Nothing Special   »   [go: up one dir, main page]

WO1998006831A1 - Transgenic plant cells and plants with modified acetyl-coa formation - Google Patents

Transgenic plant cells and plants with modified acetyl-coa formation Download PDF

Info

Publication number
WO1998006831A1
WO1998006831A1 PCT/EP1997/004311 EP9704311W WO9806831A1 WO 1998006831 A1 WO1998006831 A1 WO 1998006831A1 EP 9704311 W EP9704311 W EP 9704311W WO 9806831 A1 WO9806831 A1 WO 9806831A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetyl
coa
transgenic plant
activity
coa hydrolase
Prior art date
Application number
PCT/EP1997/004311
Other languages
German (de)
French (fr)
Inventor
Lothar Willmitzer
Bernd Müller-Röber
Ursula La Cognata
Michael BÄUERLEIN
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19632121A external-priority patent/DE19632121C2/en
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority to CA002263186A priority Critical patent/CA2263186A1/en
Priority to EP97940060A priority patent/EP0918849A1/en
Priority to AU42039/97A priority patent/AU739905B2/en
Publication of WO1998006831A1 publication Critical patent/WO1998006831A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to transgenic plant cells and plants with a modified acetyl-CoA metabolism compared to non-transformed plants and with a changed ability to form and utilize acetyl-CoA (acetyl-coenzyme A).
  • the change in the ability to produce and use acetyl-CoA is accomplished by the introduction and expression in plant cells of a DNA sequence encoding an acetyl-CoA hydrolase, preferably a deregulated or unregulated acetyl-CoA hydrolase.
  • the invention also relates to the use of DNA sequences which encode an acetyl-CoA hydrolase to increase the acetyl-CoA hydrolase activity in plant cells, in particular for the production of transgenic plant cells and plants, with modified ability to form and utilize acetyl -CoA.
  • the goals are, for example, the primary processes of photosynthesis, which lead to CO2 fixation, the transport processes, which are involved in the distribution of the photosassiates within the plant, as well as metabolic pathways, which are used to synthesize storage substances, e.g. starch, proteins, Fats, oils, rubber substances, or of secondary metabolites such as flavonoids, steroids, isoprenoids (eg flavorings), pigments or polyketides (antibiotics), or of plant pathogen defense agents.
  • the primary processes of photosynthesis which lead to CO2 fixation
  • the transport processes which are involved in the distribution of the photosassiates within the plant
  • metabolic pathways which are used to synthesize storage substances, e.g. starch, proteins, Fats, oils, rubber substances, or of secondary metabolites such as flavonoids, steroids, isoprenoids (eg flavorings), pigments or polyketides (antibiotics), or of plant pathogen defense agents.
  • a change in the acetyl-CoA formation rate is particularly important for the formation of starch, proteins, fats, oils, gums, or of secondary metabolites such as flavonoids, steroids, isoprenoids (flavorings, pigments), or polyketides (antibiotics). Since plants would be suitable for the production of various of the above-mentioned substances on a large scale due to different properties, there is a need for plants in which the formation and distribution of acetyl-CoA in the cells is changed in such a way that the formation of the above-described substances is influenced becomes.
  • the present invention is therefore based on the object of making available plant cells and plants with a modified ability to form and utilize acetyl-CoA, and also processes for their production.
  • the present invention relates to transgenic plant cells with an altered acetyl-CoA metabolism which, due to the expression of a foreign DNA sequence which encodes a protein with acetyl-CoA hydrolase activity, one compared to wild-type, ie non-transformed, cells have increased acetyl-CoA hydrolase activity.
  • the expression of such a DNA sequence leads to an increase in the intracellular acetyl-CoA hydrolase activity in the transgenic plant cells.
  • Acteyl-CoA hydrolases are enzymes that catalyze the following reaction:
  • the present invention is based on the fact that an increase in acetyl-CoA hydrolase activity in plant cells is indeed possible and leads to advantageous properties of the plant cells.
  • the increase in acetyl-CoA hydrolase activity in the mitochondria in the leaves of transgenic plants leads to an increase in the content of soluble sugars, such as, for example, glucose, fructose and sucrose, and in starch, and to a simultaneous reduction in the content of fatty acids.
  • soluble sugars such as, for example, glucose, fructose and sucrose
  • starch a simultaneous reduction in the content of fatty acids.
  • mitochondrial acetyl-CoA hydrolase activity enables a change in the partitioning of photoassimilates in the cells.
  • the acetyl-CoA hydrolase activity in the cells according to the invention is preferably increased by at least 50% and particularly preferably by 100% compared to non-transformed cells.
  • Special Another advantage is an increase in enzyme activity by more than 150% compared to non-transformed cells.
  • the increase in acetyl-CoA hydrolase activity leads to an increased concentration of acetate.
  • acetate can penetrate unregulated cellular membranes. It is therefore available in other cellular compartments in higher concentration as a substrate for the acetyl-CoA synthesis catalyzed by the acetyl-CoA synthetase. This means that it is possible, by increasing the acetyl-CoA hydrolase activity in one compartment, to change the intracellular distribution of acetyl-CoA and thus to influence the flow of metabolites in different biosynthetic pathways.
  • the present invention relates to transgenic plant cells in which the acetyl-CoA hydrolase activity is increased in the mitochondria.
  • acetyl-CoA is biosynthesized in the mitochondria through the pyrurate-dehydrogenase multienzy complex-catalyzed conversion of pyrurate.
  • the increase in acetyl-CoA hydrolase activity in the mitochondria leads to an increased concentration of acetate, which through cellular membranes in other compartments, e.g. can diffuse into the cytosol.
  • it can be used for the synthesis of acetyl-CoA, e.g. can be used by the acetyl-CoA synthetase.
  • the transgenic plant cells according to the invention therefore show an increased activity of the acetyl-CoA synthetase in the cytosol. This enzyme catalyzes the following reaction
  • the acetyl-CoA that is increasingly formed in the cytosol can be used, for example, for an increased synthesis of isoprenoids by means of valonic acid and isopentenyl pyrophoshate can be used (Bach, Lipids 30 (1995), 191-202).
  • the acetyl-CoA hydrolase activity is increased in the cytosol of the transgenic plant cells. This in turn leads to an increased acetate concentration. For example, this can lead to more acetate being available in the plastids and being converted into acetyl-CoA in these. This would increase acetyl-CoA as a substrate e.g. for fatty acid biosynthesis or isoprenoid synthesis.
  • the transgenic plant cells according to the invention with an increased acetyl-CoA hydrolase activity in the mitochondria or the cytosol additionally show an increased activity of the acetyl-CoA synthetase in the plastids. This can increase the shift of acetate into the plastids and its conversion into acetyl-CoA. This is then available, for example, to an increased extent for fatty acid biosynthesis.
  • the plant cells described above have a reduced activity of citrate synthase in the mitochondria. This enzyme catalyzes the following reaction:
  • Another preferred embodiment of the present invention provides that the activity of citrate synthase is increased in the plant cells according to the invention described above in the mitochondria or the cytosol.
  • Such an increase in the activity of citrate synthase can lead to a change in the flow of metabolites to acetyl-CoA in a specific subcellular compartment, and can in particular cause an increase in the biosynthesis of fatty acids or lipids.
  • the plant cells according to the invention described above also have a reduced activity of the ATP citrate lyase in the cytosol. This enzyme catalyzes the following reaction:
  • Another embodiment of the present invention provides that the plant cells have an increased ATP citrate lyase activity in the cytosol.
  • Such an increase can result in an increased formation of cytosolic acetyl-CoAs, which can lead to an increased synthesis of isopentenyl pyrophosphate (IPP) and thus to an increased formation of terpenoids.
  • IPP isopentenyl pyrophosphate
  • transgenic plant cells described above have, due to the modified enzyme activities described, a modified ability to form and utilize acetyl-CoA compared to wild-type cells. This can be done, for example, through the Determination of the changed amounts or ratios of metabolic end products and metabolic intermediates, as described in the examples.
  • plant cells according to the invention can be produced which have altered amounts of isoprenoids, steroids, pigments, isoprenoids, flavonoids, hormones, fats, oils, proteins, rubber substances, polyketides or substances which are involved in the defense against plants, or their soluble content Sugars, such as glucose, fructose and sucrose, as well as changes in starch. Such cells can in turn be advantageous starting materials for further uses.
  • these cells can be used for the heterologous expression of further genes with the aim of intensifying the synthesis of economically relevant substances.
  • DNA sequences can be introduced which encode the enzymes for the synthesis of polyhydroxyalkanoic acids (eg PHB and PHA).
  • PHB and PHA polyhydroxyalkanoic acids
  • acetyl-CoA can be used in plants for the synthesis of such acids, which are of great economic importance.
  • Other examples of economically interesting substances are polyketides, flavorings, rubber, alkaloids, isoprenoids etc.
  • an acetyl-CoA hydrolase in oil-storing tissues of a plant, such as the endosperm or the cotyledons of seeds or in other oil-storing organs, the flow of the photoassimilates delivered in the seeds or organs in the direction of Formation of sugars, starches, fats, pigments, isoprenoids, polyketides, steroids, flavonoids, gums, substances that are involved in plant pathogen defense, proteins, and polymers such as polyhydroxyalkanoic acids (see e.g. Poirier et al., Bio / Technology 13 ( 1995), 142-150).
  • General advantages of the cells according to the invention are the possibility of influencing the partitioning of metabolic metabolites, in particular acetyl-CoA, on the content of metabolic end products such as starch and fats, the content and the composition. Settlement of secondary metabolites, the energy balance and on the content and composition of amino acids in the cells.
  • metabolic metabolites in particular acetyl-CoA
  • the transgenic plant cells are cells of oil-storing tissue, e.g. the endosperm or cotyledons of seeds or other oil-storing organs.
  • Such cells preferably have a fat content which is at least 3%, preferably at least 5% and particularly preferably at least 7% higher than that of corresponding cells from non-transformed plants.
  • the acetyl-CoA hydrolase activity in the cells according to the invention is preferably increased by introducing and expressing DNA sequences which code for an acetyl-CoA hydrolase.
  • DNA sequences which encode a protein with the enzymatic activity of an acetyl-CoA hydrolase, can be both prokaryotic, in particular bacterial, and eukaryotic DNA sequences, i.e. DNA sequences from plants, algae, fungi or animal organisms or sequences which encode acetyl-CoA hydrolases from such organisms.
  • the DNA sequences which encode an acetyl-CoA hydrolase are sequences which encode enzymes which are deregulated or unregulated in comparison to acetyl-CoA hydrolases normally found in plant cells.
  • Deregulated means that these enzymes are not regulated in the same way as the acetyl-CoA hydrolase enzymes normally formed in unmodified plant cells.
  • these enzymes are subject to other regulatory mechanisms, ie they are not inhibited to the same extent by the inhibitors present in the plant cells or are allosterically regulated by metabolites.
  • Deregulated preferably means that the enzymes have a higher activity than endogenously expressed acetyl-CoA hydrolases in plant cells.
  • unregulated means that the enzymes in plant cells are not subject to any regulation.
  • These enzymes encoded by the sequences can be both known enzymes occurring in nature which have different regulation by various substances and also enzymes which, by mutagenesis of DNA sequences, the known enzymes from bacteria, algae, fungi , Encode animals or plants.
  • the DNA sequences used encode proteins with the enzymatic activity of an acetyl-CoA hydrolase from fungi, in particular from fungi of the genus Saccharomyces.
  • DNA sequences which encode an acetyl-CoA hydrolase from Saccharomyces cerevisiae are preferably used. Such sequences are known and described (see Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418 (accession number M31036)).
  • DNA sequences which code for mitochondrial targeting sequences must be fused with the coding region of the acetyl-CoA hydrolase. Such sequences are known, for example from Braun et al. (EMBO J. 11 (1992), 3219-3227).
  • DNA sequences which code for proteins with the enzymatic activity of an acetyl-CoA hydrolase, for example from Neurospora crassa (see EMBL accession number M31521; Marathe et al., Molecular and Cellular Biology 10 (1990), 2638-2644) and, because of their properties, can also be used to produce the plant cells according to the invention. Care must be taken to ensure that the protein is formed in mitochondria or in the cytosol of the plant cell. Techniques for modifying such DNA sequences to localize them to ensure the synthesized enzymes in mitochondria and in the cytosol of plant cells are known to the person skilled in the art.
  • acetyl-CoA hydrolases contain sequences which are necessary for secretion or for a specific subcellular localization, for example for localization in the extracellular space or the vacuole, the corresponding DNA sequences must be deleted.
  • DNA sequences which code for an acetyl-CoA hydrolase can be isolated from any organism with the aid of the already known DNA sequences. Methods for the isolation and identification of such DNA sequences are known to the person skilled in the art, for example hybridization with known sequences or by polymerase chain reaction using primers which are derived from known sequences.
  • the enzymes encoded by the identified DNA sequences are then examined for their enzyme activity and regulation.
  • the regulatory properties of the proteins encoded by the DNA sequences can be changed further in order to obtain de-regulated or unregulated enzymes compared to acetyl-CoA hydrolases naturally occurring in plants.
  • the increase in acetyl-CoA synthase, citrate synthase or ATP citrate lyase activity in the plant cells according to the invention is preferably achieved by the introduction and expression of DNA sequences which code for such enzymes.
  • sequences can be sequences which produce such enzymes from prokaryotic, in particular bacterial, or from eukaryotic organisms, e.g. Encode plants, algae, fungi or animals.
  • such enzymes are deregulated or unregulated enzymes, as explained above in connection with the acetyl-CoA hydrolase.
  • These enzymes encoded by the sequences can be both known enzymes occurring in nature, which have a different regulation by different substances, as well as enzymes, which by mutagenesis of DNA sequences, the known enzymes from bacteria, algae, Encode mushrooms, animals or plants.
  • the DNA sequences encode an acetyl-CoA synthetase with the biological properties of an acetyl-CoA synthase from fungi, in particular from those of the genus Saccharomyces, and particularly preferably from Saccharomyces cerevisiae.
  • Such sequences are accessible, for example, under the GenEMBL database access numbers Z47725, M94729, L09598, X56211 for Saccharomyces cerivisiae, in particular under X76891.
  • DNA sequences which encode bacterial acetyl-CoA synthetases Such are e.g. accessible under the access numbers M97217, M87509 or M63968.
  • DNA sequences encoding a citrate synthase are known from various organisms. Sequences which encode vegetable citrate synthases are known, for example, for Arabidopsis thaliana (GenEMBL database access number X17528; Unger et al., Plant Mol. Biol. 13 (1989), 411-418), and for tobacco, potato and sugar beet (see WO 95/24487). Furthermore, sequences are known which code animal citrate synthases, for example from pigs (accession number M21197, Evans et al., Biochemistry 27 (1988), 4680-4686). Sequences are preferably used which contain a citrate synthase with the biological Properties of a citrate synthase from bacteria, especially E.
  • coli or fungi, in particular Saccharomyces cerevisiae, code.
  • Various sequences encoding bacterial citrate synthases are available, for example, under the GenEMBL database accession numbers: M33037, Z70021, M74818, Z70017, Z70009, Z70016, L38987, Z70014, Z70022, Z70019, Z70018, Z70020, Z70012, Z70010, Z70010 Z70013, Z70015, M36338, L33409, X66112, X60513, Z73101, M29728, M17149, L41815, Z34516, M73535, L14780, X55282, L75931 and D90117.
  • a preferred sequence used is that in Ner et al. (Biochemistry 22 (1983), 5243-5249), which published a citrate synthase from E. coli coded. Sequences that citrate synthases from E. encoding coli are available, for example, under accession numbers M28987 and M28988 (see also Wilde et al., J. Gen. Microbiol. 132 (1986), 3239-3251). Sequences encoding citrate synthases from fungi are available under accession numbers D63376 and D69731, those from S. cerevisiae in particular under the access numbers Z11113, Z48951, Z71255, M54982, X88846 and X00782. The latter is preferred.
  • DNA sequences encoding an ATP citrate lyase are known, for example, from Rat (Elshourbagy et al., J. Biol. Chem. 265 (1990), 1430-1435), human (Elshourbagy et al., Eur. J. Biochem 204 (1992), 491-499), C. elegans (Wilson et al., Nature 368 (1994), 32-38) and Arabidopsis thaliana (EMBL accession numbers T13771, Z18045, Z25661 and Z26232).
  • citrate synthase or ATP-citrate lyase in the cells according to the invention can be reduced by methods known to the person skilled in the art, for example by express sion of an antisense RNA, a specific ribozyme or by means of a cosuppression effect.
  • the DNA sequences which code for the enzymes described above in plant cells can in principle be placed under the control of any promoter which is functional in plant cells.
  • the expression of the said DNA sequences can generally take place in any tissue of a plant regenerated from a transformed plant cell according to the invention and at any time, but preferably takes place in those tissues in which an altered ability to form and utilize acetyl-CoA is advantageous either for the growth of the plant or for the formation of ingredients within the plant. Promoters which ensure specific expression in a specific tissue, at a specific time of development of the plant or in a specific organ of the plant therefore appear to be particularly suitable.
  • the DNA sequences are preferably under the control of promoters which ensure seed-specific expression. In the case of starch-storing plants, e.g. In maize, wheat, barley or other cereals, this changes the ability of acetyl-CoA to form and utilize in the seeds, and there is a change in the synthesis of seeds.
  • promoters are used for increasing the fatty acid biosynthesis as a result of an increased acetyl-CoA content in seeds of oil-forming plants such as oilseed rape, soybean, sunflower and oil palms, which are specifically active in the endosper or in the cotyledons of seeds which form, such as the Phaseolin promoter from Phaseolus is vulgar, the USP promoter from Vicia faba or the HMG promoter from wheat.
  • promoters for expressing the DNA sequences which are stored in Organs such as tubers or roots are active, for example in the storage root of the sugar beet or in the tuber of the potato.
  • the expression of the DNA sequences which encode an acetyl-CoA hydrolase leads to a redirection of biosynthetic pathways in the sense of the formation of more sugar or starch and a changed formation and utilization of acetyl-CoA in the direction of fatty acid biosynthesis.
  • the expression of the DNA sequences can take place under the control of promoters which are activated specifically at the time of flowering induction, or during flowering, or which are active in tissues which are necessary for flowering induction. Promoters can also be used which are activated at a time controlled only by external influences, e.g. by light, temperature, chemical substances ( ⁇ . for example WO 93/07279). For increasing the export rate of photoassimilates from the sheet, e.g. Promoters of interest that have a cell-specific expression. Such promoters are known (e.g. the promoter of the rolC gene from Agrobacterium rhizogenes).
  • the DNA sequences which code for the enzymes described above are preferably linked, in addition to a promoter, to DNA sequences which ensure a further increase in transcription, for example so-called enhancer elements, or to DNA sequences which are in the transcribed region and which ensure a more efficient translation of the synthesized RNA into the corresponding protein.
  • Such regions can be obtained from viral genes or suitable plant genes or can be produced synthetically. They can be homologous or heterologous to the promoter used.
  • the coding DNA sequences are also linked to 3 'untranslated DNA sequences which ensure the termination of the transcription and the polyadenylation of the transcript.
  • sequences are known and described, for example that of the octopine synthase gene from Agrobacterium tumefaciens. These sequences are interchangeable.
  • the DNA sequences which are introduced and expressed in plant cells according to the invention are preferably stably integrated into the genome in the plant cells according to the invention.
  • the transgenic plant cells according to the invention can also be distinguished from non-transformed plant cells in that they have a foreign DNA stably integrated in the genome, the expression of which changes the acetyl-CoA hydrolase activity and, if appropriate, a further one of the above Enym activities described causes.
  • foreign DNA means that the DNA is either heterologous with respect to the transformed plant species, or the DNA, if it is homologous to it, is located at a location in the genome where it is not in non-transformed cells occurs. This means that the DNA is in a genomic environment in which it does not occur naturally.
  • the foreign DNA usually has the characteristic that it is recombinant, i.e. consists of several components that do not occur in nature in this combination.
  • the transgenic plant cells according to the invention can in principle be cells of any plant species. Of interest are both cells of monocotyledonous as well as dicotyledonous plant species, in particular cells that store starch or agricultural crops, such as e.g. Rye, oats, barley, wheat, potatoes, corn, rice, peas, sugar beets, tobacco, cotton, wine, tomatoes etc. or cells of ornamental plants.
  • starch or agricultural crops such as e.g. Rye, oats, barley, wheat, potatoes, corn, rice, peas, sugar beets, tobacco, cotton, wine, tomatoes etc. or cells of ornamental plants.
  • these are plant cells of oil-storing useful plants, such as, for example, rapeseed, sunflower, oil palm or soybean. Rapeseed is particularly preferred.
  • the present invention furthermore relates to transgenic plants which contain transgenic plant cells according to the invention. Such plants can be produced, for example, by regeneration from plant cells according to the invention by methods known to the person skilled in the art.
  • Plants containing cells according to the invention preferably have at least one of the following features:
  • the invention furthermore relates to propagation material of plants according to the invention which contains cells according to the invention. These include, for example, cuttings, fruit seeds, rhizomes, tubers, seedlings etc.
  • the present invention also relates to recombinant DNA molecules which contain the following elements:
  • the transfer of the DNA molecules which contain DNA sequences which encode one of the enzymes described above takes place according to methods known to the person skilled in the art, preferably using plasmids, in particular such plasmids which ensure stable integration of the DNA molecule into the genome of transformed plant cells, for example binary plasmids or Ti plasmids from the Agrojacteriujn tume facien ⁇ system.
  • plasmids in particular such plasmids which ensure stable integration of the DNA molecule into the genome of transformed plant cells
  • binary plasmids or Ti plasmids from the Agrojacteriujn tume facien ⁇ system for example binary plasmids or Ti plasmids from the Agrojacteriujn tume facien ⁇ system.
  • other systems for introducing DNA molecules into plant cells are also possible, such as the so-called biolistic method or the transformation of protoplasts (cf. Willmitzer L. (1993), Transgenic Plants, Bio
  • the present invention relates to the use of DNA sequences which encode a protein with the enzymatic activity of an acetyl-CoA hydrolase for expression in plant cells in order to increase the acetyl-CoA hydrolase activity in plant cells.
  • the invention relates to the use of such DNA sequences for the production of transgenic plant cells which, compared to non-transformed plant cells, have an altered ability to form sugars, starches, fats, pigments, isoprenoids, polyketides, steroids, flavonoids, rubber substances, substances which are involved in plant pathogen defense, have proteins and / or polymers such as polyhydroxyalkanoic acids.
  • the acetyl-CoA hydrolase activity is preferably increased in the mitochondria or in the cytosol of the plant cells.
  • FIG. 1 shows a schematic illustration of the 14.39 kb plasmid Bin-mHy-Int.
  • the plasmid contains the following fragments:
  • fragment A contains the EcoRI-A ⁇ p718 fragment of the promoter region of the 35S promoter of the
  • B fragment b (109 bp) comprises a DNA fragment with the coding region of the mitochondrial target sequence of the Proteins of the potato matrix processing peptidase (MPP) (Braun et al., EMBO J. 11 (1992), 3219-3227 (accession number X66284)).
  • MPP potato matrix processing peptidase
  • fragment C comprises a DNA fragment of the intron PIV2 from the plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250).
  • D '' Fragment D '' (1420 bp) comprises a DNA fragment with the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418), nucleotides 785 to 2194 (accession number M31036).
  • Fragment E (192 bp) comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227).
  • the plasmid contains the following fragments:
  • fragment A contains the EcoRI-Asp718 fragment of the promoter region of the 35S promoter of the "cauliflower osaic virus" (nucleotides 6909 to 7437) (Frank et al., Cell 21 (1980), 285-294).
  • fragment C comprises a DNA fragment of the intron PIV2 from the plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250).
  • D- * fragment D '(170 bp) comprises a DNA fragment with the 5' region of the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry (1990) 265, 7413-7418), nucleotides 614 to 784 (accession number M31036).
  • fragment D (1420 bp) comprises a DNA fragment with the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry (1990) 265, 7413-7418), nucleotides 785 to 2194 (accession number M31036).
  • fragment E comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227) .
  • FIG. 3 shows a Western blot for the detection of the expression of the acetyl-CoA hydrolase from Saccharomyces cerevisiae in transgenic tobacco leaves.
  • Fig. 4 shows three transgenic MB-Hyl lines compared to a control plant (left).
  • Fig. 6 shows leaves of a control plant
  • Fig. 7 shows a plant of a transgenic MB-Hyl line with flowers
  • FIG. 9 shows a schematic illustration of the 14, 25 kb Plas ids pTCSAS
  • A fragment A (528 bp) contains the EcoRI-Asp718 fragment of the promoter region of the 35S promoter of the "Cauliflower Mosaic Virus" (nucleotides 6909 to 7437) (Frank et al., Cell 21 (1980), 285-294).
  • B fragment B (1747 bp) comprises a DNA fragment with the coding region of the citrate synthase gene from tobacco in reverse orientation (nucleotides 1 to 1747) (accession number X84226).
  • fragment C comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227) .
  • the E. coli strain DH5 ⁇ (Bethesda Research Laboratories, Gaithersburgh, USA) was used.
  • the DNA was transferred by direct transformation using the method of Höfgen and Willmitzer (Nucleic Acids Res. 16 (1988), 9877).
  • the plasmid DNA of transformed agrobacteria was determined by the method of Birnboim and Doly (Nucleic Acids Res. 7 (1979), 1513-1523) isolated and analyzed by electrophoresis after suitable restriction cleavage.
  • the tobacco was transformed according to the method described in Rosahl et al. (EMBO J. 6 (1987), 1155-1159).
  • rapeseed Brassica napus
  • the leaves were then used for callus induction on MS medium with 1.6% glucose, 5 mg / 1 naphthylacetic acid, 0.2 mg / 1 benzylaminopurine, 250 mg / 1 claforan, 3 mg / 1 hygromycin and 0.80 % Bacto agar laid. After incubation at 25 ° C. and 3000 lux for one week, the leaves were inducible to shoot on MS medium with 1.6% glucose, 1.4 mg / 1 zeatin ribose, 20 mg / 1 naphthylacetic acid, 20 mg / 1 giberellic acid, 250 mg / 1 Claforan, 3 mg / 1 hygromycin and 0.80% Bacto Agar. 6. Plant husbandry
  • leaf samples were extracted in extraction buffer (50 mM Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10% ( Vol. / Vol.) Glycerin; 0.1% (Vol. / Vol.) Triton X-100) homogenized. After centrifugation, the cell-free extracts were used for the enzyme activity measurement.
  • Reaction buffer 100 mM Na phosphate, pH 7.2
  • leaf samples were extracted in extraction buffer (50 M Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10% (vol. / Vol.) Glycerin; 0.1% (Vol. / Vol.) Triton X-100) homogenized. After centrifugation, aliquots (10 ⁇ g protein) of the cell-free extracts were used for a Western blot.
  • extraction buffer 50 M Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10% (vol. / Vol.) Glycerin; 0.1% (Vol. / Vol.) Triton X-100
  • Sucrose, glucose, fructose and starch were determined spectrophotometrically using coupled enzymatic reactions according to Stitt et al. (Methods in Enzymology, 174, 518-552).
  • the reaction buffer contained: 100 mM I idazol pH 6.9; 5 mM MgCl 2 ; 2mM NADP
  • the measurement is carried out at 30 ° C with 50 ⁇ l extract.
  • G6P glucose-6-phosphate
  • F1P fructose-1-phosphate
  • G1P glucose-1-phosphate
  • the pellet was disrupted with 400 ⁇ l of 0.2 N NaOH at 95 ° C. for one hour.
  • E ⁇ was neutralized with 70 ⁇ l of 1 N acetic acid at room temperature and the solid phase was separated from the liquid phase by centrifugation.
  • the starch was hydrolyzed using a range for starch determination (Boehringer, Mannheim) according to the manufacturer's instructions with the aid of amyloglucosidase and the released glucose was determined enzymatically.
  • Leaf disks each 1.1 cm in diameter or one tobacco seed in 1 ml of 1N HC1 in methanol at 80 ° C under a nitrogen atmosphere after adding 5 ⁇ g of meristylic acid as an internal standard for 15 Minutes in a sealed glass jar. After cooling to room temperature, 1 ml of 0.9% aqueous NaCl solution and 1 ml of n-hexane (p. A.) were added. After extraction of the aqueous phase, the organic phase was removed and concentrated with gaseous nitrogen.
  • the fatty acid methyl esters were separated and quantified by gas chromatography according to Browse et al. (Analytical Biochemistry 152: 141-145 (1986)).
  • Leaf disks (each 1.1 cm in diameter) were frozen in liquid nitrogen immediately after sampling. The following steps were carried out with the room light darkened.
  • the samples were homogenized with 250 ⁇ l of ice-cold 85% acetone in water, the suspension was then flushed with nitrogen gas for about 30 seconds and then stored on ice for 15 minutes. After centrifugation for 15 minutes at 4 ° C and 10,000 g, the supernatant was filtered through a Millipore-Millex-GV4 sterile filter attachment and then flushed with nitrogen gas at 4 ° C for 30 seconds. The samples were then stored at -70 ° C until measurement. The pigments were separated and quantified by high pressure liquid chromatography (HPLC) as described by Zhayer and Björkman (J. Chromatogr. 543 (1990), 137-145).
  • HPLC high pressure liquid chromatography
  • a ZORBAX ODS 5 ⁇ m non-endcapped 250 * 4.5 mm reversed phase column was used as the separation column.
  • the pigments were detected by measuring the absorption at 450 nm in a range of 0.04 absorption units (AUFS). 10. Determination of citrate synthase activity in leaves of tobacco plants
  • leaf samples were extracted in extraction buffer (50 mM Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10% (v / v) glycerin; 0 , 1% (vol. / Vol.) Triton X-100; 4 mU / ml ⁇ .2-macroglobulin) homogenized. After centrifugation, the cell-free extracts were used for the enzyme activity measurement.
  • extraction buffer 50 mM Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10% (v / v) glycerin; 0 , 1% (vol. / Vol.) Triton X-100; 4 mU / ml ⁇ .2-macroglobulin
  • Reaction temperature 30 ° C protein used: ⁇ 60 ⁇ g
  • the absorption was measured at 412 nm.
  • the coding region of the acetyl-CoA hydrolase gene from Saccharomyces cerevisiae was determined using the polymerase chain reaction (PCR) starting from genomic Saccharomyces cerevisiae DNA using the primers AcCoHyl (5 '-GTCAGGATCCATGACAATTTCTAATTTGT IDAAGCAGAGA. 3A)
  • AcC ⁇ Hy2 (5 » -GTCAGGATCCCTAGTCAACTGGTTCCCAGCTGTCGACCTT-3 ') (Seq ID No. 2) a plified.
  • the sequence of the acetyl-CoA hydrolase from Saccharomyces cerevisiae is entered in the GenEmbl database with the accession number M31036.
  • the cloning of the acetyl-CoA hydrolase gene is described in Lee et al. (Journal of Biological Chemistry 265 (1990), 7413-7418).
  • the amplified fragment corresponds to the region from nucleotides 614 to 2194 of this sequence (accession number M31036).
  • a BamHI interface was inserted at the 5 'end and at the 3' end.
  • the 1590 bp Ba HI cut PCR fragment was cloned into the BamHI site of the vector pUC9-2 via the additional cleavage sites.
  • the intron PIV2 (189 bp) from the plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250) via PCR using the primer GUS-1 (5 1 - gtatacgtaagtttctgcttctac-3 ' ) (Seq ID No. 3) and GUS-2 (5 * - gtacagctgcacatcaacaaattttgg-3 ') (Seq ID No.
  • the plasmid pUC-Hynt was cut with BamHI and the 1779 bp acetyl-CoA hydrolase fragment (with inserted intron) was cloned into the BamHI site of the plasmid pAM.
  • the plasmid obtained in this way was given the name pAM-Hylnt.
  • the plasmid pAM was prepared as described below.
  • the mitochondrial target sequence (111 bp) of the protein of the "matrix processing peptidase” (MPP) from potato was determined using the primers Mito-TPl (5'-GATCGGTACCATGTACAGATGCGCATCGTCT-3 ') (Seq ID No. 5) and Mito-TP2 (5 '-GTACGGATCCCTTGGTTGCAACAGCAGCTGA-3') (Seq ID No. 6) amplified by PCR.
  • the plasmid pMPP (Braun et al., EMBO J. 11 (1992), 3219-3227) served as the template for the PCR.
  • the amplified fragment corresponds to the region of the Nucleotides 299 to 397 of the MPP cDNA (Braun et al., See above; EMBL accession number: X66284).
  • An Asp718 interface was inserted at the 5 • end and a BamHI interface at the 3 'end.
  • the PCR fragment was cut with Asp718 and BamHI and the resulting 109 bp fragment was then cloned into the vector pA7 cut with Asp718 and BamHI (from Schaewen, A. (1989) dissertation, Freie (2015) Berlin).
  • the plasmid pAM-Hylnt was cut with Asp718 and Xbal and the 1887 bp fragment consisting of the coding region for the targeting peptide of the potato "Matrix processing peptidase" and the coding region for the acetyl-CoA hydrolase from Saccharomyces cerevisiae (with inserted intron ) isolated and the 5 'overhangs of this fragment filled to blunt ends using T4 DNA polymerase.
  • the fragment thus produced was cloned into the Smal interface of the binary plasmid pBinAR-Hyg.
  • the coding regions of the targeting peptide of the potato "matrix processing peptidase” were oriented towards the 35S RNA promoter of the cauliflower mosaic virus. This resulted in the plasmid Bin-mHy-Int (see FIG. 1), which was used for the transformation of tobacco (Nicotiana tabacu SNN) and potato (Solanum tuberosum L. cv. Desiree) as described above.
  • the BamHI fragment of the plasmid pUC-Hy-Int was cloned into the BamHI site of the plasmid pA7 (from Schaewen, A. (1989) dissertation, Free University Berlin).
  • the 5 'end of the coding region of the acetyl-CoA hydrolase was oriented towards the 35S RNA promoter.
  • the plasmid thus produced was given the name pA7-Hy-Int.
  • the plasmid pA7-Hy-Int was cut with Kpnl and Xbal, the 1778 bp fragment consisting of the coding region for the acetyl-CoA hydrolase from Saccharomyces cerevisiae (with inserted intron) and then cloned into the binary plasmid pBinAR-Hyg cut with Kpn 1 and Xbal (deposit number: DSM 9505; deposit date: 20.10.1994).
  • This resulted in the plasmid Bin-Hy-Int (see FIG. 2), which was used for the transformation of tobacco (Nicotiana tabacum SNN) and potato (Solanum tuberosu L. cv. Desiree).
  • MB-Hyl-81 3.25 ⁇ 0.79 The enzyme activities shown here are the mean of at least eight measurements based on at least three independent plants of the transgenic line mentioned.
  • FettKontrollMB-Hyl-39 MB-Hyl-78 MB-Hyl-81 acid plant [ ⁇ mol / g [ ⁇ mol / g [ ⁇ mol / g type [ ⁇ mol / g (dry (dry (dry (dry weight) weight)] weight)] weight) ]
  • the stated values represent mean values and the standard deviations from 2 independent measurements each.
  • the values given represent mean values and the standard deviations from at least 6 independent measurements.
  • the analysis of the weight of 200 seeds in each case showed that there was no significant difference between the seeds of the transgenic plant MB-Hyl-39 and the seeds of control plants (cf. Table IV ).
  • transgenic plants MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 were grown in the greenhouse, it was also found that the transgenic plants had a different phenotype compared to control plants. In particular, in the case of the transgenic plants, reduced growth, the formation of several shoots and a mosaic-like change in the leaf color were found (see FIGS. 4 and 5). For a more precise analysis of the leaf color, the levels of chlorophyll a and b, as well as of the carotenoids Zeaxanthin, antheraxanthin and violoxanthin determined (see table VIII and IXa and b).
  • Violaxanthin Antheraxanthin Zeaxanthin ( ⁇ mo ⁇ / g ( ⁇ mol / g ( ⁇ mol / g (dry weight (dry weight (dry weight) weight) weight)
  • the stated values represent mean values and the standard deviations from 3 independent measurements each.
  • Plasmid pTCS obtained contains a 1747 bp cDNA fragment with the coding region of the citrate synthase gene from tobacco (accession number X84226) in the EcoRI interface of the pBluescript SK vector.
  • the BamHI fragment of the plasmid pTCS was cloned into the BamHI / SalI sites of the binary plasmid BinAR.
  • the 3 'end of the coding region of the citrate synthase was oriented towards the 35S RNA promoter.
  • the plasmid thus produced was given the name pTCSAS.
  • pTCSAS was used for the transformation of tobacco (Nicotiana tabacum SNN).
  • Regenerated tobacco plants which had been transformed with the plasmid pTCSAS were transferred into soil and selected by measuring the citrate synthase activity in leaves.
  • Several genotypes were identified that clearly showed a reduction in citrate synthase activity (see Table X).
  • Several of the selected transgenic lines were analyzed for citrate synthase activity in leaves. In some lines, a specific citrate synthase activity reduced by up to six times compared to the control plants was measured (e.g. TCSAS-14, TCSAS-17; TCSAS-26; TCSAS-43; TCSAS-48; see Table X).
  • the enzyme activities shown here are the average of at least 18 measurements from at least nine independent plants.
  • the above-mentioned genotypes TCSAS-17 and TCSAS-26 were amplified and 6 plants each were transferred to a greenhouse.
  • the values given represent mean values and the standard deviations from 10 independent measurements in each case.
  • the coding region of the acetyl-CoA-Hvdrolase gene from Saccharomyces cerevisiae was isolated by means of the polymerase chain reaction (PCR) as described in Example 1.
  • the plasmid pAM-Hylnt was cut with Asp718 and Hindlll and the 1931 kb fragment consisting of the coding region of the targeting peptide of the potato "Matrix processing peptidase" and the coding region for the acetyl-CoA hydrolase from Saccharomyces cerevisiae (with inserted intron) was isolated. The fragment isolated in this way was cloned into the Asp718 / HindIII cleavage sites of the binary plasmid pUSP-Bin19. This vector contains the USP promoter (Fiedler et al., Plant Mol. Biol.
  • the coding region of the acetyl-CoA proteinase gene (De Virgilio et al., Yea ⁇ t 8 (1992), 1043-1051) from Saccharomyces cerevisiae was determined using the polymerase chain reaction (PCR) starting from genomic S. cerevisiae DNA using the Primers ACS1 (5 » GAT CAA GCT TAT GTC GCC CTC TGC CGT ACA ATC -3 • ; Seq ID No. 7) and ACS2 (5'- GAT CAA GCT TTC ATC ATT ACA ACT TGA CCG ATC C-3 •, Seq ID No. 8) amplified.
  • PCR polymerase chain reaction
  • the sequence of the acetyl-CoA synthetase is entered in the GenEMBL database with the access number X66425.
  • the cloning of the acetyl-CoA synthetase gene is described in De Virgilio (loc. Cit.).
  • the amplified fragment corresponds to the region from nucleotides 162 to 2303 of this sequence.
  • a HindIII interface was inserted at the 5 'end and at the 3' end.
  • the 2151 bp HindIII fragment was cloned into the HindIII site of the vector pSK-TP via the additional cleavage sites.
  • This plasmid contains a DNA sequence which encodes the plastid transit peptide of ferredoxin: NADP + oxireductase from spinach.
  • the plasmid pSK-TP-ACS was cut with Asp718, the interfaces filled in with the help of T4-DNA polymerase to a smooth end and then cut Xbal.
  • the 2380 kb fragment thus isolated, consisting of the coding region of the targeting peptide of spinach ferrodoxin: NADP + oxireductase and the coding region for the acetyl-CoA synthetase from S.
  • the coding region of the ATP: citrate lyase gene from Rattus norvegicus was determined using the polymerase chain reaction (PCR) starting from cDNA from Rattus norvegicus using the primer ACLY1 (5'-ACT GAA GCC TAT GTC AGC CAA GGC AAT TTC AGA GCA -3 ', Seq ID No. 9) and ACLY2 (5'- ACT GAA GCC TTT ACA TGC TCA TGT GTT CCG GGA GAA C -3', Seq ID No. 10).
  • the sequence of the ATP: citrate lyase is in the GenEMBL database with the accession number J05210 registered.
  • the cloning of the ATP: citrate lyase gene from Rattus norvegicus is described in Elshourbagy et al. (J. Biol. Chem. 265 (1990), 1430-1435).
  • the amplified fragment corresponds to the region from nucleotides 73 to 3375 of this sequence.
  • a HindIII interface was inserted at the 5 'end and at the 3' end.
  • the 3312 bp HindIII fragment was cloned via the additional interfaces into the HindIII interface of the vector pSK-TP.
  • the plasmid pSK-TP-ACLY was cut with Asp718, filled in with blunt ends using T4 DNA polymerase and then cut with Xbal.
  • the 3494 kb fragment isolated in this way consisting of the coding region of the targeting peptide of spinach ferredoxin: NADP + oxireductase and the coding region for the ATP: citrate lyase from Rattus norvegicus, was inserted into the Smal / Xbal interfaces of the binary plasmid pBin-USP -Hyg cloned.
  • the resulting plasmid pBin-USP / Hyg-TP-ACLY was used for the transformation of oilseed rape as described above.
  • PCR polymerase chain reaction
  • the amplified fragment corresponds to the coding region from nucleotides 1 to 1284 of this sequence.
  • a BamHI interface was inserted at the 5 'end and at the 3' end.
  • the 1294-long BamHI fragment was inserted into the BamHI section via the additional cleavage sites. site of the vector pAM cloned.
  • the plasmid pAM-CS was cut with Asp718 and HindIII and filled in to blunt ends with the T4-DNA polymerase, and the 1393 kb fragment consisting of the coding region of the targeting peptide of the potato "matrix processing peptidase" and the coding region for the citrate synthase from E. coli isolated.
  • the fragment isolated in this way was cloned into the Smal sites of the binary plasmid pUSP-Bin19 (see Example 6).
  • the resulting plasmid pBin-USP-MTPCS was used on the one hand for the transformation of tobacco plants and on the other hand of rapeseed plants as described above.
  • Plants that co-express an acetyl-CoA hydrolase from yeast with mitochondrial targeting and an acetyl-CoA synthetase from yeast with plastid targeting were regenerated and grown in the greenhouse. The seeds of these plants were examined for their total fatty acid content as described above. An increase of approx. 5% with respect to the total fatty acid content (per seed) was found in comparison to non-transformed plants.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention concerns transgenic plant cells and plants having increased acetyl-coA hydrolase activity. The increased coA hydrolase activity is achieved by introducing and expressing a DNA sequence which codes for an acetyl-coA hydrolase, preferably a deregulated or unregulated acetyl-coA hydrolase, in plant cells. The invention further concerns processes and recombinant DNA molecules for producing plant cells and plants having increased acetyl-coA hydrolase activity.

Description

Transgene Pflanzenzellen und Pflanzen mit veränderter Transgenic plant cells and plants with altered
Acetyl-CoA-BildungAcetyl-CoA formation
Die vorliegende Erfindung betrifft transgene Pflanzenzellen und Pflanzen mit einem im Vergleich zu nicht-tranεformierten Pflanzen veränderten Acetyl-CoA-Metabolismus und mit einer veränderten Fähigkeit zur Bildung und Verwertung von Acetyl- CoA (Acetyl-Coenzym A) . Die Veränderung der Fähigkeit zur Produktion und Verwendung von Acetyl-CoA wird erreicht durch die Einführung und Expression einer DNA-Sequenz, die eine Acetyl-CoA-Hydrolase, vorzugsweise eine deregulierte oder unregulierte Acetyl-CoA-Hydrolase codiert, in pflanzlichen Zellen. Die Erfindung betrifft ebenfalls die Verwendung von DNA-Sequenzen, die eine Acetyl-CoA-Hydrolase codieren, zur Erhöhung der Acetyl-CoA-Hydrolaseaktivität in pflanzlichen Zellen, insbesondere zur Herstellung von transgenen Pflanzenzellen und Pflanzen, mit veränderter Fähigkeit zur Bildung und Verwertung von Acetyl-CoA.The present invention relates to transgenic plant cells and plants with a modified acetyl-CoA metabolism compared to non-transformed plants and with a changed ability to form and utilize acetyl-CoA (acetyl-coenzyme A). The change in the ability to produce and use acetyl-CoA is accomplished by the introduction and expression in plant cells of a DNA sequence encoding an acetyl-CoA hydrolase, preferably a deregulated or unregulated acetyl-CoA hydrolase. The invention also relates to the use of DNA sequences which encode an acetyl-CoA hydrolase to increase the acetyl-CoA hydrolase activity in plant cells, in particular for the production of transgenic plant cells and plants, with modified ability to form and utilize acetyl -CoA.
Bedingt durch den kontinuierlich steigenden Bedarf an Lebensmitteln, der aus der ständig wachsenden Weltbevölkerung resultiert, ist eine der Aufgaben der biotechnologischen Forschung, sich um eine Steigerung des Ertrags von Nutzpflanzen zu bemühen. Eine Möglichkeit, dies zu erreichen, besteht in der gezielten gentechnischen Veränderung des Metabolismus von Pflanzen. Ziele sind dabei beispielsweise die Primärprozesse der Photosynthese, die zur CO2-Fixierung führen, die Transportprozesse, die an der Verteilung der Pho- toassi ilate innerhalb der Pflanze beteiligt sind, als auch Stoffwechselwege, die zur Synthese von Speicherstoffen, z.B. von Stärke, Proteinen, Fetten, Ölen, Gummistoffen, oder von Sekundärmetaboliten wie z.B. Flavonoiden, Steroiden, Isopre- noiden (z.B. Aromastoffe), Pigmenten, oder Polyketiden (Antibiotika) , oder von pflanzlichen Pathogenabwehrstoffen führen. Während sich viele Anwendungen mit den Schritten beschäftigen, die entweder zur Bildung von Photoassimilaten in Blättern führen (vgl. auch EP-A 0 466 995) oder aber mit der Bildung von Polymeren wie Stärke oder Fructanen in Speicherorganen transgener Pflanzen (z.B. WO 94/04692), gibt es bisher keine erfolgversprechenden Ansätze, die beschreiben, welche Modifikationen in den primären Stoffwechselwegen einzuführen sind, um eine Veränderung der Fähigkeit zur Bildung und Verwertung von Acetyl-CoA zu erreichen. Eine Veränderung der Fähigkeit zur Bildung und Verwertung von Acetyl-CoA ist z.B. für alle jene Prozesse in der Pflanze von Bedeutung, für die größere Mengen von Acetyl-CoA benötigt werden. Dies gilt z.B. für viele biochemische Prozesse in pflanzlichen Zellen, an denen Acetyl-CoA als Substrat oder Abbauprodukt beteiligt ist. Eine Veränderung der Acetyl-CoA-Bildungsrate ist insbesondere von Bedeutung für die Bildung von Stärke, Proteinen, Fetten, Ölen, Gummistoffen, oder von Sekundärme- taboliten wie Flavonoiden, Steroiden, Isoprenoiden (Aromastoffe, Pigmente) , oder Polyketiden (Antibiotika) . Da Pflanzen sich aufgrund verschiedener Eigenschaften zur Herstellung verschiedener der oben genannten Stoffe in großem Maßstab eignen würden, besteht ein Bedarf an Pflanzen, bei denen die Bildung und Verteilung von Acetyl-CoA in den Zellen derart verändert ist, daß die Bildung der oben beschriebenen Stoffe beeinflußt wird.Due to the continuously increasing demand for food, which results from the constantly growing world population, one of the tasks of biotechnological research is to strive to increase the yield of crops. One way to achieve this is by genetically modifying the metabolism of plants. The goals are, for example, the primary processes of photosynthesis, which lead to CO2 fixation, the transport processes, which are involved in the distribution of the photosassiates within the plant, as well as metabolic pathways, which are used to synthesize storage substances, e.g. starch, proteins, Fats, oils, rubber substances, or of secondary metabolites such as flavonoids, steroids, isoprenoids (eg flavorings), pigments or polyketides (antibiotics), or of plant pathogen defense agents. While many applications are concerned with the steps that either lead to the formation of photoassimilates in leaves (cf. also EP-A 0 466 995) or with the Formation of polymers such as starch or fructans in storage organs of transgenic plants (eg WO 94/04692), there are no promising approaches to date which describe which modifications have to be introduced in the primary metabolic pathways in order to change the ability to form and utilize acetyl To achieve CoA. A change in the ability to form and utilize acetyl-CoA is important, for example, for all those processes in the plant for which larger amounts of acetyl-CoA are required. This applies, for example, to many biochemical processes in plant cells, in which acetyl-CoA is involved as a substrate or degradation product. A change in the acetyl-CoA formation rate is particularly important for the formation of starch, proteins, fats, oils, gums, or of secondary metabolites such as flavonoids, steroids, isoprenoids (flavorings, pigments), or polyketides (antibiotics). Since plants would be suitable for the production of various of the above-mentioned substances on a large scale due to different properties, there is a need for plants in which the formation and distribution of acetyl-CoA in the cells is changed in such a way that the formation of the above-described substances is influenced becomes.
Somit liegt der vorliegenden Erfindung die Aufgabe zugrunde, Pflanzenzellen und Pflanzen mit eine veränderten Fähigkeit zur Bildung und Verwertung von Acetyl-CoA sowie Verfahren zu deren Herstellung zur Verfügung zu stellen.The present invention is therefore based on the object of making available plant cells and plants with a modified ability to form and utilize acetyl-CoA, and also processes for their production.
Die Lösung dieser Aufgabe wird durch die Bereitstellung der in den Patentansprüchen bezeichneten Ausführungsformen bereitgestellt.The solution to this problem is provided by the provision of the embodiments described in the patent claims.
Somit betrifft die vorliegende Erfindung transgene Pflanzenzellen mit einem veränderten Acetyl-CoA-Metabolismus, die aufgrund der Expression einer fremden DNA-Sequenz, die ein Protein mit Acetyl-CoA-Hydrolaseaktivität codiert, eine im Vergleich zu Wildtyp-, d.h. nicht-transformierten, Zellen erhöhte Acetyl-CoA-Hydrolaseaktivität aufweisen. Die Expression einer derartigen DNA-Sequenz führt in den transgenen pflanzlichen Zellen zur Steigerung der intrazellulären Acetyl-CoA-Hydrolaseaktivität. Acteyl-CoA-Hydrolasen sind Enzyme, die die folgende Reaktion katalysieren:Thus, the present invention relates to transgenic plant cells with an altered acetyl-CoA metabolism which, due to the expression of a foreign DNA sequence which encodes a protein with acetyl-CoA hydrolase activity, one compared to wild-type, ie non-transformed, cells have increased acetyl-CoA hydrolase activity. The expression of such a DNA sequence leads to an increase in the intracellular acetyl-CoA hydrolase activity in the transgenic plant cells. Acteyl-CoA hydrolases are enzymes that catalyze the following reaction:
Acetyl-CoA <-"> Acetat + HSCoA.Acetyl-CoA < - "> acetate + HSCoA.
Es wurde überraschenderweise gefunden, daß die Steigerung der Acetyl-CoA-Hydrolaseaktivität in verschiedenen Komparti- menten pflanzlicher Zellen möglich ist und somit eine Einflußnahme auf die intrazelluläre Verteilung von Metaboliten ermöglicht wird. Dieses Ergebnis ist insofern überraschend, als daß Acetyl-CoA einer der zentralen Stoffwechselmetaboli- ten in pflanzlichen und tierischen Zellen ist, dessen Konzentration strikt reguliert ist (Randall und Miernyk, Methode in Plant Biochemistry Vol 3 [ISBN 0-12-461013-7]). Ein Eingriff in die intrazelluläre Acetyl-CoA-Verteilung sollte somit drastische Auswirkungen auf die Lebensfähigkeit der Zellen haben. Beispielsweise gibt es Hinweise darauf, daß die Expression der Acetyl-CoA-Hydrolase aus Hefe in E . coli einen letalen Effekt hat. Demgegenüber basiert die vorliegende Erfindung auf der Tatsache, daß eine Steigerung der Acetyl-CoA-Hydrolaseaktivität in pflanzlichen Zellen in der Tat möglich ist und zu vorteilhaften Eigenschaften der pflanzlichen Zellen führt. Beispielsweise wurde gefunden, daß die Steigerung der Acetyl-CoA-Hydrolaseaktivität in den Mitochondrien in den Blättern transgener Pflanzen zu einer Erhöhung des Gehaltes an löslichen Zuckern, wie z.B. Gluco- se, Fructose und Saccharose, sowie von Stärke führt und zur gleichzeitigen Reduktion des Gehaltes an Fettsäuren. D.h. die Steigerung der mitochondrialen Acetyl-CoA- Hydrolaseaktivität ermöglicht eine Veränderung der Partitio- nierung von Photoassimilaten in den Zellen. Die Acetyl-CoA- Hydrolaseaktivität in den erfindungsgemäßen Zellen ist vorzugsweise um mindestens 50% und besonders bevorzugt um 100% im Vergleich zu nicht-transformierten Zellen erhöht. Beson- ders vorteilhaft ist eine Steigerung der Enzymaktivität um mehr als 150% im Vergleich zu nicht-transformierten Zellen. Die Steigerung der Acetyl-CoA-Hydrolaseaktivität führt zu einer erhöhten Konzentration an Acetat. Im Gegensatz zu Acetyl-CoA kann Acetat zelluläre Membranen unreguliert durchdringen. Somit steht es in anderen zellulären Kompartimenten in höherer Konzentration als Substrat für die durch die Ace- tyl-CoA-Synthetase katalysierte Reaktion der Acetyl-CoA- Synthese zur Verfügung. Dies bedeutet, daß es möglich ist, durch die Steigerung der Acetyl-CoA-Hydrolaseaktivität in einem Kompartiment , die intrazelluläre Verteilung von Acetyl-CoA zu verändern und somit Einfluß auf den Fluß von Me- taboliten in verschiedene Biosynthesewege zu nehmen.It has surprisingly been found that it is possible to increase the acetyl-CoA hydrolase activity in various compartments of plant cells and thus to influence the intracellular distribution of metabolites. This result is surprising in that acetyl-CoA is one of the central metabolites in plant and animal cells, the concentration of which is strictly regulated (Randall and Miernyk, Method in Plant Biochemistry Vol 3 [ISBN 0-12-461013-7] ). An intervention in the intracellular acetyl-CoA distribution should therefore have a drastic impact on the viability of the cells. For example, there are indications that the expression of acetyl-CoA hydrolase from yeast in E. coli has a lethal effect. In contrast, the present invention is based on the fact that an increase in acetyl-CoA hydrolase activity in plant cells is indeed possible and leads to advantageous properties of the plant cells. For example, it was found that the increase in acetyl-CoA hydrolase activity in the mitochondria in the leaves of transgenic plants leads to an increase in the content of soluble sugars, such as, for example, glucose, fructose and sucrose, and in starch, and to a simultaneous reduction in the content of fatty acids. This means that the increase in mitochondrial acetyl-CoA hydrolase activity enables a change in the partitioning of photoassimilates in the cells. The acetyl-CoA hydrolase activity in the cells according to the invention is preferably increased by at least 50% and particularly preferably by 100% compared to non-transformed cells. Special Another advantage is an increase in enzyme activity by more than 150% compared to non-transformed cells. The increase in acetyl-CoA hydrolase activity leads to an increased concentration of acetate. In contrast to acetyl-CoA, acetate can penetrate unregulated cellular membranes. It is therefore available in other cellular compartments in higher concentration as a substrate for the acetyl-CoA synthesis catalyzed by the acetyl-CoA synthetase. This means that it is possible, by increasing the acetyl-CoA hydrolase activity in one compartment, to change the intracellular distribution of acetyl-CoA and thus to influence the flow of metabolites in different biosynthetic pathways.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung transgene Pflanzenzellen, bei denen die Acetyl- CoA-Hydrolaseaktivität in den Mitochondrien erhöht ist. In Pflanzenzellen erfolgt die Biosynthese von Acetyl-CoA in den Mitochondrien durch die durch den Pyrurat-Dehydrogenase- Multienzy komplex katalysierte Umsetzung von Pyrurat. Die Steigerung der Acetyl-CoA-Hydrolaseaktivität in den Mitochondrien führt zu _ einer erhöhten Konzentration von Acetat, das durch zelluläre Membranen in andere Kompartimente, z.B. ins Cytosol diffundieren kann. Hier kann es wiederum für die Synthese von Acetyl-CoA, z.B. durch die Acetyl-CoA- Synthetase verwendet werden.In a preferred embodiment, the present invention relates to transgenic plant cells in which the acetyl-CoA hydrolase activity is increased in the mitochondria. In plant cells, acetyl-CoA is biosynthesized in the mitochondria through the pyrurate-dehydrogenase multienzy complex-catalyzed conversion of pyrurate. The increase in acetyl-CoA hydrolase activity in the mitochondria leads to an increased concentration of acetate, which through cellular membranes in other compartments, e.g. can diffuse into the cytosol. Here again it can be used for the synthesis of acetyl-CoA, e.g. can be used by the acetyl-CoA synthetase.
In einer weiteren bevorzugten Ausführungsform zeigen die erfindungsgemäßen transgenen Pflanzenzellen daher eine gesteigerte Aktivität der Acetyl-CoA-Synthetase im Cytosol. Dieses Enzym katalysiert die folgende ReaktionIn a further preferred embodiment, the transgenic plant cells according to the invention therefore show an increased activity of the acetyl-CoA synthetase in the cytosol. This enzyme catalyzes the following reaction
Acetat + HSCoA -r AcetylCoA + AMP +PPιAcetate + HSCoA -r AcetylCoA + AMP + PPι
Das vermehrt im Cytosol gebildete Acetyl-CoA kann beispielsweise für eine verstärkte Synthese von Isoprenoiden über Me- valonsäure und Isopentenylpyrophoshat genutzt werden (Bach, Lipids 30 (1995), 191-202).The acetyl-CoA that is increasingly formed in the cytosol can be used, for example, for an increased synthesis of isoprenoids by means of valonic acid and isopentenyl pyrophoshate can be used (Bach, Lipids 30 (1995), 191-202).
In einer anderen bevorzugten Ausführungsform ist die Acetyl- CoA-Hydrolaseaktivität in dem Cytosol der transgenen Pflanzenzellen erhöht. Hierdurch wird wiederum eine erhöhte Ace- tatkonzentration erreicht. Diese kann beispielsweise dazu führen, daß mehr Acetat in den Plastiden zur Verfügung steht und in diesen zu Acetyl-CoA umgewandelt wird. Damit stünde verstärkt Acetyl-CoA als Substrat z.B. für die Fettsäurebiosynthese oder die Isoprenoidsynthese zur Verfügung.In another preferred embodiment, the acetyl-CoA hydrolase activity is increased in the cytosol of the transgenic plant cells. This in turn leads to an increased acetate concentration. For example, this can lead to more acetate being available in the plastids and being converted into acetyl-CoA in these. This would increase acetyl-CoA as a substrate e.g. for fatty acid biosynthesis or isoprenoid synthesis.
In einer besonders bevorzugten Ausführungsform zeigen die erfindungsgemäßen transgenen Pflanzenzellen mit einer gesteigerten Acetyl-CoA-Hydrolaseaktivität in den Mitochondrien oder dem Cytosol darüber hinaus eine erhöhte Aktivität der Acetyl-CoA-Synthetase in den Plastiden. Hierdurch kann die Verlagerung von Acetat in die Plastiden und dessen Umwandlung in Acetyl-CoA verstärkt werden. Dieses steht dann beispielsweise in erhöhtem Maße für die Fettsäurebiosynthese zur Verfügung.In a particularly preferred embodiment, the transgenic plant cells according to the invention with an increased acetyl-CoA hydrolase activity in the mitochondria or the cytosol additionally show an increased activity of the acetyl-CoA synthetase in the plastids. This can increase the shift of acetate into the plastids and its conversion into acetyl-CoA. This is then available, for example, to an increased extent for fatty acid biosynthesis.
Möglich ist im Prinzip auch die Reduktion der Acetyl-CoA- Synthetaseaktivität im Cytosol.In principle, it is also possible to reduce the acetyl-CoA synthetase activity in the cytosol.
In einer weiteren bevorzugten Ausführungsform weisen die oben beschriebenen pflanzlichen Zellen eine verringerte Aktivität der Citratsynthase in den Mitochondrien auf. Dieses Enzym katalysiert die folgende Reaktion:In a further preferred embodiment, the plant cells described above have a reduced activity of citrate synthase in the mitochondria. This enzyme catalyzes the following reaction:
Acetyl-CoA + Oxalacetat -> Citrat + HSCoAAcetyl-CoA + oxaloacetate -> citrate + HSCoA
Durch die Verringerung der Aktivität dieses Enzyms, das Acetyl-CoA als Substrat für die Citratsynthese verwendet, steht mehr Acetyl-CoA für die durch die Acetyl-CoA-Hydrolase katalysierte Reaktion zur Verfügung, was zu einer verstärkten Bildung von Acetat führt. Eine andere bevorzugte Ausführungsform der vorliegenden Erfindung sieht vor, daß in den oben beschriebenen erfindungsgemäßen Pflanzenzellen in den Mitochondrien oder dem Cytosol die Aktivität der Citratsynthase erhöht ist.By reducing the activity of this enzyme, which uses acetyl-CoA as a substrate for citrate synthesis, more acetyl-CoA is available for the reaction catalyzed by the acetyl-CoA hydrolase, which leads to an increased formation of acetate. Another preferred embodiment of the present invention provides that the activity of citrate synthase is increased in the plant cells according to the invention described above in the mitochondria or the cytosol.
Eine derartige Steigerung der Aktivität der Citratsynthase kann zu einer Veränderung des Flusses von Metaboliten hin zu Acetyl-CoA in ein bestimmtes subzelluläres Kompartiment führen, und kann insbesondere eine Steigerung der Biosynthese von Fettsäuren bzw. Lipiden hervorrufen.Such an increase in the activity of citrate synthase can lead to a change in the flow of metabolites to acetyl-CoA in a specific subcellular compartment, and can in particular cause an increase in the biosynthesis of fatty acids or lipids.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weisen die oben beschriebenen erfindungsgemäßen Pflanzenzellen ferner eine verringerte Aktivität der ATP-Citratlyase im Cytosol auf. Dieses Enzym katalysiert die folgende Reaktion:In a further preferred embodiment of the present invention, the plant cells according to the invention described above also have a reduced activity of the ATP citrate lyase in the cytosol. This enzyme catalyzes the following reaction:
Citrat + HSCoA + ATP <-> Acetyl-CoA + AMP + PPi + Oxalacetat.Citrate + HSCoA + ATP <-> acetyl-CoA + AMP + PPi + oxaloacetate.
Eine derartige Verringerung kann zu einer Steigerung des me- tabolischen Flusses von Citrat zu Acetyl-CoA führen, was einen Rückstau von Metaboliten im Citratcyclus hervorrufen kann. Möglich wäre -folglich eine verstärkte Bildung von Acetat über die endogene Acetyl-CoA-Hydrolase, wodurch die Bildung von Lipiden und/oder Terpenoiden erhöht werden kann.Such a reduction can lead to an increase in the metabolic flow from citrate to acetyl-CoA, which can cause a build-up of metabolites in the citrate cycle. It would therefore be possible to increase the formation of acetate via the endogenous acetyl-CoA hydrolase, as a result of which the formation of lipids and / or terpenoids can be increased.
Eine weitere Ausführungsform der vorliegenden Erfindung sieht vor, daß die pflanzlichen Zellen eine gesteigerte ATP- Citratlyase-Aktivität im Cytosol aufweisen.Another embodiment of the present invention provides that the plant cells have an increased ATP citrate lyase activity in the cytosol.
Eine derartige Steigerung kann eine verstärkte Bildung cyto- solischen Acetyl-CoAs zur Folge haben, welches zur verstärkten Synthese von Isopentenylpyrophosphat (IPP) und somit zur verstärkten Bildung von Terpenoiden führen kann.Such an increase can result in an increased formation of cytosolic acetyl-CoAs, which can lead to an increased synthesis of isopentenyl pyrophosphate (IPP) and thus to an increased formation of terpenoids.
Die oben beschriebenen transgenen Pflanzenzellen weisen aufgrund der beschriebenen veränderten Enzymaktivitäten eine im Vergleich zu Wildtyp-Zellen veränderte Fähigkeit zur Bildung und Verwertung von Acetyl-CoA auf. Diese kann z.B. durch die Bestimmung der veränderten Mengen oder Verhältnisse an StoffWechselendprodukten und Stoffwechselintermediaten, wie in den Beispielen beschrieben, festgestellt werden. Insbesondere können erfindungsgemäße Pflanzenzellen hergestellt werden, die veränderte Mengen an Isoprenoiden, Steroiden, Pigmenten, Isoprenoiden, Flavonoiden, Hormonen, Fetten, Ölen, Proteinen, Gummistoffen, Polyketiden oder Stoffen, die an der pflanzlichen Pathogenabwehr beteiligt sind, aufweisen, oder deren Gehalt an löslichen Zuckern, wie z.B. Gluco- se, Fructose und Saccharose, sowie an Stärke verändert ist. Derartige Zellen können wiederum vorteilhafte Ausgangsstoffe für weitere Verwendungen sein. Beispielsweise können diese Zellen zur heterologen Expression weiterer Gene mit dem Ziel der verstärkten Synthese von wirtschaftlich relevanten Substanzen dienen. So können etwa DNA-Sequenzen eingeführt werden, die die Enzyme zur Synthese von Polyhydroxyalkansäuren (z.B. PHB und PHA) codieren. Auf diese Weise kann das verstärkt gebildete Acetyl-CoA zur Synthese derartiger Säuren, die eine große wirtschaftliche Bedeutung haben, in Pflanzen genutzt werden. Andere Beispiele wirtschaftlich interessanter Substanzen sind Polyketide, Aromastoffe, Kautschuk, Al- kaloide, Isoprenoide etc.The transgenic plant cells described above have, due to the modified enzyme activities described, a modified ability to form and utilize acetyl-CoA compared to wild-type cells. This can be done, for example, through the Determination of the changed amounts or ratios of metabolic end products and metabolic intermediates, as described in the examples. In particular, plant cells according to the invention can be produced which have altered amounts of isoprenoids, steroids, pigments, isoprenoids, flavonoids, hormones, fats, oils, proteins, rubber substances, polyketides or substances which are involved in the defense against plants, or their soluble content Sugars, such as glucose, fructose and sucrose, as well as changes in starch. Such cells can in turn be advantageous starting materials for further uses. For example, these cells can be used for the heterologous expression of further genes with the aim of intensifying the synthesis of economically relevant substances. For example, DNA sequences can be introduced which encode the enzymes for the synthesis of polyhydroxyalkanoic acids (eg PHB and PHA). In this way, the increasingly formed acetyl-CoA can be used in plants for the synthesis of such acids, which are of great economic importance. Other examples of economically interesting substances are polyketides, flavorings, rubber, alkaloids, isoprenoids etc.
Von besonderer Bedeutung ist die Möglichkeit, durch Expression einer Acetyl-CoA-Hydrolase in ölspeichernden Geweben einer Pflanze, wie z.B. dem Endosperm oder den Cotyledonen von Samen oder in anderen ölspeichernden Organen, den Fluß der in den Samen bzw. Organen abgelieferten Photoassimilate in Richtung der Bildung von Zuckern, Stärke, Fetten, Pigmenten, Isoprenoiden, Polyketiden, Steroiden, Flavonoiden, Gummistoffen, Stoffen, die an der pflanzlichen Pathogenabwehr beteiligt sind, Proteinen, und Polymeren wie Polyhydroxyalkansäuren (vgl. z.B. Poirier et al. , Bio/Technology 13 (1995) , 142-150) zu lenken. Generelle Vorteile der erfindungsgemäßen Zellen bestehen in der Möglichkeit, Einfluß auf die Partitionierung von Stoffwechselmetaboliten, insbesondere von Acetyl-CoA, auf den Gehalt an Stoffwechselendprodukten, wie z.B. Stärke und Fette, den Gehalt und die Zusammen- Setzung sekundärer Stoffwechselmetaboliten, den Energiehaushalt und auf den Gehalt und die Zusammensetzung von Aminosäuren in den Zellen zu nehmen.Of particular importance is the possibility, by expression of an acetyl-CoA hydrolase in oil-storing tissues of a plant, such as the endosperm or the cotyledons of seeds or in other oil-storing organs, the flow of the photoassimilates delivered in the seeds or organs in the direction of Formation of sugars, starches, fats, pigments, isoprenoids, polyketides, steroids, flavonoids, gums, substances that are involved in plant pathogen defense, proteins, and polymers such as polyhydroxyalkanoic acids (see e.g. Poirier et al., Bio / Technology 13 ( 1995), 142-150). General advantages of the cells according to the invention are the possibility of influencing the partitioning of metabolic metabolites, in particular acetyl-CoA, on the content of metabolic end products such as starch and fats, the content and the composition. Settlement of secondary metabolites, the energy balance and on the content and composition of amino acids in the cells.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind die transgenen Pflanzenzellen Zellen ölspeichern- der Gewebe, z.B. des Endosperms oder der Cotyledonen von Samen oder anderer ölspeichernder Organe. Bevorzugt weisen derartige Zellen im Vergleich zu entsprechenden Zellen aus nichttransformierten Pflanzen einen um mindestens 3%, vorzugsweise um mindestens 5% und besonders bevorzugt um mindestens 7% höheren Gehalt an Fetten auf.In a preferred embodiment of the present invention, the transgenic plant cells are cells of oil-storing tissue, e.g. the endosperm or cotyledons of seeds or other oil-storing organs. Such cells preferably have a fat content which is at least 3%, preferably at least 5% and particularly preferably at least 7% higher than that of corresponding cells from non-transformed plants.
Die Steigerung der Acetyl-CoA-Hydrolaseaktivität in den erfindungsgemäßen Zellen erfolgt vorzugsweise durch die Einführung und Expression von DNA-Sequenzen, die eine Acetyl- CoA-Hydrolaεe codieren. Diese DNA-Sequenzen, die ein Protein mit der enzymatischen Aktivität einer Acetyl-CoA-Hydrolase codieren, können sowohl prokaryontische, insbesondere bakterielle, als auch eukaryontische DNA-Sequenzen sein, d.h. DNA-Sequenzen aus Pflanzen, Algen, Pilzen oder tierischen Organismen bzw. Sequenzen, die Acetyl-CoA-Hydrolasen aus solchen Organismen codieren.The acetyl-CoA hydrolase activity in the cells according to the invention is preferably increased by introducing and expressing DNA sequences which code for an acetyl-CoA hydrolase. These DNA sequences, which encode a protein with the enzymatic activity of an acetyl-CoA hydrolase, can be both prokaryotic, in particular bacterial, and eukaryotic DNA sequences, i.e. DNA sequences from plants, algae, fungi or animal organisms or sequences which encode acetyl-CoA hydrolases from such organisms.
In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei den DNA-Sequenzen, die eine Acetyl-CoA-Hydrolase codieren, um Sequenzen, die Enzyme codieren, die im Vergleich zu normalerweise in pflanzlichen Zellen vorkommenden Acetyl-CoA-Hydrolasen dereguliert oder unreguliert sind. Dereguliert bedeutet dabei, daß diese Enzyme nicht in der gleichen Weise reguliert werden, wie die in nich - modifizierten Pflanzenzellen normalerweise gebildeten Ace- tyl-CoA-Hydrolase-Enzyme. Insbesondere unterliegen diese Enzyme anderen Regulationsmechanismen, d.h. sie werden nicht in demselben Ausmaß durch die in den Pflanzenzellen vorhandenen Inhibitoren inhibiert bzw. durch Metaboliten alloste- risch reguliert. Dereguliert bedeutet dabei vorzugsweise, daß die Enzyme eine höhere Aktivität als endogen in Pflanzenzellen exprimierte Acetyl-CoA-Hydrolasen aufweisen. Unre- guliert bedeutet im Rahmen dieser Erfindung, daß die Enzyme in pflanzlichen Zellen keiner Regulation unterliegen. Bei diesen durch die Sequenzen codierten Enzyme kann es sich sowohl um bekannte in der Natur vorkommende Enzyme handeln, die eine abweichende Regulation durch verschiedene Substanzen aufweisen als auch um Enzyme, die durch Mutagenese von DNA-Sequenzen, die bekannte Enzyme aus Bakterien, Algen, Pilzen, Tieren oder Pflanzen codieren, hergestellt wurden.In a preferred embodiment of the invention, the DNA sequences which encode an acetyl-CoA hydrolase are sequences which encode enzymes which are deregulated or unregulated in comparison to acetyl-CoA hydrolases normally found in plant cells. Deregulated means that these enzymes are not regulated in the same way as the acetyl-CoA hydrolase enzymes normally formed in unmodified plant cells. In particular, these enzymes are subject to other regulatory mechanisms, ie they are not inhibited to the same extent by the inhibitors present in the plant cells or are allosterically regulated by metabolites. Deregulated preferably means that the enzymes have a higher activity than endogenously expressed acetyl-CoA hydrolases in plant cells. In the context of this invention, unregulated means that the enzymes in plant cells are not subject to any regulation. These enzymes encoded by the sequences can be both known enzymes occurring in nature which have different regulation by various substances and also enzymes which, by mutagenesis of DNA sequences, the known enzymes from bacteria, algae, fungi , Encode animals or plants.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung codieren die verwendeten DNA-Sequenzen Proteine mit der enzymatischen Aktivität einer Acetyl-CoA- Hydrolase aus Pilzen, insbesondere aus Pilzen der Gattung Saccharomyces. Bevorzugt werden DNA-Sequenzen verwendet, die eine Acetyl-CoA-Hydrolase aus Saccharomyces cerevisiae codieren. Solche Sequenzen sind bekannt und beschrieben (vgl. Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418 (Zugriffsnummer M31036)). Um die Lokalisation der Acetyl-CoA-Hydrolase in Mitochondrien der pflanzlichen Zellen sicherzustellen, müssen DNA-Sequenzen, die Mitochondri- en-Targeting-Sequenzen codieren, mit der codierenden Region der Acetyl-CoA-Hydrolase fusioniert werden. Solche Sequenzen sind bekannt, beispielsweise aus Braun et al. (EMBO J. 11 (1992) , 3219-3227) .In a particularly preferred embodiment of the present invention, the DNA sequences used encode proteins with the enzymatic activity of an acetyl-CoA hydrolase from fungi, in particular from fungi of the genus Saccharomyces. DNA sequences which encode an acetyl-CoA hydrolase from Saccharomyces cerevisiae are preferably used. Such sequences are known and described (see Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418 (accession number M31036)). In order to ensure the localization of acetyl-CoA hydrolase in mitochondria of the plant cells, DNA sequences which code for mitochondrial targeting sequences must be fused with the coding region of the acetyl-CoA hydrolase. Such sequences are known, for example from Braun et al. (EMBO J. 11 (1992), 3219-3227).
Bekannt sind neben der genannten DNA-Sequenz aus Saccharomyces cerevisiae auch weitere DNA-Sequenzen, die Proteine mit der enzymatischen Aktivität einer Acetyl-CoA-Hydrolase codieren, beispielsweise aus Neurospora crassa (vgl. EMBL Zugriffsnummer M31521; Marathe et al., Molecular and Cellular Biology 10 (1990) , 2638-2644) und die aufgrund ihrer Eigenschaften ebenfalls zur Herstellung der erfindungsgemäßen Pflanzenzellen verwendet werden können. Dabei muß darauf geachtet werden, daß das Protein in Mitochondrien oder im Cytosol der pflanzlichen Zelle gebildet wird. Techniken zur Modifikation derartiger DNA-Sequenzen, um die Lokalisierung der synthetisierten Enzyme in Mitochondrien und im Cytosol der pflanzlichen Zellen sicherzustellen, sind dem Fachmann bekannt. Für den Fall, daß die Acetyl-CoA-Hydrolasen Sequenzen enthalten, die zur Sekretion oder für eine bestimmte subzelluläre Lokalisation notwendig sind, z.B. zur Lokalisierung im extrazellulären Raum oder der Vakuole, müssen die entsprechenden DNA-Sequenzen deletiert werden. Weiterhin können DNA-Sequenzen, die eine Acetyl-CoA-Hydrolase codieren, unter Zuhilfenahme der bereits bekannten oben genannten DNA-Sequenzen aus beliebigen Organismen isoliert werden. Methoden für die Isolierung und Identifizierung derartiger DNA-Sequenzen sind dem Fachmann geläufig, beispielsweise die Hybridisierung mit bekannten Sequenzen oder durch Polymera- se-Kettenreaktion unter Verwendung von Primern, die von bekannten Sequenzen abgeleitet sind.In addition to the DNA sequence mentioned from Saccharomyces cerevisiae, other DNA sequences are also known which code for proteins with the enzymatic activity of an acetyl-CoA hydrolase, for example from Neurospora crassa (see EMBL accession number M31521; Marathe et al., Molecular and Cellular Biology 10 (1990), 2638-2644) and, because of their properties, can also be used to produce the plant cells according to the invention. Care must be taken to ensure that the protein is formed in mitochondria or in the cytosol of the plant cell. Techniques for modifying such DNA sequences to localize them to ensure the synthesized enzymes in mitochondria and in the cytosol of plant cells are known to the person skilled in the art. In the event that the acetyl-CoA hydrolases contain sequences which are necessary for secretion or for a specific subcellular localization, for example for localization in the extracellular space or the vacuole, the corresponding DNA sequences must be deleted. Furthermore, DNA sequences which code for an acetyl-CoA hydrolase can be isolated from any organism with the aid of the already known DNA sequences. Methods for the isolation and identification of such DNA sequences are known to the person skilled in the art, for example hybridization with known sequences or by polymerase chain reaction using primers which are derived from known sequences.
Die von den identifizierten DNA-Sequenzen codierten Enzyme werden anschließend hinsichtlich ihrer Enzymaktivität und Regulation untersucht.The enzymes encoded by the identified DNA sequences are then examined for their enzyme activity and regulation.
Durch Einführung von Mutationen und Modifikationen nach dem Fachmann bekannten Techniken, können die durch die DNA-Sequenzen codierten Proteine weiter in ihren regulatorischen Eigenschaften verändert werden, um im Vergleich zu natürlicherweise in Pflanzen vorkommenden Acetyl-CoA-Hydrolasen de- oder unregulierte Enzyme zu erhalten.By introducing mutations and modifications according to techniques known to those skilled in the art, the regulatory properties of the proteins encoded by the DNA sequences can be changed further in order to obtain de-regulated or unregulated enzymes compared to acetyl-CoA hydrolases naturally occurring in plants.
Die Steigerung der Acetyl-CoA-Synthase-, Citratsynthase-, bzw. ATP-Citratlyaseaktivität in den erfindungsgemäßen Pflanzenzellen wird vorzugsweise durch die Einführung und Expression von DNA-Sequenzen erreicht, die derartige Enzyme codieren. Bei diesen Sequenzen kann es sich um Sequenzen handeln, die derartige Enzyme aus prokaryontischen, insbesondere bakteriellen, oder aus eukaryontischen Organismen, z.B. Pflanzen, Algen, Pilzen oder Tieren, codieren.The increase in acetyl-CoA synthase, citrate synthase or ATP citrate lyase activity in the plant cells according to the invention is preferably achieved by the introduction and expression of DNA sequences which code for such enzymes. These sequences can be sequences which produce such enzymes from prokaryotic, in particular bacterial, or from eukaryotic organisms, e.g. Encode plants, algae, fungi or animals.
In einer bevorzugten Ausführungsform sind derartige Enzyme deregulierte oder unregulierte Enzymen, wie oben im Zusammenhang mit der Acetyl-CoA-Hydrolase erläutert. Bei diesen durch die Sequenzen codierte Enzyme kann es sich sowohl um bekannte in der Natur vorkommende Enzyme handeln, die eine abweichende Regulation durch verschiedene Substanzen aufweisen, als auch um Enzyme, die durch Mutagenese von DNA-Sequenzen, die bekannte Enzyme aus Bakterien, Algen, Pilzen, Tieren oder Pflanzen codieren, hergestellt wurden.In a preferred embodiment, such enzymes are deregulated or unregulated enzymes, as explained above in connection with the acetyl-CoA hydrolase. These enzymes encoded by the sequences can be both known enzymes occurring in nature, which have a different regulation by different substances, as well as enzymes, which by mutagenesis of DNA sequences, the known enzymes from bacteria, algae, Encode mushrooms, animals or plants.
DNA-Sequenzen, die Acetyl-CoA-Synthasen aus verschiedenen Organismen codieren, sind beschrieben. Bei tierischen Organismen sind z.B. solche aus Macropus engenii, Mensch, Cae- norhabditiε elegans und Drosophila melanogaster bekannt (siehe z.B. GenEMBL-Datenbank Zugriffsnummern L15560, D16350, Z66495 und Z46786) .DNA sequences encoding acetyl-CoA synthases from various organisms have been described. In animal organisms e.g. those known from Macropusengenii, Mensch, Caenorhabditiε elegans and Drosophila melanogaster (see e.g. GenEMBL database accession numbers L15560, D16350, Z66495 and Z46786).
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung codieren die DNA-Sequenzen eine Acetyl-CoA- Synthetase mit den biologischen Eigenschaften einer Acetyl- CoA-Synthase aus Pilzen, insbesondere aus solchen der Gattung Saccharomyces , und besonders bevorzugt aus Saccharomyces cerevisiae . Derartige Sequenzen sind beispielsweise zugänglich unter den GenEMBL-Datenbank Zugriffsnummern Z47725, M94729, L09598, X56211 für Saccharomyces cerivisiae insbesondere unter X76891. Möglich ist auch die Verwendung von DNA-Sequenzen, die bakterielle Acetyl-CoA-Synthetasen codieren. Solche sind z.B. zugänglich unter den Zugriffsnummern M97217, M87509 oder M63968.In a particularly preferred embodiment of the present invention, the DNA sequences encode an acetyl-CoA synthetase with the biological properties of an acetyl-CoA synthase from fungi, in particular from those of the genus Saccharomyces, and particularly preferably from Saccharomyces cerevisiae. Such sequences are accessible, for example, under the GenEMBL database access numbers Z47725, M94729, L09598, X56211 for Saccharomyces cerivisiae, in particular under X76891. It is also possible to use DNA sequences which encode bacterial acetyl-CoA synthetases. Such are e.g. accessible under the access numbers M97217, M87509 or M63968.
DNA-Sequenzen, die eine Citratsynthase codieren, sind aus verschiedenen Organismen bekannt. Sequenzen, die pflanzliche Citratsynthasen codieren, sind z.B. bekannt für Arabidopsis thaliana (GenEMBL-Datenbank Zugriffsnummer X17528; Unger et al., Plant Mol. Biol. 13 (1989), 411-418), sowie für Tabak, Kartoffel und Zuckerrübe (siehe WO 95/24487) . Ferner sind Sequenzen bekannt, die tierische Citratsynthasen codieren, z.B. vom Schwein (Zugriffsnummer M21197, Evans et al., Bio- chemistry 27 (1988) , 4680-4686) . Vorzugsweise werden Sequenzen verwendet, die eine Citratsynthase mit den biologischen Eigenschaften einer Citratsynthase aus Bakterien, insbesondere E . coli , oder Pilzen, insbesondere Saccharomyces cerevisiae, codieren. Verschiedene Sequenzen, die Citratsynthasen aus Bakterien codieren, sind z.B. verfügbar unter den GenEMBL-Datenbank-Zugriffsnummern: M33037, Z70021, M74818, Z70017, Z70009, Z70016, L38987, Z70014, Z70022, Z70019, Z70018, Z70020, Z70012, Z70010, Z70011, Z70013, Z70015, M36338, L33409, X66112, X60513, Z73101, M29728, M17149, L41815, Z34516, M73535, L14780, X55282, L75931 und D90117. Eine bevorzugt verwendete Sequenz ist die in Ner et al . (Biochemistry 22 (1983), 5243-5249) veröffentlichte, die eine Citratsynthase aus E . coli codiert. Sequenzen, die Citratsynthasen aus E . coli codieren, sind beispielsweise zugänglich unter den Zugriffsnummern M28987 und M28988 (siehe auch Wilde et al., J. Gen Microbiol. 132 (1986), 3239-3251) . Sequenzen, die Citratsynthasen aus Pilzen codieren, sind zugänglich unter den Zugriffsnummern D63376 und D69731, solche aus S . cerevisiae insbesondere unter den Zugriffsnummern Z11113, Z48951, Z71255, M54982, X88846 und X00782. Letztere wird bevorzugt verwendet.DNA sequences encoding a citrate synthase are known from various organisms. Sequences which encode vegetable citrate synthases are known, for example, for Arabidopsis thaliana (GenEMBL database access number X17528; Unger et al., Plant Mol. Biol. 13 (1989), 411-418), and for tobacco, potato and sugar beet (see WO 95/24487). Furthermore, sequences are known which code animal citrate synthases, for example from pigs (accession number M21197, Evans et al., Biochemistry 27 (1988), 4680-4686). Sequences are preferably used which contain a citrate synthase with the biological Properties of a citrate synthase from bacteria, especially E. coli, or fungi, in particular Saccharomyces cerevisiae, code. Various sequences encoding bacterial citrate synthases are available, for example, under the GenEMBL database accession numbers: M33037, Z70021, M74818, Z70017, Z70009, Z70016, L38987, Z70014, Z70022, Z70019, Z70018, Z70020, Z70012, Z70010, Z70010 Z70013, Z70015, M36338, L33409, X66112, X60513, Z73101, M29728, M17149, L41815, Z34516, M73535, L14780, X55282, L75931 and D90117. A preferred sequence used is that in Ner et al. (Biochemistry 22 (1983), 5243-5249), which published a citrate synthase from E. coli coded. Sequences that citrate synthases from E. encoding coli are available, for example, under accession numbers M28987 and M28988 (see also Wilde et al., J. Gen. Microbiol. 132 (1986), 3239-3251). Sequences encoding citrate synthases from fungi are available under accession numbers D63376 and D69731, those from S. cerevisiae in particular under the access numbers Z11113, Z48951, Z71255, M54982, X88846 and X00782. The latter is preferred.
DNA-Sequenzen, die eine ATP-Citratlyase codieren, sind beispielsweise bekannt aus Ratte (Elshourbagy et al. , J. Biol. Chem. 265 (1990), 1430-1435), Mensch (Elshourbagy et al., Eur. J. Biochem. 204 (1992), 491-499), C. elegans (Wilson et al., Nature 368 (1994), 32-38) und Arabidopsis thaliana (EMBL Zugriffsnummern T13771, Z18045, Z25661 und Z26232) .DNA sequences encoding an ATP citrate lyase are known, for example, from Rat (Elshourbagy et al., J. Biol. Chem. 265 (1990), 1430-1435), human (Elshourbagy et al., Eur. J. Biochem 204 (1992), 491-499), C. elegans (Wilson et al., Nature 368 (1994), 32-38) and Arabidopsis thaliana (EMBL accession numbers T13771, Z18045, Z25661 and Z26232).
Für die Lokalisation des jeweiligen Enzyms in dem gewünschten Kompartiment der pflanzlichen Zelle gilt wiederum das, was bereits oben im Zusammenhang mit der Acetyl-CoA- Hydrolase gesagt worden ist.What has already been said above in connection with the acetyl-CoA hydrolase applies to the localization of the respective enzyme in the desired compartment of the plant cell.
Die Verringerung der Aktivität der Citratsynthase bzw. der ATP-Citratlyase in den erfindungsgemäßen Zellen kann mittels dem Fachmann bekannten Methoden erfolgen, z.B. durch Expres- sion einer antisense-RNA, eines spezifischen Ribozyms oder mittels eines Cosuppressionseffektes.The activity of citrate synthase or ATP-citrate lyase in the cells according to the invention can be reduced by methods known to the person skilled in the art, for example by express sion of an antisense RNA, a specific ribozyme or by means of a cosuppression effect.
Um die Expression der DNA-Sequenzen, die die oben beschriebenen Enzyme codieren, in pflanzlichen Zellen zu gewährleisten, können diese im Prinzip unter die Kontrolle eines beliebigen in pflanzlichen Zellen funktionalen Promotors gestellt werden. Die Expression der besagten DNA-Sequenzen kann generell in jedem Gewebe einer aus einer transformierten erfindungsgemäßen Pflanzenzelle regenerierten Pflanze und zu jedem Zeitpunkt stattfinden, bevorzugt jedoch findet sie in solchen Geweben statt, in denen eine veränderte Fähigkeit zur Bildung und Verwertung von Acetyl-CoA von Vorteil entweder für das Wachstum der Pflanze oder für die Bildung von Inhaltsstoffen innerhalb der Pflanze iεt. Geeignet erscheinen von daher vor allem Promotoren, die eine spezifische Expression in einem bestimmten Gewebe, zu einem bestimmten Entwicklungszeitpunkt der Pflanze oder aber in einem bestimmten Organ der Pflanze sicherstellen. Vorzugsweise stehen die DNA-Sequenzen unter der Kontrolle von Promotoren, die eine samenspezifische Expression gewährleisten. Im Fall von Stärke-speichernden Pflanzen, wie z.B. von Mais, Weizen, Gerste oder anderen Getreiden wird dadurch in den Samen die Fähigkeit zur Bildung und Verwertung von Acetyl-CoA verändert, und es findet eine veränderte Synthese von Samenin- haltsstoffen statt.In order to ensure the expression of the DNA sequences which code for the enzymes described above in plant cells, they can in principle be placed under the control of any promoter which is functional in plant cells. The expression of the said DNA sequences can generally take place in any tissue of a plant regenerated from a transformed plant cell according to the invention and at any time, but preferably takes place in those tissues in which an altered ability to form and utilize acetyl-CoA is advantageous either for the growth of the plant or for the formation of ingredients within the plant. Promoters which ensure specific expression in a specific tissue, at a specific time of development of the plant or in a specific organ of the plant therefore appear to be particularly suitable. The DNA sequences are preferably under the control of promoters which ensure seed-specific expression. In the case of starch-storing plants, e.g. In maize, wheat, barley or other cereals, this changes the ability of acetyl-CoA to form and utilize in the seeds, and there is a change in the synthesis of seeds.
In einer bevorzugten Ausführungsform werden für die Steigerung der Fettsäurebiosynthese infolge eines erhöhten Acetyl- CoA-Gehaltes in Samen von ölbildenden Pflanzen wie Raps, Sojabohne, Sonnenblume und Ölpalmen Promotoren verwendet, die spezifisch im Endosper oder aber in den Cotyledonen von sich bildenden Samen aktiv sind, wie z.B. der Phaseolin- Promotor aus Phaseolus vulgär is, der USP-Promotor aus Vicia faba oder der HMG-Promotor aus Weizen.In a preferred embodiment, promoters are used for increasing the fatty acid biosynthesis as a result of an increased acetyl-CoA content in seeds of oil-forming plants such as oilseed rape, soybean, sunflower and oil palms, which are specifically active in the endosper or in the cotyledons of seeds which form, such as the Phaseolin promoter from Phaseolus is vulgar, the USP promoter from Vicia faba or the HMG promoter from wheat.
Erfindungsgemäß ist es ferner vorteilhaft, zur Expression der DNA-Sequenzen Promotoren zu verwenden, die in Speicher- Organen wie Knollen oder Wurzeln aktiv sind, z.B. in der Speicherwurzel der Zuckerrübe oder aber in der Knolle der Kartoffel. In diesem Fall kommt es beispielsweise bei der Expression der DNA-Sequenzen, die eine Acetyl-CoA-Hydrolase codieren, zu einer Umlenkung von Biosynthesewegen im Sinne der Bildung von mehr Zucker bzw. Stärke und einer veränderten Bildung und Verwertung von Acetyl-CoA in Richtung der Fettsäurebiosynthese.According to the invention, it is also advantageous to use promoters for expressing the DNA sequences which are stored in Organs such as tubers or roots are active, for example in the storage root of the sugar beet or in the tuber of the potato. In this case, for example, the expression of the DNA sequences which encode an acetyl-CoA hydrolase leads to a redirection of biosynthetic pathways in the sense of the formation of more sugar or starch and a changed formation and utilization of acetyl-CoA in the direction of fatty acid biosynthesis.
Ferner kann die Expression der DNA-Sequenzen unter der Kontrolle von Promotoren erfolgen, die spezifisch zum Zeitpunkt der Blühinduktion, oder bei der Blütenbildung aktiviert werden, oder die aktiv sind in Geweben, die für die Blühinduktion notwendig sind. Ebenso können Promotoren verwendet werden, die zu einem nur durch äußere Einflüsse kontrollierten Zeitpunkt aktiviert werden, z.B. durch Licht, Temperatur, chemische Substanzen (ε. beispielsweise WO 93/07279) . Für die Erhöhung der Exportrate von Photoassimilaten aus dem Blatt sind z.B. Promotoren von Interesse, die eine Geleitzellen-spezifische Expression aufweisen. Solche Promotoren sind bekannt (z.B. der Promotor des rolC-Gens aus Agrobacte- rium rhizogenes) .Furthermore, the expression of the DNA sequences can take place under the control of promoters which are activated specifically at the time of flowering induction, or during flowering, or which are active in tissues which are necessary for flowering induction. Promoters can also be used which are activated at a time controlled only by external influences, e.g. by light, temperature, chemical substances (ε. for example WO 93/07279). For increasing the export rate of photoassimilates from the sheet, e.g. Promoters of interest that have a cell-specific expression. Such promoters are known (e.g. the promoter of the rolC gene from Agrobacterium rhizogenes).
Die DNA-Sequenzen, die die oben beschriebenen Enzyme codieren, sind vorzugsweise außer mit einem Promotor mit DNA- Sequenzen verknüpft, die eine weitere Steigerung der Transkription gewährleisten, beispielsweise sogenannte Enhancer- Elemente, oder mit DNA-Sequenzen, die im transkribierten Bereich liegen und die eine effizientere Translation der synthetisierten RNA in das entsprechende Protein gewährleisten. Derartige Regionen können von viralen Genen oder geeigneten pflanzlichen Genen gewonnen oder synthetisch hergestellt werden. Sie können homolog oder heterolog zum verwendeten Promotor sein. Vorteilhafterweise werden die codierenden DNA-Sequenzen ferner mit 3 ' -nicht-translatierten DNA-Sequenzen verknüpft, die die Termination der Transkription und die Polyadenylierung des Transkriptes gewährleisten. Derartige Sequenzen sind bekannt und beschrieben, beispielsweise die des Octopinsynthasegens aus Agrobacterium tumefaciens . Diese Sequenzen sind beliebig gegeneinander austauschbar.The DNA sequences which code for the enzymes described above are preferably linked, in addition to a promoter, to DNA sequences which ensure a further increase in transcription, for example so-called enhancer elements, or to DNA sequences which are in the transcribed region and which ensure a more efficient translation of the synthesized RNA into the corresponding protein. Such regions can be obtained from viral genes or suitable plant genes or can be produced synthetically. They can be homologous or heterologous to the promoter used. Advantageously, the coding DNA sequences are also linked to 3 'untranslated DNA sequences which ensure the termination of the transcription and the polyadenylation of the transcript. Such sequences are known and described, for example that of the octopine synthase gene from Agrobacterium tumefaciens. These sequences are interchangeable.
Die DNA-Sequenzen, die erfindungsgemäß in pflanzliche Zellen eingeführt und exprimiert werden, liegen in den erfindungsgemäßen Pflanzenzellen vorzugsweise stabil ins Genom integriert vor. Neben den wie oben beschriebenen veränderten Enzymaktivitäten können die erfindungεgemäßen transgenen Pflanzenzellen von nicht-transformierten Pflanzenzellen ferner dadurch unterschieden werden, daß sie stabil im Genom integriert eine Fremd-DNA aufweisen, dessen Expression die Veränderung der Acetyl-CoA-Hydrolaseaktivität und gegebenenfalls einer weiteren der oben beschriebenen Enymaktivitäten bewirkt. Fremd-DNA bedeutet dabei in diesem Zusammenhang, daß die DNA entweder in bezug auf die transformierte Pflanzenspezies heterolog ist, oder die DNA, wenn sie homolog zu dieser ist, an einem Ort im Genom lokalisiert ist, an dem sie in nicht-transformierten Zellen nicht vorkommt. Das bedeutet, daß die DNA in einer genomischen Umgebung liegt, in der sie natürlicherweise nicht vorkommt. Ferner weist die Fremd-DNA in der Regel das Charakteristiku auf, daß sie re- kombinant ist, d.h. aus mehreren Bestandteilen besteht, die in dieser Kombination in der Natur nicht vorkommen.The DNA sequences which are introduced and expressed in plant cells according to the invention are preferably stably integrated into the genome in the plant cells according to the invention. In addition to the modified enzyme activities as described above, the transgenic plant cells according to the invention can also be distinguished from non-transformed plant cells in that they have a foreign DNA stably integrated in the genome, the expression of which changes the acetyl-CoA hydrolase activity and, if appropriate, a further one of the above Enym activities described causes. In this context, foreign DNA means that the DNA is either heterologous with respect to the transformed plant species, or the DNA, if it is homologous to it, is located at a location in the genome where it is not in non-transformed cells occurs. This means that the DNA is in a genomic environment in which it does not occur naturally. Furthermore, the foreign DNA usually has the characteristic that it is recombinant, i.e. consists of several components that do not occur in nature in this combination.
Bei den erfindungsgemäßen transgenen Pflanzenzellen kann es sich grundsätzlich um Zellen jeder beliebigen Pflanzenspezies handeln. Von Interesse sind sowohl Zellen monocotyler als auch dicotyler Pflanzenspezies, insbesondere Zellen εtärke- speichernder oder landwirtschaftlicher Nutzpflanzen, wie z.B. Roggen, Hafer, Gerste, Weizen, Kartoffel, Mais, Reis, Erbse, Zuckerrübe, Tabak, Baumwolle, Wein, Tomate usw. oder Zellen von Zierpflanzen.The transgenic plant cells according to the invention can in principle be cells of any plant species. Of interest are both cells of monocotyledonous as well as dicotyledonous plant species, in particular cells that store starch or agricultural crops, such as e.g. Rye, oats, barley, wheat, potatoes, corn, rice, peas, sugar beets, tobacco, cotton, wine, tomatoes etc. or cells of ornamental plants.
In einer bevorzugten Ausführungsform handelt es sich um Pflanzenzellen ölspeichernder Nutzpflanzen, wie z.B. Raps, Sonnenblume, Ölpalme oder Sojabohne. Besonders bevorzugt ist dabei Raps. Gegenstand der vorliegenden Erfindung sind ferner transgene Pflanzen, die erfindungsgemäße transgene Pflanzenzellen enthalten. Derartige Pflanzen können beispielsweise hergestellt werden durch Regeneration aus erfindungsgemäßen Pflanzenzellen nach dem Fachmann bekannten Methoden.In a preferred embodiment, these are plant cells of oil-storing useful plants, such as, for example, rapeseed, sunflower, oil palm or soybean. Rapeseed is particularly preferred. The present invention furthermore relates to transgenic plants which contain transgenic plant cells according to the invention. Such plants can be produced, for example, by regeneration from plant cells according to the invention by methods known to the person skilled in the art.
Pflanzen, die erfindungsgemäße Zellen enthalten, weisen vorzugsweise mindestens eines der folgenden Merkmale auf:Plants containing cells according to the invention preferably have at least one of the following features:
(a) einen verringerten oder gesteigerten Gehalt an Fettsäuren im Blattgewebe oder im Samengewebe im Vergleich zu Wildtyp-Pflanzen;(a) a reduced or increased content of fatty acids in the leaf tissue or in the seed tissue compared to wild-type plants;
(b) einen erhöhten Gehalt an löslichen Zuckern im Blattgewebe im Vergleich zu Wildtyp-Pflanzen;(b) an increased content of soluble sugars in the leaf tissue compared to wild-type plants;
(c) einen erhöhten Gehalt an Stärke im Blattgewebe im Vergleich zu Wildtyp-Pflanzen;(c) an increased starch content in leaf tissue compared to wild-type plants;
(d) verringertes Wachstum;(d) reduced growth;
(e) Bildung von zwei oder mehr Sprossen;(e) formation of two or more rungs;
(f) Veränderung der Blattfärbung.(f) change in leaf color.
Gegenstand der Erfindung ist ferner Vermehrungsmaterial erfindungsgemäßer Pflanzen, das erfindungsgemäße Zellen enthält. Hierzu zählen beispielsweise Stecklinge, Samen Früchte, Wurzelstöcke, Knollen, Sämlinge etc.The invention furthermore relates to propagation material of plants according to the invention which contains cells according to the invention. These include, for example, cuttings, fruit seeds, rhizomes, tubers, seedlings etc.
Gegenstand der vorliegenden Erfindung sind ebenfalls reko - binante DNA-Moleküle, die folgende Elemente enthalten:The present invention also relates to recombinant DNA molecules which contain the following elements:
(a) einen in pflanzlichen Zellen funktionalen Promoter, und(a) a promoter functional in plant cells, and
(b) eine DNA-Sequenz, die ein Protein mit der enzymatischen Aktivität einer Acetyl-CoA-Hydrolase codiert, und die so mit dem Promotor verknüpft ist, daß sie in pflanzlichen Zellen in eine translatierbare RNA transkribiert werden kann.(b) a DNA sequence which encodes a protein with the enzymatic activity of an acetyl-CoA hydrolase and which is linked to the promoter in such a way that it can be transcribed into a translatable RNA in plant cells.
Der Transfer der DNA-Moleküle, die DNA-Sequenzen enthalten, die eines der oben beschriebenen Enzyme codieren, erfolgt nach dem Fachmann bekannten Methoden, vorzugsweise unter Verwendung von Plasmiden, insbesondere solchen Plasmiden, die eine stabile Integration des DNA-Moleküls in das Genom transformierter Pflanzenzellen gewährleisten, beispielsweise binären Plasmiden oder Ti-Plasmiden des Agrojacteriujn tume- facienε- Systems . Neben dem A ro-acte-riu-n-System kommen andere Systeme zur Einführung von DNA-Molekülen in pflanzliche Zellen in Frage, wie z.B. das sogenannte biolistische Verfahren oder aber die Transformation von Protoplasten (vgl. Willmitzer L. (1993), Transgenic Plants, Biotechnology 2; 627-659 für eine Übersicht) . Verfahren zur Transformation onocotyler und dicotyler Pflanzen sind in der Literatur beschrieben und sind dem Fachmann bekannt.The transfer of the DNA molecules which contain DNA sequences which encode one of the enzymes described above takes place according to methods known to the person skilled in the art, preferably using plasmids, in particular such plasmids which ensure stable integration of the DNA molecule into the genome of transformed plant cells, for example binary plasmids or Ti plasmids from the Agrojacteriujn tume facienε system. In addition to the A ro-acte-riu-n system, other systems for introducing DNA molecules into plant cells are also possible, such as the so-called biolistic method or the transformation of protoplasts (cf. Willmitzer L. (1993), Transgenic Plants, Biotechnology 2; 627-659 for an overview). Methods for transforming onocotyledonous and dicotyledonous plants are described in the literature and are known to the person skilled in the art.
Schließlich betrifft die vorliegende Erfindung die Verwendung von DNA-Sequenzen, die ein Protein mit der enzymatischen Aktivität einer Acetyl-CoA-Hydrolase codieren, zur Expression in pflanzlichen Zellen, um die Acetyl-CoA- Hydrolaseaktivität in pflanzlichen Zellen zu erhöhen. Insbesondere betrifft die Erfindung die Verwendung derartiger DNA-Sequenzen zur Herstellung transgener Pflanzenzellen, die im Vergleich zu nicht-transformierten Pflanzenzellen eine veränderte Fähigkeit zur Bildung von Zuckern, Stärke, Fetten, Pigmenten, Isoprenoiden, Polyketiden, Steroiden, Flavonoiden, Gummistoffen, Stoffen, die an der pflanzlichen Pathogenabwehr beteiligt sind, Proteinen, und/oder Polymeren wie Polyhydroxyalkansäuren aufweisen. Die Erhöhung der Acetyl-CoA-Hydrolaseaktivität erfolgt dabei vorzugsweise in den Mitochondrien oder in dem Cytosol der pflanzlichen Zellen.Finally, the present invention relates to the use of DNA sequences which encode a protein with the enzymatic activity of an acetyl-CoA hydrolase for expression in plant cells in order to increase the acetyl-CoA hydrolase activity in plant cells. In particular, the invention relates to the use of such DNA sequences for the production of transgenic plant cells which, compared to non-transformed plant cells, have an altered ability to form sugars, starches, fats, pigments, isoprenoids, polyketides, steroids, flavonoids, rubber substances, substances which are involved in plant pathogen defense, have proteins and / or polymers such as polyhydroxyalkanoic acids. The acetyl-CoA hydrolase activity is preferably increased in the mitochondria or in the cytosol of the plant cells.
Fig. 1 zeigt eine schematische Abbildung des 14,39 kb großen Plasmids Bin-mHy-Int. Das Plaεmid enthält folgende Fragmente:1 shows a schematic illustration of the 14.39 kb plasmid Bin-mHy-Int. The plasmid contains the following fragments:
A = Fragment A (528 bp) enthält das EcoRI - Aεp718 Fragment der Promotorregion des 35S Promotors desA = fragment A (528 bp) contains the EcoRI-Aεp718 fragment of the promoter region of the 35S promoter of the
"Cauliflower Mosaic Virus" (Nucleotide 6909 bis 7437) (Frank et al., Cell 21 (1980), 285-294). B = Fragment b (109 bp) umfaßt ein DNA-Fragment mit der Codierregion der mitochondriale Targetsequenz des Proteins der Matrix processing peptidase (MPP) aus Kartoffel (Braun et al., EMBO J. 11 (1992), 3219- 3227 (Zugriffsnummer X66284))."Cauliflower Mosaic Virus" (nucleotides 6909 to 7437) (Frank et al., 1980, Cell 21 (285-294)). B = fragment b (109 bp) comprises a DNA fragment with the coding region of the mitochondrial target sequence of the Proteins of the potato matrix processing peptidase (MPP) (Braun et al., EMBO J. 11 (1992), 3219-3227 (accession number X66284)).
C = Fragment C (189 bp) umfaßt ein DNA-Fragment des Introns PIV2 aus dem Plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250) .C = fragment C (189 bp) comprises a DNA fragment of the intron PIV2 from the plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250).
D' = Fragment D1 (170 bp) umfaßt ein DNA-Fragment mit dem 5 '-Bereich der Codierregion des Acetyl-CoA- Hydrolase-Gens (Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418), Nucleotide 614 bis 784 (Zugriffsnummer M31036) .D '= fragment D 1 (170 bp) comprises a DNA fragment with the 5' region of the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418) , Nucleotides 614 to 784 (accession number M31036).
D' '= Fragment D' ' (1420 bp) umfaßt ein DNA-Fragment mit der Codierregion des Acetyl-CoA-Hydrolase-Gens (Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418) , Nucleotide 785 bis 2194 (Zugriffsnummer M31036) .D '' = Fragment D '' (1420 bp) comprises a DNA fragment with the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry 265 (1990), 7413-7418), nucleotides 785 to 2194 (accession number M31036).
E *-*** Fragment E (192 bp) umfaßt das Polyadenylierungs- signal des Gens 3 der T-DNA des Ti-Plasmides pTi- ACH5, Nucleotide 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227).E * - *** Fragment E (192 bp) comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227).
Fig. 2 zeigt eine schematische Abbildung des 14,28 kb großen Plasmids Bin-Hy-Int. Das Plasmid enthält folgende Fragmente:2 shows a schematic illustration of the 14.28 kb plasmid Bin-Hy-Int. The plasmid contains the following fragments:
A = Fragment A (528 bp) enthält das EcoRI - Asp718 Fragment der Promotorregion des 35S Promotors des "cauliflower osaic virus" (Nucleotide 6909 bis 7437) (Frank et al., Cell 21 (1980), 285-294).A = fragment A (528 bp) contains the EcoRI-Asp718 fragment of the promoter region of the 35S promoter of the "cauliflower osaic virus" (nucleotides 6909 to 7437) (Frank et al., Cell 21 (1980), 285-294).
C = Fragment C (189 bp) umfaßt ein DNA-Fragment des Introns PIV2 aus dem Plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250) .C = fragment C (189 bp) comprises a DNA fragment of the intron PIV2 from the plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250).
D- *= Fragment D' (170 bp) umfaßt ein DNA-Fragment mit dem 5 '-Bereich der Codierregion des Acetyl-CoA- Hydrolase-Gens (Lee et al., Journal of Biological Chemistry (1990) 265, 7413-7418), Nucleotide 614 bis 784 (Zugriffsnummer M31036) .D- * = fragment D '(170 bp) comprises a DNA fragment with the 5' region of the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry (1990) 265, 7413-7418), nucleotides 614 to 784 (accession number M31036).
D' '= Fragment D' ' (1420 bp) umfaßt ein DNA-Fragment mit der Codierregion der Acetyl-CoA-Hydrolase-Gens (Lee et al., Journal of Biological Chemistry (1990) 265, 7413-7418) , Nucleotide 785 bis 2194 (Zugriffsnummer M31036) .D "= fragment D" (1420 bp) comprises a DNA fragment with the coding region of the acetyl-CoA hydrolase gene (Lee et al., Journal of Biological Chemistry (1990) 265, 7413-7418), nucleotides 785 to 2194 (accession number M31036).
E = Fragment E (192 bp) umfaßt das Polyadenylierungs- signal des Gens 3 der T-DNA des Ti-Plasmides pTi- ACH5, Nucleotide 11749-11939 (Gielen et al. , EMBO J. 11 (1984), 3219-3227).E = fragment E (192 bp) comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227) .
Fig. 3 zeigt einen Western-Blot zum Nachweis der Expression der Acetyl-CoA-Hydrolase aus Saccharomyces cerevisiae in transgenen Tabakblättern.3 shows a Western blot for the detection of the expression of the acetyl-CoA hydrolase from Saccharomyces cerevisiae in transgenic tobacco leaves.
Fig. 4 zeigt drei transgene MB-Hyl-Linien im Vergleich zu einer Kontrollpflanze (links) .Fig. 4 shows three transgenic MB-Hyl lines compared to a control plant (left).
Fig. 5 zeigt Blätter der transgenen MB-Hyl-Linien 395 shows leaves of the transgenic MB-Hyl lines 39
Fig. 6 zeigt Blätter einer KontrollpflanzeFig. 6 shows leaves of a control plant
Fig. 7 zeigt eine Pflanze einer transgenen MB-Hyl Linie mit BlütenFig. 7 shows a plant of a transgenic MB-Hyl line with flowers
Fig. 8 zeigt eine Kontrollpflanze mit Blüten8 shows a control plant with flowers
Fig. 9 zeigt eine schematische Abbildung des 14, 25 kb großen Plas ids pTCSASFIG. 9 shows a schematic illustration of the 14, 25 kb Plas ids pTCSAS
A = Fragment A (528 bp) enthält das EcoRl - Asp718 Fragment der Promotorregion des 35S Promotors des "Cauliflower Mosaic Virus" (Nucleotide 6909 bis 7437) (Frank et al., Cell 21 (1980), 285-294). B = Fragment B (1747 bp) umfaßt ein DNA-Fragment mit der Codierregion des Citrat-Synthase-Gens aus Tabak in reverser Orientierung (Nucleotide l bis 1747) (Zugriffsnummer X84226) . C = Fragment C (192 bp) umfaßt das Polyadenylierungs- signal des Gens 3 der T-DNA des Ti-Plasmides pTi- ACH5, Nucleotide 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227).A = fragment A (528 bp) contains the EcoRI-Asp718 fragment of the promoter region of the 35S promoter of the "Cauliflower Mosaic Virus" (nucleotides 6909 to 7437) (Frank et al., Cell 21 (1980), 285-294). B = fragment B (1747 bp) comprises a DNA fragment with the coding region of the citrate synthase gene from tobacco in reverse orientation (nucleotides 1 to 1747) (accession number X84226). C = fragment C (192 bp) comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939 (Gielen et al., EMBO J. 11 (1984), 3219-3227) .
MethodenMethods
1. Clonierungsverfahren1. Cloning procedure
Zur Clonierung in E . coli wurden die Vektoren pUC9-2, pA7 (von Schaewen, A. (1989) Dissertation, Freie Universität Berlin) und pAM (siehe Beispiel 1) verwendet. Für die Pflanzentransformation wurden die Genkonstruktionen in den binären Vektor pBinAR-Hyg (Hinterlegungsnummer: DSM 9505; Hinterlegungsdatum: 20.10.1994) cloniert.For cloning in E. coli, the vectors pUC9-2, pA7 (from Schaewen, A. (1989) dissertation, Freie Universität Berlin) and pAM (see Example 1) were used. For the plant transformation, the gene constructions were cloned into the binary vector pBinAR-Hyg (deposit number: DSM 9505; filing date: October 20, 1994).
2. Bakterienstämme2. Bacterial strains
Für die pUC-Vektoren und für die pBinARHyg-Konstrukte wurde der E . coli-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet.For the pUC vectors and for the pBinARHyg constructs, the E. coli strain DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) was used.
Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des Agrobacterium tume-faciens-Stammes C58C1 pGV2260 durchgeführt (Deblaere et al., Nucl. Acids Res. 13 (1985), 4777-4788).The transformation of the plasmids into the potato plants was carried out with the help of the Agrobacterium tume faciens strain C58C1 pGV2260 (Deblaere et al., Nucl. Acids Res. 13 (1985), 4777-4788).
3. Transformation von Agrobacterium tumefaciens3. Transformation of Agrobacterium tumefaciens
Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen und Willmitzer (Nucleic Acids Res. 16 (1988) , 9877) . Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birn- boim und Doly (Nucleic Acids Res. 7 (1979), 1513-1523) isoliert und nach geeigneter Restriktionsspaltung gele- lektrophoretisch analysiert.The DNA was transferred by direct transformation using the method of Höfgen and Willmitzer (Nucleic Acids Res. 16 (1988), 9877). The plasmid DNA of transformed agrobacteria was determined by the method of Birnboim and Doly (Nucleic Acids Res. 7 (1979), 1513-1523) isolated and analyzed by electrophoresis after suitable restriction cleavage.
4. Transformation von Tabak bzw. Raps4. Transformation of tobacco or rapeseed
Die Transformation von Tabak erfolgte nach der in Rosahl et al. (EMBO J. 6 (1987), 1155-1159) beschriebenen Methode.The tobacco was transformed according to the method described in Rosahl et al. (EMBO J. 6 (1987), 1155-1159).
Die Transformation von Raps (Brassica napus) erfolgte analog zu der in Bade und Damm in "Gene Transfer to Plants" (Springer Verlag Heidelberg (1995) , S. 30-38) beschriebenen Methode.The transformation of rapeseed (Brassica napus) was carried out analogously to the method described in Gene and Transfer in Plants (Springer Verlag Heidelberg (1995), pp. 30-38).
5. Transformation von Kartoffeln5. Transformation of potatoes
Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur (Solanum tuberosum L. cv. De- εiree) wurden in 10 ml MS-Medium (Murashige und Skoog, Physiol. Plant 15 (1962), 473) mit 2 % Saccharose gelegt, welches 50 μl einer unter Selektion gewachsenen Agrobacterium tume-aciens-Übernachtkultur enthielt. Nach 3-5-minütigem leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1,6 % Glu- cose, 5 mg/1 Naphthylessigsäure, 0,2 mg/1 Benzylaminopu- rin, 250 mg/1 Claforan, 3 mg/1 Hygromycin und 0,80 % Bacto Agar gelegt. Nach einwöchiger Inkubation bei 25°C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1,6 % Glucose, 1,4 mg/1 Zeatinribose, 20 mg/1 Naphthylessigsäure, 20 mg/1 Giberellinsäure, 250 mg/1 Claforan, 3 mg/1 Hygromycin und 0,80 % Bacto Agar gelegt. 6. PflanzenhaltungTen small leaves of a potato sterile culture (Solanum tuberosum L. cv. De εiree) wounded with the scalpel were placed in 10 ml of MS medium (Murashige and Skoog, Physiol. Plant 15 (1962), 473) with 2% sucrose, which contained 50 μl of an Agrobacterium tume aciens culture grown under selection overnight. After gently shaking for 3-5 minutes, another incubation was carried out for 2 days in the dark. The leaves were then used for callus induction on MS medium with 1.6% glucose, 5 mg / 1 naphthylacetic acid, 0.2 mg / 1 benzylaminopurine, 250 mg / 1 claforan, 3 mg / 1 hygromycin and 0.80 % Bacto agar laid. After incubation at 25 ° C. and 3000 lux for one week, the leaves were inducible to shoot on MS medium with 1.6% glucose, 1.4 mg / 1 zeatin ribose, 20 mg / 1 naphthylacetic acid, 20 mg / 1 giberellic acid, 250 mg / 1 Claforan, 3 mg / 1 hygromycin and 0.80% Bacto Agar. 6. Plant husbandry
Kartoffelpflanzen wurden im Gewächshaus unter folgenden Bedingungen gehalten:Potato plants were kept in the greenhouse under the following conditions:
- Lichtperiode 16 h bei 25000 Lux und 22 °C- Light period 16 h at 25000 lux and 22 ° C
- Dunkelperiode 8 h bei 15°C- Dark period 8 h at 15 ° C
- Luftfeuchte 60 %.- humidity 60%.
Tabakpflanzen wurden im Gewächshaus unter folgenden Bedingungen gehalten:Tobacco plants were kept in the greenhouse under the following conditions:
- Lichtperiode 14 h bei 10000 Lux und 25°C- Light period 14 h at 10000 lux and 25 ° C
- Dunkelperiode 10 h bei 20°C- Dark period 10 h at 20 ° C
- Luftfeuchte 65 %.- Humidity 65%.
7. Bestimmung der Acetyl-CoA-Hydrolase-Aktivität in Blättern von Tabak- und Kartoffelpflanzen7. Determination of acetyl-CoA hydrolase activity in leaves of tobacco and potato plants
Zur Bestimmung der Acetyl-CoA-Hydrolase-Aktivität in Tabak- und Kartoffelblättern wurden Blattproben in Extraktionspuffer (50 mM Hepes-KOH pH 7,5; 5 mM MgCl2; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10 % (Vol. /Vol.) Glycerin; 0,1 % (Vol. /Vol.) Triton X-100) homogenisiert. Nach Zen- trifugation wurden die zellfreien Extrakte für die Enzymaktivitätsmessung eingesetzt.To determine the acetyl-CoA hydrolase activity in tobacco and potato leaves, leaf samples were extracted in extraction buffer (50 mM Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10% ( Vol. / Vol.) Glycerin; 0.1% (Vol. / Vol.) Triton X-100) homogenized. After centrifugation, the cell-free extracts were used for the enzyme activity measurement.
Reaktionspuffer: 100 mM Na-Phosphat, pH 7.2Reaction buffer: 100 mM Na phosphate, pH 7.2
[1-14C]Acetyl-CoA 0.5 μCi / 100 μl Reaktionsvolumen: 105 μl Reaktionstemperatur: 30°C Messzeitpunkte: 2, 4, 6, 10 min[1- 14 C] acetyl-CoA 0.5 μCi / 100 μl reaction volume: 105 μl reaction temperature: 30 ° C measuring times: 2, 4, 6, 10 min
Prinzip:Principle:
Es werden DE81-Filter (Ionenaustauscher) verwendet, wobei HSCoA und [1-14C]Acetyl-CoA binden, jedoch [1-14C] Acetat beim Waschen (2 mal 5 min) der Filter mit 2% Essigsäure eluiert wird. Zur Bestimmung der Acetyl-CoA- Hydrolase-Aktivität wurde die auf den Filtern verbliebene Radioaktivität durch Szintillationsmessung und Vergleich mit Eichkurven bestimmt.There are DE81 filters (ion exchanger), where HSCoA and [1- 14 C] acetyl-CoA bind, however, [1- 14 C] acetate is eluted in the wash (2 times 5 min), the filter with 2% acetic acid. To determine the acetyl-CoA Hydrolase activity, the radioactivity remaining on the filters was determined by scintillation measurement and comparison with calibration curves.
(vgl. Roughan, P.G. et al. , Analytical Biochemistry. 216 (1994), 77-82)(see Roughan, P.G. et al., Analytical Biochemistry. 216 (1994), 77-82)
8. Western-Blot-Analyse zum Machweis der Expression von Acetyl-CoA-Hydrolase in Blättern8. Western blot analysis for the mode of expression of acetyl-CoA hydrolase in leaves
Zum Nachweis der Acetyl-CoA-Hydrolase in Tabak- und Kartoffelblättern wurden Blattproben in Extraktionspuffer (50 M Hepes-KOH pH 7,5; 5 mM MgCl2 ; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10 % (Vol. /Vol.) Glycerin; 0,1 % (Vol. /Vol.) Triton X-100) homogenisiert. Nach Zentrifugation wurden Aliquots (10 μg Protein) der zellfreien Extrakte für einen Western-Blot eingesetzt. Western-Blot-Analysen wurden unter Verwendung eines gegen die Acetyl-CoA-Hydrolase aus Saccharomyces cerevisiae gerichteten polyclonalen Antikörpers wie bei Landschütze et al. (EMBO J. 14 (1995), 660-666) beschrieben durchgeführt .To detect acetyl-CoA hydrolase in tobacco and potato leaves, leaf samples were extracted in extraction buffer (50 M Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10 mM DTT; 10% (vol. / Vol.) Glycerin; 0.1% (Vol. / Vol.) Triton X-100) homogenized. After centrifugation, aliquots (10 μg protein) of the cell-free extracts were used for a Western blot. Western blot analyzes were carried out using a polyclonal antibody directed against the acetyl-CoA hydrolase from Saccharomyces cerevisiae, as described in Landschütze et al. (EMBO J. 14 (1995), 660-666).
9. Bestimmung von Stoffwechselintermediaten in Tabakblättern9. Determination of metabolic intermediates in tobacco leaves
Die Bestimmung von Saccharose, Glucose, Fructose und Stärke erfolgte spektrophotometrisch mittels gekoppelter enzymatischer Reaktionen nach Stitt et al. (Methods in Enzymology, 174, 518-552).Sucrose, glucose, fructose and starch were determined spectrophotometrically using coupled enzymatic reactions according to Stitt et al. (Methods in Enzymology, 174, 518-552).
a) Bestimmung von Saccharose, Glucose und Fructosea) Determination of sucrose, glucose and fructose
Jeweils drei Blattscheiben mit einem Durchmesser von je 1,1 cm wurden mit je 500 μl 80% Ethanol in Wasser über 90 min bei 70°C extrahiert. Nach Trennung der festen von der flüsεigen Phase durch Zentrifugation, wurde die flüssige Phase abgenommen und zur Messung der löslichen Zucker eingesetzt. Der Reaktionspuffer enthielt: 100 mM I idazol pH 6,9; 5 mM MgCl2; 2 mM NADPThree leaf disks each with a diameter of 1.1 cm were extracted with 500 μl 80% ethanol in water over 90 min at 70 ° C. After separating the solid from the liquid phase by centrifugation, the liquid phase was removed and used to measure the soluble sugars. The reaction buffer contained: 100 mM I idazol pH 6.9; 5 mM MgCl 2 ; 2mM NADP
1 mM ATP1 mM ATP
2 U/ml Glucose-6-Phosphat Dehydrogenase2 U / ml glucose-6-phosphate dehydrogenase
G6P-Beεtimmung: + 1,4 U/ml Hexokinase FIP-Bestimmung: + 1,4 U/ml Phosphoglucoisomerase GlP-Bestimmung: + 2,0 U/ml Phosphogluco utaseG6P determination: + 1.4 U / ml hexokinase FIP determination: + 1.4 U / ml phosphoglucoisomerase GlP determination: + 2.0 U / ml phosphoglucutase
Die Messung erfolgt bei 30°C mit 50 μl Extrakt.The measurement is carried out at 30 ° C with 50 μl extract.
(G6P = Glucose-6-Phosphat; F1P = Fructose-1-Phoεphat;(G6P = glucose-6-phosphate; F1P = fructose-1-phosphate;
G1P = Glucose-1-Phosphat)G1P = glucose-1-phosphate)
b) Bestimmung von Stärkeb) Determination of strength
Jeweils drei Blattscheiben mit einem Durchmesεer von je 1,1 cm wurden mit je 500 μl 80% Ethanol in Wasser über 90 min bei 70°C extrahiert. Nach Trennung der festen von der flüssigen Phase durch Zentrifugation, wurde die flüsεige Phase abgenommen, der feste Rückstand wurde zwei Mal mit 80% Ethanol in Wasser gewaschen.Three leaf disks each with a diameter of 1.1 cm were extracted with 500 μl 80% ethanol in water over 90 min at 70 ° C. After separating the solid from the liquid phase by centrifugation, the liquid phase was removed and the solid residue was washed twice with 80% ethanol in water.
Das Pellet wurde mit 400 μl 0,2 N NaOH bei 95 °C über eine Stunde aufgeschloεεen. Eε wurde mit 70 μl 1 N Essigsäure bei Raumtemperatur neutralisiert und die feste von der flüsεigen Phaεe durch Zentrifugation abgetrennt.The pellet was disrupted with 400 μl of 0.2 N NaOH at 95 ° C. for one hour. Eε was neutralized with 70 μl of 1 N acetic acid at room temperature and the solid phase was separated from the liquid phase by centrifugation.
Die Stärke wurde unter Verwendung eines Sortiments zur Stärkebestimmung (Boehringer, Mannheim) nach Herstellerangaben mit Hilfe von Amyloglucosidase hy- drolysiert und die freigesetzte Glucose enzymatisch bestimmt.The starch was hydrolyzed using a range for starch determination (Boehringer, Mannheim) according to the manufacturer's instructions with the aid of amyloglucosidase and the released glucose was determined enzymatically.
c) Bestimmung von Fettsäuren in Blättern und Samen Blattscheiben (jeweils 1,1 cm Durchmesser) oder jeweils ein Tabaksamen wurden in 1 ml 1 N HC1 in Methanol bei 80°C unter Stickstoffatmosphäre nach Zugabe von 5 μg Meristylsäure als internem Standard für 15 Minuten in einem verschlosεenen Glasgefäß erhitzt. Nach Abkühlung auf Raumtemperatur wurden 1 ml 0,9 % wässrige NaCl Lösung und 1 ml n-Hexan(p. A. ) zugegeben. Nach Extraktion der wassrigen Phase wurde die organische Phase abgenommen und mit gasförmigem Stickstoff eingeengt.c) Determination of fatty acids in leaves and seeds Leaf disks (each 1.1 cm in diameter) or one tobacco seed in 1 ml of 1N HC1 in methanol at 80 ° C under a nitrogen atmosphere after adding 5 μg of meristylic acid as an internal standard for 15 Minutes in a sealed glass jar. After cooling to room temperature, 1 ml of 0.9% aqueous NaCl solution and 1 ml of n-hexane (p. A.) were added. After extraction of the aqueous phase, the organic phase was removed and concentrated with gaseous nitrogen.
Die Auftrennung und Quantifizierung der Fettsäuremethylester erfolgte durch Gaschromatographie nach Browse et al. (Analytical Biochemistry 152 (1986) ,141-145) .The fatty acid methyl esters were separated and quantified by gas chromatography according to Browse et al. (Analytical Biochemistry 152: 141-145 (1986)).
d) Bestimmung von Chlorophyll a und b. Antheraxanthin. Zeaxanthin und Violaxanthind) Determination of chlorophyll a and b. Antheraxanthin. Zeaxanthin and Violaxanthin
Blattscheiben (jeweils 1,1 cm Durchmesser) wurden direkt nach der Probennahme in flüssigem Stickstoff eingefroren. Die folgenden Schritte wurden bei abgedunkeltem Raumlicht durchgeführt.Leaf disks (each 1.1 cm in diameter) were frozen in liquid nitrogen immediately after sampling. The following steps were carried out with the room light darkened.
Die Proben wurden mit 250 μl eiskaltem 85 % Aceton in Wasser homogenisiert, die Suspension wurde dann ca. 30 Sekunden mit Stickstoffgas durchspült und anschließend 15 Minuten auf Eis gelagert. Nach Zentrifugation über 15 Minuten bei 4°C und 10000g wurde der Überstand durch einen Millipore-Millex-GV4 Sterilfilteraufsatz filtriert und anschließend 30 Sekunden bei 4°C mit Stickstoffgas durchspült. Die Proben wurden dann bis zur Messung bei -70 °C gelagert. Die Trennung und Quantifizierung der Pigmente erfolgte durch Hoch- druckflüssigkeits-chromatographie (HPLC) wie durch Zhayer und Björkman (J. Chromatogr. 543 (1990) , 137- 145 ) beschrieben.The samples were homogenized with 250 μl of ice-cold 85% acetone in water, the suspension was then flushed with nitrogen gas for about 30 seconds and then stored on ice for 15 minutes. After centrifugation for 15 minutes at 4 ° C and 10,000 g, the supernatant was filtered through a Millipore-Millex-GV4 sterile filter attachment and then flushed with nitrogen gas at 4 ° C for 30 seconds. The samples were then stored at -70 ° C until measurement. The pigments were separated and quantified by high pressure liquid chromatography (HPLC) as described by Zhayer and Björkman (J. Chromatogr. 543 (1990), 137-145).
Als Trennsäule wurde eine ZORBAX ODS 5 μm non- endcapped 250 * 4,5 mm Reversed-Phase-Säule verwendet. Die Detektion der Pigmente erfolgte durch Messung der Absorption bei 450 nm in einem Bereich von 0,04 Absorptionεeinheiten (AUFS). 10. Bestimmung der Citrat-Synthase-Aktivität in Blättern von TabakpflanzenA ZORBAX ODS 5 μm non-endcapped 250 * 4.5 mm reversed phase column was used as the separation column. The pigments were detected by measuring the absorption at 450 nm in a range of 0.04 absorption units (AUFS). 10. Determination of citrate synthase activity in leaves of tobacco plants
Zur Bestimmung der Citrat-Synthase-Aktivität in Tabakblättern wurden Blattproben in Extraktionspuffer (50 mM Hepes-KOH pH 7,5; 5 mM MgCl2; 1 mM EDTA; 1 mM EGTA; 10 % (Vol. /Vol.) Glycerin; 0,1 % (Vol. /Vol.) Triton X-100; 4 mU / ml α.2-Macroglobulin) homogenisiert. Nach Zentrifugation wurden die zellfreien Extrakte für die Enzymaktivitätsmessung eingesetzt.To determine the citrate synthase activity in tobacco leaves, leaf samples were extracted in extraction buffer (50 mM Hepes-KOH pH 7.5; 5 mM MgCl 2 ; 1 mM EDTA; 1 mM EGTA; 10% (v / v) glycerin; 0 , 1% (vol. / Vol.) Triton X-100; 4 mU / ml α.2-macroglobulin) homogenized. After centrifugation, the cell-free extracts were used for the enzyme activity measurement.
Die Aktivität der Citrat-Synthase wurde photometrisch bestimmt: Reaktionspuffer :The activity of the citrate synthase was determined photometrically: Reaction buffer:
0,1 M Tris-Cl pH 8.00.1 M Tris-Cl pH 8.0
0,1 mM 5, 5 • -Dithio-bis(-2-nitrobenzoesäure)0.1 mM 5, 5 • -dithio-bis (-2-nitrobenzoic acid)
0,3 mM Acetyl-CoA Reaktionsvolumen: 700 μl0.3 mM acetyl-CoA reaction volume: 700 μl
Reaktionstemperatur: 30°C eingesetztes Protein: ~ 60 μgReaction temperature: 30 ° C protein used: ~ 60 μg
Start: 7 μl 50 mM OxalacetatStart: 7 μl 50 mM oxaloacetate
Die Messung der Absorption erfolgte bei 412 nm.The absorption was measured at 412 nm.
Die Beispiele erläutern die Erfindung.The examples illustrate the invention.
Beispiel 1example 1
Konstruktion des binären Plasmides Bin-mHy-IntConstruction of the binary plasmid Bin-mHy-Int
Für die Pflanzentransformation wurde die Codierregion des Acetyl-CoA-Hydrolase-Gens aus Saccharomyces cerevisiae mittels der Polymerasekettenreaktion (PCR) ausgehend von genomischer Saccharomyces cerevisiae DNA mittels der Primer AcCoHyl (5 ' -GTCAGGATCCATGACAATTTCTAATTTGTTAAAGCAGAGA-3 ' ) (Seq ID No. 1) undFor the plant transformation, the coding region of the acetyl-CoA hydrolase gene from Saccharomyces cerevisiae was determined using the polymerase chain reaction (PCR) starting from genomic Saccharomyces cerevisiae DNA using the primers AcCoHyl (5 '-GTCAGGATCCATGACAATTTCTAATTTGT IDAAGCAGAGA. 3A)
AcCθHy2 ( 5 » -GTCAGGATCCCTAGTCAACTGGTTCCCAGCTGTCGACCTT-3 ' ) (Seq ID No. 2) a plifiziert. Die Sequenz der Acetyl-CoA-Hydrolaεe aus Saccharomyces cerevisiae ist in der GenEmbl-Datenbank mit der Zugriffsnummer M31036 eingetragen. Die Clonierung des Acetyl-CoA-Hydrolase-Gens ist in Lee et al. (Journal of Biological Chemistry 265 (1990), 7413-7418) beschrieben. Das amplifizierte Fragment entspricht der Region von den Nucleo- tiden 614 bis 2194 dieser Sequenz (Zugriffsnummer M31036) . Hierbei wurde am 5 '-Ende und am 3 '-Ende je eine BamHI- Schnittstelle eingefügt. Das 1590 bp lange Ba HI geschnittene PCR Fragment wurde über die zusätzlichen Schnittstellen in die BamHI-Schnittstelle des Vektors pUC9-2 cloniert. Das Intron PIV2 (189 bp) aus dem Plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250) über PCR mittels der Primer GUS-1 (51- gtatacgtaagtttctgcttctac-3 ' ) (Seq ID No. 3) und GUS-2 (5*- gtacagctgcacatcaacaaattttgg-3 ' ) (Seq ID No. 4) amplifiziert, mit SnaBI und PvuII nachgeschnitten und in die singuläre BbrPI-Schnittstelle des Acetyl-CoA-Hydrolase-Gens aus Saccharomyces cerevisiae cloniert. Die korrekte Orientierung des insertierten Introns (5 '-Ende des Introns zum 3 '-Ende des 5 '-gelegenen Exons hin orientiert) wurde durch Sequenzanalyse bestätigt. Daε auf diese Weise hergestellte Plasmid erhielt die Bezeichnung pUC-Hylnt.AcCθHy2 (5 » -GTCAGGATCCCTAGTCAACTGGTTCCCAGCTGTCGACCTT-3 ') (Seq ID No. 2) a plified. The sequence of the acetyl-CoA hydrolase from Saccharomyces cerevisiae is entered in the GenEmbl database with the accession number M31036. The cloning of the acetyl-CoA hydrolase gene is described in Lee et al. (Journal of Biological Chemistry 265 (1990), 7413-7418). The amplified fragment corresponds to the region from nucleotides 614 to 2194 of this sequence (accession number M31036). A BamHI interface was inserted at the 5 'end and at the 3' end. The 1590 bp Ba HI cut PCR fragment was cloned into the BamHI site of the vector pUC9-2 via the additional cleavage sites. The intron PIV2 (189 bp) from the plasmid p35S GUS INT (Vancanneyt et al., Mol. Gen. Genet. 220 (1990), 245-250) via PCR using the primer GUS-1 (5 1 - gtatacgtaagtttctgcttctac-3 ' ) (Seq ID No. 3) and GUS-2 (5 * - gtacagctgcacatcaacaaattttgg-3 ') (Seq ID No. 4), amplified with SnaBI and PvuII and cut into the unique BbrPI site of the acetyl-CoA hydrolase gene cloned from Saccharomyces cerevisiae. The correct orientation of the inserted intron (5 'end of the intron oriented towards the 3' end of the 5 'located exon) was confirmed by sequence analysis. The plasmid produced in this way received the designation pUC-Hylnt.
Das Plasmid pUC-Hylnt wurde mit BamHI geschnitten und das 1779 bp lange Acetyl-CoA-Hydrolase-Fragment (mit insertier- te Intron) in die BamHI-Schnittstelle des Plasmids pAM cloniert. Das so erhaltene Plasmid erhielt die Bezeichnung pAM- Hylnt.The plasmid pUC-Hynt was cut with BamHI and the 1779 bp acetyl-CoA hydrolase fragment (with inserted intron) was cloned into the BamHI site of the plasmid pAM. The plasmid obtained in this way was given the name pAM-Hylnt.
Das Plasmid pAM wurde wie im folgenden beschrieben hergestellt. Die mitochondriale Targetsequenz (111 bp) des Proteins der "Matrix processing peptidase" (MPP) aus Kartoffel wurde unter Verwendung der Primer Mito-TPl (5'- GATCGGTACCATGTACAGATGCGCATCGTCT-3 ' ) (Seq ID No. 5) und Mito- TP2 (5'-GTACGGATCCCTTGGTTGCAACAGCAGCTGA-3') (Seq ID No. 6) mittels PCR amplifiziert. Als Matrize für die PCR diente das Plasmid pMPP (Braun et al., EMBO J. 11 (1992), 3219-3227). Das amplifizierte Fragment entspricht der Region von den Nucleotiden 299 bis 397 der MPP cDNA (Braun et al., s.o.; EMBL Zugriffsnummer: X66284). Hierbei wurde am 5 • -Ende eine Asp718-Schnittstelle und am 3 ' -Ende eine BamHI-Schnittstelle eingefügt. Das PCR-Fragment wurde mit Asp718 und BamHI geschnitten und das resultierende 109 bp lange Fragment anschließend in den mit Asp718 und BamHI geschnittenen Vektor pA7 (von Schaewen, A. (1989) Dissertation, Freie Universität Berlin) cloniert.The plasmid pAM was prepared as described below. The mitochondrial target sequence (111 bp) of the protein of the "matrix processing peptidase" (MPP) from potato was determined using the primers Mito-TPl (5'-GATCGGTACCATGTACAGATGCGCATCGTCT-3 ') (Seq ID No. 5) and Mito-TP2 (5 '-GTACGGATCCCTTGGTTGCAACAGCAGCTGA-3') (Seq ID No. 6) amplified by PCR. The plasmid pMPP (Braun et al., EMBO J. 11 (1992), 3219-3227) served as the template for the PCR. The amplified fragment corresponds to the region of the Nucleotides 299 to 397 of the MPP cDNA (Braun et al., See above; EMBL accession number: X66284). An Asp718 interface was inserted at the 5 • end and a BamHI interface at the 3 'end. The PCR fragment was cut with Asp718 and BamHI and the resulting 109 bp fragment was then cloned into the vector pA7 cut with Asp718 and BamHI (from Schaewen, A. (1989) dissertation, Freie Universität Berlin).
Das Plasmid pAM-Hylnt wurde mit Asp718 und Xbal geschnitten und das 1887 bp lange Fragment bestehend aus der Codierregionen für das Targetingpeptid der Kartoffel "Matrix proces- sing peptidase" und der Codierregion für die Acetyl-CoA- Hydrolase aus Saccharomyces cerevisiae (mit insertiertem Intron) isoliert und die 5 ' -Überhänge dieses Fragmentes unter Verwendung der T4-DNA-Polymerase zu glatten Enden aufgefüllt. Das so hergestellte Fragment wurde in die Smal- Schnittεtelle deε binären Plasmids pBinAR-Hyg cloniert. Dabei war die Codierregionen des Targetingpeptids der Kartoffel "Matrix processing peptidase" zum 35S-RNA-Promotor des Blumenkohlmosaikvirus hin orientiert. Hieraus resultierte das Plasmid Bin-mHy-Int (siehe Figur 1) , welches für die Transformation von Tabak (Nicotiana tabacu SNN) und Kartoffel (Solanum tuberosum L. cv. Desiree) wie oben beschrieben eingesetzt wurde.The plasmid pAM-Hylnt was cut with Asp718 and Xbal and the 1887 bp fragment consisting of the coding region for the targeting peptide of the potato "Matrix processing peptidase" and the coding region for the acetyl-CoA hydrolase from Saccharomyces cerevisiae (with inserted intron ) isolated and the 5 'overhangs of this fragment filled to blunt ends using T4 DNA polymerase. The fragment thus produced was cloned into the Smal interface of the binary plasmid pBinAR-Hyg. The coding regions of the targeting peptide of the potato "matrix processing peptidase" were oriented towards the 35S RNA promoter of the cauliflower mosaic virus. This resulted in the plasmid Bin-mHy-Int (see FIG. 1), which was used for the transformation of tobacco (Nicotiana tabacu SNN) and potato (Solanum tuberosum L. cv. Desiree) as described above.
Beispiel 2Example 2
Konstruktion des binären Plasmides Bin-Hy-IntConstruction of the binary plasmid Bin-Hy-Int
Das BamHI-Fragment des Plasmides pUC-Hy-Int (siehe Beispiel 1) wurde in die BamHI-Schnittstelle des Plasmides pA7 (von Schaewen, A. (1989) Dissertation, Freie Universität Berlin) cloniert. Dabei war das 5 '-Ende der Codierregion der Acetyl- CoA-Hydrolase zum 35S-RNA-Promotor hin orientiert. Das so hergestellte Plasmid erhielt die Bezeichnung pA7-Hy-Int. Das Plasmid pA7-Hy-Int wurde mit Kpnl und Xbal geschnitten, das 1778 bp lange Fragment bestehend aus der Codierregion für die Acetyl-CoA-Hydrolase aus Saccharomyces cerevisiae (mit inseriertem Intron) isoliert und anschließend in den mit Kpnl und Xbal geschnittene binäre Plasmid pBinAR-Hyg (Hinterlegungsnummer: DSM 9505; Hinterlegungsdatum: 20.10.1994) cloniert. Hieraus resultierte das Plasmid Bin- Hy-Int (siehe Figur 2) , welches für die Transformation von Tabak (Nicotiana tabacum SNN) und Kartoffel (Solanum tubero- su L. cv. Desiree) eingesetzt wurde.The BamHI fragment of the plasmid pUC-Hy-Int (see Example 1) was cloned into the BamHI site of the plasmid pA7 (from Schaewen, A. (1989) dissertation, Free University Berlin). The 5 'end of the coding region of the acetyl-CoA hydrolase was oriented towards the 35S RNA promoter. The plasmid thus produced was given the name pA7-Hy-Int. The plasmid pA7-Hy-Int was cut with Kpnl and Xbal, the 1778 bp fragment consisting of the coding region for the acetyl-CoA hydrolase from Saccharomyces cerevisiae (with inserted intron) and then cloned into the binary plasmid pBinAR-Hyg cut with Kpn 1 and Xbal (deposit number: DSM 9505; deposit date: 20.10.1994). This resulted in the plasmid Bin-Hy-Int (see FIG. 2), which was used for the transformation of tobacco (Nicotiana tabacum SNN) and potato (Solanum tuberosu L. cv. Desiree).
Beispiel 3Example 3
Analyse von transgenen Tabakpflanzen, die eine Acetyl-CoA- Hydrolase aus Saccharomyces cerevisiae exprimierenAnalysis of transgenic tobacco plants which express an acetyl-CoA hydrolase from Saccharomyces cerevisiae
Aus Tabakpflanzen, die mit dem Plasmid Bin-mHy-Int (siehe Beispiel 1) transformiert worden waren, wurden ganze Tabakpflanzen regeneriert, in Erde transferiert und durch We- stern-Blot-Analyse auf die Anwesenheit der Acetyl-CoA- Hydrolase aus Saccharomyces cerevisiae hin in Blättern selektiert. Dabei wurden mehrere Genotypen identifiziert, die eindeutig die Acetyl-CoA-Hydrolase aus Saccharomyces cerevisiae exprimieren (siehe Fig. 3) . Mehrere der selektierten transgenen Linien wurden hinsichtlich der Acetyl-CoA- Hydrolase-Aktivität in Blättern analysiert. Dabei wurde in einigen Linien eine um bis zu dreifach erhöhte spezifische Acetyl-CoA-Hydrolase-Aktivität verglichen mit den Kontrollpflanzen gemessen (z.B. MB-Hyl-39, MB-Hyl-78, MB-Hyl-81; vgl. Tabelle I) .Whole tobacco plants were regenerated from tobacco plants which had been transformed with the plasmid Bin-mHy-Int (see Example 1), transferred to soil and by Western blot analysis for the presence of the acetyl-CoA hydrolase from Saccharomyces cerevisiae selected in leaves. Several genotypes were identified which clearly express the Saccharomyces cerevisiae acetyl-CoA hydrolase (see FIG. 3). Several of the selected transgenic lines were analyzed for acetyl-CoA hydrolase activity in leaves. In some lines, a specific acetyl-CoA hydrolase activity increased by up to three times compared to the control plants (e.g. MB-Hyl-39, MB-Hyl-78, MB-Hyl-81; see Table I).
Tabelle ITable I
Pflanze Acetyl-CoA-Hydrolase-Aktivität (n ol min" mg" Protein)Plant acetyl-CoA hydrolase activity (n ol min " mg " protein)
Kontrolle 1,49 ± 1,06Control 1.49 ± 1.06
MB-Hyl-39 5,58 ± 1,59MB-Hyl-39 5.58 ± 1.59
MB-Hyl-78 2,92 ± 0,74MB-Hyl-78 2.92 ± 0.74
MB-Hyl-81 3,25 ± 0,79 Die hier dargestellten Enzymaktivitäten sind der Mittelwert von mindestens acht Messungen ausgehend von mindestens drei unabhängigen Pflanzen der genannten transgenen Linie.MB-Hyl-81 3.25 ± 0.79 The enzyme activities shown here are the mean of at least eight measurements based on at least three independent plants of the transgenic line mentioned.
Die oben genannten Genotypen MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 wurden amplifiziert, und jeweils 3 Pflanzen wurden in ein Gewächshaus transferiert.The above-mentioned genotypes MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 were amplified and 3 plants each were transferred to a greenhouse.
Überraschenderweise wurde festgestellt, daß die Blätter von Pflanzen der transgenen Linien MB-Hyl-39, MB-Hyl-78, MB-Hyl- 81 reduzierte Mengen an Fettsäuren im Vergleich zu Kontrollpflanzen enthalten (vgl. Tabelle II).Surprisingly, it was found that the leaves of plants of the transgenic lines MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 contain reduced amounts of fatty acids compared to control plants (cf. Table II).
Tabelle IITable II
FettKontrollMB-Hyl-39 MB-Hyl-78 MB-Hyl-81 säurepflanze [μmol/g [μmol/g [μmol/g typ [μmol/g (Trocken(Trocken(Trocken(Trockengewicht) gewicht) ] gewicht) ] gewicht ) ]FettKontrollMB-Hyl-39 MB-Hyl-78 MB-Hyl-81 acid plant [μmol / g [μmol / g [μmol / g type [μmol / g (dry (dry (dry (dry weight) weight)] weight)] weight) ]
16:0 2,63 ±0,35_ 1.17 ±0,18 2,00 ±0,34 2,21 ±0,2916: 0 2.63 ± 0.35_ 1.17 ± 0.18 2.00 ± 0.34 2.21 ± 0.29
16:1 0,76 ±0,10 0,35 ±0,05 0,59 ±0,05 0,65 ±0,0716: 1 0.76 ± 0.10 0.35 ± 0.05 0.59 ± 0.05 0.65 ± 0.07
16:2 0,57 ±0,10 0,23 ±0,04 0,31 ±0,02 0,37 ±0,0116: 2 0.57 ± 0.10 0.23 ± 0.04 0.31 ± 0.02 0.37 ± 0.01
18:0 0,26 ±0,06 0,11 ±0,02 0,16 ±0,03 0,18 ±0,0218: 0 0.26 ± 0.06 0.11 ± 0.02 0.16 ± 0.03 0.18 ± 0.02
16:3 1,69 ±0,17 0,66 ±0,13 1,66 ±0,18 0,68 ±0,1216: 3 1.69 ± 0.17 0.66 ± 0.13 1.66 ± 0.18 0.68 ± 0.12
18:1 0,69 ±0,13 0,15 ±0,00 0,27 ±0,07 1,26 ±0,0118: 1 0.69 ± 0.13 0.15 ± 0.00 0.27 ± 0.07 1.26 ± 0.01
18:2 2,79 ±0,27 1,13 ±0,13 1,44 ±0,13 2,21 ±0,2318: 2 2.79 ± 0.27 1.13 ± 0.13 1.44 ± 0.13 2.21 ± 0.23
18:3 11,43 ±1,46 4,36 ±0,60 8,61 ±0,94 10,02 ±0,5418: 3 11.43 ± 1.46 4.36 ± 0.60 8.61 ± 0.94 10.02 ± 0.54
Summe: 20,83 ±2,64 8,17 ±1,15 15,03 ±1,78 17,57 ±1,29Sum: 20.83 ± 2.64 8.17 ± 1.15 15.03 ± 1.78 17.57 ± 1.29
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 2 unabhängigen Messungen dar.The stated values represent mean values and the standard deviations from 2 independent measurements each.
Überraschenderweise wurde ferner festgestellt, daß die Samen der transgenen Pflanzen MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 gleiche Mengen an Fettsäuren im Vergleich zu Kontrollpflanzen enthalten (vgl. Tabelle III) .Surprisingly, it was also found that the seeds of the transgenic plants MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 contain equal amounts of fatty acids compared to control plants (see Table III).
Tabelle IIITable III
FettKontrollMB-Hyl-39 MB-Hyl-78 MB-Hyl-81 säurepflanze [nmol /Samen] [nmol/Samen] [nmol/Samen] typ [nmol/Samen]Fat control MB-Hyl-39 MB-Hyl-78 MB-Hyl-81 acid plant [nmol / seed] [nmol / seed] [nmol / seed] type [nmol / seed]
16:0 12,28 ±2,86 10,14 ±3,90 13,55 ±2,63 10,71 ±1,2016: 0 12.28 ± 2.86 10.14 ± 3.90 13.55 ± 2.63 10.71 ± 1.20
16:1 0,25 ±0,19 0,27 ±0,17 0,42 ±0,09 0,27 ±0,1516: 1 0.25 ± 0.19 0.27 ± 0.17 0.42 ± 0.09 0.27 ± 0.15
16:2 0,20 ±0,17 0,07 ±0,11 0,09 ±0,12 0,07 ±0,0816: 2 0.20 ± 0.17 0.07 ± 0.11 0.09 ± 0.12 0.07 ± 0.08
18:0 0,02 ±0,05 0,03 ±0,06 0,00 ±0,00 0,01 ±0,0318: 0 0.02 ± 0.05 0.03 ± 0.06 0.00 ± 0.00 0.01 ± 0.03
16:3 3,01 ±1,13 2,04 ±0,86 3,46 ±1,12 2,60 ±0,4216: 3 3.01 ± 1.13 2.04 ± 0.86 3.46 ± 1.12 2.60 ± 0.42
18:1 13,08 ±3,49 10,25 ±5,02 15,00 ±2,99 10,78 ±1,3718: 1 13.08 ± 3.49 10.25 ± 5.02 15.00 ± 2.99 10.78 ± 1.37
18:2 101,49 ±20,42 86,29 ±36,05 111,58 ±19,46 90,03 ±8,9718: 2 101.49 ± 20.42 86.29 ± 36.05 111.58 ± 19.46 90.03 ± 8.97
18:3 1,71 ±0,28 1,74 ±0,60 2,06 ±0,35 2,05 ±0,3718: 3 1.71 ± 0.28 1.74 ± 0.60 2.06 ± 0.35 2.05 ± 0.37
Summe: 132,05 ±28,59 110,84 ±46,77 146,16 ±10,71 116,51 ±12,59Sum: 132.05 ± 28.59 110.84 ± 46.77 146.16 ± 10.71 116.51 ± 12.59
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus mindestenε 6 unabhängigen Messungen dar. Die Analyse des Gewichtes von jeweils 200 Samen ergab, daß kein signifikanter Unterschied zwischen den Samen der transgenen Pflanze MB-Hyl-39 und Samen von Kontrollpflanzen bestehen (vgl. Tabelle IV) .The values given represent mean values and the standard deviations from at least 6 independent measurements. The analysis of the weight of 200 seeds in each case showed that there was no significant difference between the seeds of the transgenic plant MB-Hyl-39 and the seeds of control plants (cf. Table IV ).
Tabelle IVTable IV
Samengewicht [μg pro Samen]Seed weight [μg per seed]
Kontrollpflanze 88,0 ±6,0Control plant 88.0 ± 6.0
MB-Hyl-39 87,8 ±2,5MB-Hyl-39 87.8 ± 2.5
Die Analyse von löslichen Zuckern wie Glucose, Fructose und Saccharose ergab erstaunlicherweise, daß die Blätter von Pflanzen der transgenen Linien MB-Hyl-39, MB-Hyl-78, MB-Hyl- 81 erhöhte Gehalte an Saccharose, Glucose und Fructose sowohl am Ende der Lichtphase (vgl. Tabelle V), als auch am Ende der Dunkelphase enthalten (vgl. Tabelle VI).The analysis of soluble sugars such as glucose, fructose and sucrose surprisingly showed that the leaves of Plants of the transgenic lines MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 contain increased levels of sucrose, glucose and fructose both at the end of the light phase (see Table V) and at the end of the dark phase (see Table VI).
Tabelle VTable V
Gehalte an löslichen Zuckern am Ende der LichtphaseContent of soluble sugars at the end of the light phase
(n=6)(n = 6)
Glucose Fructose Saccharose μmol/ (Trockenμmol/g (Trockenμmol/g (Trockengewicht) gewicht) gewicht )Glucose fructose sucrose μmol / (dry μmol / g (dry μmol / g (dry weight) weight) weight)
Kontroll17,3 ±17,5 31,2 ±20,0 146,6 ±54,5 pflanzeControl 17.3 ± 17.5 31.2 ± 20.0 146.6 ± 54.5 plant
MB-Hyl-39 79,6 ±44,8 105,8 ±61,7 294,0 ±112,7MB-Hyl-39 79.6 ± 44.8 105.8 ± 61.7 294.0 ± 112.7
MB-Hyl-78 188,4 ±194,2 118,1 ±129,3 239,9 ±161,1MB-Hyl-78 188.4 ± 194.2 118.1 ± 129.3 239.9 ± 161.1
MB-Hyl-81 88,6 ±59,0 24,3 ±39,5 208,8 ±148,8MB-Hyl-81 88.6 ± 59.0 24.3 ± 39.5 208.8 ± 148.8
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 6 unabhängigen Messungen dar.The values given represent mean values and the standard deviations from 6 independent measurements each.
Tabelle VITable VI
Gehalte an löslichen Zuckern am Ende der Dunkelphase (n=3)Content of soluble sugars at the end of the dark phase (n = 3)
Glucose Fructose Saccharose μmol/g (Trockenμmol/g (Trockenμmol/g (Trockengewicht) gewicht) gewicht)Glucose fructose sucrose μmol / g (dry μmol / g (dry μmol / g (dry weight) weight) weight)
Kontroll10,2 ±9,2 5,1 ±4,4 44,9 ±13,9 pflanzeControl 10.2 ± 9.2 5.1 ± 4.4 44.9 ± 13.9 plant
MB-Hyl-39 30,0 ±18,8 28,1 ±14,8 150,9 ±112,3MB-Hyl-39 30.0 ± 18.8 28.1 ± 14.8 150.9 ± 112.3
MB-Hyl -78 142,0 ±150,3 53,4 ±30,2 190,9 ±200,8MB-Hyl -78 142.0 ± 150.3 53.4 ± 30.2 190.9 ± 200.8
MB-Hyl-81 8,8 ±7,6 12,9 ±1,9 16,5 ±2,1 Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 3 unabhängigen Messungen dar.MB-Hyl-81 8.8 ± 7.6 12.9 ± 1.9 16.5 ± 2.1 The stated values represent mean values and the standard deviations from 3 independent measurements each.
Bei der Analyse von Stärke wurde weiterhin erstaunlicherweise festgestellt, daß die Blätter von Pflanzen der transgenen Linien MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 erhöhte Gehalte an Stärke sowohl am Ende der Lichtphase, als auch am Ende der Dunkelphase enthalten (vgl. Tabelle VII) .In the analysis of starch, it was also surprisingly found that the leaves of plants of the transgenic lines MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 increased levels of starch both at the end of the light phase and at the end of the Dark phase included (see Table VII).
Tabelle VIITable VII
Gehalte an Stärke am Ende der Lichtphase und am Ende derMaintain strength at the end of the light phase and at the end of the
DunkelphaseDark phase
Ende der Lichtpha- Ende der Dunkelphase εe(n=6) (n=3) mmol/g (Trockengewicht) mmol/g (Trockengewicht)End of light phase - end of dark phase εe (n = 6) (n = 3) mmol / g (dry weight) mmol / g (dry weight)
Kontroll2,37 ±0,67 0,97 ±0,76 pflanzeControl 2.37 ± 0.67 0.97 ± 0.76 plant
MB-Hyl-39 4,81 ±1,82 2,57 ±2,08MB-Hyl-39 4.81 ± 1.82 2.57 ± 2.08
MB-Hyl-78 1,79 ±1,49 1,77 ±2,18MB-Hyl-78 1.79 ± 1.49 1.77 ± 2.18
MB-Hyl-81 2,23 ±1,33 0,17 ±0,02MB-Hyl-81 2.23 ± 1.33 0.17 ± 0.02
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 3 bzw. 6 (vgl. Tabelle VII) unabhängigen Mesεungen dar.The values given represent mean values and the standard deviations from 3 or 6 (see Table VII) independent measurements.
Bei der Anzucht der transgenen Pflanzen MB-Hyl-39, MB-Hyl- 78, MB-Hyl-81 im Gewächshaus wurde weiterhin festgestellt, daß die transgenen Pflanzen im Vergleich zu Kontrollpflanzen einen veränderten Phänotyp aufwiesen. Insbesondere wurde im Falle der transgenen Pflanzen ein reduziertes Wachstum, die Auεbildung mehrerer Sprosse, sowie eine mosaikartige Veränderung in der Blattfärbung festgestellt (siehe Fig. 4 und 5) . Zur genaueren Analyse der Blattfärbung wurden die Gehalte an Chlorophyll a und b, sowie an den Carotinoiden Zeaxanthin, Antheraxanthin und Violoxanthin beεtimmt (vgl, Tabelle VIII und IXa und b) .When the transgenic plants MB-Hyl-39, MB-Hyl-78, MB-Hyl-81 were grown in the greenhouse, it was also found that the transgenic plants had a different phenotype compared to control plants. In particular, in the case of the transgenic plants, reduced growth, the formation of several shoots and a mosaic-like change in the leaf color were found (see FIGS. 4 and 5). For a more precise analysis of the leaf color, the levels of chlorophyll a and b, as well as of the carotenoids Zeaxanthin, antheraxanthin and violoxanthin determined (see table VIII and IXa and b).
Tabelle VIIITable VIII
Gehalt an Chlorophyll b Gehalt an Chlorophyll aChlorophyll b content Chlorophyll content a
(μmol / g (μmol / g(μmol / g (μmol / g
(Trockengewicht) (Trockengewicht)(Dry weight) (dry weight)
Kontroll5,42 ±0,46 5,98 ±0,54 pflanzeControl 5.42 ± 0.46 5.98 ± 0.54 plant
MB-Hyl-39 2,38 ±0,21 2,73 ±0,21MB-Hyl-39 2.38 ± 0.21 2.73 ± 0.21
MB-Hyl-78 4,23 ±0,82 4,81 ±0,74MB-Hyl-78 4.23 ± 0.82 4.81 ± 0.74
MB-Hyl-81 5,13 ±0,36 6,03 ±0,54MB-Hyl-81 5.13 ± 0.36 6.03 ± 0.54
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 3 unabhängigen Mesεungen dar.The values given represent mean values and the standard deviations from 3 independent measurements each.
Tabelle IXaTable IXa
Violaxanthin Antheraxanthin Zeaxanthin (μmoϊ / g (μmol / g (μmol / g (Trockenge(Trockenge(Trockengewicht) wicht) wicht)Violaxanthin Antheraxanthin Zeaxanthin (μmoϊ / g (μmol / g (μmol / g (dry weight (dry weight (dry weight) weight) weight) weight)
Kontroll0,173 ±0,042 0,178 ±0,049 0,299 ±0,114 pflanzeControl 0.173 ± 0.042 0.178 ± 0.049 0.299 ± 0.114 plant
MB-Hyl-39 0,215 ±0,045 n.d. n.d. n.d. n.d.MB-Hyl-39 0.215 ± 0.045 n.d. n.d. n.d. n.d.
MB-Hyl-78 0,314 ±0,052 0,051 ±0,036 n.d. n.d.MB-Hyl-78 0.314 ± 0.052 0.051 ± 0.036 n.d. n.d.
MB-Hyl-81 0,591 ±0,205 0,034 ±0,004 n.d. n.d.MB-Hyl-81 0.591 ± 0.205 0.034 ± 0.004 n.d. n.d.
n.d. nicht detektiert (unter der Nachweisgrenze) Tabelle IXbnd not detected (below the detection limit) Table IXb
Lutein NeoxanthinLutein neoxanthin
(μmol/g (μmol/g(μmol / g (μmol / g
(Trockengewicht) (Trockengewicht)(Dry weight) (dry weight)
Kontrollpflanze 1,94 ±0,32 0,38 ±0,06Control plant 1.94 ± 0.32 0.38 ± 0.06
MB-Hyl-39 0,74 ±0,11 0,15 ±0,03MB-Hyl-39 0.74 ± 0.11 0.15 ± 0.03
MB-Hyl-78 1,46 ±0,51 0,22 ±0,02MB-Hyl-78 1.46 ± 0.51 0.22 ± 0.02
MB-Hyl-81 1,79 ±0,40 0,39 ±0,11MB-Hyl-81 1.79 ± 0.40 0.39 ± 0.11
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 3 unabhängigen Messungen dar.The stated values represent mean values and the standard deviations from 3 independent measurements each.
Beispiel 4Example 4
Konstruktion des binären Plasmides pTCSASConstruction of the binary plasmid pTCSAS
Das durch in-vivo-Excision aus einer λ ZAP II cDNA Bibliothek aus Nicotiana tabacum L . erhaltene Plasmid pTCS, enhält in der EcoR I Schnittstelle des pBluescript SK Vektors ein 1747 bp cDNA Fragment mit der Codierregion des Citrat- Synthase-Gens aus Tabak (Zugriffsnummer X84226) . Das BamHI-Fragment des Plasmides pTCS wurde in die Bam- Hl/Sall-Schnittstellen des binären Plasmides BinAR cloniert. Dabei war das 3' -Ende der Codierregion der Citrat-Synthase zum 35S-RNA-Promotor hin orientiert. Das so hergestellte Plasmid erhielt die Bezeichnung pTCSAS. pTCSAS wurde für die Transformation von Tabak (Nicotiana tabacum SNN) eingesetzt. Beispiel 5The in vivo excision from a λ ZAP II cDNA library from Nicotiana tabacum L. Plasmid pTCS obtained contains a 1747 bp cDNA fragment with the coding region of the citrate synthase gene from tobacco (accession number X84226) in the EcoRI interface of the pBluescript SK vector. The BamHI fragment of the plasmid pTCS was cloned into the BamHI / SalI sites of the binary plasmid BinAR. The 3 'end of the coding region of the citrate synthase was oriented towards the 35S RNA promoter. The plasmid thus produced was given the name pTCSAS. pTCSAS was used for the transformation of tobacco (Nicotiana tabacum SNN). Example 5
Analyse von transgenen Tabakpflanzen mit reduzierter Citrat- Synthase-AktivitätAnalysis of transgenic tobacco plants with reduced citrate synthase activity
Regenerierte Tabakpflanzen, die mit dem Plasmid pTCSAS transformiert worden waren, wurden in Erde transferiert und durch Messung der Citrat-Synthase-Aktivität hin in Blättern selektiert. Dabei wurden mehrere Genotypen identifiziert, die eindeutig eine Reduktion der Citrat-Synthase-Aktivität (siehe Tabelle X) . Mehrere der selektierten transgenen Linien wurden hinsichtlich der Citrat-Synthase-Aktivität in Blättern analysiert. Dabei wurde in einigen Linien eine um bis zu sechsfach erniedrigte spezifische Citrat-Synthase- Aktivität verglichen mit den Kontrollpflanzen gemessen (z.B. TCSAS-14, TCSAS-17; TCSAS-26; TCSAS-43; TCSAS-48; vgl. Tabelle X) .Regenerated tobacco plants which had been transformed with the plasmid pTCSAS were transferred into soil and selected by measuring the citrate synthase activity in leaves. Several genotypes were identified that clearly showed a reduction in citrate synthase activity (see Table X). Several of the selected transgenic lines were analyzed for citrate synthase activity in leaves. In some lines, a specific citrate synthase activity reduced by up to six times compared to the control plants was measured (e.g. TCSAS-14, TCSAS-17; TCSAS-26; TCSAS-43; TCSAS-48; see Table X).
Tabelle XTable X
Figure imgf000038_0001
Figure imgf000038_0001
CS = C tratsynthaseCS = C trate synthase
Die hier dargestellten Enzymaktivitäten sind der Mittelwert von mindestens 18 Messungen ausgehend von mindestens neun unabhängigen Pflanzen. Die oben genannten Genotypen TCSAS-17 und TCSAS-26 wurden amplifiziert, und jeweils 6 Pflanzen wurden in ein Gewächshaus transferiert.The enzyme activities shown here are the average of at least 18 measurements from at least nine independent plants. The above-mentioned genotypes TCSAS-17 and TCSAS-26 were amplified and 6 plants each were transferred to a greenhouse.
Überraschenderweise wurde festgestellt, daß die Samen der transgenen Pflanzen TCSAS-17 und TCSAS-26 reduzierte Mengen an Fettsäuren im Vergleich zu Kontrollpflanzen enthalten (vgl. Tabelle XI) .Surprisingly, it was found that the seeds of the transgenic plants TCSAS-17 and TCSAS-26 contain reduced amounts of fatty acids compared to control plants (cf. Table XI).
Tabelle XITable XI
wt t 17 t 26 [nmol/Samen] [nmol/Samen] [nmol/Samen]wt t 17 t 26 [nmol / seed] [nmol / seed] [nmol / seed]
16. :0 15,42 ±2,96 7,03 ±1,74 9,58 ±1,3716.: 0 15.42 ± 2.96 7.03 ± 1.74 9.58 ± 1.37
18. :l 17,78 ±4,12 6,88 ±2,02 9,24 ±2,2918.: l 17.78 ± 4.12 6.88 ± 2.02 9.24 ± 2.29
18. : 2 116,27 ±17,66 63,25 ±12,09 80,13 ±14,7418.: 2 116.27 ± 17.66 63.25 ± 12.09 80.13 ± 14.74
18. : 3 1,74 ±0,38 1,23 ±0,27 1,44 ±0,2718.: 3 1.74 ± 0.38 1.23 ± 0.27 1.44 ± 0.27
Summe: 151,22 ±25,11 78,39 ±16,13 100,39 ±18,68Sum: 151.22 ± 25.11 78.39 ± 16.13 100.39 ± 18.68
Die angegebenen Werte stellen Mittelwerte sowie die Standardabweichungen aus jeweils 10 unabhängigen Messungen dar.The values given represent mean values and the standard deviations from 10 independent measurements in each case.
Die Analyse des Gewichtes von jeweils 200 Samen ergab, daß ein signifikanter Unterschied zwischen den Samen der transgenen Pflanzen TCSAS-17 und TCSAS-26 verglichen mit den Samen von Kontrollpflanzen bestehen (vgl. Tabelle XII).The analysis of the weight of 200 seeds each showed that there was a significant difference between the seeds of the transgenic plants TCSAS-17 and TCSAS-26 compared to the seeds of control plants (cf. Table XII).
Tabelle XIITable XII
Figure imgf000039_0001
Beispiel 6
Figure imgf000039_0001
Example 6
Konstruktion des Pflanzentransformationsvektors pBin-USP-Construction of the plant transformation vector pBin-USP-
MTPHylntMTPHylnt
Für die Pflanzentransformation wurde die Codierregion des Acetyl-CoA-Hvdrolase-Gens aus Saccharomyces cerevisiae mittels der Polymerasekettenreaktion (PCR) , wie in Beispiel 1 beschrieben isoliert.For the plant transformation, the coding region of the acetyl-CoA-Hvdrolase gene from Saccharomyces cerevisiae was isolated by means of the polymerase chain reaction (PCR) as described in Example 1.
Das Plasmid pAM-Hylnt wurde mit Asp718 und Hindlll geschnitten und das 1931 kb lange Fragment bestehend aus der Codierregion des Targetingpeptides der Kartoffel "Matrix processing peptidase" und der Codierregion für die Acetyl- CoA-Hydrolase aus Saccharomyces cerevisiae (mit inseriertem Intron) isoliert. Das so isolierte Fragment wurde in die Asp718/HindIII-Schnittstellen des binären Plasmides pUSP- Binl9 cloniert. Dieser Vektor enthält den USP-Promotor (Fiedler et al., Plant Mol. Biol. 22 (1993), 669-679), insbesondere das 684 bp lange Pstl-Frag ent aus pP30T, ein Ka- namycinresistenzgen, eine Multiple-Cloning-Site und die Po- lyadenylierungsstelle des Octopinsynthase-Gens. Das resultierende Plasmid pBin-USP-MTPHylnt wurde für die Transformation von Raps wie oben beschrieben eingesetzt.The plasmid pAM-Hylnt was cut with Asp718 and Hindlll and the 1931 kb fragment consisting of the coding region of the targeting peptide of the potato "Matrix processing peptidase" and the coding region for the acetyl-CoA hydrolase from Saccharomyces cerevisiae (with inserted intron) was isolated. The fragment isolated in this way was cloned into the Asp718 / HindIII cleavage sites of the binary plasmid pUSP-Bin19. This vector contains the USP promoter (Fiedler et al., Plant Mol. Biol. 22 (1993), 669-679), in particular the 684 bp Pstl fragment from pP30T, a camycin resistance gene, a multiple cloning gene Site and the polyadenylation site of the octopine synthase gene. The resulting plasmid pBin-USP-MTPHylnt was used for the transformation of oilseed rape as described above.
Beispiel 7Example 7
Konstruktion des Pflanzentransformationsvektors pBin-Construction of the plant transformation vector pBin-
USP/Hyg-TP-ACSUSP / Hyg-TP-ACS
Für die Pflanzentransformation wurde die Codierregion des Acetyl-CoA-Svnthetase-Genε (De Virgilio et al., Yeaεt 8(1992), 1043-1051) aus Saccharomyces cerevisiae mit Hilfe der Polymerasekettenreaktion (PCR) ausgehend von genomische S. cerevisiae DNA mittels der Primer ACS1 (5»GAT CAA GCT TAT GTC GCC CTC TGC CGT ACA ATC -3 ; Seq ID No. 7) und ACS2 (5'- GAT CAA GCT TTC ATC ATT ACA ACT TGA CCG ATC C-3 • , Seq ID No . 8) amplifiziert. Die Sequenz der Acetyl-CoA-Synthetase ist in der GenEMBL Datenbank mit der Zugriffsnummer X66425 eingetragen. Die Clonierung des Acetyl-CoA-Synthetase Gens ist in De Virgilio (a.a.O.) beschrieben. Das amplifizierte Fragment entspricht der Region von den Nucleotiden 162 bis 2303 dieser Sequenz. Hierbei wurde am 5 '-Ende und am 3 ' -Ende eine Hindlll-Schnittstelle eingefügt. Das 2151 bp lange Hindlll- Fragment wurde über die zusätzlichen Schnittstellen in die Hindlll-Schnittstelle des Vektors pSK-TP cloniert. Dieses Plasmid enthält eine DNA-Sequenz, die das plastidäre Tran- sitpeptid der Ferredoxin:NADP+-Oxireduktase aus Spinat codiert. Das Plasmid pSK-TP-ACS wurde mit Asp718 geschnitten, die Schnittstellen mit Hilfe der T4-DNA-Polymerase zu glatten Ende aufgefüllt und anschließend Xbal geschnitten. Daε so isolierte 2380 kb lange Fragment bestehend aus der Codierregion des Targetingpeptides der Spinat Ferre- doxin:NADP+-Oxireduktaεe und der Codierregion für die Acetyl-CoA-Synthetase aus S . cerevisiae wurde in die Smal/Xbal- Schnittεtellen deε binären Plaεmideε pBin-USP-Hyg cloniert. Dieser Vektor enthält den USP-Promotor (684 Pεtl-Fragment aus pP30T (Fiedler et al., a.a.O.). Das resultierende Plasmid pBin-USP/Hyg-TP-ACS wurde für die Transformation von Rapspflanzen, die eine Acetyl-CoA-Hydrolase aus Hefe (siehe Beispiel 4) exprimieren, wie oben beschrieben eingesetzt.For the plant transformation, the coding region of the acetyl-CoA proteinase gene (De Virgilio et al., Yeaεt 8 (1992), 1043-1051) from Saccharomyces cerevisiae was determined using the polymerase chain reaction (PCR) starting from genomic S. cerevisiae DNA using the Primers ACS1 (5 » GAT CAA GCT TAT GTC GCC CTC TGC CGT ACA ATC -3 ; Seq ID No. 7) and ACS2 (5'- GAT CAA GCT TTC ATC ATT ACA ACT TGA CCG ATC C-3 •, Seq ID No. 8) amplified. The sequence of the acetyl-CoA synthetase is entered in the GenEMBL database with the access number X66425. The cloning of the acetyl-CoA synthetase gene is described in De Virgilio (loc. Cit.). The amplified fragment corresponds to the region from nucleotides 162 to 2303 of this sequence. Here, a HindIII interface was inserted at the 5 'end and at the 3' end. The 2151 bp HindIII fragment was cloned into the HindIII site of the vector pSK-TP via the additional cleavage sites. This plasmid contains a DNA sequence which encodes the plastid transit peptide of ferredoxin: NADP + oxireductase from spinach. The plasmid pSK-TP-ACS was cut with Asp718, the interfaces filled in with the help of T4-DNA polymerase to a smooth end and then cut Xbal. The 2380 kb fragment thus isolated, consisting of the coding region of the targeting peptide of spinach ferrodoxin: NADP + oxireductase and the coding region for the acetyl-CoA synthetase from S. cerevisiae was cloned into the Smal / Xbal interfaces of the binary plasmid pBin-USP-Hyg. This vector contains the USP promoter (684 Pεtl fragment from pP30T (Fiedler et al., Loc. Cit.). The resulting plasmid pBin-USP / Hyg-TP-ACS was used for the transformation of oilseed rape plants that use an acetyl-CoA hydrolase Express yeast (see Example 4) as used above.
Beispiel 8Example 8
Konstruktion des Pflanzentransformationsvektors pBin-Construction of the plant transformation vector pBin-
USP/Hyg-TP-ACLYUSP / Hyg-TP-ACLY
Für die Pflanzentransformation wurde die Codierregion des ATP : Citrat-Lyase-Gens aus Rattus norvegicus mit Hilfe der Polymerasekettenreaktion (PCR) ausgehend von cDNA aus Rattus norvegicus mittels der Primer ACLY1 (5'- ACT GAA GCC TAT GTC AGC CAA GGC AAT TTC AGA GCA-3 ' , Seq ID No. 9) und ACLY2 (5'- ACT GAA GCC TTT ACA TGC TCA TGT GTT CCG GGA GAA C -3 ' , Seq ID No. 10) amplifiziert. Die Sequenz der ATP: Citrat-Lyase ist in der GenEMBL Datenbank mit der Zugriffsnummer J05210 eingetragen. Die Clonierung des ATP:Citrat-Lyase-Gens aus Rattus norvegicus ist in Elshourbagy et al. (J. Biol. Chem. 265 (1990), 1430-1435) beschrieben. Das amplifizierte Fragment entspricht der Region von den Nucleotiden 73 bis 3375 dieser Sequenz. Hierbei wurde am 5 '-Ende und am 3 '-Ende eine Hindlll-Schnittstelle eingefügt. Das 3312 bp lange Hindlll- Fragraent wurde über die zusätzlichen Schnittstellen in die Hindlll-Schnittstelle des Vektors pSK-TP cloniert. Das Plasmid pSK-TP-ACLY wurde mit Asp718 geschnitten, mit Hilfe der T4-DNA-Polymerase zu glatten Ende aufgefüllt und anschließend mit Xbal geschnitten. Das so isolierte 3494 kb lange Fragment bestehend aus der Codierregion des Targeting- peptides der Spinat Ferredoxin:NADP+-Oxireduktase und der Codierregion für die ATP: Citrat-Lyase aus Rattus norvegicus wurde in die Smal/Xbal-Schnittstellen des binären Plasmides pBin-USP-Hyg cloniert. Das resultierendee Plasmid pBin- USP/Hyg-TP-ACLY wurde für die Transformation von Raps wie oben beschrieben eingesetzt.For the plant transformation, the coding region of the ATP: citrate lyase gene from Rattus norvegicus was determined using the polymerase chain reaction (PCR) starting from cDNA from Rattus norvegicus using the primer ACLY1 (5'-ACT GAA GCC TAT GTC AGC CAA GGC AAT TTC AGA GCA -3 ', Seq ID No. 9) and ACLY2 (5'- ACT GAA GCC TTT ACA TGC TCA TGT GTT CCG GGA GAA C -3', Seq ID No. 10). The sequence of the ATP: citrate lyase is in the GenEMBL database with the accession number J05210 registered. The cloning of the ATP: citrate lyase gene from Rattus norvegicus is described in Elshourbagy et al. (J. Biol. Chem. 265 (1990), 1430-1435). The amplified fragment corresponds to the region from nucleotides 73 to 3375 of this sequence. Here, a HindIII interface was inserted at the 5 'end and at the 3' end. The 3312 bp HindIII fragment was cloned via the additional interfaces into the HindIII interface of the vector pSK-TP. The plasmid pSK-TP-ACLY was cut with Asp718, filled in with blunt ends using T4 DNA polymerase and then cut with Xbal. The 3494 kb fragment isolated in this way, consisting of the coding region of the targeting peptide of spinach ferredoxin: NADP + oxireductase and the coding region for the ATP: citrate lyase from Rattus norvegicus, was inserted into the Smal / Xbal interfaces of the binary plasmid pBin-USP -Hyg cloned. The resulting plasmid pBin-USP / Hyg-TP-ACLY was used for the transformation of oilseed rape as described above.
Beispiel 9Example 9
Konstruktion des Pflanzentransformationsvektors pBin-USP-Construction of the plant transformation vector pBin-USP-
MTPCSMTPCS
Für die Pflanzentransformation wurde die Codierregion des Citrat-Svnthase-Gens aus E . coli mit Hilfe der Polymerasekettenreaktion (PCR) ausgehend von genomische JE., coli DNA mittels der Primer CS1 (5'- A CTG GGA TCC ATG GCT GAT ACA AAA GCA AAA CTC ACC C -3', Seq ID No. 11) und CS2 (5'- A CTG GGA TTC TTA ACG CTT GAT ATC GCT TTT AAA G -3 , Seq ID No. 12) a plifiziert. Die Clonierung und die Sequenz des Citrat- Synthase-Gens ist in Ner et al., Biochemistry 22 (1983), 5243-5249 beschrieben. Das amplifizierte Fragment entspricht der Codierregion von den Nucleotiden 1 bis 1284 dieser Sequenz. Hierbei wurde am 5 '-Ende und am 3 '-Ende eine BamHI- Schnittstelle eingefügt. Das 1294 lange BamHI-Fragment wurde über die zusätzlichen Schnittstellen in die BamHI-Schnitt- stelle des Vektors pAM cloniert. Das Plasmid pAM-CS wurde mit Asp718 und Hindlll geschnitten und mit der T4-DNA-Poly- merase zu glatten Enden aufgefüllt und das 1393 kb lange Fragment bestehend aus der Codierregion des Targetingpepti- des der Kartoffel "Matrix processing peptidase" und der Codierregion für die Citrat-Synthase aus E . coli isoliert. Das so isolierte Fragment wurde in die Smal-Schnittstellen des binären Plasmides pUSP-Binl9 (siehe Beispiel 6) cloniert. Das resultierende Plasmid pBin-USP-MTPCS wurde einerseits für die Transformation von Tabakpflanzen und andererseits von Rapspflanzen wie oben beschrieben eingesetzt.The coding region of the citrate protein gene from E. coli using the polymerase chain reaction (PCR) starting from genomic JE., coli DNA using the primers CS1 (5'- A CTG GGA TCC ATG GCT GAT ACA AAA GCA AAA CTC ACC C -3 ', Seq ID No. 11) and CS2 (5'- A CTG GGA TTC TTA ACG CTT GAT ATC GCT TTT AAA G -3 , Seq ID No. 12) a plified. The cloning and sequence of the citrate synthase gene is described in Ner et al., Biochemistry 22 (1983), 5243-5249. The amplified fragment corresponds to the coding region from nucleotides 1 to 1284 of this sequence. A BamHI interface was inserted at the 5 'end and at the 3' end. The 1294-long BamHI fragment was inserted into the BamHI section via the additional cleavage sites. site of the vector pAM cloned. The plasmid pAM-CS was cut with Asp718 and HindIII and filled in to blunt ends with the T4-DNA polymerase, and the 1393 kb fragment consisting of the coding region of the targeting peptide of the potato "matrix processing peptidase" and the coding region for the citrate synthase from E. coli isolated. The fragment isolated in this way was cloned into the Smal sites of the binary plasmid pUSP-Bin19 (see Example 6). The resulting plasmid pBin-USP-MTPCS was used on the one hand for the transformation of tobacco plants and on the other hand of rapeseed plants as described above.
Beispiel 10Example 10
Transgene Pflanzen mit einer mitochondrialen Acetyl-CoA-Hydrolase und einer plastidären Acetyl-CoA-SynthetaseTransgenic plants with a mitochondrial acetyl-CoA hydrolase and a plastid acetyl-CoA synthetase
Pflanzen, die eine Acetyl-CoA-Hydrolase aus Hefe mit mito- chondrialem Targeting und eine Acetyl-CoA-Synthetase aus Hefe mit plastidäre Targeting coexprimieren wurden regeneriert und im Gewächshaus angezogen. Die Samen dieser Pflanzen wurden wie oben beschrieben auf ihren Gesamtfettsäuregehalt hin untersucht. Es wurde ein Steigerung von ca. 5% bezüglich des Gesamtfettsäuregehaltes (pro Samen) im Vergleich zu nicht transformierten Pflanzen festgestellt.Plants that co-express an acetyl-CoA hydrolase from yeast with mitochondrial targeting and an acetyl-CoA synthetase from yeast with plastid targeting were regenerated and grown in the greenhouse. The seeds of these plants were examined for their total fatty acid content as described above. An increase of approx. 5% with respect to the total fatty acid content (per seed) was found in comparison to non-transformed plants.
Tabelle XIIITable XIII
Linie Fettsäuregehalt Δ Fettsäuregehalt [nmol/Samen]Line fatty acid content Δ fatty acid content [nmol / seed]
Kontrolle 133 11 tl 144 12 t2 147 28 t3 145 17 t4 143 18 t5 146 12 SEQUENZPROTOKOLL (1) ALLGEMEINE ANGABEN:Control 133 11 tl 144 12 t2 147 28 t3 145 17 t4 143 18 t5 146 12 SEQUENCE LIST (1) GENERAL INFORMATION:
(i) ANMELDER:(i) APPLICANT:
(A) NAME: Max-Planck-Gesellschaft zur Förderung der(A) NAME: Max Planck Society for the Promotion of
Wissenschaften e.V.Sciences e.V.
(B) STRASSE: keine(B) ROAD: none
(C) ORT: Berlin(C) LOCATION: Berlin
(E) LAND: Deutschland(E) COUNTRY: Germany
(ii) BEZEICHNUNG DER ERFINDUNG: Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung(ii) NAME OF THE INVENTION: Transgenic plant cells and plants with altered acetyl-CoA formation
(iii) ANZAHL DER SEQUENZEN: 12(iii) NUMBER OF SEQUENCES: 12
(iv) COMPUTER-LESBARE FASSUNG:(iv) COMPUTER READABLE VERSION:
(A) DATENTRÄGER: Floppy disk(A) DISK: Floppy disk
(B) COMPUTER: IBM PC compatible(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS(C) OPERATING SYSTEM: PC-DOS / MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)(D) SOFTWARE: Patentin Release # 1.0, Version # 1.30 (EPA)
(2) ANGABEN ZU SEQ ID NO: 1:(2) INFORMATION ON SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 40 Basenpaare(A) LENGTH: 40 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotide"(A) DESCRIPTION: / desc = "oligonucleotides"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: GTCAGGATCC ATGACAATTT CTAATTTGTT AAAGCAGAGA 40(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: GTCAGGATCC ATGACAATTT CTAATTTGTT AAAGCAGAGA 40
(2) ANGABEN ZU SEQ ID NO: 2:(2) INFORMATION ON SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 40 Basenpaare(A) LENGTH: 40 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotide1 (iii) HYPOTHETISCH: JA (iv) ANTISENSE: NEIN(A) DESCRIPTION: / desc = "Oligonucleotides 1 (iii) HYPOTHETICAL: YES (iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2: GTCAGGATCC CTAGTCAACT GGTTCCCAGC TGTCGACCTT 40(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: GTCAGGATCC CTAGTCAACT GGTTCCCAGC TGTCGACCTT 40
(2) ANGABEN ZU SEQ ID NO: 3:(2) INFORMATION ON SEQ ID NO: 3:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 24 Basenpaare(A) LENGTH: 24 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: GTATACGTAA GTTTCTGCTT CTAC 24(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GTATACGTAA GTTTCTGCTT CTAC 24
(2) ANGABEN ZU SEQ ID NO: 4:(2) INFORMATION ON SEQ ID NO: 4:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 27 Basenpaare(A) LENGTH: 27 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: GTACAGCTGC ACATCAACAA ATTTTGG 27 (2) ANGABEN ZU SEQ ID NO: 5:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: GTACAGCTGC ACATCAACAA ATTTTGG 27 (2) INFORMATION ON SEQ ID NO: 5:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 31 Basenpaare(A) LENGTH: 31 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5: GATCGGTACC ATGTACAGAT GCGCATCGTC T 31(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GATCGGTACC ATGTACAGAT GCGCATCGTC T 31
(2) ANGABEN ZU SEQ ID NO: 6:(2) INFORMATION ON SEQ ID NO: 6:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 31 Basenpaare(A) LENGTH: 31 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GTACGGATCC CTTGGTTGCA ACAGCAGCTG A 31(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: GTACGGATCC CTTGGTTGCA ACAGCAGCTG A 31
(2) ANGABEN ZU SEQ ID NO: 7:(2) INFORMATION ON SEQ ID NO: 7:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 33 Basenpaare(A) LENGTH: 33 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid" (iii) HYPOTHETISCH: JA (iv) ANTISENSE: NEIN(A) DESCRIPTION: / desc = "oligonucleotide" (iii) HYPOTHETICAL: YES (iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7: GATCAAGCTT ATGTCGCCCT CTGCCGTACA ATC 33(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: GATCAAGCTT ATGTCGCCCT CTGCCGTACA ATC 33
(2) ANGABEN ZU SEQ ID NO: 8:(2) INFORMATION ON SEQ ID NO: 8:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 34 Basenpaare(A) LENGTH: 34 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8: GATCAAGCTT TCATCATTAC AACTTGACCG ATCC 34(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: GATCAAGCTT TCATCATTAC AACTTGACCG ATCC 34
(2) ANGABEN ZU SEQ ID NO: 9:(2) INFORMATION ON SEQ ID NO: 9:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 36 Basenpaare(A) LENGTH: 36 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelβtrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9: ACTGAAGCCT ATGTCAGCCA AGGCAATTTC AGAGCA 36 (2) ANGABEN ZU SEQ ID NO: 10:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: ACTGAAGCCT ATGTCAGCCA AGGCAATTTC AGAGCA 36 (2) INFORMATION ON SEQ ID NO: 10:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 37 Basenpaare(A) LENGTH: 37 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid"(A) DESCRIPTION: / desc = "oligonucleotide"
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10: ACTGAAGCCT TTACATGCTC ATGTGTTCCG GGAGAAC 37(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: ACTGAAGCCT TTACATGCTC ATGTGTTCCG GGAGAAC 37
(2) ANGABEN ZU SEQ ID NO: 11:(2) INFORMATION ON SEQ ID NO: 11:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 38 Basenpaare(A) LENGTH: 38 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid'(A) DESCRIPTION: / desc = "oligonucleotide '
(iii) HYPOTHETISCH: JA(iii) HYPOTHETICAL: YES
(iv) ANTISENSE: NEIN(iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11: ACTGGGATCC ATGGCTGATA CAAAAGCAAA ACTCACCC 38(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: ACTGGGATCC ATGGCTGATA CAAAAGCAAA ACTCACCC 38
(2) ANGABEN ZU SEQ ID NO: 12:(2) INFORMATION ON SEQ ID NO: 12:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 35 Basenpaare(A) LENGTH: 35 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(ii) MOLECULE TYPE: Other nucleic acid
(A) BESCHREIBUNG: /desc = "Oligonucleotid" (iii) HYPOTHETISCH: JA (iv) ANTISENSE: NEIN(A) DESCRIPTION: / desc = "oligonucleotide" (iii) HYPOTHETICAL: YES (iv) ANTISENSE: NO
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12: ACTGGGATTC TTAACGCTTG ATATCGCTTT TAAAG 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: ACTGGGATTC TTAACGCTTG ATATCGCTTT TAAAG 35

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Transgene Pflanzenzelle mit einem veränderten Acetyl- CoA-Metabolis us, die aufgrund der Expression einer fremden DNA-Sequenz , die ein Protein mit Acetyl-CoA- Hydrolaseaktivität codiert, eine im Vergleich zu Wildtyp-Zellen erhöhte Acetyl-CoA-Hydrolaseaktivität aufweist.1. Transgenic plant cell with an altered acetyl-CoA metabolis us which, due to the expression of a foreign DNA sequence encoding a protein with acetyl-CoA hydrolase activity, has an increased acetyl-CoA hydrolase activity compared to wild-type cells.
2. Transgene Pflanzenzelle nach Anspruch 1, worin die Acetyl-CoA-Hydrolaseaktivität in den Mitochondrien erhöht ist.2. The transgenic plant cell according to claim 1, wherein the acetyl-CoA hydrolase activity is increased in the mitochondria.
3. Transgene Pflanzenzelle nach Anspruch 2 , die weiterhin eine erhöhte Acetyl-CoA-Synthetaseaktivität im Cytosol aufweist.3. Transgenic plant cell according to claim 2, which further has an increased acetyl-CoA synthetase activity in the cytosol.
4. Transgene Pflanzenzelle nach Anspruch 1, worin die Acetyl-CoA-Hydrolaseaktivität im Cytosol erhöht ist.4. The transgenic plant cell according to claim 1, wherein the acetyl-CoA hydrolase activity in the cytosol is increased.
5. Transgene Pflanzenzelle nach Anspruch 2 oder 4, die weiterhin eine erhöhte Acetyl-CoA-Synthetaseaktivität in den Plastiden aufweist.5. Transgenic plant cell according to claim 2 or 4, which further has an increased acetyl-CoA synthetase activity in the plastids.
6. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 5, die weiterhin eine verringerte Citrat- Synthaseaktivität in den Mitochondrien aufweist.6. Transgenic plant cell according to one of claims 1 to 5, which further has a reduced citrate synthase activity in the mitochondria.
7. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 5, die ferner eine erhöhte Citrat-Synthaseaktivität in den Mitochondrien oder dem Cytosol aufweist.7. The transgenic plant cell according to any one of claims 1 to 5, which further has an increased citrate synthase activity in the mitochondria or the cytosol.
8. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 7, die weiterhin eine verringerte Aktivität der ATP- Citratlyase im Cytosol aufweist. 8. Transgenic plant cell according to one of claims 1 to 7, which further has a reduced activity of the ATP citrate lyase in the cytosol.
9. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 7 , die weiterhin eine erhöhte Aktivität der ATP- Citratlyase im Cytosol aufweist.9. Transgenic plant cell according to one of claims 1 to 7, which further has an increased activity of the ATP citrate lyase in the cytosol.
10. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 9, wobei die Acetyl-CoA-Hydrolase ein unreguliertes oder dereguliertes Enzym ist.10. Transgenic plant cell according to one of claims 1 to 9, wherein the acetyl-CoA hydrolase is an unregulated or deregulated enzyme.
11. Transgene Pflanzenzelle nach Anspruch 10, wobei die Acetyl-CoA-Hydrolase aus Pilzzellen stammt.11. The transgenic plant cell according to claim 10, wherein the acetyl-CoA hydrolase is derived from fungal cells.
12. Transgene Pflanzenzelle nach Anspruch 11, wobei die Acetyl-CoA-Hydrolase aus Saccharomyces cerevisiae stammt.12. The transgenic plant cell according to claim 11, wherein the acetyl-CoA hydrolase is derived from Saccharomyces cerevisiae.
13. Transgene Pflanzenzelle nach Anspruch 10, wobei die Acetyl-CoA-Hydrolase aus einem prokaryontischen Organismus stammt.13. The transgenic plant cell according to claim 10, wherein the acetyl-CoA hydrolase is derived from a prokaryotic organism.
14. Transgene Pflanzenzelle nach einem der Ansprüche 3 oder 5 bis 13, wobei die Acetyl-CoA-Synthetase ein unreguliertes oder dereguliertes Enzym ist.14. Transgenic plant cell according to one of claims 3 or 5 to 13, wherein the acetyl-CoA synthetase is an unregulated or deregulated enzyme.
15. Transgene Pflanzenzelle nach Anspruch 14, wobei die Acetyl-CoA-Synthetase aus einem Pilz, einem bakteriellen oder einem tierischen Organismus stammt.15. The transgenic plant cell according to claim 14, wherein the acetyl-CoA synthetase is derived from a fungus, a bacterial or an animal organism.
16. Transgene Pflanzenzelle nach Anspruch 15, wobei die Acetyl-CoA-Synthetase aus Saccharomyces cerevisiae stammt.16. The transgenic plant cell according to claim 15, wherein the acetyl-CoA synthetase is derived from Saccharomyces cerevisiae.
17. Pflanze enthaltend Pflanzenzellen nach einem der Ansprüche 1 bis 16. 17. Plant containing plant cells according to one of claims 1 to 16.
18. Pflanze nach Anspruch 17, die mindestens eines der folgenden Merkmale aufweist:18. Plant according to claim 17, which has at least one of the following features:
(a) einen verringerten oder gesteigerten Gehalt an Fettsäuren im Blattgewebe oder im Samengewebe im Vergleich zu Wildtyp-Pflanzen;(a) a reduced or increased content of fatty acids in the leaf tissue or in the seed tissue compared to wild-type plants;
(b) einen erhöhten Gehalt an löslichen Zuckern im Blattgewebe im Vergleich zu Wildtyp-Pflanzen;(b) an increased content of soluble sugars in the leaf tissue compared to wild-type plants;
(c) einen erhöhten Gehalt an Stärke im Blattgewebe im Vergleich zu Wildtyp-Pflanzen;(c) an increased starch content in leaf tissue compared to wild-type plants;
(d) verringertes Wachstum;(d) reduced growth;
(e) Bildung von zwei oder mehr Sprossen;(e) formation of two or more rungs;
(f) Veränderung der Blattfärbung.(f) change in leaf color.
19. Pflanze nach Anspruch 17 oder 18, die eine ölspeichern- de Pflanze ist.19. Plant according to claim 17 or 18, which is an oil-storing plant.
20. Vermehrungsmaterial einer Pflanze nach einem der Ansprüche 17 bis 19, das transgene Pflanzenzellen nach einem der Ansprüche 1 bis 16 enthält.20. Plant propagation material according to one of claims 17 to 19, which contains transgenic plant cells according to one of claims 1 to 16.
21. Vermehrungsmaterial nach Anspruch 20, das eine Frucht, ein Same oder eine Knolle ist.21. The propagation material according to claim 20, which is a fruit, a seed or a tuber.
22. Verwendung von DNA-Sequenzen, die ein Protein mit der enzymatischen Aktivität einer Acetyl-CoA-Hydrolase codieren, zur Expression in pflanzlichen Zellen, um die Aktivität der Acetyl-CoA-Hydrolase in pflanzlichen Zellen zu erhöhen.22. Use of DNA sequences which encode a protein with the enzymatic activity of an acetyl-CoA hydrolase for expression in plant cells in order to increase the activity of the acetyl-CoA hydrolase in plant cells.
23. Verwendung nach Anspruch 22, wobei die Acetyl-CoA- Hydrolaseaktivität im Cytosol erhöht ist. 23. Use according to claim 22, wherein the acetyl-CoA hydrolase activity in the cytosol is increased.
PCT/EP1997/004311 1996-08-08 1997-08-07 Transgenic plant cells and plants with modified acetyl-coa formation WO1998006831A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002263186A CA2263186A1 (en) 1996-08-08 1997-08-07 Transgenic plant cells and plants with modified acetyl-coa formation
EP97940060A EP0918849A1 (en) 1996-08-08 1997-08-07 Transgenic plant cells and plants with modified acetyl-coa formation
AU42039/97A AU739905B2 (en) 1996-08-08 1997-08-07 Transgenic plant cells and plants with modified acetyl coa production

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19632121A DE19632121C2 (en) 1996-08-08 1996-08-08 Transgenic plant cells and plants with altered acetyl-CoA formation
DE19632121.2 1996-08-08
DE19633374.1 1996-08-19
DE19633374 1996-08-19

Publications (1)

Publication Number Publication Date
WO1998006831A1 true WO1998006831A1 (en) 1998-02-19

Family

ID=26028256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/004311 WO1998006831A1 (en) 1996-08-08 1997-08-07 Transgenic plant cells and plants with modified acetyl-coa formation

Country Status (4)

Country Link
EP (1) EP0918849A1 (en)
AU (1) AU739905B2 (en)
CA (1) CA2263186A1 (en)
WO (1) WO1998006831A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045122A1 (en) * 1998-03-06 1999-09-10 Metabolix, Inc. Modification of fatty acid metabolism in plants
WO2000000619A2 (en) * 1998-06-26 2000-01-06 Iowa State University Research Foundation, Inc. MATERIALS AND METHODS FOR THE ALTERATION OF ENZYME AND ACETYL CoA LEVELS IN PLANTS
WO2000011199A1 (en) * 1998-08-20 2000-03-02 Pioneer Hi-Bred International, Inc. COMPOSITIONS AND METHODS FOR ALTERING AN ACETYL-CoA METABOLIC PATHWAY OF A PLANT
WO2002004648A2 (en) * 2000-07-06 2002-01-17 Pioneer Hi-Bred International, Inc. Methods for regulating beta-oxidation in plants
WO2002008433A2 (en) * 2000-07-21 2002-01-31 Washington State University Research Foundation Acyl coenzyme a thioesterases
US6586658B1 (en) 1998-03-06 2003-07-01 Metabolix, Inc. Modification of fatty acid metabolism in plants
EP1411125A1 (en) * 1998-06-26 2004-04-21 Iowa State University Research Foundation, Inc. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
WO2008043849A2 (en) * 2006-10-13 2008-04-17 Basf Plant Science Gmbh Plants with increased yield

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348958A2 (en) * 1988-07-01 1990-01-03 The General Hospital Corporation Purification and characterization of an acetyl-CoA hydrolase
DE4317260A1 (en) * 1993-01-22 1994-07-28 Max Planck Gesellschaft DNA sequence encoding acetyl-CoA carboxylase
WO1995020046A1 (en) * 1994-01-25 1995-07-27 Biocem Plant aconitases and nucleic acids coding therefor
WO1995024487A1 (en) * 1994-03-09 1995-09-14 Hoechst Schering Agrevo Gmbh Processes for inhibiting and for inducing flower formation in plants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539092A (en) * 1992-10-02 1996-07-23 Arch Development Corporation Cyanobacterial and plant acetyl-CoA carboxylase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348958A2 (en) * 1988-07-01 1990-01-03 The General Hospital Corporation Purification and characterization of an acetyl-CoA hydrolase
DE4317260A1 (en) * 1993-01-22 1994-07-28 Max Planck Gesellschaft DNA sequence encoding acetyl-CoA carboxylase
WO1995020046A1 (en) * 1994-01-25 1995-07-27 Biocem Plant aconitases and nucleic acids coding therefor
WO1995024487A1 (en) * 1994-03-09 1995-09-14 Hoechst Schering Agrevo Gmbh Processes for inhibiting and for inducing flower formation in plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRATZER S ET AL: "Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae", GENE., vol. 161, no. 1, 8 August 1995 (1995-08-08), AMSTERDAM NL, pages 75-79, XP004042121 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045122A1 (en) * 1998-03-06 1999-09-10 Metabolix, Inc. Modification of fatty acid metabolism in plants
US6586658B1 (en) 1998-03-06 2003-07-01 Metabolix, Inc. Modification of fatty acid metabolism in plants
EP1411125A1 (en) * 1998-06-26 2004-04-21 Iowa State University Research Foundation, Inc. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
WO2000000619A2 (en) * 1998-06-26 2000-01-06 Iowa State University Research Foundation, Inc. MATERIALS AND METHODS FOR THE ALTERATION OF ENZYME AND ACETYL CoA LEVELS IN PLANTS
WO2000000619A3 (en) * 1998-06-26 2000-06-15 Univ Iowa State Res Found Inc MATERIALS AND METHODS FOR THE ALTERATION OF ENZYME AND ACETYL CoA LEVELS IN PLANTS
US7524678B2 (en) 1998-06-26 2009-04-28 Iowa State University Research Foundation, Inc. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
US6942994B2 (en) 1998-06-26 2005-09-13 Iowa State University Research Foundation, Inc. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
US6764851B2 (en) 1998-06-26 2004-07-20 Iowa State University Research Foundation, Inc. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
WO2000011199A1 (en) * 1998-08-20 2000-03-02 Pioneer Hi-Bred International, Inc. COMPOSITIONS AND METHODS FOR ALTERING AN ACETYL-CoA METABOLIC PATHWAY OF A PLANT
US6566584B1 (en) 1998-08-20 2003-05-20 Pioneer Hi-Bred International, Inc. Compositions and methods for altering an acetyl-CoA metabolic pathway of a plant
WO2002004648A2 (en) * 2000-07-06 2002-01-17 Pioneer Hi-Bred International, Inc. Methods for regulating beta-oxidation in plants
US6914170B2 (en) 2000-07-06 2005-07-05 Pioneer Hi-Bred International, Inc. Methods for regulating beta-oxidation in plants
WO2002004648A3 (en) * 2000-07-06 2002-08-29 Pioneer Hi Bred Int Methods for regulating beta-oxidation in plants
WO2002008433A3 (en) * 2000-07-21 2003-08-28 Gregory B Tilton Acyl coenzyme a thioesterases
US6878861B2 (en) 2000-07-21 2005-04-12 Washington State University Research Foundation Acyl coenzyme A thioesterases
WO2002008433A2 (en) * 2000-07-21 2002-01-31 Washington State University Research Foundation Acyl coenzyme a thioesterases
WO2008043849A2 (en) * 2006-10-13 2008-04-17 Basf Plant Science Gmbh Plants with increased yield
WO2008043849A3 (en) * 2006-10-13 2008-09-04 Basf Plant Science Gmbh Plants with increased yield
US8344205B2 (en) 2006-10-13 2013-01-01 Basf Plant Science Gmbh Plants with increased yield

Also Published As

Publication number Publication date
EP0918849A1 (en) 1999-06-02
CA2263186A1 (en) 1998-02-19
AU739905B2 (en) 2001-10-25
AU4203997A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
Tarczynski et al. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol.
EP1578977B1 (en) Method for altering the content of reserve substances in plants
DE69132758T2 (en) Plasmids for the production of transgenic plants which have changed their habit and yield
EP2007894A2 (en) Method for modifying the atp/adp ratio in cells
DE69816059T2 (en) GENE THAT CODES FOR THE PYRUVATE DEHYDROGENASE KINASE OF PLANTS
DE19752647C1 (en) Reduction of the chlorophyll content in oil plant seeds
WO1998006831A1 (en) Transgenic plant cells and plants with modified acetyl-coa formation
DE10006462B4 (en) Production of non-cariogenic sugar in transgenic plants
DE10047286B4 (en) Isomalt producing transgenic plant
EP1412488B1 (en) Method for producing arachidonic acid in transgenic organisms
DE19632121C2 (en) Transgenic plant cells and plants with altered acetyl-CoA formation
AU719452B2 (en) Transgenic plant cells and plants with an increased glycolysis rate
DE10028639C2 (en) Process for the preparation of C9 aldehydes, C9 alcohols and their esters
EP1492872B1 (en) Expression of phospholipid:diacylglycerine acyltransferase (pdat) for the production of plant storage lipids with polyunsaturated fatty acids
EP1025248A1 (en) Reduction of chlorophyll content in oil plant seeds
EP1070120A1 (en) Amp deaminase
DE10026845A1 (en) Triacylglycerol lipases
DE19732926C2 (en) DNA sequences encoding a glucose-6-phosphate-phosphate translocator, as well as plasmids, bacteria, yeasts and plants containing this transporter
DE19826444C1 (en) DNA encoding a spinach glucose translocator, plasmids, bacteria, yeast and transformed plant cells
EP1294925A2 (en) Phosphoribosyl pyrophosphate synthetase 1 as herbicidal target
WO2001059131A2 (en) Use of palatinase and trehalulase sequences as nutritive markers in transformed cells
EP1198578A2 (en) PLANT S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PLANTS WITH VARIABLE CHLOROPHYLL CONTENTS AND/OR HERBICIDE TOLERANCE, AND METHOD FOR THE PRODUCTION THEREOF
DE10226413A1 (en) Increasing the total oil content of plants, useful e.g. in human or animal nutrition, by expressing a yeast transgene encoding glycerol-3-phosphate dehydrogenase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997940060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2263186

Country of ref document: CA

Ref country code: CA

Ref document number: 2263186

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09246644

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997940060

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998509373

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1997940060

Country of ref document: EP