵素が微生物由 来であったのに対して、 植物中にも脱フルクトシル作用を有する酵素が存在し、 かつ当該植物由来の酵素は、 フルクトシルぺプチドのぺプチド鎖の長さに係わら ず脱フルクトシル作用を発揮することを見出し、 本発明を完成した。
すなわち、 本発明は、 フルクトシルイ匕されているペプチド又はタンパク質に、 植物から抽出された脱フルクトシル作用を有する酵素を作用させることを特徴と する脱フルクトシル化方法を提供するものである。
また本発明は、 フルクトシルイ匕されているペプチド又はタンパク質に対して、 脱フルクトシル作用を有する酵素であって、 植物由来である酵素を提供するもの であ。。
さらに本発明は、 前記の脱フルク トシル化方法により得られた反応生成物の 1 種又は 2種以上を測定することを特徴とするフルクトシル化されているぺプチド 又はタンパク質の測定方法を提供するものである。
本発明の脱フルクトシル化酵素により、 N末端のバリンがフルクトシル化され ているペプチド又はタンパク質から脱フルクトシル化することができる。 さら に、 反応生成物を定量することによって、 N末端のパリンがフルクトシルイ匕され ているペプチド、 タンパク質、 タンパク質のサブユニット等、 例えば H b A l c 等が正確に定量できる。 図面の簡単な説明
図 1は、 ショゥガ科植物由来脱フルクトシル化酵素をフルクトシルトリぺプチ ド ( f _ V H L ) に作用させた反応液 1のキヤビラリ一電気泳動結果を示す図で める。
図 2は、 精製水をフルクトシルトリぺプチド ( f 一 VH L) に作用させた対照 液 1のキヤビラリ一電気泳動結果を示す図である。
図 3は、 ショゥガ科植物由来酵素の各 p Hにおける相対活性を示す図である。 図 4は、 ショゥガ科植物由来酵素の各 p H安定性を示す図である。
図 5は、 ショゥガ科植物由来酵素の各温度における相対活性を示す図である。 図 6は、 ショゥガ科植物由来酵素の温度安定性を示す図である。
図 7は、 本発明植物由来の脱フルクトシル化酵素を用いたフルクトシルぺプチ ドの測定結果を示す図である。 発明を実施するための最良の形態
本明細書において 「脱フルクトシル」 とは、 フルクトシルアミノ酸又はフルク トシルペプチド (即ち、 フルク トシル化されているアミノ酸又はペプチド) か ら、 フルクトシル部分が酸ィ匕分解等を起こし、 その結果、 フルクトシルイヒされて いないァミノ酸又はべプチドを生成することを意味する。
本発明に用いられる酵素 ( 「脱フルクトシル化酵素」 という) としては、 フル クトシルイ匕されているペプチド又はタンパク質に対して、 脱フルクトシル作用を 有する酵素であれば、 特に制限されないが、 様々な長さのフルクトシルペプチド に作用することから、 植物由来の脱フルク トシル化酵素が好ましい。 また、 本発 明の脱フルクトシル化酵素としては、 フルクトシル化されているペプチド又はタ ンパク質からグルコソン及び脱フルクトシルぺプチド又はタンパク質を生成する 酵素が好ましい。 さらに、 本発明酵素が含まれている植物としては、 特に制限は ないが、 ショウガ科に属する植物が、 特に好ましい。 ショウガ科に属する植物と しては、 生姜、 茗荷、 ゥコンなどが挙げられる。 また、 本発明酵素の植物からの 抽出に際しては、 脱フルクトシル化酵素が含まれている部位であれば特に制限さ れず、 葉、 茎、 花、 根茎、 根などの部位が利用できる。 また、 これらの植物の加 ェ品、 例えば、 抽出液のジュースや凍結乾燥製剤なども利用できる。
上記植物から、 脱フルクトシル化酵素を抽出する方法としては、 上記植物を直 接破枠して、 圧搾等の処理により抽出液を得ることもできるが、 適当な緩衝液等 を加えてから破砕し、 抽出することもできる。 本発明においては、 抽出液を用い ることも可能であるが、 精製した方がより好ましい。 精製方法としては、 公知の 方法が利用でき、 硫安分画ゃィオン交換ク口マトグラフィー、 疎水クロマトダラ フィ一、 ハイドロキシアパタイトゲル、 ゲル濾過等のカラムクロマトグラフィー を適宜組み合わせて使用することが出来る。 また、 植物抽出液中のポリフヱノー ルの影響を除く為に、 還元剤の添加や高分子吸収体での処理などを組み合わせる ことも可能である。
本発明の酵素の一つであるショウガ科植物由来酵素は、 以下の (a) 〜 (g) の理化学的性質を有する。
a) 作用:酸素の存在下で、 フルクトシノレバリン及ぴフルクトシルペプチド (少 なくとも、 配列番号 1〜 5 ) に作用し、 対応するバリン或いは非フルクトシルぺ プチドとダルコソン及び過酸化水素を生成する反応を触媒する。
b ) 至適 pH : 8. 0〜 9. 0。
c ) 安定 pHの範囲: p H 6. 0〜 7. 0。
d) フルクトシルバリルヒスチジンに対する Km値が、 1. 2mMである。
e) 至適温度の範囲: 60°C以上。
f ) 温度安定性: 50°C、 1 5分間の熱処理で 80%以上の活性が残存。
g ) 分子量: 27 k D a付近 (ゲル濾過法) 。 これらの性質から、 この酵素はフルクトシルペプチドォキシダーゼであると考 えられる。
本発明酵素の活性測定方法としては、 フルク トシルぺプチドを基質とし、 酵素 反応によって生成する非フルク トシルぺプチドとダルコソン及び過酸化水素の 内、 いずれか 1つの生成量を測定する方法が挙げられる。 以下に一例として、 グ ルコソン量を測定する方法について示す。 以下、 本発明酵素の酵素活性測定に は、 断わりのない限り、 フルクトシルバリルヒスチジンを基質として用いる。 尚、 酵素力価は、 フルクトシルバリルヒスチジンを基質として測定したとき、 1 分間に 1 ^umolのダルコソンを生成する酵素量を 1単位 (U) と定義する。 酵素の活性測定方法
(ダルコソンの生成)
20 OmMリン酸緩衝液 (pH8. 0) 1 50 μ L· 精製水 360 μ L及ぴ基 質として 1 OmMフルクトシルバリルヒスチジンを 6 O ^ L混和し、 本発明酵素 液を 30 μ L加えて、 3 7°Cで 5〜6 0分間加温する。
(ダルコソンの測定)
予め用意した、 200 mM酢酸緩衝液 (pH6. 0) 750 ,u L, 4000 u /m Lダルコース才キシダーゼ (東洋紡社) 4 50 μレ 0. 1 5% 4—ァミノ アンチピリン 3 0 0 AI L、 0. 3%TOO S (同仁化学社) 3 0 0 L、 5 0 0 uZmLパーォキシダーゼ (東洋紡社、 Typelll) 3 00 μ L及び 1 %アジ化ナト リウム 300 Ai Lを混和した液を加え、 37。 で 1 0分間加温後、 550 n mに おける吸光度を測定する。 基質の代わりに精製水を加える以外は、 上記と同様の 操作を行い対照とする。 生成色素量のダルコソン量への換算は、 グルコースの希 釈系列を基質とし、 本発明酵素液の代わりに精製水を加えて、 上記操作を行い作 成した検量線より、 1分間当たりに生成されるダルコソンのマイクロモルを計算 し、 この数値を酵素液中の活性単位とする。
本発明の脱フルク トシル化酵素によれば、 例えば糖化タンパク質をプロテア一 ゼ分解した際に、 様々な長さのフルクトシルペプチドが生成されたとしても、 本 発明酵素はこれらのすべてに作用する為、 細断するための別のプロテア一ゼの追 加や処理時間を費やすことがなくなり、 糖ィヒタンパク質測定の効率化が図れる。 また、 臨床検査だけでなく、 医療など様々な分野に応用が可能である。 尚、 本発 明の脱フルクトシル化酵素は、 基質であるフルクトシノレペプチドから脱フルクト シル化する際に、 F AO Dのように酸ィ匕分解を行い、 過酸化水素やダルコソン等 を発生させる作用を有しているので、 生成する過酸化水素を、 公知のペルォキシ ダーゼ等を用いた酵素的測定系に導けるため、 特に好ましい。 本発明の脱フル クトシル化方法に用いるフルクトシル化ペプチド又はフルクトシル化タンパク質 は、 脱フルクトシル化酵素が作用するものであれば特に制限されなレ、が、 へモグ 口ビンの β鎖 Ν末端バリンがフルクトシル化されているフルクトシルぺプチド及 ぴ Hb Al cであることが特に好ましい。 また、 N末端のバリンがフルクトシル 化されているペプチドとしては、 アミノ酸数には限定されないが、 そのアミノ酸 配列が配列番号 1〜 5で表されるものが特に好ましい。
上記 N末端のバリンがフルクトシル化されているペプチドは、 かかる配列を有 するペプチド又はタンパク質、 例えば H b A l cを、 適当なエンドプロテアーゼ 又はェキソプロテア一ゼ等を用いて処理することにより、 調製することができ る。 これらプロテアーゼとしては、 例えばエラスターゼ、 プロティナ一ゼ 、 ぺ プシン、 アルカリプロテアーゼ、 トリプシン、 プロリン特異エンドプロテア一 ゼ、 V 8プロテアーゼ、 カノレボキシぺプチダーゼ A、 カルボキシぺプチダーゼ B 等が挙げられる。 上記調製のためのこれらプロテアーゼの活性量としては、 0 . 0 5〜: 1 0 0 0 0 U/m L、 特に 1 ◦〜 2 0 0 0 UZm Lが好ましい。 フルクトシルイ匕されているペプチド又はタンパク質に、 本発明のショウガ科植 物由来の脱フルクトシル化酵素を作用させる条件のうち処理温度は、 2 0〜 6 0 °C、 特に 3 0〜5 0 °Cが好ましい。 また、 処理時間は、 3分〜 1 0 0時間、 特 に 5分〜 2 0時間が好ましレ、。 かかる処理により、 過酸化水素、 ダルコソン及び 脱フルクトシルぺプチドを含む反応生成物を得ることができる。 従って、 当該生 成物の 1種又は 2種以上を測定すれば、 フルクトシルイ匕されているペプチド又は タンパク質を測定することができる。
また、 本発明のショウガ科植物由来の脱フルク トシル化酵素活性の確認並びに フルクトシルイ匕されているペプチド又はタンパク質の測定方法としては、 生成し た脱フルクトシルぺプチドを、 H P L Cやキヤビラリ一電気泳動により分離同定 することによって検出してもよいが、 脱フルクトシルペプチドに適当なカルボキ シぺプチダーゼを作用させ、 遊離してくるアミノ酸を検出、 測定してもよい。 例 えば、 N末端のバリンがフルクトシル化された配列番号 5のぺプチドを使用した 場合には、 カルボキシぺプチダーゼの作用により、 グルタミン酸 (G 1 u ) 、 プ 口リン (P r o ) 、 スレオニン (T h r ) 、 ロイシン (L e u ) 、 ヒスチジン (H i s ) 、 パリン (V a 1 ) を生成させることが出来るが、 その中で、 G 1 u はグルタミン酸脱水素酵素、 L e uはロイシン脱水素酵素、 V a 1はパリン脱水 素酵素を用いて、
NADH又は NAD PHの生成量を測定することによって検出、 測定することも 可能である。 さらに、 同時に生成するダルコソンに関しては、 グルコースォキシ ダーゼを使用して、 発生する過酸化水素を、 公知のペルォキシダーゼ発色系を用 いて、 検出、 測定することが出来る。 また、 脱フルクトシル反応の際に、 過酸ィ匕 水素が生成する脱フルク トシル化酵素を用いた場合は、 直接生成した過酸化水素 を、 ペルォキシダーゼ発色系を用いて、 検出、 測定することも可能である。 ペルォキシダーゼ (POD) 発色系は、 特に制限はないが、 反応系に色原体及 び PODを添加し、 該色原体を酸化して発色物質を生成させ、 これを測定する方 法が好適である。 この色原体としては、 4—ァミノアンチピリンと、 フエノール 系化合物、 ナフトール化合物又はァニリン系化合物との組み合わせ、 MBTH
( 3—メチル一 2—べンゾチアゾリノンヒドラゾン) とァニリン系化合物との組 み合わせ、 ロイコメチレンブルー等が用いられる。 また、 特許第 2516381 号に記載されているように、 POD存在下にて過酸ィヒ水素と 2価のコバルトィォ ンとの反応により生じた 3価のコバルトイオンを、 3価のコバルトイオンに特異 的な指示薬、 例えば TASBB (2- (2—チアゾリルァゾ) —5—ジスルフォ プチルァミノ安息香酸三ナトリゥム塩) と組み合わせ、 発色キレート化合物を生 成させ、 これを測定する方法も利用できる。 これによれば、 上記方法の 5〜10 倍の測定感度を得ることができる。 また、 過酸ィ匕水素を検出する試薬として、 高 感度に測定可能な TPM—P S (N, N, Ν, , Ν, , N" , N" 一へキサ (3 ースルフォプロピル) —4, 4, , 4" ートリアミノ トリフエ二ノレメタン) (同 仁化学社製) 等も利用できる。
本発明方法を用いれば、 N末端のパリンがフルクトシルイ匕されているペプチド 又はタンパク質、 例えば H b A 1 cを極めて高精度で定量することができる。 こ こで HbAl cの定量に使用される被験試料としては、 例えば全血、 赤血球等が 挙げられる。 実施例
次に実施例を示して本発明をさらに詳細に説明するが、 本発明は以下の実施例 に限定されるものではない。
実施例 1
. ショウガ科植物由来脱フルクトシルイ匕酵素の調製
生姜根茎を、 直接ジューサーにて破砕し、 放置の後、 遠心分離により固形物を 除去し、 粗抽出液を得た。 この粗抽出液に、 濾過助剤としてセラィト 54 5 (商 標名、 ナカライテスク社製) を添加して攪拌後、 濾紙を用いて吸引濾過を行つ た。 濾液を再度、 遠心分離し、 抽出液を得た。 得られた抽出液に、 冷エタノール を等量添加し、 沈殿を形成させた。 得られた沈殿を、 少量の 2 0 mMリン酸緩衝 液 (ρΗ7· 0) に溶解させ、 DEAEトヨパールカラム (東ソ一社製) に添加 し、 その非吸着画分を集めた。 必要により、 限外濾過濃縮を行い、 これを粗精製 酵素とした。
実施例 2
フルク トシルぺプチドの脱フルク トシル化方法
( i ) 1 0 OmMリン緩衝液 (p H8. 0) 1 ◦ 0 μ Lに、 配列番号 2で表され るアミノ酸配列を有する Ν末端のバリンがフルクトシル化されているペプチド
( f -VHL:バイオクエスト社製) の 500; uM水溶液 4 0 L、 精製水 2 0 μ Lおよび実施例 1で得られたショゥガ科植物由来の粗精製酵素の溶液 40 μ L· を加え、 混和後、 3 7 °Cで 1 6時間反応させた。 この反応液を、 分子量 1 0 000の限外濾過を行い、 濾液を分取した (反応液 1) 。 この反応液 1を、 キヤビラリ一電気泳動装置 CAP 1 - 3 200 (大塚電子社製) にて、 泳動緩衝 液: 1 5 0 mMリン酸緩衝液 ( p H 2. 0 ) 、 電圧: 1 5 k v、 検出波長: 2 1 O.nmの条件で分析を行い、 ピーク位置およびピーク面積を測定した。
(ii) 対照試験 対照として、 粗精製酵素溶液の代わりに、 精製水を加え、 同じ条件にて反応さ せ濾液を得た (対照液 1 )。 この対照液 1の分析結果を反応液 1の結果と比較し た。
尚、 酵素反応及び対照試験に用いたフルクトシルペプチドには、 非フルクトシ ルペプチドが含まれており、 2種のピークの変化で、 酵素活性の有無を検出し た。
反応液 1の結果を図 1に示す。 対照液の結果を図 2に示す。 図 2では、 f 一 V HLに由来するピーク (面積: 32mABUXsec) 及ぴ VH Lに由来するピーク (面 積: 22mABUXsec) が認められているが、 図 1では、 f — VHLのピークが消失 し、 VHLのピークが増加 (面積: 32mABUXsec) しているのが確認された。 この結果から、 ショウガ科植物由来脱フルクトシル化酵素を使用することによ り、 フルクトシルぺプチドから脱フルクトシル化することができることが分かつ た。
実施例 3
本発明の酵素の一つであるショゥガ科植物由来酵素の理ィ匕学的な性質は、 下記 の通りであった。
a) 作用及び基質特異性
基質としてフルクトシルアミノ酸 (フルクトシルバリン) 溶液及びフルクトシ ルペプチド溶液 (少なくとも、 配列番号 1〜5) を用いて、 酵素活性を測定した 結果、 フルクトシルバリン及び少なくとも、 配列番号 1〜 5のフルクトシルぺプ チドに作用することが認められた。
b) 至適 pH
前述した酵素の活性測定方法におけるダルコソンの生成工程の緩衝液として、 200mM酢酸緩衝液 (pH4. 0〜6. 0) 、 200mMリン酸緩衝液 (pH 6. 0〜8. 0) 、 20 OmMトリス塩酸緩衝液 (pH7. 0〜9. 0) を用 い、 各 pHにおいて、 酵素活性を測定した。 その結果を図 3に示す。 ショウガ科 植物由来の本発明酵素活性は、 リン酸緩衝液の pH 8. 0及ぴ、 トリス塩酸緩衝 液の pH9. 0で最も高い活性を示したことから、 ショウガ科植物由来酵素の至 適 pHは、 8. 0〜9. 0であると判断した。
c) 安定 pHの範囲
50 mM酢酸緩衝液 (pH4. 0〜6. 0) 、 50 mMリン酸緩衝液 ( p H 6. 0〜8. 0) 、 5 OmMトリス塩酸緩衝液 (pH7. 0〜9. 0) の各条件 下で、 60°C、 15分間処理した後の残存酵素活性を測定した。 結果を図 4に示 す。 最も高い残存活性を示した pHは、 6. 0〜7. 0である。 以上のことか ら、 ショウガ科植物由来酵素の安定 pH範囲は、 pH6. 0〜7. ◦であると判 断した。 前述した酵素の活性測定方法において、 基質であるフルクトシルバリノレヒスチ ジン濃度を変化させて活性測定を行い、 ラインウェーバー ·バークプロットか ら、 ミカエリス定数 (Km) を求めた。 この結果、 フルクトシルバリルヒスチジ ンに対する Km値は、 1. 2 mMであることが判明した。
e) 至適温度の範囲
前述した酵素の活性測定方法において、 反応温度 0°C〜60°Cにて活性測定を 行った。 その結果を図 5に示す。 検討した温度範囲において、 活性は反応温度の 上昇に伴い増加傾向を示し、 低下が認められなかったことから、 ショウガ科植物 由来酵素の至適温度は、 60°C以上とした。
f ) 温度安定性
50 mMリン酸緩衝液 ( p H 8 · 0 ) の条件下で、 各温度で 15分間処理した 後の残存酵素活性を測定した。 結果を図 6に示す。 50°C、 15分間の熱処理で 80 %以上の活性が残存しており、 50 °C付近までは安定であった。
g) 分子量
実施例 1で得られた粗酵素液に対して、 Sephacryl S - 200 (Araersham Bioscience社) を用いるゲル濾過クロマトグラフィーを実施した。 溶離液には、 150 mMの N a C 1を含む 20 mMリン酸緩衝液 ( p H 6. 0 ) を使用し、 Sephacryl S— 200カラムの分子量較正は Gel filtration calibration Kit (Amersham Bioscience社) を用いて行った。 その結果、 ショウガ由来酵素の 分子量は、 27 kD a付近と算出された。 この 27 kD a付近の酵素液を用い て、 以下の検討を行った。 尚、 酵素反応は、 前述した活性測定法のダルコソンの 生成工程において、 酵素液として 1. 6単位 ZmLのものを用い、 反応は 37°C で 60分間行った。 実施例 4
フルク トシルペプチドの測定方法
20 OmMリン酸緩衝液 (pH8. 0) 150 μ L、 精製水 360 μ L及び反 応時の終濃度が 0〜40μΜとなるようにフルクトシ^/バリルヒスチジン水溶液 60 μ Lをそれぞれ加え、 さらにショウガ由来の酵素液 (1. 6u/mL) 30 μ Lを加え、 混和後、 37°Cで 16時間反応させた。 次に、 予め 200 mM酢酸 緩衝液 (pH6. 0) 750 μ L, 4000 u Zm Lグルコースォキシダーゼ (東洋紡社) 450 i L、 0. 15%4—ァミノアンチピリン 300 L、 0. 3%TOOS (同仁化学社) 300 i L, 500 u/mLパーォキシダーゼ (東 洋紡社、 Ty p e III) 300 μ L及び 1 %アジ化ナトリウム 300 Lを混和 した液を用意し、 上記反応液に加え、 37°Cで 10分間加温後、 550 nmにお ける吸光度を測 ¾した (図 7) 。 フルクトシルバリルヒスチジンの濃度依存的な 吸光度増加が観察されたことから、 本発明のショウガ由来酵素作用により、 フル クトシルペプチドから、 ダルコソンが生成することが確認され、 さらに、 本実施 例の方法により、 フルク トシルペプチドを測定することが出来ることも分かつ た。
実施例 5 終濃度で 0. 5mM DA- 64 (和光純薬工業社製) 、 200u/mL POD, 0. 1%アジ化ナトリウ ム及ぴ ImM フルク トシルパリン或いはフルク トシルぺプチド (配列番号 1〜 5 ) を含有する 50mMリン酸緩衝液 ( p H8. 0) に、 ショウガ酵素液を終濃度とし て 0. 3u/mLを添加し、 5 0 °Cで 3 0分間加温後、 精製水を対照にして 700nmの吸光 度を測定したところ、 D A - 64の発色が認められた (表 1 ) こと力 ら、 過酸化水 素が生成していることを認めた。
表 1
波長 700nmにおける吸光度
(mAbs)
フルクトシルノ リン 512
f -VH 735
f -VHL 570
f -VHLT 558
f -VHLTP 198
f -VHLTPE 223

Claims

請求の範囲
1. フルクトシルイ匕されているペプチド又はタンパク質に、 植物から抽出され た脱フルクトシル作用を有する酵素を作用させることを特徴とする脱フルクトシ ル化方法。
2. 植物から抽出された脱フルクトシル作用を有する酵素が、 ショウガ科に属 する植物から抽出されたものである請求項 1記載の脱フルクトシル化方法。
3. フルクトシル化されているペプチドのアミノ酸配列が、 配列番号 1〜5の いずれかで表されるものである請求項 1又は 2記載の脱フルクトシル化方法。
4. フルクトシルイ匕されているタンパク質が、 ヘモグロビン A 1 cである請求 項 1〜 3のいずれか 1項記載の脱フルクトシル化方法。
5. フルクトシル化されているペプチド又はタンパク質に対して、 脱フルクト シル作用を有する酵素であって、 植物由来である酵素。
6. 植物が、 ショウガ科に属する植物である請求項 5記載の酵素。
7. 次の a) 〜! ) の理化学的性質を有するものである請求項 5又は 6記載の 酵素。
a) 作用 :酸素の存在下で、 フルクトシルノ リン及びフルクトシルぺプチド (少なくとも、 配列番号 1〜 5 ) に作用し、 少なくとも対応するバリン或いは非 フルクトシルぺプチドとダルコソン及ぴ過酸化水素を生成する反応を触媒する。 b ) 至適 p H: 8. 0〜 9. 0。
c) 安定 pHの範囲: pH6. 0〜7. 0。
d) フルク トシルバリルヒスチジンに対する Km値が、 1. 2mMである。 e) 至適温度の範囲: 60°C以上。
f ) 温度安定性: 50°C、 15分間の熱処理で 80%以上の活性が残存。 g) 分子量: 27 kD a付近 (ゲル濾過法) 。
8 . 請求項 1〜 4の!/、ずれか 1項記載の脱フルクトシル化方法により得られた 反応生成物の 1種又は 2種以上を測定することを特徴とするフルクトシル化され ているぺプチド又はタンパク質の測定方法。
9 . 脱フルクトシルイヒ方法により得られた反応生成物が、 過酸化水素、 ダルコ ソン及び脱フルクトシルペプチドである請求項 8記載のフルクトシル化されてい るぺプチド又はタンパク質の測定方法。
PCT/JP2003/013548 2002-10-23 2003-10-23 新規なフルクトシルペプチドオキシダーゼとその利用 WO2004038034A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/531,305 US7329520B2 (en) 2002-10-23 2003-10-23 Fructosyl peptide oxidase and utilization thereof
JP2004546460A JP4323429B2 (ja) 2002-10-23 2003-10-23 新規なフルクトシルペプチドオキシダーゼとその利用
DE60326259T DE60326259D1 (de) 2002-10-23 2003-10-23 Neue fructosylpeptidoxidase und deren nutzung
EP03758817A EP1555325B1 (en) 2002-10-23 2003-10-23 Novel fructosyl peptide oxidase and utilization thereof
AU2003275613A AU2003275613A1 (en) 2002-10-23 2003-10-23 Novel fructosyl peptide oxidase and utilization thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-308731 2002-10-23
JP2002308731 2002-10-23

Publications (1)

Publication Number Publication Date
WO2004038034A1 true WO2004038034A1 (ja) 2004-05-06

Family

ID=32170987

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/013547 WO2004038033A1 (ja) 2002-10-23 2003-10-23 脱フルクトシル化方法
PCT/JP2003/013548 WO2004038034A1 (ja) 2002-10-23 2003-10-23 新規なフルクトシルペプチドオキシダーゼとその利用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013547 WO2004038033A1 (ja) 2002-10-23 2003-10-23 脱フルクトシル化方法

Country Status (7)

Country Link
US (2) US7393549B2 (ja)
EP (2) EP1555324B1 (ja)
JP (2) JP4323429B2 (ja)
AT (2) ATE450619T1 (ja)
AU (2) AU2003275613A1 (ja)
DE (2) DE60326259D1 (ja)
WO (2) WO2004038033A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041715A1 (ja) 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
WO2013162035A1 (ja) 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
WO2015005258A1 (ja) 2013-07-09 2015-01-15 協和メデックス株式会社 糖化ヘキサペプチドオキシダーゼとその利用
WO2015005257A1 (ja) 2013-07-09 2015-01-15 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2015060429A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
JPWO2015060431A1 (ja) * 2013-10-25 2017-03-09 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
US10934530B2 (en) 2015-04-03 2021-03-02 Kikkoman Corporation Amadoriase having improved specific activity

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417095B (zh) 2006-03-15 2013-12-01 Janssen Pharmaceuticals Inc 1,4-二取代之3-氰基-吡啶酮衍生物及其作為mGluR2-受體之正向異位性調節劑之用途
TW200900065A (en) 2007-03-07 2009-01-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-pyridinyloxy-phenyl)-pyridin-2-one derivatives
TW200845978A (en) 2007-03-07 2008-12-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
BRPI0817101A2 (pt) 2007-09-14 2017-05-09 Addex Pharmaceuticals Sa 4-(aril-x-fenil)-1h-piridin-2-onas 1,3-dissubstituídas
BRPI0816767B8 (pt) 2007-09-14 2021-05-25 Addex Pharmaceuticals Sa composto 4-fenil-3,4,5,6-tetra-hidro-2h,1'h-[1,4']bipiridi¬nil-2'-onas 1',3'-dissubstituídas, composição farmacêutica e uso dos mesmos
CN101801930B (zh) 2007-09-14 2013-01-30 奥梅-杨森制药有限公司 1,3-二取代的-4-苯基-1h-吡啶-2-酮
EP2220083B1 (en) 2007-11-14 2017-07-19 Janssen Pharmaceuticals, Inc. Imidazo[1,2-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
CN102143955B (zh) 2008-09-02 2013-08-14 Omj制药公司 作为代谢型谷氨酸受体调节剂的3-氮杂二环[3.1.0]己烷衍生物
JP5656848B2 (ja) 2008-10-16 2015-01-21 ジャンセン ファーマシューティカルズ, インコーポレイテッド. 代謝型グルタミン酸受容体モジュレーターとしてのインドールおよびベンゾモルホリンの誘導体
CA2744138C (en) 2008-11-28 2015-08-11 Ortho-Mcneil-Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
RS53075B (en) 2009-05-12 2014-04-30 Janssen Pharmaceuticals Inc. 1,2,4-TRIAZOLO [4,3-A] PYRIDINE DERIVATIVES AND THEIR USE IN THE TREATMENT OR PREVENTION OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS
MY153913A (en) 2009-05-12 2015-04-15 Janssen Pharmaceuticals Inc 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
WO2012062750A1 (en) 2010-11-08 2012-05-18 Janssen Pharmaceuticals, Inc. 1,2,4-TRIAZOLO[4,3-a]PYRIDINE DERIVATIVES AND THEIR USE AS POSITIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS
ES2552879T3 (es) 2010-11-08 2015-12-02 Janssen Pharmaceuticals, Inc. Derivados de 1,2,4-triazolo[4,3-a]piridina y su uso como moduladores alostéricos positivos de receptores mGluR2
JO3368B1 (ar) 2013-06-04 2019-03-13 Janssen Pharmaceutica Nv مركبات 6، 7- ثاني هيدرو بيرازولو [5،1-a] بيرازين- 4 (5 يد)- اون واستخدامها بصفة منظمات تفارغية سلبية لمستقبلات ميجلور 2
JO3367B1 (ar) 2013-09-06 2019-03-13 Janssen Pharmaceutica Nv مركبات 2،1، 4- ثلاثي زولو [3،4-a] بيريدين واستخدامها بصفة منظمات تفارغية موجبة لمستقبلات ميجلور 2
LT3431106T (lt) 2014-01-21 2021-02-10 Janssen Pharmaceutica Nv Deriniai, apimantys 2 potipio metabotropinio glutamaterginio receptoriaus teigiamus alosterinius moduliatorius arba ortosterinius agonistus, ir jų panaudojimas
KR20220039824A (ko) 2014-01-21 2022-03-29 얀센 파마슈티카 엔.브이. 대사 조절형 글루탐산 작동성 수용체 제2아형의 양성 알로스테릭 조절제 또는 오르토스테릭 작동제를 포함하는 조합 및 그 용도
CN108342370B (zh) * 2017-01-22 2021-05-28 上海交通大学 一种新型果糖基肽氧化酶及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155579A (ja) * 1997-11-25 1999-06-15 Kikkoman Corp フルクトシルアミノ酸オキシダーゼ遺伝子、新規な組み換え体dna及びフルクトシルアミノ酸オキシダーゼの製造法
JP2000333696A (ja) 1999-05-26 2000-12-05 Arkray Inc 糖化アミンの測定方法
JP2001054398A (ja) * 1999-08-18 2001-02-27 Asahi Chem Ind Co Ltd タンパク質の選択的断片化方法
JP2001095598A (ja) * 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
EP1344828A1 (en) 2000-11-28 2003-09-17 Kikkoman Corporation Novel fructosyl amino acid oxidase

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109509A (ja) * 1983-11-16 1985-06-15 Narisu Keshohin:Kk 美白化粧料
US4976974A (en) * 1988-06-02 1990-12-11 Chateau Yaldara Pty. Ltd. Grape juice concentrate and drink
GB9116315D0 (en) 1991-07-29 1991-09-11 Genzyme Ltd Assay
JP3157622B2 (ja) 1992-06-05 2001-04-16 株式会社ミツカングループ本社 フルクトシルアミンデグリカーゼ、その製造法及び該酵素を用いたアマドリ化合物の定量方法
AU661207B2 (en) * 1992-11-17 1995-07-13 Boehringer Mannheim Gmbh Simultaneous determination of HbA1c and haemoglobin variants with a glycation analogus to HbA1c
JP2923222B2 (ja) 1994-03-03 1999-07-26 株式会社京都第一科学 フルクトシルアミノ酸オキシダーゼ及びその製造方法
JP3850904B2 (ja) 1994-10-05 2006-11-29 アークレイ株式会社 フルクトシルアミノ酸オキシダーゼ及びその製造方法
JP4004081B2 (ja) 1995-04-11 2007-11-07 アークレイ株式会社 フルクトシルアミノ酸オキシダーゼおよびその製造方法
US5741491A (en) * 1995-09-06 1998-04-21 Isotechnika Incorporated Medicinal composition for diabetes
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
AU5764098A (en) * 1996-12-23 1998-07-17 Gist-Brocades B.V. Method for producing a protein hydrolysate
IN186667B (ja) * 1999-01-29 2001-10-20 Ajanta Pharma Ltd
JP4427137B2 (ja) * 1999-08-23 2010-03-03 積水メディカル株式会社 フルクトシルバリンの生産方法
USRE46105E1 (en) 2000-07-14 2016-08-16 Arkray, Inc. Method of selectively determining glycated hemoglobin
WO2004029251A1 (ja) * 2002-09-24 2004-04-08 Arkray, Inc. フルクトシルアミンオキシダーゼ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155579A (ja) * 1997-11-25 1999-06-15 Kikkoman Corp フルクトシルアミノ酸オキシダーゼ遺伝子、新規な組み換え体dna及びフルクトシルアミノ酸オキシダーゼの製造法
JP2000333696A (ja) 1999-05-26 2000-12-05 Arkray Inc 糖化アミンの測定方法
JP2001054398A (ja) * 1999-08-18 2001-02-27 Asahi Chem Ind Co Ltd タンパク質の選択的断片化方法
JP2001095598A (ja) * 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
EP1223224A1 (en) 1999-10-01 2002-07-17 Kikkoman Corporation Method of assaying glycoprotein
EP1344828A1 (en) 2000-11-28 2003-09-17 Kikkoman Corporation Novel fructosyl amino acid oxidase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIDA ET AL., APPL. ENVIRON. MICROBIOL., vol. 61, 1995, pages 4487 - 4489

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304249B2 (en) 2008-10-09 2012-11-06 Kyowa Medex Co., Ltd. Fructosyl peptide oxidase
US8790905B2 (en) 2008-10-09 2014-07-29 Kyowa Medex Co., Ltd. Fructosyl peptide oxidase
US8883142B2 (en) 2008-10-09 2014-11-11 Kyowa Medex Co., Ltd. Fructosyl peptide oxidase
WO2010041715A1 (ja) 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
US8802366B2 (en) 2012-03-15 2014-08-12 Arkray, Inc. Measurement method using enzyme
EP3508577A2 (en) 2012-04-27 2019-07-10 Kikkoman Corporation Modified amadoriase capable of acting on fructosyl hexapeptide
WO2013162035A1 (ja) 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
US10767211B2 (en) 2012-04-27 2020-09-08 Kikkoman Corporation Modified amadoriase reacting with fructosyl hexapeptide
WO2015005258A1 (ja) 2013-07-09 2015-01-15 協和メデックス株式会社 糖化ヘキサペプチドオキシダーゼとその利用
US9944970B2 (en) 2013-07-09 2018-04-17 Kyowa Medex Co., Ltd. Glycated hexapeptide oxidase and use thereof
US10006923B2 (en) 2013-07-09 2018-06-26 Kyowa Medex Co., Ltd. Method for measuring glycated hemoglobin
WO2015005257A1 (ja) 2013-07-09 2015-01-15 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JP2020141690A (ja) * 2013-10-25 2020-09-10 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
JPWO2015060429A1 (ja) * 2013-10-25 2017-03-09 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
JP7043161B2 (ja) 2013-10-25 2022-03-29 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
JPWO2015060431A1 (ja) * 2013-10-25 2017-03-09 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
US11078517B2 (en) 2013-10-25 2021-08-03 Kikkoman Corporation Hemoglobin A1c measurement method and measurement kit
WO2015060429A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
JP2019154447A (ja) * 2013-10-25 2019-09-19 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
US10697979B2 (en) 2013-10-25 2020-06-30 Kikkoman Corporation Method for measurement of HbA1c using amadoriase that reacts with glycated peptide
US10934530B2 (en) 2015-04-03 2021-03-02 Kikkoman Corporation Amadoriase having improved specific activity
KR20180136946A (ko) * 2016-04-22 2018-12-26 기꼬만 가부시키가이샤 HbA1c 디히드로게나아제
JPWO2017183717A1 (ja) * 2016-04-22 2019-02-28 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
US11111517B2 (en) 2016-04-22 2021-09-07 Kikkoman Corporation HbA1c dehydrogenase
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
JP2022081510A (ja) * 2016-04-22 2022-05-31 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
KR102596402B1 (ko) 2016-04-22 2023-10-31 기꼬만 가부시키가이샤 HbA1c 디히드로게나아제
JP7471772B2 (ja) 2016-04-22 2024-04-22 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
JP7487244B2 (ja) 2016-04-22 2024-05-20 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法

Also Published As

Publication number Publication date
JPWO2004038033A1 (ja) 2006-02-23
JP4327094B2 (ja) 2009-09-09
DE60330376D1 (de) 2010-01-14
US20070054344A1 (en) 2007-03-08
EP1555325A1 (en) 2005-07-20
AU2003275613A1 (en) 2004-05-13
EP1555325B1 (en) 2009-02-18
US7393549B2 (en) 2008-07-01
WO2004038033A1 (ja) 2004-05-06
EP1555324A1 (en) 2005-07-20
AU2003275612A1 (en) 2004-05-13
EP1555324A4 (en) 2006-06-07
EP1555325A4 (en) 2006-06-07
ATE423216T1 (de) 2009-03-15
DE60326259D1 (de) 2009-04-02
EP1555324B1 (en) 2009-12-02
JPWO2004038034A1 (ja) 2006-02-23
US7329520B2 (en) 2008-02-12
US20060240501A1 (en) 2006-10-26
JP4323429B2 (ja) 2009-09-02
ATE450619T1 (de) 2009-12-15

Similar Documents

Publication Publication Date Title
WO2004038034A1 (ja) 新規なフルクトシルペプチドオキシダーゼとその利用
JP3971702B2 (ja) 糖化ヘモグロビンの選択的測定方法
US20100291623A1 (en) Process for producing alpha-glycosylated dipeptide and method of assaying alpha-glycosylated dipeptide
JP4061348B2 (ja) 糖化タンパク質の酵素的測定方法
JP2010011876A (ja) 酸化還元反応を用いた糖化タンパク質の測定方法および測定キット
KR101016127B1 (ko) 단백질 절단 방법 및 그 용도
JP2010104386A (ja) 糖化アミンを測定するための試料の前処理方法および糖化アミンの測定方法
JPH08154672A (ja) フルクトシルアミノ酸オキシダーゼ及びその製造方法
JP4427137B2 (ja) フルクトシルバリンの生産方法
JP5204483B2 (ja) 糖化蛋白質の測定方法および測定キット
US7153666B2 (en) Methods and compositions for determination of glycated proteins
JPWO2005056823A1 (ja) 糖化アミンの測定方法
JP2005261383A (ja) キャリブレーション方法
WO2004038035A1 (ja) フルクトシルバリンの生産方法および該生産方法により得られたフルクトシルバリンの定量方法
JP4565807B2 (ja) 糖化タンパク質測定用プロテアーゼ
JP4352154B2 (ja) 糖化ヘモグロビンの選択的測定方法
JP2004113014A (ja) 糖化アミノ酸の消去方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004546460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003758817

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007054344

Country of ref document: US

Ref document number: 10531305

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003758817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10531305

Country of ref document: US