WO2003054566A1 - Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid - Google Patents
Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid Download PDFInfo
- Publication number
- WO2003054566A1 WO2003054566A1 PCT/IB2002/005599 IB0205599W WO03054566A1 WO 2003054566 A1 WO2003054566 A1 WO 2003054566A1 IB 0205599 W IB0205599 W IB 0205599W WO 03054566 A1 WO03054566 A1 WO 03054566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetoresistive
- fluid
- surface area
- layer structure
- sensing device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/74—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
- G01N27/745—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids for detecting magnetic beads used in biochemical assays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/1269—Measuring magnetic properties of articles or specimens of solids or fluids of molecules labeled with magnetic beads
Definitions
- Magnetoresistive sensing device system and method for determining a density of magnetic particles in a fluid
- the invention relates to a magnetoresistive sensing device.
- the invention also relates to a system for determining a density of magnetic particles in a fluid comprising the magnetoresistive sensing device.
- the invention further relates to a method for determining a density of magnetic particles in a fluid using the magnetoresitive sensing device.
- Chemla et al. describe in the article "Ultrasensitive magnetic biosensor for homogeneous immunoassay", PNAS, December 19, 2000, vol. 97, no. 26 a SQUID based sensor of supermagnetic particles.
- the SQUID detects the magnetic flux due to magnetic nanoparticles that are present in zone on a substrate, in a well in the surface.
- a Mylar® sheet to which the particles are attached so that they are immobilized, which fits in the well, is described as an example thereof.
- An in-plane magnetic field is applied to induce magnetic moments of the magnetic nanoparticles. Then the field is switched off.
- the subsequent relaxation of the magnetic dipoles of the attached nanoparticles according to the Neel mechanism produces a measurable time dependent field perpendicular to the plane of the immobilised zone for a period of several seconds. This field is detected by a SQUID probe placed close to the immobilised zone.
- Nanoparticles in the bulk liquid are free to rotate according to Brownian motion.
- the relaxation of the magnetic field due to this rotation is much faster than that of the immobilized particles. Therefore, the overall magnetic flux in the SQUID sensor produced by these non-immobilized particles in the fluid is almost immediately reduced to zero.
- a drawback of the known device resides in that the SQUID operates only at cryogenic temperatures.
- the accurate positioning of the SQUID with respect to the immobilized zone is difficult, and the choise of substrates is limited due to their small required thickness.
- a major disadvantage of the known device is that it is not possible to determine the volume concentration of magnetic particles in the fluid due to the fast relaxation of the magnetic nanoparticles in the bulk fluid after the magnetic field has been turned off.
- micro-arrays or biochips are revolutionising the analysis of DNA (desoxyribonucleic acid), RNA (ribonucleic acid) and proteins.
- Applications are e.g. human genotyping (e.g. in hospitals or by individual doctors or nurses), bacteriological screening, biological and pharmacological research.
- assays used to analyze small amounts of biological molecules or molecular fragments, such as a binding assay, competitive assay, displacement assay, sandwich assay or diffusion assay.
- the challenge in biochemical testing lies in the low concentration of target molecules (e.g. fmol.r 1 ) that has to be determined in a fluid sample with a high concentration of varying background material (e.g. mmol.r 1 ).
- the targets can be peptides, hormones biomarks like myoglobine, proteins,nucleic acids, steroids like cholesterol, enzymes, antigens, haptens or drugs.
- the background material or matrix can be urine, blood, or serum. Other important tests are cell counting, biological coaggulation and biological activity. Labels improve the detection limit of a target. Examples of labels are optical labels, colored beads, fluorescent chemical groups, enzymes, optical barcoding or magnetic labels.
- volume density of magnetic particles in a fluid functioning as magnetic labels to a target can be determined with very high accuracy.
- the magnetoresistive sensing device comprises a substrate with a layer structure for supporting a fluid, the layer structure having a first surface area in a first level and a second surface area in another second level and a magnetoresistive element for detecting the magnetic field of at least one magnetic particle in the fluid, the magnetoresistive element being positioned near a transition between the first and second surface area and facing at least one of the surface areas.
- the fluid comprises a liquid or a gas.
- the magnetoresistive sensing device detects the net magnetic moments of magnetic particles. Magnetic particles being in the fluid and on the layer structure have a magnetic moment m. The magnetic moments are aligned with a magnetic field, applied perpendicular to the magnetoresistive sensing device. When the substrate would have been planar, the net magnetic field in the plane of the magnetoresistive element in the substrate, due to randomly dispersed nanoparticles in the bulk of the fluid, would average out to zero.
- the transition due to the transition, there is a magnetic fringing field.
- the planes of the first and second surface areas are not necessarily parallel to each other. They can make an angle with each other.
- the surfaces are not necessarily flat.
- the transition may have a gradient profile.
- Transitions next to each other may form a wave-like surface, whereby the first surface area and second surface area can be extremely small.
- the in plane magnetic field in the magnetoresistive element can be derived by integration.
- the expression for determining the volume density is given for a transition being a step from the first to the second surface areas.
- the distance d ⁇ from the magnetoresistive sensing device to the first surface area is different from the distance d to the second surface area.
- N is the volume density is of magnetic particles in the fluid
- m is the magnetic dipole moment per particle
- x is the in-plane direction that is perpendicular to the step edge.
- the positive x-direction is the direction from the area with distance d ⁇ to the area with distance rf 2 .
- the magnetoresitive sensing device transforms the magnetic field in a resistance value. Because the resistance versus magnetic field of the magnetoresistance device is well known, the volume density can be calculated from the resistance value.
- the magnetoresistive sensing device can be based on e.g. the GMR, TMR or AMR effect.
- the magnetoresistive sensing device comprises a layer structure of thin films, preferably with a linear resistance versus magnetic field curve, especially for small magnetic fields, and with a negligible hysteresis.
- the net magnetic field generated by the magnetic particles at the transition between the first and the second surface area is strongest.
- the in-plane magnetic field in the magnetoresistive sensing device is in a first order approximation
- the x is the distance defined with respect to the center of the transition, along the direction perpendicular to the step edge direction and parallel to the first surface.
- the magnetic field that has to be detected is strongest when the magnetoresistive sensing device is present close to transition and has a short distance to the first surface.
- the transition between the first and the second surface area has a step-like profile.
- the equation (2) is a first order approximation for this situation.
- the areal density of the magnetic nanoparticles on the first surface is given by ⁇ i
- the areal density on the second surface is given by ⁇ 2 .
- the volume density of magnetic nanoparticles in the fluid containing the with nanoparticles labeled elements is given by ⁇ .
- the in-plane magnetic field below the surface step can to first order be approximated by:
- the areal particle density typically ranges between zero and 10 3 to 10 4 particles per ⁇ m 2 .
- the volume density can be calculated from a combination of the unequal output signals of several unequal magentoresistive sensing devices, as explained below. If the areal density on the first surface is unequal to the second surface, the areal densities and volume density can be determined from the structured surface, having at least three structures with an unequal combination of depths d ⁇ and dz- The surface structures each have an identical magnetoresistive sensing device, being present in the same plane, at the same position relative to the each step. Due to the different heights of the steps, the three different output signals from the sensing devices make it possible to derive the surface areal density and the concentration of magnetic particles.
- the areal and volume density can be determined from a structured surface, having at least two structures with an unequal combination of depths d ⁇ and 2 .
- a binding assay a competition assay, or a displacement assay, generally there is a probe area present on the first surface area. Attached to the probe area are binding sites.
- the magnetic particles are coupled to a target forming magnetic labels.
- the magnetic labeled target diffuses through the fluid by Brownian motion. Small particles diffuse faster and reach the binding sites faster than large particles. The magnetic labeled target is bound at the binding site.
- a competition assay there are targets of which the concentration is to be determined and magnetically labeled targets present in the fluid.
- the two species compete for binding to capture molecules. Differences in abundance and binding kinetics (diffusion, binding efficiency) determine the relative binding of the species to the capture molecules. The more magnetically labeled target is present at the binding sites, the less target was present in the test volume.
- Magnetic labeled targets are bound at the binding sites.
- Target in the volume diffuses to the binding sites and replaces the magnetic labeled target molecules.
- a determination of the volume density of magnetic particles N requires that the effect of the areal density of magnetic particles on the surfaces at levels one and two is eliminated.
- the detection accuracy can be improved when the magnetoresistive sensing device has a Wheatstone bridge configuration comprising magnetoresistive elements being positioned on the substrate.
- the first bridge -half may be located below a first transition between the a first surface area and a second surface area, and the other bridge-half being located below a second, dissimilar, transition between surface areas, such that the changes of the resistances of the two sensors, upon the application of the external field, are different.
- the detection accuracy can further be improved when the pairs of first and second magnetoresistive sensing devices or groups of first and second magnetoresistive sensing devices are used, each pair being associated with and located with a transition, the outputs of the first and second magnetoresistive devices being fed to means for detecting a change in resistance of the magnetoresistive sensing devices upon the application of the external field.
- the layer structure is formed by a plurality of grooves, positioned parallel to each other.
- the magnetoresistive sensing elements are made of a material of which the resistance versus field curve is to a first approximation a linear function of the x-component of the applied field.
- the elements are present in the substrate and are substantially stripe-shaped and centered along the edges of the grooves. The distance between the groove edges is larger than the width of the stripe shaped magnetoresistive elements.
- the layer structure is also formed by a plurality of grooves, positioned parallel to each other.
- the magnetoresistive sensing elements are now made of a material of which the resistance versus field curve is to a first approximation a symmetric function of the x-component of the applied field. It is only sensitive to the absolute value of the x-component of the field, and not to its sign.
- the elements are present in the substrate and can have a dimension in the x-direction that is much larger than the distance between the edges between the grooves. In that ' case the precise position of the grooves with respect to the element is not of a critical importance.
- the dimension of the magnetoresistive stripe-shaped elements is of the order of the distance between the groove edges, or smaller, the stripe-shaped sensor elements are centered along the edges of the grooves.
- biochip This provides the ability to analyze small amounts of a large number of different molecules or molecular fragments in parallel, in a short time.
- One biochip can hold for 1000 or more different molecular fragments. It is expected that the usefulness of information that can become available from the use of biochips will increase rapidly during the coming decade, as a result of projects such as the Human Genome Project, and follow-up studies on the functions of genes and proteins.
- the substrates with the grooves can be stacked, forming a three dimensional array of channels. This allows a very compact detection system. Especially when the data processing occurs in the substrates stacked on each other.
- the means for detecting a change in magnetoresistance of the magnetoresistive sensing devices comprise an integrated circuit.
- An electronic integrated circuit can easily be manufactured in the substrate.
- the substrate is a semiconductor, conventional techniques can be used to obtain electronic devices like MOSFET, bipolar transistors, diodes, optical devices or a variety of sensors such as temperature sensors, ion sensitive electrodes, pressure sensors, viscosity sensors, flow sensors and current sensors or voltage sensors.
- a magnetoresistive sensing device comprising a substrate with a layer structure for supporting a fluid, the layer structure having a first surface area in a first level and a second surface area in another second level and a magnetoresistive element for detecting the magnetic field of at least one magnetic particle in the fluid, the magnetoresistive element being positioned near a transition between the first and second surface area and facing at least one of the surface areas, and an electronic circuit for detecting a change in magnetoresistance of the magnetoresistive sensing devices, the electronic circuit being present in the substrate.
- the electronic circuit may comprise a differential comparator circuit.
- a magnetoresistive sensing device comprising a substrate with a layer structure for supporting a fluid, the layer structure having a first surface area in a first level and a second surface area in another second level and a magnetoresistive element for detecting the magnetic field of at least one magnetic particle in the fluid, the magnetoresistive element being positioned near a transition between the first and second surface area and facing at least one of the surface areas, the method comprising the steps of - providing a fluid comprising magnetic particles over the layer structure
- the volume density of magnetic nanoparticles is derived from the resistance change of the magnetoresistive sensing device upon the application of a perpendicular magnetic field, which follows from the change of the voltage difference over the device upon the application of the magnetic field when the sensor is operated at a constant sense current.
- it is required to determine independently the particle densities on the surfaces and in the bulk. This can be achieved by combining the measurements of several sensors integrated on the same chip or in the same device, the sensors having different surface structures, e.g. different values for d] and d .
- the data from an array of sensors can then be combined to yield accurate values of ⁇ j, ⁇ 2 and N.
- Equation (3) can be used for that purpose if the width of the magnetoresistive sensing element is much smaller than the distance dl and d2. This is generally not the case, since the width of the sensing element can be of the same magnitude as the distance dl and d2.
- the derived equations are therefore just to illustrate the principle of the invention.
- the distances d3 and d4 being the distance of the second sensing element to the third and fourth surface respectively.
- d6/d5 is equal to d2/dl, but d6, (d5) is not equal to dl,(d2) respectively. From the difference in resistance values between the sensing elements sensoren with dl/d2 en d5/d6 follows ( ⁇ i/dl- ⁇ 2 /d2), so the measured magnetic field of the dl/d2 sensor can be corrected.
- Fig. 1 a schematic cross sectional view of the magnetoresistive sensing device according to the invention.
- Fig. 2 a schematic top view of the magnetoresistive sensing device according to the invention.
- Fig. 3 a graph illustrating the x-component of the magnetic field of the nanoparticles in the plane of a GMR sensing element.
- Fig. 4 Schematic cross-section of the magnetoresistive sensing device, having a volume density and areal densities of magnetic particles.
- Fig. 5 a graph of the response of a multilayer GMR sensor element to an applied field according to the present invention.
- Fig. 6 schematically shows a multi-step structure above a plurality of magnetic sensor elements.
- Fig. 7 a schematic cross sectional view of the system according to the invention.
- Fig. 8 schematically shows a cross sectional view of a layer structure, with surface areas in the first to sixth level.
- the magnetoresistive sensing device in Fig. 1 comprises a substrate (1) with a layer structure (2) for supporting a fluid (3).
- the layer structure has a first surface area (4) in a first level and a second surface area (5) in another second level and a magnetoresistive element (6) for detecting the magnetic field of at least one magnetic particle (7) in the fluid (3).
- the magnetoresistive element (6) has been positioned near a transition (8) between the first and second surface area and facing at least one of the surface areas (4,5).
- the fluid comprises a target molecule species or an antigen.
- Any biological molecule that can have a magnetical label can be of potential use in this application.
- the width 10 and length 11 of the magneto-resistive (MR) sensor element is much larger than the diameter of the magnetic nanoparticles of which the presence and concentration is to be measured.
- the nanoparticles may for example have a diameter between 1 and 250 nm, preferably between 3 and 100 nm, most preferred between 10 and 60 nm. For such small particles, the diffusion is fast.
- the width and length dimensions of sensor elements are at least a factor 10 or more, preferably a factor 100 or more, larger than the diameter of the nanoparticles, for example 1 ⁇ m x 1 ⁇ m. Other dimensions for the sensor elements are also possible. If different dimensions are used, different S/N ratios are obtained.
- the sensing element is separated from the magnetic nanoparticles 7 by a layer e.g. silicon dioxide, silicon nitride, or an organic material such as a resist or epoxy for example.
- the magnetoresistive sensing element consists of a GMR strip.
- the GMR strip of the sensing element can be a meander, resulting in a larger area and improved sensitivity.
- a magnetic field is applied perpendicular to the magnetoresistive sensing element 6, there is a fringing field at the transition between the first and the second surface area of the layer structure.
- Fig. 3 is shown that the magnetic field in the x-direction of the sensing element is largest if the center of the sensing element is below the center of the transition 8.
- the magnetisation of the nanoparticles 7 is controlled by an external field applied perpendicular to the magnetorsistive element (i.e. along the z-axis) as shown in Fig. 4.
- the magnetoresistive element is now exposed to the magnetic field resulting from the nanoparticles 7.
- the in-plane magnetic field below a step-like transition between the first and second surface area can to first order be approximated by:
- the areal density of the magnetic nanoparticles 7 on the first surface area is given by density ⁇ i, and on the second surface area by density ⁇ 2 .
- the volume density of magnetic nanoparticles 7 in the fluid containing the with nanoparticles 7 labeled elements is given by ⁇ .
- the density ⁇ of magnetic particles is derived from the resistance of the sensing element.
- a typical output signal from the magnetoresitive element 6 is shown in Fig. 5.
- Fig 6 shows a multiple step structure and many sensing elements. Over a large area the volume density can be determined.
- a structure is shown which has many levels on top of the substrate. This structure is useful for the determination of uniform areal density.
- the first and second surface areas can also be chemically structured.
- the surface of the layer structure is plasma polymerized.
- PEGs polyethylene
- Capture molecules can for example be antibodies, antibody fragments, receptors, ligands, nucleic acids or oligonucleotides.
- the capture molecules are chemically or physical-chemically provided over the surface. These capture molecules are able to selectively bind a target.
- the volume density N can be determined from the difference of the output signals of the magnetoresistive sensing elements 6 and 6'.
- the difference of the signal yields -m/27T .N(ln d2/dl- In d4/d3).
- the volume concentration N is determined.
- the output signals from the magnetoresistive sensing elements can be amplified, for instance with a differential amplifier.
- semiconductor substrate 1 there are many semiconductor devices present which form an electronic circuit 30, such as bipolar transistors, mosfets and diodes.
- a magnetic field is applied perpendicular to the magnetoiresistive sensing elements.
- the magnetic field has a magnitude of typically 100- 1000 Oe and is switched.
- the uniformity of the magnetic field is optimized.
- the current through the coil or coils is registered.
- the magnetoresistance value of the sensing elements are registered.
- the magnetic field must then be tuned, for instance with small coils which yield a compensation field gradient. Having a uniform magnetic field, the magnetic field is on during a typical time of 1 ms.
- the magnetoresistive sensing elements 6 and 6' are sensed by sending a current through the devices. From the difference in output signals the volume density and areal density is determined. It is of large importance to have the output signals of the magnetoresistive sensing elements at zero magnetic field as a reference.
- the reference resistance values are determined with a lock-in technique. It is also possible to measure for instance during 1 ms at zero magnetic field, 1 ms at a magnetic field H and again 1 ms at zero magnetic field to obtain a reference.
- the relaxation time is much smaller than 1 ms.
- the magnetic particles diffuse very rapidly.
- the time the magnetic field is off is typical 1 ms. In several areas of the sample can be measured as a function of time.
- the areal particle density typically ranges between zero and 10 3 to 10 4 particles per ⁇ m 2 .
- a second layer structure is present as shown in Fig 7.
- the second layer structure has a third surface area in a third level and a fourth surface area in a fourth level.
- the second layer structure corresponding a second magnetoresistive element being positioned near a transition between the third and fourth surface area and facing at least the third surface area.
- the difference in magnetic field H x] -H x2 -m/27r . N (In d2/dl- In d4/d3). From the difference in magnetoresistance and the known R(H) characteristic, the volume density can be extracted. From the magnetoresistance signal of the first Wheatstone bridge, the areal density can be determined.
- the volume density can be extracted.
- the areal density ⁇ and ⁇ 2 can be determined.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003555225A JP4347054B2 (en) | 2001-12-21 | 2002-12-18 | Magnetoresistive detection device, system, and method for measuring magnetic particle density in fluid |
US10/498,952 US7106051B2 (en) | 2001-12-21 | 2002-12-18 | Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid |
AU2002348754A AU2002348754A1 (en) | 2001-12-21 | 2002-12-18 | Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid |
EP02781704A EP1459084A1 (en) | 2001-12-21 | 2002-12-18 | Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid |
KR10-2004-7009569A KR20040075011A (en) | 2001-12-21 | 2002-12-18 | Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01205092 | 2001-12-21 | ||
EP01205092.8 | 2001-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003054566A1 true WO2003054566A1 (en) | 2003-07-03 |
Family
ID=8181513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2002/005599 WO2003054566A1 (en) | 2001-12-21 | 2002-12-18 | Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid |
Country Status (8)
Country | Link |
---|---|
US (1) | US7106051B2 (en) |
EP (1) | EP1459084A1 (en) |
JP (1) | JP4347054B2 (en) |
KR (1) | KR20040075011A (en) |
CN (1) | CN100454034C (en) |
AU (1) | AU2002348754A1 (en) |
TW (1) | TWI290225B (en) |
WO (1) | WO2003054566A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005116661A1 (en) * | 2004-05-24 | 2005-12-08 | Koninklijke Philips Electronics N.V. | Magneto-resistive sensor for high sensitivity depth probing |
JP2005342661A (en) * | 2004-06-04 | 2005-12-15 | Canon Inc | Mass transfer device and mass transfer method |
JP2007500347A (en) * | 2003-07-30 | 2007-01-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | On-chip magnetic particle sensor with improved SNR |
WO2007042959A2 (en) * | 2005-10-12 | 2007-04-19 | Koninklijke Philips Electronics N.V. | Magnetic sensor device with different internal operating frequencies |
WO2007129279A2 (en) | 2006-05-10 | 2007-11-15 | Koninklijke Philips Electronics N. V. | A magnetic system for biosensors |
WO2007129277A2 (en) | 2006-05-10 | 2007-11-15 | Koninklijke Philips Electronics N. V. | A magnetic system |
JP2007538252A (en) * | 2004-05-18 | 2007-12-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Magnetic rotation to improve signal-to-background ratio in biological detection |
WO2008044162A3 (en) * | 2006-10-09 | 2008-07-17 | Koninkl Philips Electronics Nv | Magnetic sensor device with pairs of detection units |
EP1884763A3 (en) * | 2006-08-01 | 2009-01-21 | MagIC Technologies Inc. | GMR biosensor with enhanced sensivity |
DE102007057667A1 (en) * | 2007-11-30 | 2009-09-03 | Siemens Ag | Device for detecting particles in a fluid |
WO2010076032A1 (en) | 2008-12-30 | 2010-07-08 | Microcoat Biotechnologie Gmbh | Device, instrument and process for detecting magnetically labeled analytes |
US8283912B2 (en) | 2007-04-03 | 2012-10-09 | Koninklijke Philips Electronics N.V. | Sensor device with magnetic washing means |
US8323570B2 (en) | 2006-03-21 | 2012-12-04 | Koninklijke Philips Electronics N.V. | Microelectronic sensor device with sensor array |
WO2014005869A1 (en) * | 2012-07-04 | 2014-01-09 | Siemens Aktiengesellschaft | Arrangement for quantifying cells of a cell suspension |
US10809195B2 (en) | 2015-12-23 | 2020-10-20 | Koninklijke Philips N.V. | Optical detection of particles in a fluid |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0413752D0 (en) * | 2004-06-19 | 2004-07-21 | Hall Effect Technologies Ltd | Method of determining the presence and/or concentration of substances of interest in fluids |
EP1831708A2 (en) * | 2004-12-23 | 2007-09-12 | Koninklijke Philips Electronics N.V. | Method and device for characterization of a magnetic field applied to a magnetic sensor |
WO2006134546A2 (en) * | 2005-06-17 | 2006-12-21 | Koninklijke Philips Electronics N.V. | Accurate magnetic biosensor |
JP4837410B2 (en) * | 2006-03-22 | 2011-12-14 | 富士フイルム株式会社 | Target compound detection method |
DE102006016334B4 (en) * | 2006-04-06 | 2018-11-15 | Boehringer Ingelheim Vetmedica Gmbh | Method and device for detecting magnetizable particles |
JP4144631B2 (en) * | 2006-04-26 | 2008-09-03 | Tdk株式会社 | Magnetic sensor and method of manufacturing magnetic sensor |
WO2008044174A1 (en) * | 2006-10-12 | 2008-04-17 | Koninklijke Philips Electronics N.V. | Magnetic and/or electric label assisted detection system and method |
DE602007007243D1 (en) | 2007-02-23 | 2010-07-29 | Koninkl Philips Electronics Nv | SENSOR DEVICE AND METHOD FOR DETECTING MAGNETIC PARTICLES |
EP1967855A1 (en) * | 2007-03-08 | 2008-09-10 | Koninklijke Philips Electronics N.V. | Magnetic sensor device |
US8797028B2 (en) * | 2007-10-25 | 2014-08-05 | Koninklijke Philips N.V. | Sensor device for target particles in a sample |
US20100273269A1 (en) * | 2007-12-04 | 2010-10-28 | Koninklijke Philips Electronics N.V. | Method of measuring molecules in a fluid using label particles |
CA2711956A1 (en) | 2008-01-17 | 2009-07-23 | The Regents Of The University Of California | Integrated magnetic field generation and detection platform |
CN101999075B (en) * | 2008-04-11 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | Detection apparatus for detecting particles |
TWI398702B (en) * | 2008-10-02 | 2013-06-11 | Au Optronics Suzhou Corp Ltd | Direct backlight module supporting apparatus and direct backlight module |
EP2340434B1 (en) | 2008-10-17 | 2014-03-19 | Koninklijke Philips N.V. | Pulsed magnetic actuation for sensitive assays |
CN102356329B (en) * | 2009-03-10 | 2015-04-08 | 小利兰·斯坦福大学托管委员会 | Temperature and drift compensation in magnetoresistive sensors |
WO2010136440A1 (en) * | 2009-05-25 | 2010-12-02 | Insplorion Ab | Sensor using localized surface plasmon resonance (lspr) |
KR101504783B1 (en) * | 2010-04-05 | 2015-03-23 | 한국전자통신연구원 | Method for diagnosing of Alzheimer's disease using giant magneto resistance and magnetic bead-polyprotein complex for Alzheimer's disease |
CN103154739B (en) | 2010-08-05 | 2016-01-06 | 雅培医护站股份有限公司 | Magnetic immunosensor and using method |
WO2012019108A1 (en) | 2010-08-05 | 2012-02-09 | Abbott Point Of Care Inc. | Magnetic immunosensor with trench configuration and method of use |
US9329175B2 (en) | 2010-08-05 | 2016-05-03 | Abbott Point Of Care Inc. | Oscillating immunoassay method and device |
WO2012019104A1 (en) | 2010-08-05 | 2012-02-09 | Abbott Point Of Care Inc. | Immunoassay method and device with magnetically susceptible bead capture |
US20140099663A1 (en) * | 2010-11-15 | 2014-04-10 | Regents Of The University Of Minnesota | Gmr sensor |
DE102011004806A1 (en) * | 2011-02-28 | 2012-08-30 | Siemens Aktiengesellschaft | Magnetic flow cytometry for high sample throughput |
PT2800970T (en) | 2012-01-04 | 2016-12-27 | Magnomics S A | Monolithic device combining cmos with magnetoresistive sensors |
WO2013167933A1 (en) * | 2012-05-08 | 2013-11-14 | University Of Calcutta | Static magnetic field induced differential fluorescence emission |
US9459210B2 (en) | 2012-05-08 | 2016-10-04 | University Of Calcutta | Static magnetic field induced differential fluorescence emission |
TWI468716B (en) * | 2012-11-12 | 2015-01-11 | Voltafield Technology Corp | Integrated magnatoresistive sensing device |
US9702748B2 (en) * | 2015-10-14 | 2017-07-11 | International Business Machines Corporation | Graphene-based magnetic hall sensor for fluid flow analysis at nanoscale level |
CN108885190B (en) * | 2016-03-28 | 2022-06-24 | Tdk株式会社 | Biosensor and biochip |
CN107796865B (en) | 2016-09-05 | 2021-05-25 | 财团法人工业技术研究院 | Biomolecular magnetic sensor |
CN109188320B (en) * | 2018-08-06 | 2020-08-07 | 哈尔滨工业大学 | Flow field imaging system and method based on magnetoresistance effect |
US11609208B2 (en) * | 2019-04-12 | 2023-03-21 | Western Digital Technologies, Inc. | Devices and methods for molecule detection based on thermal stabilities of magnetic nanoparticles |
CN115867786A (en) * | 2020-07-08 | 2023-03-28 | 西部数据技术公司 | Single molecule real-time label-free dynamic biosensing with nanoscale magnetic field sensors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981297A (en) * | 1997-02-05 | 1999-11-09 | The United States Of America As Represented By The Secretary Of The Navy | Biosensor using magnetically-detected label |
WO2000026669A1 (en) * | 1998-11-05 | 2000-05-11 | Bio-Spectrum Technologies, Inc. | System and method for biochemical assay |
WO2000061803A1 (en) * | 1999-04-13 | 2000-10-19 | Nanogen, Inc. | Magnetic bead-based array for genetic detection |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981294A (en) * | 1995-11-29 | 1999-11-09 | Metrika, Inc. | Device for blood separation in a diagnostic device |
CN1141386C (en) * | 1999-12-28 | 2004-03-10 | 中国科学院化工冶金研究所 | Method for cultivating anchorage dependent animal cell by magnetic stabilized fluid bed |
US20030096275A1 (en) * | 2001-08-20 | 2003-05-22 | Laing Lance G. | Biosensor for small molecule analytes |
-
2002
- 2002-12-18 KR KR10-2004-7009569A patent/KR20040075011A/en not_active Application Discontinuation
- 2002-12-18 EP EP02781704A patent/EP1459084A1/en active Pending
- 2002-12-18 JP JP2003555225A patent/JP4347054B2/en not_active Expired - Fee Related
- 2002-12-18 US US10/498,952 patent/US7106051B2/en not_active Expired - Fee Related
- 2002-12-18 AU AU2002348754A patent/AU2002348754A1/en not_active Abandoned
- 2002-12-18 WO PCT/IB2002/005599 patent/WO2003054566A1/en active Application Filing
- 2002-12-18 CN CNB028253973A patent/CN100454034C/en not_active Expired - Fee Related
- 2002-12-27 TW TW091137683A patent/TWI290225B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981297A (en) * | 1997-02-05 | 1999-11-09 | The United States Of America As Represented By The Secretary Of The Navy | Biosensor using magnetically-detected label |
WO2000026669A1 (en) * | 1998-11-05 | 2000-05-11 | Bio-Spectrum Technologies, Inc. | System and method for biochemical assay |
WO2000061803A1 (en) * | 1999-04-13 | 2000-10-19 | Nanogen, Inc. | Magnetic bead-based array for genetic detection |
Non-Patent Citations (1)
Title |
---|
EDELSTEIN R L ET AL: "THE BARC BIOSENSOR APPLIED TO THE DETECTION OF BIOLOGICAL WARFARE AGENTS", BIOSENSORS & BIOELECTRONICS, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 14, no. 10/11, January 2000 (2000-01-01), pages 805 - 813, XP001069427, ISSN: 0956-5663 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007500347A (en) * | 2003-07-30 | 2007-01-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | On-chip magnetic particle sensor with improved SNR |
JP2007538252A (en) * | 2004-05-18 | 2007-12-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Magnetic rotation to improve signal-to-background ratio in biological detection |
WO2005116661A1 (en) * | 2004-05-24 | 2005-12-08 | Koninklijke Philips Electronics N.V. | Magneto-resistive sensor for high sensitivity depth probing |
JP2005342661A (en) * | 2004-06-04 | 2005-12-15 | Canon Inc | Mass transfer device and mass transfer method |
WO2007042959A2 (en) * | 2005-10-12 | 2007-04-19 | Koninklijke Philips Electronics N.V. | Magnetic sensor device with different internal operating frequencies |
WO2007042959A3 (en) * | 2005-10-12 | 2007-08-16 | Koninkl Philips Electronics Nv | Magnetic sensor device with different internal operating frequencies |
US8323570B2 (en) | 2006-03-21 | 2012-12-04 | Koninklijke Philips Electronics N.V. | Microelectronic sensor device with sensor array |
US8683877B2 (en) | 2006-03-21 | 2014-04-01 | Koninklijk Philips N.V. | Microelectronic device with heating array |
US8486718B2 (en) | 2006-05-10 | 2013-07-16 | Koninklijke Philips N.V. | Magnetic system |
WO2007129277A2 (en) | 2006-05-10 | 2007-11-15 | Koninklijke Philips Electronics N. V. | A magnetic system |
WO2007129279A2 (en) | 2006-05-10 | 2007-11-15 | Koninklijke Philips Electronics N. V. | A magnetic system for biosensors |
EP2390650A1 (en) * | 2006-08-01 | 2011-11-30 | MagIC Technologies Inc. | GMR biosensor with enhanced sensitivity |
US8728825B2 (en) | 2006-08-01 | 2014-05-20 | Headway Technologies, Inc. | GMR sensor stripe for a biosensor with enhanced sensitivity |
EP1884763A3 (en) * | 2006-08-01 | 2009-01-21 | MagIC Technologies Inc. | GMR biosensor with enhanced sensivity |
EP2390651A1 (en) * | 2006-08-01 | 2011-11-30 | MagIC Technologies Inc. | GMR biosensor with enhanced sensitivity |
US8133439B2 (en) | 2006-08-01 | 2012-03-13 | Magic Technologies, Inc. | GMR biosensor with enhanced sensitivity |
US10203379B2 (en) | 2006-08-01 | 2019-02-12 | Headway Technologies, Inc. | GMR biosensor with enhanced sensitivity |
US9429544B2 (en) | 2006-08-01 | 2016-08-30 | Headway Technologies, Inc. | GMR biosensor with enhanced sensitivity |
WO2008044162A3 (en) * | 2006-10-09 | 2008-07-17 | Koninkl Philips Electronics Nv | Magnetic sensor device with pairs of detection units |
US8283912B2 (en) | 2007-04-03 | 2012-10-09 | Koninklijke Philips Electronics N.V. | Sensor device with magnetic washing means |
DE102007057667A1 (en) * | 2007-11-30 | 2009-09-03 | Siemens Ag | Device for detecting particles in a fluid |
US8641974B2 (en) | 2007-11-30 | 2014-02-04 | Siemens Aktiengesellschaft | Device for magnetic detection of individual particles in a microfluid channel |
EP2219033A1 (en) | 2008-12-30 | 2010-08-18 | MicroCoat Biotechnologie GmbH | Device, instrument and process for detecting magnetically labeled analytes |
WO2010076032A1 (en) | 2008-12-30 | 2010-07-08 | Microcoat Biotechnologie Gmbh | Device, instrument and process for detecting magnetically labeled analytes |
WO2014005869A1 (en) * | 2012-07-04 | 2014-01-09 | Siemens Aktiengesellschaft | Arrangement for quantifying cells of a cell suspension |
US10809195B2 (en) | 2015-12-23 | 2020-10-20 | Koninklijke Philips N.V. | Optical detection of particles in a fluid |
Also Published As
Publication number | Publication date |
---|---|
US7106051B2 (en) | 2006-09-12 |
US20050035757A1 (en) | 2005-02-17 |
KR20040075011A (en) | 2004-08-26 |
JP4347054B2 (en) | 2009-10-21 |
CN1605031A (en) | 2005-04-06 |
EP1459084A1 (en) | 2004-09-22 |
TW200411175A (en) | 2004-07-01 |
CN100454034C (en) | 2009-01-21 |
TWI290225B (en) | 2007-11-21 |
AU2002348754A1 (en) | 2003-07-09 |
JP2005513485A (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7106051B2 (en) | Magnetoresistive sensing device, system and method for determining a density of magnetic particles in fluid | |
EP1456658B1 (en) | Sensor and method for measuring the areal density of magnetic nanoparticles on a micro-array | |
US20060194327A1 (en) | On-chip magnetic particle sensor with improved snr | |
US9372188B2 (en) | Integrated membrane sensor | |
US20080036450A1 (en) | Method for Calibrating a Transfer Function of a Magnetic Sensor | |
US20090243594A1 (en) | Method and device for characterization of a magnetic field applied to a magnetic sensor | |
US20100176807A1 (en) | Magnetic sensor device | |
EP2274633B1 (en) | Spintronic magnetic nanoparticle sensors with an active area located on a magnetic domain wall | |
US20080206892A1 (en) | Rapid Magnetic Biosensor With Integrated Arrival Time Measuremnt | |
WO2007060568A2 (en) | Magnetic sensor device with sample chamber | |
US20100182002A1 (en) | Magnetic sensor device with field generator and sensor element | |
EP1936350A1 (en) | A method for quantitatively measuring agglutination parameters | |
EP1967855A1 (en) | Magnetic sensor device | |
WO2010013169A1 (en) | Magnetic sensor device with conductive sensor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002781704 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10498952 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1365/CHENP/2004 Country of ref document: IN Ref document number: 2003555225 Country of ref document: JP Ref document number: 20028253973 Country of ref document: CN Ref document number: 1020047009569 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2002781704 Country of ref document: EP |