Nothing Special   »   [go: up one dir, main page]

WO1994003397A1 - Improvement to membrane type deaerator - Google Patents

Improvement to membrane type deaerator Download PDF

Info

Publication number
WO1994003397A1
WO1994003397A1 PCT/JP1993/000138 JP9300138W WO9403397A1 WO 1994003397 A1 WO1994003397 A1 WO 1994003397A1 JP 9300138 W JP9300138 W JP 9300138W WO 9403397 A1 WO9403397 A1 WO 9403397A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
line
deaeration
vacuum pump
supply line
Prior art date
Application number
PCT/JP1993/000138
Other languages
English (en)
French (fr)
Inventor
Yasutoshi Senoo
Hitoshi Shiraishi
Norio Yasu
Yasuhiro Kawakami
Yukinori Tobisaka
Yasuo Ochi
Yasuhito Mitsukami
Toshitaka Shigematsu
Kazuhiro Tachino
Yasuhiro Miyagawa
Kenichiro Takematsu
Nobuaki Yanagihara
Original Assignee
Miura Co., Ltd.
Miura Institute Of Research & Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4233063A external-priority patent/JP2683988B2/ja
Priority claimed from JP34976592A external-priority patent/JP2737586B2/ja
Application filed by Miura Co., Ltd., Miura Institute Of Research & Development Co., Ltd. filed Critical Miura Co., Ltd.
Priority to US08/381,863 priority Critical patent/US5584914A/en
Publication of WO1994003397A1 publication Critical patent/WO1994003397A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0068General arrangements, e.g. flowsheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/003Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00 free-piston type pumps

Definitions

  • the present invention relates to an improvement in a membrane deaerator for removing dissolved gas in raw water.
  • the degassing device of the present invention is applied to a boiler-water heater, an ice making device, other cooling / heating devices, a building water supply system, a food processing device, a cleaning device for various components, and the like. It is suitable for cleaning equipment for electronic parts that require high dissolved oxygen concentration.
  • deaerators As is well known, various deaerators (deoxidizers) are installed in the water supply line to cooling and heating equipment such as boilers to prevent corrosion inside the equipment. These deaerators have recently been awarded as a measure against red water generation in water supply piping in buildings such as buildings and condominiums. In recent years, a cleaning system using degassed water (particularly deoxygenated water) has been attracting attention as a result of the need for a cleaning method that does not use freon in order to prevent the ozone layer from being destroyed by freon.
  • FIG. 19 As a conventional membrane deaerator used for the above-mentioned applications, the one shown in FIG. 19 is known.
  • This device is equipped with a deaeration module ( ⁇ ) and a flow switch (6 ') installed in the water supply line (3'), and between the water supply line (3 ') and the water ring vacuum pump ( ⁇ ).
  • New paper The two solenoid valves (12 ') and (13') are opened to perform vacuum degassing. When the water supply stops, the water ring vacuum pump (7 ') stops, and the two solenoid valves (12') and (13 ') are closed.
  • the deaerator with this configuration has the advantage that it can be processed at room temperature, and the deaeration level is about 0.5 ppm.
  • degassing systems using a degassing module include Japanese Unexamined Patent Publication No. Sho 51-282826 "Degassing device” and Japanese Patent Publication No. 4-4003 "Degassing device”. Several similar inventions have been proposed.
  • a degassing system using a degassing tower (not shown) is used in the production of water for electronic industry, but this system is required for cleaning electronic components such as LSIs in recent years. It is difficult to supply treated water with a degassing level below the PPB (deoxygenation level).
  • Effective measures against the practical problems of the conventional degassing system described above include improving the degassing system using hollow fiber modules as degassing means to improve the degassing performance of the vacuum pump.
  • the following technical issues must be solved.
  • the outside pressure of the hollow fiber membrane in the degassing module is 3 O torr (water vapor partial pressure 17.5 to rr )
  • the outside pressure of the hollow fiber membrane in the degassing module is
  • PM oxygen must be sucked in under a vacuum of 18 torr (which creates a partial pressure of water vapor).
  • a water ring vacuum pump with a capacity about 10 times that of the conventional one is required.
  • such large capacity water ring vacuum pumps are not generally manufactured, and it is practically difficult to reduce the dissolved oxygen concentration to less than 10 PPB.
  • the present invention provides an improved membrane deaeration system that can reduce the dissolved oxygen concentration of raw water to 10 PPB or less using a general relatively small (commercially available) water-sealed vacuum pump.
  • the purpose is to provide.
  • One of the subjects of the present invention for achieving the above object is a structure of a membrane deaerator in which the deaeration performance is improved by a combination of a deaeration module and a vacuum pump.
  • Another subject of the present invention is to provide a degassing system designed to enhance the degassing effect by cooling the sealing water for a water ring vacuum pump or by heating raw water. is there.
  • Another subject of the present invention relates to a use mode and a use method of a circulation line for circulating sealing water through a vacuum pump.
  • Still another subject matter of the present invention relates to a deaeration device devised so as to enhance the operation efficiency of the entire system by controlling a plurality of deaeration systems collectively.
  • Another subject of the present invention relates to the improvement of the main components of a combination of a hollow fiber module and a water-sealed vacuum pump, and is described together with the following examples.
  • the membrane deaerator according to the present invention includes many embodiments and improvements by combining a deaeration module and a vacuum pump, but typically includes a plurality of membrane deaerators and It can be characterized by the arrangement of the water ring vacuum pumps to be connected and the connection form. These modules are connected in series between the raw water supply line and the deaerated water supply line, and the second vacuum is connected to the first deaeration module via the deaeration line. Pumps are connected respectively. Raw water derived from the lined water line is supplied to these vacuum pumps.
  • the discharge line of the second vacuum pump is connected to the deaeration line of the first vacuum pump so as to flow out more.
  • FIG. 1 is a piping diagram showing an embodiment of a membrane deaerator according to the present invention, which is configured by combining a plurality of deaeration modules and vacuum pumps.
  • FIG. 2 is an illustration showing an embodiment having a circulation line for sealing water for the vacuum pump.
  • FIG. 3 is the same drawing showing another modified example provided with the cooling means for sealing water.
  • FIG. 4 is the same drawing showing yet another improved example provided with a raw water heating means for leading to the degassing module.
  • FIG. 5 is a drawing showing another embodiment of the cooling system for sealing water.
  • FIG. 6 is a drawing showing a preferred water sealing supply system configured in consideration of the temperature of the raw water.
  • FIG. 7 is a graph showing the relationship between the raw water temperature, the sealed water temperature, and the oxygen concentration.
  • Phase 8 is a piping diagram showing still another sealed water supply system configured in consideration of the temperature of the raw water.
  • New paper FIG. 9 is a graph showing the relationship between the concentration of dissolved oxygen in the treated water and the amount of treated water, corresponding to the level of the raw water temperature.
  • FIG. 10 is a graph showing the relationship between the treated water amount correction coefficient and the raw water temperature when the dissolved oxygen concentration of 0.5 PPM is maintained.
  • FIG. 11 is a piping diagram showing a comparatively simple configuration example of the circulation line for sealing water.
  • FIG. 12 is a drawing showing another embodiment in which the arrangement structure of the degassing module and the vacuum pump is improved.
  • FIG. 13 is a drawing showing another embodiment in which the arrangement structure of the degassing module and the vacuum pump is further improved.
  • FIG. 14 is a table showing a comparison of the dissolved oxygen concentration of the treated water between those having the sub-vacuum pump used in the embodiment shown in FIGS. 12 and 13 and those not having the sub-vacuum pump.
  • FIG. 15 is a piping diagram showing an embodiment in the case of controlling the operation of a plurality of deaeration systems each comprising at least one combination of the deaeration module and the vacuum pump.
  • FIG. 16 is a diagram showing another embodiment in which the operation of a plurality of deaeration systems is controlled.
  • FIG. 17 is the same drawing showing another improved example in the case where the operation of a plurality of deaeration systems is controlled.
  • FIG. 18 is a graph showing, as an index for determining the number of operating degassing systems, the number of operating degassing water in advance according to the amount of water used.
  • FIG. 19 is a piping diagram showing a known example of a membrane type deaerator.
  • FIG. 1 shows a preferred embodiment according to the present invention.
  • This new paper In the embodiment, two degassing modules (1) and (2) connected in series with each other are used.
  • Reference numeral (3) indicates a water supply line for guiding raw water
  • reference numeral (4) indicates a supply line for degassed water.
  • the pressure reducing valve (5) serves to prevent supply water pressure above a certain level from being applied to the first-stage (front-stage) and second-stage (back-stage) deaeration modules (1) and (2). To prevent the module from being damaged.
  • the first-stage degassing module (1) and the second-stage degassing module (2) are preferably composed of a large number of hollow fiber membranes, through which raw water is passed, and the outside is evacuated by vacuum. However, it works to remove dissolved gas in raw water during the passage of water through the hollow fiber membrane.
  • the flow switch (6) is connected to the outlet side of the first-stage deaeration module (1) in the water supply line (3), and is connected to the first-stage deaeration from the water supply line (3). When detecting water flowing through the module (4), an electric signal is output.
  • water-sealed vacuum pumps (7) and (8) are applied as means for vacuum degassing.
  • the first-stage (rear-stage) water-sealed vacuum pump (7) is connected to the water supply line (3) via a sealed-water supply line (9), and It is connected to Joule (1) via a vacuum degassing line (10).
  • the first-stage water ring vacuum pump (7) is electrically connected to the flow switch (6) and operates in response to an output signal of the flow switch (6). (The electrical control circuit is not shown in Fig. 1).
  • a constant flow valve ⁇ ) and a first solenoid valve (12) are incorporated in the water supply line (9).
  • the vacuum degassing line (1 0), the second solenoid valve (13) is built-in ⁇ these solenoid valves (12), with respect to (13), said Furosui Tutsi (6) And electrically connected, new paper
  • the flow switch (6) detects flowing water, it opens in response to the detection signal.
  • the second-stage (later-stage) water-sealed vacuum pump (8) is connected to the water-supply line (3) by a two-stage water-sealing pump branched from the middle of the sealed-water supply line (9). It is connected via a lined line (14) and connected to the second-stage degassing module (2) via a vacuum degassing line (15). Further, the two-stage water ring vacuum pump (7) is electrically connected to the flow switch (6) so that it operates in response to the output signal of the flow switch. Has become.
  • a constant flow valve (16) and a third solenoid valve 7) are incorporated in the second-stage sealed water supply line 4).
  • a fourth solenoid valve (18) is incorporated in the vacuum degassing line (15), and is electrically connected to the flow switch (6) together with the third solenoid valve Q7). With the connection, when the flow switch (6) detects flowing water, it opens in response to the detection signal.
  • the discharge path (20) of the second-stage water-sealed vacuum pump (8) communicates with the vacuum deaeration line (10) of the first-stage water-sealed vacuum pump (6).
  • the exhaust (including drainage) of the two-stage water-sealed vacuum pump (8) and the exhaust (including drainage) of the first-stage water-sealed vacuum pump (7) are connected to the first-stage exhaust passage. (20) allows it to be discharged outside.
  • the capacity of the two-stage water-sealed vacuum pump (8) in the illustrated system may be the same as that of the one-stage water-sealed vacuum pump (7).
  • the state in which the concentration of the dissolved gas in the raw water, for example, the dissolved oxygen, is reduced from about 8 ⁇ to about 0.5 ⁇ at the outlet of the first-stage deaeration module (1).
  • the outside air pressure of the hollow fiber membrane in the second-stage degassing module (2) is set to 1/10 torr or less of the 1st-stage side, the volume suctioned by the second-stage vacuum pump is , The body that the first stage vacuum pump sucks
  • New paper It is about the same as the product. Therefore, no special large-capacity vacuum pump is required, and two general small-sized vacuum pumps can be connected and used. Moreover, if the exhaust gas from the second-stage water-sealed vacuum pump (8) is directly discharged into the atmosphere, the pressure ratio (approximately 1000 times) becomes excessive. Discharging is more advantageous. As a result, the throughput of the first-stage vacuum pump is increased by about 5%, but it is within the processable range and there is no problem.
  • the flow switch (6) operates, and in response to the detection signal,
  • the first to fourth solenoid valves (12), (3), (17), (18) are opened, and the first-stage water-sealed vacuum pump (7) and the second-stage water-sealed vacuum pump ( 8) is driven.
  • the first-stage deaeration module (1) is connected to the first-stage water-sealed vacuum pump (7) via the vacuum deaeration line (10) and is evacuated.
  • the exhaust of the evacuated gas and the drainage of the sealed water in the pump are discharged from the first-stage discharge passage or the discharge line (19).
  • the second-stage degassing module (2) is connected in series to the first-stage degassing module (1) via the water supply line (3), the first-stage degassing module (2) is connected.
  • the water treated with a dissolved oxygen concentration of 0.5 ⁇ ⁇ in the gas module ⁇ ) is taken in, and this water is further degassed in a high vacuum (1 torr or less), and the dissolved oxygen concentration is 0.1 PPM or less. And treated water.
  • the second-stage deaeration module (2) communicates with the second-stage water-sealed vacuum pump (8) via the vacuum deaeration line (15), and is evacuated in the same manner as described above. ing.
  • FIG. 2 shows a circulation line including a water storage tank (21) and a solenoid valve (22) so that the drainage of the vacuum pump in the embodiment of FIG. 1 can be reused.
  • the circulation line (23) is provided with a feed line (21) for sending water from a water storage tank (21) placed at a predetermined height to the first and second stage vacuum pumps (1) and (2). 23a) and a return line for returning the wastewater from these vacuum pumps to the water tank (21)
  • a water tank (21) is provided with a water replenishing means (24) such as a ball tap as shown in the embodiment of FIG.
  • the above circulation line The water that has passed through the first-stage degassing module (1) during cooling (23), that is, degassed water, can be introduced.
  • degassed water as sealing water is supplied to the vacuum pumps (7) and (8) at each stage, and when used, the dissolved gas in the sealing water is converted to a water-sealed vacuum pump.
  • This has the advantage of suppressing the diffusion inside the gas, further reducing the gas partial pressure in the degassing modules (1) and (2), and further reducing the dissolved oxygen concentration in the lined water.
  • FIGS. 3 and 4 show an embodiment implementing another improved arrangement for a membrane deaerator.
  • the one in Fig. 3 has a cooling means (30) for cooling the sealing water guided to the vacuum pump, while the one in Fig. 4 has a water supply line (3).
  • a heating means (33) for heating the raw water is provided therein.
  • FIG. 4 the part corresponding to the almost right half in FIG. 3 is omitted, but the corresponding parts are the same as those in FIG. 3 by reference numerals (24), Q3) and Q8) in FIG. Water replenishment means (24), solenoid valve (13) and solenoid valve (18), respectively.
  • the modules (la) and (lb) of the first and second stages and the degassing modules (2a) and (2a) of the second stage 2b) are connected in series to form one unit, which is provided in two units in parallel and in the water supply line (3).
  • the first-stage deaeration module (1) is connected to the solenoid valve (13) through a vacuum deaeration line (10), and the second-stage deaeration module (2) is connected to a vacuum deaeration module.
  • the solenoid valve (18) is connected to the solenoid valve (18) through an inlet (15).
  • the cooling means (30) is configured by installing a heat exchanger (31) in a water storage tank (21) which is a cold water tank.
  • the water cooled, preferably by about 5 times, by the cooling means (30) is evacuated as a sealed water through a circulation line (23) for supplying the sealed water.
  • the water flows into the pumps (7) and (8), which reduces the partial pressure of steam in each vacuum pump. Therefore, the external pressure of the film decreases, and a higher degree of vacuum can be obtained.
  • the first degassing module (1) and the second degassing module (2) are connected in series, and the discharge line (20) of the water ring vacuum pump (8) is connected to the vacuum pump (7). By connecting, the degree of vacuum can be further increased, and the dissolved oxygen in the raw water can be reduced to about several millimeters.
  • the first degassing module (1) reduces the dissolved oxygen in the raw water from 8 ⁇ ⁇ ⁇ to 0.5 ⁇ ⁇ ⁇ , and this water passes through the second degassing module (2).
  • the discharge side pressure of the water ring vacuum line (7) is lower than the atmospheric pressure (about 1 O torr), even a commercially available relatively small capacity water ring vacuum pump has a very high vacuum. Degree (approximately l torr) can be realized.
  • the wastewater (cold water) from the water ring vacuum pump (7) can be discarded without being circulated. Power can be used effectively, and the cooling means can be used. There is an advantage that the capacity of (30) is reduced (about 1/6). Further, since the sealed water in the circulation line (23) is circulated by the discharge force of the water-sealed vacuum pump, no extra power source such as a circulation pump is required.
  • a heating means (33) is provided at an upstream position.
  • This heating means serves to heat the raw water to reduce the solubility of the dissolved gas in the deoxygenation module and increase the amount of deoxygenation.
  • a temperature sensor (36) connected to the lined water line (3) controls the on-off valve (37) according to the temperature of the supply water after heating, that is, the temperature of the raw water. (Not available).
  • the same reference numerals as those in FIG. 3 denote the same parts in FIG.
  • the above-mentioned heating means (33) and the cooling means (30) in the sealed water supply line (23) can be used in combination, thereby further increasing the amount of deoxidation. be able to.
  • FIG. 5 shows a preferred embodiment for economically cooling the water sealing to the vacuum pump.
  • the sealed water supply system in this example has a water supply line (40) branched from the water supply line (3), a solenoid valve (41) inserted into this line, and a water supply line (41) inserted in this line, as shown in FIGS. 2 and 3.
  • the same water tank (21) used a sealed water supply line (9), a vacuum pump (7) and its discharge line Q9), and a heat exchanger inlet ( 42a) and a heat exchanger (42) and its outlet (42b). Water is supplied to both ends of the heat exchanger (42) so that heat can be exchanged between the raw water and the drainage (used seal water) from the vacuum pump (7).
  • Line (3) is connected.
  • the wastewater flows into the water storage tank (21).
  • the cooling means (30) is a force built up so that the water in the water storage tank (21) maintains a predetermined temperature level; and the capacity of the heat exchanger (42) is reduced by the function of the heat exchanger (42). .
  • the wastewater from the vacuum pump (7) can be reused without being discarded.
  • FIG. 6 shows still another embodiment of the water supply system. This system allows for large changes in raw water temperature between summer and winter.
  • New paper It is designed to keep the dissolved oxygen level of the treated degassed water constant under such circumstances.
  • the same reference numerals are used for the same components as those in the above-described embodiment.
  • Reference numeral (51) in the figure denotes a raw water temperature sensor indicated by reference numeral (36), which is provided in a sealed water supply line indicated by reference numeral (9).
  • the two sensors (36) and (51) are electrically connected to the control box (50) via the signal lines (leads) (50a) and (50b). .
  • the control box (50) discriminates those signals, drives the cooling means (30), and serves to cool the water in the water storage tank (21) to a predetermined temperature. This makes it possible to reduce the partial pressure of water vapor in the water-sealed vacuum pump (7) and to evacuate it to a lower pressure, thereby adjusting the dissolved oxygen concentration of the treated water to a predetermined concentration. Can be.
  • Fig. 7 data on raw water temperature and sealed water temperature as shown in Fig. 7, for example, is used.
  • the vertical axis represents the dissolved oxygen concentration
  • the horizontal axis represents the sealing water temperature, showing the change in the dissolved oxygen concentration when the raw water temperature changes.
  • the inside of the control box (50) In operation, comparison is made between the above data and the above two signals.
  • Fig. 8 shows the lined water (raw water) that changes depending on the surrounding environment in addition to the seasonal temperature change. Implementation with further ingenuity to deal with temperature
  • reference numeral (60) denotes a membrane type degassing system that comprehensively shows the components of the above degassing module or vacuum pump.
  • a temperature sensor (61) and a feed pump (62) are connected in the water supply line (3) on the upstream side.
  • the deaerated water supply line (4) on the downstream side has a deaerated water supply tank (70) equipped with water level detection rods (S), (M), and water level detectors (71).
  • (65) is a control box, which is a signal line (65a) for the temperature sensor (61), a signal line (65b) for the water level detector (71), and a feed pump ( There is a signal line (65c) for the 62) and a signal line (65d) for the membrane deaeration system (60).
  • (72) is connected to the bottom of the deaerated water supply tank (70).
  • the deaerated water extraction line (73) is a deaeration water extraction valve.
  • the temperature sensor (61) detects the temperature of the raw water and sends an electric signal as a signal. Output to the control box (65) via the line (65c). This control box determines the raw water temperature signal from the temperature sensor (61) and sets the raw water temperature and treated water volume in advance so that a constant dissolved oxygen concentration (0.5 PPM) can be obtained.
  • the degassed water (treated water) is supplied to the upper electrode rod (S)
  • the signal is transmitted to the control box (65) via the signal line (65b), and the operation of the control box stops the feed pump (62) and the deaeration system (60).
  • the supply of degassed water to equipment that requires degassed water is controlled by removing the power from the extraction line (72) via the extraction valve (73). Turning off the potential rod () will re-activate the feed pump (62) and the degassing system (60). If the amount of degassed water temporarily increases and the tank water level drops below the lower electrode L, the feed pump (62) will operate regardless of the temperature of the raw water by the control port (1). Is operated at the maximum flow rate, emergency water refilling is performed, and when the water level reaches the lower electrode L, the operation returns to normal operation.
  • FIG. 11 shows another embodiment devised so that the temperature of the water in the water tank for sealing water (21) can be kept constant by a relatively simple configuration.
  • the solenoid valve in which the branch line (40) of the water supply line (3) is inserted is activated.
  • a thermostat means (55) is provided to open (41). (The detailed configuration has been omitted.) For this reason, when the temperature of the water storage tank (21) exceeds a predetermined temperature level, raw water is added from the branch line (40), and the temperature of the internal water is adjusted to a constant level. If the water in the water storage tank (21) overflows due to the repetition of the above-described adjustment operation, the desired horizontal water can be removed so that the relatively high temperature water in the upper part of the water tank can be taken out.
  • An overflow line (56) (shown by a dotted line in the figure) that opens at the height may be provided. Further, it is also preferable to introduce the extension ⁇ of the overflow line into a sub-tank (not shown), and return the water that has naturally radiated heat to the above-mentioned water storage tank (21) again. .
  • FIG. 12 and FIG. 13 are explained:
  • two water-sealed vacuum pumps (7) and (7 ') are connected to the degassing module (1), and the main vacuum pump (7)
  • the discharge line (19) is in contact with the deaeration port or the suction port (7a) of the sub vacuum pump (7 ').
  • the sub vacuum pump (7 ') sucks mainly the gas discharged from the main vacuum pump (7) at the preceding stage, so that the load of the sub vacuum pump (7') is remarkably increased. And the degree of vacuum in the main vacuum pump (7) is increased.
  • the main vacuum pump (7) evacuates, for example, the vacuum pressure from 3 O torr to 760 torr. (7 '), the vacuum pressure of the main vacuum pump (7) drops to 25 torr, the exhaust pressure also becomes 36 torr, and the sub vacuum pump (7') Compression from 36 torr to 760 torr will be performed. In this case, since the exhaust of the main vacuum pump (7) is compressed from 25 torr to 36 torr, the exhaust volume of the sub vacuum pump (7 ') becomes much smaller.
  • the vacuum pump has the characteristic that the compression ratio increases in the opposite direction when the displacement is reduced. Therefore, in the system of the present invention in which two vacuum pumps are arranged in series, The ultimate vacuum of the main vacuum pump (7) is greatly improved.
  • the discharge pressure of the second water-sealed vacuum pump can be increased only by the pressure (rH; r is the apparent specific gravity of the water containing bubbles) corresponding to the head difference of c.
  • two degassing modules (1) and (2) connected in series are connected to the first-stage vacuum pump (7) and the second-stage vacuum pump ( 8) are connected via deaeration lines (10) and (15), respectively, and a sub-pump is connected to the discharge line (19) of the first stage vacuum pump (7).
  • the additional vacuum pump (7 ') has an intake port (7a) connected.
  • This embodiment is described in combination with the degassing modules (1), (2) and the vacuum pumps (7), (8) described with reference to the embodiment of FIG. The detailed description is omitted because it corresponds to the addition of a sub vacuum pump (7 '), but it is effective in reducing the dissolved oxygen concentration in water to lower levels.
  • Fig. 14 compares the dissolved oxygen concentration of the treated water between the one using the sub-vacuum pump (7 ') shown in Figs. 12 and 13 (A) and the one not using it (B). As shown in the table, it will be understood from the table that the former embodiment (A) achieves a vacuum pressure approximately 20 times that of the latter (B). Of course, if the number of the above sub vacuum pumps is increased, the degassing performance is further improved.
  • the two-dot chain line (57) shown in Figs. 12 and 13 is an extraction line for extracting sealed water from the main vacuum pump (7), and is provided as necessary. It is shown that it is possible.
  • (58) is a pump for extracting sealed water.
  • Such a sealing water extraction line (57) will result in excessive water sealing from the main vacuum pump (7) if a relatively small volume sub-vacuum pump (7 ') is used, This helps to avoid the occurrence of excess pressure loss in the meantime-The excess sealed water extracted by the extraction pump (58) is stored in the storage tank (2 ⁇ ) in the sealed circulation line (23), for example. ) And reuse
  • New paper In addition to the above, it can be supplied to the rotating shaft portion (not shown) of the sub vacuum pump ⁇ ′) to enhance the sealing performance of the portion.
  • the membrane type deaeration system according to the present invention is composed of at least one combination of the deaeration module and the vacuum pump. It is possible.
  • the capacity is selected in consideration of the maximum amount of water used according to the season and time zone. Therefore, when the amount of water used is large, high operation efficiency can be obtained, but when the amount of water used is small, the operation efficiency deteriorates, causing problems such as loss of power and shortened life. This problem becomes more pronounced as the difference between when the amount of water used is large and when the amount of water used is small is large.
  • the operation system (automatic unit control system) for multiple degassing systems listed here is intended to solve the above-mentioned problem, and can control the number of degassing units operated according to the amount of water used. It is configured as follows.
  • FIG. 15 to FIG. 17 show an embodiment in which three deaeration systems are arranged in parallel.
  • one end of the degassing module (1) is connected to the raw water supply line (3) via the branch pipes (3a), (3b) and (3c), and the other end is connected to the branch pipe ( Deaerated water supply lines (4) are connected via 4a), (4b), and (4c), respectively.
  • (80) is a sensor for detecting the amount of degassed water used, and is inserted, for example, into the supply line (4).
  • the sensor (80), the cash detects the flow rate of the water directly Warini, t reason that it is also possible to ⁇ to detect and use water pressure of water, by between the two there is a certain relationship
  • the amount of water used can be indirectly detected by measuring the pressure of the water.
  • New paper It is a controller for controlling the number of units equipped with a function to control the number of units operated.
  • This controller controls the opening and closing of the individual solenoid valves (5) and the ON / OFF control of the vacuum pump (7) according to the amount of deaerated water used. Change.
  • As an index for determining the number of units at that time it is preferable to set the number of operating deaeration systems in advance according to the amount of deaerated water used as shown in Fig. 18.
  • One vacuum pump (?) May be connected to each degassing module (1) as shown in Fig. 15, but as shown in Fig. 16, a common vacuum pump (?) 7) One may be provided.
  • the sealing water temperature adjusting means for adjusting the sealing water temperature of the vacuum pump (7) (87), the deaerated water supply tank (21), and the temperature sensor (36) Is added.
  • the configuration and operation of the circulation path enclosing the water sealing temperature adjusting means (87) are substantially the same as those described above.
  • each The deaerator can always be operated efficiently to save energy and prolong the life of the entire system.
  • the membrane type deaerator according to the present invention is useful for supplying deaerated water having a dissolved oxygen concentration of 0.1 PPM to several PPB or less by a combination of the deaeration module and the vacuum pump as described above. .
  • Such a level of degassed water is used for boilers, water heaters, and industrial water for ice making equipment and other cooling and heating equipment.
  • the membrane type deaerator of the present invention can be reduced in size and weight while having high deaeration performance. A new moth whose temperature changes In such cases, deaerated water with a fixed dissolved oxygen concentration level can be supplied, so it can be applied to water supply systems such as buildings and food processing equipment.
  • an automatic number control system is constructed by arranging a plurality of devices of the present invention, the number of devices corresponding to the amount of deaerated water used is always operated efficiently to save energy of the entire system. Can be achieved.
  • the device of the present invention has the advantage that the dissolved oxygen concentration level can be easily adjusted, and that the degassed water at a regulated constant level can be supplied stably. It can be used instead of a cleaning system using other cleaning agents, and the air pollution area can contribute to the suppression of ozone layer destruction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

明 細 書 膜式脱気装置の改良
〔技術分野〕
この発明は、 原水中の溶存気体を除去するための膜式脱気装置の改 良に関するものである。 この発明の脱気装置は、 ボイラゃ温水器、 製 氷装置、 その他の冷熱機器或いは、 ビルの給水システム、 食品加工装 置、 各種部品の洗浄装置等に適用されるが、 特に、 より低レベルの溶 存酸素濃度が要求される電子部品の洗浄装置等に適している。
〔背景技術〕
周知のように、 ボイラ等の冷熱機器への給水ライ ン中には、 その機 器の内部の腐食防止を目的として各種の脱気装置 (脱酸素装置) が組 み込まれている。 それらの脱気装置は、 近年では、 ビル、 マンショ ン 等の建築物における給水配管の赤水発生対策としても賞用されている。 又、 近年においては、 フロンによるオゾン層の破壌を免れるために、 フロンを用いない洗浄方法が求められた結果、 脱気水 (特に脱酸素 水) よる洗浄システムが注目されつつある。
前述の用途に用いられる従来の膜式脱気装置としては、 第 1 9図に 示すものが公知である。 この装置は、 給水ライ ン(3 ' ) 中に設けた脱 気モジュール(Γ ) 及びフロースィ ツチ(6 ' ) と、 給水ライ ン(3 ' ) と水封式真空ポンプ(Γ ) との間の封水供給ライ ン(9 ' ) 中に設けた 封水用電磁弁 (12 ' ) と、 脱気モジュール(Γ ) と水封式真空ポンプ (7) 間の真空脱気ライ ン (10 ' ) 中に設けた真空引き用電磁弁 (13) とで構成されている: 従って給水ライ ン(3 ' ) に水 (純水、 水道水.、 井戸水、 その他工業用水) が供給されると、 フ α—スィ ッチ(62 ' ) が働いて前記水封式真空ポンプ(?' ) を駆動すると共に、 前記 2つの
新たな用紙 つの電磁弁 (12' ), (13 ' ) が開かれて真空脱気処理が行なわれる。 そして、 給水が止まると水封式真空ポンプ(7' ) が停止し、 前記 2つ の電磁弁 (12' ), (13 ' ) が閉じられるようになつている。
この構成の脱気装置は、 常温での処理が可能であるという利点を持 つている力く、 脱気レベルは 0. 5 P PM程度である。
脱気モジュールを用いた公知の脱気システムには、 特開昭 5 1— 2 8 2 6 1号 「脱気装置」 ゃ特公平 4 _ 4 0 0 3号 「脱気装置」 がある 他、 いくつかの類似の発明が提案されている。
この他、 電子工業用水の製造においては、 脱気塔を用いた脱気シス テム (図示されない) が採用されているけれども、 このシステムでは、 近年の L S I等の電子部品の洗浄に必要な 1 0 P P B以下の脱気レべ ノレ (脱酸素レベル) の処理水を供給することは困難である。
上述した従来の脱気システムの実用上の問題点に対する有効な対策 としては、 脱気手段として中空糸から成るモジュールを用いる脱気シ ステムを改良することにより、 真空ポンプによる脱気性能を高めるこ とが考えられるが、 それには、 次のような技術的課題が解決されなけ ればならない。
即ち、 脱気モジュールを用いた装置による場合は、 例えば処理水の 溶存酸素濃度を、 脱気モジュール内の中空糸膜の外側気圧を 3 O torr (水蒸気分圧 1 7. 5 torr) とすると、 原水中の酸素濃度約 8 P PM を 0. 5 P PMまで低減することができる力く (at2 0 ) 、 これを 1 0 P P B以下の溶存酸素濃度とするには、 原水中の約 8 P PMの酸素 を 1 8 torr (水蒸気分圧を舍む、) の真空状態で吸引しなければならな い。 そのためには、 従来のものの約 1 0倍の容量の水封式真空ポンプ が必要となる。 しかしながら、 そのような大容量の水封式真空ポンプ は一般には製造されておらず、 溶存酸素濃度を 1 0 P P B以下に下げ ることは現実的に困難である。 新たな用紙 そこで、 この発明は、 一般的な比較的小型の (市販の) 水封式真空 ポンプを使用して、 原水の溶存酸素濃度を 1 0 P P B以下にすること のできる改良された膜式脱気システムを提供することを目的とする。 上記の目的を達成するための、 この発明の主題の 1つは、 脱気モジ ユール及び真空ポンプの組み合わせによって脱気性能を向上させた膜 式脱気装置の構造に閬するものである。
この発明の別の主題は、 水封式真空ポンプのための封水を冷却する 力、、 又は原水を加温することによって、 脱気効果を高めるように工夫 した脱気システムに閔するものである。
この発明の他の主題は、 真空ポンプを通して封水を循環させるため の循環ラインの利用態様並びに利用方法に関するものである。
この発明のさらに他の主題は、 脱気システムを複数個統括的に制御 することによって、 システム全体の運転効率を高めるよう工夫した脱 気装置に関するものである。
この発明のその他の主題は、 中空糸モジュールと水封式真空ポンプ との組み合わせに係る各構成要部の改良に関するもので、 以下の実施 例とともに説明されている。
〔発明の開示〕
この発明による膜式脱気装置は、 脱気モジュール及び真空ポンプの 組み合わせにより多くの実施例、 改良例を包含するものであるが、 代 表的には、 複数の膜式脱気モジュールとこれに接続される水封式真空 ポンプの配列並びに接続形態によって特徴ずけることができる。 それらのモジュールは、 原水の給水ライ ンと脱気水の供給ライ ンと の間において、 直列状態に接続されており、 前記第 1脱気モジュール に対し、 脱気ライ ンを介して第 2真空ポンプがそれぞれ接続されてい る。 これらの真空ポンプには、 前記袷水ライ ンから導いた原水を前記
新たな;!紙 第 1及び第 2真空ポンプへ封水として送給するための封水送給ライ ン が個別に設けられ、 前記第 2真空ポンプからの排出水が前記第 1真空 ポンプを通ってその排出ライ ンより流出するように、 前記第 2真空ポ ンプの排出ライ ンが前記第 1真空ポンプの脱気ライ ンに対して接続さ れている。
このように構成された膜式脱気装置においては、 大巾な脱気性能の 向上が実現され、 溶存酸素濃度で数 P P Bのレベルの脱気処理が可能 となる。 〔図面の簡単な説明〕
第 1図は、 脱気モジュール及び真空ポンプを複数個組み合わせて構 成した、 この発明による膜式脱気装置の実施例を示す配管系統図であ る。
第 2図は、 前記真空ポンプのための封水の循環ラインを備えた実施 例を示す同上図である。
第 3図は、 前記封水の冷却手段を備えた別の改良例を示す同上図で ある。
第 4図は、 前記脱気モジュールへ導く原水の加温手段を備えたさら に別の改良例を示す同上図である。
第 5図は、 前記封水のための冷却システムの他の実施例を示す同上 図である。
第 6図は、 前記原水の温度を考慮して構成した好ましい封水供給シ ステムを示す同上図である。
第 7図は、 原水温度、 封水温度及び 存酸素濃度の三者の相函関係 を示すグラフである。
相 8図は、 前記原水の温度を考慮して構成したさらに他の封水供給 システムを示す配管系統図である。 新たな用紙 第 9図は、 原水温度のレベルに対応する、 処理水溶存酸素濃度と、 処理水量との関係を示すグラフである。
第 1 0図は、 0 . 5 P P Mの溶存酸素濃度を維持する場合の、 処理 水量補正係数と原水温度との関係を示すグラフである。
第 1 1図は、 前記封水のための循環ライ ンの比較的簡単な構成例を 示す配管系統図である。
図 1 2は、 前記脱気モジュールと前記真空ポンプの配列構造を改良 した別の実施例を示す同上図である。
第 1 3図は、 前記脱気モジュールと前記真空ポンプの配列構造をさ らに改良した他の実施例を示す同上図である。
第 1 4図は、 第 1 2図及び第 1 3図の実施例に用いたサブ真空ボン プを有するものと、 そうでないものとで処理水の溶存酸素濃度を比較 して示すテーブルである。
第 1 5図は、 少なく とも各 1個の前記脱気モジュール及び前記真空 ポンプの組み合わせから成る脱気システムを複数台運転制御する場合 の実施例を示す配管系統図である。
第 1 6図は、 前記脱気システムを複数台運転制御する場合の別の実 施例を示す同上図である。
第 1 7図は、 前記脱気システムを複数台運転制御する場合の別の改 良例を示す同上図である。
第 1 8図は、 前記脱気システムの運転台数を決定するための指標と して、 脱気水の使用水量に応じてその運転台数を予め設定して示すグ ラフである。
第 1 9図は、 膜式脱気装置の公知例を示す配管系統図である。
〔発明を実施するための最良の形態〕
第 1図は、 この発明による望ましい実施例を示すものである。 この 新たな甩紙 実施例においては、 互いに直列状態に連結された 2個の脱気モジュ一 ル(1) , (2) が用いられている。
符号(3) は、 原水を導くための給水ライ ン、 符号(4) は、 脱気水の 供給ライ ンを示しているが、 これらの間には、 図示の位置において、 減圧弁(5) 、 フロースィ ツチ(6) が接続されている。 前記減圧弁(5) は、 前記 1段側 (前段側) 及び 2段側 (後段側) 脱気モジュール(1) , (2) に一定以上の供給水圧が加わらないようにするもので、 それら のモジュールの破損防止を図っている。
前記 1段側脱気モジュール(1) 及び 2段側脱気モジュール(2) は、 好ましくは、 多数の中空糸膜から成っていて、 その内部に原水を通し、 その外側を真空に引く ことにより、 中空糸膜内を水が通過する過程で 原水中の溶存気体を除去するように働く。 前記フロースィ ッチ(6) は、 前記給水ライン(3) 中において、 前記 1段側脱気モジュール(1) の出 口側に接続されていて、 給水ライ ン(3) から 1段側脱気モジュール (4 ) を通過した流水を検知すると、 電気信号を出力する。
一方、 前記 1段側及び 2段側の脱気モジュール(1) , (2) に対しては、 真空脱気する手段として水封式真空ポンプ (7) , (8) が適用されている。 前記 1段側 (後段側) 水封式真空ポンプ (7) は、 前記給水ライ ン(3 ) 対して、 封水送給ライ ン(9) を介して接続され、 前記 1段側脱気モ ジュール(1) に対して、 真空脱気ライ ン(10)を介して接続されている。 前記 1段側水封式真空ポンプ(7) は、 前記フロースィ ッチ(6) に対し て電気的に接続されていて、 このフロースィ ッチ(6) の出力信号に応 答して作動するようになっている (第 1図中には、 電気的な制御回路 は示されていない) 。 前記封水送給ライ ン(9) には、 定流量弁 α ι)と 第 1 の電磁弁(12)とが組み込まれている。 又、 前記真空脱気ライ ン(1 0)には、 第 2の電磁弁(13)が組み込まれている ε これらの電磁弁(12), (13)は、 前記フロースィ ツチ(6) に対して、 電気的に接続されていて、 新たな用紙 フロースィ ッチ(6) が流水を検知した際、 その検知信号に応答して開 弁する。
前記 2段側 (後段側) 水封式真空ポンプ(8) は、 前記給水ライ ン(3 ) に対して、 前記封水送給ライ ン(9) の中間より分岐した 2段側封水 送袷ライ ン(14)を介して接続され、 前記 2段側脱気モジュール (2) に 対しては、 真空脱気ライ ン(15)を介して接続されている。 さらに前記 2段側水封式真空ポンプ(7) は、 前記フロースィ ッチ(6) に対して電 気的に接続されていることにより、 このフロースィ ツチの出力信号に 応答して作動するようになっている。
前記 2段側封水供給ライ ン 4)には、 定流量弁(16)と第 3の電磁弁 7)とが組み込まれている。 又、 前記真空脱気ライ ン(15)には、 第 4 の電磁弁(18)が組み込まれており、 前記第 3の電磁弁 Q7)と共に前記 フロースィ ッチ(6) に対して電気的に接続されていることにより、 フ ロースイ ッチ(6) が流水を検知すると、 その検知信号に応答して開弁 する。
前記 2段側水封式真空ポンプ (8) の排出路 (20)は、 前記 1段側水封 式真空ポンプ(6) の真空脱気ライ ン(10)に連通している。 この構成は、 1段側水封式真空ポンプ(7) の排気 (排水を舍む) と共に、 2段側水 封式真空ポンプ (8) の排気 (排水を含む) が、 1段側排出路 (20)を通 つて外部へ排出されるのを可能にする。
図示の方式の 2段側水封式真空ポンプ(8) の容量は、 1段側水封式 真空ポンプ(7) と同容量のものでよい。
前記実施例においては、 1段側脱気モジュール(1) の出口で原水の 溶存気体、 例えば溶存酸素の濃度が、 約 8 Ρ Ρ Μから約 0 . 5 Ρ Ρ Μ まで脱気されている状況下では、 2段側脱気モジュール(2) 内の、 前 記中空糸膜の外側気圧を、 1段側の 1 0分の 1の 1 torr以下としても 2段側真空ポンプが吸引する体積は、 1 段側真空ポンプが吸引する体
新たな用紙 積と同程度となる。 従って、 特別に大きな容量の真空ポンプは必要な く、 一般的な小型の真空ポンプを 2台連結して使用することができる。 しかも、 前記 2段側水封式真空ポンプ (8) の排気を直接大気中に排出 すると、 その圧力比 (約 1 0 0 0倍) が過大となるため、 1段側真空 ポンプの吸気口に排出する方が有利である。 そのために、 1段側真空 ポンプの処理量は約 5 %増加するが、 処理可能範囲内であり、 問題は ない。
以下に、 前述のごとく直列状態に接続した 2段式脱気装置の作用に ついて説明する。
原水が減圧弁 (5) を経て、 給水ライ ン(3) より 1段側脱気モジュ一 ル(1) を通過すると、 フロースィ ッチ(6) が作動し、 その検知信号に 応答して、 前記第 1〜第 4の電磁弁(12) , 3) , (17) , (18) が開弁する とともに、 1段側水封式真空ポンプ (7) 及び 2段側水封式真空ポンプ (8) が駆動する。 これにより、 前記 1段側脱気モジュール(1) は、 真 空脱気ライ ン(10)を介して 1段側水封式真空ポンプ(7) に連通して、 真空引きされる。 この真空引きした気体の排気と、 ポンプ内の封水の 排水は、 前記 1段側排出路ないしは排出ライ ン(19)より排出される。 その際、 前記 2段側脱気モジュール (2) は、 前記 1段側脱気モジュ ール(1) に給水ライ ン(3) を介して、 直列に接続されているので、 1 段側脱気モジュール α) で溶存酸素濃度 0 . 5 Ρ Ρ Μに処理された水 を取り入れ、 この水を、 更に高真空 ( 1 torr以下) 中で脱気して、 溶 存酸素濃度 0 . 1 P P M以下の処理水とする。 このときの 2段側脱気 モジュール (2) は、 前記真空脱気ライ ン(15)を介して 2段側水封式真 空ポンプ(8) に連通して、 上記と同様に真空引きされている。 この真 空引きした気体の排気と、 ポンプ内の封水の排水は、 排出路(20)を介 して 1段側水封式真空ポンプ(7) の吸気口よりポンプ内を通って、 排 出路(19)より流出する 新たな用紙 第 2図は、 第 1図の実施例における真空ポンプの排水を再利用する ことができるように、 貯水槽(21)及び電磁弁(22)を舍む循環ライ ン
(23)を備えた別の実施例を示すものである。
尚、 同図においては、 フロースィ ッチ(6) の配置位置の変更の他、 定流量弁(11) , (16) 及び電磁弁(12) , (17) を持たない点が第 1図のも のと異なるカ^ 基本的な構成は実質的には同一であるので、 同種の構 成要素に対しては同一符号が用いられている。
上記の循環ライ ン(23)は、 所定の高さ位置に置かれた貯水槽 (21)の 水を第 1段及び第 2段の真空ポンプ(1) , (2) に送る送りライ ン(23a) と、 それら真空ポンプよりの排水を前記貯水槽(21)へ戻す戻りライ ン
(23b) とから成っている。 従って、 電磁弁(22)が開いている状況の下 では、 貯水槽(21)の水は、 送りライ ン(23a) を介して封水送給ライン
(9) より第 1段側の真空ポンプ (7) に、 又別の封水送給ライ ン(14)よ り第 2段側真空ポンプ(8) へそれぞれ流入する。 一方、 第 1段側及び 第 2段側真空ポンプ (7) , (8) よりそれぞれの排出路(19) , (20) より流 出した水は、 戻りライ ン(23b) を介して再び貯水槽(21)内に還流する。 このような循環ライ ン(23)の構成に関連して、 第 2図の実施例のよ うに、 貯水槽(21)にボールタップ等の補水手段(24)を設け、 これに、 例えば第 1段側脱気モジュール(1) と第 2段側脱気モジュール (2) と の間の給水ライ ン(3) を補水ライ ン(25)により接続しておくようにす ると、 上記の循環ライ ン(23)中に第 1段側脱気モジュール(1) を通過 した水、 つまりは脱気水を導入することができる。
これによつて、 各段の真空ポンプ(7) , (8) に対し、 封水としての脱 気水が供給され、 使用されたときは、 封水中の溶存気体が水封式の真 空ポンプの内部で拡散するのを抑制して、 脱気モジュール(1) , (2) 内 のガス分圧をより一層低下させ、 袷水中の溶存酸素濃度をさらに減少 させるという利益が得られる。
新たな用紙 上記の補水ラィ ン(25)を介して取り入れる捕水の取り入れ口を脱気 効果を促進する上で、 第 2段側脱気モジュール (2) の下流側、 即ち脱 気水の供給ライ ン(4) に変更してもよいのは勿論である。
第 3図及び第 4図には、 膜式脱気装置のための別の改良された構成 を舍む実施例が示されている。
これら改良例のうち、 第 3図のものは、 真空ポンプへ導く封水を冷 却するための冷却手段(30)を備えているのに対し、 第 4図のものは、 給水ライン(3) 中に原水を加温するための加温手段(33)を備えている。 第 4図では、 第 3図中のほぼ右半分に相当する部分が省略されている けれども、 第 4図中の符号(24) , Q3) 及び Q8)により対応個所が第 3 図のものと同様な補水手段(24)、 電磁弁(13)及び電磁弁(18)にそれぞ れ接続されることを表している。
第 3図についてより詳細に説明すると、 この改良例においては、 第 1段側と第 2段側の各モジユール(la) , (lb) と第 2段側脱気モジュ一 ル(2a) , (2b) とが直列に接続されて 1ユニッ トとされ、 これが 2ュニ ッ ト並列に、 給水ライ ン(3) 中に設けられた構成となっている。 又、 第 1段側脱気モジュール(1) は、 真空脱気ライ ン(10)を通して前述の 電磁弁(13)に接続され、 第 2段側脱気モジュール (2) は、 真空脱気ラ ィ ン(15)を通して前述の電磁弁(18)に接続されている。
冷却手段(30)は、 図示の例では、 冷水槽となる貯水槽(21)中に熱交 換器(31)を設置して成るものである。
上述の構成により、 給水ライ ン(3) に水が流れることによってフロ 一スィ ッチ(6) が作動すると、 その出力信号を受けて第 1段側及び第 2段側の真空ポンプ (7) , (8) が稼動するとともに、 電磁弁(13) , (18), (22)が開き、 真空脱気ライ ン(10) , (15) を通して原水中の溶存酸素が 脱気処理される。 そして、 袷水が止まると、 前記真空ポンプ(7) : (8) が停止し、 それら電磁弁も閉じられる。
新たな用紙 このような動作が行なわれる過程では、 冷却手段(30)により、 好ま しくは約 5てに冷却された水が、 封水として封水供給のための循環ラ イ ン(23)を介して真空ポンプ(7) , (8) に流入するが、 これにより各真 空ポンプ内の水蒸気分圧が低下する。 従って、 膜の外部圧力が低下し、 より高い真空度を得ることができる。 加えて、 第 1脱気モジュール(1 ) と第 2脱気モジュール(2) とを直列に接続し、 水封式真空ポンプ(8 ) の排出ライン(20)を前記の真空ポンプ(7) に接続したことにより、 真空度をより高くすることが可能で、 数 Ρ Ρ Β程度まで原水中の溶存 酸素を低減することができる。 即ち、 第 1脱気モジュール(1) により、 原水中の溶存酸素は 8 Ρ Ρ Μから 0 . 5 Ρ Ρ Μまで低下し、 この水が、 第 2脱気モジュール (2) を通過することにより、 又、 水封式真空ライ ン(7) の排出側圧力が大気圧より低い圧力 (約 1 O torr) となること により、 市販の比較的小容量の水封式真空ポンプでも非常に高い真空 度 (約 l torr) を実現することができる。
水封式真空ポンプ (7) からの排水 (冷水) は、 循環させずにそのま ま捨てることも可能である力 循環使用することにより熱を有効に利 用することができるだけでなく、 冷却手段(30)の容量が小さくなる ( 約 1 / 6 ) という利点がある。 さらに、 循環ライ ン(23)中の封水が水 封式真空ポンプの吐出力によって循環されるので、 循環ポンプ等の余 分の躯動源を必要としない。
次に、 第 4図の改良例についてより詳細に説明すると、 この例にお いては、 上流位置に加温手段(33)が設けられている。 この加温手段は、 原水を加温して脱酸素モジュール内での溶存気体の溶解度を減少させ、 脱酸素量を増大させることに役立つ。 袷水ライ ン(3) に接続されてい る温度センサー(36)は、 加温された後の給水つまりは原水の温度に応 じて開閉弁(37)を制御し、 加熱媒体 (図示されていない) を流動させ るようになつ.ている。 尚、 同図中の、 第 3図のものと同一の符号が付
新たな ffi紙 された構成部分については、 前述と同様につき説明が割愛されている。 このため、 原水の温度を温度センサー(36)で検出し、 加温装置(33) への加熱媒体の供給を開閉弁(37)の操作により制御して、 給水温度を 所定の範囲( 約 2 0〜3 O 'C ) に保持するようにすれば、 常に安定し た溶存酸素濃度の水を供給することができる。
又、 上記加温手段(33)と前述した封水供給ライ ン(23)中の冷却手段 (30)とを組み合わせて用いることもでき、 そうすることにより、 脱酸 素量をより一層増大させることができる。
第 5図は、 真空ポンプへの封水を経済的に冷却するための好ましい 実施例を示すものである。
この例の封水供給システムは、 給水ライ ン(3) から分岐した給水取 出しライ ン(40)と、 このライ ンに挿入した電磁弁(41)と、 第 2図並び に第 3図に用いられたと同様な貯水槽(21)と、 封水送給ライ ン(9) と、 真空ポンプ(7) 及びその排出ライ ン Q9)と、 このライ ンに接続された 熱交換器入口部 (42a) と, 熱交換器(42)及びその出口部(42b ) とから 成っている。 上記の熱交換器(42)に対しては、 原水と真空ポンプ(7) からの排水 (使用済みの封水) との間で熱交換が行なわれるように、 その熱交換器の両端に給水ライ ン(3) が接続されている。
従って、 原水は、 給水ライ ン(3) を通って脱気モジュール(1) へ流 れる過程で、 真空ポンプ ) からの排水との間で熱交換された後、 脱 気モジュール(1) 内に入り、 一方、 排水は、 貯水槽(21)内に流入する ことになる。 冷却手段(30)は、 貯水槽(21)内の水が所定の温度レベル を保つように躯勛される力;、 上記の熱交換器(42)の働きにより、 容量 の小型化が図られる。 しかも、 真空ポンプ(7) からの排水は、 捨てら れることなく再利用に向けることができる。
第 6図は、 封水供铪システムのさらに他の実施例を示すものである。 このシステムは、 夏期と冬期とで原水温度に大巾な変化があること
新たな用紙 に着目してなされたもので、 そのような状況下でも処理された脱気水 の溶存酸素レベルを一定にすることができるように工夫されている。 尚、 同図においても、 前掲の実施例と同種の構成要素に対しては同種 の符号が用いられている。
同図中の符号(51)は、 符号の(36)で示されている原水用温度センサ であって、 符号(9) で示されている封水送紿ライ ン中に設けられてい る それらの 2つのセンサ(36) , (51) は、 それぞれの信号線 (リード 線) (50a) , (50b) を介して、 符号(50)のコン トロールボックスに対し て電気的に接続されている。
従って、 運転中において、 原水の水温を温度センサ(36)が検知する と、 その情報が信号線(50a) を介してコン トロールボックス(50)へ送 られる。 これと同時に貯水槽(21)から封水送給ライ ン(9) に流れる封 水の水温がもう 1つの温度センサ(51)で検知され、 信号線(50b) を介 してコン ト π—ルポックス(50)に送られる。 コン トロールボックス(5 0)は、 それらの信号を弁別して、 冷却手段(30)を駆動し、 貯水槽(21) 内の封水の所定の温度まで冷却するように働く。 これにより、 水封式 真空ポンプ(7) 内の水蒸気の分圧を低下させて、 より低い圧力まで真 空引きすることが可能になり、 処理水の溶存酸素濃度を所定の濃度に 調整することができる。
その際には、 例えば第 7図に示すような、 原水温度と封水温度に閔 するデータが利用される。 同図は、 縦軸に溶存酸素濃度を、 又横軸に 封水温度をとつて、 原水温度が変化した場合の溶存酸素濃度の変化を 表したものである コ ン トロールボックス(50)の内部では、 運転中は 常時.、 上記のデータと前述の 2つの信号との比較演算が実行されてい 第 8図には、 季節による温度変化の他、 周囲の環境によって変化す る袷水 (原水) 温度に対処するためのさらに別の工夫を行なった実施
新たな用紙 例が示されている。
同図中、 (60)は、 上記の脱気モジュール或いは真空ポンプ等の構成 部分を総括的に表した、 膜式脱気システムである。 このシステムに対 しては、 その上流側の給水ライ ン(3) 中に温度センサ(61)及びフィー ドポンプ (62)が接続されている。 又、 その下流側の脱気水の供給ライ ン(4) には、 水位検出棒(S) , (M) , (い から成る水位検出器(71)を備え た脱気水供給タンク(70)が接続されている。 (65)は、 コ ン トロールボ ックスで、 温度センサ(61)のための信号線(65a) 、 水位検出器(71)の ための信号線(65b) 、 フィードポンプ(62)のための信号線(65c) 及び 膜式脱気システム(60)のための信号線(65d) を備えている。 (72)は、 脱気水供給タンク(70)の底部に接続された脱気水の取出しライ ン、 (7 3)は、 脱気水の取出しバルブである。
上述の構成においては、 フィードポンプ(62)が駆動されて、 铪水ラ イ ン(3) を原水が流れるのに伴い、 温度センサ(61)は原水の温度を検 知し、 電気信号を信号線(65c) を介してコ ン トロールボックス(65)へ 出力する。 このと.きのコ ン トロールボックスは、 温度センサ(61)より の原水温度信号を判別し、 一定の溶存酸素濃度 ( 0 . 5 P P M ) が得 られるように、 予め設定した原水温度と処理水量との関係数値に基づ いて、 フィードポンプ(62)の流量を調整するように働く e 第 9図並び に第 1 0図は、 その際に参照されるデータを表したグラフであって、 前者のグラフにより、 原水温度のレベルに対応する、 処理水溶存酸素 濃度と処理水量との関係を演算し、 又後者のグラフにより、 0 . 5 P P Mの溶存酸素濃度を維持する場合の、 処理水量補正係数と原水温度 との関係を演算することができる。 この結果、 脱気システム(60)を通 して処理すべき水量が算定され、 その水量の原水が給水ライ ン(3) を 流通し、 脱気水供給タンク(70)に'流入する。
そして、 脱気水 (処理水) が脱気水供給タンク(70)の上位電極棒(S
新たな用紙 ) に触れると、 その信号が信号線(65b) を経てコン トロールボックス (65)へ伝えられ、 このコン トロールボックスの働きにより、 フィード ポンプ(62)及び脱気システム(60)が停止する。
脱気水を必要とする機器類への脱気水の供給は、 取出しバルブ(73) を介して、 取出しライ ン(72)より取り出される力 脱気水供給タンク (70)内の水位が中位電極棒( ) を切ると、 フィードポンプ(62)及び脱 気システム(60)が再駆動されることになる。 一時的に、 脱気水の使用 量が増加し、 タンク内水位が下位電極棒 Lを切った場合は、 コン ト口 一ルポフクス(65)により原水の水温に関係なく、 フィ一ドポンプ(62) が最大流量で運転されて、 緊急補水がなされ、 続いて該水位が下位電 極棒 Lに達すると、 通常運転に復帰する。
第 1 1図は、 比較的簡易な構成により、 封水用の貯水槽 (21)内の水 の温度を一定化することができるように工夫した別の実施例を示して いる。
この実施例では、 貯水槽(21)内の水温が所定のレベル (3 O 'C ) を 越えると作動して、 給水ライ ン(3) の分岐ライ ン(40)の挿入されてい る電磁弁(41)を開放するように働くサーモスタッ ト手段(55)が備えら れている。 (詳細な構成は割愛されている) 。 このため、 貯水槽(21) 内には、 所定の温度レベル以上になると、 分岐ライ ン(40)より原水が 加えられることとなり、 内部の水の温度が一定のレベルに調節される。 上述の調節動作が反復されることにより、 貯水槽(21)内の水が溢出 するようになる場合は、 槽内の上部の比較的高い温度の水を取り出せ るように、 水平上の所望の高さ位置に開口させた溢流ライ ン(56) (図 中、 点線で表示) を設けてもよい。 さらに、 又この溢流ライ ンの延長 ^をサブタンク (図示していない) へ導入し、 ここで自然放熱させた 水を再び上記の貯水槽(21)へ返すようにするのも好ましいことである。 次に、 第 1 2図及び第 1 3図について説明する:
新たな用紙 それらの図面には、 前記脱気モジユールと前記真空ポンプの配列構 造の改良により、 脱気性能がより一層高められた実施例が開示されて いる。
即ち、 第 1 2図の例では、 脱気モジュール(1) に対し、 2個の水封 式真空ポンプ(7) , (7 ' ) が連結されていて、 メ イ ン真空ポンプ(7) の 排出ライ ン(19)がサブ真空ポンプ(7 ' ) の脱気口ないしは吸気口(7a) に接綾された状態となっている。
この形態によると、 サブ真空ポンプ(7 ' ) においては、 前段のメイ ン真空ポンプ(7) より排出された主として気体を吸引するようになり、 従って、 サブ真空ポンプ(7 ' ) の負荷が格段に小さくなり、 メ イ ン真 空ポンプ(7) の真空度が高められる。 つまり、 サブ真空ポンプ(7 ' ) が設けられていないときは、 メ イ ン真空ポンプ(7) によって、 例えば、 真空圧 3 O torrから 7 6 0 torrまでの排気が行なわれるが、 サブ真空 ポンプ(7 ' ) が設けられていることより、 メイ ン真空ポンプ(7) の真 空圧は 2 5 torrまで低下し、 排気圧も 3 6 torrになり、 サブ真空ボン プ(7 ' ) では、 3 6 torrから 7 6 0 torrまでの圧縮が行なわれること になる。 この場合、 メ イ ン真空ポンプ(7) の排気が 2 5 torrから 3 6 torrまで圧縮されているので、 サブ真空ポンプ(7 ' ) の排気量は格段 に少なくなる。
上述のように、 真空ポンプは、 排気量が減少すれば圧縮比が逆に向 上する特性を有しているため、 2台の真空ポンプを直列に配置したこ の発明のシステムでは、 前段側のメ イ ン真空ポンプ(7) の到達真空度 が格段に向上する。
上記のメ イ ン真空ポンプ Π) 、 サブ真空ポンプ(7 ' ) の配列に関連 して、 それらの高さ位置を、 メ イ ン真空ポンプ(7) の方がサブ真空ポ ンプ(7 ' ) より高いレベルになるように設定しておく のも有効であつ て、 そうしたときは、 その間の高さの差 H分だけ、 言い換えると、 そ
新たな用鈹 の水頭差に相当する圧力 ( r H ; rは気泡を舍む水のみかけの比重) だ け、 第 2水封式真空ポンプの吐出圧を高めることができる c
一方、 第 1 3図の例においては、 直列状態に連結された 2個の脱気 モジュール(1) 及び(2) に対し、 第 1段側真空ポンプ (7) 及び第 2段 側真空ポンプ(8) がそれぞれ脱気ライ ン(10)及び(15)を介して接続さ れており、 さらに、 そのうちの第 1段側真空ポンプ(7) の排出ライ ン (19)に対して、 サブポンプとしての付加的な真空ポンプ(7 ' ) 吸気口 (7a)が接続された形態となっている。
この形態は、 第 1図の実施例に閲して説明された脱気モジユール(1 ) , (2) 真空ポンプ(7),(8) との組み合わせに、 前述の第 9図で説明さ れたサブ真空ポンプ(7 ' ) を加えたものに該当するため、 詳細な説明 は割愛するが、 より低レベルまで水中の溶存酸素濃度を低減すること に効果がある。
第 1 4図は、 第 1 2図、 第 1 3図で示すサブ真空ポンプ(7 ' ) を用 いたもの(A) とそうでないもの(B) とで処理水の溶存酸素濃度を比較 して示すテーブルであるが、 これから、 前者の(A) の実施例のものが 後者の(B) のそれよりもほぼ 2 0倍の真空圧を実現していることが理 解されよう。 勿論、 上述のサブ真空ポンプの個数を増やしていく と、 脱気性能はさらに向上する。
第 1 2図及び第 1 3図に描かれている 2点鎖線(57)は、 メイ ン真空 ポンプ(7) から封水を抽出するための抽出ライ ンであって、 必要に応 じて設けられることを示している。 (58)は、 封水抽出用ポンプである。 そのような封水の抽出ライ ン(57)は、 比較的小さな容量のサブ真空ポ ンプ(7 ' ) が用いられた場合に、 メイ ン真空ポンプ(7) からの封水が 過剰になり、 その間に余剰の圧力損出が発生するの免れることに役立 つ - 上記の抽出ポンプ(58)によって取り出された余剰の封水は、 例え ば封水循環ライ ン(23)中の貯水タンク(2Γ)へ返して、 再利用すること
新たな ¾紙 ができる他、 サブ真空ポンプ σ' ) の回転軸部分 (図示していない) へ供給して、 該部のシール性を高めることにも利用され得る。
この発明による膜式脱気システムは、 上述の説明から明らかなよう に、 少なく とも各 1個の脱気モジュール及び真空ポンプの組み合わせ より成るものであるが、 これを複数個並べて自動運転することが可能 である。
一般に脱気装置の処置容量を選定する際には、 季節や時間帯に応じ た、 最大使用水量を考慮して、 その容量が選択されている。 このため、 使用水量の多いときには、 高い運転効率が得られるけれども、 使用量 の少ないときには、 運転効率が悪化し、 電力の損失や寿命の低下を招 く等の問題点が生じる。 この問題点は、 使用水量の多いときと少ない ときとの差が大きい程、 顕著に現れる。
ここに挙げる複数個の脱気システムの運転システム (自動台数制御 システム) は、 前述の問題点を解消するためのもので、 使用水量に応 じて脱気装置の運転台数を制御することができるように構成されてい る。
第 1 5図〜第 1 7図には、 脱気システムが 3台並列に配置される場 合の実施例が示されている。
第 1 5図の例では、 脱気モジュール(1 ) の一端に分岐管 (3a) , (3b) , (3c) を介して原水の給水ライ ン(3) が又、 他端に分岐管 (4a) , (4b) , ( 4c) を介して脱気水の供給ライ ン(4) がそれぞれ接続されている。 (80)は、 脱気水の使用量検出用のセンサで、 例えば供給ライ ン(4) に 挿入されている。 このセンサ(80)により、 水の流量を直接検出する代 わりに、 水の圧力を検出して使用水量に換箕することもできる t その 理由は、 両者の間には一定の関係があることにより、 水の圧力を測定 して使用水量を間接的に検出することができるからである。
(85)は、 前記センサ(80)からの出力信号の値に応じて脱気システム
新たな用紙 の運転台数を制御する機能を備えた台数制御用のコント π—ラを表し ている。 このコ ン ト D—ラにより、 脱気水の使用水量に応じて、 個々 の電磁弁(5) の開閉及び真空ポンプ(7) の O N— O F F制御が行なわ れ、 脱気システムの運転台数が変化する。 そのときの台数決定の指標 として、 第 1 8図に示すごとく脱気水の使用水量に応じて脱気システ ムの運転台数を予め設定しておくのは好ましいことである。 真空ボン プ(?) は、 第 1 5図に示すように、 各脱気モジュール(1) に 1台ずつ 接続してもよいが、 第 1 6図に示すようにそれらに共通の真空ポンプ (7) を 1台設けてもよい。
第 1 7図に示す実施例には、 真空ポンプ (7) の封水の温度を調整す る封水温度調節手段が(87)及び脱気水供給タンク(21)、 温度センサ(3 6)が付加されている。 上記封水温度調節手段(87)を舍む循環路の構成 並びに作用は、 先に説明したものと実質的に同一である。
これら第 1 5図〜第 1 7図の実施例によって、 脱気水の使用水量に 適合する数の脱気システム (狭義の意味では、 脱気装置) を統括的に 自動制御するときは、 各脱気装置を常に効率良く運転して、 システム 全体の省エネルギー化 ·長寿命化を図ることができる。
〔産業上の利用可能性〕
この発明による膜式脱気装置は、 上述に明らかなような脱気モジュ ール及び真空ポンプの組み合わせにより、 溶存酸素濃度が 0 . 1 P P M〜数 P P B以下のレベルの脱気水の供給に役立つ。
そのようなレベルの脱気水は、 ボイラゃ温水器、;製氷装置、 その他 の冷熱機器のための工業用水に適用されるカ^ 1 0 P P B程度まで脱 気処理された水は、 特に L S I等の電子部品の洗浄用水として有効で ある.、 又、 この発明の膜式脱気装置は、 高い脱気性能を有する割に、 小型 '軽量化を実現することができ、 要すれば、 原水の温度が変化す 新たな用蛾 る場合でも一定の溶存酸素濃度レベルの脱気水を供給することができ るために、 ビル等の給水システムや食品加工設備にも適用することが 可能てある。
さらに、 又この発明の装置を複数台配列して自動台数制御システム とするときには、 脱気水の使用水量に対応する数の装置を常に効率よ く運転して、 システム全体の省エネルギー化 ·長寿命化を図ることが できる。
この他、 この発明の装置は、 溶存酸素濃度レベルの調節が容易であ るのに加え、 調節された一定レベルの脱気水を安定して供給すること ができるという利点を持っために、 フロンその他の洗浄剤を用いる洗 浄システムに代えて使用することができ、 大気汚染域はオゾン層の破 壌の抑制に貢献することができる。
新たな用紙

Claims

一 請求の範固
1 . 原水のための給水ライ ン(3) と脱気水のための供給ライ ン(4) と の間に複数の脱気モジュール(1) , (2) を接続して成る膜式脱気装置 であって、
前段に位置する第 1脱気モジュール(1) と後段に位置する第 2脱 気モジュール(2) とを直列状態に連結し、 前記第 1脱気モジュール (1) に対し、 脱気ライ ン(10)を介して第 1真空ポンプ (7) を、 又前 記第 2脱気モジュール(2) に対し、 脱気ライ ン(15)を介して第 2真 空ポンプ(8) をそれぞれ接続し、 前記給水ライ ン(3) から導いた原 水を前記第 1及び第 2真空ポンプ(7),(8) へ封水として送給するた めの封水送給ライン(9) , (14)を個別に設け、 前記第 2真空ポンプ(8 ) からの排出水が前記第 1真空ポンプ(7) を通ってその排出ライ ン (19)より流出するように、 前記第 2真空ポンプの排出ライ ン(20)を 前記第 1真空ポンプの脱気ライ ン(10)に接続したことを特徴とする 膜式脱気装置。
5 2 . 請求の範囲第 1項に記載の構成において、 封水のための循環ラ ィ ン(23)及び、 貯水槽(21)を設け、 前記循環ライ ン(23)により前記 第 1及び第 2真空ポンプ(7) , (8) を通して封水を循環させることが できるように、 それらのポンプに対し、 前記循環ライ ン(23)の送り ライ ン(23a) 及び戻りライ ン(23b) の延長端を接続し、 これらライ0 ン間に前記貯水槽(21)を挿入したことを特徴とする膜式脱気装置。
3 . 請求の範囲第 2項に記載の構成において、 1つ以上の前記脱気 モジュール(1) を通った処理水を前記貯水槽(21)に導くための補水 ライ ン(25)を設けたことを特徴とする膜式脱気装置。
4 . 原水 Οための給水ライ ン(3) と脱気水のための供給ライ ン(4) との間に複数の脱気モジュール( 1 ),(2) を接続して成る膜式脱気装
新たな甩 置であって、
前段に位置する第 1脱気モジュール (1) と後段に位置する第 2脱 気モジュール(2) とを直列状態に連結して 1ュニッ トとし、 前記第
1脱気モジュール(1) に対し、 脱気ライ ン ο)を介して第 1真空ポ ンプ(7) を、 又前記第 2脱気モジュール(2) に対し、 脱気ライ ン(1 5)を介して第 2真空ポンプ(8) をそれぞれ接続し、 前記給水ライ ン (3) から導いた原水を前記第 1及び第 2真空ポンプ(7) , (8) へ封水 として送給するための封水送給ライ ン(9) , (14)を個別に設け、 前記 第 1及び第 2真空ポンプ(7),(8) を通して封水を循環させるための 循環ライ ン(23)を付設し、 この循環ライ ンを流れる封水を冷却する 冷却手段 (30)を備えたことを特徴とする膜式脱気装置。
5 . 請求の範囲第 4項の記載の構成において、 前記第 2真空ポンプ (8) からの排出水が前記第 1真空ポンプ (7) を通ってその排出ライ ン α9)より流出するように、 前記第 2真空ポンプの排出ライン(20) を前記第 1真空ポンプの脱気ライ ン ο)に接続したことを特徴とす る膜式脱気装置。
6 . 原水のための給水ライ ン(3) と脱気水のための供給ライ ン(4) との間に複数の脱気モジュール(1 ) , (2) を接続して成る膜式脱気装 置であって、
前段に位置する第 1脱気モジュール(1) と後段に位置する第 2脱 気モジュール (2) とを直列状態に連結して 1ュニッ トとし、 前記第 1脱気モジュール(1) に対し、 脱気ライ ン(10)を介して第 1真空ポ ンプ(7) を、 又前記第 2脱気モジュール(2) に対し、 脱気ライ ン(1 5)を介して第 2真空ポンプ(8) をそれぞれ接続し、 前記袷水ライ ン (3) から導いた原水を前記第 1及び第 2真空ポンプ(7) , (8) へ封水 として送給するための封水送袷ライ ン(9) , (14)を個別に設け、 前記 給水ライ ン(3) の、 前記第 1脱気モジュール(1) より も上流側に、
新たな用紙 原水を加温する加温手段(33)を備えたことを特徴とする膜式脱気装
7 . 請求の範囲第 6項の記載の構成において、 前記第 2真空ポンプ (8) からの排出水が前記第 1真空ポンプ(7) を通ってその排出ライ ン(19)より流出するように、 前記第 2真空ポンプの排出ライ ン(20) を前記第 1真空ポンプの脱気ライ ン(10)に接続したことを特徴とす る膜式脱気装置。
8 . 原水のための給水ライ ン(3) と脱気水のための供給ライ ン(4) との間に少なくとも各 1個の脱気モジュール(1) 及び真空ポンプ(7 ) で構成される脱気システムを接続して成る膜式脱気装置であって、 前記脱気モジュール(1) に対し、 脱気ライ ン(10)を介して真空ポ ンプ(7) を接続し、 この真空ポンプを通して封水を循環させるため の循環ライ ン(23)及び、 貯水槽(21)を設け、 前記給水ライ ン(3〉 よ り分岐した給水取出しライ ン(40)を前記貯水槽(21)に接続し、 前記 循環ライ ン(23)に沿って前記真空ポンプ(7) へ流れる封水を冷却す る冷却手段(30)を備え、 前記給水ライ ン(3) 内の原水の温度を検出 するため温度センサ(36)及び、 前記循環ライ ン(23)内の封水の温度 を検出するための温度センサ(51)をそれぞれ設け、 これらのセンサ (36) , (51) からの信号を弁別して、 前記冷却手段(30)を駆動するよ うに働くコン トロールボックス(50)を備えたことを特徴とする膜式
9 . 原水のための給水ライ ン(3) と脱気水のための供給ライ ン(4) との間に少なく とも各 1個の脱気モジュール(1) 及び真空ポンプ(7 ) で構成される脱気システムを接続して成る膜式脱気装置であって、 前記脱気システムの上流側の前記給水ライ ン(3) 中に温度センサ (61)及びフィ一ドポンプ(62)を設け、 前記脱気システムの下流側に 水位検出器 Π1)を備えた脱気水供給タンク(70)を付設し、 前記温度
新たな用紙 センサ(61)からの信号を弁別して、 前記フィ -ドポンプ(62)へ流量 を調整するように働くコン トロールボックス(65)を備えたことを特 徴とする膜式脱気装置。
10. 原水のための給水ライ ン(3) と脱気水のための供給ライ ン(4) との間に少なく とも各 1個の脱気モジュール(1) 及び真空ポンプ(7
) で構成される脱気システムを接続して成る膜式脱気装置であって、 前記脱気モジュール(1) に対し、 脱気ライ ン(10)を介してメイ ン 真空ポンプ (7) 及びサブ真空ポンプ(7 ' ) を直列状態に接続し、 前 記メィ ン真空ポンプ(7) の排出ライ ン(19)を前記サブ真空ポンプ(7 ' ) の脱気口(7a)に接続したことを特徴とする膜式脱気装置。
11. 請求の範囲第 1 0項に記載の構成において、 前記メィ ン真空ポ ンプ(7) から封水を抽出するための抽出ライ ン(57)を備えたことを 特徴とする膜式脱気装置。
12. 原水のための給水ライ ン(3) と脱気水のための供袷ライ ン(4) との間に複数の脱気モジュール(1) , (2) を接続して成る膜式脱気装 置であって、
前段に位置する第 1脱気モジュール(1) と後段に位置する第 2脱 気モジュール (2) とを直列状態に連結し、 前記第 1脱気モジュール (1) に対し、 脱気ライ ン(10)を介して第 1真空ポンプ (7) を、 又前 記第 2脱気モジュール(2) に対し、 脱気ライ ン(15)を介して第 2真 空ポンプ(8) をそれぞれ接続し、 前記第 1真空ポンプ(7) の聪気ラ イ ン αθ)に前記第 2真空ポンプ(8) の排出ライ ン(20)を接铳し、 こ のような接続状態にある前段側の第 1真空ポンプ (7) をメィ ン真空 ポンプとして、 これにサブ真空ポンプ(7 ' ) を直列状態に接続し、 前記メ イ ン真空ポンプ C7) の排出ライ ン(19)を前記サブ真空ポンプ (7 ' ) の脱気口(7a)に接続したことを特徴とする膜式脱気装置。
13. 原水のための辁水ライ ン (3) と脱気水のための供給ライ ン(4)
新たな用紙 との間に脱気モジュール(1) 及び真空ポンプ(7) を具備して成る脱 気システム (60)を接続して成る膜式脱気装置であって、
前記脱気システム(60)を複数個並列に並べて設置し、 個々の前記 脱気モジュール(1) の流通を O N— O F F制御する電磁弁(5) を挿 入し、 前記供給ライ ン(4) 中に流量センサ(80)を設け、 脱気水の使 用水量に応じて、 前記電磁弁の一部又は前部を O N— 0 F Fするこ とにより、 運転すベき前記脱気システム(60)の台数を制御するよう に働く台数制御用コ ン トローラ(85)を備えたことを特徴とする膜式 脱気装置。
新たな用抵
PCT/JP1993/000138 1992-08-07 1993-02-04 Improvement to membrane type deaerator WO1994003397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/381,863 US5584914A (en) 1992-08-07 1993-02-04 Membrane deaerator apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/233063 1992-08-07
JP4233063A JP2683988B2 (ja) 1992-08-07 1992-08-07 超脱気装置における水封式真空ポンプの排水構造
JP34976592A JP2737586B2 (ja) 1992-12-01 1992-12-01 脱気装置における溶存酸素濃度一定化方法
JP4/349765 1992-12-01

Publications (1)

Publication Number Publication Date
WO1994003397A1 true WO1994003397A1 (en) 1994-02-17

Family

ID=26530815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000138 WO1994003397A1 (en) 1992-08-07 1993-02-04 Improvement to membrane type deaerator

Country Status (3)

Country Link
US (1) US5584914A (ja)
CA (1) CA2141612C (ja)
WO (1) WO1994003397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303564B (en) * 1995-07-26 1998-12-30 Samsung Electronics Co Ltd Semiconductor device manufacturing apparatus and manufacturing method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4439962A1 (de) * 1994-11-09 1996-05-15 Lang Apparatebau Gmbh Dosierpumpe mit Entlüftungseinrichtung
US5762684A (en) * 1995-11-30 1998-06-09 Dainippon Screen Mfg. Co., Ltd. Treating liquid supplying method and apparatus
JP3767052B2 (ja) * 1996-11-30 2006-04-19 アイシン精機株式会社 多段式真空ポンプ
US6248157B1 (en) * 1999-08-20 2001-06-19 Systec Inc. Vacuum degassing
US7014679B2 (en) * 2001-02-07 2006-03-21 Mykrolis Corporation Process for degassing an aqueous plating solution
US6955706B2 (en) * 2002-04-08 2005-10-18 Dominion Engineering Inc Liquid degassing system for power plant system layup
US6764529B2 (en) * 2002-07-01 2004-07-20 Bendix Commercial Vehicle Systems Llc Membrane gas dehydrating apparatus for gas controlled and powered systems
US6881245B2 (en) * 2002-10-18 2005-04-19 Bendix Commercial Vehicle Systems Llc Membrane air dryer and method of mounting a membrane dryer to a vehicle
US6923845B2 (en) * 2002-10-18 2005-08-02 Bendix Commercial Vehicle Systems Llc Membrane air dryer for vehicle air brake system
WO2005038998A1 (ja) * 2003-10-17 2005-04-28 Mitsubishi Denki Kabushiki Kaisha 固体レーザ発振器および固体レーザ加工装置
US7713331B2 (en) * 2003-11-05 2010-05-11 Rheodyne, Llc Axial transfer line degassing
US6949132B2 (en) * 2003-11-05 2005-09-27 Systel, Llc Axial degassing transfer lines
US7329305B2 (en) * 2005-02-23 2008-02-12 United Technologies Corporation Membrane based de-oxygenator for process streams
US7435283B2 (en) * 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7601203B2 (en) * 2006-07-07 2009-10-13 United Technologies Corporation Hybrid vacuum system for fuel deoxygenation
US8398755B2 (en) * 2010-04-05 2013-03-19 Generon Igs, Inc. Integrated membrane module for gas dehydration and gas separation
DE102011050314A1 (de) 2011-05-12 2012-11-15 Dionex Softron Gmbh Lösungsmittel-Entgasungs-System für HPLC-Systeme mit geringen Flussraten
US20130055732A1 (en) * 2011-09-01 2013-03-07 Joe Johnson Equipment Inc. Ice making system using de-gassed water
US9044712B2 (en) 2011-09-12 2015-06-02 Idex Health & Science, Llc Supersaturated fluid degassing
EP2759327A1 (en) * 2013-01-23 2014-07-30 Bwt Hoh A/S Deaeration of closed recirculating liquid systems
DE102015119237A1 (de) * 2015-11-09 2017-05-11 Corosys Prozeßsysteme und Sensoren GmbH Verfahren zum Entgasen von Wasser sowie Entgasungseinrichtung
DE102016220107B4 (de) * 2016-10-14 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Entgasungsvorrichtung
CN107988068A (zh) * 2017-11-24 2018-05-04 绵阳正耀久生物科技有限公司 用于生物发酵的控制系统
US10913663B2 (en) * 2018-01-30 2021-02-09 John David KRAUSE Systems and methods for controlling waterborne pathogens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998765A (ja) * 1973-01-29 1974-09-18
JPH02303587A (ja) * 1989-05-16 1990-12-17 Dainippon Ink & Chem Inc 浄水装置および浄水方法
JPH0332792A (ja) * 1989-06-29 1991-02-13 Miura Co Ltd 脱酸素システムの制御装置
JPH03154601A (ja) * 1989-11-10 1991-07-02 Ebara Infilco Co Ltd 水中の溶存酸素の除去方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136034C (ja) * 1965-12-22
US3591946A (en) * 1968-11-26 1971-07-13 Loe Ind Fluid-degassing system
US3751879A (en) * 1971-04-26 1973-08-14 Instrumentation Specialties Co Apparatus for reducing the dissolved gas concentration in a liquid
JPS5128261A (ja) * 1974-09-03 1976-03-10 Takuzo Ichihara Datsukisochi
JPS62204086A (ja) * 1986-03-04 1987-09-08 株式会社エルマ、シーアール パイプ
JPH0326882Y2 (ja) * 1986-12-12 1991-06-11
JPH0359004A (ja) * 1989-07-27 1991-03-14 Fuji Photo Film Co Ltd 電子伝導性高分子の製造方法及びそれを用いた導電性材料
ES2052365T3 (es) * 1989-12-09 1994-07-01 Sihi Gmbh & Co Kg Dispositivo para la depuracion continua de los gases de escape de una instalacion de vacio.
JPH03224602A (ja) * 1990-01-31 1991-10-03 Suido Kiko Kk 液中の溶存気体濃度調整装置
JPH044090A (ja) * 1990-04-18 1992-01-08 Miura Co Ltd ガス溶存水製造装置
JPH044089A (ja) * 1990-04-18 1992-01-08 Miura Co Ltd ガス溶存水製造装置
JPH044003A (ja) * 1990-04-19 1992-01-08 Fuji Electric Co Ltd ポリマー溶液の希釈装置
JPH0414188A (ja) * 1990-05-08 1992-01-20 Ibiden Co Ltd 図形塗り潰し方法
US5069686A (en) * 1990-08-07 1991-12-03 Membrane Technology & Research, Inc. Process for reducing emissions from industrial sterilizers
JP2994740B2 (ja) * 1990-11-30 1999-12-27 株式会社ユニフローズ 脱気装置
US5129921A (en) * 1991-05-30 1992-07-14 Membrane Technology & Research, Inc. Membrane gas separation process and apparatus
JP2737468B2 (ja) * 1991-08-10 1998-04-08 三浦工業株式会社 逆洗機能を備えた脱気装置
JPH0584474A (ja) * 1991-09-26 1993-04-06 Hitachi Plant Eng & Constr Co Ltd 溶存酸素の除去方法及び装置
JP3198171B2 (ja) * 1992-10-09 2001-08-13 ダイセル化学工業株式会社 脱気装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998765A (ja) * 1973-01-29 1974-09-18
JPH02303587A (ja) * 1989-05-16 1990-12-17 Dainippon Ink & Chem Inc 浄水装置および浄水方法
JPH0332792A (ja) * 1989-06-29 1991-02-13 Miura Co Ltd 脱酸素システムの制御装置
JPH03154601A (ja) * 1989-11-10 1991-07-02 Ebara Infilco Co Ltd 水中の溶存酸素の除去方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 118793/1989 (Laid-Open No. 59004/1991), (KURITA WATER INDUSTRIES LTD.), (10.06.91), pages 4-5. *
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 547814/1990 (Laid-Open No. 14188/1992), (MIURA KENKYUSHO K.K.), (05.02.92), pages 1 and 7. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303564B (en) * 1995-07-26 1998-12-30 Samsung Electronics Co Ltd Semiconductor device manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
US5584914A (en) 1996-12-17
CA2141612C (en) 1999-03-09
CA2141612A1 (en) 1994-02-17

Similar Documents

Publication Publication Date Title
WO1994003397A1 (en) Improvement to membrane type deaerator
US5007583A (en) Device for accomodating expansion in fluid circulation systems
JP2016121530A (ja) 取水装置及び取水方法
JP5325431B2 (ja) 冷凍装置の廃熱回収装置
JP2020128845A (ja) ドレン回収装置
EP0788402B1 (en) An arrangement in autoclaving systems
WO2024060570A1 (zh) 液冷系统及其控制方法
US3276218A (en) Refrigeration system and method of operating the same
JP2781931B2 (ja) 脱酸素装置
JPH11193904A (ja) ボイラ供給水の脱気装置および脱気方法
JP2630882B2 (ja) 復水回収装置
JP3833417B2 (ja) 冷却水の循環システム
JP2002022274A (ja) 排熱回収システム
JP2630878B2 (ja) 復水回収装置
JPH0568809A (ja) 膜式脱気装置及び原水の脱気方法
JP6930729B2 (ja) 蒸発式熱交換装置
JP2543910Y2 (ja) 脱酸素装置のための溶存酸素一定化システム
JPH0763485A (ja) 蒸気タービン用復水装置及びその運転方法
US654633A (en) Condenser.
JP2001324294A (ja) 復水排出装置
JPH04369387A (ja) 復水器の真空度自動調整装置
JPH0814183A (ja) 脱気装置における水封式真空ポンプの封水冷却システム
JP2006130381A (ja) 蒸留水製造装置
JPH04313308A (ja) 分子拡散効果を利用した脱気方法
JP2008229542A (ja) 脱酸素システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2141612

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08381863

Country of ref document: US