Nothing Special   »   [go: up one dir, main page]

WO1998015047A1 - Electricity storing device - Google Patents

Electricity storing device Download PDF

Info

Publication number
WO1998015047A1
WO1998015047A1 PCT/JP1997/003506 JP9703506W WO9815047A1 WO 1998015047 A1 WO1998015047 A1 WO 1998015047A1 JP 9703506 W JP9703506 W JP 9703506W WO 9815047 A1 WO9815047 A1 WO 9815047A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
connection mode
battery
capacitors
storage means
Prior art date
Application number
PCT/JP1997/003506
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyasu Suzuki
Toshiya Shinbo
Nobuya Furukawa
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP08128897A external-priority patent/JP3498529B2/en
Priority claimed from JP08128797A external-priority patent/JP3557840B2/en
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Publication of WO1998015047A1 publication Critical patent/WO1998015047A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device suitable for use in an electric vehicle.
  • the current power source for electric vehicles is a battery in which a large number of storage batteries (hereinafter also referred to as batteries) are connected in series (assembled batteries). You are using
  • the output voltage is determined depending on the discharge amount, such as a lithium-ion battery (hereinafter, referred to as a lithium battery) (see FIG. 5)
  • the voltage of each battery is equalized, and the It is possible to equalize the amount of discharge of the battery (in other words, the amount of charge or the remaining capacity), and charge while adjusting the voltage of each battery to be equal.
  • a voltage balancing circuit for a storage battery has been conventionally provided, and is configured as shown in FIG.
  • the circuit shown in FIG. 12 is an excerpt of one cell (or one module) of the voltage balancing circuit of the assembled battery, and each battery is equipped with the same circuit.
  • a charging operation is performed in a state including such a circuit.
  • a discharging operation is performed by the circuit.
  • the terminal voltage of the battery 101 rises due to the progress of charging, but this state is monitored by the voltage monitoring circuit (voltage detection circuit) 104, and the voltage VB across the cell exceeds the set voltage.
  • the discharge switch 102 is shifted to the ON state (closed state).
  • the discharge resistor 103 is energized, and the electric energy is consumed by being converted into heat.
  • the discharge switch 102 is shifted to the off state (open state). By repeatedly turning on and off the discharge switch 102, the voltage VB of the battery cell is adjusted to the set voltage.
  • a method is generally used in which a power element such as a power transistor is used in place of the discharge switch 102 and the voltage is adjusted by linear control instead of on / off control.
  • the energy exceeding the set voltage is wasted by the discharge resistor 103 in the form of heat.
  • balancing can be performed only when the cell voltage VB at the end of charging rises, and there is a problem that voltage balancing cannot be performed using idle time during discharging or when the vehicle is not used. is there.
  • This technology connects capacitors at both ends of a series-connected battery pack and charges each battery cell (charged cell) almost uniformly.
  • a large-capacity capacitor is required, and each battery cell is required.
  • the control to select the desired cell to be charged while detecting the terminal voltage of the battery is complicated with the control port.
  • each capacitor is connected in parallel with the corresponding battery, and each capacitor is placed adjacent to the corresponding battery.
  • the voltage balancing time of each battery greatly changes depending on the specification of the capacitor and the switching cycle (or switching frequency) for switching each connection mode, so that the performance of the battery may not be fully exploited. Conceivable. Also, simply setting the switching frequency high can shorten the voltage balancing time, but in this case, the energy loss increases with the switching operation at the time of mode switching. Challenges arise. Disclosure of the invention
  • An object of the present invention is to provide a power storage device that can balance the amount of charge of power storage means even when the battery is not fully charged, while preventing waste of electric energy.
  • Another object of the present invention is to meet the specifications and performance of batteries and capacitors.
  • Power storage device that efficiently balances the voltages of a plurality of batteries in the same manner, and can reduce the time for balancing the voltages of a plurality of storage batteries while reliably preventing energy loss due to the switching operation described above. It is to provide
  • a power storage device of the present invention includes: a plurality of power storage units connected in series; the same number of power storage units as the plurality of power storage units; and the plurality of power storage units for each of the plurality of power storage units.
  • Control means for controlling the switching means so as to sequentially switch to the adjacent power storage means.
  • connection mode by the switching means a first connection mode in which the plurality of power storage means are connected in parallel to each of the plurality of power storages; and a first connection mode in which each of the plurality of power storages is connected to the first
  • the control means includes a first connection mode and a second connection mode which are arranged at predetermined intervals. It is preferable that the switching means be controlled so as to alternately switch between the two.
  • connection modes by means include a first connection mode in which the plurality of power storage means are connected in parallel to each of the plurality of power storage devices, and a first connection mode in which each of the plurality of power storage devices is connected in the first connection mode.
  • a second connection mode in which power storage means adjacent to the connected power storage means are connected in parallel, and a first connection mode in which the plurality of power storage devices are respectively connected to the plurality of power storage devices through the plurality of resistors.
  • a third connection mode in which the connected power storage means or the power storage means connected in the second connection mode are connected in parallel, respectively, wherein the control means first performs the third connection mode.
  • control means is configured to control the switching means so that the potential states of the plurality of power storage means are equal to each other.
  • control means is configured to set the predetermined cycle based on a resistance value and an electric capacity of the capacitor, and more preferably, the predetermined cycle includes: The time constant determined by the product of the resistance value and the electric capacity of the capacitor is set to be approximately 1 Z3 or less.
  • the power storage means is a storage battery, and a plurality of the storage batteries are connected in series and configured as an assembled battery used for an electric vehicle power supply.
  • FIG. 1 is a circuit diagram showing a main configuration of a power storage device as a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram corresponding to FIG. 1 for describing the operation of the power storage device according to the first embodiment of the present invention, and is a diagram illustrating an operation mode different from FIG.
  • FIG. 3 is a main part circuit diagram for explaining the operation principle of the power storage device as the first embodiment of the present invention.
  • FIG. 4 is a main part circuit diagram for explaining the operation principle of the power storage device as the first embodiment of the present invention.
  • FIG. 5 is a graph showing characteristics of a battery in the power storage device according to the first embodiment of the present invention.
  • FIG. 6 shows a main configuration of a power storage device according to a second embodiment of the present invention.
  • FIG. 7 is a circuit diagram illustrating a main configuration of a power storage device according to a third embodiment of the present invention.
  • FIG. 8 is a circuit diagram corresponding to FIG. 7 for describing the operation of the power storage device according to the third embodiment of the present invention, and is a diagram illustrating an operation mode different from FIG. .
  • FIG. 9 is a diagram showing charge / discharge characteristics of a general capacitor (capacitor) in a power storage device as a third embodiment of the present invention.
  • FIG. 10 is a diagram showing a result of simulating the relationship between the voltage balancing time of the storage battery and the switching frequency of the switch in the power storage device according to the third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a voltage balancing time when the electric capacity of the battery is changed while the resistance is fixed.
  • FIG. 11 is a diagram showing a result of simulating the relationship between the voltage balancing time of the storage battery and the switching frequency of the switch in the power storage device according to the third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a voltage balancing time when the resistance of the battery is changed while the electric capacity is fixed.
  • FIG. 12 is a schematic circuit diagram showing a conventional power storage device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 to FIG. 5 show a power storage device as a first embodiment of the present invention
  • FIG. Fig. 7 shows a power storage device as a second embodiment
  • Figs. 7 to 11 show power storage devices as one embodiment of the present invention.
  • the present power storage device includes a plurality of power storage devices. Ponds (secondary batteries, also referred to as batteries or battery cells) 1 to 5 are configured as assembled batteries connected in series. In this example, as an example in which a plurality of batteries are connected in series, an example in which five batteries are connected is shown, but the number of batteries is not limited to this.
  • capacitors C1 to C5 which can be connected in parallel with the plurality of power storage means 1 to 5, respectively, and which are connected in series with each other.
  • switches S1 to S5 as connection switching means are interposed between the respective storage batteries C1 to C5 and the corresponding storage batteries 1 to 5, respectively.
  • Switches S 0 and S 6 as connection switching means are provided in a connecting portion 8 that connects the cells of the storage battery 5 (terminal B side) in a ring shape.
  • terminals S 1 B and S 2 A are applied between the storage batteries 1 and 2 ⁇ the terminals S 2 B and S 3 A are provided between the storage batteries 2 and 3, and the terminals are provided between the storage batteries 3 and 4.
  • Terminals S 4 B and S 5 A are connected between storage batteries 4 and 5, respectively, and terminals S 0 B and S 4 A are connected between one end of the assembled battery and storage battery 1.
  • terminals S 5 B and S 6 A are connected between the other end of the assembled battery and the storage battery 5, respectively, and a terminal S 6 B is connected to one end of the capacitor C 1 and a capacitor C
  • the terminal SOA is connected to the end of the capacitor C 5 on the side of the capacitor C 5, respectively, and the switch S 1 that can selectively switch between the terminals S 1 A and S 1 B is connected to one end of the capacitor C 1.
  • the switch S2, which can selectively connect and switch the terminal S2A and the terminal S2B, is provided between the capacitor C1 and the capacitor C2, and the switch S2 between the capacitor C2 and the capacitor C3.
  • Switch S3 switch that can be connected and disconnected Switch S4 switch that can selectively switch terminal S4A and terminal S4B between the capacitors C3 and C4 Terminal S 5 on the capacitor C 5 side
  • a switch S5 is provided to selectively switch connection between A and the terminal S5B ⁇ , and a terminal SOA and a terminal S0B are provided at one end of the capacitor C5 (side of the capacitor C4).
  • a switch S 6 for selectively switching connection between a terminal S 6 A and a terminal S 6 B is provided on the other end of the switch S 0, which can be selectively switched.
  • switches SO to S6 are configured to be switched in an interlocked manner, each of which is connected to the terminals S0A to S6A (the first connection mode KM1) and each of the terminals S0A to S6A. It is configured to be able to simultaneously and synchronously switch between the state connected to 0B to S6B (the second connection mode M2).
  • the capacitors C1, C2, C3, C4, and C5 are connected in parallel with the corresponding storage batteries 1, 2, 3, 4, and 5, respectively.
  • each of the capacitors C 1, C 2, C 3, C 4, C 5 and the storage batteries 2, 3, 4, 5, 1 adjacent to the corresponding storage batteries 1 to 5 Each is connected in parallel.
  • control means 7 for controlling switching between the first connection mode M1 and the second connection mode M2 by the connection switching means S0 to S6 is provided. It is configured to make the potential difference of each of the storage batteries 1 to 5 equal while repeating the mode switching in a required cycle by the control signal.
  • connection switching means is constituted by the switches S0 to S6.
  • non-contact switching means such as a transistor is used. It is conceivable to configure with.
  • a charging voltage is applied between terminals A and B, and storage batteries 1 to 5 are charged.
  • the switches S0 to S6 are interlocked and switched by the control signal from the control means 7, and the connection state to the terminals S0A to S6A and the connection state to the terminals S0B to S6B are changed. Are switched simultaneously.
  • the second connection module KM 2 connected in parallel with the storage batteries 2, 3, 4, 5, 5 and 1 adjacent to the storage batteries 1 to 5 corresponding to the storage capacitors CI, C2, C3, C4, and C5 is selected. Is switched.
  • connection switching means SO to S6 The switching between the first connection mode M1 and the second connection mode KM2 by the connection switching means SO to S6 is repeated at a required cycle by the control signal from the control means 7. As a result, the potential difference between the storage batteries 1 to 5 gradually equalizes.
  • the storage batteries 1 to 5 are formed of, for example, lithium batteries, and the voltage is determined depending on the discharge amount as in the characteristics of the lithium batteries shown in FIG. Conversely, it can be said that the battery voltage is determined depending on the charged amount (charged amount). Therefore, the state of a desired discharge amount, that is, a charged amount (charged amount) is adjusted by such voltage balancing.
  • the discharge amount charge Amount that does not reach the desired state Force
  • the amount of discharge (the amount of charge) of each battery in the assembled battery is equalized to the desired state
  • the performance of such a battery for example, a lithium battery
  • the operation of balancing the amount of charge (charging rate) by voltage balancing is performed for each of the storage batteries 1 to 5.
  • the electric charge is transferred through the capacitors C1 to C5 to balance the voltages of the batteries 1 to 5, so that a large heat generating element is generated. Does not exist, and balancing is achieved in a state where energy loss due to heat generation is avoided.
  • the equilibrium operation can be performed in all states, not only during charging until the battery is fully charged, but also during driving, charging, discharging, etc. Even when the battery is not used, the balancing operation can be performed. Of course, it can also be used for hybrid electric vehicles that do not charge until they are fully charged during power generation.
  • the switches S 0 to S 6 A switching element such as a power element (FET or IGBT) with the smallest possible switching loss is used for the control means 7 and a circuit for automatically switching the switches S0 to S6 by an external oscillation circuit or the like. It is preferable to equip it.
  • FET power element
  • capacitors C1 to C5 are relatively large capacitors, for example, an electric double layer capacitor, the voltage can be quickly balanced.For example, such voltage control is always or frequently performed. In this case, even if a small-capacity capacitor is used, the amount of charge can be balanced by the voltage balance sufficiently for practical use.
  • the control means 7 is provided with a maintenance switch used when performing maintenance, or driven when an external voltage measurement circuit or the like requires it.
  • a maintenance switch used when performing maintenance, or driven when an external voltage measurement circuit or the like requires it.
  • Method driving when the vehicle is not in use, driving at regular intervals using a timer circuit, etc., controlling the connected electric load, etc. (For electric vehicles, use a motor controller or a residual capacity meter. Etc.)
  • Various combinations such as a method of driving in the case of being conceived are conceivable.
  • the present power storage device can also be applied to a battery pack in which a capacitor (capacitor) is used instead of a battery as the power storage means.
  • a capacitor capacitor
  • this circuit is not always performed, and it is possible to realize a method of balancing the voltage at any required time by using a battery cell voltage monitor, etc.
  • this circuit by applying this circuit to a lithium ion battery, the ability of after having pulled out 1 0 0 Pas one cents of the lithium-ion battery, ensure safety mosquito readily 7 by.
  • FIG. 6 storage batteries (batteries) 11 and 12 as a plurality of power storage means are connected in series. Constitutes an assembled battery. Although this example shows an example in which two batteries are connected, the number of batteries is not limited to this, as in the first embodiment.
  • a plurality of capacitors (capacitors) C11 and C12 are provided that can be connected in parallel to the respective power storage means 11 and 12. Further, switches S11 to S14 as connection switching means are interposed between each of the storage batteries CI1, CI2 and each of the storage batteries 11, 12.
  • terminals S11B, S12A, S12C, S13A, S13C and S14B power, '
  • storage battery 1 One end (terminal A side) of terminal 1 has terminals S11A, S11C and S13B, and the other end (terminal B side) of storage battery 12 has terminals S12B, S14A and S14C are connected respectively.
  • a resistor R 11 having a desired resistance value is connected between the terminal A side of the storage battery 11 and the terminal S 11 C.
  • a resistor R12 having a desired resistance value is connected between the terminal B side of the terminal 12 and the terminal S14C.
  • a switch S 11 1 which can be selectively connected to terminal S 11 A, terminal S 11 B or terminal S 11 C at one end of the capacitor C 11 is also provided. at the other end to the terminal S 1 2 a, terminal S 1 2 B or terminal S 1 2 C selectively connected switchable switch S 1 2 further c are provided, one end of the capacitor C 1 2
  • the switch S13 which can be selectively connected to terminal S13A, terminal S13B or terminal S13C on the other side, and terminal S1 on the other end of the capacitor C12
  • a switch S14 that can selectively switch connection to 4A, terminal S14B or terminal S14C is provided.
  • switches S11 to S14 are configured to be switched in an interlocked manner, and are connected to the terminals S11A to S14A, respectively (first connection mode M1). And a state in which each is connected to terminals S11B to S14B (second connection mode M2), and a state in which each is connected to terminals S11C to S14C (third connection mode).
  • the connection mode M3) can be switched simultaneously and synchronously.
  • the respective capacitors C 11 and C 12 are connected in parallel with the corresponding storage batteries 11 1 and 12, and in the second connection mode KM 2, capacitor C 1 1, C 1 2 Chikaraku, corresponding storage battery 1 1, 1 2 battery 1 2 adjacent to, 1 1 c also becomes a state of being connected in parallel, respectively, in the third connection mode M 3,
  • Each of the capacitors C 11 and C 12 is powerfully connected to the storage batteries 11 and 12 in parallel via the resistors R ll and R 12, respectively.
  • Control means 17 is provided for controlling switching of the first connection mode KM1, the second connection mode KM2, and the third connection mode KM3 by the connection switching means S11 to S14. According to the control signal from the control means 17, the mode switching is repeatedly performed in the required switching state, and the potential difference between the storage batteries 11 and 12 is made equal.
  • connection switching means is constituted by mechanical switches S11 to S14.
  • a semiconductor such as a transistor is used. It is conceivable to use semiconductor switching means (semiconductor switch) using elements.
  • resistors R11 and R12 and the terminals S11 to S14C are provided as in the present embodiment is as follows.
  • the capacitors C 11 and C 12 have the function of storing electric charges in the same manner as the storage batteries 11 and 12, but normally, unlike a battery, a capacitor is relatively self-discharging. Notable. Therefore, when the electric storage device as described above is mounted on an electric vehicle and the vehicle is left unattended for a long time, the electric storage devices C11 and C12 may have no charge. In this case, even if the key switch of the vehicle is turned off (that is, the identification switch is turned off), if the switches S11 to S14 are held in the first connection mode KM1 or the second connection mode KM2.
  • the capacitors C 1 1 and C 1 2 are connected to terminal S 1 1 A to S 14 A or the terminals S 11 C to S 14 C are connected to the storage batteries 11 and 12, so that the capacitors C 11 and C 12 are completely discharged. It is unlikely that you will be charged.
  • each of the switches S 11 to S 14 may be connected to any terminal depending on the characteristics of the semiconductor switch. It is in a state where it does not come into contact with it, and it promotes self-discharge.
  • the circuit is started (when the ignition is turned on) or the terminal is charged for charging. If a charger is connected between A and B), the resistors R11 and R12 will not be provided, and the capacitors C11 and C12 will suddenly have a large current (such a large current Inrush current), which may damage the capacitors C11 and C12.
  • the storage batteries C 11 and C 12 are connected to the storage battery 1 via the resistors R 11 and R 12 in comparison with the above-described first embodiment.
  • a third connection mode KM 3 is provided to connect with 1, 1 and 2.
  • the capacitors C 11 and C 12 are connected via the resistors R 11 and R 12 in this manner. Connected to the storage batteries 11 and 12 and the charger to prevent the surge current from flowing through the storage capacitors C 11 and C 12 even when the storage capacitors C 11 and C 12 are in the discharging state. It is possible to charge the capacitors C 11 and C 12 while avoiding them.
  • the switches S11 to S14 are switched to the first connection mode M1 and the second connection mode M2. The switching is controlled alternately.
  • a battery pack a battery formed by connecting a plurality of storage batteries
  • an assembled battery in which about 20 to 30 batteries are connected in series is generally used, but the present power storage device is naturally applied to an assembled battery including such a large number of batteries. sell.
  • each switch S 11 to S 14 is connected to a terminal S 1 1 (: Connected to S 14 C, connected to storage batteries 1 1, 1 2 via capacitors C 11, C 12 force ⁇ resistors R ll, R 12 respectively And
  • the batteries C 1 and C 12 store large amounts of power from the batteries 11 and 12 and the charger at power-on and charging. No current (rush current) flows, and the capacitors C 11 C 12 can be sufficiently protected.
  • the storage batteries 12 and 11 adjacent to 1 and 12 and the second connection mode KM 2 connected in parallel with each other are selectively switched.
  • the switching between the first connection mode M 1 and the second connection mode KM 2 by the switches S 11 to S 14 as such connection switching means is controlled by the control means 17.
  • the repetition at a required period by the signal causes the potential difference between the storage batteries 11 and 12 to be gradually equalized. Note that the control operation for equalizing the potential difference between the storage batteries 11 and 12 is the same as that in the above-described first embodiment, and will not be described here.
  • this device also includes a plurality of storage batteries (batteries) 11 and 1 and 2 are connected in series, thereby forming an assembled battery.
  • the circuit configuration is the same as that of the second embodiment (see FIG. 6) except that the terminals S11 (: to S14C and the resistors Rll and R12) are omitted. For this reason, the detailed description of the circuit configuration is omitted, and FIGS. 7 and 8 show examples in which two batteries are connected. The number is not limited to this.
  • connection mode corresponding to the third connection mode KM 3 in the second embodiment is And the first connection mode KM 1 connected in parallel with each of the storage batteries 11 1 and 12 corresponding to each of the capacitors C 11 and C 12, and the storage battery corresponding to each of the capacitors C ll and C 12
  • a storage battery 12, 11 adjacent to 11, 12 is provided with a second connection mode KM 2 connected in parallel with each of the storage batteries 12, 11.
  • connection state of the switches S11 to S14 was connected to the terminals S11A, S12A, S13A, S14A, respectively.
  • the state (first connection mode Ml) and the state (second connection mode M2) connected to terminals SI1B, S12B, S13B, and S14B, respectively. It is configured so that the potential difference between the storage batteries 11 and 12 is made equal while repeating the switching between.
  • Fig. 9 is a graph showing the charge and discharge characteristics of a general capacitor (capacitor).
  • the capacitor has a charge at the start of charging or discharging due to its characteristics.
  • Change (charge / discharge rate) is relatively large, and the rate of change of charge becomes gradual over time. Therefore, when the change of charge (charge / discharge rate) is large, the switches S11 to S14 are switched. The more the switching is performed, the shorter the balancing time can be. That is, the shorter the switching period of the switches S11 to S14, the more efficiently the storage batteries 11 and 12 can be balanced.
  • switching cycle switching frequency
  • FIG. 10 and FIG. 11 are the results of simulating the relationship between the voltage balancing time of the storage batteries 11 and 12 and the switching frequency of the switches S11 to S14.
  • Fig. 10 shows the voltage balancing time when the resistance of the capacitor (capacitor) is fixed and the capacitance of the capacitor is changed.
  • Fig. 11 is the capacitor (capacitor).
  • FIG. 4 is a diagram showing a voltage balancing time when the capacitance of the capacitor is fixed and the resistance of the condenser is changed.
  • the switching frequency of the switches S 11 to S 14 by the control means 17 is determined by the time constant obtained by the product of the resistance value R of the capacitors C 11 and C 12 and the electric capacity C. It is set to 1 Z 3. Note that the switching frequency is not limited to 1/3 of the time constant of the capacitors C11 and C12, but may be, for example, approximately 1/3 or less of the time constant of the capacitors C11 and C12. It only has to be set. However, if the switching frequency is too high, the energy loss due to the switches S11 to S14 increases as described above, so that the time constant is preferably about 1/3.
  • connection switching means is constituted by mechanical switches S11 to S14.
  • a semiconductor such as a transistor is used. It is conceivable to use semiconductor switching means (semiconductor switch) using elements. In this case, the energy loss due to the switching operation can be smaller than that of a mechanical switch.
  • an assembled battery in which about 20 to 30 batteries are connected in series is generally used, but the present power storage device is naturally applied to an assembled battery including such a large number of batteries.
  • the power storage device according to the third embodiment of the present invention is configured as described above, and thus performs the following operation. First, when the power is turned on, that is, when the ignition key is turned on, or when a voltage for charging is applied between the terminals B of the storage batteries 11 and 12, the switches Sll to S14 are controlled by the control means 17. Switching is performed in conjunction with the signal, and the connection status to terminals S11A to S14A and the connection status to terminals S11B to S14B are alternately and simultaneously switched.
  • the first connection mode KM 1 connected in parallel with each of the storage batteries 11 1 and 12 corresponding to each of the capacitors C 11 and C 12, and the storage battery 1 corresponding to each of the capacitors C 11 and C 1 2
  • the storage batteries 12 and 11 connected to 1 and 12 and the second connection mode M 2 connected in parallel with each other are selectively switched.
  • the switching between the first connection mode M 1 and the second connection mode KM 2 by the switches S 11 to S 14 as such connection switching means is performed by the control means 17.
  • the potential difference between the storage batteries 11 and 12 is gradually equalized by being repeatedly performed in a required cycle by the control signal.
  • the switching frequency of the switches S11 to S1 at this time is set based on the time constant obtained by the product of the resistance value R of the capacitors C11 and C12 and the capacitance C.
  • the switching frequency is set to approximately one third of the time constant obtained by multiplying the resistance value R of the capacitors C 11 and C 12 by the electric capacitance, and thus the switching operation is performed. Therefore, there is an advantage that the voltage balancing time can be extremely effectively reduced while preventing energy loss due to the above.
  • the power storage device of the present invention by transferring the charge of the high-voltage storage battery (power storage means) to the low-voltage storage battery, it is possible to eliminate the voltage variation among the plurality of storage batteries and equalize the voltage of the storage batteries. Can, among multiple batteries Since the voltage level of storage batteries with relatively low voltage can be increased, it is easy to secure the output of the batteries even in the case of a battery pack in which many batteries are connected in series, and each battery can be used equally. It is possible to maximize the capacity of each storage battery. Therefore, if this device is applied to, for example, an assembled battery used as a power supply for an electric vehicle, the practicality of the electric vehicle can be greatly improved, and it is extremely useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In an electricity storing device in which electricity storing means (1-5) are connected in series, capacitors (C1-C5) which are connected in series to each other in a state where the capacitors (C1-C5) can respectively be connected in parallel with the means (1-5), switching means (S0-S6) which can switch the connecting mode of the means (1-5) between a first connection mode in which the means (1-5) are respectively connected in parallel with the capacitors (C1-C5) and a second connection mode in which the electricity storing means (2, 3, 4, 5 and 1) which are adjacent to the means (1, 2, 3, 4 and 5) respectively connected to the capacitors (C1-C5) in the first connection mode are respectively connected in parallel to the capacitors (C1-C5), and a control means (7) which controls the switching means (S0-S6) so that the means (S0-S6) can alternately switch the connection mode between the first and second modes in a prescribed cycle are provided so as to balance the voltages at the means (1-5) against each other by transferring charges among the means (1-5). The connection mode switching cycle is set to about 1/3 or smaller than the time constant which is found from the products of the resistance and the capacitance values of the capacitors (C1-C5).

Description

技術分野 Technical field
本発明は、 電気自動車に用いて好適の、 蓄電装置に関する。 背景技術 明  The present invention relates to a power storage device suitable for use in an electric vehicle. Background art
近年、 電気自動車の実用性向上のための技術開発が進められているが、 現在の電気自動車の電源としては、 多書数の蓄電池 (以下、 バッテリ とも いう) を直列接続したもの (組電池) を使用している。  In recent years, technological development has been promoted to improve the practicality of electric vehicles. However, the current power source for electric vehicles is a battery in which a large number of storage batteries (hereinafter also referred to as batteries) are connected in series (assembled batteries). You are using
このように多数の蓄電池を直列接続した組電池の場合、 組電池の出力 は、 最も低い電圧の電池に依存するため、 各電池を均等に使用すること ができず、 各電池の能力を最大限に発揮させることができない。  In the case of such an assembled battery in which a number of storage batteries are connected in series, the output of the assembled battery depends on the battery with the lowest voltage, so that each battery cannot be used equally and the capacity of each battery is maximized. Can not be demonstrated.
ところで、 リチウムイオン電池 (以下、 リチウム電池という) のよう に、 放電量に依存して出力電圧が決定されるもの (F I G . 5参照) で は、 各電池の電圧を等しくすることで、 各電池の放電量 (逆に言うと、 充電量又は残存容量) を等しくすることができ、 各電池の電圧が等しく なるように調整しながら、 充電を行なうようにすればよい。  By the way, in the case where the output voltage is determined depending on the discharge amount, such as a lithium-ion battery (hereinafter, referred to as a lithium battery) (see FIG. 5), the voltage of each battery is equalized, and the It is possible to equalize the amount of discharge of the battery (in other words, the amount of charge or the remaining capacity), and charge while adjusting the voltage of each battery to be equal.
そこで、 蓄電池 (バッテリ) の電圧均衡化回路が従来から提供されて おり、 F I G . 1 2に示すように構成されている。  Therefore, a voltage balancing circuit for a storage battery (battery) has been conventionally provided, and is configured as shown in FIG.
F I G . 1 2に示す回路は、 組電池の電圧均衡化回路の 1セル分 (あ るいは 1モジュール分) を抜粋したものであり、 各バッテリに同回路が 装備される。  The circuit shown in FIG. 12 is an excerpt of one cell (or one module) of the voltage balancing circuit of the assembled battery, and each battery is equipped with the same circuit.
そして、 このような回路をそなえた状態での充電動作が行なわれるが- 充電動作の末期に該回路による放電動作が行なわれる。 すなわち、 充電の進行によりバッテリ 1 0 1の端子電圧が上昇するが、 この状態を電圧監視回路 (電圧検出回路) 1 0 4が監視しており、 セル の両端電圧 V Bが設定電圧以上になった場合に放電スィツチ 1 0 2をォ ン状態 (閉状態) に移行させる。 Then, a charging operation is performed in a state including such a circuit. At the end of the charging operation, a discharging operation is performed by the circuit. In other words, the terminal voltage of the battery 101 rises due to the progress of charging, but this state is monitored by the voltage monitoring circuit (voltage detection circuit) 104, and the voltage VB across the cell exceeds the set voltage. In this case, the discharge switch 102 is shifted to the ON state (closed state).
これにより、 放電抵抗器 1 0 3への通電が行なわれ、 電気工ネルギが 熱に変換されることにより消費される。  As a result, the discharge resistor 103 is energized, and the electric energy is consumed by being converted into heat.
この消費により、 セル電圧 V Bが設定電圧以下の電圧になれば、 放電 スィッチ 1 0 2をオフ状態 (開状態) に移行させることが行なわれる。 このような放電スィツチ 1 0 2のオン, オフが繰り返されることによ り、 バッテリセルの電圧 V Bは、 設定電圧に調整される。  Due to this consumption, when the cell voltage VB becomes equal to or lower than the set voltage, the discharge switch 102 is shifted to the off state (open state). By repeatedly turning on and off the discharge switch 102, the voltage VB of the battery cell is adjusted to the set voltage.
なお、 実際の回路では、 放電スィツチ 1 0 2の代わりにパワー トラン ジス夕等の電力素子を使用し、 オンオフ制御ではなく、 リニア制御によ り電圧を調整する等の方法が一般的である。  In an actual circuit, a method is generally used in which a power element such as a power transistor is used in place of the discharge switch 102 and the voltage is adjusted by linear control instead of on / off control.
しかしながら、 従来の蓄電装置では、 種々の課題がある。  However, conventional power storage devices have various problems.
すなわち、 上述の回路による場合、 設定電圧を超過したエネルギが放 電抵抗器 1 0 3により熱の形で浪費されてしまう。  That is, in the case of the above-described circuit, the energy exceeding the set voltage is wasted by the discharge resistor 103 in the form of heat.
このため、 電力損失が大きくなるとともに、 放熱対策を考慮しなけれ ばならないことが大きな問題となる。  For this reason, the power loss increases and the major problem is that heat dissipation measures must be taken into account.
また、 充電の末期のセル電圧 V Bが上昇した場合にだけ均衡化が可能 であり、 放電時や車両を使用していない間の空き時間などを利用した電 圧均衡化を行なえないという課题がある。  In addition, balancing can be performed only when the cell voltage VB at the end of charging rises, and there is a problem that voltage balancing cannot be performed using idle time during discharging or when the vehicle is not used. is there.
したがって、 ハイプリ ッ ド電気自動車のように発電走行時に満充電ま で充電しないものには利用できない。  Therefore, it cannot be used for those that do not charge until they are fully charged during power generation, such as hybrid electric vehicles.
さらに、 放電抵抗器や放熱板およびスィツチング用の素子など大容量 のものを使用しなければならず、 装置が大型化したり、 放熱のために冷 却装置が必要になるなど構造が単純にならないという課題もある c そこで、 放電方式ではない均衡化回路が必要であり、 その一例として 特開平 6 - 3 1 9 2 8 7号公報の技術が提供されている。 In addition, large-capacity devices such as discharge resistors, heat sinks, and switching elements must be used, which does not simplify the structure, such as increasing the size of the device or requiring a cooling device for heat dissipation. There are issues c Therefore, a balancing circuit other than the discharge method is required. As an example, the technique disclosed in Japanese Patent Application Laid-Open No. Hei 6-319927 is provided.
この技術は、 直列接続された組電池の両端にコンデンサを接続して、 各バッテリセル (充電単電池) を略均一に充電するものであるが、 大容 量コンデンサが必要であり、 各バッテリセルの端子電圧を検出しながら 所要の充電対象となるノ ッテリセルを選択する制御は制御口ジックが複 雑である。  This technology connects capacitors at both ends of a series-connected battery pack and charges each battery cell (charged cell) almost uniformly. However, a large-capacity capacitor is required, and each battery cell is required. The control to select the desired cell to be charged while detecting the terminal voltage of the battery is complicated with the control port.
そこで、 直列に接続されたバッテリに対して、 各バッテリと対応した 数のコンデンサを設け、 各コンデンサを対応したバッテリ とそれぞれ並 列接続させる状態と、 上記の各コンデンサを対応するバッテリに隣接し たバッテリ とそれぞれ並列接続させる状態とを交互に切り換えるように することで、 コンデンサを介して電荷をバッテリ間で移動させることに より、 各バッテリの電圧の均衡化を図ることが考えられる。  Therefore, for the batteries connected in series, the number of capacitors corresponding to each battery is provided, each capacitor is connected in parallel with the corresponding battery, and each capacitor is placed adjacent to the corresponding battery. By alternately switching between the battery and the state of being connected in parallel, it is conceivable to balance the voltage of each battery by transferring charge between the batteries via a capacitor.
しかしながら、 このような構成では、 コンデンサの仕様や各接続モー ドを切り換える切換周期 (又は切換周波数) によって各バッテリの電圧 均衡化時間が大きく変化するため、 バッテリの性能を十分に引き出せな い場合が考えられる。 また、 単に上記の切換周波数を高く設定すれば、 電圧均衡化時間を短くすることが可能となるが、 この場合には、 モー ド 切換時のスィツチング動作にともないエネルギ損失が大きくなってしま うという課題が生じる。 発明の開示  However, in such a configuration, the voltage balancing time of each battery greatly changes depending on the specification of the capacitor and the switching cycle (or switching frequency) for switching each connection mode, so that the performance of the battery may not be fully exploited. Conceivable. Also, simply setting the switching frequency high can shorten the voltage balancing time, but in this case, the energy loss increases with the switching operation at the time of mode switching. Challenges arise. Disclosure of the invention
本発明の目的は、 電気工ネルギの浪費を防止しながら、 満充電ではな い状態においても蓄電手段の充電量の均衡化を行なうことができるよう にした、 蓄電装置を提供することにある。  An object of the present invention is to provide a power storage device that can balance the amount of charge of power storage means even when the battery is not fully charged, while preventing waste of electric energy.
また、 本発明の他の目的は、 バッテリやコンデンサの仕様や性能に応 じて効率良く複数のバッテリの電圧を均衡化するとともに、 上述のスィ ッチング動作によるエネルギ損失を確実に防止しながら、 複数の蓄電池 の電圧均衡化時間を短縮することができるようにした、 蓄電装置を提供 することにある。 Another object of the present invention is to meet the specifications and performance of batteries and capacitors. Power storage device that efficiently balances the voltages of a plurality of batteries in the same manner, and can reduce the time for balancing the voltages of a plurality of storage batteries while reliably preventing energy loss due to the switching operation described above. It is to provide
上述の目的を達成するため、 本発明の蓄電装置は、 直列に接続された 複数の蓄電手段と、 上記複数の蓄電手段と同数の蓄電器と、 上記複数の 蓄電手段のそれぞれに対して上記複数の蓄電器のそれぞれを 1対 1 とな るように並列接続すると共に、 該並列接続の組み合わせを切り換え可能 な切換手段と、 上記各蓄電器に対する上記各蓄電手段の並列接続の組み 合わせを、 所定の周期で順次隣接する蓄電手段に切り換えるように上記 切換手段を制御する制御手段とを備えるように構成される。  In order to achieve the above object, a power storage device of the present invention includes: a plurality of power storage units connected in series; the same number of power storage units as the plurality of power storage units; and the plurality of power storage units for each of the plurality of power storage units. A combination of a switching means capable of switching the combination of the parallel connection and a combination of the parallel connection of each of the storage means with respect to each of the storage batteries at a predetermined cycle while connecting each of the storage capacitors in parallel so as to be one-to-one. Control means for controlling the switching means so as to sequentially switch to the adjacent power storage means.
本装置において、 上記切換手段による接続モー ドとして、 上記複数の 蓄電器のそれぞれに対して上記複数の蓄電手段をそれぞれ並列接続する 第 1接続モードと、 上記複数の蓄電器のそれぞれに対して上記第 1接続 モードで接続された蓄電手段に隣接する蓄電手段をそれぞれ並列接続す る第 2接続モードとを備え、 上記制御手段は、 所定周期で上記第 1接続 モ一 ドと上記第 2接続モー ドとを交互に切り換えるように上記切換手段 を制御するように構成することが好ましい。  In the present device, as the connection mode by the switching means, a first connection mode in which the plurality of power storage means are connected in parallel to each of the plurality of power storages; and a first connection mode in which each of the plurality of power storages is connected to the first A second connection mode in which the power storage means adjacent to the power storage means connected in the connection mode are respectively connected in parallel, wherein the control means includes a first connection mode and a second connection mode which are arranged at predetermined intervals. It is preferable that the switching means be controlled so as to alternately switch between the two.
このように構成することにより、 複数の蓄電手段の間で電荷を移送す ることができるようになり、 複数の蓄電手段のうち相対的に電圧の高い 蓄電手段の電荷を相対的に電圧の低い蓄電手段へ移送することで、 複数 の蓄電手段の電圧均衡化を行なうことができる。 このため、 アンバラン ス電圧分を放熱による電力消費で浪費させるようなことなく、 電力損失 を抑制しながら電圧均衡化を行なうことができる利点がある。 また、 放 熱損失の低減により放熱対策を軽減化しうるという付加的な利点も得る ことができる。 さらに、 本装置において、 上記複数の蓄電手段に一方の端子を接続さ れると共に他方の端子を上記切換手段に接続され、 該複数の蓄電手段と 同数の抵抗器をさらに備えるようにして、 上記切換手段による接続モ一 ドとして、 上記複数の蓄電器のそれぞれに対して上記複数の蓄電手段を それぞれ並列接続する第 1接続モー ドと、 上記複数の蓄電器のそれぞれ に対して上記第 1接続モー ドで接続された蓄電手段に隣接する蓄電手段 をそれぞれ並列接続する第 2接続モ一 ドと、 上記複数の蓄電器のそれぞ れに対して上記複数の抵抗器をそれぞれ介して上記第 1接続モー ドで接 続された蓄電手段又は上記第 2接続モー ドで接続された蓄電手段をそれ ぞれ並列接続する第 3接続モードとを備え、 上記制御手段は、 最初に上 記第 3接続モー ドによる接続を行なって、 その後、 上記第 1接続モード と上記第 2接続モ一 ドとを交互に切り換えるように、 上記切換手段を制 御するように構成することが好ましい。 With such a configuration, it becomes possible to transfer charges between the plurality of power storage means, and the charge of the power storage means having a relatively high voltage among the plurality of power storage means can be transferred. By transferring to the storage means, the voltage of the plurality of storage means can be balanced. Therefore, there is an advantage that voltage balancing can be performed while suppressing power loss without wasting the unbalanced voltage in power consumption due to heat dissipation. An additional advantage is that the heat dissipation measures can be reduced by reducing the heat dissipation loss. Further, in the present apparatus, one terminal is connected to the plurality of power storage means and the other terminal is connected to the switching means, and the same number of resistors as the plurality of power storage means is further provided. The connection modes by means include a first connection mode in which the plurality of power storage means are connected in parallel to each of the plurality of power storage devices, and a first connection mode in which each of the plurality of power storage devices is connected in the first connection mode. A second connection mode in which power storage means adjacent to the connected power storage means are connected in parallel, and a first connection mode in which the plurality of power storage devices are respectively connected to the plurality of power storage devices through the plurality of resistors. A third connection mode in which the connected power storage means or the power storage means connected in the second connection mode are connected in parallel, respectively, wherein the control means first performs the third connection mode. By performing According connection, then, to switch alternately between the first connection mode and said second connection mode one de, it is preferably configured to control the said switching means.
このように構成することにより、 蓄電器が電荷を蓄えていない状態で、 蓄電器に電圧を印加した場合であっても、 抵抗を介して蓄電器に電流が 流れるため、 蓄電器へ急激な突入電流が流れ込むことを防止することが できるようになり、 蓄電器を急激な突入電流から十分に保護することが できる利点がある。 また、 このように突入電流を防止することができる ため、 蓄電器の耐電流の仕様を低くすることも可能になり、 したがって、 小容量の蓄電器を用いることが可能になるという付加的な利点も得るこ とができる。  With this configuration, even if a voltage is applied to the capacitor while the capacitor is not storing electric charge, a current flows through the resistor through the resistor, so a sudden inrush current flows into the capacitor. This is advantageous in that the capacitor can be sufficiently protected from a sudden inrush current. In addition, since the inrush current can be prevented in this way, it is possible to lower the withstand current specification of the capacitor, and therefore, there is an additional advantage that a small-capacity capacitor can be used. be able to.
さらに、 本装置において、 上記制御手段は、 上記複数の蓄電手段の電 位状態が互いに等しくなるように上記切換手段を制御するように構成す ることが好ましい。  Further, in this device, it is preferable that the control means is configured to control the switching means so that the potential states of the plurality of power storage means are equal to each other.
このように構成することにより、 複数の蓄電手段の間での電荷の移送 制御を適切に行なうことができる。 さらに、 本装置において、 上記制御手段は、 上記所定周期を、 上記蓄 電器の抵抗値と電気容量とに基づいて設定ように構成するすることが好 ましく、 より好ましくは、 上記所定周期を、 上記蓄電器の抵抗値と電気 容量との積により求められる時定数の略 1 Z 3以下となるように設定す るように構成する。 With this configuration, it is possible to appropriately control the transfer of charges between the plurality of power storage means. Further, in the present device, it is preferable that the control means is configured to set the predetermined cycle based on a resistance value and an electric capacity of the capacitor, and more preferably, the predetermined cycle includes: The time constant determined by the product of the resistance value and the electric capacity of the capacitor is set to be approximately 1 Z3 or less.
このように構成することにより、 蓄電手段及び蓄電きの仕様や性能に 応じて効率よく電圧の均衡化を行なうことができるようになり、 さらに、 スィツチング動作によるエネルギロスを確実に抑制しながら、 電圧均衡 化に要する時間を短縮することが可能となる利点もある。  With this configuration, it is possible to efficiently balance the voltage in accordance with the specifications and performance of the power storage means and the power storage, and further, while reliably suppressing the energy loss due to the switching operation, There is also an advantage that the time required for balancing can be reduced.
なお、 上記蓄電手段は蓄電池であって、 該蓄電池を複数個直列に接続 されてなり電気自動車用電源に用いられる組電池として構成されている ことが好ましい。 図面の簡単な説明  Preferably, the power storage means is a storage battery, and a plurality of the storage batteries are connected in series and configured as an assembled battery used for an electric vehicle power supply. BRIEF DESCRIPTION OF THE FIGURES
F I G . 1は、 本発明の第 1実施形態としての蓄電装置の要部構成を 示す回路図である。  FIG. 1 is a circuit diagram showing a main configuration of a power storage device as a first embodiment of the present invention.
F I G . 2は、 本発明の第 1実施形態としての蓄電装置の動作を説明 するための F I G . 1に対応した回路図であり、 F I G . 1 とは異なる 動作態様を示す図である。  FIG. 2 is a circuit diagram corresponding to FIG. 1 for describing the operation of the power storage device according to the first embodiment of the present invention, and is a diagram illustrating an operation mode different from FIG.
F I G . 3は、 本発明の第 1実施形態としての蓄電装置の動作原理を 説明するための要部回路図である。  FIG. 3 is a main part circuit diagram for explaining the operation principle of the power storage device as the first embodiment of the present invention.
F I G . 4は、 本発明の第 1実施形態としての蓄電装置の動作原理を 説明するための要部回路図である。  FIG. 4 is a main part circuit diagram for explaining the operation principle of the power storage device as the first embodiment of the present invention.
F I G . 5は、 本発明の第 1実施形態としての蓄電装置における電池 の特性を示すグラフである。  FIG. 5 is a graph showing characteristics of a battery in the power storage device according to the first embodiment of the present invention.
F I G . 6は、 本発明の第 2実施形態としての蓄電装置の要部構成を 示す回路図である。 FIG. 6 shows a main configuration of a power storage device according to a second embodiment of the present invention. FIG.
F I G. 7は、 本発明の第 3実施形態としての蓄電装置の要部構成を 示す回路図である。  FIG. 7 is a circuit diagram illustrating a main configuration of a power storage device according to a third embodiment of the present invention.
F I G. 8は、 本発明の第 3実施形態としての蓄電装置の動作を説明 するための F I G. 7に対応した回路図であり、 F I G. 7とは異なる 動作態様を示す図である。  FIG. 8 is a circuit diagram corresponding to FIG. 7 for describing the operation of the power storage device according to the third embodiment of the present invention, and is a diagram illustrating an operation mode different from FIG. .
F I G. 9は、 本発明の第 3実施形態としての蓄電装置における一般 的なコンデンサ (蓄電器) の充放電特性を示す図である。  FIG. 9 is a diagram showing charge / discharge characteristics of a general capacitor (capacitor) in a power storage device as a third embodiment of the present invention.
F I G. 1 0は、 本発明の第 3実施形態としての蓄電装置における蓄 電池の電圧均衡化時間とスィツチの切換周波数との関係をシミ ュレーシ ョ ンした結果を示す図であって、 蓄電器の抵抗を固定にして蓄電器の電 気容量を変更した場合の電圧均衡化時間を示す図である。  FIG. 10 is a diagram showing a result of simulating the relationship between the voltage balancing time of the storage battery and the switching frequency of the switch in the power storage device according to the third embodiment of the present invention. FIG. 9 is a diagram illustrating a voltage balancing time when the electric capacity of the battery is changed while the resistance is fixed.
F I G. 1 1は、 本発明の第 3実施形態としての蓄電装置における蓄 電池の電圧均衡化時間とスィツチの切換周波数との関係をシミ ュレーシ ョ ンした結果を示す図であって、 蓄電器の電気容量を固定にして、 蓄電 器の抵抗を変更した場合の電圧均衡化時間を示す図である。  FIG. 11 is a diagram showing a result of simulating the relationship between the voltage balancing time of the storage battery and the switching frequency of the switch in the power storage device according to the third embodiment of the present invention. FIG. 9 is a diagram illustrating a voltage balancing time when the resistance of the battery is changed while the electric capacity is fixed.
F I G. 1 2は、 従来の蓄電装置を示す模式的回路図である。 発明を実施するための最良の形態  FIG. 12 is a schematic circuit diagram showing a conventional power storage device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面により、 本発明の実施の形態について説明すると、 F I G. 1〜F I G. 5は本発明の第 1実施形態としての蓄電装置を示すもので あり、 F I G. 6は本発明の第 2実施形態としての蓄電装置を示すもの であり、 F I G. 7〜F I G. 1 1は本発明の一実施形態としての蓄電 装置を示すものである。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 to FIG. 5 show a power storage device as a first embodiment of the present invention, and FIG. Fig. 7 shows a power storage device as a second embodiment, and Figs. 7 to 11 show power storage devices as one embodiment of the present invention.
まず、 第 1実施形態の回路構成について説明すると、 F I G. 1, F I G. 2に示すように、 本蓄電装置では、 複数の蓄電手段としての蓄電 池 (二次電池、 以下、 バッテリ又はバッテリセルともいう) 1〜 5が直 列に接続された組電池として構成されている。 なお、 この例では、 複数 のバッテリが直列接続した例として、 5個のバッテリを接続した例を示 しているが、 勿論、 バッテリ数はこれに限定されるものではない。 First, the circuit configuration of the first embodiment will be described. As shown in FIG. 1 and FIG. 2, the present power storage device includes a plurality of power storage devices. Ponds (secondary batteries, also referred to as batteries or battery cells) 1 to 5 are configured as assembled batteries connected in series. In this example, as an example in which a plurality of batteries are connected in series, an example in which five batteries are connected is shown, but the number of batteries is not limited to this.
そして、 複数の蓄電手段 1〜 5 とそれぞれ並列接続しうるとともに互 い直列に接続された複数の蓄電器 (コンデンサ) C 1〜C 5が設けられ ている。  Further, there are provided a plurality of capacitors (capacitors) C1 to C5 which can be connected in parallel with the plurality of power storage means 1 to 5, respectively, and which are connected in series with each other.
さらに、 各蓄電器 C 1〜C 5の相互間と、 対応した各蓄電池 1〜5の 相互間との間に、 接続切換手段としてのスィツチ S 1〜S 5が介装され るとともに、 組電池の一端側 (端子 A側) の蓄電池 1のセルと他端側 Further, switches S1 to S5 as connection switching means are interposed between the respective storage batteries C1 to C5 and the corresponding storage batteries 1 to 5, respectively. Cell of storage battery 1 on one end (terminal A side) and the other end
(端子 B側) の蓄電池 5のセルとをリ ング状に連結する連結部 8に接続 切換手段としてのスィッチ S 0 , S 6が装備されている。 Switches S 0 and S 6 as connection switching means are provided in a connecting portion 8 that connects the cells of the storage battery 5 (terminal B side) in a ring shape.
すなわち、 蓄電池 1 , 2の相互間には端子 S 1 B, S 2 A力 ^ 蓄電池 2, 3の相互間には端子 S 2 B , S 3 Aが、 蓄電池 3, 4の相互間には 端子 S 3 B, S 4 Aが、 蓄電池 4 , 5の相互間には端子 S 4 B, S 5 A がそれぞれ接続され、 組電池の一端側と蓄電池 1 との間には端子 S 0 B , S 1 Aが、 組電池の他端側と蓄電池 5との間には端子 S 5 B , S 6 Aが それぞれ接続され、 さらに、 蓄電器 C 1の一端側には端子 S 6 Bが、 蓄 電器 C 4の蓄電器 C 5側端には端子 S O Aが、 それぞれ接続されている c そして、 蓄電器 C 1の一端側には端子 S 1 Aと端子 S 1 Bとを選択的 に接続切り換えしうるスィツチ S 1力^ 蓄電器 C 1 と蓄電器 C 2との相 互間には端子 S 2 Aと端子 S 2 Bとを選択的に接続切り換えしうるスィ ツチ S 2が、 蓄電器 C 2 と蓄電器 C 3 との相互間には端子 S 3 Aと端子 S 3 Bとを選択的に接続切り換えしうるスィツチ S 3カ^ 蓄電器 C 3と 蓄電器 C 4 との相互間には端子 S 4 Aと端子 S 4 Bとを選択的に接続切 り換えしうるスィツチ S 4カ^ 蓄電器 C 4の蓄電器 C 5側には端子 S 5 Aと端子 S 5 Bとを選択的に接続切り換えしうるスィツチ S 5力〈、 それ ぞれ設けられ、 蓄電器 C 5の一端側 (蓄電器 C 4側) には端子 S O Aと 端子 S 0 Bとを選択的に接続切り換えしうるスィツチ S 0カ^ 蓄電器 C 5の他端側には端子 S 6 Aと端子 S 6 Bとを選択的に接続切り換えしう るスィッチ S 6力、 それぞれ設けられる。 That is, the terminals S 1 B and S 2 A are applied between the storage batteries 1 and 2 ^ the terminals S 2 B and S 3 A are provided between the storage batteries 2 and 3, and the terminals are provided between the storage batteries 3 and 4. Terminals S 4 B and S 5 A are connected between storage batteries 4 and 5, respectively, and terminals S 0 B and S 4 A are connected between one end of the assembled battery and storage battery 1. 1 A, terminals S 5 B and S 6 A are connected between the other end of the assembled battery and the storage battery 5, respectively, and a terminal S 6 B is connected to one end of the capacitor C 1 and a capacitor C The terminal SOA is connected to the end of the capacitor C 5 on the side of the capacitor C 5, respectively, and the switch S 1 that can selectively switch between the terminals S 1 A and S 1 B is connected to one end of the capacitor C 1. The switch S2, which can selectively connect and switch the terminal S2A and the terminal S2B, is provided between the capacitor C1 and the capacitor C2, and the switch S2 between the capacitor C2 and the capacitor C3. Terminal S 3 A and terminal S 3 B Switch S3 switch that can be connected and disconnected Switch S4 switch that can selectively switch terminal S4A and terminal S4B between the capacitors C3 and C4 Terminal S 5 on the capacitor C 5 side A switch S5 is provided to selectively switch connection between A and the terminal S5B <, and a terminal SOA and a terminal S0B are provided at one end of the capacitor C5 (side of the capacitor C4). A switch S 6 for selectively switching connection between a terminal S 6 A and a terminal S 6 B is provided on the other end of the switch S 0, which can be selectively switched.
そして、 これらのスィッチ S O〜S 6は連動して切り換えられるよう に構成され、 それぞれが端子 S 0 A〜S 6 Aに接続した状態 (第 1の接 続モー K M 1 ) と、 それぞれが端子 S 0 B〜S 6 Bに接続した状態 (第 2の接続モ一ド M 2 ) との間で、 一斉に同期して切り換えられるように 構成されている。  These switches SO to S6 are configured to be switched in an interlocked manner, each of which is connected to the terminals S0A to S6A (the first connection mode KM1) and each of the terminals S0A to S6A. It is configured to be able to simultaneously and synchronously switch between the state connected to 0B to S6B (the second connection mode M2).
なお、 第 1の接続モー ド M 1では、 各蓄電器 C 1, C 2 , C 3 , C 4 , C 5力 、 対応した各蓄電池 1 , 2, 3 , 4 , 5 とそれぞれ並列接続させ た状態になり、 第 2の接続モード M 2では、 各蓄電器 C 1, C 2 , C 3 , C 4 , C 5力 、 対応する蓄電池 1〜5に隣接した蓄電池 2 , 3 , 4, 5 , 1 とそれぞれ並列接続させた状態になる。  In the first connection mode M1, the capacitors C1, C2, C3, C4, and C5 are connected in parallel with the corresponding storage batteries 1, 2, 3, 4, and 5, respectively. In the second connection mode M 2, each of the capacitors C 1, C 2, C 3, C 4, C 5 and the storage batteries 2, 3, 4, 5, 1 adjacent to the corresponding storage batteries 1 to 5 Each is connected in parallel.
また、 接続切換手段 S 0〜S 6による第 1の接続モー ド M 1 と第 2の 接続モ一 ド M 2 との切換を制御する制御手段 7が設けられており、 この 制御手段 7からの制御信号により所要の周期でモード切り換えを繰り返 し行ないながら、 各蓄電池 1〜 5の電位差を等しくさせていくように構 成されている。  Further, control means 7 for controlling switching between the first connection mode M1 and the second connection mode M2 by the connection switching means S0 to S6 is provided. It is configured to make the potential difference of each of the storage batteries 1 to 5 equal while repeating the mode switching in a required cycle by the control signal.
なお、 本実施形態では、 接続切換手段をスィ ッチ S 0〜S 6で構成し ているが、 実際の回路構成では、 制御性や耐久性を考慮すると、 卜ラン ジスタ等の無接点切り換え手段で構成することが考えられる。  In this embodiment, the connection switching means is constituted by the switches S0 to S6. However, in an actual circuit configuration, in consideration of controllability and durability, non-contact switching means such as a transistor is used. It is conceivable to configure with.
また、 本実施形態の蓄電装置は、 電気自動車用電源として用いられる 組電池 (=複数の蓄電池を接続してなる電池) に適用しうるものである, 現状の電気自動車の場合、 一般に 2 0〜3 0個程度のバッテリを直列に 接続した組電池が使用されるカ^ 本蓄電装置は当然ながらこのような多 数のバッテリからなる組電池にも適用しうる。 Further, the power storage device of the present embodiment is applicable to an assembled battery (= battery formed by connecting a plurality of storage batteries) used as a power supply for an electric vehicle. About 30 batteries in series A power storage device using a connected battery pack can be naturally applied to such a battery pack composed of a large number of batteries.
本発明の第 1実施形態としての蓄電装置は、 上述のように構成されて いるので、 次のような動作が行なわれる。  Since the power storage device as the first embodiment of the present invention is configured as described above, the following operation is performed.
まず、 端子 A, B間に充電用の電圧が印加され、 蓄電池 1〜 5への充 電が行なわれる。  First, a charging voltage is applied between terminals A and B, and storage batteries 1 to 5 are charged.
そして、 スィッチ S 0〜S 6が制御手段 7からの制御信号により連動 して切り換えられ、 端子 S 0 A〜S 6 Aへの接続状態と、 端子 S 0 B〜 S 6 Bへの接続状態とが、 一斉に切り換えられる。  Then, the switches S0 to S6 are interlocked and switched by the control signal from the control means 7, and the connection state to the terminals S0A to S6A and the connection state to the terminals S0B to S6B are changed. Are switched simultaneously.
これにより、 各蓄電器 C 1, C 2 , C 3 , C 4 , C 5が対応した各蓄 電池 1 , 2 , 3, 4, 5とそれぞれ並列接続する第 1の接続モー ド M 1 と、 各蓄電器 C I , C 2 , C 3 , C 4 , C 5が対応する蓄電池 1〜 5に 隣接した蓄電池 2 , 3 , 4 , 5 , 1 とそれぞれ並列接続する第 2の接続 モ一 KM 2 とが選択的に切り換えられる。  As a result, the first connection mode M 1 in which each of the capacitors C 1, C 2, C 3, C 4, and C 5 is connected in parallel with each of the corresponding storage batteries 1, 2, 3, 4, and 5, The second connection module KM 2 connected in parallel with the storage batteries 2, 3, 4, 5, 5 and 1 adjacent to the storage batteries 1 to 5 corresponding to the storage capacitors CI, C2, C3, C4, and C5 is selected. Is switched.
そして、 このような接続切換手段 SO 〜S 6による第 1の接続モー ド M 1 と第 2の接続モー KM 2 との切り換えが、 制御手段 7からの制御信 号により所要の周期で繰り返し行なわれることで、 各蓄電池 1〜 5の電 位差が次第に等化していくのである。  The switching between the first connection mode M1 and the second connection mode KM2 by the connection switching means SO to S6 is repeated at a required cycle by the control signal from the control means 7. As a result, the potential difference between the storage batteries 1 to 5 gradually equalizes.
ここで、 上述の各蓄電池 1〜 5の電位差を等しく させる制御動作を、 電池 1 と電池 2 との間の動作に注目して説明する。  Here, the control operation for equalizing the potential difference between the storage batteries 1 to 5 described above will be described focusing on the operation between the battery 1 and the battery 2.
まずはじめに、 電池 1の電圧が V 1、 電池 2の電圧が V 2 (V 1 > V 2 ) であったものとする。  First, assume that the voltage of battery 1 is V 1 and the voltage of battery 2 is V 2 (V 1> V 2).
F I G. 3のように、 スィッチ S l, S 2が左側へ揺動され、 それぞ れ端子 S 1 A, S 2 Aに接続されて、 コンデンサ C 1 と電池 1 とが並列 接続になると、 電池 1の電圧及びコンデンサの電位差はそれぞれ V となる。 この v は、 V 1よりも電池 1からコンデンサへ流人した電 荷に応じた分 (微小量) V ,だけ低い電圧 (=V 1 — ν ,) である。 As shown in FI G. 3, when the switches S l and S 2 are swung to the left and connected to the terminals S 1 A and S 2 A, respectively, and the capacitor C 1 and the battery 1 are connected in parallel, The voltage of battery 1 and the potential difference of the capacitor are each V. This v is smaller than the current flowing from battery 1 to the capacitor than V 1. The voltage (= V 1 — ν) is lower (= V 1 — ν) according to the load (small amount) V
次に、 F I G. 4のように、 スィッチ S 1, S 2が右側へ揺動され、 端子 S 1 B, S 2 Bに接続されて、 コンデンサ C 1 と電池 2 とが並列接 続になると、 電池 2の電圧及びコンデンサの電位差はそれぞれ V 2 ' と なる。 この V 2 ' は、 V 2よりも電池 2からコンデンサへ流入した電荷 分 (微小量) V 2だけ高い電圧 (=V 2 + v 2) である。 Next, as shown in FIG. 4, when the switches S 1 and S 2 are swung to the right and connected to the terminals S 1 B and S 2 B, the capacitor C 1 and the battery 2 are connected in parallel. Then, the voltage of the battery 2 and the potential difference of the capacitor become V 2 ′, respectively. This V 2 ′ is a voltage (= V 2 + v 2 ) higher than V 2 by the charge (small amount) V 2 flowing into the capacitor from the battery 2.
このようにして、 コンデンサ C 1を介し、 電池 1から電池 2へ電荷が 移送されて電池 1の電圧は V 1から徐々に減少し、 電池 2の電圧は V 2 から徐々に増加して、 やがて電池 1 , 電池 2の電圧は等しい値 V12 (V 1 > V12> V 2 ) となるのである。  In this way, charge is transferred from battery 1 to battery 2 via capacitor C1, and the voltage of battery 1 gradually decreases from V1, and the voltage of battery 2 gradually increases from V2, and eventually. The voltages of battery 1 and battery 2 have the same value V12 (V1> V12> V2).
ここで、 蓄電池 1〜 5は例えばリチウム電池で形成されており、 F I G. 5に示すリチウム電池の特性のように、 電圧が放電量に依存して決 定される。 逆に言えば、 電池電圧は充電量 (蓄電量) に依存して決定さ れるともいえる。 したがって、 かかる電圧の均衡化により、 所望の放電 量、 即ち、 充電量 (蓄電量) の状態に調整されることになる。  Here, the storage batteries 1 to 5 are formed of, for example, lithium batteries, and the voltage is determined depending on the discharge amount as in the characteristics of the lithium batteries shown in FIG. Conversely, it can be said that the battery voltage is determined depending on the charged amount (charged amount). Therefore, the state of a desired discharge amount, that is, a charged amount (charged amount) is adjusted by such voltage balancing.
なお、 F I G. 5中に示されるニッケル水素電池 (ニッケル電池) の 特性のように、 放電量に対し電圧が一意に定まらない平坦な特性の蓄電 池では、 電圧の均衡化により放電量 (充電量) が所望の状態にならない 力 上記のリチウム電池のように放電量に対し電圧が一意に定まるもの では、 組電池の各バッテリの放電量 (充電量) が所望の状態に均一化さ れるため、 かかる電池 (例えばリチウム電池) の性能をフルに活用する ことができるようになる。  In the case of a battery with flat characteristics where the voltage is not uniquely determined with respect to the discharge amount, such as the characteristics of the nickel-metal hydride battery (nickel battery) shown in Fig. 5, the discharge amount (charge Amount that does not reach the desired state Force In the case where the voltage is uniquely determined with respect to the amount of discharge as in the above lithium battery, the amount of discharge (the amount of charge) of each battery in the assembled battery is equalized to the desired state Thus, the performance of such a battery (for example, a lithium battery) can be fully utilized.
上述のようにして、 電圧均衡化による充電量 (充電率) の均衡化動作 が、 各蓄電池 1〜 5についてそれぞれに行なわれる。  As described above, the operation of balancing the amount of charge (charging rate) by voltage balancing is performed for each of the storage batteries 1 to 5.
このように、 本装置では、 コンデンサ C 1〜C 5を介して電荷を移動 することにより各電池 1〜 5の電圧を均衡化するため、 大きな発熱要素 が存在せず、 発熱によるエネルギ損失を回避した状態での均衡化が実現 される。 As described above, in this device, the electric charge is transferred through the capacitors C1 to C5 to balance the voltages of the batteries 1 to 5, so that a large heat generating element is generated. Does not exist, and balancing is achieved in a state where energy loss due to heat generation is avoided.
また、 組電池への満充電までの充電中に限らず、 走行中, 充電中, 放 電中など使用状況にとらわれず、 すべての状態で均衡化の動作を行なう ことができるため、 放電中や電池未使用時等においても均衡化の動作を 行なわせることができる。 もちろん、 ハイブリ ツ ド電気自動車のように 発電走行時に満充電まで充電しないものにも利用することができる。  In addition, the equilibrium operation can be performed in all states, not only during charging until the battery is fully charged, but also during driving, charging, discharging, etc. Even when the battery is not used, the balancing operation can be performed. Of course, it can also be used for hybrid electric vehicles that do not charge until they are fully charged during power generation.
ところで、 このような回路を実際に適用する場合には、 効率がよく動 作が確実で耐久性のよいことが必要となるカ^ このような具体的条件を 考慮すると、 スィッチ S 0〜S 6には電力素子 (F E Tあるいは I G B T ) 等のスイッチングロスが極力小さなものを使用し、 制御手段 7に外 部発振回路等により自動的にスィツチ S 0〜S 6の切り換え動作を行な わせる回路を装備することが好ましい。  By the way, when such a circuit is actually applied, it is necessary to ensure that the operation is efficient, the operation is reliable, and the durability is high. Considering these specific conditions, the switches S 0 to S 6 A switching element such as a power element (FET or IGBT) with the smallest possible switching loss is used for the control means 7 and a circuit for automatically switching the switches S0 to S6 by an external oscillation circuit or the like. It is preferable to equip it.
また、 コンデンサ C 1〜 C 5には比較的容量の大きなコンデンサ、 例 えば電気二重層コンデンサを用いれば速やかな電圧の均衡化を行なえる カ^ 例えば常時又は頻繁にこのような電圧の均衡化制御を行なうように すれば、 小容量のコンデンサを用いても実用上十分に電圧の均衡化によ る充電量の均衡化を行なうことができる。  If capacitors C1 to C5 are relatively large capacitors, for example, an electric double layer capacitor, the voltage can be quickly balanced.For example, such voltage control is always or frequently performed. In this case, even if a small-capacity capacitor is used, the amount of charge can be balanced by the voltage balance sufficiently for practical use.
さらに、 コンデンサ C 1〜C 5への突入電流の防止回路や初期充電回 路も必要と考えられる。  In addition, a circuit to prevent inrush current to the capacitors C1 to C5 and an initial charging circuit are considered necessary.
また、 制御手段 7については、 スィッチ S 0〜S 6切り換えの連続動 作以外に、 メ ンテナンスを行なう時に用いるメ ンテナンススィツチを設 けたり、 外部の電圧測定回路などにより必要が生じた場合に駆動する方 法や、 車両不使用時に駆動する方法や、 タイマー回路などで一定時間ご とに駆動する方法、 接続される電気負荷の制御回路等 (電気自動車の場 合は、 モータコントローラや残存容量計など) からの均衡化指示を受け た場合に駆動する方法などのさまざまな組み台わせが考えられる。 また、 本蓄電装置は、 蓄電手段としてバッテリに代えてコンデンサ (蓄電器) を用いるようにした組蓄電器にも適用しうるものである。 つ まり、 複数の直列接続された蓄電池 (バッテリ) からなる組電池に代え て、 複数の直列接続された蓄電器 (コンデンサ) からなる組蓄電器に適 用することも考えられる。 In addition to the continuous operation of switching the switches S0 to S6, the control means 7 is provided with a maintenance switch used when performing maintenance, or driven when an external voltage measurement circuit or the like requires it. Method, driving when the vehicle is not in use, driving at regular intervals using a timer circuit, etc., controlling the connected electric load, etc. (For electric vehicles, use a motor controller or a residual capacity meter. Etc.) Various combinations such as a method of driving in the case of being conceived are conceivable. The present power storage device can also be applied to a battery pack in which a capacitor (capacitor) is used instead of a battery as the power storage means. In other words, application to a battery pack consisting of a plurality of series-connected capacitors (capacitors) instead of a battery pack consisting of a plurality of series-connected batteries (batteries) may be considered.
そして、 組電池状態又は組蓄電器状態にした場合にセル電圧のばらつ きによる各種不具合が顕著化しやすいバッテリや電気二重層コンデンサ などについて上述の構造を採用し、 電圧均衡化回路を構成すれば、 大き なエネルギ損失の発生なしに常時電圧の均衡化を行なえるシステムを実 現できるようになる。  If a battery or electric double-layer capacitor, etc., in which various problems due to variations in cell voltage are likely to become noticeable when in the assembled battery state or the assembled battery state, the above-described structure is adopted, and a voltage balancing circuit is configured, This makes it possible to realize a system that can always balance the voltage without generating a large energy loss.
本回路の作動を常時ではなく、 バッテリセル電圧モニタなどにより、 任意の必要な時期に電圧を均衡化する方法等を具現化することができる 特に、 リチウムイオン電池に本回路を適用することにより、 リチウム イオン電池の能力を 1 0 0パ一セン ト引き出した上での、 安全性の確保 カ容易に7よる。 The operation of this circuit is not always performed, and it is possible to realize a method of balancing the voltage at any required time by using a battery cell voltage monitor, etc.In particular, by applying this circuit to a lithium ion battery, the ability of after having pulled out 1 0 0 Pas one cents of the lithium-ion battery, ensure safety mosquito readily 7 by.
なお、 セル電圧のアンバランスが大きい場合から小さくなった場合に 移行するに従い、 制御手段による接続モー ド切り換えの速度を変化させ ることにより、 電圧均衡化の所要時間を短縮させることもできる。 次に、 本発明の第 2実施形態としての蓄電装置について説明すると、 F I G . 6に示すように、 複数の蓄電手段としての蓄電池 (バッテリ) 1 1 , 1 2が直列に接続されており、 これにより組電池が構成されてい る。 なお、 この例では、 2個のバッテリを接続した例を示しているが、 第 1実施形態と同様、 バッテリ数はこれに限定されるものではない。 そして、 各蓄電手段 1 1, 1 2に対してそれぞれ並列接続可能な複数 の蓄電器 (コンデンサ) C 1 1 , C 1 2が設けられている。 さらに、 各蓄電器 C I 1 , C I 2 と各蓄電池 1 1 , 1 2 との間には、 接続切換手段としてのスィツチ S 1 1〜S 1 4が介装されている。 The time required for voltage balancing can be shortened by changing the connection mode switching speed by the control means in accordance with the transition from when the cell voltage imbalance is large to small. Next, a power storage device according to a second embodiment of the present invention will be described. As shown in FIG. 6, storage batteries (batteries) 11 and 12 as a plurality of power storage means are connected in series. Constitutes an assembled battery. Although this example shows an example in which two batteries are connected, the number of batteries is not limited to this, as in the first embodiment. A plurality of capacitors (capacitors) C11 and C12 are provided that can be connected in parallel to the respective power storage means 11 and 12. Further, switches S11 to S14 as connection switching means are interposed between each of the storage batteries CI1, CI2 and each of the storage batteries 11, 12.
ここで、 蓄電池 1 1, 1 2の相互間には端子 S 1 1 B, S 1 2 A, S 1 2 C, S 1 3 A, S 1 3 C及び S 1 4 B力、'、 蓄電池 1 1の一端側 (端 子 A側) には、 端子 S 1 1 A, S 1 1 C及び S 1 3 B力 蓄電池 1 2の 他端側 (端子 B側) には、 端子 S 1 2 B, S 1 4 A及び S 1 4 Cが、 そ れぞれ接続されている。  Here, between the storage batteries 11 and 12, terminals S11B, S12A, S12C, S13A, S13C and S14B power, ', storage battery 1 One end (terminal A side) of terminal 1 has terminals S11A, S11C and S13B, and the other end (terminal B side) of storage battery 12 has terminals S12B, S14A and S14C are connected respectively.
また、 F I G. 6に示すように、 蓄電池 1 1の端子 A側と端子 S 1 1 Cとの間には、 所望の抵抗値を有する抵抗器 R 1 1が接続されており、 また、 蓄電池 1 2の端子 B側と端子 S 1 4 Cとの間には、 所望の抵抗値 を有する抵抗器 R 1 2が接続されている。  As shown in FIG. 6, between the terminal A side of the storage battery 11 and the terminal S 11 C, a resistor R 11 having a desired resistance value is connected. A resistor R12 having a desired resistance value is connected between the terminal B side of the terminal 12 and the terminal S14C.
また、 蓄電器 C 1 1の一端側には端子 S 1 1 A, 端子 S 1 1 B又は端 子 S 1 1 Cに選択的に接続切り換え可能なスィツチ S 1 1力^ 又、 蓄電 器 C 1 1の他端側には端子 S 1 2 A, 端子 S 1 2 B又は端子 S 1 2 Cに 選択的に接続切り換え可能なスィッチ S 1 2がそれぞれ設けられている c さらに、 蓄電器 C 1 2の一端側には端子 S 1 3 A, 端子 S 1 3 B又は 端子 S 1 3 Cに選択的に接続切り換え可能なスィツチ S 1 3カ^ 又、 蓄 電器 C 1 2の他端側には端子 S 1 4 A, 端子 S 1 4 B又は端子 S 1 4 C に選択的に接続切り換え可能なスィッチ S 1 4がそれぞれ設けられてい る。 A switch S 11 1 which can be selectively connected to terminal S 11 A, terminal S 11 B or terminal S 11 C at one end of the capacitor C 11 is also provided. at the other end to the terminal S 1 2 a, terminal S 1 2 B or terminal S 1 2 C selectively connected switchable switch S 1 2 further c are provided, one end of the capacitor C 1 2 The switch S13 which can be selectively connected to terminal S13A, terminal S13B or terminal S13C on the other side, and terminal S1 on the other end of the capacitor C12 A switch S14 that can selectively switch connection to 4A, terminal S14B or terminal S14C is provided.
そして、 これらのスィッチ S 1 1〜S 1 4は連動して切り換えられる ように構成され、 それぞれが端子 S 1 1 A〜S 1 4 Aに接続した状態 (第 1の接続モ一ド M 1 ) と、 それぞれが端子 S 1 1 B〜S 1 4 Bに接 続した状態 (第 2の接続モー ド M 2 ) と、 それぞれが端子 S 1 1 C〜S 1 4 Cに接続した状態 (第 3の接続モード M 3 ) との間で、 一斉に同期 して切り換えられるように構成されている。 なお、 第 1の接続モー K M 1では、 各蓄電器 C 1 1 , C 1 2力 、 対応 した各蓄電池 1 1, 1 2 とそれぞれ並列接続された状態となり、 第 2の 接続モー KM 2では、 各蓄電器 C 1 1, C 1 2力く、 対応する蓄電池 1 1, 1 2に隣接した蓄電池 1 2 , 1 1 とそれぞれ並列接続された状態となる c また、 第 3の接続モー ド M 3では、 各蓄電器 C 1 1 , C 1 2力く、 抵抗 器 R l l, R 1 2を介してそれぞれ蓄電池 1 1, 1 2に並列接続された 状態となる。 These switches S11 to S14 are configured to be switched in an interlocked manner, and are connected to the terminals S11A to S14A, respectively (first connection mode M1). And a state in which each is connected to terminals S11B to S14B (second connection mode M2), and a state in which each is connected to terminals S11C to S14C (third connection mode). The connection mode M3) can be switched simultaneously and synchronously. In the first connection mode KM 1, the respective capacitors C 11 and C 12 are connected in parallel with the corresponding storage batteries 11 1 and 12, and in the second connection mode KM 2, capacitor C 1 1, C 1 2 Chikaraku, corresponding storage battery 1 1, 1 2 battery 1 2 adjacent to, 1 1 c also becomes a state of being connected in parallel, respectively, in the third connection mode M 3, Each of the capacitors C 11 and C 12 is powerfully connected to the storage batteries 11 and 12 in parallel via the resistors R ll and R 12, respectively.
そして、 接続切換手段 S 1 1〜S 1 4による第 1の接続モ— KM 1, 第 2の接続モ— KM 2及び第 3の接続モー K M 3の切換を制御する制御 手段 1 7が設けられており、 この制御手段 1 7からの制御信号により所 要の切り換え状態でモ一 ド切り換えを繰り返し行ないながら、 各蓄電池 1 1 , 1 2を電位差を等しく させていくように構成されている。  Control means 17 is provided for controlling switching of the first connection mode KM1, the second connection mode KM2, and the third connection mode KM3 by the connection switching means S11 to S14. According to the control signal from the control means 17, the mode switching is repeatedly performed in the required switching state, and the potential difference between the storage batteries 11 and 12 is made equal.
なお、 本実施形態では、 接続切換手段を機械的なスィッチ S 1 1〜S 1 4で構成しているが、 実際の回路構成では、 制御性や耐久性を考慮す ると、 トランジスタ等の半導体素子による半導体切り換え手段 (半導体 スィッチ) により構成することが考えられる。  In the present embodiment, the connection switching means is constituted by mechanical switches S11 to S14. However, in an actual circuit configuration, when controllability and durability are taken into consideration, a semiconductor such as a transistor is used. It is conceivable to use semiconductor switching means (semiconductor switch) using elements.
ところで、 本実施形態のように、 抵抗器 R 1 1, R 1 2及び端子 S 1 1〜S 1 4 Cを設けているのは、 以下の理由によるものである。  By the way, the reason why the resistors R11 and R12 and the terminals S11 to S14C are provided as in the present embodiment is as follows.
すなわち、 蓄電器 (コンデンサ) C 1 1, C 1 2は、 蓄電池 (バッテ リ) 1 1 , 1 2と同様に電荷を蓄える作用があるが、 通常は、 コンデン サはバッテリと異なり自己放電が比較的顕著である。 したがって、 上述 のような蓄電装置を電気車両に搭載して長時間車両を放置した場合等に は、 蓄電器 C 1 1, C 1 2の電荷がなくなっている場合が考えられる。 この場合、 車両のキースィッチをオフ (即ち、 イダニッシヨ ンオフ) にしても、 スィッチ S 1 1〜S 1 4が第 1の接続モ一 K M 1又は第 2の 接続モー KM 2に保持されていれば、 蓄電器 C 1 1, C 1 2は端子 S 1 1 A〜 S 1 4 A又は端子 S 1 1 C〜S 1 4 Cを介して蓄電池 1 1 , 1 2 と接続された状態に保持されるので、 蓄電器 C 1 1, C 1 2が完全に放 電してしまうことはあまり考えられない。 In other words, the capacitors C 11 and C 12 have the function of storing electric charges in the same manner as the storage batteries 11 and 12, but normally, unlike a battery, a capacitor is relatively self-discharging. Notable. Therefore, when the electric storage device as described above is mounted on an electric vehicle and the vehicle is left unattended for a long time, the electric storage devices C11 and C12 may have no charge. In this case, even if the key switch of the vehicle is turned off (that is, the identification switch is turned off), if the switches S11 to S14 are held in the first connection mode KM1 or the second connection mode KM2. The capacitors C 1 1 and C 1 2 are connected to terminal S 1 1 A to S 14 A or the terminals S 11 C to S 14 C are connected to the storage batteries 11 and 12, so that the capacitors C 11 and C 12 are completely discharged. It is unlikely that you will be charged.
しかしながら、 接続切換手段に機械的なスィッチではなく トランジス 夕等の半導体スィッチを用いた場合には、 キ一スィッチオフの時には、 半導体スィツチの特性により各スィツチ S 1 1〜S 1 4がいずれの端子 とも接しない状態となり、 自己放電を助長させてしまうのである。  However, if a semiconductor switch such as a transistor is used instead of a mechanical switch for the connection switching means, when the switch is turned off, each of the switches S 11 to S 14 may be connected to any terminal depending on the characteristics of the semiconductor switch. It is in a state where it does not come into contact with it, and it promotes self-discharge.
そして、 このように蓄電器 C 1 1, C 1 2が電荷を蓄えていない状態 (即ち、 放電した伏態) で、 回路を始動させる場合 (ィグニッシヨンを オンにした場合) や、 充電のために端子 A, B間に充電器を接続した場 合) には、 抵抗器 R 1 1, R 1 2を設けないと、 蓄電器 C 1 1 , C 1 2 に急激に大電流 (このような大電流を突入電流ともいう) が流れること になり、 蓄電器 C 1 1 , C 1 2を損傷させてしまうおそれがある。  Then, in a state where the capacitors C 11 and C 12 do not store the electric charge (that is, the discharged state), the circuit is started (when the ignition is turned on) or the terminal is charged for charging. If a charger is connected between A and B), the resistors R11 and R12 will not be provided, and the capacitors C11 and C12 will suddenly have a large current (such a large current Inrush current), which may damage the capacitors C11 and C12.
そこで、 本実施形態では、 このような突入電流を回避すべく、 上述の 第 1実施形態に対して、 蓄電器 C 1 1, C 1 2が抵抗器 R 1 1, R 1 2 を介して蓄電池 1 1, 1 2と接続されるような第 3の接続モー KM 3を 設けているのである。  Therefore, in the present embodiment, in order to avoid such an inrush current, the storage batteries C 11 and C 12 are connected to the storage battery 1 via the resistors R 11 and R 12 in comparison with the above-described first embodiment. A third connection mode KM 3 is provided to connect with 1, 1 and 2.
なお、 蓄電器 C 1 1, C 1 2が電荷を蓄えている状態 (即ち、 充電さ れている状態) では、 蓄電器 C 1 1, C 1 2自体が抵抗器として作用す るのでこのような突入電流が蓄電器 C 1 1 , C 1 2に流れることはない c そして、 本実施形態では、 回路を始動させる場合 (例えば、 ィグニッ シヨ ンキーオン時や端子 A, B間に充電用の電圧が印加されたとき) に は、 制御手段 1 7からの制御信号によりスィッチ S 1 1〜S 1 4が連動 して端子 S 1 1 C〜S 1 4 Cへの接続状態とされ、 最初に第 3の接続モ — ド M 3に切り換えられるようになつている。 In the state where the capacitors C 11 and C 12 are storing electric charges (that is, in a charged state), since the capacitors C 11 and C 12 themselves act as resistors, such inrush occurs. current and c does not flow to the capacitor C 1 1, C 1 2, in the present embodiment, when starting the circuit (e.g., Iguni' to Nkion or when the terminal a, the voltage for charging between B is applied ), The switches S11 to S14 are interlocked by the control signal from the control means 17 so as to be connected to the terminals S11C to S14C. — Can be switched to de M3.
また、 このように蓄電器 C 1 1 , C 1 2を抵抗器 R 1 1, R 1 2を介 して蓄電池 1 1 , 1 2や充電器に接続することにより、 蓄電器 C 1 1 , C 1 2が放電状態であっても、 蓄電器 C 1 1 , C 1 2に突人電流が流れ るのを回避しながら蓄電器 C 1 1 , C 1 2を充電することができるので ある。 In addition, the capacitors C 11 and C 12 are connected via the resistors R 11 and R 12 in this manner. Connected to the storage batteries 11 and 12 and the charger to prevent the surge current from flowing through the storage capacitors C 11 and C 12 even when the storage capacitors C 11 and C 12 are in the discharging state. It is possible to charge the capacitors C 11 and C 12 while avoiding them.
そして、 蓄電器 C 1 1 , C 1 2が充電されるまでの所定時間経過した 後、 スィッチ S 1 1〜S 1 4が第 1の接続モー ド M 1 と第 2の接続モー ド M 2とに交互に切り換え制御されるようになっているのである。  Then, after a lapse of a predetermined time until the capacitors C11 and C12 are charged, the switches S11 to S14 are switched to the first connection mode M1 and the second connection mode M2. The switching is controlled alternately.
なお、 この第 2実施形態の蓄電装置は、 第 1実施形態と同様に電気自 動車用電源として用いられる組電池 (=複数の蓄電池を接続してなる電 池) に適用しうるものである。 現状の電気自動車の場合、 一般に 2 0〜 3 0個程度のバッテリを直列に接続した組電池が使用されるが、 本蓄電 装置は当然ながらこのような多数のバッテリからなる組電池にも適用し うる。  The power storage device according to the second embodiment can be applied to a battery pack (= a battery formed by connecting a plurality of storage batteries) used as a power supply for an electric vehicle, as in the first embodiment. In the current electric vehicle, an assembled battery in which about 20 to 30 batteries are connected in series is generally used, but the present power storage device is naturally applied to an assembled battery including such a large number of batteries. sell.
本発明の第 2実施形態としての蓄電装置は、 上述のように構成されて いるので、 次のような動作が行なわれる。  Since the power storage device according to the second embodiment of the present invention is configured as described above, the following operation is performed.
まず、 電源投入時、 即ち、 回路を始動させる場合 (例えばィグニッシ ヨ ンキーオン時や各蓄電池 1 1 , 1 2に端子 A , B間に充電用の電圧が 印加されたとき) 、 スィッチ S 1 1〜S 1 4が制御手段 1 7からの制御 信号により連動して切り換えられ、 第 3の接続モー KM 3に制御される c すなわち、 この場合には、 各スィツチ S 1 1〜 S 1 4は、 端子 S 1 1 (:〜 S 1 4 Cへの接続状態となり、 各蓄電器 C 1 1, C 1 2力^ 抵抗器 R l l , R 1 2を介してそれぞれ蓄電池 1 1 , 1 2に接続された状態と なる。 First, when the power is turned on, that is, when the circuit is started (for example, when the ignition key is turned on or when a charging voltage is applied between the terminals A and B to the storage batteries 11 and 12), the switches S11 to S11 are switched on. S 14 is interlocked and switched by the control signal from the control means 17 and is controlled by the third connection mode KM 3 c . In this case, each switch S 11 to S 14 is connected to a terminal S 1 1 (: Connected to S 14 C, connected to storage batteries 1 1, 1 2 via capacitors C 11, C 12 force ^ resistors R ll, R 12 respectively And
これにより、 各蓄電器 C 1 1 , C 1 2に電荷が全くない状態であって も、 電源投入時や充電時に、 蓄電器 C 1 1, C 1 2に蓄電池 1 1 , 1 2 や充電器から大電流 (突入電流) が流れることがなく、 蓄電器 C 1 1, C 1 2を十分に保護することができる。 As a result, even when each of the capacitors C 11 and C 12 has no charge at all, the batteries C 1 and C 12 store large amounts of power from the batteries 11 and 12 and the charger at power-on and charging. No current (rush current) flows, and the capacitors C 11 C 12 can be sufficiently protected.
そして、 所定時間だけ経過すると、 蓄電器 C 1 1 , C 1 2が十分に充 電されたものとして、 スィッチ S 1 1〜S 1 4が制御手段 1 7からの制 御信号により連動して切り換えられ、 端子 S 1 1 A〜S 1 4 Aへの接続 状態と、 端子 S 1 1 B〜S 1 4 Bへの接続状態とが、 一斉に切り換えら れる。  Then, after a lapse of a predetermined time, it is determined that the capacitors C 11 and C 12 have been sufficiently charged, and the switches S 11 to S 14 are switched in response to a control signal from the control means 17. The connection state to the terminals S11A to S14A and the connection state to the terminals S11B to S14B are simultaneously switched.
これにより、 各蓄電器 C 1 1, C 1 2が対応した各蓄電池 1 1, 1 2 とそれぞれ並列接続する第 1の接続モー K M 1 と、 各蓄電器 C 1 1 , C 1 2が対応する蓄電池 1 1, 1 2に隣接した蓄電池 1 2 , 1 1 とそれぞ れ並列接続する第 2の接続モ一 K M 2 とが選択的に切り換えられる。 そして、 このような接続切換手段としてのスィッチ S 1 1〜S 1 4に よる第 1の接続モ一ド M 1 と第 2の接続モー K M 2との切り換えが、 制 御手段 1 7からの制御信号により所要の周期で繰り返し行なわれること で、 各蓄電池 1 1 , 1 2の電位差が次第に等化されていくのである。 なお、 各蓄電池 1 1, 1 2の電位差を等しく させる制御動作は、 上述 の第 1実施形態と同様のものとなるため、 ここでは省略する。  Thereby, the first connection mode KM 1 connected in parallel with each of the storage batteries 11 1 and 12 corresponding to each of the capacitors C 11 and C 12, and the storage battery 1 corresponding to each of the capacitors C 11 and C 1 2 The storage batteries 12 and 11 adjacent to 1 and 12 and the second connection mode KM 2 connected in parallel with each other are selectively switched. The switching between the first connection mode M 1 and the second connection mode KM 2 by the switches S 11 to S 14 as such connection switching means is controlled by the control means 17. The repetition at a required period by the signal causes the potential difference between the storage batteries 11 and 12 to be gradually equalized. Note that the control operation for equalizing the potential difference between the storage batteries 11 and 12 is the same as that in the above-described first embodiment, and will not be described here.
このように、 第 2実施形態の蓄電装置では、 上述の第 1実施形態にお ける効果ないし利点に加えて、 以下のような効果が得られる。  As described above, in the power storage device of the second embodiment, the following effects can be obtained in addition to the effects and advantages of the above-described first embodiment.
すなわち、 蓄電器 C 1 1, C 1 2が電荷を蓄えていない状態 (即ち、 放電した状態) で、 回路を始動させる場合 (例えはィグニッシヨ ンをォ ンにした場合や、 充電のために端子 A , B間に充電器を接続した場合) 、 蓄電器 C 1 1, C 1 2には、 抵抗器 R 1 1 , R 1 2を介して電流が流れ るので、 蓄電器 C 1 1, C 1 2に急激に大電流 (突入電流) が流れるの を防止することができ、 蓄電器 C 1 1 , C 1 2を十分に保護することが できる利点がある。  That is, when starting the circuit while the capacitors C 11 and C 12 do not store electric charge (ie, in a discharged state) (for example, when the ignition is turned on, or when the terminal A is charged for charging). , B), the current flows through the capacitors C 11 and C 12 through the resistors R 11 and R 12, so that the capacitors C 11 and C 12 This has the advantage that it is possible to prevent a large current (rush current) from flowing suddenly and to sufficiently protect the capacitors C 11 and C 12.
また、 本実施形態によれば、 このような突人電流を防止することがで きるので、 蓄電器 C 1 1, C 1 2の耐電流の仕様を必要最小限にできる ため、 小容量のコンデンサを用いることができ、 蓄電器 C 1 1 , C 1 2 の小型化が可能となるという利点がある。 Further, according to the present embodiment, such a rush current can be prevented. Since the specifications for the withstand current of the capacitors C 11 and C 12 can be minimized, a small-capacity capacitor can be used, and the capacitors C 11 and C 12 can be downsized. There are advantages.
次に、 本発明の第 3実施形態としての蓄電装置について説明すると、 F I G. 7 , F I G. 8に示すように、 本装置においても、 複数の蓄電 手段としての蓄電池 (バッテリ) 1 1, 1 2が直列に接続されており、 これにより組電池が構成されている。 そして、 本実施形態では、 第 2実 施形態の回路構成 (F I G. 6参照) から端子 S 1 1 (:〜 S 1 4 C及び 抵抗 R l l, R 1 2を省いた回路構成になっている。 このため、 回路構 成についての詳細な説明は省略する。 また、 F I G. 7 , F I G. 8に おいても、 2個のバッテリを接続した例を示しているが、 勿論、 バッテ リ数はこれに限定されるものではない。  Next, a power storage device according to a third embodiment of the present invention will be described. As shown in FIGS. 7 and 8, this device also includes a plurality of storage batteries (batteries) 11 and 1 and 2 are connected in series, thereby forming an assembled battery. In the present embodiment, the circuit configuration is the same as that of the second embodiment (see FIG. 6) except that the terminals S11 (: to S14C and the resistors Rll and R12) are omitted. For this reason, the detailed description of the circuit configuration is omitted, and FIGS. 7 and 8 show examples in which two batteries are connected. The number is not limited to this.
また、 本実施形態では、 端子 S 1 1 C〜S 1 4 C及び抵抗 R 1 1, R 1 2を省いているため、 第 2実施形態における第 3の接続モー KM 3に 相当する接続モードはなく、 各蓄電器 C 1 1 , C 1 2が対応した各蓄電 池 1 1 , 1 2とそれぞれ並列接続される第 1の接続モー KM 1と、 各蓄 電器 C l l, C 1 2が対応する蓄電池 1 1 , 1 2に隣接した蓄電池 1 2, 1 1とそれぞれ並列接続される第 2の接続モー KM 2とがそなえられて いる。  In the present embodiment, since the terminals S 11 C to S 14 C and the resistors R 11 and R 12 are omitted, the connection mode corresponding to the third connection mode KM 3 in the second embodiment is And the first connection mode KM 1 connected in parallel with each of the storage batteries 11 1 and 12 corresponding to each of the capacitors C 11 and C 12, and the storage battery corresponding to each of the capacitors C ll and C 12 A storage battery 12, 11 adjacent to 11, 12 is provided with a second connection mode KM 2 connected in parallel with each of the storage batteries 12, 11.
そして、 制御手段 1 7からの制御信号により、 スィッチ S 1 1〜S 1 4の接続状態を、 それぞれ端子 S 1 1 A, S 1 2 A, S 1 3 A, S 1 4 A側に接続した状態 (第 1の接続モー ド M l ) と、 それぞれ端子 S I 1 B, S 1 2 B, S 1 3 B, S 1 4 B側に接続した状態 (第 2の接続モ一 ド M 2 ) との間で、 切り換えを繰り返し行ないながら、 各蓄電池 1 1, 1 2を電位差を等しく させていくように構成されている。  Then, according to the control signal from the control means 17, the connection state of the switches S11 to S14 was connected to the terminals S11A, S12A, S13A, S14A, respectively. The state (first connection mode Ml) and the state (second connection mode M2) connected to terminals SI1B, S12B, S13B, and S14B, respectively. It is configured so that the potential difference between the storage batteries 11 and 12 is made equal while repeating the switching between.
ところで、 蓄電池 1 1 , 1 2に接続するコンデンサ (蓄電器) C 1 1 C 1 2の仕様ゃスィツチ S 1 1〜 S 1 4の切換周波数によつて電圧の均 衡化時間は大きく変化する。 このため、 各蓄電池 1 1, 1 2の電圧を均 衡化して電池 1 1 , 1 2の性能を十分に引き出すためには、 スィッチ S 1 1〜S 1 4の切換周波数の設定が重要となる。 By the way, the capacitor (storage device) connected to the storage batteries 1 1 and 1 2 C 1 1 Specification of C12 ゃ The voltage balancing time greatly changes depending on the switching frequency of the switches S11 to S14. For this reason, setting the switching frequency of switches S11 to S14 is important in order to balance the voltages of the storage batteries 11 and 12 and to bring out the performance of batteries 11 and 12 sufficiently. .
一方、 F I G. 9は一般的なコンデンサ (蓄電器) の充放電特性を示 すグラフであるが、 このグラフからもわかるように、 コンデンサは、 そ の特性上、 充電開始時や放電開始時には電荷の変化 (充放電速度) が比 較的大きく、 時間の経過とともに電荷の変化割合は緩やかなものとなる したがって、 電荷の変化 (充放電速度) が大きい範囲でスィッチ S 1 1〜S 1 4を切り換えるほど均衡化時間を短くすることができる。 すな わち、 スィッチ S 1 1〜S 1 4の切換周期を短くするほど、 各蓄電池 1 1 , 1 2を効率良く均衡化することができるのである。  On the other hand, Fig. 9 is a graph showing the charge and discharge characteristics of a general capacitor (capacitor). As can be seen from this graph, the capacitor has a charge at the start of charging or discharging due to its characteristics. Change (charge / discharge rate) is relatively large, and the rate of change of charge becomes gradual over time. Therefore, when the change of charge (charge / discharge rate) is large, the switches S11 to S14 are switched. The more the switching is performed, the shorter the balancing time can be. That is, the shorter the switching period of the switches S11 to S14, the more efficiently the storage batteries 11 and 12 can be balanced.
しかしながら、 スィッチ S 1 1〜S 1 4の動作時には必ずエネルギ損 失が生じるため、 切換周期を短く しすぎるとこのエネルギ損失が大きく なり、 逆に効率が悪くなることも考えられる。  However, energy loss always occurs when the switches S11 to S14 operate, so if the switching cycle is too short, this energy loss increases, and conversely, the efficiency may decrease.
したがって、 スィッチ S 1 1〜S 1 4によるエネルギ損失をできるだ け抑制しながら、 各蓄電池 1 1 , 1 2の電圧を短時間で均衡化できるよ うな切換周期 (切換周波数) を設定する必要がある。  Therefore, it is necessary to set the switching cycle (switching frequency) so that the voltages of the storage batteries 11 and 12 can be balanced in a short time while minimizing the energy loss due to the switches S11 to S14. is there.
ここで、 F I G. 1 0及び F I G. 1 1は、 蓄電池 1 1, 1 2の電圧 均衡化時間とスィツチ S 1 1〜S 1 4の切換周波数との関係をシミ ュレ ーショ ンした結果を示す図であって、 F I G. 1 0はコンデンサ (蓄電 器) の抵抗を固定にして、 コンデンサ容量を変更した場合の電圧均衡化 時間を示す図、 F I G. 1 1はコンデンサ (蓄電器) の電気容量を固定 にして、 コンデンザの抵抗を変更した場合の電圧均衡化時間示す図であ る。  Here, FIG. 10 and FIG. 11 are the results of simulating the relationship between the voltage balancing time of the storage batteries 11 and 12 and the switching frequency of the switches S11 to S14. Fig. 10 shows the voltage balancing time when the resistance of the capacitor (capacitor) is fixed and the capacitance of the capacitor is changed. Fig. 11 is the capacitor (capacitor). FIG. 4 is a diagram showing a voltage balancing time when the capacitance of the capacitor is fixed and the resistance of the condenser is changed.
これらの F I G. 1 0, F I G. 1 1に示すシ ミ ュ レーシ ョ ン結果か らもわかるように、 スィッチ S 1 1〜 S 1 4の切換周波数をコンデンサ の時定数 (抵抗 X容量) の略 1 Z 3以下に設定すれば、 コンデンサの容 量や抵抗値によらず、 均衡化時間はほとんど変化しない。 したがって、 コンデンサの時定数 (抵抗 X容量) の略 1 Z 3近傍に切換周波数を設定 するのが効果的である。 The simulation results shown in Fig. 10 and Fig. 11 are used. As can be seen, if the switching frequency of switches S11 to S14 is set to approximately 1Z3 or less, which is the time constant (resistance X capacitance) of the capacitor, the balance will be maintained regardless of the capacitance or resistance value of the capacitor. Change time hardly changes. Therefore, it is effective to set the switching frequency near the time constant of the capacitor (resistance X capacitance) of about 1 Z3.
そこで、 本実施形態では、 制御手段 1 7によるスィッチ S 1 1〜S 1 4の切換周波数を、 蓄電器 C 1 1 , C 1 2の抵抗値 Rと電気容量 Cとの 積で求められる時定数の 1 Z 3に設定しているのである。 なお、 この切 換周波数は、 蓄電器 C 1 1, C 1 2の時定数の 1 / 3に限定されるもの ではなく、 例えば蓄電器 C 1 1 , C 1 2の時定数の略 1 / 3以下に設定 されていればよい。 ただし、 切換周波数を大きく しすぎると、 上述した ようにスィッチ S 1 1〜S 1 4によるエネルギ損失が大きくなるので、 時定数の略 1 / 3程度が好ましい。  Therefore, in the present embodiment, the switching frequency of the switches S 11 to S 14 by the control means 17 is determined by the time constant obtained by the product of the resistance value R of the capacitors C 11 and C 12 and the electric capacity C. It is set to 1 Z 3. Note that the switching frequency is not limited to 1/3 of the time constant of the capacitors C11 and C12, but may be, for example, approximately 1/3 or less of the time constant of the capacitors C11 and C12. It only has to be set. However, if the switching frequency is too high, the energy loss due to the switches S11 to S14 increases as described above, so that the time constant is preferably about 1/3.
なお、 本実施形態では、 接続切換手段を機械的なスィッチ S 1 1〜S 1 4で構成しているが、 実際の回路構成では、 制御性や耐久性を考慮す ると、 トランジスタ等の半導体素子による半導体切り換え手段 (半導体 スィッチ) により構成することが考えられる。 この場合には、 機械的な スィッチよりもスィツチング動作によるエネルギ損失を小さくすること ができる。  In the present embodiment, the connection switching means is constituted by mechanical switches S11 to S14. However, in an actual circuit configuration, when controllability and durability are taken into consideration, a semiconductor such as a transistor is used. It is conceivable to use semiconductor switching means (semiconductor switch) using elements. In this case, the energy loss due to the switching operation can be smaller than that of a mechanical switch.
また、 本実施形態の蓄電装置は、 第 1実施形態と同様に、 電気自動車 用電源として用いられる組電池 (=複数の蓄電池を接続してなる電池) に適用しうるものである。 現状の電気自動車の場合、 一般に 2 0〜 3 0 個程度のバッテリを直列に接続した組電池が使用されるが、 本蓄電装置 は当然ながらこのような多数のバッテリからなる組電池にも適用しうる < 本発明の第 3実施形態としての蓄電装置は、 上述のように構成されて いるので、 次のような動作が行なわれる。 まず、 電源投入時、 即ち、 イグニッショ ンキーオン時や各蓄電池 1 1, 1 2の端子 , B間に充電用の電圧が印加されると、 スィッチ S l l〜 S 1 4が制御手段 1 7からの制御信号により連動して切り換えられ、 端 子 S 1 1 A〜S 1 4 Aへの接続状態と、 端子 S 1 1 B〜S 1 4 Bへの接 続状態とが、 交互に一斉に切り換えられる。 Further, similarly to the first embodiment, the power storage device of the present embodiment can be applied to an assembled battery (= a battery formed by connecting a plurality of storage batteries) used as a power supply for an electric vehicle. In the current electric vehicle, an assembled battery in which about 20 to 30 batteries are connected in series is generally used, but the present power storage device is naturally applied to an assembled battery including such a large number of batteries. The power storage device according to the third embodiment of the present invention is configured as described above, and thus performs the following operation. First, when the power is turned on, that is, when the ignition key is turned on, or when a voltage for charging is applied between the terminals B of the storage batteries 11 and 12, the switches Sll to S14 are controlled by the control means 17. Switching is performed in conjunction with the signal, and the connection status to terminals S11A to S14A and the connection status to terminals S11B to S14B are alternately and simultaneously switched.
これにより、 各蓄電器 C 1 1, C 1 2が対応した各蓄電池 1 1, 1 2 とそれぞれ並列接続する第 1の接続モー K M 1 と、 各蓄電器 C 1 1 , C 1 2が対応する蓄電池 1 1 , 1 2に瞵接した蓄電池 1 2 , 1 1 とそれぞ れ並列接続する第 2の接続モ一ド M 2 とが選択的に切り換えられる。 そして、 このような接続切換手段としてのスィッチ S 1 1〜 S 1 4に よる第 1の接続モ一 ド M 1 と第 2の接続モ一 KM 2 との切り換えが、 制 御手段 1 7からの制御信号により所要の周期で繰り返し行なわれること で、 各蓄電池 1 1 , 1 2の電位差が次第に等化されていく。 本装置では、 このときのスィッチ S 1 1〜S 1 の切換周波数が、 蓄電器 C 1 1 , C 1 2の抵抗値 Rと電気容量 Cとの積で求められる時定数に基づいて設定 されるため、 スイッチング動作によるエネルギ損失を低減しながら、 電 圧の均衡化時間を短縮することができる利点がある。 特に、 本実施形態 では、 切換周波数は、 蓄電器 C 1 1, C 1 2の抵抗値 Rと電気容量じと の積で求められる時定数の略 1 / 3に設定されているので、 スィッチン グ動作によるエネルギ損失を防止しながらの電圧の均衡化時間の短縮化 を極めて効果的に行なうことができる利点がある。 産業上の利用可能性  Thereby, the first connection mode KM 1 connected in parallel with each of the storage batteries 11 1 and 12 corresponding to each of the capacitors C 11 and C 12, and the storage battery 1 corresponding to each of the capacitors C 11 and C 1 2 The storage batteries 12 and 11 connected to 1 and 12 and the second connection mode M 2 connected in parallel with each other are selectively switched. The switching between the first connection mode M 1 and the second connection mode KM 2 by the switches S 11 to S 14 as such connection switching means is performed by the control means 17. The potential difference between the storage batteries 11 and 12 is gradually equalized by being repeatedly performed in a required cycle by the control signal. In this device, the switching frequency of the switches S11 to S1 at this time is set based on the time constant obtained by the product of the resistance value R of the capacitors C11 and C12 and the capacitance C. This has the advantage that the voltage balancing time can be reduced while reducing the energy loss due to the switching operation. In particular, in the present embodiment, the switching frequency is set to approximately one third of the time constant obtained by multiplying the resistance value R of the capacitors C 11 and C 12 by the electric capacitance, and thus the switching operation is performed. Therefore, there is an advantage that the voltage balancing time can be extremely effectively reduced while preventing energy loss due to the above. Industrial applicability
本発明の蓄電装置によれば、 電圧の高い蓄電池 (蓄電手段) の電荷を 電圧の低い蓄電池に移送することで、 複数の蓄電池間の電圧のバラツキ を解消して蓄電池の電圧を等しくすることができ、 複数の蓄電池の中の 比較的電圧の低い蓄電池の電圧レベルを高めることができるので、 多数 の蓄電池を直列接続した組電池の場合にも、 組電池の出力を確保しやす くなり、 各蓄電池を均等に使用することができるようになり、 各蓄電池 の能力を最大限に発揮させることができる。 したがって、 本装置を、 例 えば電気自動車用電源として用いられる組電池に適用すれば、 電気自動 車の実用性を大きく向上させることができるようになり、 極めて有用で ある。 According to the power storage device of the present invention, by transferring the charge of the high-voltage storage battery (power storage means) to the low-voltage storage battery, it is possible to eliminate the voltage variation among the plurality of storage batteries and equalize the voltage of the storage batteries. Can, among multiple batteries Since the voltage level of storage batteries with relatively low voltage can be increased, it is easy to secure the output of the batteries even in the case of a battery pack in which many batteries are connected in series, and each battery can be used equally. It is possible to maximize the capacity of each storage battery. Therefore, if this device is applied to, for example, an assembled battery used as a power supply for an electric vehicle, the practicality of the electric vehicle can be greatly improved, and it is extremely useful.

Claims

請 求 の 範 囲 The scope of the claims
1. 直列に接続された複数の蓄電手段 ( 1〜 5, 1 1, 1 2 ) と、 上記複数の蓄電手段 ( 1〜 5 , 1 1 , 1 2 ) と同数の蓄電器 (C 1〜 C 5 , C 1 1, C 1 2 ) と、 1. A plurality of power storage means (1 to 5, 11, 12, 12) connected in series and the same number of capacitors (C1 to C5) as the plurality of power storage means (1 to 5, 11, 12, 12) , C 1 1, C 1 2)
上記複数の蓄電手段 ( 1〜 5, 1 1 , 1 2 ) のそれぞれに対して上記 複数の蓄電器 (C 1〜C 5, C 1 1 , C 1 2 ) のそれぞれを 1対 1 とな るように並列接続すると共に、 該並列接続の組み合わせを切り換え可能 な切換手段 (S 0〜S 6, S l l, S 1 2 ) と、  For each of the plurality of power storage means (1 to 5, 11, 12, 12), the plurality of power storage units (C1 to C5, C11, C12) should be one-to-one. Switching means (S 0 to S 6, S ll, S 12) which can be connected in parallel to each other and switch the combination of the parallel connection;
上記各蓄電器に対する上記各蓄電手段 ( 1〜 5 , 1 1 , 1 2 ) の並列 接続の組み合わせを、 所定の周期で順次隣接する蓄電手段 ( 2〜 5, 1 , 1 2 , 1 1 ) に切り換えるように上記切換手段 (S 0〜S 6, S 1 1 , S 1 2 ) を制御する制御手段 ( 7 , 1 7 ) とを備えたことを特徴とする.  The combination of the parallel connection of the respective storage means (1 to 5, 11, 12) to each of the storage devices is sequentially switched to the adjacent storage means (2 to 5, 1, 12, 11) at a predetermined cycle. Control means (7, 17) for controlling the switching means (S0 to S6, S11, S12) as described above.
2. 上記切換手段 (S 0〜S 6, S 1 1 , S 1 2 ) による接続モ一 ドと して、 上記複数の蓄電器 (C 1〜C 5 , C 1 1 , C 1 2 ) のそれぞれに 対して上記複数の蓄電手段 ( 1〜 5, 1 1, 1 2 ) をそれぞれ並列接続 する第 1接続モードと、 上記複数の蓄電器 (C 1〜C 5, C 1 1 , C 1 2 ) のそれぞれに対して上記第 1接続モー ドで接続された蓄電手段 ( 1 〜5, 1 1, 1 2 ) に隣接する蓄電手段 ( 2〜 5, 1 , 1 2, 1 1 ) を それぞれ並列接続する第 2接続モードとを備え、 2. As the connection mode by the switching means (S0 to S6, S11, S12), each of the plurality of capacitors (C1 to C5, C11, C12) The first connection mode in which the plurality of storage means (1 to 5, 11, 12, 12) are connected in parallel to the above, and the first connection mode, in which the plurality of storage means (C1 to C5, C11, C12) The power storage means (2 to 5, 1, 12, 12) adjacent to the power storage means (1 to 5, 11, 12, 12) connected in the first connection mode are connected in parallel to each of them. With a second connection mode,
上記制御手段 ( 7 , 1 7 ) は、 所定周期で上記第 1接続モー ドと上記 第 2接続モ一ドとを交互に切り換えるように上記切換手段 (S 0〜S 6, S 1 1, S 1 2 ) を制御することを特徴とする、 請求の範囲第 1項記載 The control means (7, 17) controls the switching means (S0 to S6, S11, S11) so as to alternately switch between the first connection mode and the second connection mode at a predetermined cycle. Claim 1 characterized by controlling 1 2)
3. 上記複数の蓄電手段 ( 1 1, 1 2 ) に一方の端子を接続されると共 に他方の端子を上記切換手段 (S 1 1 , S 1 2 ) に接続され、 該複数の 蓄電手段 ( 1 1, 1 2 ) と同数の抵抗器 (R 1 1 , R 1 2 ) をさらに備 え、 3. One terminal is connected to the plurality of power storage means (11, 12), and the other terminal is connected to the switching means (S11, S12). (11, 12) and the same number of resistors (R11, R12) are further provided.
上記切換手段 (S 1 1, S 1 2 ) による接続モー ドとして、 上記複数 の蓄電器 (C 1 1, C 1 2 ) のそれぞれに対して上記複数の蓄電手段 As the connection mode by the switching means (S11, S12), the plurality of power storage means (C11, C12) are respectively connected to the plurality of power storage means (C11, C12).
( 1 1 , 1 2 ) をそれぞれ並列接続する第 1接続モー ドと、 上記複数の 蓄電器 (C 1 1 , C 1 2 ) のそれぞれに対して上記第 1接続モー ドで接 続された蓄電手段 ( 1 1, 1 2 ) に隣接する蓄電手段 ( 1 2 , 1 1 ) を それぞれ並列接続する第 2接続モー ドと、 上記複数の蓄電器 (C I 1 , C 1 2 ) のそれぞれに対して上記複数の抵抗器 (R 1 1, R 1 2 ) をそ れぞれ介して上記第 1接続モー ドで接続された蓄電手段 ( 1 1, 1 2 ) 又は上記第 2接続モードで接続された蓄電手段 ( 1 2 , 1 1 ) をそれぞ れ並列接続する第 3接続モー ドとを備え、 (1 1, 1 2) in parallel in the first connection mode, and power storage means connected to each of the plurality of capacitors (C 11, C 12) in the first connection mode. A second connection mode in which power storage means (12, 11) adjacent to (11, 12) are connected in parallel, and a plurality of power storage means (CI1, C12) for each of the plurality of power storage devices (CI1, C12). Power storage means (11, 12) connected in the first connection mode or the power storage means connected in the second connection mode via the respective resistors (R11, R12). (1 2, 1 1) in parallel with each other, and a third connection mode,
上記制御手段 ( 1 7 ) は、 最初に上記第 3接続モー ドによる接続を行 なって、 その後、 上記第 1接続モー ドと上記第 2接続モー ドとを交互に 切り換えるように、 上記切換手段 (S 1 1 , S 1 2 ) を制御することを 特徴とする、 請求の範囲第 1項記載の蓄電装置。  The control means (17) performs the connection in the third connection mode first, and then switches the first connection mode and the second connection mode alternately. The power storage device according to claim 1, wherein (S11, S12) is controlled.
4. 上記制御手段 ( 7, 1 7 ) は、 上記複数の蓄電手段 ( 1〜 5, 1 1, 1 2 ) の電位状態が互いに等しくなるように上記切換手段 (S 0〜S 6 , S 1 1, S 1 2 ) を制御することを特徴とする、 請求の範囲第 1項記載 4. The control means (7, 17) controls the switching means (S0 to S6, S1) so that the potential states of the plurality of power storage means (1 to 5, 11, 12, 12) become equal to each other. Claim 1, characterized by controlling (S1, S2).
5. 上記制御手段 ( 7, 1 7 ) は、 上記所定周期を、 上記蓄電器 (C 1 〜C 5, C l l , C 1 2 ) の抵抗値と電気容量とに基づいて設定するこ とを特徴とする、 請求の範囲第 1項記載の蓄電装置。 5. The control means (7, 17) sets the predetermined period to the storage capacitor (C1 The power storage device according to claim 1, wherein the power storage device is set based on resistance values and electric capacitances of C5, Cll, and C12).
6. 上記制御手段 (7 , 1 7 ) は、 上記所定周期を、 上記蓄電器 (C 1 〜C 5, C l l , C 1 2 ) の抵抗値と電気容量との積により求められる 時定数の略 1 / 3以下となるように設定することを特徴とする、 請求の 範囲第 5項記載の蓄電装置。 6. The control means (7, 17) sets the predetermined period as an abbreviation of a time constant obtained by multiplying a resistance value and an electric capacity of the capacitors (C1 to C5, Cll, C12). The power storage device according to claim 5, wherein the power storage device is set so as to be 1/3 or less.
7. 上記蓄電手段 ( 1〜 5, 1 1 , 1 2) は蓄電池であって、 該蓄電池 を複数個直列に接続されてなり電気自動車用電源に用いられる組電池と して構成されていることを特徴とする、 請求の範囲第 1項記載の蓄電装 7. The power storage means (1 to 5, 11, 12) is a storage battery, and a plurality of the storage batteries are connected in series to constitute a battery pack used for a power supply for an electric vehicle. The power storage device according to claim 1, characterized in that:
PCT/JP1997/003506 1996-10-03 1997-10-01 Electricity storing device WO1998015047A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/263267 1996-10-03
JP26326796 1996-10-03
JP9/81287 1997-03-31
JP08128897A JP3498529B2 (en) 1996-10-03 1997-03-31 Power storage device
JP9/81288 1997-03-31
JP08128797A JP3557840B2 (en) 1997-03-31 1997-03-31 Power storage device

Publications (1)

Publication Number Publication Date
WO1998015047A1 true WO1998015047A1 (en) 1998-04-09

Family

ID=27303551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003506 WO1998015047A1 (en) 1996-10-03 1997-10-01 Electricity storing device

Country Status (1)

Country Link
WO (1) WO1998015047A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288919B2 (en) * 2001-10-01 2007-10-30 Sanken Electric Co., Ltd. Voltage balance circuit, voltage detective circuit, voltage balancing method, and voltage detecting method
WO2009041180A1 (en) * 2007-09-26 2009-04-02 Kabushiki Kaisha Toshiba Protection device for assembled battery and assembled battery system containing the same
US7592683B2 (en) 2004-03-26 2009-09-22 Sanken Electric Co., Ltd. Semiconductor device with improved electrostatic tolerance
US9647467B2 (en) 2009-10-19 2017-05-09 4Esys Nv System and method for balancing energy storage devices
US11251628B2 (en) * 2017-01-23 2022-02-15 Rafael Advanced Defense Systems Ltd. System for balancing a series of cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319287A (en) * 1993-04-30 1994-11-15 Aqueous Res:Kk Electric power supply equipment for driving motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319287A (en) * 1993-04-30 1994-11-15 Aqueous Res:Kk Electric power supply equipment for driving motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288919B2 (en) * 2001-10-01 2007-10-30 Sanken Electric Co., Ltd. Voltage balance circuit, voltage detective circuit, voltage balancing method, and voltage detecting method
US7592683B2 (en) 2004-03-26 2009-09-22 Sanken Electric Co., Ltd. Semiconductor device with improved electrostatic tolerance
WO2009041180A1 (en) * 2007-09-26 2009-04-02 Kabushiki Kaisha Toshiba Protection device for assembled battery and assembled battery system containing the same
US9647467B2 (en) 2009-10-19 2017-05-09 4Esys Nv System and method for balancing energy storage devices
US11251628B2 (en) * 2017-01-23 2022-02-15 Rafael Advanced Defense Systems Ltd. System for balancing a series of cells

Similar Documents

Publication Publication Date Title
JP3746886B2 (en) Power storage device
US6064178A (en) Battery charge balancing system having parallel switched energy storage elements
TWI433425B (en) Battery charge and discharge balance of the circuit
US20120126753A1 (en) Self Heating Battery System
JP5498742B2 (en) Cell balancing system using transformer
CN103326439B (en) The equalizing circuit of set of cells and method
JP5587421B2 (en) Power system
US8766602B1 (en) Self protecting pre-charge circuit
JP2000511398A (en) A switch system for automatic battery equalization.
JP2014511095A (en) Rechargeable battery system and method of operating the same
JP4135297B2 (en) Battery pack charging device, charging method, and electric vehicle
JP2014504140A (en) Rechargeable battery system and method of operating the same
JP3460534B2 (en) Power storage device
JP3615500B2 (en) Battery charge rate adjustment circuit
CN107947256A (en) A kind of energy-storage system and energy storage system control method
CN111200306B (en) Novel battery pack equalization circuit topology and equalization strategy
CN107579552A (en) Battery pack balancing control method and device
Vardhan et al. Modeling of single inductor based battery balancing circuit for hybrid electric vehicles
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
WO1998015047A1 (en) Electricity storing device
CN201113508Y (en) Batteries equalizing device
JP3557840B2 (en) Power storage device
JP3498529B2 (en) Power storage device
KR101610925B1 (en) Apparatus and method for discharging battery
JP2022135394A (en) Charge amount adjustment device and vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642