曰月 ^田 β 斜板式連続可変容量型圧縮機 技術分野 Sogetsu ^ Ta β Slanted plate type continuously variable capacitance compressor Technical field
本発明は、 両頭ピストンを装備した斜板式連銃可変容量型 圧縮機の改良に関するものである。 背景技術 The present invention relates to an improvement of a swash plate type continuous gun variable displacement compressor equipped with a double-headed piston. Background technology
車両の空調 ¾に好適な斜扳式連続可変容量型圧縮機として、 例えば特開平 Ί - 1 3 8 3 8 2号公報に開示されているもの が知られている。 この斜板式連続可変容量型圧縮機は、 第 8 図に示すように、 シリンダブロック 5 Ίに形成された複数の ボア 5 2内に両頭ピストン 5 3が収容されるとともに、 ボア 5 2と平行な軸線上に駆動軸 5 4が配設され、 該駆動軸 5 4 にはスライダ 5 5が摺動可能に嵌装されている c スライダ 5 5の球面支持部 5 5 aには周縁部がシュ— 5 6を介して両頭 ピストン 5 3と係合する斜板 5 7が、 符合する球面部 5 7 a によって嵌合され、 該斜板 5 7の前方に張設された連結部 5 7 bにはガイドビン 5 8が装着されて、 これが駆動軸 5 4の フロン卜軸部 5 4 aに穿設された長孔 5 4 bに案内されるこ とにより、 斜扳 5 7はスライダ 5 5の摺動に伴って傾動可能 となされ、 しかもその傾動中心は両頭ピストン 5 3のリャ側 上死点位置が不変となるよう設定されている。
そして、 両頭ビス卜ン 5 3の圧縮反力は常に斜扳 5 7の傾 角を縮小させる向きのモーメン卜: VIとして作用し、 これがス ライダ 5 5を介してプランジャ 6 0を図示右方向へ付勢する。 また、 このプランジャ 6 0とリャハウジング 5 0との間には 制御圧室 5 9が形成され、 この制御圧室 5 9には後述する制 御弁 4 0 (第 9図参照) によって吐出圧力 P d及び吸入圧力 P sが選択的に導入されるため、 プランジャ 6 0は図示左方 向へも付勢される。 このため、 これら対向する両付勢力の均 衡により、 プランジャ 6 0及びスライダ 5 5を介して斜板 5 7の傾角、 つまり圧縮機の吐出容量が確定される。 As an oblique type continuously variable capacitance compressor suitable for air conditioning of vehicles, for example, the one disclosed in Japanese Patent Application Laid-Open No. Ί -1 3 8 3 8 2 is known. As shown in Fig. 8, this swash plate type continuously variable capacitance compressor has a double-headed piston 5 3 housed in a plurality of bores 5 2 formed in the cylinder block 5 Ί and is parallel to the bore 5 2. A drive shaft 5 4 is arranged on the axis line, and a slider 5 5 is slidably fitted to the drive shaft 5 4. c The spherical support portion 5 5 a of the slider 5 5 has a peripheral portion. A swash plate 5 7 that engages a double-headed piston 5 3 via a 5 6 is fitted by a matching spherical portion 5 7 a to a connecting portion 5 7 b stretched in front of the swash plate 5 7. A guide bin 5 8 is attached, and this is guided by a long hole 5 4 b drilled in the front shaft portion 5 4 a of the drive shaft 5 4, so that the swash plate 5 7 slides on the slider 5 5. It is possible to tilt with movement, and the center of tilt is set so that the top dead center position on the Lya side of the double-headed piston 53 does not change. Then, the compressive reaction force of the double-headed screw 5 3 always acts as a momentum: VI in the direction of reducing the tilt angle of the slant 5 7, which moves the plunger 6 0 to the right in the figure via the slider 5 5. Encourage. A control pressure chamber 5 9 is formed between the plunger 60 and the rear housing 50, and the discharge pressure P is provided in the control pressure chamber 5 9 by a control valve 40 (see Fig. 9) described later. Since d and the suction pressure P s are selectively introduced, the plunger 60 is also urged to the left in the figure. Therefore, the tilt angle of the swash plate 57, that is, the discharge capacity of the compressor, is determined via the plunger 60 and the slider 5 5 by the equalization of these opposing urging forces.
制御弁 4 0の一般的な構成を第 9図に示す。 制御弁 4 0の 弁主体 4 1にはダイヤフラム 4 2に連接されたボール弁 4 3 が、 大気圧 P a t m及び対抗するばね 4 4、 5の付勢力と、 検圧管路 aを介して斜板室 6 1 (第 8図参照〉 と連通し吸入 圧力 P sが導入される検知圧室 4 6の圧力変動とに基づいて 動作するように内装されている。 ボール弁 4 3を収容する弁 室 4 7は供給管路 bにより常に上記制御圧室 5 9 (第 8図参 照) に連通されるとともに、 さらに同弁室 4 7の第 Ί弁座 4 8 aによって区画される上部室 4 8は高圧管路 cを経て吐出 室 6 2 (第 8図参照) に連なり、 同じく第 2弁座 4 9 aによ つて区画される下部室 4 9は低圧管路 dを経て検知圧室 4 6 と同様斜板室 6 Ίに連通されている。 したがって、 この制御 弁 4 0では、 検圧管路 aを介して検知圧室 4 6に導入される 吸入圧力 P sが大気圧 P a t m及び対抗するばね 4 4、 4 5
の付勢力に打勝つときには、 図示のようにダイヤフラム 4 2 が下方に撓んでボール弁 4 3は第 2弁座 4 9 aに着座し、 高 圧管路 cを絰た吐出圧力 P dが供給管路 bを経て発動圧力 P cとして制御圧室 5 9に供給される。 逆に、 検知圧室 4 6に 導入される吸入圧力 P sが大気圧 P a t m及び対抗するばね 4 4、 4 5の付勢力に打負けるときには、 ダイヤフラム 4 2 が上方への反転を開始してボール弁 4 3は第 2弁座 4 9 aを 徐々に開放し、 制御圧室 5 9内圧力は供給管路 bを逆に経由 し、 低圧管路 clを絰て斜板室 6 Ίへ逃出するので、 発動圧力 P cはこれに伴って低下する c こうして、 この圧縮機では、 吸入圧力 P sの変化に応じて容量を変化させることができる。 上記従来の圧縮機においては、 制御弁 4 0におけるボール 弁 4 3の開度が吸入圧力 P sに応動するダイアフラム 4 2の 伸縮によって制御されるようになされており、 かかる弁開度 に基づく制御圧室 5 9内の圧力変化を通じて、 斜板 5 7の傾 角が制御される。 この場合、 感圧手段であるダイアフラム 4 2の圧力制御点は大気圧 P a t m及び対抗するばね 4 4、 4 5のばね定数により特定されているので、 結果的に吸入圧力 P sによってのみ斜板 5 7の傾角、 つまり圧縮機の吐出容量 が制御される。 このため、 上記従来の圧縮機においては、 例 えば車両の急加速時における運転フィーリングの悪化を避け るべく急激な容量低下を要望しても、 かかる要望に応えるこ とができない。 また、 かかる圧縮機を含む車両空調装置は夏 場に合わせて空調を行ないうるよう一定に設定されており、
季節変化や外の環境変化に応じた空調を要望しても、 吸入圧 力 P sの変化を待って容量制御を行なう該圧縮機の下では、 かかる要望に迅速に応えることができない c したがって、 従 来の圧縮機では、 運転フィーリングばかりでなく空調機能の 面からも決して満足すべきものとはいい難い。 Figure 9 shows the general configuration of the control valve 40. A ball valve 4 3 connected to a diaphragm 4 2 is attached to the valve main body 4 1 of the control valve 40 0 through the atmospheric pressure Patm and the urging force of the opposing springs 4 4 and 5 and the swash plate chamber via the pressure detection line a. It is designed to operate based on the pressure fluctuation of the detection pressure chamber 4 6 in which the suction pressure P s is introduced in communication with 6 1 (see Fig. 8). The valve chamber that houses the ball valve 4 3 4 7 is always communicated with the control pressure chamber 5 9 (see Fig. 8) by the supply pipeline b, and the upper chamber 4 8 partitioned by the Ί valve seat 4 8 a of the valve chamber 4 7 is further connected. The lower chamber 4 9 which connects to the discharge chamber 6 2 (see Fig. 8) via the high pressure pipeline c and is also partitioned by the second valve seat 4 9 a becomes the detection pressure chamber 4 6 via the low pressure pipeline d. Similarly, it communicates with the swash plate chamber 6 Ί. Therefore, in this control valve 40, the suction pressure P s introduced into the detection pressure chamber 4 6 through the pressure detection line a is the atmospheric pressure Pat m and the counter spring 4 4, 4 5 When overcoming the urging force of, the diaphragm 4 2 bends downward as shown in the figure, the ball valve 4 3 sits on the second valve seat 4 9 a, and the discharge pressure P d through the high pressure line c is the supply pipe. It is supplied to the control pressure chamber 59 as the activation pressure P c via the path b. On the contrary, when the suction pressure P s introduced into the detection pressure chamber 4 6 defeats the atmospheric pressure Pat m and the urging force of the opposing springs 4 4 and 4 5, the diaphragm 4 2 starts to reverse upward. The ball valve 4 3 gradually opens the second valve seat 4 9 a, and the internal pressure in the control pressure chamber 5 9 passes through the supply line b in the opposite direction, and escapes to the swash plate room 6 Ί through the low pressure line cl. Therefore, the activation pressure P c decreases with this c. Thus, in this compressor, the capacity can be changed according to the change of the suction pressure P s. In the above-mentioned conventional compressor, the opening degree of the ball valve 4 3 in the control valve 40 is controlled by the expansion and contraction of the diaphragm 4 2 in response to the suction pressure P s, and the control is based on the valve opening degree. The tilt angle of the swash plate 5 7 is controlled through the pressure change in the pressure chamber 5 9. In this case, the pressure control point of the diaphragm 4 2 which is the pressure sensitive means is specified by the atmospheric pressure Patm and the spring constants of the opposing springs 4 4 and 45, and as a result, the swash plate is only determined by the suction pressure P s. The tilt angle of 57, that is, the discharge capacity of the compressor is controlled. Therefore, in the above-mentioned conventional compressor, for example, even if a sudden decrease in capacity is requested in order to avoid deterioration of the driving feeling at the time of sudden acceleration of the vehicle, such a request cannot be met. In addition, the vehicle air conditioner including such a compressor is set to be constant so that it can be air-conditioned according to the summer. Also requested that the air conditioning in response to seasonal changes or external environmental changes, under the compressor waiting for changes in the suction pressure P s performing capacity control, c thus can not meet rapidly to such demands, It is hard to say that conventional compressors are satisfactory not only in terms of driving feeling but also in terms of air conditioning function.
本発明は、 定常的な容量制御に加えて、 臨機応変な容量制 御をも可能とする斜板式連続可変容量型圧縮機を提供するこ とを目的とする c 発明の開示 Disclosure of the invention c.
本発明の斜板式連続可変容量型圧縮機は、 複数のボア内に 両頭ビス卜ンを収容したシリンダプロックと、 上記ボアと平 行な軸線上に配設された駆動軸と、 該駆動軸に摺動可能に嵌 裝されたスライダと、 該スライダに傾動自在に枢支されて上 記両頭ビス卜ンと係合し上記駆動軸に穿設された長孔と嵌合 するガイドビンを備えた斜板と、 上記スライダを回転自在に 支承し該スライダの軸方向変位によって該斜板の傾角を変動 させるプランジャとを含み、 吸入圧力または吐出圧力に応動 する感圧手段によって、 該プランジャとハウジングとの間に 形成される制御圧室に吐出圧力及び吸入圧力を選択的に導入 し、 該プランジャ及び該スライダを介して該斜板の傾角を変 動させる制御弁を備えた斜扳式連続可変容量型圧縮機におい 前記制御弁は、 前記感圧手段の圧力制御点を変化させる可
変付勢手段を備えることを特徵とする。 The swash plate type continuously variable pressure compressor of the present invention has a cylinder block in which double-headed screws are housed in a plurality of bores, a drive shaft arranged on an axis parallel to the bore, and the drive shaft. It is equipped with a slidably fitted slider and a guide bin that is tiltably pivotally supported by the slider and engages with the above-mentioned double-headed screw to fit into a long hole drilled in the drive shaft. The plunger and the housing include a swash plate and a plunger that rotatably supports the slider and changes the tilt angle of the swash plate by axial displacement of the slider, and by a pressure sensitive means that responds to suction pressure or discharge pressure. A slanted continuously variable capacitance equipped with a control valve that selectively introduces discharge pressure and suction pressure into a control pressure chamber formed between the two and changes the tilt angle of the slant plate via the plunger and the slider. Smell of type compressor The control valve can change the pressure control point of the pressure sensitive means. It is a special feature to have a means of change.
本発明の斜板式連続可変容量型圧縮機は、 従来の斜板式連 続可変容量型圧縮機の制御弁に代えて、 感圧手段の圧力制御 点を変化させる可変付勢手段を持つ制御弁を採用したところ に構成上の特色をもつ。 The swash plate type continuously variable capacitance compressor of the present invention replaces the control valve of the conventional swash plate type continuous variable capacitance compressor with a control valve having a variable urging means that changes the pressure control point of the pressure sensitive means. It has a structural feature where it is adopted.
ここに、 感圧手段の圧力制御点とは、 設定吸入圧力と均衡 する感圧手段の変位点をいう。 Here, the pressure control point of the pressure-sensitive means means a displacement point of the pressure-sensitive means that is in equilibrium with the set suction pressure.
この制御弁は制御圧室に吐出圧力および吸入圧力を選択的 に導入する導入圧力切替え弁と圧力制御点を変化させる可変 付勢手段をもち導入圧力切替え弁を駆動する感圧手段をもつ。 導入圧力切替え弁は、 吸入圧力、 吐出圧力およびその中間 圧力を制御圧室へ導入するために、 吸入圧力と吐出圧力のそ れぞれに連通する弁口の開度を調整するように可動弁体が前 記両弁口間を移動するものである。 かかる導入圧力切替え弁 として、 本発明の実施例では、 可動弁としてボール弁を持つ ものを使用しているがこれにかぎることはない。 This control valve has an introduction pressure switching valve that selectively introduces discharge pressure and suction pressure into the control pressure chamber, a variable urging means that changes the pressure control point, and a pressure sensitive means that drives the introduction pressure switching valve. The introduction pressure switching valve is a movable valve that adjusts the opening of the valve opening that communicates the suction pressure and the discharge pressure, respectively, in order to introduce the suction pressure, the discharge pressure and the intermediate pressure thereof into the control pressure chamber. The body moves between the two valves mentioned above. As such an introduction pressure switching valve, in the embodiment of the present invention, a movable valve having a ball valve is used, but the valve is not limited to this.
感圧手段としては吸入圧力および吐出圧力のいずれか一方 の圧力変動に応じて導入圧力切替え弁を正逆に駆動する感圧 部と圧力制御点を変化させる可変付勢手段とをもつ。 感圧部 としてはダイヤフラムの一方側の圧力室に吸入圧力または吐 出圧力が作用し、 圧力室に作用する吸入圧力または吐出圧力 に抗するばね等の付勢手段をもつ機構を利用できる。 そして ダイヤフラムの動きを導入圧力切替え弁の可動弁に伝えて可 動弁を駆動する。 ダイヤフラムの他方側には大気圧、 真空等
所定の圧力をもつ圧力室を形成する。 なお、 感圧部のダイヤ フラムに代えてビス卜ン等の圧力流体により駆動されるもの を使用できる。 The pressure-sensitive means include a pressure-sensitive part that drives the introduction pressure switching valve in the forward and reverse directions according to the pressure fluctuation of either the suction pressure or the discharge pressure, and a variable urging means that changes the pressure control point. As the pressure sensitive part, a mechanism having an urging means such as a spring that acts on the pressure chamber on one side of the diaphragm and resists the suction pressure or the discharge pressure acting on the pressure chamber can be used. Then, the movement of the diaphragm is transmitted to the movable valve of the introduction pressure switching valve to drive the movable valve. Atmospheric pressure, vacuum, etc. on the other side of the diaphragm A pressure chamber with a predetermined pressure is formed. Instead of the pressure-sensitive diaphragm, a pressure fluid such as a screw can be used.
可変付勢手段は感圧部に付加する状態で可動弁を可変付勢 力で一方向あるいは逆方向に付勢するものである。 具体的に は、 可変付勢手段として、 電気的に制御された機械的付勢手 段や流体圧力を採用することができる。 この可変付勢手段は、 季節変化や外の環境変化に応じた容量制御を行なうため、 蒸 発器吹出し温度、 日射による外気温等の検出指令信号によつ て制御することができる。 また、 車両の急加速に応じた容量 制御を行なうため、 アクセル開度、 エンジン回転数、 車速等 の検出指令信号によって制御することができる。 The variable urging means urges the movable valve in one direction or the opposite direction with a variable urging force while being applied to the pressure sensitive portion. Specifically, an electrically controlled mechanical urging mechanism or fluid pressure can be adopted as the variable urging means. Since this variable urging means controls the capacity according to seasonal changes and changes in the outside environment, it can be controlled by detection command signals such as the steamer outlet temperature and the outside air temperature due to solar radiation. In addition, since capacity control is performed according to the sudden acceleration of the vehicle, it can be controlled by detection command signals such as accelerator opening, engine speed, and vehicle speed.
本発明の斜板式連続可変容量型圧縮機は、 車両の急加速、 季節変化又は外の環境変化等により感圧手段の圧力制御点が 変化するので、 これら車両の急加速等に迅速に対応して容量 制御を行なうことができ、 例えば車両の急加速時における運 転フィーリングの悪化を避けるべく圧縮機の急激な容量低下 が可能となる。 図面の簡単な説明 Since the pressure control point of the pressure-sensitive means changes due to sudden acceleration of the vehicle, seasonal changes, or changes in the outside environment, the swash plate type continuously variable capacitance compressor of the present invention quickly responds to the sudden acceleration of these vehicles. The capacity can be controlled, for example, the capacity of the compressor can be sharply reduced in order to avoid deterioration of the movement feeling when the vehicle is suddenly accelerated. A brief description of the drawing
第 Ί〜4図は本発明の実施例 Ίの圧縮機に係り、 第 Ί図は 圧縮機の断面図、 第 2図は制御弁の断面図、 第 3図は時間と 吐出容量との関係を示すグラフ、 第 4図は電磁石に供給する 電流と設定吸入圧力との関係を示すグラフである。
第 5図及び第 6図は実施例 _の圧縮機に係り、 第 5図は制 御弁の断面図、 第 6図は電磁石へ通電する電流と設定吸入圧 力との関係を示すグラフである。 Figures Ί to 4 relate to the compressor of Example Ί of the present invention, Fig. Ί is a cross-sectional view of the compressor, Fig. 2 is a cross-sectional view of the control valve, and Fig. 3 shows the relationship between time and discharge capacity. The graph shown, Fig. 4, is a graph showing the relationship between the current supplied to the electromagnet and the set suction pressure. Figure 5 and Figure 6 relates to Example _ of the compressor, cross-sectional view of Fig. 5 control valve, Figure 6 is a graph showing the relationship between the current and the target suction pressure to be supplied to the electromagnet ..
第 7図は実施例 3の制御弁の断面図である。 FIG. 7 is a cross-sectional view of the control valve of the third embodiment.
第 8図及び第 9図は従来の圧縮機に係り、 第 8図は従来の 圧縮機の断面図、 第 9図は制御弁の断面図である。 発明を実施するための最良の形態 以下、 本発明の斜板式連続可変容量型圧縮機を実施例によ り具体的に説明する。 Fig. 8 and Fig. 9 relate to the conventional compressor, Fig. 8 is a cross-sectional view of the conventional compressor, and Fig. 9 is a cross-sectional view of the control valve. Best Mode for Implementing the Invention Hereinafter, the swash plate type continuously variable capacitance compressor of the present invention will be specifically described with reference to Examples.
[実施例 Ί [Example Iota
実施例 Ίの圧縮機は、 第 1図に示すように、 シリンダブ口 ック Ίが前後一対のプロック Ί a , 1 bを互いに接合して構 成され、 その内部中央には斜板室 2が形成されるとともに、 前後両端面にはフロン卜ハウジング 3及びリャハウジング 4 が結合されている。 シリンダプロック Ίには斜板室 2のフロ ン卜側及びリャ側の対向する位置に複数組のボア 5 a、 5 が形成され、 両ボア 5 a、 5 b内には両頭ピストン 6が往復 動可能に収容されている c As shown in Fig. 1, the compressor of Example Ί is constructed by joining a pair of front and rear blocks Ί a and 1 b to each other, and a swash plate chamber 2 is formed in the center of the inside. At the same time, the front and rear end faces are connected to the front and rear housings 3 and the rear housing 4. Multiple sets of bores 5 a and 5 are formed in the cylinder block Ί at opposite positions on the front side and the rear side of the swash plate chamber 2, and the double-headed piston 6 can reciprocate in both bores 5 a and 5 b. Housed in c
シリンダプロック Ίにはフロン卜軸部 7 aと、 リャ軸部 7 bと、 両者の間に形成された偏平な連結部 7 cとからなる駆 動軸 7がボア 5 a、 5 bと平行な軸線上に回転可能に支持さ れ、 連結部 7 cには長孔 7 dが穿設されている。 リャ側のプ ロック 1 bには套管 8が駆動軸 7の軸心に沿って移動可能に
配設され、 駆動軸 7はフロン卜軸部 7 aが軸受 9 aを介して フロン卜側のプロック Ί aに支持され、 リャ軸部 7 bが前記 套管 8に軸受 9 bを介して回転可能に支承されたスライダ Ί 0と嵌合されている。 In the cylinder block Iota, the drive shaft 7 consisting of the front shaft portion 7 a, the rear shaft portion 7 b, and the flat connecting portion 7 c formed between the two is parallel to the bores 5 a and 5 b. It is rotatably supported on the axis, and a long hole 7d is bored in the connecting part 7c. In the block 1 b on the Lya side, the stalk 8 can be moved along the axis of the drive shaft 7. The drive shaft 7 is arranged so that the front shaft portion 7 a is supported by the front shaft portion 7 a via the bearing 9 a and the front shaft portion 7 b is supported by the front shaft portion 7 b via the bearing 9 b. Fitted with a possible bearing slider Ί 0.
斜板室 2内に位置するスライダ Ί 0の基部には一対の支軸 1 1が径方向に突設され、 該支軸 Ί 1を枢軸として斜板 Ί 2 が傾動可能に支持されている。 斜扳 Ί 2はその回転揺動運動 をシユー Ί 3を介して両頭ピストン 6に往復運動として伝達 する本体部 Ί 2 aと、 該本体部 Ί 2 aから前方に張出し、 上 記長孔 7 dにガイドビン 1 5を介して連結される回転力伝達 部 Ί 2 bとにより形成されている c そして、 上記套管 8と共 動するスライダ Ί 0の軸方向変位に基づき、 ガイドビン Ί 5 が長孔 7 dに案内されることにより斜板 Ί 2の傾角が変動し、 その傾動中心は両頭ビス卜ン 6のリャ側上死点が不変となる よう設定されている。 A pair of support shafts 1 1 project in the radial direction at the base of the slider Ί 0 located in the swash plate chamber 2, and the swash plate Ί 2 is supported so as to be tiltable with the support shaft Ί 1 as a pivot axis. The swash plate Ί 2 has a main body Ί 2 a that transmits the rotational swing motion to the double-headed piston 6 as a reciprocating motion via the displacement Ί 3, and a long hole 7 d that extends forward from the main body Ί 2 a. a and c are formed by the guide bottle 1 5 torque transmission are connected via a portion Ί 2 b, based on the axial displacement of the slider I 0 co dynamic and the sleeve 8, the guide bottles I 5 The tilt angle of the swash plate Ί 2 fluctuates by being guided by the long hole 7 d, and the center of tilt is set so that the top dead center on the Lya side of the double-headed piston 6 does not change.
シリンダプロック Ί と前後両ハウジング 3、 4との間には バルブプレー卜 2 0、 2 Ίが介在され、 前後両ハウジング 3、 4内には吸入室 2 2、 2 3及び吐出室 2 4、 2 5が形成され るとともに、 各吐出室 2 4、 2 5は図示しない吐出口を介し て外部冷却回路に連結されている。 フロン卜吸入通路 2 6を 介して斜板室 2と連通するフロン卜吸入室 2 2は、 バルブプ レー卜 2 0に設けられた吸入弁機構 (図示せず) を介してフ ロン卜圧縮室に連通し、 フロン卜吐出室 2 4は吐出弁機構 (図示せず) を介して同じくフロン卜圧縮室に連通されてい
る。 一方、 リャ吸入通路 2 7を介して斜板室 2と連通するリ ャ吸入室 2 3も、 バルブプレー卜 2 に設けられた同様の吸 入弁機構 (図示せず) を介してリャ圧縮室に連通し、 リャ吐 出室 2 5は吐出弁機構 (図示せず) を介して同じくリャ圧縮 室に連通されている。 Valve play boxes 20 and 2 Ί are interposed between the cylinder block Ί and the front and rear housings 3 and 4, and the suction chambers 2 2, 2 3 and the discharge chambers 2 4 and 2 are inside the front and rear housings 3 and 4. 5 is formed, and the discharge chambers 2 4 and 25 are connected to an external cooling circuit via a discharge port (not shown). The Freon suction chamber 2 2 communicating with the swash plate chamber 2 via the Freon suction passage 2 6 communicates with the Freon compression chamber via a suction valve mechanism (not shown) provided in the valve play 20. However, the Freon discharge chamber 2 4 is also communicated with the Freon compression chamber via a discharge valve mechanism (not shown). NS. On the other hand, the rear suction chamber 2 3 communicating with the swash plate chamber 2 via the rear suction passage 2 7 also enters the rear compression chamber via a similar suction valve mechanism (not shown) provided in the valve play box 2. The air discharge chamber 25 is also communicated with the rear compression chamber via a discharge valve mechanism (not shown).
リャ吸入室 2 3の後方側にはプランジャ 3 3が前記套管 8 の袴部 8 aと当接する状態で軸方向に摺動可能に嵌装されて おり、 かかるプランジャ 3 3とリャハウジング 4との間には 制御圧室 3 2が形成されいる。 この制御圧室 3 2には、 第 2 図に示す制御弁 7 0から発動圧力 P cが供給される。 制御弁 7 0は、 弁主体 7 Ί内に、 一端にボール弁 7 3、 略中央にダ ィャフラム 7 2、 他端に可動鉄芯 8 1がそれぞれ固着された ロッド 8 0が内装され、 ボール弁 7 3と可動鉄芯 8 1 とが対 抗するばね 7 4、 7 5に押圧された状態にある。 ボール弁 7 3を収容する弁室 7 7は供給管路 bにより常に上記制御圧室 3 2 (第 Ί図参照〉 に連通されるとともに、 さらに同弁室 7 7の第 Ί弁座 7 8 aによって区画される上部室 7 8は高圧管 路 cを経てリャ吐出室 2 5 〈第 Ί図參照) に連なり、 同じく 第 2弁座 7 9 aによって区画される下部室 7 9は低圧管路 d を経て斜板室 2 (第 Ί図参照) に連通されている。 このボー ル弁を含む部分が本発明の導入圧力切替え弁を構成する。 A plunger 3 3 is fitted on the rear side of the rear suction chamber 2 3 so as to be slidable in the axial direction in a state where the plunger 3 3 is in contact with the hakama portion 8 a of the stalk 8. A control pressure chamber 3 2 is formed between them. The activation pressure P c is supplied to the control pressure chamber 3 2 from the control valve 70 shown in Fig. 2. The control valve 70 has a ball valve 73 at one end, a diaphragm 7 2 at the center, and a rod 80 with a movable iron core 8 1 at the other end inside the valve body 7 Iota. 7 3 and the movable iron core 8 1 are pressed by the opposing springs 7 4 and 7 5. The valve chamber 7 7 accommodating the ball valve 7 3 is always communicated with the control pressure chamber 3 2 (see Fig. Ί> by the supply line b, and the Ί valve seat 7 8 a of the same valve chamber 7 7 is further connected. The upper chamber 7 8 partitioned by is connected to the Lya discharge chamber 2 5 <Fig. Iota] via the high-pressure pipe c, and the lower chamber 7 9 also partitioned by the second valve seat 7 9 a is the low-pressure pipe d. It communicates with the swash plate chamber 2 (see Fig. Ί) via. The portion including the ball valve constitutes the introduction pressure switching valve of the present invention.
ダイヤフラム 7 2によって区画されるボール弁 7 3側の第 1検知圧室 7 6は検圧管路 aを絰て斜板室 2と連通し、 吸入 圧力 P sが導入されるようになっている c ダイヤフラム 7 2
によって区画される可動鉄芯 8 1側の第 2検知圧室 8 2には 開口 8 3を経て大気圧 P a t mが導入されるようになってい る。 さらに、 可動鉄芯 8 1の周囲には、 可動鉄芯 8 1の第 2 検知室 8 2側に固定鉄芯 8 4をもつ電磁石 8 5が弁主体 7 Ί と一体的に装備されている = かかる電磁石 8 5は、 アクセル 開度を検出する図示しないポテンショメータが接続されたマ イコンからなる制御手段 8 6と接続されており、 該ポテンシ ョメータの検出するアクセル開度に応じた値の電流が通電さ れるようになされている c なお、 ばね 7 4、 7 5、 ダイヤフ ラム 7 2および第 Ί検知圧室 7 6を含む部分が本発明の感圧 部の主要部分を構成する。 そして可動鉄芯 8 1および固定鉄 芯 8 をもつ電磁石 8 5を含む部分が本発明の可変付勢手段 の主要部を構成する。 The first detection pressure chamber 7 6 on the ball valve 7 3 side partitioned by the diaphragm 7 2 communicates with the swash plate chamber 2 through the pressure detection line a, and the suction pressure P s is introduced. C Diaphragm 7 2 Atmospheric pressure Patm is introduced into the second detection pressure chamber 8 2 on the side of the movable iron core 8 1 partitioned by the opening 8 3. Furthermore, around the movable iron core 8 1, an electromagnet 8 5 having a fixed iron core 8 4 on the second detection chamber 8 2 side of the movable iron core 8 1 is integrally equipped with the valve main body 7 Ί = The electromagnet 8 5 is connected to a control means 8 6 composed of a microcomputer to which a potentiometer (not shown) for detecting the accelerator opening is connected, and a current having a value corresponding to the accelerator opening detected by the potentiometer is energized. c Note to have been made as a spring 7 4, 7 5, the portion including the diaphragms 7 2 and the Ί sensing chamber 7 6 constituting the main portion of the pressure sensitive portion of the present invention. The portion including the movable iron core 8 1 and the electromagnet 8 5 having the fixed iron core 8 constitutes the main part of the variable urging means of the present invention.
そして、 第 Ί図に示すように、 制御圧室 3 2内へ供給され る発動圧力 P cはプランジャ 3 3、 套管 8及びスライダ 1 0 を介して斜板 Ί 2に伝達され、 これが圧縮反力によって斜板 1 2の傾角を常に縮小させる向きに作用するモーメント Mに 対抗し、 両者の力の均衡によって斜板 Ί 2の傾角、 つまり圧 縮機の吐出容量が確定される。 Then, as shown in Fig. Ί, the activation pressure P c supplied into the control pressure chamber 3 2 is transmitted to the swash plate Ί 2 via the plunger 3 3, the stalk 8 and the slider 10, and this is the compression reaction. The force acts against the moment M, which acts in a direction that constantly reduces the tilt angle of the diagonal plate 1 2, and the balance between the two forces determines the tilt angle of the diagonal plate Ί 2, that is, the discharge capacity of the compressor.
上述のように構成された圧縮機が運転されて駆動軸 7が回 転すると、 斜板つ 2は駆動軸 7と一体的に回転するとともに 揺動運動し、 シユー Ί 3を介して両頭ピストン 6がボア 5 a、 5 b内を往復動する。 吸入管路を絰て導入される帰還冷媒ガ スは、 両頭ビス卜ン 6の往復動に伴って入口部から斜板室 2
へ入り、 フロン卜吸入通路 2 6及びリャ吸入通路 2 7を経て それぞれフロン卜及びリャ吸入室 2 2、 2 3に導かれ、 これ よりフロン卜及びリャ圧縮室へ吸入されて圧縮作用を受ける。 そして、 両圧縮室から吐出弁機構 (図示せず〉 を介して吐出 室 2 4、 2 5へ吐出された冷媒ガスは、 吐出通路を絰由し外 部冷媒ガス回路へと送り出される。 When the compressor configured as described above is operated and the drive shaft 7 rotates, the swash plate 2 rotates integrally with the drive shaft 7 and swings, and the double-headed piston 6 is moved through the Shu Ί 3. Moves back and forth within the bores 5 a and 5 b. The return refrigerant gas introduced through the suction pipe is from the entrance to the swash plate chamber 2 as the double-headed screw 6 reciprocates. It is guided to the Freon and Lya suction chambers 2 2 and 2 3 via the Freon suction passage 2 6 and the Lya suction passage 2 7, respectively, and is sucked into the Freon and Lya compression chambers to be compressed. Then, the refrigerant gas discharged from both compression chambers to the discharge chambers 24 and 25 via the discharge valve mechanism (not shown) is sent out to the outer refrigerant gas circuit through the discharge passage.
さて、 例えば車両の定速運転時、 第 2図に示す制御弁 7 0 においては、 電磁石 8 5には所定のアクセル開度に応じた所 定値の電流が通電されており、 この電流値の下、 ダイヤフラ ム 7 2を種々の変位点で均衡させる設定吸入圧力 P s 0が決 定されている。 By the way, for example, during constant speed operation of a vehicle, in the control valve 70 shown in Fig. 2, the electromagnet 85 is energized with a current of a predetermined value according to a predetermined accelerator opening, and below this current value. , The set suction pressure P s 0 that balances the diaphragm 7 2 at various displacement points has been determined.
そして、 車両の定速運転時、 冷房負荷が大きく、 検圧管路 aを介して導入される吸入圧力 P sが高圧側に移行すれば、 第 Ί検知圧室 7 6にその吸入圧力 P sが導入され、 その吸入 圧力 P sで均衡が保たれるまでダイヤフラム 7 2は第 2検知 圧室 8 2の大気圧 P a t m及びばね 7 5の付勢力に打勝ち下 方へ撓む。 このため、 ボール弁 7 3は第 2弁座 7 9 aに着座 しており、 高圧管路 cを経た吐出圧力 P elが発動圧力 P cと して第 1図に示す制御圧室 3 2に供給されている。 したがつ て、 プランジャ 3 3、 套管 8及びスライダ Ί 0からなる付勢 要素を介して斜板 1 2の支軸 Ί 1は前方に付勢され、 これが 圧縮反力によるモーメント Mに抗して同斜板 Ί 2を最大傾角 に保持する。 このとき、 圧縮機は、 第 3図に示すように、 Ί 0 0 ?/0容量で運転されている。
逆に、 車両の定速運転時、 Ί 0 0 %容量運転の継続によつ て冷房負荷が順次小さくなり、 これに基づいて吸入圧力 P s が低圧側に移行すると、 第 2図に示す制御弁 7 0では、 ばね 7 5の付勢力と均衡する第 Ί検知圧室 7 6の圧力降下により、 ダイヤフラム 7 2はその吸入圧力 P sと均衡を保つまで上方 へ反転し、 ボール弁 7 3を第 2弁座 7 9 aから浮上させる。 これにより、 制御圧室 3 2 (第 1図参照) 内の圧力の一部は 斜板室 2側へと逃出し、 同制御圧室 3 2内の圧力は低下する。 このため、 斜板 1 2はその傾角を縮小する向きに変位し、 圧 縮機の容量が定常的に低下する。 Then, during constant speed operation of the vehicle, if the cooling load is large and the suction pressure P s introduced through the pressure detection line a shifts to the high pressure side, the suction pressure P s is transferred to the Ί detection pressure chamber 76. The diaphragm 7 2 overcomes the atmospheric pressure Patm of the second detection pressure chamber 8 2 and the urging force of the spring 75 5 and bends downward until it is introduced and balanced at its suction pressure P s. For this reason, the ball valve 7 3 is seated in the second valve seat 7 9 a, and the discharge pressure P el through the high-pressure pipeline c is used as the activation pressure P c in the control pressure chamber 3 2 shown in Fig. 1. It is being supplied. Therefore, the support shaft Ί 1 of the swash plate 1 2 is urged forward through the urging element consisting of the plunger 3 3, the mantle 8 and the slider Ί 0, which resists the moment M due to the compressive reaction force. Hold the swash plate Ί 2 at the maximum tilt angle. At this time, as shown in Fig. 3, the compressor is operated with a capacity of Ί 0 0? / 0. On the contrary, during constant speed operation of the vehicle, the cooling load gradually decreases as the capacity operation continues at Ί 0%, and based on this, the suction pressure P s shifts to the low pressure side. At the valve 70, the pressure drop in the Ί detection pressure chamber 7 6 that balances with the urging force of the spring 7 5 causes the diaphragm 7 2 to flip upwards until balanced with its suction pressure P s, causing the ball valve 7 3 to Ascend from the 2nd valve seat 7 9 a. As a result, a part of the pressure in the control pressure chamber 3 2 (see Fig. 1) escapes to the swash plate chamber 2 side, and the pressure in the control pressure chamber 3 2 decreases. Therefore, the swash plate 1 2 is displaced in the direction of reducing its inclination angle, and the capacity of the compressor is constantly reduced.
車両がかかる定速運転を実行中、 加速されれば、 アクセル 開度の増加により、 定速運転時の値を超える値の電流が第 2 図に示す制御弁 7 0の電磁石 8 5に通電される。 これにより、 ダイヤフラム 7 2の下方への撓みに逆らって、 可動鉄芯 8つ は固定鉄芯 8 4に引付けられ、 ボール弁 7 3はロッド 8 0を 介して着座を第 2弁座 7 9 aから第 1弁座 7 8 aに移す。 こ のため、 制御圧室 3 2 (第 Ί図参照〉 内の圧力は開放された 第 2弁座 7 9 aから下部室 7 9、 低圧管路 dを絰て斜板室 2 側へと速やかに逃出するので、 同制御圧室 3 2内の圧力は低 下する。 したがって、 第 Ί図に示す斜板 Ί 2に作用する上記 モーメン卜 VIとの均衡が崩れて付勢要素は後退し、 斜板 Ί 2 は上記ガイドピン Ί 5が長孔 7 dに案内されつつその傾角を 縮小し、 圧縮機は容量を低下する。 If the vehicle is accelerated during such constant speed operation, the current exceeding the value during constant speed operation is energized to the electromagnet 85 of the control valve 70 shown in Fig. 2 due to the increase in the accelerator opening. NS. As a result, eight movable iron cores are attracted to the fixed iron core 8 4 against the downward deflection of the diaphragm 7 2, and the ball valve 7 3 is seated via the rod 80 0 on the second valve seat 7 9 Move from a to the first valve seat 7 8 a. For this reason, the pressure in the control pressure chamber 3 2 (see Fig. Ί> is swiftly moved from the open second valve seat 7 9 a to the lower chamber 7 9, and the low pressure pipeline d to the swash plate chamber 2 side. As it escapes, the pressure in the control pressure chamber 3 2 drops. Therefore, the balance with the above-mentioned Momen VI acting on the swash plate Ί 2 shown in Fig. Ί is lost, and the urging element recedes. In the swash plate Ί 2, the guide pin Ί 5 is guided by the elongated hole 7 d to reduce the tilt angle, and the compressor reduces the capacity.
かかる車両の加速が急速に行なわれれば、 アクセル開度の
極端な増加により、 定速運転時の値をはるかに超える値の電 流が第 2図に示す制御弁 7 0の電磁石8 5に通電される。 こ のため、 制御弁 7 0内の可動鉄芯 8 1の瞬間的な移動により、 斜板 1 2の傾角は瞬間的に縮小され、 圧縮機は、 第 3図に示 すように、 迅速に容量を低下する。 If the vehicle accelerates rapidly, the accelerator opening will increase. Due to the extreme increase, the electromagnet 85 of the control valve 70 shown in Fig. 2 is energized with a current whose value far exceeds the value during constant speed operation. For this reason, the momentary movement of the movable iron core 8 1 in the control valve 70 causes the tilt angle of the swash plate 1 2 to be reduced momentarily, and the compressor quickly moves as shown in Fig. 3. Reduce capacity.
車両が加速後の速度で定速運転に移行すれば、 その時のァ クセル開度に応じた電流値によりダイヤフラム 7 2を均衡に 保つ設定吸入圧力 P s o一 ( > P s o ) が決定される。 これ により、 その設定吸入圧力 P s o 'の下で、 検知圧室 7 6へ 導入される吸入圧力 P sの制御が再開される。 すなわち、 本 実施例の圧縮機では、 電流値の増加、 つまりアクセル開度の 増加、 ひいては車両の速度の増加に応じて、 ばね 7 5のばね 定数が実質的に向上することとなり、 設定吸入圧力 P s 0が 高圧側へ変化したこととなる- よって、 この圧縮機では、 第 4図に示すように、 電磁石 8 5へ通電する電流値と、 設定吸 入圧力 P s 0とは正の比例的関係となる s When the vehicle shifts to constant speed operation at the speed after acceleration, the set suction pressure P so 1 (> P so) that keeps the diaphragm 7 2 in equilibrium is determined by the current value according to the accelerator opening at that time. As a result, the control of the suction pressure P s introduced into the detection pressure chamber 76 is resumed under the set suction pressure P so'. That is, in the compressor of this embodiment, the spring constant of the spring 75 is substantially improved as the current value increases, that is, the accelerator opening increases, and the speed of the vehicle increases, and the set suction pressure is set. This means that P s 0 has changed to the high pressure side. Therefore, in this compressor, as shown in Fig. 4, the current value that energizes the electromagnet 85 is positively proportional to the set suction pressure P s 0. S
なお、 上記実施例では車両の急加速を含めた車速に応じた 容量制御を行なうためアクセル開度を検出することにより制 御弁 7 0を制御したが、 周様の容量制御であれば、 例えばェ ンジン回転数の検出や車速の直接検出を行なうことも有効で ある。 また、 季節変化や外の環境変化に応じた容量制御を行 なうのであれば、 例えば蒸発器吹出し温度、 日射、 外気温等 を検出し、 この検出値により制御弁 7 0を制御することもで きる。 これにより、 例えば過冷房の場合には圧縮機の容量低
下、 冷房不足の場合には圧縮機の容量増加を得ることができ、 例えば才ー卜エアコンにおける暖気と冷気との混合空調を極 力回避し、 動力損失を極力防止しつつ、 快適な空調空間が得 られる。 In the above embodiment, the control valve 70 was controlled by detecting the accelerator opening in order to control the capacity according to the vehicle speed including the sudden acceleration of the vehicle. It is also effective to detect the engine speed and directly detect the vehicle speed. In addition, if capacity control is performed according to seasonal changes and changes in the outside environment, for example, the evaporator outlet temperature, solar radiation, outside air temperature, etc. can be detected, and the control valve 70 can be controlled by these detected values. can. As a result, for example, in the case of overcooling, the capacity of the compressor is low. Below, in the case of insufficient cooling, the capacity of the compressor can be increased. For example, in a talented air conditioner, a comfortable air conditioning space can be obtained while avoiding mixed air conditioning of warm air and cold air as much as possible and preventing power loss as much as possible. Is obtained.
[実施例 2二 [Example 2 2
第 5図に示す制御弁つ 7 0のように、 電磁石 Ί 8 5の固定 鉄芯 Ί 8 4を可動鉄芯 Ί 8 Ίの第 2検知室 8 2側と反対側に 設けることちできる c As shown in Fig. 5, the fixed iron core Ί 8 4 of the electromagnet Ί 8 5 can be provided on the side opposite to the second detection chamber 8 2 side of the movable iron core Ί 8 Ί c.
かかる制御弁 Ί 7 0を備えた圧縮機においては、 ばね Ί 7 5のばね定数が実質的に低下することにより、 第 6図に示す ように、 電磁石 Ί 8 5へ通電する電流値と、 設定吸入圧力 P s 0とが負の比例的関係となり、 電流値の増加に応じて設定 吸入圧力 P s 0が低圧側へ変化することとなる。 In a compressor equipped with such a control valve Ί 70, the spring constant of the spring Ί 75 is substantially reduced, so that the current value and setting for energizing the electromagnet Ί 85 are set as shown in Fig. 6. The suction pressure P s 0 has a negative proportional relationship, and the set suction pressure P s 0 changes to the low pressure side as the current value increases.
[実施例 3 ] [Example 3]
第 7図に示す制御弁 2 7 0は、 制御手段により制御される サーボモータ 2 8 Ίの回転軸にウォーム 2 8 2が固着され、 このウォーム 2 8 2と嚙合するとともに弁主体 7 Ίにより摺 動は可能であるが回転が阻止されたナツ 卜 2 8 3が装備され ており、 このナツ 卜 2 8 3の上面とダイヤフラム 7 2の下面 との間にばね 2 7 5が装備されたものである。 In the control valve 2 70 shown in Fig. 7, a worm 2 8 2 is fixed to the rotating shaft of the servomotor 2 8 Ί controlled by the control means, and the worm 2 8 2 is engaged with the worm 2 8 2 and slid by the valve main body 7 Ί. It is equipped with a nut 2 8 3 that can move but is prevented from rotating, and is equipped with a spring 2 7 5 between the upper surface of this nut 2 8 3 and the lower surface of the diaphragm 7 2. be.
この制御弁 2 7 Qを備えた圧縮機においては、 制御手段の 発するパルスに応じてサーボモータ 2 8 1が回転軸を回転さ せることにより、 ウォーム 2 8 2を介してナツ卜 2 8 3が押 し上げられ、 ばね 2 7 5の実質的なばね定数を変更すること
ができる。 このため、 圧縮機は、 パルスに応じて容量制御さ れる。 In a compressor equipped with this control valve 2 7 Q, the servomotor 2 8 1 rotates the rotation axis in response to the pulse emitted by the control means, so that the spring 2 8 3 is transmitted via the worm 2 8 2. Pushed up to change the effective spring constant of the spring 2 7 5 Can be done. Therefore, the compressor is capacitively controlled according to the pulse.
なお、 上記各実施例では、 電気的に制御された機械的付勢 手段として電磁石やサ一ボモータを採用したが、 例えば図示 はしないが、 電磁弁を用いることにより流体圧力を用いるこ とちできる c In each of the above embodiments, an electromagnet or a server motor was adopted as an electrically controlled mechanical urging means. For example, although not shown, a fluid pressure can be used by using a solenoid valve. c
以上、 詳述したように本発明によれば、 可変付勢手段が感 圧手段に可変荷重を加えることによりその圧力制御点を変化 させるため、 定常的な容量制御に加えて、 臨機応変な容量変 化が可能となる。 したがって、 この圧縮機を車両の空調装置 に採用すれば、 良好な加速感を得られるとともに、 季節変化 や外の環境変化に応じた空調が可能となり、 運転フィーリン グばかりでなく空調機能の面からも充分に満足ができる。
As described in detail above, according to the present invention, since the variable urging means changes the pressure control point by applying a variable load to the pressure sensitive means, in addition to the steady capacity control, the capacity is flexible. It can be transformed. Therefore, if this compressor is used in the air conditioner of a vehicle, a good feeling of acceleration can be obtained, and air conditioning can be performed in response to seasonal changes and changes in the outside environment. Can be fully satisfied.