Nothing Special   »   [go: up one dir, main page]

WO2003032464A1 - Circuit d'equilibrage de tension, circuit de detection de tension, procede d'equilibrage de tension et procede de detection de tension associes - Google Patents

Circuit d'equilibrage de tension, circuit de detection de tension, procede d'equilibrage de tension et procede de detection de tension associes Download PDF

Info

Publication number
WO2003032464A1
WO2003032464A1 PCT/JP2002/010232 JP0210232W WO03032464A1 WO 2003032464 A1 WO2003032464 A1 WO 2003032464A1 JP 0210232 W JP0210232 W JP 0210232W WO 03032464 A1 WO03032464 A1 WO 03032464A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
switch
electrode
circuit
Prior art date
Application number
PCT/JP2002/010232
Other languages
English (en)
French (fr)
Inventor
Koichi Morita
Original Assignee
Sanken Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co., Ltd. filed Critical Sanken Electric Co., Ltd.
Priority to US10/491,362 priority Critical patent/US7288919B2/en
Priority to JP2003535309A priority patent/JP3858893B2/ja
Publication of WO2003032464A1 publication Critical patent/WO2003032464A1/ja
Priority to US11/904,364 priority patent/US7583057B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits

Definitions

  • the present invention provides a voltage balance circuit for equalizing the voltage between both electrodes of a plurality of series-connected secondary batteries or the charging voltage of a plurality of series-connected capacitors;
  • the present invention relates to a voltage detection circuit for detecting a charging voltage, a voltage balance method, and a voltage detection method.
  • a voltage detection circuit for monitoring the voltage of the secondary battery and a charge / discharge circuit for charging / discharging the secondary battery based on the monitoring result are provided for each secondary battery. It is necessary to provide a voltage balance circuit as shown in Figure 9 above.
  • the conventional voltage balance circuit has the following problems.
  • This voltage balance circuit 10 is composed of three rechargeable batteries B 1 and B 2 connected in series. , B3 to equalize the charging voltage.
  • the voltage balance circuit 10 is composed of three Zener diodes 11, 12, and 13.
  • the power sword of the Zener diode 11 is connected to the positive electrode of the secondary battery B1.
  • the anode of the Zener diode 11 is connected to a connection point N 1 between the negative electrode of the secondary battery B 1 and the positive electrode of the secondary battery B 2.
  • the force sword of Zener diode 12 is connected to node N1.
  • the anode of the Zener diode 12 is connected to a connection point N2 between the negative electrode of the secondary battery B2 and the positive electrode of the secondary battery B3.
  • the force sword of zener diode 1 3 is connected to node N 2.
  • the anode of the Zener diode 13 is connected to the negative electrode of the secondary battery B3.
  • the zener diodes 12 and 13 That is, if the voltage of the corresponding secondary batteries B2 and B3 is higher than the breakdown point, current flows through each Zener diode 12 and 13 and the secondary batteries B2 and B3 are discharged. If the breakdown point is not exceeded, no current flows through each Zener diode 12, 13 and secondary batteries B2, B3 are charged. Therefore, the charging voltages of the secondary batteries B1 to B3 are equalized.
  • This voltage balance circuit 20 equalizes the charging voltages of the three capacitors C1, C2 and C3 connected in series.
  • the voltage balance circuit 20 is composed of three resistors 21, 22, and 23 connected in parallel to the capacitors C1 to C3, respectively. The resistance values of the resistors 21 to 23 are equal. The voltage divided by the resistors 21 to 23 is applied to the connection node of the capacitors C1 to C3. Therefore, the charging voltages of the capacitors C1 to C3 are equalized.
  • each Zener diode 11 to 13 The flow of the current prevents the rechargeable batteries B1 to B3 from being overcharged. However, when current flows through the three diode diodes 11 to 13 at the same time, the current causes a loss and the efficiency is reduced. In addition, since the charging voltages of the secondary batteries B1 to B3 are determined by the breakdown voltages of the Zener diodes 11 to 13, the charging voltages may vary depending on the accuracy of the Zener diodes 11 to 13.
  • An object of the present invention is to provide a voltage balance circuit and a voltage balancing method capable of reducing loss.
  • a voltage balance circuit includes a voltage balance circuit for detecting a voltage between both electrodes of a plurality of power storage circuits (Bl, B2, B3) connected in series.
  • a voltage balance circuit for detecting a voltage between both electrodes of a plurality of power storage circuits (Bl, B2, B3) connected in series.
  • the capacitors (37, 38) are connected in parallel to the storage circuits (B1, B2, B3) selected from the plurality of storage circuits (B1, B2, B3) connected in series.
  • the charged and discharged capacitors (37, 38) are connected in parallel to another selected storage circuit (Bl, B2, B3) different from the selected storage circuit (B1, B2, B3). And a second connection (32, 34) for charging / discharging the charged / discharged capacitors (37, 38) to the other selected storage circuits (Bl, B2, B3). , 3 6) and By adopting such a configuration, the capacitors are connected in parallel to the selected storage circuit, and are charged with the charging voltage of the selected storage circuit. By connecting this capacitor in parallel with another selected storage circuit, energy is transferred from the capacitor to the storage circuit. Therefore, the charging voltages of the selected power storage circuit and the other selected power storage circuits are equalized.
  • the process of connecting the capacitors (37, 38) in parallel to the selected storage circuit (Bl, B2, B3) and the other selected storage circuit (Bl, B2, B3) ) May be provided with a control unit (39) for repeating the process of connecting the capacitors (37, 38) in parallel.
  • each of the plurality of power storage circuits connected in series may include one or a plurality of secondary batteries (B1, B2, B3).
  • each of the plurality of power storage circuits connected in series may include one or more capacitors (C1, C2, C3).
  • first connection part and the second connection part may be connected to a first electrode connected in series between one electrode and the other electrode of each of the power storage circuits (B1, B2, B3). From the first switch (31, 33, 35) and the second switch (32, 34, 36).
  • the connection point of the second switch (32, 34, 36) may be connected by the capacitor (37, 38).
  • the voltage detection circuit according to the second aspect of the present invention is provided for detecting the voltage between the electrodes of each of a plurality of power storage circuits (Bl, B2, B3) connected in series.
  • a first capacitor (67, 68, 69);
  • One storage circuit (Bl, B2, B3) is selected from the plurality of storage circuits (Bl, B2, B3), and the selected storage circuit (Bl, B2, B3) is selected.
  • the first capacitor (67, 68, 69) and the second capacitor (72) are connected in series, and the other electrode of the selected storage circuit (Bl, B2, B3) is connected.
  • the pressure applying section (61, 63, 65, 70). To the first capacitor (67, 68, 69) and the second capacitor (72), which are connected in series, to the pressure applying section (61, 63, 65, 70). )
  • a measuring terminal pair connected to both ends of the second capacitor (72) for detecting a voltage between both electrodes of the selected storage circuit (Bl, B2, B3).
  • the voltage of, for example, the negative electrode of the selected storage circuit is charged to the first capacitor by the charging unit.
  • the voltage applying unit applies a differential voltage between the positive voltage of the selected storage circuit and the negative voltage charged in the first capacitor to the second capacitor. That is, the second capacitor is charged to the voltage between both electrodes of the selected storage circuit.
  • the process of charging the first capacitor (67, 68, 69) and the selection of the selected storage circuit (B1, B2 2, B 3) is applied to the first capacitor (67, 68, 69) and the second capacitor (72) connected in series. It is also possible to provide a control unit (39) for returning.
  • One end is connected to the one electrode of each of the power storage circuits (Bl, B2, B3), and the other end is one electrode of each of the first capacitors (67, 68, 69) '.
  • One end is connected in common to the other electrodes of the plurality of first capacitors (67, 68, 69), and the other end is connected to a node for setting a reference potential.
  • a control unit that turns on the first switch (62, 64, 66) having one end connected to the selected storage circuit (Bl, B2, B3) and the charging switch (71). (39).
  • one electrode of the second capacitor (72) is connected to the other end of the charging switch (71),
  • One end is connected to the other electrode of each of the power storage circuits (Bl, B2, B3), and the other end is connected to one electrode of each of the first capacitors (67, 68, 69).
  • each of the power storage circuits may include one or a plurality of secondary batteries (B1, B2, B3).
  • a voltage detection circuit is a voltage detection circuit for detecting a voltage between both electrodes of a plurality of power storage circuits (Bl, B2, B3) connected in series.
  • the voltage detection circuit In the voltage detection circuit,
  • One storage circuit (B1, B2, B3) is selected from the plurality of storage circuits (B1, B2, B3) connected in series, and the voltage of one electrode of the selected storage circuit is selected.
  • a terminal voltage detection section (62, 64, 66) for detection;
  • a pair of measuring terminals (both ends of 71) that can measure voltage
  • the voltage of the negative electrode of the selected storage circuit is detected by the terminal voltage detection unit.
  • the voltage of the positive electrode of the selected power storage circuit is detected by the voltage detection unit, and a difference voltage corresponding to the voltage between the two electrodes of the selected power storage circuit is detected from the voltage detected by the terminal voltage detection unit. Given to the pair. That is, if the potential difference between the measurement terminal pair is measured, the voltage between both electrodes of each charging circuit can be measured.
  • the terminal voltage detectors (62, 64, 66) and the charging voltage detectors (67 to 69, 71) determine the respective storage circuits (B1, B2, B3).
  • the plurality of power storage circuits (Bl, B2, B3) connected in series are scanned in order, and each power storage circuit (Bl, B2, B3) is scanned.
  • the differential voltage may be indicated between the measurement terminal pair (both ends of 71).
  • each of the power storage circuits may include one or a plurality of capacitors (C I, C 2, C 3).
  • a voltage balancing method is a voltage balancing method for equalizing a voltage between both electrodes of a plurality of power storage circuits (Bl, B2, B3) connected in series.
  • a capacitor (37, 38) is connected in parallel to a storage circuit selected from a plurality of storage circuits (Bl, B2, B3) connected in series, and the selected storage circuit (Bl, B2 2, B 3) to charge and discharge the capacitors (3 7, 38); and charging / discharging the charged capacitors (3 7, 38) to the selected storage circuit (B 1, B 2, B 3).
  • Bl, B2, B3 different from that of the other selected storage circuit (Bl, B2, B3).
  • a voltage detection method is a voltage detection method for detecting a voltage between both poles of each of a plurality of storage circuits (Bl, B2, B3) connected in series.
  • One storage circuit (Bl, B2, B3) is selected from the plurality of storage circuits (Bl, B2, B3), and the selected storage circuit (Bl, B2, B3) is selected. Charging the first capacitor (67, 68, 69) with the voltage of one electrode; and connecting the first capacitor (67, 68, 69) and the second capacitor (72) to each other. Are connected in series, and the voltage of the other electrode of the selected power storage circuit (Bl, B2, B3) is connected to the first capacitor (67, 68, 69) connected in series.
  • a voltage detection method is a voltage detection method for detecting a voltage between both poles of a plurality of power storage circuits (Bl, B2, B3) connected in series.
  • the voltage of the other electrode of the selected storage circuit (Bl, B2, B3) is detected, and the difference voltage between the voltage of the other electrode and the detected voltage is determined by the selected storage circuit ( The steps shown between the measurement terminal pair (both ends of 71) as the voltage between the poles of Bl, B2, B3),
  • FIG. 1 is a diagram illustrating a configuration of a voltage balance circuit according to a first embodiment of the present invention.
  • FIG. 2 is a time chart of a control signal for controlling on / off of a switch.
  • FIG. 3 is a configuration diagram showing a voltage balance circuit according to a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration of a voltage balance circuit according to a third embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of a voltage detection circuit according to a fourth embodiment of the present invention.
  • Figure 6 shows the on / off state of the switch, the voltage application switch, and the charging switch.
  • 10 is a time chart of control signals to be controlled.
  • FIG. 7 is a diagram illustrating a configuration of a voltage detection circuit according to a fifth embodiment of the present invention.
  • FIG. 8 is a scan timing chart of the voltage detection circuit of FIG. 5
  • Fig. 9 is a circuit diagram of a conventional voltage balancing circuit for a secondary battery.
  • FIG. 10 is a circuit diagram of a capacitor voltage balance circuit. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating a configuration of a voltage balance circuit according to the first embodiment of the present invention.
  • Each of the three rechargeable batteries B1, B2, and B3 is a power storage circuit, and is connected in series.
  • the switches 31 to 36 are for connecting the secondary batteries Bl, ⁇ 2, ⁇ 3 to the capacitors 37, 38.
  • Switches 31 to 36 are bipolar transistors
  • One end of the switch 31 is connected to the positive electrode of the secondary battery B1.
  • the other end of the switch 31 is connected to one end of the switch 32 at a connection node N1.
  • the other end of the switch 32 is connected to the negative electrode of the secondary battery B1.
  • One end of the switch 33 is connected to the positive electrode of the secondary battery B2.
  • the other end of the switch 34 is connected to the negative electrode of the secondary battery B2.
  • One end of the switch 35 is connected to the positive electrode of the secondary battery B3.
  • the other end of the switch 35 is connected to one end of the switch 36 at a connection node N3.
  • the other end of the switch 36 is connected to the negative electrode of the secondary battery B3.
  • the capacitors 37 and 38 are for transferring the stored energy of the secondary batteries 81, B2 and B3.
  • the capacitors 37 and 38 have the necessary capacitance for that purpose.
  • Capacitor 37 is connected between connection node N1 and connection node N2.
  • Capacitor 38 is connected between connection node N2 and connection node N3.
  • Switches 31 and 33 are for connecting a capacitor 37 in parallel with the secondary battery B1 when the secondary battery B1 is selected.
  • the switches 33 and 35 are for connecting the capacitor 38 in parallel with the secondary battery B2 when the secondary battery B2 is selected.
  • Switches 32 and 34 are for connecting capacitor 37 in parallel with secondary battery B2 when secondary battery B2 is selected.
  • Switches 34 and 36 are for connecting the capacitor 38 in parallel with the secondary battery B3 when the secondary battery B3 is selected.
  • Each of the switches 31 to 36 is turned on when a control signal having a signal level of H level is supplied. That is, the switches 31 to 36 are turned on.
  • Each of the switches 31 to 36 is opened by being supplied with a control signal having a signal level of L level. That is, the switches 31 to 36 are turned off.
  • the control unit 39 includes, for example, a pulse generation circuit and a flip-flop circuit.
  • the control unit 39 can also be constituted by a microphone computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control section 39 supplies a control signal as shown in FIG. 2 to the switches 31 to 36.
  • the signal level of the control signal S1 and the signal level of the control signal S2 Alternates between H level and L level.
  • the voltage between the two electrodes of the secondary battery B 1 and the capacitor 3 Charge and discharge are performed between the secondary battery B 1 and the capacitor 37 according to the voltage between both ends of the capacitor 7. That is, when the voltage between both electrodes of the secondary battery B1 is higher than the voltage across the capacitor 37, the secondary battery B1 charges the capacitor 37 via the switches 31 and 33. During charging, the stored energy of the secondary battery B1 moves to the capacitor 37. When the secondary battery B1 charges the capacitor 37, the voltage across the secondary battery B1 decreases. Then, the voltage between both poles of the secondary battery B1 and the voltage across the capacitor 37 become substantially equal.
  • the secondary battery B 1 is charged by the capacitor 37 via the switches 31 and 33. During charging, the energy stored in the capacitor 37 moves to the secondary battery B1. When the secondary battery B 1 is charged, the voltage across the secondary battery B 1 increases. Then, the voltage between the two poles of the secondary battery B1 and the voltage across the capacitor 37 become substantially equal. If the voltage between both poles of the rechargeable battery B1 is equal to the voltage across the capacitor 37, the current flows to the rechargeable battery B1 or the capacitor 37 even if the switches 31 and 33 are turned on. Does not flow.
  • both the secondary battery B 2 Charging and discharging are performed between the secondary battery B 2 and the capacitor 38 in the same manner according to the voltage between the electrodes and the voltage across the capacitor 38. Then, the voltage between the two electrodes of the secondary battery B 2 and the voltage across the capacitor 38 rise or fall. As a result, the voltage between both electrodes of the secondary battery B 2 and the voltage across the capacitor 38 become substantially equal.
  • the internal resistance and the like (impedance) of the capacitor 37 are very small as compared with the conventional balance resistance. Therefore, the energy loss due to charging and discharging is much smaller than in the past.
  • control signal S1 becomes "L”. Further, the control signal S2 becomes "H”.
  • FIG. 3 is a configuration diagram showing a voltage balance circuit according to the second embodiment of the present invention.
  • the basic configuration of the voltage balance circuit 40 is the same as that shown in Fig. 1, with six switches 41, 42, 43, 44, 45, 46, two capacitors 47, 48, and a control unit 39 for controlling the switches 41 to 46 to turn on and off ing.
  • Capacitor 47 is connected between connection node N1 and connection node N2.
  • Capacitor 48 is connected between connection node N2 and connection node N3.
  • connection node N1 is connected via the switch 42. Connected to one electrode of the capacitor C1.
  • the connection node N2 is connected to the other electrode of the capacitor C1 and one electrode of the capacitor C2 via the switch 43.
  • the connection node N3 is connected to the other electrode of the capacitor C2 via the switch 45.
  • the capacitor 47 is connected in parallel to the capacitor C1.
  • Capacitor 48 is connected in parallel with capacitor C2.
  • the capacitor C1 and the capacitor 47 are connected in parallel, and charging and discharging are performed between them. When charging and discharging are performed, the voltage across the capacitor C1 and the voltage across the capacitor 47 become substantially equal.
  • Capacitor C 2 and capacitor 4 8 They are connected in parallel, and charging and discharging are performed between them. The voltage across capacitor C2 and the voltage across capacitor 48 are approximately equal.
  • connection node N1 is connected via the switch 43. Connected to one electrode of capacitor C2.
  • the connection node N2 is connected to the other electrode of the capacitor C2 and one electrode of the capacitor C3 via the switch 44.
  • the connection node N3 is connected to the other electrode of the capacitor C3 via the switch 46. That is, thereby, the capacitor 47 is connected in parallel to the capacitor C2.
  • Capacitor 48 is connected in parallel with capacitor C3.
  • control section 39 repeats the on / off control of the switches 41 to 46 with respect to the voltage across the capacitors C2 and C3, so that the voltage across the capacitors C2 and C3 is similarly reduced. They are almost equal. That is, the voltages at both ends of the capacitors C1 to C3 are equalized.
  • a plurality of capacitors are connected to each of the secondary batteries B1 to B3.
  • the voltage balance circuit 50 includes six switches 51, 52, 53, 54, 55, and 56 similar to the switches 31 to 36 of the first embodiment, and three capacitors 5. 7, 58, 59, and a control unit 39. That is, in the voltage balance circuit 50, a capacitor 58 is added.
  • One electrode of the capacitor 57 is connected to the connection node N1.
  • One electrode of the capacitor 58 is connected to the connection node N2.
  • One electrode of the capacitor 59 is connected to the connection node N3.
  • the other electrodes of the capacitors 57, 58, 59 are commonly connected.
  • a series circuit of capacitors 58 and 59 is connected in parallel to the secondary battery B2. As a result, the voltage applied to both ends of each of the capacitors 57, 58, and 59 is reduced by half compared to the case where no capacitor 58 is provided. In other words, the capacitors 57 to 59 having a withstand voltage of ⁇ compared to the case without the capacitor 58 can be used.
  • N 1 is connected to the positive electrode of the secondary battery B 2 via the switch 52.
  • the connection node N2 is connected to the negative electrode of the secondary battery B2 and the positive electrode of the secondary battery B3 via the switch 54.
  • the connection node N3 is connected to the negative electrode of the secondary battery B3 via the switch 56.
  • a series circuit of capacitors 57 and 58 is connected between the positive electrode and the negative electrode of secondary battery B2.
  • a series circuit of capacitors 58 and 59 is connected between the positive electrode and the negative electrode of the secondary battery B3. That is, a series circuit of capacitors 57 and 58 is connected in parallel to secondary battery B2.
  • a series circuit of capacitors 58 and 59 is connected in parallel to secondary battery B3.
  • the capacitor 58 is connected to the connection node N2 and the connection point between the capacitor 57 and the capacitor 59, thereby turning on and off the switches 51 to 56. Accordingly, a series circuit composed of the capacitors 58 to 59 is formed. Therefore, capacitors with low withstand voltage can be used for the capacitors 57 to 59.
  • FIG. 5 is a diagram illustrating a configuration of a voltage detection circuit according to a fourth embodiment of the present invention.
  • This voltage detection circuit 60 uses the voltage balance circuit 50 according to the third embodiment to detect the voltage between the two poles of the rechargeable batteries B1, B2, and B3 connected in series. Circuit.
  • the voltage detection circuit 60 includes six switches 61, 62, 63, 64, 65, 66, capacitors 67, 68, 69, and a control unit 39. I have.
  • One end of the switch 61 is connected to the positive electrode of the secondary battery B1.
  • the other end of the switch 61 is connected to one end of the switch 62 at a connection node N1.
  • the other end of the switch 62 is connected to the negative electrode of the secondary battery B1.
  • One end of the switch 63 is connected to the positive electrode of the secondary battery B2.
  • the other end of switch 6 3 is
  • Control signals S71 and S70 are also supplied to 70, respectively.
  • the timing chart of the control signals S61 to S66, S70 and S71 for controlling the ON / OFF of the switches 61 to 66, the voltage application switch 70 and the charging switch 71 is shown. 6 (1) to (8) are shown.
  • the control unit 39 controls the control signals S71, S70, S66, S6 as shown in Figs. 6 (1) to (4). 5 is supplied to a charging switch 71 and a switch 66 and a voltage applying switch 70 and a switch 65.
  • the control section 39 repeatedly controls the ON / OFF of the charging switches 71 and 66 and the voltage applying switches 70 and 65, thereby controlling the voltage between the two poles of the capacitor 72. rises. Then, the voltage between both electrodes of the secondary battery B3 becomes equal to the voltage between both electrodes of the capacitor 72. By measuring the voltage between both electrodes of the capacitor 72 in this state, the voltage between both electrodes of the secondary battery B 3 can be measured. You.
  • control unit 39 When detecting the voltage between the two electrodes of the secondary battery B 2, the control unit 39 performs the measurement during the measurement period of the voltage between the two electrodes of the secondary battery B 2 as shown in FIGS. 6 (1) and (5). Control signal
  • Control signals S71 and S64 become "H” and "L” at the same timing
  • control unit 39 transmits the control signals S 70 and S 63 during the measurement period of the voltage between the two electrodes of the secondary battery B 2, respectively.
  • the voltage is supplied to the switches 70 and 63 for voltage application.
  • Control signals S70 and S63 go "L” and "H” at the same timing
  • the charging switches 71 and 64 are turned on by the control signals S71 and S64, the switches 64 and 71 are connected between the positive electrode of the secondary battery B3 and the negative electrode of the secondary battery B3. The both ends of the capacitor 68 are connected via. Subsequently, the charging switch 71 and the switch 64 are turned off, and the voltage applying switch 70 and the switch 70 are turned off.
  • one electrode of the capacitor 68 is connected to the positive electrode of the secondary battery B2 via the switch 63.
  • the other electrode of the capacitor 68 is connected to one electrode of the capacitor 72 via the voltage application switch 70. Therefore, the difference between the positive electrode voltage VB2 of the secondary battery B2 and the voltage Vc across the capacitor 68 is applied to one electrode of the capacitor 72.
  • the voltage Vc between both ends of the capacitor 68 immediately before being connected to the capacitor 72 is the positive electrode voltage VB3 of the secondary battery B3, so the voltage between the two electrodes of the secondary battery B2 is applied to the capacitor 72. .
  • control unit 39 repeatedly controls ON and OFF of the charging switch 71 and the switch 64 and the voltage applying switch 70 and the switch 63 to thereby control the voltage between the two poles of the secondary battery B2.
  • the voltage and the voltage between both poles of the capacitor 72 become equal.
  • the control unit 39 alternately turns on and off the charging switches 71 and 62 and the voltage applying switches 70 and 61. I do.
  • the charging switch 71 and the switch 62 are turned on by the control signals S71 and S62, a capacitor is provided between the positive electrode of the secondary battery B2 and the negative electrode of the secondary battery B3. Both ends of 6 7 are connected.
  • one electrode of the capacitor 67 is connected via the switch 61. Connected to positive electrode of secondary battery B1.
  • the other electrode of the capacitor 67 is connected to one electrode of the capacitor 72 via the switch 71. Therefore, the difference between the voltage V B1 of the positive electrode of the secondary battery B 1 and the voltage V c between both electrodes of the capacitor 67 and ′ is applied to one electrode of the capacitor 72.
  • the voltage Vc between both ends of the capacitor 67 immediately before being connected to the capacitor 72 is the voltage V B2 of the positive electrode of the secondary battery B2, so that the capacitor 72 has a voltage between the two electrodes of the secondary battery B1.
  • the control unit 39 repeatedly turns on and off the charging switch 71 and the switch 62 and the voltage applying switch 70 and the switch 61, whereby The voltage between both electrodes of the secondary battery B1 and the voltage between both electrodes of the capacitor 72 become equal. By measuring the voltage between both electrodes of the capacitor 72 in this state, the voltage between both electrodes of the secondary battery B1 can be measured.
  • the switching of the switches 61 to 66, the charging switch 71, and the voltage application switch 70 causes the capacitors 72 to sequentially output the respective secondary voltages.
  • the voltage between both electrodes of the batteries B1 to B3 was applied. Therefore, the voltage between the two poles of the secondary batteries B1 to B3 can be measured with a simpler configuration than when a voltage measurement circuit is provided for each of the secondary batteries B1 to B3.
  • the position for measuring the voltage between both electrodes of each of the secondary batteries B1 to B3 is limited to both ends of the capacitor 72, there is no variation in the measured values and each voltage is measured with high accuracy. it can.
  • FIG. 7 is a diagram showing a configuration of a voltage detection circuit according to a fifth embodiment of the present invention
  • FIG. 8 is a scan timing chart of the voltage detection circuit. Elements common to those in FIG. 5 are denoted by common reference numerals.
  • This voltage detection circuit 80 is a circuit for detecting the voltage between the two poles of the rechargeable batteries B1, B2, and B3 connected in series. Six switches 61 to 66 connected in the same manner as in the embodiment, three capacitors 67 to 69 connected to each switch 61 to 66 in the same manner as in the fourth embodiment, and charging Switch 71.
  • Switches 62, 64, and 66 are for detecting the voltage of the negative electrode of each of the secondary batteries B1 to B3.
  • the switches 61, 63, 65, the capacitors 67 to 69, and the charging switch 71 detect the positive voltage of each of the secondary batteries B1 to B3.
  • the control unit 39 when detecting the voltage between the two electrodes of the secondary battery B3, the control unit 39 first sets the control signals S71 and S of "H" as shown in FIG. Are supplied to the charging switch 71 1 and the switch 66, respectively.
  • the charging switches 71 and 66 are turned on.
  • both ends of the capacitor 69 are connected to the negative electrode of the secondary battery B3 via the switches 66 and 71.
  • the control section 39 turns on the charging switch 71 and the switch 66 until the voltage Vc between the two electrodes of the capacitor 69 becomes completely zero. Subsequently, when the control signal S 71, 36 66 becomes “L”, the charging switch 71 and the switch 66 are turned off.
  • the control section 39 sets the signal level of the control signal S65 to "H". Switches 65 are turned on. Thus, one electrode of the capacitor 69 is connected to the positive electrode of the secondary battery B3 via the switch 65. Since the voltage Vc between both electrodes of the capacitor 69 is zero, the potential of the connection node N4 becomes the same as the potential of the positive electrode of the secondary battery B3. At this time, by measuring the potential difference between both ends of the charging switch 71, the voltage between both electrodes of the secondary battery B3 can be measured. '
  • the control unit 39 When detecting the voltage between the two electrodes of the secondary battery B2, the control unit 39 sets the signal level of the control signal S65 to "L". Subsequently, the control section 39 sets the signal levels of the control signals S71 and S64 to "H”.
  • the charging switches 71 and 64 are turned on. When the charging switch 71 and the switch 64 are turned on, both ends of the capacitor 68 are connected between the positive electrode and the negative electrode of the secondary battery B3 via the switches 64 and 71. Is connected.
  • the control unit 39 turns on the charging switch 71 and the switch 64 until the voltage Vc across the capacitor 68 is completely equal to the voltage of the positive electrode of the secondary battery B3. Subsequently, the control section 39 sets the signal levels of the control signals S71 and S64 to "L".
  • the charging switch 71 and the switch 64 are turned off. Subsequently, the control section 39 sets the signal level of the control signal S63 to "H". Switch 63 is turned on. Thereby, one electrode of the capacitor 68 is connected to the positive electrode of the secondary battery B2 via the switch 63. At this time, since the voltage Vc between both ends of the capacitor 68 is the positive voltage VB3 of the secondary battery B3, the voltage between the connection node N4 and the negative electrode of the secondary battery B3 is And the positive electrode potential of the secondary battery B3. Therefore, by measuring the potential difference between both ends of the charging switch 71, the voltage between both electrodes of the secondary battery B2 can be measured.
  • the control section 39 sets the signal levels of the control signals S71 and S62 to "L".
  • the charging switch 71 and the switch 62 are turned off.
  • the control unit 39 sets the signal level of the control signal S61 to "H”.
  • Switch 61 is turned on.
  • the switch 61 is turned on, one electrode of the capacitor 67 is connected to the positive electrode of the secondary battery B1 via the switch 61.
  • the voltage Vc between the two electrodes of the capacitor 67 is the positive voltage VB2 of the secondary battery B2
  • the voltage between the connection node N4 and the negative electrode of the secondary battery B3 is It is the difference voltage between the positive electrode potential of 1 and the positive electrode potential of the secondary battery B2. Therefore, by measuring the potential difference between both ends of the charging switch 71, the voltage between the two electrodes of the secondary battery B1 can be measured.
  • the switches 61 to 66 The switching of the charging switch 71 allows the voltage between the two electrodes of the secondary batteries B1 to B3 to be measured at both ends of the charging switch 71. It is simpler than 60. In addition, since the position for measuring the voltage between the two electrodes is limited to both ends of the charging switch 71, the measured values do not vary and the respective voltages are measured with high accuracy, as in the fourth embodiment. it can.
  • each power storage circuit may be a circuit including a plurality of secondary batteries or a circuit including a plurality of capacitors.
  • the number of storage circuits such as secondary batteries and capacitors is not limited to three, but may be four or more.
  • the present invention is based on Japanese Patent Application No. 2001-30054, filed on October 1, 2000, and its description, claims, and drawings in its entirety. Should be imported as a reference. Industrial potential

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

明細書 電圧バランス回路、 電圧検出用回路、 電圧バランス方法及び電圧検出方法 技術分野
本発明は、 直列に接続された複数の二次電池の各両極間の電圧、 或いは直列 に接続された複数のコンデンサの各充電電圧を均等化する電圧バランス回路、 各二次電池或いは各コンデンサの充電電圧を検出する電圧検出用回路、 電圧バ ランス方法及び電圧検出方法に関するものである。 : 背景技術
直列に接続された複数の二次電池は、 何度も充放電が繰り返されると、 二次 電池の充電電圧にアンパランスが生じる。 即ち、 各二次電池の充電電圧が等し くならない現象が発生する。 各二次電池の充電電圧が極端に不均一になると、 高い電圧で十分に充電された二次電池と、 充電電圧が低くて充電不足の二次電 '池とが存在することになる。 充電不足の二次電池の電池を充電するために、 直 列の複数の二次電池全体を再度充電すると、 十分に充電されていた二次電池は 過充電になってしまう。 二次電池が過充電になると、 その電池の寿命は短くな つてしてしまう。 また、 充電不足の二次電池が放電されると、 充電不足の二次 電池は過放電となる。 過放電になると、 それ以上の放電ができなくなる。 従つ て、 電圧アンバランスが発生すると、 全体の容量が減るばかりでなく、 電池の 寿命にも影響が出てしまい、 全体として満足のいく能力を発揮できない。
このような電圧アンバランスを防ぐためには、 二次電池の電圧を監視する電 圧検出用回路及び監視結果に基づき二次電池を充放電する充放電回路とを二次 電池ごとに設けたり、 次の図 9に示す電圧バランス回路を設けたりする必要が あつ 7こ。
しかしながら、 従来の電圧パランス回路には、 次のような課題がある。
図 9は、 従来の二次電池の電圧バランス回路の回路図である。
この電圧バランス回路 1 0は、 直列に接続された 3個の二次電池 B 1, B 2 , B 3の充電電圧を均等化するものである。 電圧バランス回路 1 0は、 3個の ツエナーダイオード 1 1, 1 2 , 1 3で構成されている。 ツエナーダイオード 1 1の力ソードは二次電池 B 1の正極に接続されている。 ツエナーダイオード 1 1のァノードは、 二次電池 B 1の負極と二次電池 B 2の正極との接続点 N 1 に接続されている。 ツエナーダイオード 1 2の力ソードは、 接続点 N 1に接続 されている。 ツエナーダイオード 1 2のアノードは、 二次電池 B 2の負極と二 次電池 B 3の正極との接続点 N 2に接続されている。 ツエナーダイォード 1 3 の力ソードは、 接続点 N 2に接続されている。 ツエナーダイオード 1 3のァノ ードは、 二次電池 B 3の負極に接続されている。
対応する二次電池 B 1の電圧がツエナーダイオード 1 1の降伏点を超えてい ればツエナーダイオード 1 1に電流が流れて、 二次電池 B 1は放電する。 二次 電池 B 1の電圧がツエナーダイオード 1 1の降伏点を越えていなければ電流は 流れず、 二次電池 B 1は充電される。 各ッヱナ一ダイオード 1 2, 1 3につい ても、 同様である。 即ち、 対応する二次電池 B 2, B 3の電圧が降伏点よりも 高ければ各ツエナーダイオード 1 2 , 1 3に電流が流れて、 二次電池 B 2, B 3は放電する。 降伏点を越えていなければ各ツエナーダイオード 1 2, 1 3に 電流は流れず、 二次電池 B 2, B 3は充電される。 よって、 二次電池 B 1〜; B 3の充電電圧が均等化する。
一方、 直列に接続された各コンデンサの電圧を均等化する場合、 コンデンサ の電圧を監視するための電圧検出用回路及ぴ監視結果に基づき充放電する充放 電回路とをコンデンサごとに設ける。 または、 次の図 1 0に示すように、 電圧 バランス回路を設ける必要があった。
この電圧パランス回路 2 0は、 直列に接続された 3個のコンデンサ C 1, C 2 , C 3の充電電圧を均等化するものである。 電圧バランス回路 2 0は、 各コ ンデンサ C 1〜C 3にそれぞれ並列に接続された 3個の抵抗 2 1, 2 2、 2 3 で構成されている。 抵抗 2 1〜2 3の抵抗値は等しい。 抵抗 2 1〜2 3で分圧 された電圧は、 コンデンサ C 1〜C 3の接続ノードに印加される。 よって、 コ ンデンサ C 1〜C 3の充電電圧は均等化される。
従来の図 9の電圧バランス回路 1, 0では、 各ツエナーダイオード 1 1〜1 3に 電流が流れることで、 各二次電池 B 1〜B 3の過充電が防止される。 ところが、 3個のッヱナ一ダイオード 1 1〜 1 3に同時に電流が流れたときには、 その電流 によってロスが発生し、 効率が低下する。 また、 二次電池 B 1〜B 3の充電電圧 が各ツエナーダイオード 1 1〜1 3の降伏電圧で決まるので、 ツエナーダイォー ド 1 1〜1 3の精度によって、 充電電圧がばらつくことがあった。
一方、 図 1 0の電圧バランス回路 2 0では、 抵抗 2 1〜 2 3に常時電流が流 れるので、 ロスが発生する。
また、 各二次電池 B 1〜B 3或いは各コンデンサ C 1〜C 3ごとに、 その充 電電圧を検出する電圧検出用回路を設ける場合には、 回路規模が大きくなる。 発明の開示
本発明は、 ロスを少なくすることが可能な電圧バランス回路及び電圧バラン ス方法を提供することを目的とする。
また、 本発明は、 直列に接続された各二次電池、 各コンデンサのような蓄電 回路の各両極間の電圧を検出する電圧検出用回路の構成を簡素化することを目 的とする。
上記目的を達成するために、 本発明の第 1の観点に係る電圧パランス回路は、 直列に接続された複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路の両極間 電圧を均等化する電圧バランス回路において、
コンデンサ (3 7, 3 8 ) と、
直列に接続された複数の蓄電回路 (B l, B 2, B 3) から選択した蓄電回 路 (B l, B 2, B 3) に前記コンデンサ (3 7, 3 8) を並列に接続し、 該 選択した蓄電回路 (B l, B 2, B 3) から該コンデンサ ( 3 7, 3 8) に充 放電させる第 1の接続部 (3 1, 3 3、 3 5) と、
前記充放電されたコンデンサ (3 7, 3 8) を前記選択した蓄電回路 (B 1 , B 2, B 3) とは異なる他の選択した蓄電回路 (B l, B 2, B 3) に並列 に接続し、 該充放電されたコンデンサ (3 7, 3 8) から該他の選択した蓄電 回路 (B l, B 2, B 3) に充放電させる第 2の接続部 (3 2, 3 4, 3 6) と、 を備えることを特徴とする。 このような構成を採用したことにより、 コンデンサが選択した蓄電回路に並 列に接続され、 選択した蓄電回路の充電電圧で充電される。 このコンデンサを 他の選択した蓄電回路に並列に接続することにより、 コンデンサから蓄電回路 にエネルギーの授受が行われる。 よって、 選択した蓄電回路と他の選択した蓄 電回路の充電電圧が、 均等化される。
なお、 前記選択した蓄電回路 (B l, B 2, B 3) に前記コンデンサ (3 7 , 3 8) を並列に接続する処理と前記他の選択した蓄電回路 (B l, B 2, B 3) に該コンデンサ (3 7, 3 8) を並列に接続する処理とを繰り返す制御部 (3 9) を備えてもよい。
また、 前記直列に接続された複数の蓄電回路における各蓄電回路は、 1又は 複数個の二次電池 (B l, B 2, B 3) を含んでもよい。
また、 前記直列に接続された複数の蓄電回路における各蓄電回路は、 1又は 複数個のコンデンサ (C l, C 2, C 3) を含んでもよい。
また、 前記第 1の接続部及び前記第 2の接続部を、 前記各蓄電回路 (B l, B 2 , B 3) の一方の電極と他方の電極との間に直列に接続された第 1のスィ ツチ (3 1, 3 3、 3 5) 及び第 2のスィツチ (3 2, 34, 36) から構成 し、
前記各蓄電回路 (B l, B 2, B 3) の一方の電極と他方の電極との間にそ れぞれ直列に接続された第 1のスィッチ (3 1, 3 3、 3 5) 及ぴ第 2のスィ ツチ (3 2, 34, 3 6) の接続点間を前記コンデンサ (3 7, 3 8) で接続 してもよレ、。
また、 この本発明の第 2の観点に係る電圧検出用回路は、 直列に接続された 複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路の両極間電圧を検出するた めの電圧検出用回路において、
第 1のコンデンサ (6 7, 6 8, 6 9) と、
第 2のコンデンサ (72) と、
前記複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B l, B 2 , B 3) を選択し、 該選択した蓄電回路 (B l, B 2, B 3) の一方の電極の 電圧で前記第 1のコンデンサ (6 7, 6 8, 6 9) を充電する充電部 (6 2, 64, 66、 7 1) と、
前記第 1のコンデンサ (6 7, 6 8, 6 9) と前記第 2コンデンサ (7 2) とを直列に接続し、 前記選択した蓄電回路 (B l , B 2, B 3) の他方の電極 の電圧を、 直列に接続された前記第 1のコンデンサ (6 7, 6 8, 6 9) と前 記第 2コンデンサ (72) とに印加する 圧印加部 (6 1, 6 3, 65、 70 ) と、
前記選択した蓄電回路 (B l, B 2, B 3) の両極間の電圧検出用として前 記第 2のコンデンサ (72) の両端に接続された測定端子対と、 を備えること を特徴とする。
このような構成を採用したことにより、 選択した蓄電回路の例えば負極の電 圧が、 充電部により、 第 1のコンデンサに充電される。 電圧印加部が、 選択し た蓄電回路の正極の電圧と第 1のコンデンサに充電されている負極の電圧との 間の差分電圧が第 2のコンデンサに印加される。 即ち、 第 2のコンデンサには 、 選択した蓄電回路の両極間の電圧に充電される。
なお、 前記選択した蓄電回路 (B l, B 2, B 3) に関し、 前記第 1のコン デンサ (6 7, 6 8, 6 9) に充電する処理と前記選択した蓄電回路 (B 1, B 2, B 3) の他方の電極の電圧を、 直列に接続された前記第 1のコンデンサ (6 7, 6 8, 6 9) と前記第 2コンデンサ (7 2) とに印加する処理とを繰 り返す制御部 (3 9) を備えることもできる。
また、 前記充電部 (6 2, 64, 6 6、 7 1) を、
一端が前記各蓄電回路 (B l, B 2, B 3) の前記一方の電極に接続される とともに他端が前記各第 1のコンデンサ (6 7, 6 8, 6 9)'の一方の電極に それぞれ接続された複数の第 1のスィッチ (62, 64, 66) と、
一端が前記複数の第 1のコンデンサ (6 7, 6 8, 6 9) の他方の電極に共 通に接続されるとともに、 他端が基準電位を設定するノードに接続された充電 用スィッチ (71) と、
前記選択した蓄電回路 (B l, B 2, B 3) に一端が接続された前記第 1の スィッチ (6 2, 64, 6 6) と前記充電用スィッチ (7 1) とをオンさせる 制御部 (3 9) とから構成してもよい。 また、 前記第 2のコンデンサ (7 2) の一方の電極を、 前記充電用スィッチ (71) の他端に接続し、
前記電圧印加部 (6 1, 6 3, 6 5、 70) を、
一端が前記各蓄電回路 (B l, B 2, B 3) の前記他方の電極に接続される とともに他端が前記各第 1のコンデンサ (6 7, 6 8, 6 9) の一方の電極に それぞれ接続された複数の第 2のスィッチ (6 1, 6 3, 65) と、
一端が前記複数の第 1のコンデンサ (6 7, 6 8, 6 9) の他方の電極に共 通に接続されるとともに、 他端が前記第 2のコンデンサ (72) の他方の電極 に接続された電圧印加用スィッチ (70) と、
前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を、 直列に 接続された前記第 1·のコンデンサ (6 7, 6 8, 6 9) と前記第 2コンデンサ (7 2) とに印加する際には、 前記複数の第 1のスィッチ (6 2, 64, 6 6 ) と前記充電用スィッチ (7 1) とを'オフさせ、 該選択した蓄電回路 (B l, B 2, B 3) に一端が接続された前記第 2のスィッチ (6 1, 63, 6 5) と 前記電圧印加用スィッチ (70) とをオンさせる制御部 (3 9) とから構成し てもよい。
また、 前記各蓄電回路は、 1又は複数個の二次電池 (B l, B 2, B 3) を 含むようにしてもよレ、。
また、 前記各蓄電回路は、 1又は複数個のコンデンサ (C l, C 2, C 3) を含むようにしてもよい。
また、 この発明の第 3の観点に係る電圧検出用回路は、 直列に接続された複 数の蓄電回路 (B l , B 2, B 3) の各蓄電回路の両極間電圧を検出するため の電圧検出用回路において、
直列に接続された複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B 1 , B 2, B 3) を選択し、 該選択した蓄電回路の一方の電極の電圧を検 出する端子電圧検出部 (62, 64, 66) と、
電圧の測定が可能な測定端子対 (7 1の両端) と、
前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を検出し、 該他方の電極の電圧と前記端子電圧検出部 (6 2, 64, 6 6) で検出した電 圧との間の差分電圧を、 該選択した蓄電回路 (B l, B 2, B 3) の両極間の 電圧として前記測定端子対 (71の両端) 間に示す電圧検出部 (67〜6 9, 71) と、 を備えることを特徴とする。
このような構成を採用したことにより、 選択した蓄電回路の例えば負極の電 圧が、 端子電圧検出部により、 検出される。 選択した蓄電回路の正極の電圧が 電圧検出部により検出され、 さらに、 端子電圧検出部で検出した電圧とから、 該選択した蓄電回路の両極間の電圧に相当する差分電圧が検出されて測定端子 対に与えられる。 即ち、 測定端子対の電位差を測定すれば、 各充電回路の両極 間.の電圧が測定できる。
なお、 前記端子電圧検出部を、 前記各蓄電回路 (B l, B 2, B 3) の前記 一方の電極に一端がそれぞれ接続された複数の第 1のスィッチ (62, 64, 66) で構成し、
前記測定端子対 (7 1の両端) のうちの一方の測定端子を、 基準電位を設定 するノードに接続し、
前記電圧検出部 (67〜6 9, 71) を、 前記各第 1のスィッチ (62, 6 4, 66) の他端と前記各蓄電回路 (B l, B 2, B 3) の他方の電極との間 にそれぞれ接続された複数の第 2のスィッチ (6 1, 6 3, 65) と、 一方の 電極が該各第 1のスィッチ (62, 64, 66) と該各第 2のスィッチ (6 1 , 6 3, 65) とのノードに接続されるとともに他方の電極が前記測定端子対 (7 1の両端) のうちの他方の測定端子に共通に接続された、 該各蓄電回路 ( B l, B 2, B 3) に対応する複数のコンデンサ (67〜6 9) と、 該測定端 子対間に接続された第 3のスィッチ (71) と、 前記差分電圧を前記測定端子 対 (71の両端) 間に示す際に、 該選択した蓄電回路 (B l, B 2, B 3) に 接続された該第 1のスィッチ (62, 64, 66) と該第 3のスィッチ (71) とをオンさせて該選択した蓄電回路 (B l, B 2, B 3) に対応する該コン デンサ (67, 68, 69) を充電し、 該第 1のスィッチ (62, 64, 66 ) と該第 3のスィッチ (71) とをオフさせた後に、 該選択した蓄電回路 (B 1, B 2, B 3) に接続された第 2のスィッチ (61, 63, 65) をオンさ せる制御部 (39) とから構成されてもよい。 また、 前記端子電圧検出部 (6 2, 6 4, 6 6) と前記充電電圧検出部 (6 7〜6 9, 7 1 ) とから前記各蓄電回路 (B 1, B 2, B 3) の両極間の電圧 を測定するために、 前記直列に接続された複数の蓄電回路 (B l, B 2, B 3 ) を順にスキャンして各蓄電回路 (B l, B 2, B 3) ごとに前記差分電圧を 前記測定端子対 (7 1の両端) 間に示すようにしてもよい。
また、 前記各蓄電回路は、 1又は複数個の二次電池 (B l, B 2, B 3) を 含んでもよい。
また、 前記各蓄電回路は、 1又は複数個のコンデンサ (C I , C 2, C 3) を含んでもよい。
また、 この発明の第 4の観点に係る電圧バランス方法は、 直列に接続された 複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路の両極間電圧を均等化する 電圧バランス方法であって、
直列に接続された複数の蓄電回路 (B l, B 2, B 3) から選択した蓄電回 路にコンデンサ (3 7, 3 8) を並列に接続し、 該選択した蓄電回路 (B l, B 2, B 3) から該コンデンサ (3 7, 3 8) に充放電させるステップと、 前記充放電されたコンデンサ (3 7, 3 8) を前記選択した蓄電回路 (B 1 , B 2, B 3) とは異なる他の選択した蓄電回路 (B l , B 2, B 3) に並列 に接続し、 該充放電されたコンデンサ (3 7, 3 8) から該他の選択した蓄電 回路 (B l, B 2, B 3) に充放電させるステップと、 を備えることを特徴 とする。
また、 この発明の第 5の観点に係る電圧検出方法は、 直列に接続された複数 の蓄電回路 (B l, B 2, B 3) の各蓄電回路の両極間電圧を検出する電圧検 出方法であって、
前記複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B l, B 2 , B 3) を選択し、 該選択した蓄電回路 (B l, B 2, B 3) の一方の電極の 電圧で前記第 1のコンデンサ (6 7, 6 8, 6 9) を充電するステップと、 第 1のコンデンサ (6 7, 6 8, 6 9) と第 2コンデンサ (7 2) とを直列 に接続し、 前記選択した蓄電回路 (B l , B 2, B 3) の他方の電極の電圧を 、 直列に接続された前記第 1のコンデンサ (6 7, 6 8, 6 9) と前記第 2コ ンデンサ (72) とに印加するステップと、
前記第 2のコンデンサ (72) の両端に印加された電圧を、 前記選択した蓄 電回路 (B l, B 2, B 3) の両極間の電圧として検出するステップと、 を備 えることを特徴とする。
また、 この発明の第 6の観点に係る電圧検出方法は、 直列に接続された複数 の蓄電回路 (B l, B 2, B 3) の各蓄電回路の両極間電圧を検出する電圧検 出方法において、
'直列に接続された複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B 1 , B 2, B 3) を選択し、 該選択した蓄電回路の一方の電極の電圧を検 出するステップと、
前記選択した蓄電回路 (B l, B 2 , B 3 ) の他方の電極の電圧を検出し、 該他方の電極の電圧と前記検出した電圧との間の差分電圧を、 該選択した蓄電 回路 (B l, B 2, B 3) の両極間の電圧として測定端子対 (71の両端) 間 に示すステップと、
前記測定端子対の両端で各蓄電回路 (B l, B 2, B 3) の両極間の電圧を 検出するステップと、 を備えることを特徴とする。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る電圧バランス回路の構成を示す図で ある。
図 2は、 スィッチのオン、 オフを制御する制御信号のタイムチャートである 図 3は、 本発明の第 2の実施形態に係る電圧バランス回路を示す構成図であ る。
図 4は、 本発明の第 3の実施形態に係る電圧パランス回路の構成を示す図で ある。
図 5は、 本発明の第 4の実施形態に係る電圧検出用回路の構成を示す図であ る。
図 6は、 スィッチ、 電圧印加用スィッチ及び充電用スィッチのオン、 オフを W
10 制御する制御信号のタイムチャートである。
図 7は、 本発明の第 5の実施形態に係る電圧検出用回路の構成を示す図であ る。
図 8は、 図 7の電圧検出用回路のスキャンのタイミングチャートである。 5 図 9は、 従来の二次電池の電圧バランス回路の回路図である。
図 1 0は、 コンデンサの電圧バランス回路の回路図である。 発明を実施するための最良の形態
[第 1の実施形態]
10 図 1は、 本発明の第 1の実施形態に係る電圧バランス回路の構成を示す図で ある。
3個の二次電池 B l, B 2 , B 3は、 それぞれ、.蓄電回路であり、 直列に接 続されている。
電圧バランス回路 3 0は、 6個のスィッチ 3 1, 3 2, 3 3, 3 4, 3 5, 1δ 3 6と、 2個のコンデンサ 3 7, 3 8と、 制御部 3 9と、 を備える。 この電圧 バランス回路 3 0は、 3個の二次電池 Β Ι ', Β 2 , Β 3の電圧を均等化する回 路である。
スィッチ 3 1〜3 6は、 二次電池 B l, Β 2 , Β 3とコンデンサ 3 7, 3 8 とを接続するためのものである。 スィッチ 3 1〜 3 6は、 バイポーラトランジ
20 スタ、 F E T (Field Effect Transistor) 等によって構成される。
スィッチ 3 1の一端は、 二次電池 B 1の正極に接続されている。 スィッチ 3 1の他端は、 スィッチ 3 2の一端と接続ノード N 1で接続されている。 スイツ チ 3 2の他端は、 二次電池 B 1の負極に接続されている。 スィッチ 3 3の一端 は、 二次電池 B 2の正極に接続されている。 スィッチ 3 3の他端は、 スィッチ
25 3 4の一端と接続ノード N 2で接続されている。 スィッチ 3 4の他端は、 二次 電池 B 2の負極に接続されている。 スィッチ 3 5の一端は、 二次電池 B 3の正 極に接続されている。 スィッチ 3 5の他端は、 スィッチ 3 6の一端と接続ノー ド N 3で接続されている。 スィッチ 3 6の他端は、 二次電池 B 3の負極に接続 されている。 コンデンサ 3 7, 3 8は、 ニ次電池8 1, B 2, B 3の蓄電エネルギを移動 させるためのものである。 コンデンサ 3 7, 3 8は、 そのために必要な容量を 有している。
コンデンサ 3 7は、 接続ノード N 1と接続ノード N 2との間に接続されてい る。 コンデンサ 3 8は、 接続ノード N 2と接続ノード N 3との間に接続されて いる。 スィッチ 3 1, 3 3は、 二次電池 B 1が選択されたときに、 コンデンサ 3 7を二次電池 B 1に並列に接続するためのものである。 スィッチ 3 3 , 3 5 は、 二次電池 B 2が選択されたときに、 コンデンサ 3 8を二次電池 B 2に並列 に接続するためのものである。
スィッチ 3 2, 3 4は、 二次電池 B 2が選択されたときに、 コンデンサ 3 7 を二次電池 B 2に並列に接続するためのものである。 スィッチ 3 4, 3 6は、 二次電池 B 3が選択されたときに、 コンデンサ 3 8を二次電池 B 3に並列に接 続するためのものである。
制御部 3 9は、 スィッチ 3 1〜3 6のオン、 オフを制御するものである。 即 ち、 制御部 3 9は、 制御信号 S 1を、 スィッチ 3 1, 3 3, 3 5に供給する。 制御部 3 9は、 制御信号 S 2を、 スィッチ 3 2, 3 4, 3 6に供給する。 制御 信号 S 1と S 2とは、 図 2に示すように、 信号レベルが交互に高レベル (以下 、 "H" とレヽう) 又は低レベル (以下、 " L " という) になる。
スィッチ 3 1〜3 6は、 それぞれ、 信号レベルが Hレベルの制御信号が供給 されてオンする。 即ち、 スィツチ 3 1〜 3 6は、 オンする。 また、 スィツチ 3 1〜3 6は、 それぞれ、 信号レベルが Lレベルの制御信号が供給されて開く。 即ち、 スィッチ 3 1〜3 6は、 オフする。
制御部 3 9は、 例えば、 パルス発生回路とフリ ップフロップ回路とを備えて 構成される。 但し、 制御部 3 9は、 C P U (Central Processing Unit) 、 R O M (Read Only Memory) 、 R AM (Random Access Memory) 等を備えたマイク 口コンピュータで構成されることもできる。
次に、 図 1の電圧バランス回路 3 0の動作を説明する。
制御部 3 9は、 スィッチ 3 1〜3 6に図 2のような制御信号を供給する。 図 2に示すように、 制御信号 S 1の信号レベルと制御信号 S 2の信号レベル とは、 交互に、 Hレベル、 Lレベルになる。
スィッチ 3 1, 3 3 , 3 5と、 スィッチ 3 2, 3 4, 3 6とは、 供給された 制御信号 S 1, S 2に従って交互にオン、 オフする。
制御信号 S 1力 S "H" になると、 スィッチ 3 1、 3 3, 3 5は、 オンする。 接続ノード N 1は、 スィツチ 3 1を介して二次電池 B 1の正極に接続される。 接続ノード N 2は、 スィッチ 3 3を介して二次電池 B 1の負極及ぴ二次電池 B 2の正極に接続される。 そして、 接続ノード N 3は、 スィツチ 3 5を介して二 次電池 B 2の負極に接続される。 これにより、 二次電池 B 1の正極と負極との 間にコンデンサ 3 7が接続される。 また、 二次電池 B 2の正極と負極との間に コンデンサ 3 8が接続される。 つまり、 二次電池 B 1とコンデンサ 3 7とが並 列に接続される。 また、 二次電池 B 2とコンデンサ 3 8とが並列に接続される 二次電池 B 1とコンデンサ 3 7とが並列に接続されると、 二次電池 B 1の両 極間の電圧とコンデンサ 3 7の両端の電圧とに従い、 二次電池 B 1とコンデン サ 3 7との間で充放電が行われる。 即ち、 二次電池 B 1の両極間の電圧がコン デンサ 3 7の両端の電圧よりも高いと、 二次電池 B 1は、 スィッチ 3 1, 3 3 を介してコンデンサ 3 7を充電する。 充電の際、 二次電池 B 1の蓄電エネルギ は、 コンデンサ 3 7へと移動する。 二次電池 B 1がコンデンサ 3 7を充電する と、 二次電池 B 1の両端の電圧は低下する。 そして、 二次電池 B 1の両極間の 電圧とコンデンサ 3 7の両端の電圧とはほぼ等しくなる。 一方、 二次電池 B 1 の両極間の電圧がコンデンサ 3 7の両端の電圧以下であると、 二次電池 B 1は スィッチ 3 1, 3 3を介してコンデンサ 3 7によって充電される。 充電の際、 コンデンサ 3 7の蓄電エネルギは、 二次電池 B 1へと移動する。 二次電池 B 1 が充電されると、 二次電池 B 1の両端の電圧は、 上昇する。 そして、 二次電池 B 1の両極間の電圧とコンデンサ 3 7の両端の電圧とはほぼ等しくなる。 . また、 二次電池 B 1の両極間の電圧とコンデンサ 3 7の両端の電圧とが等し ければ、 スィッチ 3 1、 3 3がオンしても二次電池 B 1又はコンデンサ 3 7に 電流は流れない。
二次電池 B 2とコンデンサ 3 8とが並列に接続されると、 二次電池 B 2の両 極間の電圧とコンデンサ 3 8の両端の電圧とに従い、 同じようにして、 二次電 池 B 2とコンデンサ 3 8との間で充放電が行われる。 そして、 二次電池 B 2の 両極間の電圧とコンデンサ 3 8の両端の電圧とは上昇レたり低下したりする。 これにより、 二次電池 B 2の両極間の電圧とコンデンサ 3 8の両端の電圧とは ほぼ等しくなる。
尚、 コンデンサ 3 7の内部抵抗等 (インピーダンス) は、 従来のバランス抵 抗と比較して非常に小さい。 従って、 充放電によるエネルギロスは、 従来と比 較して、 非常に小さくなる。
続いて、 制御信号 S 1は、 " L " になる。 また、 制御信号 S 2は、 "H" に なる。
スィッチ 3 1, 3 3, 3 5は、 制御信号 S 1の信号レベルに従ってオフする 。 また、 スィッチ 3 2 , 3 4, 3 6は、 制御信号 S 2の信号レベルに従ってォ ンする。 スィッチ 3 1〜 3 6がこのようにオン、 オフすると、 接続ノード N 1 は、 スィッチ 3 2を介して二次電池 B 2の正極に接続される。 接続ノード N 2 はスィツチ 3 4を介して二次電池 B 2の負極及ぴ二次電池 B 3の正極に接続さ れる。 そして、 接続ノード N 3は、 スィッチ 3 6を介して二次電池 B 3の負極 に接続される。 これにより、 二次電池 B 2の正極と負極との間にコンデンサ 3 7が接続される。 また、 二次電池 B 3の正極と負極との間にコンデンサ 3 ' 8が 接続される。 つまり、 二次電池 B 2にコンデンサ 3 7が並列に接続される。 ま た、 二次電池 B 3にコンデンサ 3 8が並列に接続される。
二次電池 B 3とコンデンサ 3 8とが並列に接続されると、 二次電池 B 3の両 極間の電圧とコンデンサ 3 8の両端の電圧とに従い、 二次電池 B 3とコンデン サ 3 8との間で充放電が行われる。
制御部 3 9がこのようなスィッチ 3 :!〜 3 6のオン、 オフ制御を繰り返すこ とにより、 二次電池 B l, B 2 , B 3の両極間の電圧は均等化される。
例えば、 二次電池 B 1の両極間の電圧が、 二次電池 B 2、 B 3の両極間の電 圧よりも高い場合、 スィッチ 3 1, 3 3, 3 5がオンしてスィツチ 3 2、 3 4 , 3 6がオフすると、 二次電池 B 1がコンデンサ 3 7を充電する。 このため、 二次電池 B 1の両極間の電圧は低下する。 また、 コンデンサ 3 7の両端の電圧 は上昇する。
次に、 スィッチ 3 1, 3 3, 3 5がオフし、 スィッチ 3 2, 3 4, 3 6がォ ンすると、 コンデンサ 3 7が二次電池 B 2を充電するため、 二次電池 B 2の両 極間の電圧は上昇する。 これにより、 二次電池 B 1の両極間の電圧と二次電池 B 2の両極間の電圧との差は小さくなる。
次に、 スィッチ 3 1, 3 3, 3 5がオンしてスィッチ 3 2、 3 4 , 3 6がォ フすると、 二次電池 B 2がコンデンサ 3 8を充電する。 このため、 コンデンサ 3 8の両端の電圧は上昇する。
次に、 スィツチ 3 1, 3 3, 3 5がオフし、 スィッチ 3 2, 3 4, 3 6がォ ンすると、 コンデンサ 3 8が二次電池 B 3を充電するため、 二次電池 B 3の両 極間の電圧は、 上昇する。 従って、 二次電池 B 2の両極間の電圧と二次電池 B 3の両極間の電圧との差は小さくなる。
このようなスィッチ 3 1 , 3 3 , 3 5と、 スィッチ 3 2, 3 4, 3 6とが交 互にオン、 オフを繰り返することにより、 電圧が高い二次電池 B 1から、 コン デンサ 3 7 , 3 8を介して電圧の低い二次電池 B 2, B 3へと蓄電エネルギが 移動する。 そして、 二次電池 B l, B 2 , B 3の両極間の電圧が均等化される 以上のように、 本実施形態の電圧バランス回路 3 0では、 コンデンサ 3 7, 3 8と二次電池 B l, B 2とが並列に接続されて、 その間で充放電が行われる 。 その後、 コンデンサ 3 7, 3 8と二次電池 B 2, B 3とが並列に接続されて 、 その間で放充電されるようにした。 従って、 ロスなく、 二次電池 B 1〜B 3 の電圧を均等化できる。
[第 2の実施形態]
図 3は、 本発明の第 2の実施形態に係る電圧パランス回路を示す構成図であ る。
この第 2の実施形態の電圧パランス回路 4◦は、 蓄電回路が、 直列に接続さ れたコンデンサ C 1 , C 2 , C 3を含み、 コンデンサ C l, C 2 , C 3の両端 の電圧を均等化する回路である。
電圧バランス回路 4 0の基本的構成は、 図 1と同様であり、 6個のスィッチ 4 1, 4 2, 4 3 , 4 4, 4 5, 4 6と、 2個のコンデンサ 4 7, 4 8と、 ス ィツチ 4 1〜4 6をオン、 オフ制御する制御部 3 9とを備えている。
スィッチ 4 1の一端は、 コンデンサ C 1の一方の電極に接続される。 スイツ チ 4 1の他端は、 スィッチ 4 2の一端と接続ノード N 1で接続されている。 ス イッチ 4 2の他端は、 コンデンサ C 1の他方の電極に接続されている。 スイツ チ 4 3の一端は、 コンデンサ C 2の一方の電極に接続される。 スィッチ 4 3の 他端は、 スィッチ 4 4の一端と接続ノード N 2で接続されている。 スィッチ 4 4の他端は、 コンデンサ C 2の他方の電極に接続されている。 スィッチ 4 5の 一端は、 コンデンサ C 3の一方の電極に接続される。 スィッチ 4 5の他端は、 スィッチ 4 6の一端と接続ノード N 3で接続されている。 スィッチ 4 6の他端 は、 コンデンサ C 3の他方の電極に接続されている。
コンデンサ 4 7は、 接続ノード N 1と接続ノード N 2との間に接続されてい る。 コンデンサ 4 8は、 接続ノード N 2と接続ノード N 3との間に接続されて いる。 ' ■
次に、 図 3の電圧バランス回路 4 0の動作を説明する。
制御部 3 9は、 第 1の実施形態と同様に、 制御信号 S 1をスィッチ 4 1, 4 3, 4 5に供給する。 制御部 3 9は、 制御信号 S 2をスィッチ 4 2, 4 4, 4 6に供給する。
制御信号 S 1により、 スィッチ 4 1 , 4 3, 4 5がオンし、 制御信号 S 2に より、 スィッチ 4 2 , 4 4, 4 6がオフすると、 接続ノード N 1が、 スィッチ 4 2を介してコンデンサ C 1の一方の電極に接続される。 接続ノード N 2がス イッチ 4 3を介してコンデンサ C 1の他方の電極及ぴコンデンサ C 2の一方の 電極に接続される。 そして、 接続ノード N 3が、 ズイッチ 4 5を介してコンデ ンサ C 2の他方の電極に接続される。 これにより、 コンデンサ C 1に、 コンデ ンサ 4 7が並列に接続される。 コンデンサ C 2にコンデンサ 4 8が並列に接続 される。
コンデンサ C 1とコンデンサ 4 7とが並列に接続されて、 その間で充放電が 行われる。 充放電が行われると、 コンデンサ C 1の両端の電圧とコンデンサ 4 7の両端の電圧とは、 ほぼ等しくなる。 コンデンサ C 2とコンデンサ 4 8とが 並列に接続されて、 その間で充放電が行われる。 コンデンサ C 2の両端の電圧 とコンデンサ 4 8の両端の電圧とは、 ほぼ等しくなる。
制御信号 S 1により、 スィッチ 4 1, 4 3, 4 5がオフし、 制御信号 S 2に より、 スィッチ 4 2, 4 4, 4 6をオンすると、 接続ノード N 1がスィッチ 4 3を介してコンデンサ C 2の一方の電極に接続される。 接続ノード N 2がスィ ツチ 4 4を介してコンデンサ C 2の他方の電極及びコンデンサ C 3の一方の電 極に接続される。 そして、 接続ノード N 3が、 スィッチ 4 6を介してコンデン サ C 3の他方の電極に接続される。 即ち、 これにより、 コンデンサ C 2にコン デンサ 4 7が並列に接続される。 コンデンサ C 3にコンデンサ 4 8が並列に接 続される。
コンデンサ C 2とコンデンサ 4 7とが並列に接続されると、 その間で充放電 が行われる。 コンデンサ C 3とコンデンサ 4 8とが並列に接続されると、 その 間で充放電が行われる。
例えば、 コンデンサ 4 7の両端の電圧よりもコンデンサ C 2の両端の電圧が 低ければ、 コンデンサ 4 7のエネルギーはコンデンサ C 2に移動する。 コンデ ンサ C 2の両端の電圧は上昇する。 これにより、 コンデンサ C 1の両端の電圧 とコンデンサ C 2の両端の電圧とが均等化される。 尚、 コンデンサ 4 7の両端 の電圧とコンデンサ C 2の両端の電圧とが等しいときには、 エネルギーの移動 は起こらない。 また、 コンデンサ 4 7の両端の電圧よりもコンデンサ C 2の両 端の電圧が高いときには、 コンデンサ C 2からコンデンサ 4 7にエネルギーが 移る。 これにより、 コンデンサ 4 7の両端の電圧とコンデンサ C 2の両端の電 圧とがほぼ等しくなる。
よって、 制御部 3 9がスィッチ 4 1〜4 6のオン、 オフ制御を繰り返すこと により、 コンデンサ C l, C 2の両端の電圧がほぼ等しくなる。 '
コンデンサ C 2及びコンデンサ C 3の両端の電圧についても、 同様に、 制御 部 3 9がスィッチ 4 1〜4 6のオン、 オフ制御を繰り返すことにより、 コンデ ンサ C 2, C 3の両端の電圧がほぼ等しくなる。 即ち、 コンデンサ C 1〜C 3 の両端の電圧が均等化される。
以上のように、 本実施形態の電圧バランス回路 4 0では、 蓄電回路がコンデ ンサ C 1, C 2, C 3を含む場合でも、 ロスなく、 コンデンサ C 1〜C 3の両 端の電圧を均等化できる。
[第 3の実施形態]
図 4は、 本発明の第 3の実施形態に係る電圧バランス回路の構成を示す図で あ 。
本実施形態の電圧バランス回路 5 0では、 複数のコンデンサを各二次電池 B 1〜B 3に接続する。
電圧バランス回路 5 0は、 第 1の実施形態のスィツチ 3 1〜3 6と同様の 6 個のスィッチ 5 1, 5 2, 5 3, 5 4 , 5 5, 5 6と、 3個のコンデンサ 5 7 , 5 8 , 5 9と、 制御部 3 9とを備えている。 即ち、 電圧バランス回路 5 0で は、 コンデンサ 5 8が追加されている。
スィッチ 5 1の一端は、 二次電池 B 1の正極に接続されている。 スィッチ 5 1の他端は、 スィッチ 5 2の一端と接続ノード N 1で接続されている。 スイツ チ 5 2の他端は、 二次電池 B 1の負極に接続されている。 スィッチ 5 3の一端 は、 二次電池 B 2の正極に接続されている。 スィッチ 5 3の他端は、 スィッチ 5 4の一端と接続ノード N 2で接続されている。 スィッチ 5 4の他端は、 二次 電池 B 2の負極に接続されている。 スィッチ 5 5の一端は、 二次電池 B 3の正 極に接続されている。 スィッチ 5 5の他端は、 スィッチ 5 6の一端と接続ノー ド N 3で接続されている。 スィッチ 5 6の他端は、 二次電池 B 3の負極に接続 されている。
コンデンサ 5 7の一方の電極は、 接続ノード N 1に接続されている。 コンデ ンサ 5 8の一方の電極は、 接続ノード N 2に接続されている。 コンデンサ 5 9 の一方の電極は、 接続ノード N 3に接続されている。 各コンデンサ 5 7 , 5 8 , 5 9の他方の電極は、 共通に接続されている。
次に、 電圧バランス回路 5 0の動作を説明する。
制御部 3 9は、 第 1の実施形態と同様の制御信号 S 1, S 2をスィッチ 5 1 〜 5 6に与える。 各スィッチ 5 1, 5 3, 5 5と、 スィッチ 5 2, 5 4, 5 6 とは、 交互にオン、 オフする。
スィッチ 5 1, 5 3, 5 5がオンすると、 接続ノード N 1力 スィッチ 5 1 を介して二次電池 B 1の正極に接続される。 接続ノード N 2がスィツチ 5 3を 介して二次電池 B 1の負極及び二次電池 B 2の正極に接続される。 そして、 接 続ノード N 3が、 スィッチ 5 5を介して二次電池 B 2の負極に接続される。 こ れにより、 二次電池 B 1の正極と負極との間にコンデンサ 5 7及び 5 8が直列 に接続される。 二次電池 B 2の正極と負極との間にコンデンサ 5 8及び 5 9が 直列に接続される。 つまり、 二次電池 B 1にコンデンサ 5 7及び 5 8の直列回 路が並列に接続される。 二次電池 B 2にコンデンサ 5 8及び 5 9の直列回路が 並列に接続される。 これにより、 各コンデンサ 5 7、 5 8 , 5 9の両端に印加 される電圧は、 コンデンサ 5 8がない場合と比較して、 1 / 2になる。 言い換 えると、 コンデンサ 5 7〜 5 9には、 コンデンサ 5 8がない場合と比較して耐 圧が 1 / 2のものを用いることができる。
二次電池 B 1とコンデンサ 5 7, 5 8とは、 その間で充放電する。 充放電す ることにより、 二次電池 B 1とコンデンサ 5 7 , 5 8との電圧は、 二次電池 B 1の電圧或いはそれに近い電圧になる。 二次電池 B 2とコンデンサ 5 8, 5 9 とは、 その間で充放電する。 充放電することにより、 二次電池 B 2とコンデン サ 5 8, 5 9との電圧は、 二次電池 B 2の両極間の電圧或いはそれに近い電圧 になる。
続いて、 制御部 3 9が供給した制御信号 S 1により、 スィツチ 5 1, 5 3, 5 5がオフし、 制御信号 S 2により、 スィッチ 5 2, 5 4, 5 6がオンすると 、 接続ノード N 1がスィ'ツチ 5 2を介して二次電池 B 2の正極に接続される。 接続ノード N 2がスィツチ 5 4を介して二次電池 B 2の負極及ぴ二次電池 B 3 の正極に接続される。 そして、 接続ノード N 3が、 スィツチ 5 6を介して二次 電池 B 3の負極に接続される。 これにより、 二次電池 B 2の正極と負極との間 にコンデンサ 5 7及ぴ 5 8の直列回路が接続される。 二次電池 B 3の正極と負 極との間にコンデンサ 5 8及ぴ 5 9の直列回路が接続される。 つまり、 二次電 池 B 2にコンデンサ 5 7及ぴ 5 8の直列回路が並列に接続される。 二次電池 B 3にコンデンサ 5 8及ぴ 5 9の直列回路が並列に接続される。
二次電池 B 2とコンデンサ 5 7及ぴ 5 8とは、 その間で充放電する。 二次電 池 B 3とコンデンサ 5 8及ぴ 5 9とは、 その間で充放電する。 例えば、 二次電池 B 1の両極間の電圧が二次電池 B 2, B 3の両極間の各電 圧よりも高い場合には、 二次電池 B 1によりコンデンサ 5 7及ぴ 5 8の直列回 路が充電される。 次に、 コンデンサ 5 7及び 5 8の直列回路からエネルギーが 二次電池 B 2に与えられる。 よって、 二次電池 B 1と二次電池 B 2とのそれぞ れの両極間の電圧が均等化される。 二次電池 B 2と二次電池 B 3とのそれぞれ の両極間の電圧が異なるときも、 同様であり、 コンデンサ 5 8及ぴ 5 9の直列 回路によって二次電池 B 2, B 3のそれぞれの両極間の電圧が均等化される。 このように、 スィッチ 5 1 , 5 3, 5 5と、 スィッチ 5 2, 5 4, 5 6とが 交互にオン、 オフを繰り返すことにより、 二次電池 B 1〜; B 3の電圧のばらつ きがなくなる。
以上のように、 本実施形態の電圧バランス回路 5 0は、 コンデンサ 5 7及ぴ 5 8の直列回路を二次電池 B 1に並列に接続するとともにコンデンサ 5 8及ぴ 5 9の直列回路を二次電池 B 2に並列に接続して各コンデンサ 5 7〜5 9に充 放電する。 その後、 コンデンサ 5 7及び 5 8の直列回路を二次電池 B 2に並列 に接続するとともにコンデンサ 5 8及び 5 9の直列回路を二次電池 B 3に並列 に接続して各コンデンサ 5 7〜 5 9に充放電させる。 そのため、 第 1の実施形 態と同様に、 ロスなく、 二次電池 B 1〜B 3の電圧を均等化できる。
また、 電圧バランス回路 5 0では、 コンデンサ 5 8が、 接続ノード N 2と、 コンデンサ 5 7とコンデンサ 5 9との接続点に接続されることにより、 スイツ チ 5 1〜5 6のオン、 オフに伴って、 コンデンサ 5 8〜 5 9による直列回路が 形成される。 そのため、 コンデンサ 5 7〜 5 9に耐圧の低いものを用いること ができる。
[第 4の実施形態]
図 5は、 本発明の第 4の実施形態に係る電圧検出用回路の構成を示す図であ る。
この電圧検出用回路 6 0は、 第 3の実施の形態に係る電圧バランス回路 5 0 を用いて、 直列に接続された二次電池 B 1, B 2 , B 3の各両極間の電圧を検 出する回路である。 電圧検出用回路 6 0は、 6個のスィッチ 6 1, 6 2, 6 3 , 6 4, 6 5, 6 6と、 コンデンサ 6 7, 6 8, 6 9と、 制御部 3 9と、 を備 えている。
スィッチ 6 1の一端は、 二次電池 B 1の正極に接続されている。 スィッチ 6 1の他端は、 スィッチ 6 2の一端と接続ノード N 1で接続されている。 スイツ チ 6 2の他端は、 二次電池 B 1の負極に接続されている。 スィッチ 6 3の一端 は、 二次電池 B 2の正極に接続されている。 スィッチ 6 3の他端は、 スィッチ
6 4の一端と接続ノード N 2で接続されている。 スィッチ 6 4の他端は、 二次 電池 B 2の負極に接続されている。 スィッチ 6 5の一端は、 二次電池 B 3の正 極に接続されている。 スィッチ 6 5の他端は、 スィッチ 6 6の一端と接続ノー ド N 3で接続されている。 スィッチ 6 6の他端は、 二次電池 B 3の負極に接続 されている。
電圧検出用回路 6 0は、 さらに、 電圧印加用スィッチ 7 0と、 充電用スイツ チ 7 . 1と、 コンデンサ 7 2と、 を備えている。 コンデンサ 7 2は、 二次電池 B 1, B 2 , B 3の各両極間の電圧を保持するためのコンデンサである。 電圧印 加用スィッチ 7 0は、 電圧印加用のものである。 充電用スィッチ 7 1は、 充電 用のものである。 制御部 3 9は、 スィッチ 6 1, 6 2, 6 3, 6 4, 6 5, 6 6に、 それぞれ、 制御信号 S 6 1, S 6 2 , S 6 3 , S 6 4 , S 6 5 , S 6 6 を供給する。 また、 制御部 3 9は、 充電用スィッチ 7 1, 電圧印加用スィッチ
7 0にも、 それぞれ、 制御信号 S 7 1, 7 0を供給する。
電圧印加用スィツチ 7 0の一端は、 コンデンサ 7 2の一端に接続されている 。 充電用スィッチ 7 1の一端は、 電圧印加用スィッチ 7 0の他端に接続されて いる。 コンデンサ 7 2の他端は、 二次電池 B 3の負極に接続されている。 充電 用スィッチ 7 1の他端は、 コンデンサ 7 2の他端に接続されている。 接続ノー ド N 4は、 電圧印加用スィツチ 7 0の他端と充電用スィツチ 7 1の一端との接 続点である。 コンデンサ 6 7〜 6 9の他方の電極は接続ノード N 4に共通に接 続されている。
次に、 電圧検出用回路 6 0の動作を説明する。
スィッチ 6 1〜 6 6、 電圧印加用スィツチ 7 0及び充電用スィツチ 7 1のォ ン、 オフを制御する制御信号 S 6 1〜S 6 6, S 7 0 , S 7 1のタイムチヤ一 トを図 6 ( 1 ) 〜 (8 ) に示す。 二次電池 B 3の両極間の電圧を検出するとき、 制御部 3 9は、 図 6 ( 1 ) 〜 ( 4 ) に示すような制御信号 S 7 1 , S 7 0 , S 6 6 , S 6 5を充電用スイツ チ 7 1及ぴスィツチ 6 6と、 電圧印加用スィツチ 7 0及ぴスィツチ 6 5とに供 給する。
図 6 ( 1 ) 、 (3 ) に示すように、 制御信号 S 7 1と S 6 6とは、 二次電池 B 3の測定期間において、 同じタイミングで " H" 、 " L " になる。 また、 図 6 ( 2 ) 、 (4 ) に示すように、 制御信号 S 7 0と S 6 5とは、 同じタイミン グで " L " 、 "H" になる。
制御信号 S 7 1と S 6 6とが "H" になると、 充電用スィツチ 7 1とスイツ チ 6 6とがオンする。 充電用スィツチ 7 1とスィッチ 6 6とがオンすることに より、 二次電池 B 3の負極にスィッチ 6 6を介してコンデンサ 6 9の両端が接 続される。 これにより、 コンデンサ 6 9の両極間の電圧 V cは零になる。 続い て、 制御信号 S 7 0、 S 7 1 , S 6 6 , S 6 5に従って、 充電用スィツチ 7 1 とスィッチ 6 6とがオフし、 電圧印加用スィツチ 7 0とスィッチ 6 5とがオン する。 これにより、 コンデンサ 6 9の一方の電極がスィッチ 6 5を介して二次 電池 B 3の正極に接続される。 コンデンサ 6 9の他方の電極が電圧印加用スィ ツチ 7 0を介してコンデンサ 7 2の一方の電極に接続される。 従って、 コンデ ンサ 7 2の一方の電極には、 二次電池 B 3の正極の電圧 VB3とコンデンサ 6 9 の両極間の電圧 V cとの差の電圧が印加される。 ここで、 コンデンサ 6 9の両 極間の電圧 V cが零なので、 コンデンサ 7 2には、 二次電池 B 3の両極間の電 圧が印加される。 コンデンサ 7 2は、 印加された電圧 VB3に基づいて充電され る。 次に、 再ぴ、 スィッチ 6 5, 7 0がオフし、 スィッチ 6 6、 7 1がオンす る。 このとき、 コンデンサ 7 2への充電が十分でないと、 コンデンサ 7 2の両 極間の電圧は、 二次電池 B 3の両極間の電氐には、 達しない。
制御部 3 9が、 充電用スィッチ 7 1及びスィッチ 6 6と、 電圧印加用スイツ チ 7 0及ぴスィッチ 6 5とのオン、 オフを繰り返し制御することにより、 コン デンサ 7 2の両極間の電圧は上昇する。 そして、 二次電池 B 3の両極間の電圧 とコンデンサ 7 2の両極間の電圧とが等しくなる。 この状態でコンデンサ 7 2 の両極間の電圧を測定することより、 二次電池 B 3の両極間の電圧を測定でき る。
二次電池 B 2の両極間の電圧を検出する場合、 制御部 39は、 図 6 (1) 、 (5) に示すように、 二次電池 B 2の両極間の電圧の測定期間の間、 制御信号
571 , S 64を、 それぞれ、 充電用スィツチ 7 1, スィッチ 64に供給する 。 制御信号 S 71, S 64は、 同じタイミングで "H" 、 "L" になる
また、 制御部 3 9は、 図 6 (2) 、 (6) に示すように、 二次電池 B 2の両 極間の電圧の測定期間の間、 制御信号 S 70, S 63を、 それぞれ、 電圧印加 用スィッチ 70, スィッチ 63に供給する。 制御信号 S 70, S 63は、 同じ タイミングで "L" 、 "H" になる
制御信号 S 71, S 64により、 充電用スィッチ 71とスィッチ 64とがォ ンすることにより、 二次電池 B 3の正極と、 二次電池 B 3の負極との間にスィ ツチ 64, 7 1を介してコンデンサ 68の両端が接続される。 続いて、 充電用 スィッチ 71 とスィッチ 64とがオフし、 電圧印加用スィツチ 70とスィッチ
63とがオンすると、 コンデンサ 68の一方の電極がスィツチ 63を介して二 次電池 B 2の正極に接続される。 コンデンサ 68の他方の電極が電圧印加用ス イッチ 70を介してコンデンサ 72の一方の電極に接続される。 従って、 コン デンサ 72の一方の電極には、 二次電池 B 2の正極の電圧 VB2とコンデンサ 6 8の両端間の電圧 V cとの差分が印加される。
コンデンサ 72に接続される直前のコンデンサ 68の両端間の電圧 V cは、 二次電池 B 3の正極の電圧 VB3なので、 コンデンサ 72には、 二次電池 B 2の 両極間の電圧が印加される。
そして、 制御部 39が、 充電用スィッチ 7 1及ぴスィッチ 64と、 電圧印加 用スィッチ 70及ぴスィツチ 63とのオン、 オフを繰り返し制御することによ り、 二次電池 B 2の両極間の電圧とコンデンサ 72の両極間の電圧とが等しく なる。 この状態でコンデンサ 72の両極間の電圧を測定することより、 二次電 池 B 2の両極間の電圧を測定できる。 '
二次電池 B 1の両極間の電圧を検出する場合も同様であり、 制御部 39は、 充電用スィツチ 71及びスィツチ 62と、 電圧印加用スィツチ 70及ぴスィッ チ 61とを交互にオン、 オフする。 制御信号 S 7 1 , S 6 2により、 充電用スィツチ 7 1とスィッチ 6 2とがォ ンすることにより、 二次電池 B 2の正極と、 二次電池 B 3の負極との間にコン デンサ 6 7の両端が接続される。
続いて、 充電用スィツチ 7 1とスィッチ 6 2とがオフし、 電圧印加用スィッ チ 7 0とスィッチ 6 1とがオンすると、 コンデンサ 6 7の一方の電極がスィッ チ 6 1を介レて二次電池 B 1の正極に接続される。 コンデンサ 6 7の他方の電 極がスィツチ 7 1を介してコンデンサ 7 2の一方の電極に接続される。 従って 、 コンデンサ 7 2の一方の電極には、 二次電池 B 1の正極の電圧 V B1とコンデ ンサ 6 7の両極間の電圧 V cと'の差分が印加される。 コンデンサ 7 2に接続さ れる直前のコンデンサ 6 7の両端間の電圧 V cは、 二次電池 B 2の正極の電圧 V B2なので、 コンデンサ 7 2には、 二次電池 B 1の両極間の電圧が印加される そして、 制御部 3 9が、 充電用スィッチ 7 1及ぴスィッチ 6 2と、 電圧印加 用スィツチ 7 0及ぴスィツチ 6 1とのオン、 オフを繰り返し制御することによ り、 二次電池 B 1の両極間の電圧とコンデンサ 7 2の両極間の電圧とが等しく なる。 この状態でコンデンサ 7 2の両極間の電圧を測定することより、 二次電 池 B 1の両極間の電圧を測定できる。
以上のように、 本実施形態の電圧検出用回路 6 0では、 スィッチ 6 1〜 6 6 、 充電用スィッチ 7 1及ぴ電圧印加用スィッチ 7 0のスイッチングにより、 コ ンデンサ 7 2に順次各二次電池 B 1〜B 3の両極間の電圧を印加するようにし た。 従って、 個々の二次電池 B 1〜B 3ごとに電圧測定用回路を設ける場合と 比べて簡素な構成で、 二次電池 B 1〜B 3の両極間の電圧を測定できる。 さら に、 各二次電池 B 1〜B 3の両極間の電圧を測定する位置が、 コンデンサ 7 2 の両端に限定されるので、 測定した値にばらつきがなく、 高精度に各電圧を測 定できる。
[第 5の実施形態]
図 7は、 本発明の第 5の実施形態に係る電圧検出用回路の構成を示す図であ り、 図 8は、 電圧検出用回路のスキャンタイミングチャートである。 図 5中の 要素と共通する要素には、 共通の符号が付されている。 この電圧検出用回路 8 0は、 直列に接続された二次電池 B 1, B 2 , B 3の 各両極間の電圧を検出する回路であり、 二次電池 B 1〜B 3に第 4の実施形態 と同様に接続された 6個のスィッチ 6 1〜6 6と、 各スィッチ 6 1〜6 6に第 4の実施形態と同様に接続された 3個のコンデンサ 6 7〜6 9と、 充電用スィ ツチ 7 1とを備えている。
スィッチ 6 2, 6 4 , 6 6は、 各二次電池 B 1〜B 3の負極の電圧を検出す るためのものである。 スィッチ 6 1, 6 3, 6 5と、 コンデンサ 6 7〜6 9と 充電用スィツチ 7 1とは、 各二次電池 B 1〜B 3の正極の電圧を検出するため のものである。
この電圧検出用回路 8 0では、 二次電池 B 3の両極間の電圧を検出するとき 、 制御部 3 9は、 まず、 図 8に示すように、 " H" の制御信号 S 7 1 , S 6 6 を、 それぞれ、 充電用スィッチ 7 1及ぴスィッチ 6 6に供給する。 充電用スィ ツチ 7 1及ぴスィツチ 6 6はオンする。 充電用スィツチ 7 1とスィッチ 6 6と がオンすることにより、 二次電池 B 3の負極にスィッチ 6 6 , 7 1を介してコ ンデンサ 6 9の両端が接続される。 制御部 3 9は、 コンデンサ 6 9の両極間の 電圧 V cが完全に零になるまで、 この充電用スィツチ 7 1とスィッチ 6 6とを オンする。 続いて、 制御信号 S 7 1, 3 6 6カ " L " になると、 充電用スイツ チ 7 1とスィッチ 6 6とはオフする。 制御部 3 9は、 その後、 制御信号 S 6 5 の信号レベルを "H" にする。 スィッチ 6 5はオンする。 これにより、 コンデ ンサ 6 9の一方の電極がスィツチ 6 5を介して二次電池 B 3の正極に接続され る。 コンデンサ 6 9の両極間の電圧 V cが零なので、 接続ノード N 4の電位は 、 二次電池 B 3の正極の電位と同じになる。 このとき充電用スィッチ 7 1の両 端の電位差を測定することにより、 二次電池 B 3の両極間の電圧が測定可能で ある。 '
二次電池 B 2の両極間の電圧を検出するとき、 制御部 3 9は、 制御信号 S 6 5の信号レベルを " L " にする。 続いて、 制御部 3 9は、 制御信号 S 7 1 , S 6 4の信号レベルを "H" にする。 充電用スィッチ 7 1及ぴスィッチ 6 4はォ ンする。 充電用スィッチ 7 1とスィッチ 6 4とがオンすることにより、 二次電 池 B 3の正極と負極の間にスィツチ 6 4, 7 1を介してコンデンサ 6 8の両端 が接続される。 制御部 3 9は、 コンデンサ 6 8の両端間の電圧 V cが完全に二 次電池 B 3の正極の電圧になるまで、 この充電用スィツチ 7 1とスィッチ 6 4 とをオンする。 続いて、 制御部 3 9は、 制御信号 S 7 1, S 6 4の信号レベル を " L " にする。 充電用スィツチ 7 1とスィッチ 6 4とはオフする。 続いて、 制御部 3 9は、 制御信号 S 6 3の信号レベルを "H" にする。 スィッチ 6 3は オンする。 これにより、 コンデンサ 6 8の一方の電極がスィッチ 6 3を介して 二次電池 B 2の正極に接続される。 このとき、 コンデンサ 6 8の両端間の電圧 V cが二次電池 B 3の正極の電圧 VB3なので、 接続ノード N 4と二次電池 B 3 の負極との間の電圧は、 二次電池 B 2の正極の電位と二次電池 B 3の正極の電 位との差分電圧になる。 よって、 充電用スィッチ 7 1の両端の電位差を測定す ることにより、 二次電池 B 2の両極間の電圧が測定可能である。
二次電池 B 1の両極間の電圧を検出する場合も同様であり、 まず、 制御部 3 9は、 制御信号 S 6 3の信号レベルを " L " にする。 続いて、 制御部 3 9は、 制御信号 S 7 1, S 6 2の信号レベルを "H" にする。 充電用スィッチ 7 1及 びスィツチ 6 2とはオンする。 充電用スィツチ 7 1とスィッチ 6 2とがオンす ることにより、 二次電池 B 2の正極と、 二次電池 B 3の負極との間にスィッチ 6 2, 7 1を介してコンデンサ 6 7の両端が接続される。 コンデンサ 6 7の両 極間の電圧 V cが二次電池 B 2の正極と二次電池 B 3の負極との間の電圧にな る。
続いて、 制御部 3 9は、 制御信号 S 7 1, S 6 2の信号レベルを " L " にす る。 充電用スィツチ 7 1とスィッチ 6 2とはオフする。 続いて、 制御部 3 9は 、 制御信号 S 6 1の信号レベルを "H" にする。 スィッチ 6 1はオンする。 ス ィツチ 6 1がオンすると、 コンデンサ 6 7の一方の電極がスィツチ 6 1を介し て二次電池 B 1の正極に接続される。 このとき、 コンデンサ 6 7の両極間の電 圧 V cが二次電池 B 2の正極の電圧 VB2なので、 接続ノード N 4と二次電池 B 3の負極との間の電圧は、 二次電池 B 1の正極の電位と二次電池 B 2の正極の 電位との差分電圧になる。 よって、 充電用スィッチ 7 1の両端の電位差を測定 することにより、 二次電池 B 1の両極間の電圧が測定可能である。
以上のように、 本実施形態の電圧検出用回路 8 0では、 スィッチ 6 1〜6 6 、 充電用スィツチ 7 1のスィツチングにより、 充電用スィツチ 7 1の両端で二 次電池 B 1〜B 3の両極間の電圧を測定できるようにしたので、 第 4の実施形 態の電圧検出用回路 6 0よりも簡単な構成になる。 また、 各両極間の電圧を測 定する位置が、 充電用スィッチ 7 1の両端に限定されるので、 第 4の実施形態 と同様、 測定した値にばらつきがなく、 高精度に各電圧を測定できる。
なお、 本発明は、 上記実施形態に限定されず、 種々の変形が可能である。
例えば、 第 2の実施形態の電圧バランス回路 4 0では、 二次電池 B 1〜; B 3 の代わりに蓄電回路としてコンデンサ C 1〜C 3を使用したが、 第 3の実施形 態〜第 5の実施形態においても、 二次電池 B 1〜B 3をコンデンサ C 1〜C 3 に変更してもよい。 また、 各蓄電回路は、 複数の二次電池からなる回路や、 複 数のコンデンサを持つ回路にしてもよい。
また、 二次電池、 コンデンサ等の蓄電回路は、 3つには限定されず、 4っ以 上であってもよい。 本発明は、 2 0 0 1年 1 0月 1 日に出願された特願 2 0 0 1— 3 0 5 4 2 6 に基づき、 本明細書中にその明細書、 特許請求の範囲、 図面全体を参考として 取り込むものとする。 産業上の利用の可能性
本発明は、 蓄電回路を使用する産業分野に利用可能である。

Claims

請求の範囲
1. 直列に接続された複数の蓄電回路 (B l, B 2, B 3 ) の各蓄電回路の 両極間電圧を均等化する電圧バランス回路において、
コンデンサ ( 3 7, 3 8) と、
直列に接続された複数の蓄電回路 (B l, B 2, B 3) から選択した蓄電回 路 (B l, B 2 , B 3) に前記コンデンサ (3 7, 3 8) を並列に接続し、 該 選択した蓄電回路 (B l, B 2, B 3) から該コンデンサ ( 3 7, 3 8) に充 放電させる第 1の接続部 (3 1, 3 3、 3 5) と、
前記充放電されたコンデンサ (3 7, 3 8) を前記選択した蓄電回路 (B 1 , B 2, B 3) とは異なる他の選択した蓄電回路 (B l, B 2, B 3) に並列 に接続し、 該充放電されたコンデンサ (3 7, 3 8) から該他の選択した蓄電 回路 (B 1, B 2, B 3) に充放電させる第 2の接続部 (3 2, 3 4, 3 6) と、
を備えることを特徴とする電圧バランス回路。
2. 前記選択した蓄電回路 (B l, B 2, B 3) に前記コンデンサ (3 7, 3 8) を並列に接続する処理と前記他の選択した蓄電回路 (B l, B 2, B 3 ) に該コンデンサ (3 7, 3 8) を並列に接続する処理とを繰り返す制御部 ( 3 9) を備えることを特徴とする請求項 1に記載の電圧バランス回路。
3. 前記直列に接続された複数の蓄電回路における各蓄電回路は、 1又は複 数個の二次電池 (B l, B 2, B 3) を含むことを特徴とする請求項 1に記載 の電圧パランス回路。
4. 前記直列に接続された複数の蓄電回路における各蓄電回路は、 1又は複 数個のコンデンサ (C l, C 2, C 3) を含むことを特徴とする請求項 1に記 載の電圧バランス回路。
5. 前記第 1の接続部及び前記第 2の接続部を、 前記各蓄電回路 (B l, B 2, B 3) の一方の電極と他方の電極との間に直列に接続された第 1のスイツ チ (3 1, 3 3、 3 5) 及び第 2のスィッチ (3 2, 3 4, 3 6) から構成し に'
前記各蓄電回路 (B l, B 2, B 3) の一方の電極と他方の電極との間にそ れぞれ直列に接続された第 1のスィッチ (3 1, 3 3、 3 5) 及び第 2のスィ ツチ (3 2, 34, 3 6) の接続点間を前記コンデンサ (3 7, 3 8 ) で接続 した、
5 ことを特徴とする請求項 1に記載の電圧バランス回路。
6. 直列に接続された複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路の 両極間電圧を検出するための電圧検出用回路において、
第 1のコンデンサ (6 7, 68, 6 9) と、
•第 2のコンデンサ (72) と、
10 前記複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B l, B 2 , B 3) を選択し、 該選択した蓄電回路 (B l, B 2, B 3) の一方の電極の 電圧で前記第 1のコンデンサ (6 7, 6 8, 6 9) を充電する充電部 (6 2, 64, 6 6、 7 1) と、
前記第 1のコンデンサ (6 7, 6 8, 6 9) と前記第 2コンデンサ (72) 15 とを直列に接続し、 前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極 の電圧を、 直列に接続された前記第 1のコンデンサ (6 7, 68, 6 9) と前 記第 2コンデンサ (72) とに印加する電圧印加部 (6 1, 6 3, 6 5、 70 ) と、
前記選択した蓄電回路 (B l, B 2, B 3) の両極間の電圧検出用として前 20記第 2のコンデンサ (72) の両端に接続された測定端子対と、
を備えることを特徴とする電圧検出用回路。
7. 前記選択した蓄電回路 (B l, B 2, B 3) に関し、 前記第 1のコンデ ンサ (6 7, 6 8, 6 9) に充電する処理と前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を、 直列に接続された前記第 1のコンデンサ (
25 6 7, 6 8, 6 9) と前記第 2コンデンサ (72) とに印加する処理とを繰り 返す制御部 (3 9) を備えることを特徴とする請求項 6に記載の電圧検出用回 路。
8. 前記充電部 (62, 64, 66、 7 1) を、
一端が前記各蓄電回路 (B l, B 2, B 3) の前記一方の電極に接続される とともに他端が前記各第 1のコンデンサ (67, 68, 69) の一方の電極に それぞれ接続された複数の第 1のスィッチ (62, 64, 66) と、
一端が前記複数の第 1のコンデンサ (67, 68, 69) の他方の電極に共 通に接続されるとともに、 他端が基準電位を設定するノードに接続された充電 5用スィッチ (7 1) と、
前記選択した蓄電回路 (B l, B 2, B 3) に一端が接続された前記第 1の スィッチ (62, 64, 66) と前記充電用スィッチ (71) とをオンさせる 制御部 (39) とから構成した、 ことを特徴とする請求項 6に記載の電圧検出 用回路。
10 9. 前記第 2のコンデンサ (72) の一方の電極を、 前記充電用スィッチ ( 71) の他端に接続し、
前記電圧印加部 (61, 63, 65、 70) を、
一端が前記各蓄電回路 (B l, B 2, B 3) の前記他方の電極に接続される とともに他端が前記各第 1のコンデンサ (6 7, 68, 69) の一方の電極に I5それぞれ接続された複数の第 2のスィッチ (61, 63, 65) と、
一端が前記複数の第 1のコンデンサ (67, 68, 69) の他方の電極に共 通に接続されるとともに、 他端が前記第 2のコンデンサ (72) の他方の電極 に接続された電圧印加用スィッチ (70) と、
. 前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を、 直列に 20接続された前記第 1のコンデンサ (67, 68, 69) と前記第 2コンデンサ (72) とに印加する際には、 前記複数の第 1のスィッチ (62, 64, 66 ) と前記充電用スィッチ (71) とをオフさせ、 該選択した蓄電回路 (B l, B 2, B 3) に一端が接続された前記第 2のスィッチ (6 1, 63, 65) と 前記電圧印加用スィッチ (70) とをオンさせる制御部 (39) とから構成し 25た、
ことを特徴とする請求項 6に記載の電圧検出用回路。
1 0. 前記各蓄電回路は、 1又は複数個の二次電池 (B l, B 2, B 3) を 含むことを特徴とする請求項 6に記載の電圧検出用回路。
1 1. 前記各蓄電回路は、 1又は複数個のコンデンサ (C l, C 2, C 3) を含むことを特徴とする請求項 6に記載の電圧検出用回路。
1 2. 直列に接続された複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路 の両極間電圧を検出するための電圧検出用回路において、
直列に接続された複数の蓄電回路 .(B 1, B 2, B 3) から 1つの蓄電回路 (B l , B 2, B 3) を選択し、 該選択した蓄電回路の一方の電極の電圧を検 出する端子電圧検出部 (6 2, 64, 6 6) と、
電圧の測定が可能な測定端子対 (71の両端) と、 '
前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を検出し、 該他方の電極の電圧と前記端子電圧検出部 (6 2, 64, 6 6) で検出した電 圧との間の差分電圧を、 該選択した蓄電回路 (B l, B 2, B 3) の両極間の 電圧として前記測定端子対 (7 1の両端) 間に示す電圧検出部 (6 7〜6 9, 71) と、
を備えることを特徴とする電圧検出用回路。
1 3. 前記端子電圧検出部を、 前記各蓄電回路 (B l, B 2, B 3) の前記 —方の電極に一端がそれぞれ接続された複数の第 1のスィッチ (6 2, 64,
66) で構成し、
前記測定端子対 (7 1の両端) のうちの一方の測定端子を、 基準電位を設定 するノードに接続し、
前記電圧検出部 (6 7〜6 9, 7 1) を、 前記各第 1のスィッチ (6 2, 6 4, 6 6) の他端と前記各蓄電回路 (B l, B 2, B 3) の他方の電極との間 にそれぞれ接続された複数の第 2のスィッチ (6 1, 6 3, 65) と、 一方の 電極が該各第 1のスィッチ (6 2, 64, 6 6) と該各第 2のスィッチ (6 1 , 6 3, 6 5) とのノードに接続されるとともに他方の電極が前記測定端子対 (7 1の両端) のうちの他方の測定端子に共通に接続された、 該各蓄電回路 ( B 1, B 2, B 3) に対応する複数のコンデンサ (6 7〜6 9) と、 該測定端 子対間に接続された第 3のスィッチ (7 1) と、 前記差分電圧を前記測定端子 対 (7 1の両端) 間に示す際に、 該選択した蓄電回路 (B l, B 2, B 3) に. 接続された該第 1のスィッチ (62, 64, 6 6) と該第 3のスィッチ (7 1 ) とをオンさせて該選択した蓄電回路 (B l, B 2, B 3) に対応する該コン デンサ (6 7, 68·, 6 9) を充電し、 該第 1のスィッチ (62, 64, 6 6 ) と該第 3のスィッチ (7 1) とをオフさせた後に、 該選択した蓄電回路 (B 1, B 2, B 3) に接続された第 2のスィッチ (6 1, 6 3, 6 5) をオンさ せる制御部 (3 9) 'とから構成した、
ことを特徴とする請求項 1 2に記載の電圧検出用回路。
1 4. 前記端子電圧検出部 (6 2, 64, 6 6) と前記電圧検出部 (6 7〜 6 9, 7 1) とから前記各蓄電回路 (B l , B 2, B 3) の両極間の電圧を測 定するために、 前記直列に接続された複数の蓄電回路 (B l, B 2, B 3) を 順にスキャンして各蓄電回路 (B l, B 2, B 3) ごとに前記差分電圧を前記 測定端子対 (7 1の両端) 間に示すことを特徴とする請求項 1 2に記載の電圧 検出用回路。
1 5. 前記各蓄電回路は、 1又は複数個の二次電池 (B l, B 2, B 3) を 含むことを特徴とする請求項 1 2に記載の電圧検出用回路。
1 6. 前記各蓄電回路は、 1又は複数個のコンデンサ (C l, C 2, C 3) を含むことを特徴とする請求項 1 2に記載の電圧検出用回路。
1 7. 直列に接続された複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路 の両極間電圧を均等化する電圧パランス方法であって、
直列に接続された複数の蓄電回路 (B l, B 2, B 3) から選択した蓄電回 路にコンデンサ (3 7, 3 8) を並列に接続し、 該選択した蓄電回路 (B l, B 2, B 3) から該コンデンサ (37, 38) に充放電させるステップと、 前記充放電されたコンデンサ (3 7, 3 8) を前記選択した蓄電回路 (B 1 , B 2, B 3) とは異なる他の選択した蓄電回路 (B l, B 2, B 3) に並列 に接続し、 該充放電されたコンデンサ (3 7, 3 8) から該他の選択した蓄電 回路 (B l, B 2, B 3) に充放電させるステップと、
を備えることを特徴とする電圧バランス方法。
1 8. 直列に接続された複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路 の両極間電圧を検出する電圧検出方法であって、
前記複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B l, B 2 , B 3) を選択し、 該選択した蓄電回路 (B l, B 2, B 3) の一方の電極の 電圧で前記第 1のコンデンサ (67, 68, 69) を充電するステップと、 第 1のコンデンサ (67, 68, 69) と第 2コンデンサ (72) とを直列 に接続し、 前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を 、 直列に接続された前記第 1のコンデンサ (67, 68, 6 9) と前記第 2コ ンデンサ (72) とに印加するステップと、
前記第 2のコンデンサ (72) の両端に印加された電圧を、 前記選択した蓄 電回路 (B l, B 2, B 3) の両極間の電圧として検出するステップと、 を備えることを特徴とする電圧検出方法。
1 9. 直列に接続された複数の蓄電回路 (B l, B 2, B 3) の各蓄電回路 の両極間電圧を検出する電圧検出方法において、
直列に接続された複数の蓄電回路 (B l, B 2, B 3) から 1つの蓄電回路 (B 1 , B 2, B 3) を選択し、 該選択した蓄電回路の一方の電極の電圧を検 出するステップと、 ,
前記選択した蓄電回路 (B l, B 2, B 3) の他方の電極の電圧を検出し、 該他方の電極の電圧と前記検出した電圧との間の差分電圧を、 該選択した蓄電 回路 (B l, B 2, B 3) の両極間の電圧として測定端子対 (71の両端) 間 に示すステップと、
前記測定端子対の両端で各蓄電回路 (B l, B 2, B 3) の両極間の電圧を 検出するステップと、
を備えることを特徴とする電圧検出方法。
PCT/JP2002/010232 2001-10-01 2002-10-01 Circuit d'equilibrage de tension, circuit de detection de tension, procede d'equilibrage de tension et procede de detection de tension associes WO2003032464A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/491,362 US7288919B2 (en) 2001-10-01 2002-10-01 Voltage balance circuit, voltage detective circuit, voltage balancing method, and voltage detecting method
JP2003535309A JP3858893B2 (ja) 2001-10-01 2002-10-01 電圧バランス回路、電圧検出用回路、電圧バランス方法及び電圧検出方法
US11/904,364 US7583057B2 (en) 2001-10-01 2007-09-27 Voltage balance circuit, voltage detecting circuit, voltage balancing method, and voltage detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-305426 2001-10-01
JP2001305426 2001-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/904,364 Division US7583057B2 (en) 2001-10-01 2007-09-27 Voltage balance circuit, voltage detecting circuit, voltage balancing method, and voltage detecting method

Publications (1)

Publication Number Publication Date
WO2003032464A1 true WO2003032464A1 (fr) 2003-04-17

Family

ID=19125221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010232 WO2003032464A1 (fr) 2001-10-01 2002-10-01 Circuit d'equilibrage de tension, circuit de detection de tension, procede d'equilibrage de tension et procede de detection de tension associes

Country Status (3)

Country Link
US (2) US7288919B2 (ja)
JP (1) JP3858893B2 (ja)
WO (1) WO2003032464A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519890A (ja) * 2007-02-21 2010-06-03 アメリカン パワー コンバージョン コーポレイション 三相で高電力の無停電電源
JP2010213474A (ja) * 2009-03-11 2010-09-24 Honda Motor Co Ltd 充放電装置
JP2011188564A (ja) * 2010-03-05 2011-09-22 Isuzu Motors Ltd 電圧調整システム
JP2013508702A (ja) * 2009-10-19 2013-03-07 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ バッテリー電圧を計測するための装置及び関連する監視装置
JP2013115983A (ja) * 2011-11-30 2013-06-10 Yazaki Corp 均等化装置
WO2013137229A1 (ja) * 2012-03-16 2013-09-19 矢崎総業株式会社 均等化装置
JP2014003794A (ja) * 2012-06-18 2014-01-09 Rohm Co Ltd 電池モジュールおよびその電池制御回路、それを用いた家庭用蓄電池および車両
JP2014157996A (ja) * 2013-02-18 2014-08-28 National Institute Of Advanced Industrial & Technology 太陽光発電装置
US8842452B2 (en) 2009-08-20 2014-09-23 Schneider Electric It Corporation 3-phase high power UPS
CN105048602A (zh) * 2015-08-31 2015-11-11 矽力杰半导体技术(杭州)有限公司 电池平衡电路及电池装置
JP2017032350A (ja) * 2015-07-30 2017-02-09 矢崎総業株式会社 二次電池状態検出装置
US9647467B2 (en) 2009-10-19 2017-05-09 4Esys Nv System and method for balancing energy storage devices
JP2019532613A (ja) * 2016-09-14 2019-11-07 キロワット ラブス インコーポレイテッド スーパーキャパシタベースのエネルギー貯蔵装置
JP2020526157A (ja) * 2017-06-22 2020-08-27 ロックウェル・コリンズ・インコーポレーテッド スーパーキャパシタを充電及びバランスさせるためのシステム及び方法

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR269301A0 (en) * 2001-01-24 2001-02-22 Cochlear Limited Power supply for a cochlear implant
US8026637B2 (en) * 2001-01-24 2011-09-27 Cochlear Limited Power supply having an auxiliary power cell
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
JP3838258B2 (ja) * 2005-03-10 2006-10-25 ソニー株式会社 バッテリー残量表示方法
KR100994593B1 (ko) * 2005-08-31 2010-11-15 파나소닉 주식회사 차량용 보조 전원과 그것을 이용한 차량용 충방전 장치
DE102005041824A1 (de) * 2005-09-02 2007-03-08 Siemens Ag Vorrichtung und Verfahren zum Ladungsausgleich zwischen den Einzelzellen eines Doppelschichtkondensators, insbesondere in einem Mehrspannungs-Kraftfahrzeugbordnetz
US8058844B2 (en) * 2006-05-31 2011-11-15 Aeroflex Plainview, Inc. Low-power battery system
US8350413B1 (en) * 2006-11-15 2013-01-08 Quallion Llc Power pack
US8098048B2 (en) * 2007-06-15 2012-01-17 The Gillette Company Battery charger with integrated cell balancing
KR100998302B1 (ko) * 2007-12-07 2010-12-06 삼성에스디아이 주식회사 이차 전지의 충전 방법 및 충전 장치
US20090278488A1 (en) * 2008-05-09 2009-11-12 Kai-Wai Alexander Choi Method for discharge balancing of a battery array
KR101011235B1 (ko) * 2008-10-27 2011-01-26 킴스테크날리지 주식회사 전기에너지 저장장치의 전압균등화회로
US8466657B2 (en) * 2008-10-31 2013-06-18 Bren-Tronics Batteries International, L.L.C. Autonomous balancing of series connected charge storage devices
WO2010083291A1 (en) * 2009-01-14 2010-07-22 Indy Power Systems Llc Cell management system
US8493028B2 (en) 2009-04-03 2013-07-23 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack
US8933665B2 (en) 2009-08-05 2015-01-13 Apple Inc. Balancing voltages between battery banks
JP5440918B2 (ja) 2009-09-02 2014-03-12 独立行政法人 宇宙航空研究開発機構 バランス回路を備えた蓄電装置
TWI400854B (zh) * 2009-09-15 2013-07-01 Green Solution Tech Co Ltd 電池電壓平衡電路及方法
TWI404293B (zh) * 2009-09-23 2013-08-01 Sanyang Industry Co Ltd Charge balance circuit control system
US8525478B2 (en) 2010-01-06 2013-09-03 Marvell World Trade Ltd. Power management circuit of rechargeable battery stack
TWI502851B (zh) * 2010-02-09 2015-10-01 Neotec Semiconductor Ltd 鋰電池模組
CN102055224A (zh) * 2010-12-21 2011-05-11 深圳市佳华利道新技术开发有限公司 一种电池电压均衡电路及其方法
EP2656467B1 (en) 2010-12-22 2016-10-12 GE Energy Power Conversion Technology Limited Capacitor balancing circuit and control method for an electronic device such as a multilevel power inverter
EP2656496B1 (en) 2010-12-22 2019-09-11 GE Energy Power Conversion Technology Limited Mechanical arrangement of a multilevel power converter circuit
JP5758131B2 (ja) * 2011-01-17 2015-08-05 株式会社東芝 電池監視回路、および、電池監視システム
JP2012189490A (ja) * 2011-03-11 2012-10-04 Toshiba Corp 電池監視回路、および、電池監視システム
JP5645732B2 (ja) * 2011-03-30 2014-12-24 株式会社ケーヒン 電池電圧制御装置
EP2700141A1 (en) 2011-04-19 2014-02-26 4Esys A system and method for balancing energy storage devices
TWI433425B (zh) * 2011-07-12 2014-04-01 Ultracap Technologies Corp Battery charge and discharge balance of the circuit
US9401606B2 (en) * 2011-10-24 2016-07-26 Infineon Technologies Americas Corp. System and method for providing active power balancing
US20130162214A1 (en) * 2011-12-21 2013-06-27 Metal Industries Research & Development Centre Capacitor active balancing device with high-voltage differential and method thereof
WO2013115947A2 (en) * 2012-01-30 2013-08-08 Apple Inc. Balancing voltages between battery banks
WO2013138176A1 (en) * 2012-03-16 2013-09-19 Boston-Power, Inc. Method and system for balancing cells with variable bypass current
KR101423703B1 (ko) 2012-05-21 2014-07-31 국립대학법인 울산과학기술대학교 산학협력단 배터리 셀 전하 균등 시스템 및 방법
TWI451112B (zh) * 2012-06-21 2014-09-01 Via Tech Inc 電池管理系統
DE102012015621A1 (de) * 2012-08-07 2014-02-13 Winfried Schimmelpfennig Kapazitives Energieübertragungsverfahren
ITVI20120312A1 (it) * 2012-11-16 2014-05-17 Elcomit S P A Metodo per il bilanciamento della tensione di carica di una pluralità di elementi di accumulo di energia elettrica connessi tra loro in serie e dispositivo di bilanciamento atto ad eseguire il suddetto metodo
US9966584B2 (en) 2013-03-11 2018-05-08 Atieva, Inc. Bus bar for battery packs
US20140266003A1 (en) * 2013-03-15 2014-09-18 Atieva, Inc. Cell balancing through a switched capacitor level shifter
US8901888B1 (en) 2013-07-16 2014-12-02 Christopher V. Beckman Batteries for optimizing output and charge balance with adjustable, exportable and addressable characteristics
US10901019B2 (en) 2013-03-15 2021-01-26 Atieva, Inc. Method of connecting cell voltage sensors
US10084214B2 (en) 2013-03-15 2018-09-25 Atieva, Inc. Automatic switchover from cell voltage to interconnect voltage monitoring
US10063071B2 (en) 2013-03-15 2018-08-28 Atieva, Inc. Balance resistor and low pass filter
US9041454B2 (en) 2013-03-15 2015-05-26 Atieva, Inc. Bias circuit for a switched capacitor level shifter
KR101494081B1 (ko) 2013-05-31 2015-02-16 국립대학법인 울산과학기술대학교 산학협력단 퍼지 알고리즘을 이용한 배터리 전압 밸런싱 장치
US10033212B2 (en) 2013-08-06 2018-07-24 Analog Devices, Inc. Battery cell with discretion to drive loads within battery stack
US10374442B2 (en) 2013-10-17 2019-08-06 Bosch Battery Systems, Llc Integrated multiple voltage energy storage system and method
US20160072156A1 (en) * 2014-09-09 2016-03-10 Chao-Cheng Lu Universal cell
KR101725158B1 (ko) * 2015-12-16 2017-04-10 현대오트론 주식회사 배터리 셀 밸런싱 장치
US11101674B2 (en) * 2016-08-05 2021-08-24 Avago Technologies International Sales Pte. Limited Battery charging architectures
CN106329640B (zh) * 2016-09-09 2018-10-09 西北工业大学 一种电池充电均衡装置和方法
EP3571753B1 (en) * 2017-01-23 2024-04-24 Rafael Advanced Defense Systems Ltd. System for balancing a series of cells
CN107294167B (zh) * 2017-07-11 2020-08-25 成都芯源系统有限公司 电压均衡方法及电池均衡控制电路和电池均衡电路
JP6994734B2 (ja) * 2018-02-07 2022-01-14 国立大学法人茨城大学 太陽電池コンバータシステム、電源モジュールの結合方法
JP7177985B2 (ja) * 2019-02-05 2022-11-25 マツダ株式会社 車両電源システム
WO2023021269A1 (en) * 2021-08-20 2023-02-23 Cirrus Logic International Semiconductor Limited Cell balancing
GB2618981B (en) * 2022-02-11 2024-05-29 Cirrus Logic Int Semiconductor Ltd Cell balancing circuitry
GB2628288A (en) * 2022-02-15 2024-09-18 Cirrus Logic Int Semiconductor Ltd Cell balancing
US12100864B2 (en) 2022-02-17 2024-09-24 Atieva, Inc. Continuous wire bonds for battery module
WO2024129355A1 (en) * 2022-12-11 2024-06-20 Chaojiong Zhang Analyzer and method for determining self-discharge of batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828304A2 (en) * 1996-09-10 1998-03-11 Honda Giken Kogyo Kabushiki Kaisha Storage battery voltage control apparatus
JPH10164768A (ja) * 1996-10-03 1998-06-19 Mitsubishi Motors Corp 蓄電装置
GB2337166A (en) * 1998-05-07 1999-11-10 Ford Motor Co Balancing charges in a plurality of batteries
EP0990913A1 (en) * 1998-03-06 2000-04-05 Matsushita Electric Industrial Co., Ltd. Voltage measuring instrument with flying capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015047A1 (en) * 1996-10-03 1998-04-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electricity storing device
JP3395601B2 (ja) 1997-09-19 2003-04-14 株式会社豊田中央研究所 組電池の充放電装置
JPH11248757A (ja) 1998-03-06 1999-09-17 Matsushita Electric Ind Co Ltd フライング・キャパシタ回路
JPH11248756A (ja) 1998-03-06 1999-09-17 Matsushita Electric Ind Co Ltd フライング・キャパシタ回路
JP3518318B2 (ja) 1998-03-06 2004-04-12 松下電器産業株式会社 積層電圧計測装置
TW472426B (en) * 1998-10-06 2002-01-11 Hitachi Ltd Battery apparatus and control system therefor
JP3791767B2 (ja) * 2001-03-27 2006-06-28 株式会社デンソー フライングキャパシタ式電圧検出回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828304A2 (en) * 1996-09-10 1998-03-11 Honda Giken Kogyo Kabushiki Kaisha Storage battery voltage control apparatus
JPH10164768A (ja) * 1996-10-03 1998-06-19 Mitsubishi Motors Corp 蓄電装置
EP0990913A1 (en) * 1998-03-06 2000-04-05 Matsushita Electric Industrial Co., Ltd. Voltage measuring instrument with flying capacitor
GB2337166A (en) * 1998-05-07 1999-11-10 Ford Motor Co Balancing charges in a plurality of batteries

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664796B2 (en) 2007-02-21 2014-03-04 Schneider Electric II Corporation 3-phase high power ups
US8344551B2 (en) 2007-02-21 2013-01-01 American Power Conversion Corporation 3-phase high-power UPS
JP2010519890A (ja) * 2007-02-21 2010-06-03 アメリカン パワー コンバージョン コーポレイション 三相で高電力の無停電電源
JP2010213474A (ja) * 2009-03-11 2010-09-24 Honda Motor Co Ltd 充放電装置
JP4691171B2 (ja) * 2009-03-11 2011-06-01 本田技研工業株式会社 充放電装置
US8842452B2 (en) 2009-08-20 2014-09-23 Schneider Electric It Corporation 3-phase high power UPS
JP2013508702A (ja) * 2009-10-19 2013-03-07 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ バッテリー電圧を計測するための装置及び関連する監視装置
US9647467B2 (en) 2009-10-19 2017-05-09 4Esys Nv System and method for balancing energy storage devices
US8922216B2 (en) 2009-10-19 2014-12-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for measuring battery voltage and related monitoring device
JP2011188564A (ja) * 2010-03-05 2011-09-22 Isuzu Motors Ltd 電圧調整システム
JP2013115983A (ja) * 2011-11-30 2013-06-10 Yazaki Corp 均等化装置
JP2013220009A (ja) * 2012-03-16 2013-10-24 Yazaki Corp 均等化装置
WO2013137229A1 (ja) * 2012-03-16 2013-09-19 矢崎総業株式会社 均等化装置
JP2014003794A (ja) * 2012-06-18 2014-01-09 Rohm Co Ltd 電池モジュールおよびその電池制御回路、それを用いた家庭用蓄電池および車両
JP2014157996A (ja) * 2013-02-18 2014-08-28 National Institute Of Advanced Industrial & Technology 太陽光発電装置
JP2017032350A (ja) * 2015-07-30 2017-02-09 矢崎総業株式会社 二次電池状態検出装置
CN105048602A (zh) * 2015-08-31 2015-11-11 矽力杰半导体技术(杭州)有限公司 电池平衡电路及电池装置
JP2019532613A (ja) * 2016-09-14 2019-11-07 キロワット ラブス インコーポレイテッド スーパーキャパシタベースのエネルギー貯蔵装置
JP2020526157A (ja) * 2017-06-22 2020-08-27 ロックウェル・コリンズ・インコーポレーテッド スーパーキャパシタを充電及びバランスさせるためのシステム及び方法
JP7043525B2 (ja) 2017-06-22 2022-03-29 ロックウェル・コリンズ・インコーポレーテッド スーパーキャパシタを充電及びバランスさせるためのシステム及び方法

Also Published As

Publication number Publication date
US7288919B2 (en) 2007-10-30
US20040246635A1 (en) 2004-12-09
JP3858893B2 (ja) 2006-12-20
JPWO2003032464A1 (ja) 2005-01-27
US20080018301A1 (en) 2008-01-24
US7583057B2 (en) 2009-09-01

Similar Documents

Publication Publication Date Title
WO2003032464A1 (fr) Circuit d'equilibrage de tension, circuit de detection de tension, procede d'equilibrage de tension et procede de detection de tension associes
JP5714975B2 (ja) 充電装置
JP4858378B2 (ja) 多セル直列電池用のセル電圧監視装置
US7193390B2 (en) Apparatus for connecting secondary battery cells in series and method for controlling secondary battery cells connected in series
US8525478B2 (en) Power management circuit of rechargeable battery stack
US7825638B2 (en) Device and method for balancing charge between the individual cells of a double-layer capacitor
US7714539B2 (en) Apparatus for regulating state of charge in battery assembly
US20080272735A1 (en) Circuit arrangement and method for transferring electrical charge between accumulator arrangement
TWI484719B (zh) 電池充電器,電氣系統,以及可充電電池之充電方法
JP4116589B2 (ja) 容量均等化装置
JP2001289887A (ja) 積層電圧計測装置
JP2008011657A (ja) 電源装置
JP2018157746A (ja) バッテリパック及びバッテリパックを外部バッテリシステムに並列に接続する方法
JP6136820B2 (ja) 電池監視装置、蓄電装置および電池監視方法
JP3458740B2 (ja) 組電池の充電装置および放電装置
CN215728679U (zh) 一种电池电压检测电路
JP2004222438A (ja) 電気二重層キャパシタの電圧バランス均等化回路
JPH0787673A (ja) 充電制御方式
JP2002142375A (ja) 蓄電装置およびその制御方法
JP4108339B2 (ja) リチウムイオン二次電池の充電方法及び装置
JP2016154423A (ja) 電圧バランス装置
US20220224124A1 (en) Bi-directional active battery cell balancer and method for bi-directional cell balancing
CN113447833A (zh) 一种电池电压检测电路
WO2023026716A1 (ja) アクティブバランサー
JP2021061717A (ja) セルバランス制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10491362

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003535309

Country of ref document: JP

122 Ep: pct application non-entry in european phase