WO1983003125A1 - Vibrationless piston mechanism - Google Patents
Vibrationless piston mechanism Download PDFInfo
- Publication number
- WO1983003125A1 WO1983003125A1 PCT/JP1983/000061 JP8300061W WO8303125A1 WO 1983003125 A1 WO1983003125 A1 WO 1983003125A1 JP 8300061 W JP8300061 W JP 8300061W WO 8303125 A1 WO8303125 A1 WO 8303125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gears
- tuned
- gear
- vibration
- quadrupole
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/06—Engines with means for equalising torque
- F02B75/065—Engines with means for equalising torque with double connecting rods or crankshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B9/00—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
- F01B9/02—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B73/00—Combinations of two or more engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B75/24—Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
- F02B75/243—Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "boxer" type, e.g. all connecting rods attached to separate crankshaft bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/22—Compensation of inertia forces
- F16F15/24—Compensation of inertia forces of crankshaft systems by particular disposition of cranks, pistons, or the like
Definitions
- the present invention relates to a vibration-free piston core structure capable of preventing vibration and recoil from occurring during operation of a piston cylinder's crank mechanism. is there .
- the piston cylinder crank structure changed the reciprocating motion into a rotary motion) and vice versa. It is a nuclear power plant with a wide range of applications, such as applications to prime movers such as engines and internal combustion nuclear engines, and applications to air compressors and pumps. Therefore, it is important to reduce the vibrations and recoils that occur during the operation of the BISTON-CYLINDER-CRANK inspection system. It was.
- the piston * cylinder-crank structure the main cause of the tremor is due to the reciprocation of the first cavity, and the second is It is a movement of the connecting rod.
- a method has been proposed to solve the problem caused by the reciprocal movement of the first Boston by distributing a pair of Boston in a facing type. You. However, a complete method has not yet been specifically realized for the second connection rod movement.
- Non-invention is a solution to the above problem.
- the aim is to focus on a quadrupole tuned gear consisting of four gears of the same shape, same size, and same weight meshing with each other, and the piston and By symmetrically arranging the connecting 'mouth', it is possible to have vibration-free and reaction-free movement of the piston, cylinder and crank skeleton.
- the purpose of the present invention is to provide a vibrationless piston mechanism.
- the present invention relates to a method in which four gears having the same size, size, and mass are meshed with each other, and the line connecting the axes of these gears forms a square.
- the gears are connected to each other on the same plane, and are supported by a rigid body so that the position of each axis does not change, in fact, by an approximate rigid body made of copper or the like so as to be rotatable.
- one or more pairs of quadrupole tuned gears are used as a center, and a plurality of piston cylinders and connectors are connected to the set.
- Tenting rods are arranged symmetrically.
- the cylindrical structure in the piston cylinder cylinder nucleus. Resolves various problems related to reciprocation of stones and occurrence of shaking due to movement of connecting rods, and realizes vibration-free ⁇ and reaction-free movement be able to .
- Figure 1 shows a pair of quadrupole tuned leathers
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 4 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 4 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is a diagram showing the rotation state of a pair of quadrupole tuned gears
- FIG. 3 is
- Fig. 8 shows one piston and two connection rollers.
- Fig. 9 is a plan view of a pair of connecting rods when connecting a head
- Fig. 9 is a cross-sectional view taken along the line C-C in Fig. 8
- Fig. 10 is FIG. 8 is an exploded perspective view
- FIG. 8 The three-unit connection of a vibration-free piston mechanism with a combination of a quadrupole tuned gear and four pistons as one unit in a plane (same surface as the surface of the quadrupole tuned gear) is shown.
- Fig. 9 is a plan view of a pair of connecting rods when connecting a head
- Fig. 9 is a cross-sectional view taken along the line C-C in Fig. 8
- Fig. 10 is FIG. 8 is an exploded perspective view
- FIG. 12 is an explanatory diagram showing a state in which five units of a vibration-free piston inspection structure, in which a combination of a pair of quadrupole tuned gears and two pistons is one unit, are connected in a plane.
- Fig. 13 shows a three-dimensional vibration-free structure having the same unit type as that of Fig. 11 (with respect to the direction of each axis of the gears constituting the quadrupole tuned gear).
- Fig. 14 is a perspective view showing the state where three units are connected to each other.
- Fig. 14 shows a state where three units of a vibration-free piston core structure having the same unit shape as Fig. 12 are connected three-dimensionally. Illustrated perspective view, Fig. 15 Are two neighbors that make up a quadrupole tuned gear!
- Fig. 1 is an enlarged partial plan view showing the meshing state (a state, b state) of the two gears shown in Fig. 15;
- Fig. 17 is a plan view showing a continuous contact gear that is an example of a practical tooth profile in a gear used for a quadrupole tuned gear.
- the non-vibration piston core structure according to the present invention is realized by using a quadrupole tuned gear composed of gears having the same shape, size, and mass, which mesh with each other. It is a thing. That is, as shown in FIGS. 1 and 2, the four gears 1 are meshed with each other, and are coplanar so that the line connecting the four shafts 2 of these gears 1 forms a square.
- the second characteristic is that "a quadrupole tuned gear does not move or vibrate during rotation. This characteristic generally holds during constant speed rotation and acceleration rotation.” That is.
- the second characteristic is that if the center of the shaft 2 of the four gears is P i, P 2 , P 3 , and P 4 , as shown in FIG.
- Figures 5 and II show one set of quadrupole tuned gears and four sets of gears.
- the following shows an embodiment in which a stone cylinder and a cylinder are connected by four connecting rods to form a four-cylinder piston structure. Ah ! ? The two cylinders are arranged symmetrically with two sets of quadrupole tuned gears at the center. 4 is the piston cylinder piston, 5 is the same cylinder, and ⁇ is the gear connecting the gear 1 and biston 5 that constitute the quadrupole tuned gear Connecting mouth, 7 is the connecting rod on the 5th side of the connecting rod
- 3 ⁇ 4 ⁇ ⁇ ⁇ , 8 is the same shaft on the gear 1 side, 9 is the four cylinders-5 are integrated, and the crank is also a housing for a quadruple-tuned gear * Case ⁇ 10 0 is HI.
- the intake valve of the cylinder cylinder, 11 is the same exhaust valve, and 12 is the crank section of the gear.
- the mounting positions of the four connecting rods ⁇ ⁇ ⁇ ⁇ with respect to the respective gears 1 are symmetrical, and the gears 1 are configured to rotate synchronously. Examination of the force due to the mass of the parts during the operation of this screw mechanism is as follows.
- the first working component is a quadrupole tuned gear
- the second is four screws 5
- the fifth is four connecting rods including shafts 7 and 8 at both ends. ⁇ .
- the rotation of the first quadrupole tuned gear causes vibration and reaction as described above.
- the second four stones 4 are tuned as shown in Fig. 5 and four stones. Stones 4 are of equal mass. Therefore, the center of the gear shaft 2 and ⁇ 4 , ⁇ 2 and ⁇ 3 are opposed to each other on the one-way line of action, so that the resultant force is zero]? Vibration and counter work occur.
- the third four connecting rods are tuned as shown in Figure 5] and the four connecting rods are connected together. Rods are all of equal mass. Therefore, each co-Ne-click Te fin by that reaction force to Gu Hollow head ⁇ SakuTsutomu is, is to about the base-click door Le component of the next passing der Ru X direction, and C 4, ⁇ And C 2
- OMPI OMPI
- a set of directed care rather than to such as Saga trees large each other husband of C 3 from acting on the same action line on the other, the force is that Do not zero in each other and canceling.
- the resultant force acts in the same manner as the X-direction that Do zero. Therefore, as shown in Fig. 5, no vibration or reaction occurs during operation due to the mass of the connecting rod tuned. That is, a 4-cylinder piston mechanism having a quadrupole tuned gear as shown in Fig. 5 is a non-vibrating piston core that does not generate vibration or reaction when the mass of its parts is operated. It can form structural units.
- the seventh vicious example consists of a pair of quadrupole tuned gears and two pairs of piston cylinders, each of which has four parts with different partial shapes but equal masses. It shows the simplest form of unity of a vibration-free built-in structure that is connected by a tent rod. In this embodiment, a pair of connecting rods is connected to one piston 4 and two pistons 4 are connected. Except for this, the operation is the same as that of the embodiment shown in the fifth evil. First, a description will be given of a case where a pair of connecting rods is connected to one of the bustons 4. In this case, in order to prevent the occurrence of vibration and recoil during the work of the connecting rod, the form of the connecting rod And mass matter.
- Fig. 9 shows the connecting mouth of Fig. 8 cut off along the line C-C.
- Fig. 10 shows an evil, disassembled and shown from the perspective direction.
- the configuration of the pair of connecting rods ⁇ ⁇ is the bearing part on the side of the steel 4. Except for, it is symmetric.
- the bearing part on the piston 4 side is symmetrical in the ⁇ direction when assembled, and no couple occurs on the shaft 7 side during operation. Therefore, if the thickness of the two bearings of one connecting rod ⁇ a is d, respectively, the other connecting rod ⁇ a Assume that the thickness of one bearing part of b 0b is 2d. Therefore, the pair of connecting ports ⁇ shown in FIGS. 8 to 10 are shown in FIG. 7 because their mass moves symmetrically with respect to the X axis. It can be effectively used in the vibrationless piston structure of the embodiment.
- the first problem is that a vibration-free piston skeleton, which is a combination of a pair of quadrupole tuned gears and four pistons 4, is placed on the same plane as the surface of the quadrupole tuned gear.
- the quadruple-tuned tooth army itself also serves as a crank (the quadrupole-tuned gears, apart from the cranks). It is also possible to connect the forces acting on each of the pistons 4 to each other. 5 units of continuous equality quadruple 3 ⁇ 4 synchronized
- Fig. 12 shows the vibration-free piston structure, in which the combination of a set of quadrupole tuned gears and two screws 4 as a unit is the same as the surface of the quadrupole tuned gears. It shows a state in which three units are connected in a plane on a plane, and all three units of continuously connected quadrupole tuning gears rotate and synchronize with each other.
- the tuning of Business 4 and the connecting rod can be decided freely according to the gender g of the girth of the steel skeleton. Wear .
- the power can be freely input and output from either the gear 1 itself, the gear ⁇ , or the gear shaft 2 ′.
- the number of unit shapes of the vibrationless biston core structure to be connected is not limited to the above-described two embodiments, but may be two or more units. Further, as shown in FIGS. 13 and 14, it is also possible to connect a plurality of unit shapes three-dimensionally in the direction of the shaft 2 of the gear as shown in FIGS. 13 and 14. ff
- quadrupole tuned gears work in response to stresses from a plurality of bolts 4, so that the gear 1 is alternately used as a prime mover and a follower. It may be. In such a case, take out the two gears 1 as shown in Fig. 15]] and take it out, and the left gear 1a is the prime mover.]
- the gears are preferably in contact with each other in opposite directions.
- One example is a continuous contact gear as shown in FIG.
- the gear 1 needs to have high strength and high accuracy at the same time.
- a lubrication method there are a method using lubricating oil, a method using compressed air, a method using magnetism, and the like.
- the quadrupole tuned gear operates normally, and the reciprocal movement of the piston, which has conventionally been a major cause of vibration and reaction, has occurred. It can be made vibration-free and reaction-free with regard to the movement of the connecting rod.
- the vibrationless vibration structure according to the invention is a vibration structure rOMPI It can be applied to all inspection instruments that use the turbulence device, and can improve the pollution caused by the vibration of the nucleus device and the performance of the storage device itself. For example, when this is used for an engine, the practicality of an engine made of ceramics is more realistic because of its non-vibration characteristics. . And Thus, the cell La Mi-click vinegar E down di emissions in the future of the handle down di down the combustion of hydrogen ': fee and to you at a time that obtained and used, a metal-et-down di emissions It resolves the disadvantage of inferior corrosion resistance to hydrogen, making it a viable tool for the nuclear material revolution.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Transmission Devices (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Description
明 細 書
無振動 ビ ス ト ン核構
技術分野
本発明は、 ビ ス ト ン · シ リ ン ダ ー ' ク ラ ン ク機構の 作動時における振勛や反動の発生を防止する こ と がで き る無振動 ビス ト ン 核構に 関する も のであ る 。
背景技術
ピ ス ト ン · シ リ ン ダ ー · ク ラ ン ク ^構は、 往復運動 を回転運動に変えた ) 、 ま たその逆に回転運動を往復 運 10に変え る も の であ 、 蒸気機関や内燃核関等の原 動機への応用、 空気圧縮機や ^ン プ等への応用 な ど広 範な利用分野を有す る核撂で あ る 。 したがって、 従来 か ら ビス ト ン · シ リ ン ダー · ク ラ ン ク檢構の実用化に 際 して、 その作勣時に発生す る振動や反動を如何に小 さ く するかが重要 な 課題 と な っていた。 ピ ス ト ン * シ リ ン ダ 一 · ク ラ ン ク 恡構におい て、 振勤発生の主 原因は、 第 1 カ ビ ス ト ン の往復運動 に よ る も の であ 、 第 2 が コ ネ ク テ ィ ン グ · ロ ッ ドの運動に よ る も ので あ る 。 こ こ で、 第 1 の ビス ト ン の往復運勣に よ る も の に 関 しては、 既に 1 対の ビス ト ン を対向型に配蘆する こ と で解決する 方法が提案さ れてい る。 しか し、 第 2 の コ ネ ク テ ィ ン グ · ロ ッ 'ドの運動に よ る も の に関 しては、 現在ま で完全な 方法が具体的に は実現 してい な い。
不発明は、 上記の問題を 解決 した も ので あ j 、 その
OMPI
目 的 と する 所は、 相互に歯合する 4 つの同形、 同大、 同質量の歯車で構成され る 四重極同調歯車を 中心と し て、 これに結合さ れ る ピ ス ト ンや コ ネ ク テ ィ ン グ ' 口 ッ ドを対称型に配盧する こ と に よ って、 ビス ト ン · シ リ ン ダ 一 · ク ラ ン ク核構の無振動かつ無反動作動を可 能 と した無振動 ビ ス ト ン機構を 提供する こ と にある 。
発明の開示
- す ¾わち、 本発明は、 ¾、 大き さ、 質量 ¾ どが等 し い 4 つの歯車を相互に歯合させる と共に、 これ等の歯 車の軸を弒ぶ線が正方形を成す よ う に同一平面上に配 直 し、 かつ各軸の位 が変化 しな よ う に剛体、 実際 には銅製等の近似剛体に よ つて回 可能な状態で支持 して歯車の結合 ( 以下 ( 四重極同調歯車」 と いう。 ) を形成 し、 この 四重極同調歯車の 1 組又は複数組を 中 心 と して、 これ と 結合さ れる複数の ピ ス ト ン · シ リ ン ダー及びコ ネク テ ィ ン グ · ロ ッ ド ¾対称型に配直 した も の であ る 。
こ の よ う に構成 された本発明 に よ れば、 ピ ス ト ン · シ リ ン ダ 一 · ク ラ ン ク核構における ヒ。ス ト ン の往復違 動及 びコ ネ ク テ ィ ン グ · ロ ッ ドの運動に よ る振勤発生 に係わる諸問題を総合的に解決 し、 その無振 Ιδかつ無 反動作動を実現する こ と がで き る 。
^面の簡単 ¾説明
第 1 図は 1 組の 四重極同 調歯革を ¾念的に示 した平
'
ΟΜΡΙ
面図、 第 2 | ^ は第 1 凶の A - A線に沿 う 断面凶、 第 3 図は 1 組の 四重極 同調歯車の回転状態を示す詋明囟、 第 図は説明の便宜のため に四重極同調歯車の軸に符号 を付 して示 した說明図、 第 5 凶はク ラ ン クを兼ねた 1 組の 四重極同調歯車 と 4 組の ピ ス ト ン を用いた 1 単位 の無振動 ビ ス ト ン核搆の断面図、 第 ό 図 は第 5 図の Β - Β 線に沿 う 断面図、 第 7 図 は ク ラ ン ク を兼ねた 1 組の四重極同 調歯車 と 2 組の ビス ト ン を 用いた 1 単位 の無振動 ビス ト ン檢構の断面図、 第 8 図 は 1 つの ビ ス ト ン と 2 つ の コ ネ ク テ ィ ン グ · ロ ッ ドを違結す る場合 の 1 対の コ ネ ク テ ィ ン グ · ロ ッ ドの平面図、 第 9 図は 第 8 図の C - C 線に沿 う 断面図、 第 1 0 図 は第 8 図を 分解 し て示 した斜視図、 第 1 1 囟は 1 組の四重極同調 歯車と 4 個の ビ ス ト ン の組合せを 1 単位 と する無振動 ビス ト ン 機構を平面的 ( 四重極同調歯車の 面 と 同 じ面) に 3 単位連結 した状態を示す説明図、 第 1 2 図は 1 組 の 四重極同調歯車 と 2 つの ビス 卜 ン の組合せを 1 単位 と する無振動 ビス ト ン檢構を平面的に 5 単位連結 した 状態を示す説明図、 第 1 3 図 は第 1 1 囟 と 同 じ型の単 位形を有す る無振動 ビ ス ト ン 構を立体的 ( 四重極同 調歯車を構成する歯車の各軸の方向 に対 し ) に 3 単位 連結 した状態を示す斜視説明 ^、 第 1 4 図 は第 1 2 図 と 同 じ型の単位形を有する 無振動 ビ ス ト ン核構を立体 的に 3 単位連結 した状態 を示す斜視説明図、 第 1 5 図
は四重極同調歯車を構成する 2 つの隣 !) 合 う 歯車につ いての回転時の状態を示す平面図、 第 1 ό 図は第 1 5 図に示す 2 つの歯車の歯合状態 ( a 状態、 b 状態 ) を 示す拡大部分平面図、 第 1 7 図は四重極同調歯車に使 用する歯車における実用性の ある歯形の一例である連 続接触歯車を示す平面図であ る。
発明を実施するための最良の形態
本発明を よ 詳細に説明するために、 以下添付図面 に従って説明する。
本発明に係る無振動 ピス ト ン核構は、 相互に歯合す る 4つの形、 大き さ、 質量 ¾ どが等 しい歯車で構成さ れる四重極同調歯車を利用する こ とによって成立する も のである。 即ち第 1 図及び第 2 図に示すよ う に、 4 つの歯車 1 を相互に歯合させ、 これ等の歯車 1 の 4 つ の軸 2 を結ぶ線が正方形を成すよ う に同一平面上に配 置 し、 各軸 2 の位置が変化 し ¾ よ う 剛体 3 、 例えぱ 鋼製等の近似剛体に よって回転可能 ¾ 吠態で支持 して 歯車の結合体 と も い う べき 四重極同調菌車を形成する, こ の四重極同調歯車の第 1 の特性は、 「四重極同調歯 車は回転可能であ ]? 、 その 回転の方向は、 隣 合った もの同志は互いに逆方向であ 、 その回 ¾数は、 各歯 車において等 し 。 」 とい う こ と である。 この第 1 の 特性は、 4 つの菌車 1 が相互に菌み合ってお ]? 、 その 回転方向が第 3 図 に示す矢印方向 と なる こ と、 及び 4
つの歯車 1 の歯数が等 しいので回転数が等 し く な る こ とか ら詋明する こ と がで き る。 ま た第 2 の特性は、 「四 重極同調歯車は、 回転時に移動や振動が生じ ない。 こ の特性は、 等速回転時及び加速回転時にお て一般的 に成立する。 」 と い う こ と で ある。 この第 2 の特性は、 4 つの歯車の軸 2 の中心を第 4 図に示す よ う に、 P i , P2 , P3 , P4 とする と、 各歯車 1 が等質であ 、 力 つ軸 2 に対 して対称の回転体であ る こ と から、 その回転運 動に よ って軸 2 に加わる 力は偶力のみであ ]) 、 その偶 力の大 き さは 4 つの軸 2 につ て同時刻にお ては同 一である こ と、' 及びその偶力の向 き は隣 合った歯車 1 において逆向 き である力 ら、 P, と P3 とを ブラ ス とす る と P2と P4 はマ イ ナ ス と な り 、 したがって相互に結合 された 4 つの軸 2 に加わる偶力の総和が零 と な る こ と 力 ら説明する こ と 力 で き る。
第 5 図及び第 ό 図は、 1 組の四重極同調歯車 と 4 組 の ヒ。 ス ト ン · シ リ ン ダ一 と を 4 つ の コ ネ ク テ ィ ン グ , ロ ッ ド で結合 して 4 気筒の ビ ス ト ン 構と して構成 し た実施例を示す も の であ !? 、 ビス ト ン · シ リ ン ダ 一は 2 組ずつ四重極同調歯車を 中心と して対称型に配置さ れ て い る 。 4 は ピ ス ト ン · シ リ ン ダ ー の ビ ス ト ン 、 5 は同 じ く シ リ ン ダ ー、 ό は四重極同調歯車を構成する 各歯車 1 と ビス ト ン 5 を連結する コ ネ ク テ ィ ン グ · 口 ッ ド、 7 は コ ネ ク テ ィ ン グ · ロ ッ ド ό の ビ ス ト ン 5 側
¾ΕΑ Ο ΡΙ 垂
の軸、 8 は同 じ く 歯車 1 側の 軸、 9 は 4 つの シ リ ン ダ — 5 を一体化する と共に、 四重毺同調歯車のハ ウ ジ ン グと も な る ク ラ ン ク * ケ — ス ゝ 1 0 は ヒ。 ス ト ン · シ リ ン ダ 一の吸入弁、 1 1 は同 じ く 排気弁、 1 2 は歯車の ク ラ ン ク 部で あ る 。 4 つの コ ネ ク テ ィ ン グ ロ ッ ド ό の 各歯車 1 に対する取付位置は、 こ れを対称型 と し、 各 歯車 1 が同調 して回転す る よ う に構成する 。 この ビス ト ン機構の作動時の部品の質量に よ る 力を検討する と 次の よ う にな る。 即 ち、 作動する 構成部品の第 1 は四 重極同調歯車、 第 2 は 4 つの ビス ト ン 5 、 第 5 は両端 の軸 7 、 8 を含め て 4 つの コ ネ ク テ ィ ン グ · ロ ッ ド ό で あ る。 第 1 の四重極同調歯車の 回転は、 上記の如 く 振動や反動を生じ 。 第 2 の 4 つの ビス ト ン 4 に関 しては、 第 5 図 に示すよ う に同調され てお 、 かつ 4 つの ヒ。 ス ト ン 4 は夫々 等 し 質量を持つ も ので あ る。 したがって、 歯車の軸 2 の 中心 と ; Ρ4 , Ρ2 と Ρ 3 は、 夫 々 向一作用線上において、 相互 に対向 して逆向 き に 作動する の で、 その合力は零 と な ]? 、 振動や反勤を生 じ い。 第 3 の 4 つの コ ネ ク テ ィ ン グ · ロ ッ ド ό に関 しては、 第 5 図 に示す よ う に同調され てお ]? 、 かつ、 4 つの コ ネ ク テ ィ ン グ · ロ ッ ド ό は、 すべて等 し 質 量を有する も の で あ る 。 したがって、 各 コ ネ ク テ ィ ン グ · ロ ッ ド ό の作勤 によ る反動 力は、 次の通 であ る X方向のべク ト ル成分 に関 しては、 と C4 , 及 び、 C2
OMPI
と C3の組が夫 々 互いに大 き さが等 し く 向 き が反対で同 一作用線上に作用する の で、 打消 し合ってその合力は 零 と な る 。 Y 方 尚のべク ト ル成分に関 しては、 と c2 及び、 c 3と C4 の組が、 X方向 の場合 と 同様に作用 して その合力 は零 と な る 。 したがって、 第 5 図 の よ う に同 調 された コ ネ ク テ ィ ン グ · ロ ッ ド ό の質量に よ る作動 時の振動や反動は生 じ い。 即 ち、 第 5 図 に示す よ う な四重極同調歯車を 有する 4 気筒の ビス 卜 ン機構は、 その部品の質量の作動時に振動や反動 を生 じ な い無振 動 ビ ス ト ン核構の単位.形を形成する こ と がで き る 。
第 7 凶は、 1 組の四重極同調歯車 と 2 組の ピ ス ト ン シ リ ン ダー と を、 部分的 な形状は異 な る も のの質量の 全 く 等 しい 4 つの コ ネ ク テ ィ ン グ · ロ ッ ド ό で結合 し て成 る最 も 単純な型の無振動 ビス 卜 ン檨構の単位形を 示す も ので あ る 。 こ の実施例 においては-、 1 対の コ ネ ク テ ィ ン グ · ロ ッ ド ό 力 1 つの ピ ス ト ン 4 に結合さ れ ている こ と と 、 ビ ス ト ン 4 が 2 つであ る こ と 以外は、 第 5 凶 に示す実施例の場合 と 同様であ る。 ま ず、 1 対 の コ ネ ク テ ィ ン グ · ロ ッ ド ό カ 1 つの ビス ト ン 4 に結 合する 場合について說明する 。 こ の場合に コ ネ ク テ ィ ン グ · ロ ッ ド ό の作勤時 におけ 振動や反動の発生を 防止す るた め には、 コ ネ ク テ ィ ン グ · ロ ッ ド ό の形態 と 質量 と が問題 に な る 。 第 8 図 の コ ネ ク テ ィ ン グ · 口 ッ ド ό を C - C 線にお て 切断 して示 した も のが第 9
ΟΜΡΙ
凶であ り 、 分解 して斜視方向か ら示 した も のが第 1 0 図で あ る 。 これ等の第 8 乃至第 1 0 囟に よ って明 ら かな よ う に、 2 本 1 組の コ ネ ク テ ィ ン グ · ロ ッ ド ό の 形態は、 ビス ト ン 4 側の 軸受部分を除いては対称型で あ る 。 ピ ス ト ン 4 側の 軸受部分は、 第 9 図に示す よ う に、 組合せた状態で Ζ 方向に対 して対称型 と り 、 作 動時にお て軸 7 側に偶力が生じな い よ う にするため、 1 方の コ ネ ク テ ィ ン グ · ロ ッ ド ό a の 2 つの軸受部の 厚さを夫 々 d と した場合、 他方の コ ネ ク テ ィ ン グ · 口 ッ ド 0 b の 1 つの軸受部の厚さを 2 d とする。 而 して、 第 8 図 乃至第 1 0 図 に示す 1 対の コ ネ ク ティ ン グ · 口 ッ ド ό は、 その質量が X 軸に対 して対称に運動する の で第 7 図に示す実施例の無振動 ビス ト ン檨構において 有効に使用する こ と がで き る 。
次に、 上記 2 種類の無振動 ビス ト ン 構の 「単位形」 を複釵個違結す る場合について説明する。
第 1 1 凶は、 1 組の 四重極同調歯車 と 4 つの ピス ト ン 4 と の組合せを単位形 とする無振動 ビス ト ン核構を 四重極同調歯車の 面 と同一面上にお て平面的に 3 単 位連結 した状態 を示すも の で あ ]? 、 四重極同調歯軍は、 それ 自体がク ラ ン ク を兼ねる ( ク ラ ン ク を別に して四 重極同調歯車に連結す 方法 も 可能 ) と 同時に、 各ビ ス ト ン 4 に作用す る 力を互 に連結する 作用 を持つ。 そ して連続的に ¾結され た 5 単位の等 し 四重 ¾同調
Ο ΡΙ
歯車は、 全て回転 し、 相互に同調する 。 こ の場合、 ピ ス ト ン 4 や コ ネ ク テ ィ ン グ · ロ ッ ド ό の 同調は 、 ヒ。 ス ト ン機構の性能に対応 して 自 由に決め る こ と がで き る。 第 1 2 図は、 1 組の四重極同調歯車 と 2 つ.の ビス ト ン 4 と の組合せを単位形 と する無振勦 ビ ス ト ン檨構を 四 重極同調歯車の 面 と 同一面上にお いて平面的に 3 単位 連結 した状態を示す も の で あ 、 連続的に連結された 3 単位の等 しい 四重極同調歯車は、 全て 回 ¾ し、 相互 に同調す る 。 こ の場合について も 、 ビ ス ト ン 4 や コ ネ ク テ ィ ン グ · ロ ッ ド ό の 同調は 、 ビス ト ン核構の性倉 g に対応 し て 自 由に決め る こ とがで き る 。 なお、 上記の 2 つの実施例にお て、 動力の入出 に関 して は、 歯車 1 自 体、 Λ又は歯車の軸 2 'の いずれか ら で も 自 由 に入 出 させる こ と がで き る。 連結させる無振動 ビス ト ン核構 の単位形の数は、 上記の 2 実施例 に限定 され る こ と は な く 、 2 以上の複数単位 と す る こ と がで き る。 更に、 連結の方向 について も 、 第 1 3 図及 び第 1 4 図 に示す よ う に、 複数の単位形を歯車の 軸 2 の方向へ立体的に 連結す る ·こ と も 可能で あ る ff
ま ^四重極 同調歯車は、 複数の ビス ト ン 4 か ら の応 力に対応 して作勤する こ と があ るので、 降 ] 9 合 う 歯車 1 が交互に原動車 と 従動車に な る こ と があ る 。 こ の よ う な場合に、 第 1 5 図 に示す よ う に、 2 つの歯車 1 を 取 ]) 出 してみる と、 左側の歯車 1 a が原動車 と な ] 、
O Pし
右側の歯車 1 b が従動車と な って回転する と き は、 第 1 ό 図の(a)の よ う な状態 で 2 つの歯車 1 a , 1 b が接 する 。 逆に、 右側の歯車 1 b が原動車 と な ]? 、 左側の 歯車 1 a が従動車と るって回転する と き は、 第 1 ό 図 の(b)の よ う ¾状態で 2 つの歯車 1 a , 1 b が接する。
したがって、 交互に(a) と(b)の よ う な状態力; く ]9 返えさ れる と き は、 振幅の小さ な振動を発生する こ と がある , そ こ で、 四重極同調歯車においては、 歯車 1 の歯形と 精度 と 潤滑方式が重要な間題 と る 。 下、 こ の間題 につい て説明する。
隣 合った歯車 1 が交互に原動車 と従動車に な るの で、 歯車の形態は、 相互に逆方向に も 接触する形が好 ま しい。 その一例 と して、 第 1 7 図 に示す よ う な連続 接触歯車かある 。 ま た歯車 1 は、 強度と 同時に高精度 であ る こ と か必要である 。 更に、 潤滑方式 と しては、 潤滑油を用い る方法、 縮空気を用いる 方法、 磁気を 用いる 方法等があ る 。
本発明は、 以上の よ う に構成されてい るから、 四重 極同調歯車を正常に作動させ、 従来か ら振勣ゃ反動発 生の主要原因 と されて た ビ ス ト ン の往復違動及 びコ ネク テ ィ ン グ · ロ ッ ドの運動に関 して こ れ を無振動か つ無反動化す る こ と がで き る 。
産案上の利用可能性
発明に係る無振動 ビ ス ト ン 構は、 ビ ス ト ン棱構 r OMPI
を用いる全ての檢器に応用する こ と が可能であ 、 そ れ等の核器の振動に よ る公害等、 及び、 梭器その も の の性能を向上させる こ とがで き る。 例えば、 これをェ ン ジ ン に用 る場合には、 無振動である こ との特性か ら セ ラ ミ ッ ク スを材料と する エ ン ジ ン の実用性を よ 現実の も の とする。 而 して、 このセ ラ ミ ッ ク ス · ェ ン ジ ン は 、 将来のエ ン ジ ン が水素を燃' :料と して使用 し得 る時期にお て、 金属性エ ン ジ ン が水素に対する耐腐 蝕性に劣る と い う 久点を解消 し、 核械の材料革命に と つて有勃な手段 と なる。
Claims
1. 四重毺同調歯車 と、 こ の四重極同調歯車を中心と
して対称型に配置され、 これ と結合される複数の ピ ス ト ン · シ リ. ン ダ ー及びコ ネ ク テ ィ ン グ · ロ ッ ドの 組合せを単位形とする こ と を特徵と する無振動 ビス ト ン機構。 '- .
2. 単位形が 1 組の四重極同調歯車と 4 組の ビス ト ン シ リ ン ダ ー を 4 つ の コ ネ ク テ ィ ン グ · ロ ッ ドで結合 して成る こ とを特徵とする請求の範囲第 1 項記載の 無振動 ピ ス ト ン機構。 ·
3. 単位形が 1 組の四重極同調歯車と 2 組の ヒ。 ス ト ン シ リ ン ダ ーを部分的 形状は異 ¾ る も の の質量にお
' い て等しい 4 つの コ ネク テ ィ ン グ · ロ ッ ドで結合 し
て成る こ とを特徵とする請求の範囲第 1 項記載の無 振勤 ピ ス ト ン核構。
4. 複数の単位形を四重極同調歯車の面 と 同一面上に
おい て平面的に配列連結 した こ とを特徵 とする請求 の範囲第 2 項又は第 3項記載の無振動 ビス ト ン核構
5. 複数の単位形を四重極同調菌軍における歯車の軸
の方向へ立体的に配列連結 したこ と を特徵とする請 求の範囲第 2 項又は第 5 項記載の無振動 ビ ス ト ン核
6. 四重極同調歯車を構成する各歯草が違続接触歯車
である こ とを特徵とする請求の章 &囲第 1 項、 第 2項
. "、
ΟΜΡΙ
着 驰
¾5
0
pr0
雠 x ¾ 4 s ¾: 5 J
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3063982A JPS58149435A (ja) | 1982-03-01 | 1982-03-01 | 無振動ピストン機構 |
JP57/030639820301 | 1982-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1983003125A1 true WO1983003125A1 (en) | 1983-09-15 |
Family
ID=12309403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1983/000061 WO1983003125A1 (en) | 1982-03-01 | 1983-03-01 | Vibrationless piston mechanism |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS58149435A (ja) |
WO (1) | WO1983003125A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992010696A1 (en) * | 1990-12-06 | 1992-06-25 | Rolando Poeta | System for reversibly transforming rotary motion into self-guided rectilinear motion |
WO1997001694A1 (en) * | 1995-06-26 | 1997-01-16 | Kimberley Vere Sadleir | Multiple crankshaft ic engine |
WO1999066182A1 (de) * | 1998-06-17 | 1999-12-23 | Gerhard Klaiber | Mehrzylinderbrennkraftmaschine |
GB2349417A (en) * | 1999-04-26 | 2000-11-01 | Brian Mawdsley | I.c. engine with piston connected by two con-rods to a pair of contra-rotating crankshafts |
WO2005038197A1 (de) * | 2003-10-17 | 2005-04-28 | Neander Motorfahrzeuge Gmbh | Hubkolben-brennkraftmaschine |
JP2008045516A (ja) * | 2006-08-18 | 2008-02-28 | Shiyounai Yasuda | 低振動の内燃機関又は圧縮装置 |
RU2658209C1 (ru) * | 2017-07-11 | 2018-06-19 | Василий Иванович Шитов | Механизм преобразования движения для поршневой машины |
FR3070055A1 (fr) * | 2017-08-10 | 2019-02-15 | Henry Pierre Brondet | Moteur a quatre temps deux cylindres horizontaux et quatre embiellages |
WO2019125121A1 (es) * | 2017-12-19 | 2019-06-27 | Active Financial, S.A. De C.V. | Compresor-recirculador de fluidos |
CN110206847A (zh) * | 2019-06-20 | 2019-09-06 | 上海大学 | 一种空间多连杆抗摇摆装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60192830A (ja) * | 1984-03-15 | 1985-10-01 | Honda Motor Co Ltd | 多気筒内燃機関 |
LU87021A1 (fr) * | 1987-10-16 | 1988-05-03 | Gilbert Van Avermaete | Moteur a allumage par compression,a rapport volumetrique variable |
JP2008163916A (ja) * | 2006-12-26 | 2008-07-17 | Shigeru Yamamoto | 同爆無振動エンジン |
WO2014118906A1 (ja) * | 2013-01-30 | 2014-08-07 | 三菱重工業株式会社 | 油圧システム、風力発電装置及びそれらの制御方法 |
JP6218599B2 (ja) * | 2013-12-26 | 2017-10-25 | 株式会社 近藤工作所 | 自動車用エンジンの出力取出し装置 |
CN104696091A (zh) * | 2015-02-13 | 2015-06-10 | 吴三社 | 两轮简易双缸发动机缸体结构 |
JP7127889B2 (ja) * | 2019-02-14 | 2022-08-30 | 株式会社石川エナジーリサーチ | パワーユニット |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5444143A (en) * | 1977-08-26 | 1979-04-07 | United Stirling Ab & Co | Double action thermal gas engine |
-
1982
- 1982-03-01 JP JP3063982A patent/JPS58149435A/ja active Pending
-
1983
- 1983-03-01 WO PCT/JP1983/000061 patent/WO1983003125A1/ja unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5444143A (en) * | 1977-08-26 | 1979-04-07 | United Stirling Ab & Co | Double action thermal gas engine |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992010696A1 (en) * | 1990-12-06 | 1992-06-25 | Rolando Poeta | System for reversibly transforming rotary motion into self-guided rectilinear motion |
US5359908A (en) * | 1990-12-06 | 1994-11-01 | Rolando Poeta | System for reversibly transforming rotary motion into self-guided rectilinear motion |
WO1997001694A1 (en) * | 1995-06-26 | 1997-01-16 | Kimberley Vere Sadleir | Multiple crankshaft ic engine |
WO1999066182A1 (de) * | 1998-06-17 | 1999-12-23 | Gerhard Klaiber | Mehrzylinderbrennkraftmaschine |
GB2349417A (en) * | 1999-04-26 | 2000-11-01 | Brian Mawdsley | I.c. engine with piston connected by two con-rods to a pair of contra-rotating crankshafts |
WO2005038197A1 (de) * | 2003-10-17 | 2005-04-28 | Neander Motorfahrzeuge Gmbh | Hubkolben-brennkraftmaschine |
JP2008045516A (ja) * | 2006-08-18 | 2008-02-28 | Shiyounai Yasuda | 低振動の内燃機関又は圧縮装置 |
RU2658209C1 (ru) * | 2017-07-11 | 2018-06-19 | Василий Иванович Шитов | Механизм преобразования движения для поршневой машины |
FR3070055A1 (fr) * | 2017-08-10 | 2019-02-15 | Henry Pierre Brondet | Moteur a quatre temps deux cylindres horizontaux et quatre embiellages |
WO2019125121A1 (es) * | 2017-12-19 | 2019-06-27 | Active Financial, S.A. De C.V. | Compresor-recirculador de fluidos |
CN110206847A (zh) * | 2019-06-20 | 2019-09-06 | 上海大学 | 一种空间多连杆抗摇摆装置 |
CN110206847B (zh) * | 2019-06-20 | 2020-12-29 | 上海大学 | 一种空间多连杆抗摇摆装置 |
Also Published As
Publication number | Publication date |
---|---|
JPS58149435A (ja) | 1983-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1983003125A1 (en) | Vibrationless piston mechanism | |
US3258992A (en) | Reciprocating piston engines | |
WO2012144073A1 (ja) | Xy分離クランク機構およびこれを備えた駆動装置 | |
WO2008010490A1 (fr) | MOTEUR ALTERNATIF cycloïdAL ET POMPE EMPLOYANT CE MÉCANISME DE VILEBREQUIN | |
US9051833B2 (en) | X-engine assembly with perfect balance | |
WO2016139751A1 (ja) | Xy分離クランク機構を備えた駆動装置 | |
JP2010502877A (ja) | 改良された対向ピストン燃焼エンジン | |
JP2009036030A (ja) | 高膨張比エンジンのクランクシャフト構造 | |
US20070062469A1 (en) | Rotary radial internal combustion piston engine | |
US9528585B2 (en) | Piston engine | |
US3196698A (en) | Internal combustion engine | |
JP2011017329A (ja) | 遊星歯車複偏心盤を用いた2気筒1クランクピン型多気筒サイクロイド往復動機関 | |
US2257884A (en) | Angular displacement engine or compressor | |
CN114183241A (zh) | 一种旋转对置活塞发动机动力输出装置 | |
US3277743A (en) | Crankshaft with floating crank throws | |
US4970995A (en) | Internal combustion engines | |
RU2471099C2 (ru) | Устройство преобразования вращательного движения в возвратно-поступательное и наоборот | |
JP4041173B2 (ja) | 低振動容積型機械 | |
EA003724B1 (ru) | Преобразование прямолинейного возвратно-поступательного движения во вращательное движение | |
CN110295995A (zh) | 一种能够实现全平衡的结构及多缸组合的活塞式发动机 | |
US6799542B2 (en) | Engine having piston-cam assembly powertrain | |
US2561261A (en) | Counterbalanced and counteraction internal-combustion engine | |
US20040216540A1 (en) | Torus crank mechanism | |
CN103089426A (zh) | 外凸内任意齿差凸轮套筒传动内燃机 | |
CN107246319B (zh) | 凸轮活齿架端齿轮输出式内燃机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): SU US |
|
AL | Designated countries for regional patents |
Designated state(s): AT BE CH DE FR GB LU NL SE |