WO1991000181A1 - Ballistic resistant composite article and method - Google Patents
Ballistic resistant composite article and method Download PDFInfo
- Publication number
- WO1991000181A1 WO1991000181A1 PCT/US1990/003035 US9003035W WO9100181A1 WO 1991000181 A1 WO1991000181 A1 WO 1991000181A1 US 9003035 W US9003035 W US 9003035W WO 9100181 A1 WO9100181 A1 WO 9100181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- networks
- resin
- modulus
- network
- impregnated
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims abstract description 11
- 229920005989 resin Polymers 0.000 claims abstract description 55
- 239000011347 resin Substances 0.000 claims abstract description 55
- 239000000835 fiber Substances 0.000 claims abstract description 22
- 239000000853 adhesive Substances 0.000 claims abstract description 10
- 230000001070 adhesive effect Effects 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 description 8
- 239000004744 fabric Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229920001567 vinyl ester resin Polymers 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000004225 ferrous lactate Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- 229920003368 Kevlar® 29 Polymers 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010040954 Skin wrinkling Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 229920003009 polyurethane dispersion Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 208000037974 severe injury Diseases 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/10—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/04—Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/08—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
- B32B38/164—Drying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0471—Layered armour containing fibre- or fabric-reinforced layers
- F41H5/0485—Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B2038/0052—Other operations not otherwise provided for
- B32B2038/0076—Curing, vulcanising, cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
- B32B2571/02—Protective equipment defensive, e.g. armour plates or anti-ballistic clothing
Definitions
- This invention is an article of manufacture for ballistic end use comprising more than one network of high modulus high strength fibers each network being first impregnated with a high modulus resin which can be cured to a rigid state, dried, then each impregnated, dried but not cured network coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. The plied networks are subsequently cured to form a rigid composite without cooling the mold.
- the method of this invention is a method to manufacture a rigid composite for ballistic end use comprising preparing multiple networks of high modulus high strength fibers, impregnating the networks with a high modulus resin, drying the high modulus resin impregnated into the networks, coating the impregnated networks with a low modulus elastomeric resin, plying the dried coated networks together to form multiple layers of the networks, then curing the high modulus resin so that it becomes rigid and so that the elastomeric resin acts as an adhesive between each layer of networks.
- the curing of the high modulus resin can be after plying the networks or before the coating of the impregnated networks with the elastomeric resin. Preferrably between about 2 and about 400 plies of the networks are plied together.
- This invention in detail is an article of manufacture for ballistic end use comprising more than one network of high modulus high strength fibers each network being first impregnated with a high modulus resin capable of being cured to a rigid state, dried, then each impregnated dried network is coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. Preferably the plied networks are subsequently cured to form a rigid composite.
- the preferred plies number betweem about 2 and 400, more preferrably between about 4 and about 80.
- the impregnated networks can be individually cured before being coated with the elastomeric resin.
- the high modulus high strength fiber preferrably has a modulus from about 400,000 psi to about 100 x 10 psi and a strength from 100,000 psi to 1,000,000 psi.
- the high modulus resin has a modulus of between about 100,000 and about 1,000,000 psi and the low modulus elastomeric resin has a modulus from between about 10 psi to about 2,000 psi.
- the high modulus high strength fiber is preferrably selected from the group consisting of high molecular weight polyethylene, aramids, high molecular weight polypropylene, graphite, carbon, metals, alumina polyester, nylon and combinations thereof.
- the most preferred fiber is high molecular weight polyethylene.
- the preferred low modulus elastomeric resin is selected from the group consisting of polybutadiene, polyisoprene, natural rubber, ethylene-propylene copolymers, ethylene-propylenediene terpolymers, polysulfide polymers, polyurethane elastomers, chlorosulfonated polyethylene, polychloroprene, plasticized polyvinylchloride, butadiene acrylonitrile elastomers, poly(isobutylene-co-isoprene) , polyacrylates, polyesters, polyethers, fluoro-elastomers, silicone elastomers, thermoplastic elastomers, copolymers of ethylene and combinations thereof.
- the plastizer for polyvinyl chloride can be diallyl or dioctyl phthalate or other plastizers well known in the art.
- the preferred elastomeric resin is a polyurethane, such as Dispercoll E-585 from Mobay.
- the preferred high modulus resin is selected from the group consisting of phenolics, polyesters, epoxies, vinylesters, rigid polyurethanes, polyimides and mixtures or co-polymers thereof.
- the most preferred high modulus resins are vinylesters.
- the method of this invention is a method to manufacture a rigid composite for ballistic end use comprising preparing a multiple networks of high modulus high strength fibers, impregnating the networks with a high modulus resin, drying the high modulus resin impregnated into the networks, coating the impregnated networks with a low modulus elastomeric resin, plying the dried coated networks together to form multiple layers of the networks and curing the high modulus resin so that it becomes rigid and so that the elastomeric resin acts as an adhesive between each layer of networks.
- the curing of the high modulus resin can be after plying or before coating the networks.
- the preferred number of plies is between about 4 and about 90 plies of the networks plied together.
- ballistic end use is meant not only civilian uses such as bullet-proof vests and mats but particularly the military applications such as helmets and armor or hulls used in aircraft, vehicles, ships and other vessels and similar high impact applications.
- network fibers arranged in configurations of various types.
- the plurality of fibers can be grouped together to form a twisted or untwisted yarn.
- the fibers of yarn may be formed as a felt, knitted or woven (plain, basket, satin and crow feet weaves, etc.) into a network, fabricated into a non-woven fabric, arranged in a parallel array, layered, or formed into a fabric by any of a variety of conventional techniques.
- fiber herein, is meant an elongate body the length dimension of which is much greater than the transverse dimensions of width and thickness. Accordingly, the term fiber includes monofilament, multifilament, ribbon, strip, staple and other forms of chopped or cut fiber and the like having regular or irregular cross-sections.
- a high strength high modulus fiber is a fiber having a tensile modulus of at least 20 grams per denier and tensile strength of at least about 7 grams per denier.
- high modulus resin is meant a resin having a modulus of 100,000 to 1,000,000 psi.
- cured is meant the transition from less rigid to more rigid state as by cross-linking with or without catalyst usually with heat.
- rigid is meant stiff in that the impregnated network has structrual integrity and can stand alone.
- low modulus resin is meant the elastomeric resins having a modulus of less than 2,000 psi.
- adhesive By adhesive is meant that the resin must be compatible with the rigid resin which was impregnated in the network and cannot effect by chemical reaction, by dissolving or otherwise the high modulus resin or its carrier.
- the adhesive must improve adherence between layers and maintain structural integrity of the plies.
- the adhesive may be soft or semi-rigid but it must achieve improved transient deformation and delamination properties.
- transient deformation is meant a test as follows.
- the transient deformation is measured on a soft molding clay kept at 13 mm gap behind the target. After shooting, any deformation more than the gap leaves a per enant dent on the clay. The depth of the dent is then measured by a precise gage. The deformation is calculated by adding the 13 mm and the depth of the dent.
- the second coat alone, the elastomeric resin cannot be used alone because of the need to cool the mold in order to remove the result and composite. This is time consuming and becomes uneconomic on a commercial scale.
- the use of the method and article of this invention provides improved adhesion and yet the increased bonding is not at the detriment of ballistics performance. This is contrary to past experience. In the past whenever adhesion became better, the ballistic performance as determined by the V ⁇ Q data became worse.
- the benefit of this invention over simple composites of the prior art using only elastomeric resin is in manufacturing. There is no need for extensive time to cool the mold to remove the composite.
- the laminate had an areal density of 1.67 psf (pounds per square foot).
- the V 5Q of the laminate was 2010 fps for a .22 cal fsp (fragment simulator projectile).
- the peel strength was 433 g/inch.
- EXAMPLE 2 (Comparative) Twenty-seven layers of prepreg of Example 1 were inserted into a medium size helmet mold and pressed under 180 tons at 240°F for 15 minutes. The finished helmet weighed 2.28 pounds. The V 5Q of the helmet was 2150 fps (feet per second). The transient deformation of the helmet was 29mm when tested with a .30 cal 44 grain fsp at speed of 1560 fps.
- EXAMPLE 3 The same fabric as in example 1 was coated with the same manner as in example 1 and with solution which contained 22.4% vinylester Derakane 8084, 4.47% diallyl phthalate, 0.134% Lupersol 256, 36.53% acetone, and 36.53% ethanol. The resin content of the resulting prepreg was 9.9%. This prepreg was then coated again with an aqueous solution which contained 20% of Dispercoll E-585 solids. The total resin content was 23.4%. A laminate was made under identical conditions as shown in example 1. The weight of the laminate was 1.77 psf. The V ⁇ Q was 2067 fps. The peel strength was 1717 g/inch. Compare Example 1. EXAMPLE 4
- the prepreg made as in example 3 was fabricated into a helmet with identical conditions as shown in example 2.
- the helmet weight was 2.31 pounds.
- the V 5Q was 2349 for a .22 cal 17 grain fsp.
- the transient deformation was 18mm when shot with a .30 cal 44 grain fsp at speed of 1559 fps. Significant improvement in delamination of plies was observed.
- EXAMPLE 5 Comparative
- Kevlar 29 fabric style K29/13 from Knytex (Kevlar 29, 3000 denier, 14 oz/sq. yd., 17 x 17 plain weave) was prepreged with the same resin system as shown in example 1.
- the resin content was 14.4%.
- the 15 layers prepreg were then pressed at 240°F, 20 minutes at 624 psi.
- the laminate had an areal density of 1.63 psf.
- the V 50 of the laminate was 1698 fps.
- the peel strength was 346 g/inch.
- Kevlar fabric was formed into a prepreg and fabricated into laminate as shown in example 3.
- the laminate had an areal density of 1.63 psf.
- the V cn was bu 1727 fps.
- the peel strength was 1480 g/inch.
Landscapes
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
This invention is a method and article of manufacture for ballistic end use work of high modulus, high strength fibers each network being first impregnated with a high modulus resin which can be cured to a rigid state. The impregnated network is dried then each impregnated dried network is coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. The plied networks are subsequently cured to form a rigid composite.
Description
BALLISTIC RESISTANT COMPOSITE ARTICLE AND METHOD BACKGROUND OF THE INVENTION This invention relates to an article of manufacture for ballistic end use. The prior art is described in U.S. 4,737,401, hereby incorporated by reference. Other background patents are U.S. 4,681,792, U.S. 4,737,402, U.S. 4,748,064, U.S. 4,650,710, U.S. 4,623,574, U.S. 4,613,535, U.S. 4,501,856, U.S. 4,457,985, and U.S. 4,403,012 and copending application U.S. Serial No. 62,998 filed July 13, 1987 all hereby incorporated by reference to the extent that they are not inconsistent with the 10 teachings herein. Brief Description of the Invention
This invention is an article of manufacture for ballistic end use comprising more than one network of high modulus high strength fibers each network being first impregnated with a high modulus resin which can be cured to a rigid state, dried, then each impregnated, dried but not cured network coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. The plied networks are subsequently cured to form a rigid composite without cooling the mold. The method of this invention is a method to manufacture a rigid composite for ballistic end use comprising preparing multiple networks of high modulus high strength fibers, impregnating the networks with a high modulus resin, drying the high modulus resin impregnated into the networks, coating the impregnated networks with a low modulus elastomeric resin, plying the dried coated networks together to form multiple layers of the networks, then curing the high modulus resin so that it becomes rigid and so that the elastomeric resin acts as an adhesive between each layer of networks. The curing of the high modulus resin can be after plying the networks or before the coating of the impregnated networks with the elastomeric resin. Preferrably between about 2 and about 400 plies of the networks are plied together.
DETAILED DESCRIPTION OF THE INVENTION This invention in detail is an article of manufacture for ballistic end use comprising more than one network of high modulus high strength fibers each network being first impregnated with a high modulus resin capable of being cured to a rigid state, dried, then each impregnated dried network is coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. Preferably the plied networks are subsequently cured to form a rigid composite. The preferred plies number betweem about 2 and 400, more preferrably between about 4 and about 80. The impregnated networks can be individually cured before being coated with the elastomeric resin. The high modulus high strength fiber preferrably has a modulus from about 400,000 psi to about 100 x 10 psi and a strength from 100,000 psi to 1,000,000 psi. The high modulus resin has a modulus of between about 100,000 and about 1,000,000 psi and the low modulus elastomeric resin has a modulus from between about 10 psi to about 2,000 psi.
The high modulus high strength fiber is preferrably selected from the group consisting of high molecular weight polyethylene, aramids, high molecular weight polypropylene, graphite, carbon, metals, alumina polyester, nylon and combinations thereof. The most preferred fiber is high molecular weight polyethylene.
The preferred low modulus elastomeric resin is selected from the group consisting of polybutadiene, polyisoprene, natural rubber, ethylene-propylene copolymers, ethylene-propylenediene terpolymers, polysulfide polymers, polyurethane elastomers, chlorosulfonated polyethylene, polychloroprene, plasticized polyvinylchloride, butadiene acrylonitrile elastomers, poly(isobutylene-co-isoprene) , polyacrylates, polyesters, polyethers, fluoro-elastomers, silicone elastomers, thermoplastic elastomers, copolymers of ethylene and combinations thereof. The plastizer for
polyvinyl chloride can be diallyl or dioctyl phthalate or other plastizers well known in the art. The preferred elastomeric resin is a polyurethane, such as Dispercoll E-585 from Mobay.
The preferred high modulus resin is selected from the group consisting of phenolics, polyesters, epoxies, vinylesters, rigid polyurethanes, polyimides and mixtures or co-polymers thereof. The most preferred high modulus resins are vinylesters.
The method of this invention is a method to manufacture a rigid composite for ballistic end use comprising preparing a multiple networks of high modulus high strength fibers, impregnating the networks with a high modulus resin, drying the high modulus resin impregnated into the networks, coating the impregnated networks with a low modulus elastomeric resin, plying the dried coated networks together to form multiple layers of the networks and curing the high modulus resin so that it becomes rigid and so that the elastomeric resin acts as an adhesive between each layer of networks. The curing of the high modulus resin can be after plying or before coating the networks. The preferred number of plies is between about 4 and about 90 plies of the networks plied together.
By ballistic end use is meant not only civilian uses such as bullet-proof vests and mats but particularly the military applications such as helmets and armor or hulls used in aircraft, vehicles, ships and other vessels and similar high impact applications.
By network is meant fibers arranged in configurations of various types. For example, the plurality of fibers can be grouped together to form a twisted or untwisted yarn. The fibers of yarn may be formed as a felt, knitted or woven (plain, basket, satin and crow feet weaves, etc.) into a network, fabricated into a non-woven fabric, arranged in a parallel array, layered, or formed into a fabric by any of a variety of conventional techniques. For fiber herein, is meant an
elongate body the length dimension of which is much greater than the transverse dimensions of width and thickness. Accordingly, the term fiber includes monofilament, multifilament, ribbon, strip, staple and other forms of chopped or cut fiber and the like having regular or irregular cross-sections. For purposes of this invention in general, a high strength high modulus fiber is a fiber having a tensile modulus of at least 20 grams per denier and tensile strength of at least about 7 grams per denier. By high modulus resin is meant a resin having a modulus of 100,000 to 1,000,000 psi. By cured is meant the transition from less rigid to more rigid state as by cross-linking with or without catalyst usually with heat. By rigid is meant stiff in that the impregnated network has structrual integrity and can stand alone. By low modulus resin is meant the elastomeric resins having a modulus of less than 2,000 psi. By adhesive is meant that the resin must be compatible with the rigid resin which was impregnated in the network and cannot effect by chemical reaction, by dissolving or otherwise the high modulus resin or its carrier. The adhesive must improve adherence between layers and maintain structural integrity of the plies. The adhesive may be soft or semi-rigid but it must achieve improved transient deformation and delamination properties. By transient deformation is meant a test as follows.
The transient deformation is measured on a soft molding clay kept at 13 mm gap behind the target. After shooting, any deformation more than the gap leaves a per enant dent on the clay. The depth of the dent is then measured by a precise gage. The deformation is calculated by adding the 13 mm and the depth of the dent.
Benefits of this invention or the prior art rigid resin composites are
1. increase bonding between networks of fibers impregnated with a rigid resin, and
2. the increased bonding of 1. above provides the critical difference in transient deformation which can
mean the difference between life and death to the wearer. For example, see comparative example 2 where the transient deformation of the helmet was 29mm compared to the example of this invention, example 4, where the transient deformation was only 18mm. The gap between the composite and the head of the wearer of the helmet is greater than 18mm but less than 29mm so that a bullet or other fragment striking the helmet of this invention would cause a dent in the helmet but would not penetrate to or push against the skull of the wearer whereas using the prior art, method and article, the wearer would suffer a severe injury or death. These benefits are achieved without loss of ballistic properties as demonstrated by the data on the VJ-Q information in examples 4 and 6. The second coat alone, the elastomeric resin, cannot be used alone because of the need to cool the mold in order to remove the result and composite. This is time consuming and becomes uneconomic on a commercial scale. The use of the method and article of this invention provides improved adhesion and yet the increased bonding is not at the detriment of ballistics performance. This is contrary to past experience. In the past whenever adhesion became better, the ballistic performance as determined by the VςQ data became worse. The benefit of this invention over simple composites of the prior art using only elastomeric resin is in manufacturing. There is no need for extensive time to cool the mold to remove the composite.
EXAMPLE 1 (Comparative)
SPECTRA® 900 yarn was woven into fabric style 903
(plain weave 21 x 21). This fabric was then coated with solution which contained 45.3% by weight vinylester
Derakane 8084, 9.1% diallylphthlate, 0.134% Lupersol 256, 22.7% acetone and 22.7% acetone and 22.7% ethanol. Resin content (solids basis) of the coated fabric (prepreg) was
24%. The 29 layers of prepreg was pressed (molded) at
240°F, 400 psi for 15 minutes. The laminate had an areal density of 1.67 psf (pounds per square foot). The V5Q of
the laminate was 2010 fps for a .22 cal fsp (fragment simulator projectile). The peel strength was 433 g/inch.
Extensive delamination between plies was observed. The peel strength was obtained on an one inch width specimen and measuring the force need to separate the two individual plies at 180° angle.
EXAMPLE 2 (Comparative) Twenty-seven layers of prepreg of Example 1 were inserted into a medium size helmet mold and pressed under 180 tons at 240°F for 15 minutes. The finished helmet weighed 2.28 pounds. The V5Q of the helmet was 2150 fps (feet per second). The transient deformation of the helmet was 29mm when tested with a .30 cal 44 grain fsp at speed of 1560 fps.
EXAMPLE 3 The same fabric as in example 1 was coated with the same manner as in example 1 and with solution which contained 22.4% vinylester Derakane 8084, 4.47% diallyl phthalate, 0.134% Lupersol 256, 36.53% acetone, and 36.53% ethanol. The resin content of the resulting prepreg was 9.9%. This prepreg was then coated again with an aqueous solution which contained 20% of Dispercoll E-585 solids. The total resin content was 23.4%. A laminate was made under identical conditions as shown in example 1. The weight of the laminate was 1.77 psf. The VςQ was 2067 fps. The peel strength was 1717 g/inch. Compare Example 1. EXAMPLE 4
The prepreg made as in example 3 was fabricated into a helmet with identical conditions as shown in example 2. The helmet weight was 2.31 pounds. The V5Q was 2349 for a .22 cal 17 grain fsp. The transient deformation was 18mm when shot with a .30 cal 44 grain fsp at speed of 1559 fps. Significant improvement in delamination of plies was observed.
EXAMPLE 5 (Comparative)
Kevlar 29 fabric style K29/13 from Knytex (Kevlar 29, 3000 denier, 14 oz/sq. yd., 17 x 17 plain weave) was prepreged with the same resin system as shown in example 1.
The resin content was 14.4%. The 15 layers prepreg were then pressed at 240°F, 20 minutes at 624 psi. The laminate had an areal density of 1.63 psf. The V50 of the laminate was 1698 fps. The peel strength was 346 g/inch.
EXAMPLE 6
The same Kevlar fabric was formed into a prepreg and fabricated into laminate as shown in example 3. The laminate had an areal density of 1.63 psf. The Vcn was bu 1727 fps. The peel strength was 1480 g/inch. Compare
Example 5.
The following is a list further describing the compounds used in the above Examples.
Compound Trade name Source vinyl ester Derakane 8084 Dow Chemical
2.5-dimethyl 2.5-di(2-ethyl hexanoyl peroxy) hexane Lupersol 256 Pennwalt aqueous polyurethane dispersion Dispercoll E-585 Mobay
40% solids
Claims
1. An article of manufacture for ballistic end use comprising more than one network of high modulus, high strength fibers, each network being first impregnated with a high modulus resin, said resin can be curable to a rigid state, said impregnated network dried, then each impregnated, dried network coated with a low modulus elastomeric resin, then the networks plied together so that the low modulus, elastomeric resin acts as an adhesive between each of the networks.
2. The article of claim 1 wherein said high modulus, high strength fiber has a modulus of between about 400,000 psi and 100 x 106 psi and a tensile strength of between about 100,000 and 400,000 psi, said high modulus resin has a modulus of from between about 100,000 and about 1,000,000 psi, and said low modulus elastomeric resin has a modulus from between about 10 psi to about 2,000 psi.
3. The article of claim 1 wherein the ration of the thickness of each said network to the equivalent diameter of said fiber is equal to or less than about 12.8.
4. A method to manufacture a rigid composite for ballistic end use comprising preparing multiple networks of high modulus, high strength fibers impregnating said networks with a high modulus resin, drying said high modulus resin impregnated into said networks coating said impregnated networks with a low modulus elastomeric resin plying said dried, coated, networks together to form multiple layers of said networks, and curing said high modulus resin so that it becomes rigid and so that -said elastomeric resin acts as an adhesive between each layer of networks.
5. The method of claim 4 wherein the ratio of the thickness of each said network to the equivalent diameter of said fiber is equal to or less than about 12.8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37556289A | 1989-07-05 | 1989-07-05 | |
US375,562 | 1989-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991000181A1 true WO1991000181A1 (en) | 1991-01-10 |
Family
ID=23481363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1990/003035 WO1991000181A1 (en) | 1989-07-05 | 1990-05-31 | Ballistic resistant composite article and method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0480940A1 (en) |
JP (1) | JPH04506486A (en) |
AU (1) | AU5675290A (en) |
CA (1) | CA2020392A1 (en) |
WO (1) | WO1991000181A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1006923A3 (en) * | 1993-03-19 | 1995-01-24 | Belport Belgium Besloten Venno | Armour and working method for its manufacture |
WO2002075237A1 (en) * | 2001-03-15 | 2002-09-26 | Teijin Twaron Gmbh | Penetration inhibiting material |
US8695112B2 (en) * | 2006-09-26 | 2014-04-15 | Honeywell International Inc. | Flexible body armor with semi-rigid and flexible component |
WO2018057311A3 (en) * | 2016-09-15 | 2018-05-17 | Honeywell International Inc. | High kinetic energy absorption with low back face deformation ballistic composites |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993828A (en) * | 1973-02-16 | 1976-11-23 | Akzona Incorporated | Polyester, fiberglass-reinforced composite laminate |
US4115616A (en) * | 1978-02-09 | 1978-09-19 | The United States Of America As Represented By The Secretary Of The Air Force | Self-sealing fuel line assembly |
WO1989006190A1 (en) * | 1987-07-13 | 1989-07-13 | Allied-Signal Inc. | Ballistic-resistant composite article |
-
1990
- 1990-05-31 WO PCT/US1990/003035 patent/WO1991000181A1/en not_active Application Discontinuation
- 1990-05-31 AU AU56752/90A patent/AU5675290A/en not_active Abandoned
- 1990-05-31 JP JP2508303A patent/JPH04506486A/en active Pending
- 1990-05-31 EP EP19900908866 patent/EP0480940A1/en not_active Withdrawn
- 1990-07-04 CA CA002020392A patent/CA2020392A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993828A (en) * | 1973-02-16 | 1976-11-23 | Akzona Incorporated | Polyester, fiberglass-reinforced composite laminate |
US4115616A (en) * | 1978-02-09 | 1978-09-19 | The United States Of America As Represented By The Secretary Of The Air Force | Self-sealing fuel line assembly |
WO1989006190A1 (en) * | 1987-07-13 | 1989-07-13 | Allied-Signal Inc. | Ballistic-resistant composite article |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1006923A3 (en) * | 1993-03-19 | 1995-01-24 | Belport Belgium Besloten Venno | Armour and working method for its manufacture |
WO2002075237A1 (en) * | 2001-03-15 | 2002-09-26 | Teijin Twaron Gmbh | Penetration inhibiting material |
US6890871B2 (en) | 2001-03-15 | 2005-05-10 | Teijin Twaron Gmbh | Penetration-resistant material |
HRP20030786B1 (en) * | 2001-03-15 | 2009-12-31 | Teijin Twaron Gmbh | Penetration inhibiting material |
US8695112B2 (en) * | 2006-09-26 | 2014-04-15 | Honeywell International Inc. | Flexible body armor with semi-rigid and flexible component |
WO2018057311A3 (en) * | 2016-09-15 | 2018-05-17 | Honeywell International Inc. | High kinetic energy absorption with low back face deformation ballistic composites |
CN109690283A (en) * | 2016-09-15 | 2019-04-26 | 霍尼韦尔国际公司 | The kinetic energy of low back face deformation ballistic composite absorbs |
KR20190046856A (en) * | 2016-09-15 | 2019-05-07 | 허니웰 인터내셔날 인코포레이티드 | High kinetic energy absorption by low back strain ballistic composites |
EP3513165A4 (en) * | 2016-09-15 | 2020-08-12 | Honeywell International Inc. | High kinetic energy absorption with low back face deformation ballistic composites |
KR102405571B1 (en) | 2016-09-15 | 2022-06-07 | 허니웰 인터내셔날 인코포레이티드 | High kinetic energy absorption by low back deformation ballistic composites |
CN109690283B (en) * | 2016-09-15 | 2022-07-12 | 霍尼韦尔国际公司 | Viscoelastic lightweight composite armor that resists backside deformation |
Also Published As
Publication number | Publication date |
---|---|
CA2020392A1 (en) | 1991-01-06 |
AU5675290A (en) | 1991-01-17 |
EP0480940A1 (en) | 1992-04-22 |
JPH04506486A (en) | 1992-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0191306B2 (en) | Ballistic-resistant composite article | |
US4748064A (en) | Ballistic-resistant composite article | |
JP6427165B2 (en) | Reduced trauma without reducing bulletproof performance | |
EP2121301B1 (en) | Cross-plied composite ballistic articles | |
EP1998954B1 (en) | Ceramic faced ballistic panel construction | |
CA1240604A (en) | Complex composite article having improved impact resistance | |
US5789327A (en) | Armor panel | |
EP1989502B1 (en) | Restrained breast plates, vehicle armored plates and helmets | |
US7288307B2 (en) | Hybrid laminated fiber sheets | |
EP0197279B1 (en) | Complex composite article having improved impact resistance | |
EP2061650B1 (en) | High performance ballistic composites having improved flexibility and method of making the same | |
US5587230A (en) | High strength composite | |
EP2111128B1 (en) | Protective helmets | |
US5690526A (en) | High strength, ballistic resistant composites | |
JP2015525304A (en) | Hybrid fiber unidirectional tape and composite laminate | |
EP1891392A2 (en) | Composite material for stab, ice pick and armor applications | |
WO2008054843A2 (en) | Improved ceramic ballistic panel construction | |
CA2722136A1 (en) | Improved ballistic composites having large denier per filament high performance yarns | |
KR20150001748A (en) | Spall liners in combination with blast mitigation materials for vehicles | |
US5035952A (en) | Ballistic structure | |
WO1991000181A1 (en) | Ballistic resistant composite article and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1990908866 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1990908866 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1990908866 Country of ref document: EP |