Nothing Special   »   [go: up one dir, main page]

WO2003014201A9 - Membranen für ionentransport - Google Patents

Membranen für ionentransport

Info

Publication number
WO2003014201A9
WO2003014201A9 PCT/EP2002/007585 EP0207585W WO03014201A9 WO 2003014201 A9 WO2003014201 A9 WO 2003014201A9 EP 0207585 W EP0207585 W EP 0207585W WO 03014201 A9 WO03014201 A9 WO 03014201A9
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymeric
membrane
membranes
base
Prior art date
Application number
PCT/EP2002/007585
Other languages
English (en)
French (fr)
Other versions
WO2003014201A8 (de
WO2003014201A2 (de
WO2003014201A3 (de
Inventor
Thomas Haering
Original Assignee
Thomas Haering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10134793A external-priority patent/DE10134793A1/de
Application filed by Thomas Haering filed Critical Thomas Haering
Priority to DE10293515T priority Critical patent/DE10293515D2/de
Priority to AU2002336925A priority patent/AU2002336925A1/en
Publication of WO2003014201A2 publication Critical patent/WO2003014201A2/de
Publication of WO2003014201A8 publication Critical patent/WO2003014201A8/de
Publication of WO2003014201A9 publication Critical patent/WO2003014201A9/de
Publication of WO2003014201A3 publication Critical patent/WO2003014201A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5221Polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to ionically crosslinked polymers and ionically crosslinked polymers with inorganic contents.
  • Polymers which are used in membranes are, for example, polyarylene, such as polyphenylene and polypyrene, aromatic polyvinyl compounds, such as polystyrene and polyvinylpyridine, polyphenylene vinylene, aromatic polyethers, such as polyphenylene oxide, aromatic polythioethers, such as polyphenylene sulfide, polysulfones, such as ®Radel R, and polyether ketones, such as PEK , Furthermore, they also include polypyrroles, polythiophenes, polyazoles, such as polybenzimidazole, polyanilines, polyazulenes, polycarbazoles and polyindophenines.
  • polyarylene such as polyphenylene and polypyrene
  • aromatic polyvinyl compounds such as polystyrene and polyvinylpyridine
  • polyphenylene vinylene aromatic polyethers, such as polyphenylene oxide, aromatic polythioethers, such as polyphenylene sulfide, poly
  • membranes are doped with concentrated phosphoric acid or sulfuric acid and serve as proton conductors in so-called polyelectrolyte membrane fuel cells (PEM fuel cells).
  • PEM fuel cells polyelectrolyte membrane fuel cells
  • MEE membrane electrode assembly
  • a disadvantage of these membranes is their mechanical instability with a low modulus of elasticity, a low tensile strength and a low upper flow limit, and their relatively high permeability to hydrogen, oxygen and methanol.
  • DE 196 22 337 describes a process for producing covalently crosslinked ionomer membranes which is based on an alkylation reaction of polymers containing sulfinate groups, polymer blends and polymer (blend) membranes.
  • the covalent network has good hydrolysis resistance even at higher ones Temperatures on.
  • WO 99/02756 and WO 99/02755 disclose ionically crosslinked acid-base polymer blends and polymer (blend) membranes.
  • An advantage of the ionically crosslinked acid-base blend membranes is that the ionic bonds are flexible, the polymers / membranes do not dry out so easily even at higher temperatures because of the hydrophilicity of the acid-base groups, and therefore the polymers / membranes also do not become brittle at higher temperatures.
  • IEC proton exchange capacity of the polymeric acid
  • B- proportion of the base added
  • the acid-base blends from the disclosure DE 196 22 337 with the anion exchanger described therein naturally also contain the anions of the acid used for the oxidation as the counterion.
  • the polymeric acid used must be proton-neutralized, otherwise complexing occurs when the components are mixed in. If cation divers and anion exchangers are used in one and the same membrane, the proton conductivity of the membrane decreases, according to current teaching, since there is now an additional positive charge in the membrane which opposes the transport of the protons.
  • the polymer according to the invention should have a low volume resistivity, preferably less than or equal to 200 ohm ⁇ cm at 25 ° C. in water, and a low permeability for hydrogen, oxygen and methanol.
  • Another object was to provide a polymer that can be used in fuel cells.
  • the polymer should be suitable for use in direct methanol fuel cells.
  • the object of the invention was also to provide a process for the preparation of the ionically and optionally covalently crosslinked polymer which can be carried out in a simple manner, inexpensively and on an industrial scale.
  • anion exchangers which have hydroxyl ions as the counterion and which have been processed into membranes with known cation exchangers, preferably those mentioned in WO 99/02756 and WO 99/02755, have a higher proton conductivity than the control in which the anion exchangers have halogen anions as the counterion exhibit.
  • the polymeric anion exchanger is diluted with a solution containing hydroxyl ions, preferably an aqueous, e.g. NaOH in water, added and the negative counterions are exchanged with the excess of hydroxyl ions.
  • the anion exchanger is then rinsed with demineralized water to the pH of the wash water. This pH is preferably between 6.5 and 7.5. Then dried and dissolved in a suitable, preferably aprotic, solvent.
  • the polymeric acid is added in the salt form, preferably a mono-, di-, tri-, or tetravalent cation is used.
  • one or more polymeric bases also dissolved in an aprotic solvent, can be added to the mixture.
  • the mixture is processed into a membrane according to the prior art.
  • the polymeric acid is still in the salt form after drying.
  • An acidic cation exchange resin is used to convert them into the necessary acid form. Any other known process for converting to the acid group is also suitable which excludes the anions from reacting with the anion exchanger and as a result of which the hydroxyl ions are displaced.
  • the polymeric acid in the membrane is now exchanged, it is in the protonated form and in parallel there is the anion exchanger with the hydroxyl ion in the membrane. In the subsequent further processing of the membrane into the fuel cell, it must be ensured that the membrane is never exposed to exchangeable anions.
  • a cation exchanger and an anion exchanger may also be mixed with one or more polymeric bases and processed to form a membrane without the membrane again containing kidney molecular anions, such as F, Cl “ , Br “ , J " or other.
  • the membranes show a reduced methanol permeability with simultaneously increased proton conductivity (measured in water) compared to the control.
  • part of the invention is a new process for the production of acid-base blends with nanodispersed, sparingly soluble salts and oxides, titanium and zirconium salts being particularly preferred.
  • An acid-base blend is a polymer or polymer mixture which carries at least one group which releases protons in an aqueous environment and at least one group which fixes protons.
  • the principle of the acid-base interaction is described in detail in the publications WO 99/02755 and WO 99/02756. All the production methods of acid-base blends and acid-base blend membranes that have been described and disclosed so far always result in aftertreatment in dilute protonic acids. Surprisingly, a process has been found which makes it possible to dispense with protonation by means of a dilute acid, such as hydrochloric, sulfuric, phosphoric, nitric or other proton-releasing acids, or to severely restrict their use, and which requires only aftertreatment in water ,
  • a dilute acid such as hydrochloric, sulfuric, phosphoric, nitric or other proton-releasing acids
  • the cation of the polymeric acid is first exchanged with a cation which, after membrane production, reacts with water, possibly with an increase in temperature, to form a poorly soluble oxide.
  • zirconyl (ZrO) and titanyl cation (TiO) are particularly preferred. It was surprisingly found that polymeric acids, in particular sulfonic acids, exchanged with zirconyl (ZrO 2+ ) and / or titanyl cations (TiO 2+ ) aminated with polymeric bases, for example polybenzimidazoles (PBI), polyvinylpyridine (PVP and P4VP) Allow poly (ether) sulfones and aminated polyaryl ether ketones to be mixed homogeneously with one another in an aprotic solvent such as NMP, DMAc and DMSO.
  • PBI polybenzimidazoles
  • PVP polyvinylpyridine
  • P4VP poly (ether) sulfones and aminated polyaryl ether ketones
  • converting a sulfonic acid into its zirconyl salt can e.g. proceed as follows:
  • IEC ion exchange capacity
  • the polymeric acid can be protonated or in the cation-exchanged form, preferably Na + , K + , Li + , Ca 2+ , Mg 2+ .
  • the water-soluble, but soluble in aprotic solvents is an IEC up to approximately 1.8.
  • the exchanged acid is filtered off and carefully dried in vacuo at low temperature, preferably below 50 ° C.
  • the solvent is NMP or DMAc
  • the resulting solution can be mixed immediately thereafter with a solution of a polymeric base and / or a polymeric anion exchanger or its reduced preform in an aprotic solvent, for example PBI in DMAc and processed into a membrane.
  • the processing into a membrane takes place, for example, by doctoring to a thin film on a suitable surface.
  • the salt form of the polymeric acid must still be brought into its protonated form.
  • the zirconyl (ZrO 2+ ) or titanyl cation (TiO 2+ ) reacts with water to form sparingly soluble zirconium dioxide or titanium dioxide.
  • the polymeric acid undergoes protonation and the acid-base interaction can develop.
  • the product obtained is an acid-base blend with molecularly dispersed zirconium or titanium dioxide.
  • the advantage of this process is not only the simplified ecological and economic representation of acid-base blends with molecularly distributed oxides, but the membranes can be coated with a catalyst before activation with water, in particular in the case of fuel cell applications, and processed further to form a membrane electrode assembly and only then, at the latest when the fuel cell is in operation, does the protonation of the polymeric acid take place.
  • blends comprising at least one polymeric cation exchanger, one polymeric anion exchanger, molecularly dispersed metal oxide and / or one polymeric base in which a non-oxidized or only partially oxidized preform is used instead of the anion exchanger.
  • the use of the reduced precursor is particularly advantageous, in particular in the case of polymeric triphenylmethane dyes.
  • the following compound represents a non-oxidized form and its oxidized form of such a weakly basic anion exchanger.
  • R alkyl (methyl or ethyl) or aryl or heteroaryl
  • both the acid form of the membrane is released and, thanks to the presence of oxygen, the reduced preform of the anion exchanger is oxidized to the finished anion exchanger.
  • These blend membranes optionally with a further polymeric basic component, have an improved proton conductivity than the membranes which have been aftertreated with dilute mineral acids and or alkalis. It is believed that the absence of "microanioins" means that the anion exchanger also contributes to proton conductivity.
  • a film produced by the above process containing at least one polymeric zirconyl (ZrO 2+ ) and / or titanyl cation (TiO 2+ ) exchanged acid and a polymeric base and / or a polymeric anion exchanger is or after-treated with phosphoric acid (diluted to concentrated) or diluted Sulfuric acid converted to the protonated form.
  • This method has the advantage that no mono- or divalent metal-containing waste acids or alkalis are produced in order to generate a protonated zirconium phosphate or titanium phosphate or the corresponding sulfates from the membrane.
  • molecularly dispersed metal salts or oxides in particular of zirconium dioxide, titanium dioxide, zirconium phosphate, titanium phosphate, the corresponding hydrogen phosphates, sulfates and hydrogen sulfates, is a reduced methanol diffusion through the membrane, with an increased proton conductivity in the membrane.
  • This has the advantages already described in the art.
  • the acid-base interaction can still develop.
  • the process according to the invention is used to produce new acid-base blends, acid-anion exchanger blends, acid-anion exchanger-base blends with molecularly dispersed oxides or salts.
  • the membranes can be used to generate energy by electrochemical means.
  • membrane fuel cells H2 or direct methanol fuel cells
  • They can be used in electrochemical cells, secondary batteries, electrolysis cells, in membrane separation processes such as gas separation, pervaporation, perstraction, reverse osmosis, electrodialysis and diffusion dialysis.
  • part of the invention is the use of polymer-bound dyes which have at least two heteroatoms. These dyes must have at least two boundary structures. It was surprisingly found that the water transport numbers transported through the membrane for everyone in fuel cell operation Proton decrease when using dyes, especially polymer-bound dyes.
  • polymers with fluorine in the main chain such as polyvinyl difluoride (PVDF) and polychlorotrifluorethylene and analogs, such as Kel-F® and Neoflon®. These polymers are already known and are being changed into polymers according to the invention.
  • PVDF polyvinyl difluoride
  • Neoflon® polychlorotrifluorethylene
  • the polymers according to the invention become accessible through one or more modification steps of the starting polymers (PI).
  • the starting polymers (Pl) are already known. These are polyarylenes such as polyphenylene and polypyrene, aromatic polyvinyl compounds such as polystyrene and polyvinylpyridine, polyphenylene vinylene, aromatic polyethers such as polyphenylene oxide, aromatic thioethers such as polyphenylene sulfide, polysulfones such as ORadel R and Ultrason®, and polyether ketones such as PEK, PEEK, PEKK and PEKEKK.
  • polyarylenes such as polyphenylene and polypyrene
  • aromatic polyvinyl compounds such as polystyrene and polyvinylpyridine
  • polyphenylene vinylene aromatic polyethers such as polyphenylene oxide
  • aromatic thioethers such as polyphenylene sulfide
  • polysulfones such as ORadel R and Ultrason®
  • polyether ketones
  • polyporroles such as polybenzimidazole, polyanilines, polyazulenes, polycarbazoles, polyindophenines, polyvinylendifluoride (PVDF) and polychlorotrifluorethylenes and analogues, such as Kel-F® and Neoflon®.
  • polyporroles such as polybenzimidazole, polyanilines, polyazulenes, polycarbazoles, polyindophenines, polyvinylendifluoride (PVDF) and polychlorotrifluorethylenes and analogues, such as Kel-F® and Neoflon®.
  • PVDF polyvinylendifluoride
  • Neoflon® such as Kel-F® and Neoflon®.
  • the polymer according to the invention has repeating units of the general formula (1), in particular repeating units corresponding to the general formulas (1A), (1B), (IC), (1D), (1E), (1F), (IG), (1H ), (II), (1J), (1K), (1L), (IM), (IN), (10), (1P), (IQ), (1R), (IS) and / or (IT ), on.
  • the radicals R 6 are, independently of one another, the same or different 1, 2-phenylene, 1,3-phenylene, 1,4-phenylene, 4,4'-biphenyl, a divalent radical of a heteroaromatic, a divalent radical of a C 10 aromatic , a divalent radical of a C 14 aromatic and / or a divalent pyrene radical.
  • a C 10 aromatics is naphthalene, for a C 14 aromatics phenanthrene.
  • the substitution pattern of the aro aten and / or heteroaromatic is arbitrary, in the case of phenylene for example R 6 can be ortho-, meta- and para-phenylene.
  • the radicals R 7 , R 8 and R 9 denote single-, four- or three-bonded aromatic or heteroaromatic groups and the radicals U, which are identical within a repeating unit, stand for an oxygen atom, a sulfur atom or an amino group which represents a hydrogen atom, carries a group having 1-20 carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as a further radical.
  • the polymers with recurring units of the general formula (1) which are particularly preferred in the context of the present invention include homopolymers and copolymers, for example statistical copolymers, such as ⁇ Victrex 720 P and ® Astrel.
  • Very particularly preferred polymers are polyaryl ethers, polyaryl thioethers, polysulfones, polyether ketones, poly pyrroles, polythiophenes, polyazoles, polyphenylenes, polyphenylene vinylenes, polyanilines, polyazulenes, polycarbazoles, polypyrenes, polyindophenines and polyvinyl pyridines, in particular: polyaryl ethers:
  • n denotes the number of repeating units along a macromolecule chain of the polymer.
  • This number of repeating units of the general formula (1) along a macromolecule chain of the crosslinked polymer is preferably an integer greater than or equal to 10, in particular greater than or equal to 100.
  • the number of repeating units of the general formula (1A), (1B), ( IC), (1D), (1E), (1F), (IG), (1H), (II), (U), (1K), (1L), (IM), (IN), (10) , (1P), (IQ), (1R), (IS) and / or (IT) along a macromolecule chain of the crosslinked polymer are an integer greater than or equal to 10, in particular greater than or equal to 100.
  • the number average molecular weight of the macromolecule chain is greater than 25,000 g / mol, advantageously greater than 50,000 g / mol, in particular greater than 100,000 g / mol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transplantation (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die Vorliegende Erfindung betrifft protonenaustauschendes Polymer und daraus hergestellte Membran, dadurch gekennzeichnet dass ein Anionentauscher in Hydroxylform zugesetzt wurde.

Description

1. Titel
Membranen für Ionentransport
2. Stand der Technik
Die vorliegende Erfindung betrifft ionisch vernetzte Polymere und ionisch vernetzte Polymere mit anorganischen Inhalten.
Polymere, die in Membranen Verwendung finden sind beispielsweise Polyarylene, wie Polyphenylen und Polypyren, aromatische Polyvinylverbindungen, wie Polystyrol und Polyvinylpyridin, Polyphenylenvinylen, aromatische Polyether, wie Polyphenylenoxid, aromatische Polythioether, wie Polyphenylensulfid, Polysulfone, wie ®Radel R, und Polyetherketone, wie PEK. Weiterhin umfassen sie auch Polypyrrole, Polythiophene, Polyazole, wie Polybenzimidazol, Polyaniline, Polyazulene, Polycarbazole und Polyindophenine.
In letzter Zeit hat die Verwendung derartiger Polymere zur Herstellung von Membranen für den Einsatz in Brennstoffzellen zunehmend an Bedeutung gewonnen. Insbesondere Polymere mit basischen und sauren Gruppen, wie Sulfonsäuregruppen und Aminogruppen werden vermehrt in der Literatur beschrieben. Die Membranen werden mit konzentrierter Phosphorsäure oder Schwefelsäure dotiert und dienen als Protonenleiter in sogenannten Polyelektrolyt-Membran- Brennstoffzellen (PEM-Brennstoffzellen). Dabei erlauben solche Membranen den Betrieb der Membran-Elektroden-Einheit (MEE) bei höheren Temperaturen und steigern auf diese Weise die Toleranz des Katalysators gegenüber dem bei der Reformierung als Nebenprodukt entstehenden Kohlenmonoxid deutlich, so dass die Gasaufbereitung bzw. Gasreinigung wesentlich vereinfacht wird. Nachteilig an diesen Membranen ist ihre mechanische Instabilität mit einem geringen E- Modul, einer geringen Reißfestigkeit und einer niedrigen oberen Fließgrenze sowie ihre relativ hohe Permeabilität für Wasserstoff, Sauerstoff und Methanol.
Erste Ansätze zur Lösung dieser Probleme werden in den Druckschriften DE 196 22 337, WO 99/02755 und WO 99/02756 offenbart. DE 196 22 337 beschreibt ein Verfahren zur Herstellung von kovalent vernetzten Ionomermembranen, das auf einer Alkylierungsreaktion von Sulfinatgruppen enthaltenden Polymeren, Polymerblends und Polymer(Blend)Membranen beruht. Dabei weist das kovalente Netzwerk eine gute Hydrolysebeständigkeit auch bei höheren Temperaturen auf. Nachteilig ist jedoch, dass die kovalent vernetzen Ionomere und Ionomermembranen wegen des hydrophoben kovalenten Netzwerkes leicht austrocknen und deswegen stark verspröden können; sie sind daher für Anwendungen in Brennstoffzellen, insbesondere bei höheren Temperaturen, nur bedingt geeignet.
Die Druckschriften WO 99/02756 und WO 99/02755 offenbaren ionisch vernetzte Säure-Base- Polymerblends und Polymer(Blend)Membranen. Ein Vorteil der ionisch vernetzten Säure-Base- Blendmembranen besteht darin, dass die ionischen Bindungen flexibel sind, die Polymere/Membranen auch bei höheren Temperaturen wegen der Hydrophilie der Säure-Base- Gruppen nicht so leicht austrocknen, und deshalb die Polymere/Membranen auch bei höheren Temperaturen nicht verspröden.
Die in allen bisher veröffentlichten Druckschriften beschriebenen Verfahren zur Herstellung von ionisch vernetzten Ionomer(Membran)systeme weisen jedoch den Nachteil auf, dass bei der Herstellung eine Nachbehandlung in verdünnter Säure, meist Salzsäure, Schwefelsäure oder Phosphorsäure notwendig ist. Um die gewünschten Säure-Base Wechselwirkungen zu erhalten. Die in der Druckschrift DE 196 22 337 beschriebene Methode zur Darstellung von ionisch vernetzten Polymeren aus den dort hergestellten Anionentauschern offenbart ausschließlich Anionentauscher mit Halogenen als Gegenanion.
Die Protonenleitfähigkeiten in diesen Druckschriften offenbaren immer nur Werte, die in verdünnter Säure gemessen wurden.
Alle bisher beschriebenen Säure-Base-Blends offenbaren nur Membranen, in denen die Ionenaustauscherkapazität der polymeren Säure gesenkt wird um den Anteil der hinzugegebenen Base.
Die Protonenaustauscherkapazität der polymeren Säure, im Folgenden kurz IEC(H+) genannt, sinkt um den Anteil der hinzugegebenen Base, im Folgenden kurz IEC (B-) genannt. Dies muß so sein aufgrund der gewünschten Wechselwirkung zwischen der Säure und Base. Zur Protonenleitung tragen nach Ausbildung der Wasserstoffbrücken nur die freien verbleibenden Säuregruppen bei. Diese lassen sich über Titration bestimmen und man erhält sehr genau den theoretisch berechneten Wert.
Dieser Sachverhalt ist sehr genau beschrieben in "Synthesis of novel engineering polymers containing basic side groups and their application in acid-base polymer Blend membranes." Von J. Kerres und A. Ullrich; Separation and Purification Technology 22-23 (2001), S.l-15. In der Brennstoffzelle existieren im Betrieb aber nur Protonen. Halogenanionen in der Membran sind äußerst nachteilig. Um die beschriebenen Säure-Base-Blends von überschüssiger Säure zu befreien wird in Wasser gewaschen.
Die Säure-Base-Blends aus der Offenbarung DE 196 22 337 mit den dort beschriebenen Anionentauscher enthalten als Gegenion naturgemäß auch die Anionen der zur Oxidation eingesetzten Säure. Darüber hinaus muß die eingesetzte Polymere Säure Protonenneutralisiert sein, da es sonst zu einer Komplexbildung bereits beim Zumischen der Komponenten kommt. Verwendet man Kationentaucher und Anionentauscher in ein und derselben Membran so sinkt nach gängiger Lehrmeinung die Protonenleitfähigkeit der Membran, da sich ja nun in der Membran zusätzlich positive Ladung befindet, die dem Transport der Protonen entgegen steht.
In Anbetracht des Standes der Technik ist es nun Aufgabe der vorliegenden Erfindung, ein protonenleitendes, gegebenenfalls ionisch vernetztes, Polymer mit verbesserten Eigenschaften zur Verfügung zu stellen. Das erfindungsgemäße Polymer soll einen geringen spezifischen Durchgangswiderstand, vorzugsweise kleiner oder gleich 200 Ohm x cm bei 25°C in Wasser, und geringe Permeabilität für Wasserstoff, Sauerstoff und Methanol zeigen.
Darüber hinaus soll es eine möglichst gute mechanische Stabilität, insbesondere einen verbesserten E-Modul, eine höhere Reißfestigkeit und ein verbessertes Quellverhalten aufweisen. Vorzugsweise soll es bei einer Temperatur von 90°C in deionisiertem Wasser um wendiger als 100% quellen.
Eine weitere Aufgabe bestand darin, ein Polymer anzugeben, das in Brennstoffzellen verwendet werden kann. Insbesondere soll das Polymer für den Einsatz in Direktmethanolbrennstoffzellen geeignet sein.
Aufgabe der Erfindung war es auch ein Verfahren zur Herstellung des ionisch und gegebenfalls kovalent vernetzten Polymers zur Verfügung zu stellen, das auf einfache Art und Weise, kostengünstig und großtechnisch durchführbar ist.
Es war auch Aufgabe ein Verfahren zur Verfügung zu stellen, dass es ermöglicht als Gegenion bei Anionentauschern Hydroylionen zu verwenden. Beschreibung der Erfindung:
Es wurde überraschend festgestellt, dass Anionentauscher die als Gegenion Hydroxylionen aufweisen und die mit bekannten Kationentauschern, vorzugsweise die in WO 99/02756 und WO 99/02755 genannten, zu Membranen verarbeitet wurden eine höhere Protonenleitfähigkeit aufweisen als die Kontrolle in denen die Anionentauscher Halogenanionen als Gegenion aufweisen.
Nach den bisher offenbarten Verfahren ist dies nicht möglich. Es wird erfindungsgemäß dabei folgendes Verfahren verwendet. Der polymere Anionentauscher wird mit verdünnter Hydroxylionen haltigen Lösung, bevorzugt einer wässrigen, z.B. NaOH in Wasser, versetzt und die negativen Gegenionen werden mit dem Überschuß an Hydroxylionen ausgetauscht. Danach wird der Anionentauscher mit demineralisiertem Wasser bis zum pH- Wert des Waschwassers gespült. Dieser pH- Wert liegt vorzugsweise zwischen 6,5 und 7,5. Daraufhin getrocknet und in einem geeigneten vorzugsweise aprotischen Lösungmittel aufgelöst.
Die polymere Säure wird in der Salzform, vorzugsweise wird ein ein-, zwei-, drei-, vierwertiges Kation verwendet, hinzu gegeben. Zusätzlich können noch ein oder mehrere polymere Basen, ebenfalls aufgelöst in einem aprotischen Lösungmittel dem Gemisch hinzugegeben werden. Das Gemisch wird zu einer Membran nach dem Stand der Technik verarbeitet. Die polymere Säure ist nach dem Trocknen immer noch in der Salzform. Um sie nun in die notwendige Säureform zu überführen wird ein saures Kationenaustauscherharz verwendet. Es ist auch jeder weitere bekannte Prozeß zur Überführung in die Säuregruppe geeignet, der ausschließt das Anionen mit dem Anionentauscher reagieren und zur Folge hat das die Hydroxylionen verdrängt werden. Ist die polymere Säure in der Membran nun ausgetauscht, so liegt sie in der protonierten Form vor und parallel dazu liegt der Anionentauscher mit dem Hydroxylion in der Membran vor. Bei der Nachfolgenden Weiterverarbeitung der Membran zur Brennstoffzelle ist darauf zu achten, dass die Membran keinesfalls austauschbaren Anionen ausgesetzt wird.
Weiter unten wird in einem zweiten Teil der Erfindung ein Verfahren offenbart, wie man einen Kationentauscher und einen Anionentauscher gegebenfalls noch mit einer oder mehreren polymeren Base mischt und zu einer Membran verarbeitet ohne dass die Membran wieder mit nierdermolekularen Anionen, wie F, Cl", Br", J" oder anderen in Berührung gebracht wird. Die Membranen zeigen eine veringerte Methanolpermeabilität bei gleichzeitig erhöhter Protonenleitfähigkeit (gemessen in Wasser) im Vergleich zur Kontrolle. Weiter ist Teil der Erfindung ein neues Verfahren zur Herstellung von Säure-Base-Blends mit nanodispers verteilten schwerlöslichen Salzen und Oxiden, besonders bevorzugt sind Titan- und Zirkonsalze. Eine Säure-Base-Blend ist ein Polymer oder Polymergemisch, das wenigstens eine in wässriger Umgebung Protonen abspaltende Gruppe trägt und wenigsten eine Protonenfixierende Gruppe trägt. In den Druckschriften WO 99/02755 und WO 99/02756 wird, wie schon erwähnt, das Prinzip der Säure-Base-Wechselwirkung ausführlich dargestellt. Alle bisher dargestellten und offenbarten Herstellungsmethoden von Säure-Base-Blends und Säure- Base-Blend-Membranen haben immer eine Nachbehandlung in verdünnten Protonensäuren zur Folge. Überraschenderweise wurde ein Verfahren gefunden, dass es ermöglicht auf Protonierung mittels einer verd. Säure, wie Salz-, Schwefel-, Phosphor-, Salpeter- oder anderer protonenabspaltenden Säuren zu verzichten bzw. deren Gebrauch stark einzuschränken und das alleine mit einer Nachbehandlung in Wasser auskommt.
Dazu wird zuerst das Kation der polymeren Säure mit einem Kation ausgetauscht, dass nach der Membranherstellung mit Wasser, gegebenfalls unter Temperaturerhöhung, zu einem schwerlöslichen Oxid reagiert.
Bevorzugt sind zwei, drei, und vierwertige Kationen. Besonders bevorzugt sind das Zirkonyl- (ZrO ) und Titanylkation (TiO ). Es wurde dabei überraschenderweise festgestellt, dass sich mit Zirkonyl- (ZrO2+) und/oder Titanylkationen (TiO2+) ausgetauschte polymere Säuren, insbesondere Sulfonsäuren, mit polymeren Basen, z.B. Polybenzimidazole (PBI), Polyvinylpyridin (PVP und P4VP), aminierte Poly(ether)sulfone und aminierte Polyaryletherketone in einem aprotischen Lösungmittel, wie NMP, DMAc und DMSO, homogen miteinander mischen lassen.
Um eine polymere Säure, z.B. eine Sulfonsäure, in ihr Zirkonylsalz zu überführen, kann z.B. wie folgt verfahren werden:
Methode (A): Die polymere Säure, z.B. sulfoniertes PEEK, PEK, PEKEKK, PSU, PES oder PVDF mit einem IEC (Ionenaustauscherkapazität) von 0,8 bis 4,7 meq/g (Milliäquvalent pro Gramm), wird in einem geeigneten Lösungsmittel, bevorzugt ist ein aprotisches, wie NMP, DMAc, DMSO und andere aufgelöst. Dann wird bis zur äqivalenten Menge Zirkon(IV)- oxidchlorid hinzugegeben. Es wird vorsichtig erwärmt auf 30-50°C und die entstehende Salzsäure unter einem angelegten Vakuum entfernt. Methode (B): Eine andere Möglichkeit eine polymere Säure in ihr Zirkonyl-Salz (ZrO2+) zu überführen ist, sie bei niedriger Temperatur mit einem Überschuß von wässriger Zirkon(IV)- oxidchlorid-Lösung zu behandeln. Es findet dann ein Kationenaustausch statt. Dies ist dann von Vorteil, wenn die polymere Säure nicht wasserlöslich ist. Die polymere Säure kann protoniert oder in der kationausgetauschten Form, bevorzugt sind Na+, K+, Li+, Ca2+, Mg2+ , vorliegen. Für sulfonierte Arylhauptkettenpolymere ist die wasserlösliche, jedoch in aprotischen Lösungsmitteln lösliche Form, ein IEC bis ca. 1,8. Die ausgetauschte Säure wird abfiltriert und vorsichtig, bei niedriger Temperatur, bevorzugt unter 50°C, im Vakuum getrocknet. Verfährt man nach Methode (A) und ist das Lösungsmittel NMP oder DMAc, so kann die entstehende Lösung sofort danach mit einer Lösung einer polymeren Base und/oder eines polymeren Anionentauschers bzw. dessen reduzierte Vorform in einem aprotischen Lösungsmittel, z.B. PBI in DMAc, gemischt und zu einer Membran verarbeitet werden. Die Verarbeitung zu einer Membran findet z.B. durch Ausrakeln zu einem dünnen Film auf einer geeigneten Oberfläche statt. Nach Entfernung des Lösungsmittel z.B. über einen Trocknungsprozeß muß die Salzform der polymeren Säure noch in ihre protonierte Form gebracht werden.
Dies geschieht durch Erhitzen in Wasser, gegebenfalls unter Druck oder in Dampfform. Dabei reagiert das Zirkonyl- (ZrO2+) oder Titanylkation (TiO2+) mit Wasser zu schwerlöslichem Zirkondioxid oder Titandioxid. Die polymere Säure erfährt dabei eine Protonierung und die Säure-Base-Wcchselwirkung kann sich ausbilden. Als Produkt erhält man einen Säure-Base- Blend mit molekular dispers verteiltem Zirkon- oder Titandioxid.
Vorteil dieses Verfahrens ist nicht nur die vereinfachte ökologisch und ökonomische Darstellung von Säure-Base-Blends mit molekular verteilten Oxiden, sondern die Membranen können vor der Aktivierung mit Wasser, insbesondere im Falle von Brennstoffzellenanwendungen, mit einem Katalysator beschichtet und zu einer Membran-Elektrodeneinheit weiterverarbeitet werden und erst danach, spätestens im Betrieb der Brennstoffzelle, findet die Protonierung der polymeren Säure statt.
Dies ermöglicht die Herstellung von Membran-Elektrodeneinheiten, insbesondere für die Brennstoffzelle in einem einzigen Herstellungsprozeß, dabei entstehen nach dem Membranbildungsprozeß nur sehr geringe bzw. überhaupt keine Abfallsäuren oder Abfalllaugen. Das Verfahren die Sulfonsäure mit Zirkonyl- (ZrO2+) und/oder Titanylkation (TiO2+) auszutauschen und später durch eine Wasserbehandlung die Säureform zu generieren vereinfacht auch die obengenannte Herstellung von Blends die einen Kationentauscher und einen Anionentauscher enthalten. Besonders ist es von Vorteil, wenn der Anionentauscher nach seiner Herstellung nicht mehr mit "Mikroanionen" wie F", Cl", Br" oder J" in Verbindung gebracht werden soll.
Besonders bevorzugt ist die Darstellung von Blends mit enthaltend wenigstens einen polymeren Kationentauscher, einen polymeren Anionentauscher, molekular dispers verteiltes Metalloxid und/oder eine polymere Base in denen statt des Anionentauschers eine nicht oder nur zum Teil oxidierte Vorform verwendet wird. Besonders vorteilhaft ist die Verwendung der reduzierten Vorstufe insbesondere bei polymeren Triphenylmethanfarbstoffen. Die Nachfolgende Verbindung stellt eine nichtoxidierte Form und seine oxidierte Form eines solchen schwach basischen Anionentauschers.
Figure imgf000008_0001
R= Alkyl (Methyl o. Ethyl) oder Aryl oder Heteroaryl In der Nachbehandlung der Membran mit, gegebenfalls erhitztem, Wasser wird sowohl die Säureform der Membran freigesetzt, als auch begünstigt durch anwesenden Sauerstoff die reduzierte Vorform des Anionentauschers zum fertigen Anionentauscher oxidiert. Diese Blend- Membranen, gegebenfalls noch mit einer weiteren polymeren basischen Komponente haben eine verbesserte Protonenleitfähigkeit, als die Membranen, die mit verdünnten Mineralsäuren und oder Laugen nachbehandelt wurden. Es wird vermutet, dass durch das Fehlen von "Mikroanioinen" der Anionentauscher mit zur Protonenleitfähigkeit beiträgt.
Eine nach obigem Verfahren hergestellte Folie enthaltend wenigstens eine polymere Zirkonyl- (ZrO2+) und/oder Titanylkation (TiO2+) ausgetauschte Säure und eine polymere Base und/oder einen polymeren Anionentauscher wird durch Nachbehandlung mit Phosphorsäure (verdünnt bis konzentriert) oder verdünnter Schwefelsäure in die protonierte Form überführt. Dieses Verfahren hat den Vorteil, dass keine ein- oder zweiwertigen metallhaltigen Abfallsäuren oder Laugen entstehen um aus der Membran eine protonierte Zirkonphosphat oder Titanphosphat bzw. die entsprechenden Sulfate zu generieren.
Der Vorteil von molekular dispers verteilten Metallsalzen oder Oxiden insbesondere von Zirkondioxid, Titandioxid, Zirkonphosphat, Titanphosphat, den entsprechenden Hydrogenphosphaten, Sulfaten und Hydrogensulfaten ist eine verminderte Methanoldiffusion durch die Membran hindurch, bei gleichzeitig erhöhter Protonenleitfähigkeit in der Membran. Dies hat die in der Technik bereits beschriebenen Vorteile. Die Säure-Base- Wechselwirkung kann sich dennoch ausbilden. Das erfindungsgemäße Verfahren dient zur Herstellung von neuen Säure-Base-Blends, Säure-Anionentauscher-Blends, Säure-Anionentauscher-Base-Blends mit molekular dispers verteilten Oxiden oder Salzen.
Verwendet werden können die Membranen zur Gewinnung von Energie auf elektrochemischem Weg. Als Bestandteil von Membranbrennstoffzellen (H2- oder Direktmethanol-Brennstoffzellen) bei Temperaturen von 0 bis 180°C. Sie können verwendet werden in elektrochemischen Zellen, sekundären Batterien, Elektrolysezellen, in Membrantrennprozessen wie Gastrennung, Pervaporation, Perstraktion, Umkehrosmose, Elektrodialyse und Diffusionsdialyse. Weiterhin ist Teil der Erfindung die Verwendung von polymer gebunden Farbstoffen, die mindestens zwei Heteroatome aufweisen. Diese Farbstoffe müssen mindestens zwei Grenzstrukturen aufweisen. Es wurde überraschenderweise festgestellt, dass die Wassertransportzahlen durch die Membran im Brennstoffzellenbetrieb für jedes transportierte Proton abnehmen bei Verwendung von Farbstoffen insbesondere polymer gebundenen Farbstoffen. Es wurde auch festgestellt dass die Methanolpermeabilität durch die zugesetzten Farbstoffe geringer war als die Kontrolle ohne die Farbstoffe. Dieselben Effekte wurden auch beobachtet bei Zusatz von Polyanilin zur Membran. Dabei ist jedoch darauf zu achten, dass die Elektronenleitfähigkeit des Polyanilins nicht über die gesamte Membrandicke ausreicht. Zusätze von 2 bis 10 Gew.% des Polyanilins sind vollkommen ausreichend für die Effekte.
Nachfolgend sind die erfindungsgemäß verwendeten polymeren Backbones, Polymere beschrieben. Dies betrifft sowohl die polymeren Säuren als auch die polymeren Basen. Darüber betrifft die vorliegende Erfindung Polymere mit Fluor in der Hauptkette, wie Polyvinylendifluorid (PVDF) und Polychlorotrifluorethylene und Analoga, wie Kel-F® und Neoflon®. Diese Polymere sind bereits bekannt und werden zu erfindungsgemäßen Polynieren verändert.
Die erfindungsgemäßen Polymere werden zugänglich durch einen oder mehrere Modifikationsschritte der Ausgangspolymere (Pl). Die Ausgangspolymer (Pl) sind bereits bekannt. Diese sind Polyarylene, wie Polyphenylen und Polypyren, aromatische Polyvinylverbindungen, wie Polystyrol und Polyvinylpyridin, Polyphenylenvinylen, aromatische Polyether, wie Polyphenylenoxid, aromatische Thioether, wie Polyphenylensulfid, Polysulfone, wie ORadel R und Ultrason®, und Polyetherketone, wie PEK, PEEK, PEKK und PEKEKK. Weiterhin umfassen sie auch Polyporrole, Polythiophene, Polyazole, wie Polybenzimidazol, Polyaniline, Polyazulene, Polycarbazole, Polyindophenine, Polyvinylendifluorid (PVDF) und Polychlorotrifluorethylene und Analoga, wie Kel-F® und Neoflon®.
Das erfindungsgemäße Polymer weist wiederkehrende Einheiten der allgemeinen Formel (1), insbesondere wiederkehrende Einheiten entsprechend den allgemeinen Formeln (1A), (1B), (IC), (1D), (1E), (1F), (IG), (1H), (II), (1J), (1K), (1L), (IM), (IN), (10), (1P), (IQ), (1R), (IS) und/oder (IT), auf.
-O-R6- (1A)
-S-R6- (1B)
— 0-R6-SO2-R6(1Q
— O-R^SO2-R6-O-R^- (1D) (1E)
— O— R6-SO2-R^-O-R6-R-
Figure imgf000011_0001
(IG)
~0— R-SO2-R6-R6-SO2-R^—
(1H)
— 0— R-SO2-R— R-SO2-R-O-R-SO2-R -
Figure imgf000011_0002
mit O <x, y < 100% bezogen auf die Anzahl aller wiederkehrenden Einheiten
(1J)
-O— R-CO-R6
-0— R-CO-R-CO-R- (1K)
(1L)
-O -R-CO-R-O-R-CO-R-CO-R- (IM)
-O— R-O-R-CO-R- (IN)
-O— R6-O-R6-CO-R6-CO-R6
Figure imgf000011_0003
it O < y < 100%
(1P)
— R-
-R— CH=CH- (IQ)
(1R)
— CHR— CH2
Figure imgf000011_0004
Figure imgf000012_0001
Dabei sind die Reste R6 unabhängig voneinander gleich oder verschieden 1 ,2- Phenylen, 1,3-Phenylen, 1,4-Phenylen, 4,4'-Biphenyl, ein zweiwertiger Rest eines Heteroaromaten, ein zweiwertiger Rest eines C10-Aromaten, ein zweiwertiger Rest eines C14-Aromaten und/oder ein zweiwertiger Pyren-Rest. Ein Beispiel für einen C10-Aromaten ist Naphthalin, für einen C14-Aromaten Phenanthren. Das Substitutionsmuster des Aro aten und/oder Heteroaromaten ist beliebig, im Falle von Phenylen beispielsweise kann R6 ortho-, meta- und para-Phenylen sein.
Die Reste R7, R8 und R9 bezeichnen ein-, vier- bzw. dreibindige aromatische oder heteroaromatische Gruppen und die Reste U, die innerhalb einer Wiederholungseinheit gleich sind, stehen für ein Sauerstoffatom, ein Schwefelatom oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt. Zu den im Rahmen der vorliegenden Erfindung besonders bevorzugten Polymeren mit wiederkehrenden Einheiten der allgemeinen Formel (1) gehören Homo- und Copolymere, beispielsweise statistische Copolymere, wie ^Victrex 720 P und ®Astrel an. Ganz besonders bevorzugte Polymere sind Polyarylether, Polyarylthioether, Polysulfone, Polyetherketone, Poylpyrrole, Polythiophene, Polyazole, Polyphenylene, Polyphenylenvinylene, Polyaniline, Polyazulene, Polycarbazole, Polypyrene, Polyindophenine und Polyvinylpyridine, insbesondere: Polyarylether:
Polyphenylenoxid
Figure imgf000012_0002
Polyarylthioether
Polyphenylensulfid
Figure imgf000013_0001
Polysulfone:
®Nictrex 200 P
Figure imgf000013_0002
®Victrex720P
Figure imgf000013_0003
mit n > o ®Radel
Figure imgf000013_0004
®Radel R
Figure imgf000013_0005
®Nictrex HTA
(1H-1) sθ2-^ ^o→ ^sθ2^O^O^S02Ö)-0-{Q
'Astrel
Figure imgf000013_0006
mitn < o ®Udel H3 (1F-1)
∞ o o>-κ Ή3o o: Polyetherketone: PEK
Figure imgf000014_0001
PEKK
(1K-1)
-°^_ co-ö^ ö>t
PEKEKK
-^^ -∞^ -o^^∞-^ co^; (1 -1)
Ju
PEEK
Figure imgf000014_0002
PEEKK
Figure imgf000014_0003
Polypyrrole:
Figure imgf000014_0004
Polythiophene:
Figure imgf000014_0005
Polyazole:
Polybenzimidazol
Figure imgf000015_0001
Polyphenylene:
Figure imgf000015_0002
Polyphenylenvinylen:
Figure imgf000015_0003
Polyanilin:
Figure imgf000015_0004
Polyazulen:
Figure imgf000015_0005
Polycarbazol:
Figure imgf000015_0006
Polypyren:
Figure imgf000016_0001
Polyindophenine:
Figure imgf000016_0002
Polyvinylpyridin:
Figure imgf000016_0003
Erfindungsgemäß ganz besonders bevorzugt werden Polymere mit wiederkehrenden Einheiten der allgemeinen Formel (1A-1), (1B-1), (1C-1), (11-1), (1G-1), (1E-1), (1H-1), (11-1), (1F-1), (IM), (1K-1), (1L-1), (1M-1) und/oder (1N-1). Im Rahmen der vorliegenden Erfindung bezeichnet n die Anzahl der wiederkehrenden Einheiten entlang einer Makromolekülkette des Polymers. Diese Anzahl der wiederkehrende Einheiten der allgemeinen Formel (1) entlang einer Makromolekülkette des vernetzten Polymers ist vorzugsweise eine ganze Zahl größer gleich 10, insbesondere größer gleich 100. Vorzugsweise ist die Anzahl der wiederkehrende Einheiten der allgemeinen Formel (1A), (1B), (IC), (1D), (1E), (1F), (IG), (1H), (II), (U), (1K), (1L), (IM), (IN), (10), (1P), (IQ), (1R), (IS) und/oder (IT) entlang einer Makromolekülkette des vernetzten Polymers eine ganze Zahl größer gleich 10, insbesondere größer gleich 100.
In einer besonders bevorzugten Ausfuhrungsform der vorliegenden Erfindung ist das Zahlenmittel des Molekulargewichts der Makromolekülkette größer als 25.000 g/mol, zweckmäßigerweise größer 50.000 g/mol, insbesondere größer 100.000 g/mol.

Claims

Ansprüche: '
1. Protonenaustauchendes Polymer und daraus hergestellte Membran, dadurch gekennzeichnet, dass ein Anionentauscher in Hydroxylform zugesetzt wurde.
2. Verfahren zur Darstellung von Säure-Base-Blends dadurch gekennzeichnet, dass die polymere Säure als Metallsalz verwendet wird und das Metallkation Zirkon oder Titan ist und die Nachbehandlung in Wasser stattfindet.
3. Protonenleitendes Polymer und daraus hergestellte Membran, dadurch gekennzeichnet, dass zusätzlich zur polmeren Säure und gegebenenfalls polymeren Base noch ein Farbstoff hinzugesetzt wird und dass daraus hergestellte Membranen eine verringerte Methanolpermeabilität als die Kontrolle besitzen.
PCT/EP2002/007585 2001-07-07 2002-07-08 Membranen für ionentransport WO2003014201A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10293515T DE10293515D2 (de) 2001-07-07 2002-07-08 Membranen für Ionentransport
AU2002336925A AU2002336925A1 (en) 2001-07-07 2002-07-08 Membranes for ion transport

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10134793.6 2001-07-07
DE10134793A DE10134793A1 (de) 2001-07-07 2001-07-07 Membranen für Ionentransport
DE10158006.1 2001-11-22
DE10158006 2001-11-22

Publications (4)

Publication Number Publication Date
WO2003014201A2 WO2003014201A2 (de) 2003-02-20
WO2003014201A8 WO2003014201A8 (de) 2003-07-31
WO2003014201A9 true WO2003014201A9 (de) 2003-10-30
WO2003014201A3 WO2003014201A3 (de) 2005-04-07

Family

ID=27614234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007585 WO2003014201A2 (de) 2001-07-07 2002-07-08 Membranen für ionentransport

Country Status (2)

Country Link
AU (1) AU2002336925A1 (de)
WO (1) WO2003014201A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320320B4 (de) * 2003-05-06 2007-08-16 Forschungszentrum Jülich GmbH Katalysatorschicht, geeignete Katalysatorpaste, sowie Herstellungsverfahren derselben

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380590A (en) * 1978-09-19 1983-04-19 Rohm And Haas Company Emulsion copolymer cation exchange resins
US4508852A (en) * 1983-09-22 1985-04-02 Albany International Corp. Compositions and method of preparation by chlorosulfonation of difficultly sulfonatable poly(ether sulfone)
US5997642A (en) 1996-05-21 1999-12-07 Symetrix Corporation Method and apparatus for misted deposition of integrated circuit quality thin films
DE19622337C1 (de) 1996-06-04 1998-03-12 Dlr Deutsche Forschungsanstalt Vernetzung von modifizierten Engineering Thermoplasten
US6024799A (en) 1997-07-11 2000-02-15 Applied Materials, Inc. Chemical vapor deposition manifold

Also Published As

Publication number Publication date
WO2003014201A8 (de) 2003-07-31
WO2003014201A2 (de) 2003-02-20
AU2002336925A1 (en) 2003-02-24
WO2003014201A3 (de) 2005-04-07

Similar Documents

Publication Publication Date Title
EP1639153B1 (de) Composites und compositemembranen
DE60214166T2 (de) Polymerelektrolyt für eine brennstoffzelle des festpolymertyps und brennstoffzelle
DE102009020232B4 (de) Sulfonierte Polyperfluorcyclobutan-Polyphenylen-Polymere für PEM-Brennstoffzellenanwendungen
EP1073690B1 (de) Säure-base-polymerblends und ihre verwendung in membranprozessen
EP1971635B1 (de) Protonenleitende polymermembran
WO2001084657A2 (de) Polymere membranen
EP1432741B1 (de) Sulfinatgruppen enthaltende polymere und verfahren zu ihrer herstellung
DE102014009170A1 (de) Kombinatorisches Materialsystem für Ionenaustauschermembranen und dessen Verwendung in elektrochemischen Prozessen
DE19919881A1 (de) Organisch-Anorganische Komposites und Kompositmembranen aus Ionomeren oder Ionomerblends und aus Schicht- oder Gerätsilicaten
WO2010146052A1 (de) Aromatische polyethersulfon-blockcopolymere
DE19919708A1 (de) Stufenweise Alkylierung von polymeren Aminen
EP1856188A1 (de) Sulfonierte poly(arylene) als hydrolytisch und thermo-oxidativ stabile polymere
DE60033681T2 (de) Komposit-ionenaustauschmembranen
DE60029731T2 (de) Fester Polymerelektrolyt mit hoher Dauerhaftigkeit
EP1373364B1 (de) Sulfoniertes polyetherketonketon
WO2003060012A1 (de) Funktionalisierte hauptkettenpolymere
US7196151B2 (en) Functionalized main chain polymers
EP1292634B1 (de) Perfluorsulfonsäure-menbranen, verfahren zu ihrer herstellung und verwendung für brennstoffzellen
WO2003014201A9 (de) Membranen für ionentransport
EP1673832B1 (de) Schichtstrukturen und verfahren zu deren herstellung
DE3143804A1 (de) Mikroporoese ionenaustauschermembran und verfahren zu ihrer herstellung
WO2008034399A1 (de) Mischungen sulfonierter und phosphonierter polymere
DE10134793A1 (de) Membranen für Ionentransport
DE10295737B4 (de) Kovalent vernetzter Komposit, kovalente vernetzte Kompositmembran, Verfahren zu deren Herstellung und Verwendung der Membranen
DE102022120196A1 (de) Seitenkettenfunktionalisierte Polystyrole als Membranmaterialien für alkalische Wasserelektrolyseure, Brennstoffzellen und Flow-Batterien

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 08/2003 UNDER (30) REPLACE "10156575.5, 21 NOVEMBER 2001 (21.11.2001)" BY "10158006.1 22 NOVEMBER 2001 (22.11.2001)"

COP Corrected version of pamphlet

Free format text: PAGES 1-13, DESCRIPTION, REPLACED BY NEW PAGES 1-16; PAGE 14, CLAIMS, REPLACED BY A NEW PAGE 17; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

REF Corresponds to

Ref document number: 10293515

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10293515

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)