US7888373B2 - Heterocyclic sulfonamides as modulators of cardiac sarcomeres - Google Patents
Heterocyclic sulfonamides as modulators of cardiac sarcomeres Download PDFInfo
- Publication number
- US7888373B2 US7888373B2 US12/553,311 US55331109A US7888373B2 US 7888373 B2 US7888373 B2 US 7888373B2 US 55331109 A US55331109 A US 55331109A US 7888373 B2 US7888373 B2 US 7888373B2
- Authority
- US
- United States
- Prior art keywords
- compound
- optionally substituted
- phenyl
- imidazol
- thiadiazol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 Heterocyclic sulfonamides Chemical class 0.000 title claims description 162
- 230000000747 cardiac effect Effects 0.000 title abstract description 41
- 210000002235 sarcomere Anatomy 0.000 title abstract description 25
- 229940124530 sulfonamide Drugs 0.000 title abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 176
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 51
- 229910052757 nitrogen Inorganic materials 0.000 claims description 36
- 125000003037 imidazol-2-yl group Chemical group [H]N1C([*])=NC([H])=C1[H] 0.000 claims description 35
- 150000003839 salts Chemical class 0.000 claims description 35
- 239000001257 hydrogen Substances 0.000 claims description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims description 31
- 125000000217 alkyl group Chemical group 0.000 claims description 27
- 125000001072 heteroaryl group Chemical group 0.000 claims description 27
- 229910052736 halogen Inorganic materials 0.000 claims description 25
- 150000002367 halogens Chemical class 0.000 claims description 25
- 150000002431 hydrogen Chemical group 0.000 claims description 17
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 17
- 125000003118 aryl group Chemical group 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 125000000623 heterocyclic group Chemical group 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 12
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 125000002252 acyl group Chemical group 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 6
- 125000004104 aryloxy group Chemical group 0.000 claims description 5
- 125000005553 heteroaryloxy group Chemical group 0.000 claims description 5
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 5
- 125000004423 acyloxy group Chemical group 0.000 claims description 4
- 125000005530 alkylenedioxy group Chemical group 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 4
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 claims description 3
- 125000002883 imidazolyl group Chemical group 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 2
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 2
- 125000004287 oxazol-2-yl group Chemical group [H]C1=C([H])N=C(*)O1 0.000 claims description 2
- 125000002971 oxazolyl group Chemical group 0.000 claims description 2
- 125000004043 oxo group Chemical group O=* 0.000 claims description 2
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 2
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 2
- 125000004299 tetrazol-5-yl group Chemical group [H]N1N=NC(*)=N1 0.000 claims description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 claims description 2
- 125000000335 thiazolyl group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 3
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 claims 1
- 206010019280 Heart failures Diseases 0.000 abstract description 28
- 206010007559 Cardiac failure congestive Diseases 0.000 abstract description 25
- 108010051609 Cardiac Myosins Proteins 0.000 abstract description 19
- 102000013602 Cardiac Myosins Human genes 0.000 abstract description 18
- 230000003389 potentiating effect Effects 0.000 abstract description 8
- 208000008253 Systolic Heart Failure Diseases 0.000 abstract description 4
- 150000003456 sulfonamides Chemical class 0.000 abstract description 4
- 239000000460 chlorine Chemical group 0.000 description 166
- 239000000203 mixture Substances 0.000 description 53
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 48
- 102000003505 Myosin Human genes 0.000 description 43
- 108060008487 Myosin Proteins 0.000 description 41
- 230000000694 effects Effects 0.000 description 39
- 238000000034 method Methods 0.000 description 38
- 238000003556 assay Methods 0.000 description 37
- 239000011575 calcium Substances 0.000 description 37
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 35
- 229910052791 calcium Inorganic materials 0.000 description 35
- 239000000243 solution Substances 0.000 description 32
- 238000002360 preparation method Methods 0.000 description 30
- 241001465754 Metazoa Species 0.000 description 25
- 229910001868 water Inorganic materials 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 23
- 108091006112 ATPases Proteins 0.000 description 22
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- 210000002216 heart Anatomy 0.000 description 21
- 210000000107 myocyte Anatomy 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 19
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 18
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 238000001802 infusion Methods 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 108010085238 Actins Proteins 0.000 description 16
- 102000007469 Actins Human genes 0.000 description 16
- 125000003107 substituted aryl group Chemical group 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 15
- 230000007062 hydrolysis Effects 0.000 description 15
- 238000006460 hydrolysis reaction Methods 0.000 description 15
- 241000700159 Rattus Species 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- 201000010099 disease Diseases 0.000 description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- 125000000547 substituted alkyl group Chemical group 0.000 description 13
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 11
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 11
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 11
- 102000013009 Pyruvate Kinase Human genes 0.000 description 11
- 108020005115 Pyruvate Kinase Proteins 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 11
- 239000000872 buffer Substances 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 210000003632 microfilament Anatomy 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 11
- 238000004904 shortening Methods 0.000 description 11
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 11
- 241000283690 Bos taurus Species 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 0 [1*]N([2*])S(=O)(=O)C1=C([5*])C([6*])=C([4*])C(C(=O)C[3*])=C1[7*] Chemical compound [1*]N([2*])S(=O)(=O)C1=C([5*])C([6*])=C([4*])C(C(=O)C[3*])=C1[7*] 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 9
- 125000004070 6 membered heterocyclic group Chemical group 0.000 description 9
- 125000003341 7 membered heterocyclic group Chemical group 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 108010030743 Tropomyosin Proteins 0.000 description 9
- 102000005937 Tropomyosin Human genes 0.000 description 9
- 102000004903 Troponin Human genes 0.000 description 9
- 108090001027 Troponin Proteins 0.000 description 9
- 239000013543 active substance Substances 0.000 description 9
- 230000003205 diastolic effect Effects 0.000 description 9
- 235000019439 ethyl acetate Nutrition 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 210000004165 myocardium Anatomy 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 231100000673 dose–response relationship Toxicity 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 8
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 8
- 239000011591 potassium Substances 0.000 description 8
- 229910052700 potassium Inorganic materials 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 125000005415 substituted alkoxy group Chemical group 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 7
- 230000004217 heart function Effects 0.000 description 7
- 229910052740 iodine Chemical group 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000012453 solvate Substances 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000002518 antifoaming agent Substances 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 125000004475 heteroaralkyl group Chemical group 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000000004 hemodynamic effect Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 229940039009 isoproterenol Drugs 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000003365 myofibril Anatomy 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 210000002027 skeletal muscle Anatomy 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Substances CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 5
- QXTIBZLKQPJVII-UHFFFAOYSA-N triethylsilicon Chemical compound CC[Si](CC)CC QXTIBZLKQPJVII-UHFFFAOYSA-N 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 4
- 206010071436 Systolic dysfunction Diseases 0.000 description 4
- 108010051583 Ventricular Myosins Proteins 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 238000002592 echocardiography Methods 0.000 description 4
- DLACZFAILBBGDX-UHFFFAOYSA-N ethyl 4-[4-chloro-3-[(5-phenyl-1,3,4-thiadiazol-2-yl)carbamoyl]phenyl]sulfonylpiperazine-1-carboxylate Chemical compound C1CN(C(=O)OCC)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(=O)NC=2SC(=NN=2)C=2C=CC=CC=2)=C1 DLACZFAILBBGDX-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 208000019622 heart disease Diseases 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 208000010125 myocardial infarction Diseases 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 230000002861 ventricular Effects 0.000 description 4
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 3
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 3
- PJUPKRYGDFTMTM-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1 PJUPKRYGDFTMTM-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 3
- 206010052337 Diastolic dysfunction Diseases 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 102000005640 Myosin Type II Human genes 0.000 description 3
- 108010045128 Myosin Type II Proteins 0.000 description 3
- 206010030113 Oedema Diseases 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 210000005003 heart tissue Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 229960002725 isoflurane Drugs 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 125000006574 non-aromatic ring group Chemical group 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- UWYZHKAOTLEWKK-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline Chemical compound C1=CC=C2CNCCC2=C1 UWYZHKAOTLEWKK-UHFFFAOYSA-N 0.000 description 2
- ACTKAGSPIFDCMF-UHFFFAOYSA-N 1,3-oxazol-2-amine Chemical compound NC1=NC=CO1 ACTKAGSPIFDCMF-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- DEPDDPLQZYCHOH-UHFFFAOYSA-N 1h-imidazol-2-amine Chemical class NC1=NC=CN1 DEPDDPLQZYCHOH-UHFFFAOYSA-N 0.000 description 2
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- JDMVNCICCHHERW-UHFFFAOYSA-N 2-chloro-5-[4-(n-cyano-n'-cyclopentylcarbamimidoyl)piperazin-1-yl]sulfonyl-n-(1h-imidazol-2-yl)benzamide Chemical compound ClC1=CC=C(S(=O)(=O)N2CCN(CC2)C(NC2CCCC2)=NC#N)C=C1C(=O)NC1=NC=CN1 JDMVNCICCHHERW-UHFFFAOYSA-N 0.000 description 2
- HXVUCIYXBTYQLK-UHFFFAOYSA-N 2-chloro-5-fluorosulfonylbenzoic acid Chemical compound OC(=O)C1=CC(S(F)(=O)=O)=CC=C1Cl HXVUCIYXBTYQLK-UHFFFAOYSA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- BKRYFHAXBGUIOI-UHFFFAOYSA-N 5-methyl-1h-imidazol-2-amine Chemical compound CC1=CNC(N)=N1 BKRYFHAXBGUIOI-UHFFFAOYSA-N 0.000 description 2
- ANBJJAROENDFHC-UHFFFAOYSA-N 5-phenyl-1,3,4-thiadiazol-2-amine;sulfuric acid Chemical compound OS(O)(=O)=O.S1C(N)=NN=C1C1=CC=CC=C1 ANBJJAROENDFHC-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 206010011086 Coronary artery occlusion Diseases 0.000 description 2
- 101710128527 DNA-directed RNA polymerase subunit alpha Proteins 0.000 description 2
- 101710112941 DNA-directed RNA polymerase subunit beta Proteins 0.000 description 2
- 101710126019 DNA-directed RNA polymerase subunit beta C-terminal section Proteins 0.000 description 2
- 101710122417 DNA-directed RNA polymerase subunit beta N-terminal section Proteins 0.000 description 2
- 101710185074 DNA-directed RNA polymerase subunit beta' Proteins 0.000 description 2
- 101710135457 DNA-directed RNA polymerase subunit beta'' Proteins 0.000 description 2
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 102100029880 Glycodelin Human genes 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 239000007821 HATU Substances 0.000 description 2
- 229910004373 HOAc Inorganic materials 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 108030001204 Myosin ATPases Proteins 0.000 description 2
- 108010034119 Myosin Subfragments Proteins 0.000 description 2
- 239000007990 PIPES buffer Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 101710154444 Putative DNA-directed RNA polymerase subunit omega Proteins 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 108010066093 Smooth Muscle Myosins Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 101710116223 Tyrosine-protein phosphatase non-receptor type 22 Proteins 0.000 description 2
- JHXTZZSOYOAHRD-MRVPVSSYSA-N [N+](=O)([O-])C1=CC=C(C=C1)OC(O[C@H](C)CC)=O Chemical compound [N+](=O)([O-])C1=CC=C(C=C1)OC(O[C@H](C)CC)=O JHXTZZSOYOAHRD-MRVPVSSYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000003857 carboxamides Chemical class 0.000 description 2
- 210000001715 carotid artery Anatomy 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000002508 compound effect Effects 0.000 description 2
- 230000036757 core body temperature Effects 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- LJOODBDWMQKMFB-UHFFFAOYSA-N cyclohexylacetic acid Chemical compound OC(=O)CC1CCCCC1 LJOODBDWMQKMFB-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 2
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- SLIKWVTWIGHFJE-UHFFFAOYSA-N diphenoxymethylidenecyanamide Chemical compound C=1C=CC=CC=1OC(=NC#N)OC1=CC=CC=C1 SLIKWVTWIGHFJE-UHFFFAOYSA-N 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- YFHXZQPUBCBNIP-UHFFFAOYSA-N fura-2 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=3OC(=CC=3C=2)C=2OC(=CN=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 YFHXZQPUBCBNIP-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001030 gas--liquid chromatography Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005986 heart dysfunction Effects 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 238000010874 in vitro model Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003601 intercostal effect Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 210000005240 left ventricle Anatomy 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 description 2
- 229960003574 milrinone Drugs 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- 210000001087 myotubule Anatomy 0.000 description 2
- 229940126701 oral medication Drugs 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 125000004194 piperazin-1-yl group Chemical group [H]N1C([H])([H])C([H])([H])N(*)C([H])([H])C1([H])[H] 0.000 description 2
- 150000004885 piperazines Chemical group 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- DBABZHXKTCFAPX-UHFFFAOYSA-N probenecid Chemical compound CCCN(CCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 DBABZHXKTCFAPX-UHFFFAOYSA-N 0.000 description 2
- 229960003081 probenecid Drugs 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000004252 protein component Nutrition 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000013222 sprague-dawley male rat Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 2
- 231100001274 therapeutic index Toxicity 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- ONDSBJMLAHVLMI-UHFFFAOYSA-N trimethylsilyldiazomethane Chemical compound C[Si](C)(C)[CH-][N+]#N ONDSBJMLAHVLMI-UHFFFAOYSA-N 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- FTNJQNQLEGKTGD-UHFFFAOYSA-N 1,3-benzodioxole Chemical compound C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-UHFFFAOYSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- QCOYAFKPIDGZIR-UHFFFAOYSA-N 2-chloro-5-(4-ethoxycarbonylpiperazin-1-yl)sulfonylbenzoic acid Chemical compound C1CN(C(=O)OCC)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(O)=O)=C1 QCOYAFKPIDGZIR-UHFFFAOYSA-N 0.000 description 1
- JUPYKWFSHLPBBX-UHFFFAOYSA-N 2-chloro-5-(4-methylpiperazin-1-yl)sulfonyl-n-(5-phenyl-1,3,4-thiadiazol-2-yl)benzamide Chemical compound C1CN(C)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(=O)NC=2SC(=NN=2)C=2C=CC=CC=2)=C1 JUPYKWFSHLPBBX-UHFFFAOYSA-N 0.000 description 1
- PXQSTAPXZKXDIT-UHFFFAOYSA-N 2-chloro-5-(4-methylpiperazin-4-ium-1-yl)sulfonylbenzoate Chemical compound C1CN(C)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(O)=O)=C1 PXQSTAPXZKXDIT-UHFFFAOYSA-N 0.000 description 1
- DDFCXYMFBMTNEB-UHFFFAOYSA-N 2-chloro-5-[4-(2-cyclohexylacetyl)piperazin-1-yl]sulfonyl-n-(1h-imidazol-2-yl)benzamide Chemical compound ClC1=CC=C(S(=O)(=O)N2CCN(CC2)C(=O)CC2CCCCC2)C=C1C(=O)NC1=NC=CN1 DDFCXYMFBMTNEB-UHFFFAOYSA-N 0.000 description 1
- XFYVRXXLCKSEOS-UHFFFAOYSA-N 2-chloro-5-[4-[(2-methylpropan-2-yl)oxycarbonyl]piperazin-1-yl]sulfonylbenzoic acid Chemical compound C1CN(C(=O)OC(C)(C)C)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(O)=O)=C1 XFYVRXXLCKSEOS-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- NODFMZCEEBQXME-UHFFFAOYSA-N 5-phenyl-1h-imidazol-2-amine Chemical compound N1C(N)=NC(C=2C=CC=CC=2)=C1 NODFMZCEEBQXME-UHFFFAOYSA-N 0.000 description 1
- JYGOFGJNWGAPAN-UHFFFAOYSA-N 5-phenylpyrimidin-2-amine Chemical compound C1=NC(N)=NC=C1C1=CC=CC=C1 JYGOFGJNWGAPAN-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VGWCMMMUQPLVGN-UHFFFAOYSA-N 9h-cyclopenta[b]naphthalene Chemical compound C1=CC=C2CC3=CC=CC3=CC2=C1 VGWCMMMUQPLVGN-UHFFFAOYSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 108010043137 Actomyosin Proteins 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010007556 Cardiac failure acute Diseases 0.000 description 1
- 206010007558 Cardiac failure chronic Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 244000118681 Iresine herbstii Species 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229940099471 Phosphodiesterase inhibitor Drugs 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 101710101148 Probable 6-oxopurine nucleoside phosphorylase Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000030764 Purine-nucleoside phosphorylase Human genes 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108010023848 Skeletal Muscle Myosins Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000003639 Student–Newman–Keuls (SNK) method Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 238000006069 Suzuki reaction reaction Methods 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KXVANAXEYGLPBO-CYBMUJFWSA-N [(2r)-butan-2-yl] 4-[4-chloro-3-(1h-imidazol-2-ylcarbamoyl)phenyl]sulfonylpiperazine-1-carboxylate Chemical compound C1CN(C(=O)O[C@H](C)CC)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(=O)NC=2NC=CN=2)=C1 KXVANAXEYGLPBO-CYBMUJFWSA-N 0.000 description 1
- XLFYIHAFYGGMNU-UHFFFAOYSA-N [H]N(C(=O)C1=CC(S(=O)(=O)N2CCN(/C(=N\[N+]#[C-])NC3CCCC3)CC2)=CC=C1Cl)C1=NC=CN1 Chemical compound [H]N(C(=O)C1=CC(S(=O)(=O)N2CCN(/C(=N\[N+]#[C-])NC3CCCC3)CC2)=CC=C1Cl)C1=NC=CN1 XLFYIHAFYGGMNU-UHFFFAOYSA-N 0.000 description 1
- BKMOWDHTIPGOKY-UHFFFAOYSA-N [N].C1CCNNCC1 Chemical compound [N].C1CCNNCC1 BKMOWDHTIPGOKY-UHFFFAOYSA-N 0.000 description 1
- HHRFWSALGNYPHA-UHFFFAOYSA-N [N].C1CNCCN1 Chemical compound [N].C1CNCCN1 HHRFWSALGNYPHA-UHFFFAOYSA-N 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000012042 active reagent Substances 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000000808 adrenergic beta-agonist Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000011914 asymmetric synthesis Methods 0.000 description 1
- 210000001008 atrial appendage Anatomy 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- BNBQRQQYDMDJAH-UHFFFAOYSA-N benzodioxan Chemical compound C1=CC=C2OCCOC2=C1 BNBQRQQYDMDJAH-UHFFFAOYSA-N 0.000 description 1
- PKJCGJWZGSMNKX-UHFFFAOYSA-N benzoic acid;1-methylpiperazine Chemical compound CN1CCNCC1.OC(=O)C1=CC=CC=C1 PKJCGJWZGSMNKX-UHFFFAOYSA-N 0.000 description 1
- 150000001559 benzoic acids Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000022900 cardiac muscle contraction Effects 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000037020 contractile activity Effects 0.000 description 1
- 230000009989 contractile response Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 208000026758 coronary atherosclerosis Diseases 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical compound NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000004982 dihaloalkyl group Chemical group 0.000 description 1
- 201000011304 dilated cardiomyopathy 1A Diseases 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000002337 electrophoretic mobility shift assay Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- LNOQURRKNJKKBU-UHFFFAOYSA-N ethyl piperazine-1-carboxylate Chemical compound CCOC(=O)N1CCNCC1 LNOQURRKNJKKBU-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 1
- 108700038605 human Smooth muscle Proteins 0.000 description 1
- 102000043827 human Smooth muscle Human genes 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- LEUJVEZIEALICS-UHFFFAOYSA-N hydrogen sulfate;1h-imidazol-2-ylazanium Chemical compound OS(O)(=O)=O.NC1=NC=CN1 LEUJVEZIEALICS-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000005113 hydroxyalkoxy group Chemical group 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000004041 inotropic agent Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003434 inspiratory effect Effects 0.000 description 1
- 210000000876 intercostal muscle Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000011630 iodine Chemical group 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- CGAKSFSPNZXQEC-UHFFFAOYSA-M lithium;2-chloro-5-(4-methylpiperazin-1-yl)sulfonylbenzoate Chemical compound [Li+].C1CN(C)CCN1S(=O)(=O)C1=CC=C(Cl)C(C([O-])=O)=C1 CGAKSFSPNZXQEC-UHFFFAOYSA-M 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- KOTHKRWGRLFJGP-UHFFFAOYSA-N methyl 2-chloro-5-(4-methylpiperazin-1-yl)sulfonylbenzoate Chemical compound C1=C(Cl)C(C(=O)OC)=CC(S(=O)(=O)N2CCN(C)CC2)=C1 KOTHKRWGRLFJGP-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000036640 muscle relaxation Effects 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XORXZRQNXQSDQG-UHFFFAOYSA-N n-methyl-1,3,4-thiadiazol-2-amine Chemical compound CNC1=NN=CS1 XORXZRQNXQSDQG-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000002644 neurohormonal effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 210000003540 papillary muscle Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 210000002976 pectoralis muscle Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- MUWKOMPVDAFEOB-UHFFFAOYSA-N phenyl 4-[4-chloro-3-(1h-imidazol-2-ylcarbamoyl)phenyl]sulfonyl-n-cyanopiperazine-1-carboximidate Chemical compound ClC1=CC=C(S(=O)(=O)N2CCN(CC2)C(OC=2C=CC=CC=2)=NC#N)C=C1C(=O)NC1=NC=CN1 MUWKOMPVDAFEOB-UHFFFAOYSA-N 0.000 description 1
- 239000002571 phosphodiesterase inhibitor Substances 0.000 description 1
- 238000003566 phosphorylation assay Methods 0.000 description 1
- 125000004482 piperidin-4-yl group Chemical group N1CCC(CC1)* 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- IAHIMVFWYADCJJ-UHFFFAOYSA-N prop-1-enylcyclohexane Chemical group CC=CC1CCCCC1 IAHIMVFWYADCJJ-UHFFFAOYSA-N 0.000 description 1
- IVRIRQXJSNCSPQ-UHFFFAOYSA-N propan-2-yl carbonochloridate Chemical compound CC(C)OC(Cl)=O IVRIRQXJSNCSPQ-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000006513 pyridinyl methyl group Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 208000012802 recumbency Diseases 0.000 description 1
- 210000001567 regular cardiac muscle cell of ventricle Anatomy 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YISMAGAYVYNGTD-UHFFFAOYSA-N tert-butyl 4-[4-chloro-3-(1h-imidazol-2-ylcarbamoyl)phenyl]sulfonylpiperazine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCN1S(=O)(=O)C1=CC=C(Cl)C(C(=O)NC=2NC=CN=2)=C1 YISMAGAYVYNGTD-UHFFFAOYSA-N 0.000 description 1
- CWXPZXBSDSIRCS-UHFFFAOYSA-N tert-butyl piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNCC1 CWXPZXBSDSIRCS-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 150000004867 thiadiazoles Chemical group 0.000 description 1
- 125000004571 thiomorpholin-4-yl group Chemical group N1(CCSCC1)* 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- UPCXAARSWVHVLY-UHFFFAOYSA-N tris(2-hydroxyethyl)azanium;acetate Chemical compound CC(O)=O.OCCN(CCO)CCO UPCXAARSWVHVLY-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/10—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/14—Nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/22—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
- C07D295/26—Sulfur atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/75—Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/88—Nitrogen atoms, e.g. allantoin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D257/00—Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
- C07D257/02—Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D257/04—Five-membered rings
- C07D257/06—Five-membered rings with nitrogen atoms directly attached to the ring carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D261/14—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/34—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D263/48—Nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/38—Nitrogen atoms
- C07D277/44—Acylated amino or imino radicals
- C07D277/46—Acylated amino or imino radicals by carboxylic acids, or sulfur or nitrogen analogues thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
- C07D285/135—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/16—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
- C07D295/18—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- the invention relates to substituted sulfonamide derivatives, particularly to compounds that selectively modulate the cardiac sarcomere, and specifically to compounds, pharmaceutical formulations and methods of treatment for systolic heart failure, including congestive heart failure.
- the “sarcomere” is an elegantly organized cellular structure found in cardiac and skeletal muscle made up of interdigitating thin and thick filaments; it comprises nearly 60% of cardiac cell volume.
- the thick filaments are composed of “myosin,” the protein responsible for transducing chemical energy (ATP hydrolysis) into force and directed movement. Myosin and its functionally related cousins are called motor proteins.
- the thin filaments are composed of a complex of proteins.
- actin a filamentous polymer
- Bound to actin are a set of regulatory proteins, the “troponin complex” and “tropomyosin,” which make the actin-myosin interaction dependent on changes in intracellular Ca 2+ levels.
- Myosin is the most extensively studied of all the motor proteins. Of the thirteen distinct classes of myosin in human cells, the myosin-II class is responsible for contraction of skeletal, cardiac, and smooth muscle. This class of myosin is significantly different in amino acid composition and in overall structure from myosin in the other twelve distinct classes (Goodson H V and Spudich J A. (1993) Proc. Natl. Acad. Sci. USA 90:659-663). Myosin-II consists of two globular head domains linked together by a long alpha-helical coiled-coiled tail that assembles with other myosin-IIs to form the core of the sarcomere's thick filament.
- the globular heads have a catalytic domain where the actin binding and ATP functions of myosin take place.
- actin binding and ATP functions of myosin take place.
- the release of phosphate leads to a change in structural conformation of the catalytic domain that in turn alters the orientation of the light-chain binding lever arm domain that extends from the globular head; this movement is termed the powerstroke.
- This change in orientation of the myosin head in relationship to actin causes the thick filament of which it is a part to move with respect to the thin actin filament to which it is bound (Spudich J A. (2001) Nat Rev Mol Cell Biol. 2(5):387-92).
- actin filament also Ca 2+ modulated
- Mammalian heart muscle consists of two forms of cardiac myosin, alpha and beta, and they are well characterized (Robbins, supra).
- the beta form is the predominant form (>90 percent) in adult human cardiac muscle. Both have been observed to be regulated in human heart failure conditions at both transcriptional and translational levels (Miyata supra), with the alpha form being down-regulated in heart failure.
- cardiac alpha and beta myosins are very similar (93% identity), they are both considerably different from human smooth muscle (42% identity) and more closely related to skeletal myosins (80% identity).
- cardiac muscle myosins are incredibly conserved across mammalian species.
- alpha and beta cardiac myosins are >96% conserved between humans and rats, and the available 250-residue sequence of porcine cardiac beta myosin is 100% conserved with the corresponding human cardiac beta myosin sequence.
- sequence conservation contributes to the predictability of studying myosin based therapeutics in animal based models of heart failure.
- the components of the cardiac sarcomere present targets for the treatment of heart failure, for example by increasing contractility or facilitating complete relaxation to modulate systolic and diastolic function, respectively.
- CHF Congestive heart failure
- systolic dysfunction an impairment of cardiac contractility (with a consequent reduction in the amount of blood ejected with each heartbeat).
- systolic dysfunction with compensatory dilation of the ventricular cavities results in the most common form of heart failure, “dilated cardiomyopathy,” which is often considered to be one in the same as CHF.
- the counterpoint to systolic dysfunction is diastolic dysfunction, an impairment of the ability to fill the ventricles with blood, which can also result in heart failure even with preserved left ventricular function.
- Congestive heart failure is ultimately associated with improper function of the cardiac myocyte itself, involving a decrease in its ability to contract and relax.
- systolic and/or diastolic dysfunction such as atherosclerosis, hypertension, viral infection, valvular dysfunction, and genetic disorders.
- Patients with these conditions typically present with the same classical symptoms: shortness of breath, edema and overwhelming fatigue.
- ischemic heart disease due to coronary atherosclerosis.
- These patients have had either a single myocardial infarction or multiple myocardial infarctions; here, the consequent scarring and remodeling results in the development of a dilated and hypocontractile heart.
- idiopathic dilated cardiomyopathy At times the causative agent cannot be identified, so the disease is referred to as “idiopathic dilated cardiomyopathy.” Irrespective of ischemic or other origin, patients with dilated cardiomyopathy share an abysmal prognosis, excessive morbidity and high mortality.
- Patients with very advanced congestive heart failure particularly those at the end stage of the disease also could benefit from a therapeutic agent that increases heart function, for example, for stabilization while waiting for a heart transplant.
- Other potential benefits could be provided to patients coming off a bypass pump, for example, by administration of an agent that assists the stopped or slowed heart in resuming normal function.
- Patients who have diastolic dysfunction could benefit from a therapeutic agent that modulates relaxation.
- Inotropes are drugs that increase the contractile ability of the heart. As a group, all current inotropes have failed to meet the gold standard for heart failure therapy, i.e., to prolong patient survival. In addition, current agents are poorly selective for cardiac tissue, in part leading to recognized adverse effects that limit their use. Despite this fact, intravenous inotropes continue to be widely used in acute heart failure (e.g., to allow for reinstitution of oral medications or to bridge patients to heart transplantation) whereas in chronic heart failure, orally given digoxin is used as an inotrope to relieve patient symptoms, improve the quality of life, and reduce hospital admissions.
- the present invention provides compounds, pharmaceutical compositions and methods for the treatment of heart failure including CHF, particularly systolic heart failure.
- the compositions are selective modulators of the cardiac sarcomere, for example, potentiating cardiac myosin.
- the invention relates to one or more compounds of the group represented by Formula I:
- Yet other aspects of the invention relate to a pharmaceutical formulation including a pharmaceutically acceptable excipient, and to a method of treatment for heart disease, each entailing a therapeutically effective amount of a compound, isomer, salt or solvate represented by Formula I.
- the invention provides methods of screening for modulators of the activity of myosin.
- the methods comprise combining a compound of Formula I, myosin, and at least one candidate agent and determining the effect of the candidate agent on the activity of myosin.
- Alkyl is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof.
- Lower alkyl refers to alkyl groups of from 1 to 5 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s-and t-butyl and the like.
- Preferred alkyl groups are those of C 20 or below. More preferred alkyl groups are those of C 13 or below. Still more preferred alkyl groups are those of C 6 and below.
- Cycloalkyl is a subset of alkyl and includes cyclic hydrocarbon groups of from 3 to 13 carbon atoms.
- cycloalkyl groups include c-propyl, c-butyl, c-pentyl, norbornyl, adamantyl and the like.
- alkyl refers to alkanyl, alkenyl and alkynyl residues; it is intended to include cyclohexylmethyl, vinyl, allyl, isoprenyl and the like.
- Alkylene is another subset of alkyl, referring to the same residues, as alkyl, but having two points of attachment.
- alkylene examples include ethylene (—CH 2 CH 2 —), propylene (—CH 2 CH 2 CH 2 —), dimethylpropylene (—CH 2 C(CH 3 ) 2 CH 2 —) and cyclohexylpropylene (—CH 2 CH 2 CH(C 6 H 13 )—).
- alkyl residue having a specific number of carbons all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, “butyl” is meant to include n-butyl, sec-butyl, isobutyl and t-butyl; “propyl” includes n-propyl and isopropyl.
- alkoxy refers to the group —O-alkyl, preferably including from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. Lower-alkoxy refers to groups containing one to four carbons.
- substituted alkoxy refers to the group —O-(substituted alkyl).
- One preferred substituted alkoxy group is “polyalkoxy” or —O-(optionally substituted alkylene)-(optionally substituted alkoxy), and includes groups such as —OCH 2 CH 2 OCH 3 , and glycol ethers such as polyethyleneglycol and —O(CH 2 CH 2 O) x CH 3 , where x is an integer of about 2-20, preferably about 2-10, and more preferably about 2-5.
- Another preferred substituted alkoxy group is hydroxyalkoxy or —OCH 2 (CH 2 ) y OH, where y is an integer of about 1-10, preferably about 1-4.
- “Acyl” refers to groups of from 1 to 10 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. One or more carbons in the acyl residue may be replaced by nitrogen, oxygen or sulfur as long as the point of attachment to the parent remains at the carbonyl. Examples include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, benzyloxycarbonyl and the like. “Lower-acyl” refers to groups containing one to four carbons and “acyloxy” refers to the group O-acyl.
- amino refers to the group —NH 2 .
- substituted amino refers to the group —NHR or —NRR where each R is independently selected from the group: optionally substituted alkyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, acyl, alkoxycarbonyl, sulfanyl, sulfinyl and sulfonyl, e.g., diethylamino, methylsulfonylamino, furanyl-oxy-sulfonamino.
- Aryl means a 5- or 6-membered aromatic ring, a bicyclic 9- or 10-membered aromatic ring system, or a tricyclic 12- to 14-membered aromatic ring system. Examples include cyclopenta-1,3-diene, phenyl, naphthyl, indane, tetraline, fluorene, cyclopenta[b]naphthalene and anthracene;
- Alkoxy refers to the group —O-aralkyl.
- heterooaralkoxy refers to the group —O-heteroaralkyl;
- aryloxy refers to —O-aryl; and
- heteroaryloxy refers to the group —O-heteroaryl.
- “Aralkyl” refers to a residue in which an aryl moiety is attached to the parent structure via an alkyl residue. Examples include benzyl, phenethyl, phenylvinyl, phenylallyl and the like. “Heteroaralkyl” refers to a residue in which a heteroaryl moiety is attached to the parent structure via an alkyl residue. Examples include furanylmethyl, pyridinylmethyl, pyrimidinylethyl and the like.
- ATPase refers to an enzyme that hydrolyzes ATP. ATPases include proteins comprising molecular motors such as the myosins.
- Halogen refers to fluorine, chlorine, bromine or iodine. Fluorine, chlorine and bromine are preferred.
- Dihaloaryl, dihaloalkyl, trihaloaryl etc. refer to aryl and alkyl substituted with a plurality of halogens, but not necessarily a plurality of the same halogen; thus 4-chloro-3-fluorophenyl is within the scope of dihaloaryl.
- Heteroaryl means a 5- or 6-membered aromatic ring containing 1-4 heteroatoms, a bicyclic 8-, 9- or 10-membered aromatic ring system containing 1-4 (or more) heteroatoms, or a tricyclic 11- to 14-membered aromatic ring system containing 1-4 (or more) heteroatoms; the heteroatoms are selected from O, N and S.
- Heterocycle or “heterocyclyl” refers to a cycloalkyl residue in which one to four of the carbons is replaced by a heteroatom such as oxygen, nitrogen or sulfur.
- Heterocyclyl also includes ring systems including unsaturated bonds, provided the number and placement of unsaturation does not render the group aromatic. Examples include imidazoline, oxazoline, tetrahydroisoquinoline, benzodioxan, benzodioxole and 3,5-dihydrobenzoxazinyl. Examples of substituted heterocyclyl include 4-methyl-1-piperazinyl and 4-benzyl- 1-piperidinyl.
- “Isomers” are different compounds that have the same molecular formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space. “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “(. ⁇ .)” is used to designate a racemic mixture where appropriate. “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system.
- stereochemistry at each chiral carbon may be specified by either R or S.
- Resolved compounds whose absolute configuration is unknown can be designated (+) or ( ⁇ ) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line.
- Certain of the compounds described herein contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-.
- the present invention is meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures.
- Optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
- the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.
- pharmaceutically acceptable carrier or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- pharmaceutically acceptable salt refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which are not biologically or otherwise undesirable.
- the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
- Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
- Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases.
- Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like; particularly preferred are the ammonium, potassium, sodium, calcium and magnesium salts.
- Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.
- solvate refers to a compound (e.g., a compound of Formula I or a pharmaceutically acceptable salt thereof) in physical association with one or more molecules of a pharmaceutically acceptable solvent. It will be understood that phrases such as “a compound of Formula I or a pharmaceutically acceptable salt or solvate thereof” are intended to encompass the compound of Formula I, a pharmaceutically acceptable salt of the compound, a solvate of the compound, and a solvate of a pharmaceutically acceptable salt of the compound.
- “Substituted-”alkyl, aryl, heteroaryl and heterocyclyl refer respectively to alkyl, aryl, heteroaryl and heterocyclyl wherein one or more (up to about 5, preferably up to about 3) hydrogen atoms are replaced by a substituent independently selected from the group: acyl, optionally substituted alkyl (e.g., fluoroalkyl), optionally substituted alkoxy, alkylenedioxy (e.g.
- optionally substituted amino e.g., alkylamino and dialkylamino
- optionally substituted amidino optionally substituted aryl (e.g., phenyl), optionally substituted aralkyl (e.g., benzyl), optionally substituted aryloxy (e.g., phenoxy), optionally substituted aralkoxy (e.g., benzyloxy), carboxy (—COOH), acyloxy (—OOCR), alkoxycarbonyl (i.e., esters or —COOR), aminocarbonyl, benzyloxycarbonylamino (CBZ-amino), cyano, carbonyl, halogen, hydroxy, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted heteroaryloxy, optionally substituted heteroaralkoxy, nitro, sulfanyl, sulfinyl, sulfonyl, and thi
- sulfanyl refers to the groups: —S-(optionally substituted alkyl), —S-(optionally substituted aryl), —S-(optionally substituted heteroaryl), and —S-(optionally substituted heterocyclyl).
- sulfinyl refers to the groups: —S(O)—H, —S(O)-(optionally substituted alkyl), —S(O)-(optionally substituted amino), —S(O)-(optionally substituted aryl), —S(O)-(optionally substituted heteroaryl), and —S(O)-(optionally substituted heterocyclyl).
- sulfonyl refers to the groups: —S(O 2 )—H, —S(O 2 )-(optionally substituted alkyl), —S(O 2 )-(optionally substituted amino), —S(O 2 )-(optionally substituted aryl), —S(O 2 )-(optionally substituted heteroaryl), —S(O 2 )-(optionally substituted heterocyclyl), —S(O 2 )-(optionally substituted alkoxy), —S(O 2 )-optionally substituted aryloxy), —S(O 2 )-(optionally substituted heteroaryloxy), and —S(O 2 )-(optionally substituted heterocyclyloxy).
- therapeutically effective amount refers to that amount of a compound of Formula I that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment.
- the therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the particular compound of Formula I chosen, the dosing regimen to be followed, timing of administration, the manner of administration and the like, all of which can readily be determined by one of ordinary skill in the art.
- treatment means any treatment of a disease in a mammal, including:
- the present invention is directed to the compounds that are selective modulators of the cardiac sarcomere (e.g., by stimulating or otherwise potentiating the activity of cardiac myosin), as represented by Formula I:
- the compounds of Formula I can be named and numbered (e.g., using AutoNom version 2.2) as described below.
- R 1 and R 2 together with the nitrogen to which they are attached form a substituted piperazine ring; R 3 is a substituted thiadiazole ring; R 4 is chloro; and R 5 , R 6 , and R 7 are hydrogen can be named 4-[4-chloro-3-(5-phenyl-[1,3,4]thiadiazol-2-ylcarbamoyl)-benzenesulfonyl]-piperazine-1-carboxylic acid ethyl ester.
- the compounds of the invention can be synthesized utilizing techniques well known in the art, e.g., as illustrated below with reference to the Reaction Schemes.
- reaction times and conditions are intended to be approximate, e.g., taking place at about atmospheric pressure within a temperature range of about ⁇ 10° C. to about 110° C. over a period of about 1 to about 24 hours; reactions left to run overnight average a period of about 16 hours.
- solvent each mean a solvent inert under the conditions of the reaction being described in conjunction therewith [including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like].
- solvents used in the reactions of the present invention are inert organic solvents.
- Isolation and purification of the compounds and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, or a combination of these procedures.
- suitable separation and isolation procedures can be had by reference to the examples hereinbelow. However, other equivalent separation or isolation procedures can, of course, also be used.
- the (R)- and (S)-isomers may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereoisomeric derivatives which may be separated; for example, by cyrstallization, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent.
- a compound of Formula I can be dissolved in a lower alkanol and placed on a Chiralpak AD (205 ⁇ 20 mm) column (Chiral Technologies, Inc.) conditioned for 60 min at 70% EtOAc in Hexane.
- a further step may be required to liberate the desired enantiomeric form.
- a specific enantiomer may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.
- the optionally substituted benzoic acids of Formula 101 are commercially available, e.g., from Acros Organic or Aldrich Chemical Company, Milwaukee, Wis., or may be readily prepared by those skilled in the art using commonly employed synthetic methodology.
- One of skill in the art will appreciate that the commercially available compounds may lack a carboxyl protecting group PG.
- Other reactants are likewise commercially available or may be readily prepared by those skilled in the art using commonly employed synthetic methodology.
- Step 1 a compound of Formula 101 is placed in a vial.
- the vial is flushed with nitrogen and a positive pressure is maintained.
- An anhydrous, nonpolar solvent, such as dichloromethane is added, followed by an excess (preferably about 1.2 equivalents) of a compound of formula R 1 R 2 NH and a base such as ethyldiisopropylamine.
- the mixture is stirred for about 1.5 hours after which time an additional aliquot (preferably about 0.8 equivalent) of the amine of formula R 1 R 2 NH is added. After about 14 hours the mixture is analyzed by reverse-phase HPLC-MS in negative ionization mode.
- sulfonyl fluoride starting material is present, an additional amount (preferably about 0.35 equivalent) of the amine of formula R 1 R 2 NH and ethyldiisopropylamine are added and the mixture is stirred for about 4 hours. This may be repeated again as necessary.
- the resulting product, a compound of Formula 103 can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation. It should be noted that addition of excess nucleophilic amine at the beginning of the reaction may result in significant bis addition, giving sulfonamide and carboxamide product. Stepwise addition of nucleophilic amine as needed suppresses formation of this side product.
- a compound of Formula 103 is placed in a vial along with an excess (preferably about 1.2 equivalents) of a compound of Formula R 3 NH 2 , an excess (preferably about 1.5 equivalents) of HBTU and an excess (preferably about 1.5 equivalents) of HOBt hydrate.
- the vial is flushed with nitrogen and a positive pressure is maintained.
- An anhydrous solvent, such as dimethylformamide is added, followed by a base such as ethyldiisopropylamine and the mixture is stirred for about 14 hours.
- the resulting product, a compound of Formula 105 can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation.
- Step 1 an excess (preferably about 10 equivalents) of diphenylcyanocarbonimidate is added to a compound of Formula 201 wherein n is 1 or 2.
- the vial is capped, flushed with nitrogen and a positive pressure is maintained.
- Anhydrous, inert solvent such as THF is added, followed by a base such as ethyldiisopropylamine.
- the mixture is stirred for about one hour.
- the resulting product, a compound of Formula 203 can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation.
- Step 2 a compound of Formula 203 is placed in a vial.
- the vial is flushed with nitrogen and a positive pressure is maintained.
- An anhydrous inert solvent such as THF is added followed by an excess (especially about five equivalents) of an amine of formula R 10 NH 2 wherein R 10 is optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.
- R 10 is optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.
- the mixture is stirred until the reaction is complete.
- the resulting product, a compound of Formula 205 can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation.
- Compounds prepared by the above-described, processes of the invention can be identified, e.g., by the presence of a detectable amount of one or more of the starting materials or reagents. While it is well known that pharmaceuticals must meet pharmacopoeia standards before approval and/or marketing, and that synthetic reagents (such as the various substituted amines or alcohols) and precursors should not exceed the limits prescribed by pharmacopoeia standards, final compounds prepared by a process of the present invention may have minor, but detectable, amounts of such materials present, for example at levels in the range of 95% purity with no single impurity greater than 1%. These levels can be detected, e.g., by emission spectroscopy. It is important to monitor the purity of pharmaceutical compounds for the presence of such materials, which presence is additionally disclosed as a method of detecting use of a synthetic process of the invention.
- a racemic mixture of isomers of a compound of Formula I is placed on a chromatography column and separated into (R)- and (S)-enantiomers.
- a compound of Formula I is contacted with a pharmaceutically acceptable acid to form the corresponding acid addition salt.
- a pharmaceutically acceptable acid addition salt of Formula I is contacted with a base to form the corresponding free base of Formula I.
- R 1 and R 2 are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aralkyl, and optionally substituted heteroaralkyl.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring.
- R 1 , R 2 and the nitrogen to which they are attached form a piperidin-1-yl; piperazin-1-yl; morpholin-4-yl; pyrrolidin-1-yl; thiomorpholin-4-yl or diazepan-1-yl, which optionally is substituted with one, two or three of the following groups: optionally substituted alkyl, halogen, hydroxy, alkoxy, alkylenedioxy (e.g.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted diazepan-1-yl ring
- the diazepane nitrogen is further substituted with optionally substituted acyl, optionally substituted alkoxycarbonyl, or optionally substituted aminosulfonyl.
- the piperazine nitrogen is further substituted with hydrogen, an optionally substituted acyl, optionally substituted alkoxycarbonyl, optionally substituted aminosulfonyl, optionally substituted heteroaryl, optionally substituted alkyl, or optionally substituted sulfonyl.
- the piperidine ring is further substituted with hydrogen, optionally substituted alkoxycarbonyl, optionally substituted aminocarbonyl, optionally substituted amino, hydroxy, optionally substituted alkoxy, or alkylenedioxy.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted pyrrolidin-1-yl ring, in a particular embodiment, the pyrrolidine ring is further substituted with optionally substituted amino.
- R 3 is optionally substituted aryl or optionally substituted heteroaryl. More particularly, R 3 is phenyl, isoxazolyl, oxazolyl, pyridinyl, pyrazinyl, pyrimidinyl, tetrazol-5-yl, thiazolyl, thiadiazolyl or imidazolyl, which is optionally substituted with a halogen, lower alkoxy, an optionally substituted aryl or heteroaryl group.
- R 3 is phenyl which is optionally substituted with halogen (especially fluoro) or lower alkoxy (especially methoxy).
- R 3 is a heteroaryl group which is optionally substituted with an optionally substituted aryl or heteroaryl group.
- R 3 is [1,3,4]thiadiazol-2-yl which is optionally substituted with an optionally substituted phenyl group or R 3 is 1H-imidazol-2-yl.
- R 3 is oxazol-2-yl, 5-phenyl-[1,3,4]thiadiazol-2-yl or 1H-imidazol-2-yl.
- R 4 is halogen. More particularly, R 4 is chloro.
- R 5 is hydrogen, halogen, hydroxy, or optionally substituted lower alkyl; and R 6 and R 7 are independently selected from the group consisting of hydrogen, hydrogen, halogen, hydroxy, and optionally substituted lower alkyl. In another embodiment, R 5 , R 6 and R 7 are hydrogen.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R 3 is optionally substituted aryl or optionally substituted heteroaryl
- R 4 is halogen
- R 5 , R 8 and R 7 are hydrogen.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R 3 is optionally substituted aryl or optionally substituted heteroaryl
- R 4 is chloro
- R 5 , R 6 and R 7 are hydrogen.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R 3 is [1,3,4]thiadiazol-2-yl which is optionally substituted with an optionally substituted phenyl group or R 3 is 1H-imidazol-2-yl group;
- R 4 is a halogen
- R 5 , R 6 and R 7 are hydrogen.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R 3 is [1,3,4]thiadiazol-2-yl which is optionally substituted with an optionally substituted phenyl group or R 3 is a 1H-imidazol-2-yl group;
- R 4 is chloro
- R 5 , R 8 and R 7 are hydrogen.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R 3 is 5-phenyl-[1,3,4]thiadiazol-2-yl or 1H-imidazol-2-yl;
- R 4 is halogen
- R 5 , R 6 and R 7 are hydrogen.
- R 1 , R 2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R 3 is 5-phenyl-[1,3,4]thiadiazol-2-yl or 1H-imidazol-2-yl;
- R 4 is chloro
- R 5 , R 6 and R 7 are hydrogen.
- Particular compounds include
- compounds of the invention include
- the compounds of the present invention are selective for and modulate the cardiac sarcomere, and are useful to bind to and/or potentiate the activity of cardiac myosin, increasing the rate at which myosin hydrolyzes ATP.
- modulate means either increasing or decreasing myosin activity, whereas “potentiate” means to increase activity. It has also been determined in testing representative compounds of the invention, that their administration can also increase the contractile force in cardiac muscle fiber.
- the compounds, pharmaceutical formulations and methods of the invention are used to treat heart disease, including but not limited to: acute (or decompensated) congestive heart failure, and chronic congestive heart failure; particularly diseases associated with systolic heart dysfunction.
- Additional therapeutic utilities include administration to stabilize heart function in patients awaiting a heart transplant, and to assist a stopped or slowed heart in resuming normal function following use of a bypass pump.
- ATP hydrolysis is employed by myosin in the sarcomere to produce force. Therefore, an increase in ATP hydrolysis would correspond to an increase in the force or velocity of muscle contraction. In the presence of actin, myosin ATPase activity is stimulated>100 fold. Thus, ATP hydrolysis not only measures myosin enzymatic activity but also its interaction with the actin filament.
- a compound that modulates the cardiac sarcomere can be identified by an increase or decrease in the rate of ATP hydrolysis by myosin, preferably exhibiting a 1.4 fold increase at concentrations less than 10 ⁇ M (more preferably, less than 1 ⁇ M).
- Preferred assays for such activity will employ myosin from a human source, although myosin from other organisms can also be used. Systems that model the regulatory role of calcium in myosin binding are also preferred.
- a biochemically functional sarcomere preparation can be used to determine in vitro ATPase activity, for example, as described in U.S. Ser. No. 09/539,164, filed Mar. 29, 2000.
- the functional biochemical behavior of the sarcomere including calcium sensitivity of ATPase hydrolysis, can be reconstituted by combining its purified individual components (particularly including its regulatory components and myosin).
- Another functional preparation is the in vitro motility assay. It can be performed by adding test compound to a myosin-bound slide and observing the velocity of actin filaments sliding over the myosin covered glass surface (Kron S J. (1991) Methods Enzymol. 196:399-416).
- the in vitro rate of ATP hydrolysis correlates to myosin potentiating activity, which can be determined by monitoring the production of either ADP or phosphate, for example as described in Ser. No. 09/314,464, filed May 18, 1999.
- ADP production can also be monitored by coupling the ADP production to NADH oxidation (using the enzymes pyruvate kinase and lactate dehydrogenase) and monitoring the NADH level either by absorbance or fluorescence (Greengard, P., Nature 178 (Part 4534): 632-634 (1956); Mol Pharmacol 1970 January; 6(1):31-40).
- Phosphate production can be monitored using purine nucleoside phosphorylase to couple phosphate production to the cleavage of a purine analog, which results in either a change in absorbance ( Proc Natl Acad Sci USA 1992 Jun. 1; 89(11):4884-7) or fluorescence ( Biochem J 1990 Mar. 1; 266(2):611-4). While a single measurement can be employed, it is preferred to take multiple measurements of the same sample at different times in order to determine the absolute rate of the protein activity; such measurements have higher specificity particularly in the presence of test compounds that have similar absorbance or fluorescence properties with those of the enzymatic readout.
- Test compounds can be assayed in a highly parallel fashion using multiwell plates by placing the compounds either individually in wells or testing them in mixtures. Assay components including the target protein complex, coupling enzymes and substrates, and ATP can then be added to the wells and the absorbance or fluorescence of each well of the plate can be measured with a plate reader.
- a preferred method uses a 384 well plate format and a 25 ⁇ L reaction volume.
- a pyruvate kinase/lactate dehydrogenase coupled enzyme system (Huang T G and hackney D D. (1994) J Biol Chem 269(23):16493-16501) is used to measure the rate of ATP hydrolysis in each well.
- the assay components are added in buffers and reagents. Since the methods outlined herein allow kinetic measurements, incubation periods are optimized to give adequate detection signals over the background. The assay is done in real time giving the kinetics of ATP hydrolysis, which increases the signal to noise ratio of the assay.
- Modulation of cardiac muscle fiber contractile force can be measured using detergent permeabilized cardiac fibers (also referred to as skinned cardiac fibers), for example, as described by Haikala H, et al (1995) J Cardiovasc Pharmacol 25(5):794-801. Skinned cardiac fibers retain their intrinsic sarcomeric organization, but do not retain all aspects of cellular calcium cycling, this model offers two advantages: first, the cellular membrane is not a barrier to compound penetration, and second, calcium concentration is controlled. Therefore, any increase in contractile force is a direct measure of the test compound's effect on sarcomeric proteins. Tension measurements are made by mounting one end of the muscle fiber to a stationary post and the other end to a transducer that can measure force.
- the force transducer After stretching the fiber to remove slack, the force transducer records increased tension as the fiber begins to contract. This measurement is called the isometric tension, since the fiber is not allowed to shorten.
- Activation of the permeabilized muscle fiber is accomplished by placing it in a buffered calcium solution, followed by addition of test compound or control. When tested in this manner, compounds of the invention caused an increase in force at calcium concentrations associated with physiologic contractile activity, but very little augmentation of force in relaxing buffer at low calcium concentrations or in the absence of calcium (the EGTA data point).
- Selectivity for the cardiac sarcomere and cardiac myosin can be determined by substituting non-cardiac sarcomere components and myosin in one or more of the above-described assays and comparing the results obtained against those obtained using the cardiac equivalents.
- a compound's ability to increase observed ATPase rate in an in vitro reconstituted sarcomere assay could result from the increased turnover rate of S1-myosin or, alternatively, increased sensitivity of a decorated actin filament to Ca ++ -activation.
- the effect of the compound on ATPase activity of S1 with undecorated actin filaments is initially measured. If an increase of activity is observed, the compound's effect on the Ca-responsive regulatory apparatus could be disproved.
- a second, more sensitive assay can be employed to identify compounds whose activating effect on S1-myosin is enhanced in the presence of a decorated actin (compared to pure actin filaments).
- Compounds with cellular activity can then be assessed in whole organ models, such as such as the Isolated Heart (Langendorff) model of cardiac function, in vivo using echocardiography or invasive hemodynamic measures, and in animal-based heart failure models, such as the Rat Left Coronary Artery Occlusion model.
- whole organ models such as such as the Isolated Heart (Langendorff) model of cardiac function, in vivo using echocardiography or invasive hemodynamic measures, and in animal-based heart failure models, such as the Rat Left Coronary Artery Occlusion model.
- activity for treating heart disease is demonstrated in blinded, placebo-controlled, human clinical trials.
- Administration of the compounds of the invention or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, orally, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, or intraocularly.
- Oral and parenteral administration are customary in treating the indications that are the subject of the present invention.
- the compounds can be administered either alone or more typically in combination with a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like).
- a conventional pharmaceutical carrier e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
- the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like).
- the pharmaceutical formulation will contain about 0.005% to 95%, preferably about 0.5% to 50% by weight of a compound of the invention.
- Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences , Mack Publishing Company, Easton, Pa.
- the compounds of the invention can be co-administered with, and the pharmaceutical compositions can include, other medicinal agents, pharmaceutical agents, adjuvants, and the like.
- suitable additional active agents include, for example: therapies that retard the progression of heart failure by down-regulating neurohormonal stimulation of the heart and attempt to prevent cardiac remodeling (e.g., ACE inhibitors or ⁇ -blockers); therapies that improve cardiac function by stimulating cardiac contractility (e.g., positive inotropic agents, such as the ⁇ -adrenergic agonist dobutamine or the phosphodiesterase inhibitor milrinone); and therapies that reduce cardiac preload (e.g., diuretics, such as furosemide).
- therapies that retard the progression of heart failure by down-regulating neurohormonal stimulation of the heart and attempt to prevent cardiac remodeling e.g., ACE inhibitors or ⁇ -blockers
- therapies that improve cardiac function by stimulating cardiac contractility e.g., positive inotropic agents, such as the ⁇ -adrenergic agonist dobutamine or the
- the compositions will take the form of a pill or tablet and thus the composition will contain, along with the active ingredient, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like.
- a powder, marume, solution or suspension e.g., in propylene carbonate, vegetable oils or triglycerides
- a gelatin capsule e.g., in propylene carbonate, vegetable oils or triglycerides
- Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. an active compound as defined above and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution or suspension.
- a carrier e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like
- injectables can be prepared in conventional forms, either as liquid solutions or suspensions, as emulsions, or in solid forms suitable for dissolution or suspension in liquid prior to injection.
- the percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject. However, percentages of active ingredient of 0.01% to 10% in solution are employable, and will be higher if the composition is a solid which will be subsequently diluted to
- reaction mixture was diluted with 2 mL of ethyl acetate, washed with 1M HCl solution (2 ⁇ 1 mL) and dried over anhydrous sodium sulfate. The solution was filtered, the solvents removed on a rotary evaporator and vacuum pump to afford 134 mg of a white solid, 81%.
- the benzoic acid piperazine ethyl ester from above (131 mg, 348 ⁇ mol, 1.0 eq) was placed in a vial along with 2-amino-5-phenyl-1,3,4-thiadiazole sulfate (115 mg, 417 ⁇ mol, 1.2 eq), HBTU (Advanced Chem Tech, 198 mg, 521 ⁇ mol, 1.5 eq) and HOBt hydrate (80 mg, 521 ⁇ mol, 1.5 eq).
- the vial was flushed with nitrogen and a positive pressure was maintained.
- the benzoic acid piperazine tert-butyl ester from above (1.57 g, 3.88 mmol, 1.0 eq) was placed in a 100 mL round-bottom flask along with 2-aminoimidazole sulfate (Aldrich, 615 mg, 4.65 mmol, 1.2 eq), HATU (PE Biosystems, 2.21 g, 5.82 mmol, 1.5 eq) and HOAt (Avocado, 792 mg, 5.82 mmol, 1.5 eq). The flask was capped with a septum, flushed with nitrogen and a positive pressure was maintained.
- Boc-piperazine imidazole compound from above (109 mg, 232 ⁇ mol, 1.0 eq) was placed in a vial and treated with 2.6 mL of 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane. After 15 min Boc removal was complete as evidenced by reverse-phase HPLC-MS, and the solvents were removed in vacuo. The residue was azeotroped 3 ⁇ chloroform and placed under vacuum for 1 h.
- the Boc-piperazine imidazole compound from above (148 mg, 315 ⁇ mol, 1.0 eq) was placed in a vial and treated with 3.6 mL of 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane as described above for the cyclohexyl acetamide compound.
- (R)-Carbonic acid sec-butyl ester 4-nitro-phenyl ester, 93% wt. (89 mg, 346 ⁇ mol, 1.1 eq) and 3 mg DMAP were added to the vial, the vial was capped, flushed with nitrogen and a positive pressure was maintained.
- the Boc-piperazine imidazole compound from above (86 mg, 183 ⁇ mol, 1.0 eq) was placed in a vial and treated with 1.8 mL of 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane as described above for the cyclohexyl acetamide compound.
- DMAP (2 mg) were added to the vial, the vial was capped, flushed with nitrogen and a positive pressure was maintained.
- the Boc-piperazine imidazole compound from above (2.04 g, 4.33 mmol, 1.0 eq) was treated with 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane as described above for the cyclohexyl acetamide compound.
- the residue was treated with saturated sodium bicarbonate solution until pH>8, then the solution was extracted with EtOAc and concentrated in vacuo to afford 1.6 g free amine.
- Diphenylcyanocarbonimidate (1.08 g, 4.54 mmol, 10.5 eq) was added to the flask and it was capped, flushed with nitrogen and a positive pressure was maintained.
- the methylpiperazine methyl ester from above (197 mg, 592 ⁇ mol, 1.0 eq) was placed in a vial, dissolved in 1.5 mL of MeOH and 30 ⁇ L of water. LiOH hydrate (26 mg, 622 ⁇ mol, 1.05 eq) was added and the vial was capped, flushed with nitrogen and a positive pressure was maintained. The mixture was heated at 60° C. for 4 h at which time it was judged to be complete by reverse-phase HPLC-MS. The solvents were removed in vacuo to afford 197 mg of a white solid.
- 2-Amino-4-phenylimidazole a reagent in the synthesis of compounds of Formula I, was synthesized from the procedure of: Little, T. L.; Webber, S. E. “A Simple and Practical Synthesis of 2-Aminoimidazoles” J. Org. Chem. 1994, 59, 7299-7305, which is incorporated herein by reference.
- 2-Amino-5-phenylpyrimidine was synthesized in an analogous fashion to the procedure described in: Gong, Y.; Pauls, H. W. “A Convenient Synthesis of Heteroarylbenzoic Acids via Suzuki Reaction” Synlett, 2000, 6, 829-831, which is incorporated herein by reference.
- 2-Aminooxazole was prepared from the procedure of: Cockerill, A. F.; Deacon, A.; Harrison, R. G.; Osborne, D. J.; Prime, D. M.; Ross, W. J.; Todd, A.; Verge, J. P. “An Improved Synthesis of 2-Amino-1,3-Oxazoles Under Basic Conditions” Synthesis, 1976, 591-593, which is incorporated herein by reference.
- 2-Amino-4-methylimidazole was prepared according to the procedure described in: Little, T. L.; Webber, S. E. “A Simple and Practical Synthesis of 2-Aminoimidazoles” J. Org. Chem. 1994, 59, 7299-7305, which is incorporated herein by reference.
- the reaction mixture was diluted with 10 mL of ethyl acetate, washed with 7 mL each of the following: 0.5 M NaOH solution ⁇ 2, water ⁇ 1, 1M HCl solution ⁇ 1, water ⁇ 1, saturated sodium chloride ⁇ 1 and dried over anhydrous sodium sulfate.
- the solution was filtered, the solvents removed on a rotary evaporator and vacuum pump to afford 2.11 g of a pale yellow solid. This was shown to contain 11 mol % 4-nitrophenol by 1 H-NMR and was judged to be 93% pure by weight. Total yield was therefore 95%.
- Specificity assays Compound specificity towards cardiac myosin is evaluated by comparing the effect of the compound on actin-stimulated ATPase of a panel of myosin isoforms: cardiac, skeletal and smooth muscle, at a single 50 ⁇ M compound concentration.
- Myofibril assays To evaluate the effect of compounds on the ATPase activity of full-length cardiac myosin in the context of native sarcomere, skinned myofibril assays are performed. Rat cardiac myofibrils are obtained by homogenizing rat cardiac tissue in the presence of detergent. Such treatment removes membranes and majority of soluble cytoplasmic proteins but leaves intact cardiac sarcomeric acto-myosin apparatus. Myofibril preparations retain the ability to hydrolyze ATP in an Ca ++ controlled manner. ATPase activities of such myofibril preparations in the presence and absence of compounds are assayed at Ca ++ concentrations giving 50% and 100% of a maximal rate.
- Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl 2 (2 mM), ATP (1 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and antifoam (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition of potassium hydroxide. Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M.
- bovine cardiac myosin subfragment-1 typically 0.5 ⁇ M
- bovine cardiac actin 14 ⁇ M
- bovine cardiac tropomyosin typically 3 ⁇ M
- bovine cardiac troponin typically 3-8 ⁇ M
- concentrations of tropomyosin and troponin are determined empirically, by titration to achieve maximal difference in ATPase activity when measured in the presence of 1 mM EGTA versus that measured in the presence of 0.2 mM CaCl 2 .
- concentration of myosin in the assay is also determined empirically, by titration to achieve a desired rate of ATP hydrolysis. This varies between protein preparations, due to variations in the fraction of active molecules in each preparation.
- Compound dose responses are typically measured at the calcium concentration corresponding to 50% of maximal ATPase activity (pCa 50 ), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M. Subsequently, the assay mixture is adjusted to the pCa 50 (typically 3 ⁇ 10 ⁇ 7 M).
- Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl 2 , BSA, DTT, pyruvate kinase, lactate dehydrogenase, myosin subfragment-1, antifoam, EGTA, CaCl 2 , and water.
- the assay is started by adding an equal volume of solution containing potassium Pipes, MgCl 2 , BSA, DTT, ATP, NADH, PEP, actin, tropomyosin, troponin, antifoam, and water.
- ATP hydrolysis is monitored by absorbance at 340 nm.
- the AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
- This medium is not recirculated and is continually gassed with O 2 .
- the heart is perfused with modified Krebs buffer supplemented with 3.3% collagenase (169 ⁇ /mg activity, Class II, Worthington Biochemical Corp., Freehold, N.J.) and 25 ⁇ M final calcium concentration until the heart becomes sufficiently blanched and soft.
- the heart is removed from the cannulae, the atria and vessels discarded and the ventricles are cut into small pieces.
- the myocytes are dispersed by gentle agitation of the ventricular tissue in fresh collagenase containing Krebs prior to being gently forced through a 200 ⁇ m nylon mesh in a 50 cc tube.
- the resulting myocytes are resuspended in modified Krebs solution containing 25 ⁇ m calcium.
- Myocytes are made calcium tolerant by addition of a calcium solution (100 mM stock) at 10 minute intervals until 100 ⁇ M calcium is achieved. After 30 minutes the supernatant is discarded and 30-50 ml of Tyrode buffer (137 mM NaCL, 3.7 mM KCL, 0.5 mM MgCL, 11 mM glucose, 4 mM Hepes, and 1.2 mM CaCl 2 , pH 7.4) is added to cells. Cells are kept for 60 min at 37° C. prior to initiating experiments and used within 5 hrs of isolation.
- Preparations of cells are used only if cells first passed QC criteria by responding to a standard (>150% of basal) and isoproterenol (ISO; >250% of basal). Additionally, only cells whose basal contractility is between 3 and 8% are used in the following experiments.
- myocytes are imaged through a 40 ⁇ objective and using a variable frame rate (60-240 Hz) charge-coupled device camera, the images are digitized and displayed on a computer screen at a sampling speed of 240 Hz.
- a variable frame rate 60-240 Hz
- test compounds (0.01-15 ⁇ M) are perfused on the myocytes for 5 minutes. After this time, fresh Tyrode buffer is perfused to determine compound washout characteristics.
- edge detection strategy contractility of the myocytes and contraction and relaxation velocities are continuously recorded.
- Contractility analysis Three or more individual myocytes are tested per compound, using two or more different myocyte preparations. For each cell, twenty or more contractility transients at basal (defined as 1 min prior to compound infusion) and after compound addition, are averaged and compared. These average transients are analyzed to determine changes in diastolic length, and using the Ionwizard analysis program (IonOptix), fractional shortening (% decrease in the diastolic length), and maximum contraction and relaxation velocities (um/sec) are determined. Analysis of individual cells are combined. Increase in fractional shortening over basal indicates potentiation of myocyte contractility.
- Fura loading Cell permeable Fura-2 (Molecular Probes) is dissolved in equal amounts of pluronic (Mol Probes) and FBS for 10 min at RT. A 1 ⁇ M Fura stock solution is made in Tyrode buffer containing 500 mM probenecid (Sigma). To load cells, this solution is added to myocytes at RT. After 10 min. the buffer is removed, the cells washed with Tyrode containing probenecid and incubated at RT for 10 min. This wash and incubation is repeated. Simultaneous contractility and calcium measurements are determined within 40 min. of loading.
- a test compound is perfused on cells. Simultaneous contractility and calcium transient ratios are determined at baseline and after compound addition. Cells are digitally imaged and contractility determined as described above, using that a red filter in the light path to avoid interference with fluorescent calcium measurements. Acquisition, analysis software and hardware for calcium transient analysis are obtained from IonOptix.
- the instrumentation for fluorescence measurement includes a xenon arc lamp and a Hyperswitch dual excitation light source that alternates between 340 and 380 wavelengths at 100 Hz by a galvo-driven mirror.
- a liquid filled light guide delivers the dual excitation light to the microscope and the emission fluorescence is determined using a photomultiplier tube (PMT).
- the fluorescence system interface routes the PMT signal and the ratios are recorded using the IonWizard acquisition program.
- contractility and calcium ratio transients For each cell, ten or more contractility and calcium ratio transients at basal and after compound addition, where averaged and compared. Contractility average transients are analyzed using the Ionwizard analysis program to determine changes in diastolic length, and fractional shortening (% decrease in the diastolic length). The averaged calcium ratio transients are analyzed using the Ionwizard analysis program to determine changes in diastolic and systolic ratios and the 75% time to baseline (T 75 ).
- Threshold potential Myocytes are field stimulated at a voltage approximately 20% above threshold.
- the threshold voltage minimum voltage to pace cell
- the cell paced at that threshold and then the test compound is infused. After the compound activity is at steady state, the voltage is decreased for 20 seconds and then restarted. Alteration of ion channels corresponds to increasing or lowering the threshold action potential.
- Hz frequency Contractility of myocytes is determined at 3 Hz as follows: a 1 min. basal time point followed by perfusion of the test compound for 5 min. followed by a 2 min. washout. After the cell contractility has returned completely to baseline the Hz frequency is decreased to 1. After an initial acclimation period the cell is challenged by the same compound. As this species, rat, exhibits a negative force frequency at 1Hz, at 3 Hz the FS of the cell should be lower, but the cell should still respond by increasing its fractional shortening in the presence of the compound.
- Additive WITH Isoproterenol To demonstrate that a compound act via a different mechanism than the adrenergic stimulant isoproterenol, cells are loaded with fura-2 and simultaneous measurement of contractility and calcium ratios are determined. The myocytes are sequentially challenged with 5 ⁇ m a test compound, buffer, 2 nM isoproterenol, buffer, and a combination of a test compound and isoproterenol.
- Bovine and rat cardiac myosins are purified from the respective cardiac tissues. Skeletal and smooth muscle myosins used in the specificity studies are purified from rabbit skeletal muscle and chicken gizzards, respectively. All myosins used in the assays are converted to a single-headed soluble form (S1) by a limited proteolysis with chymotrypsin. Other sarcomeric components: troponin complex, tropomyosin and actin are purified from bovine hearts (cardiac sarcomere) or chicken pectoral muscle (skeletal sarcomere).
- Myosin ATPase is very significantly activated by actin filaments. ATP turnover is detected in a coupled enzymatic assay using pyruvate kinase (PK) and lactate dehydrogenase (LDH). In this assay each ADP produced as a result of ATP hydrolysis is recycled to ATP by PK with a simultaneous oxidation of NADH molecule by LDH. NADH oxidation can be conveniently monitored by decrease in absorbance at 340 nm wavelength.
- PK pyruvate kinase
- LDH lactate dehydrogenase
- Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl 2 (2 mM), ATP (1 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and antifoam (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition of potassium hydroxide. Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 4 M.
- bovine cardiac myosin subfragment-1 typically 0.5 ⁇ M
- bovine cardiac actin 14 ⁇ M
- bovine cardiac tropomyosin typically 3 ⁇ M
- bovine cardiac troponin typically 3-8 ⁇ M
- concentrations of tropomyosin and troponin are determined empirically, by titration to achieve maximal difference in ATPase activity when measured in the presence of 1 mM EGTA versus that measured in the presence of 0.2 mM CaCl 2 .
- concentration of myosin in the assay is also determined empirically, by titration to achieve a desired rate of ATP hydrolysis. This varies between protein preparations, due to variations in the fraction of active molecules in each preparation.
- Compound dose responses are typically measured at the calcium concentration corresponding to 50% of maximal ATPase activity (pCa 50 ), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1 ⁇ 10 ⁇ 4 M to 1 ⁇ 10 ⁇ 8 M. Subsequently, the assay mixture is adjusted to the pCa 50 (typically 3 ⁇ 10 ⁇ 7 M).
- Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl 2 , BSA, DTT, pyruvate kinase, lactate dehydrogenase, myosin subfragment-1, antifoam, EGTA, CaCl 2 , and water.
- the assay is started by adding an equal volume of solution containing potassium Pipes, MgCl 2 , BSA, DTT, ATP, NADH, PEP, actin, tropomyosin, troponin, antifoam, and water.
- ATP hydrolysis is monitored by absorbance at 340 nm.
- the AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
- Echocardiography Animals are anesthetized with isoflurane and maintained within a surgical plane throughout the procedure. Core body temperature is maintained at 37° C. by using a heating pad. Once anesthetized, animals are shaven and hair remover is applied to remove all traces of fur from the chest area. The chest area is further prepped with 70% ETOH and ultrasound gel is applied. Using a GE System Vingmed ultrasound system (General Electric Medical Systems), a 10 MHz probe is placed on the chest wall and images are acquired in the short axis view at the level of the papillary muscles. 2-D M-mode images of the left ventricle are taken prior to, and after, compound bolus injection or infusion. In vivo fractional shortening ((end diastolic diameter ⁇ end systolic diameter)/end diastolic diameter ⁇ 100) is determined by analysis of the M-mode images using the GE EchoPak software program.
- Bolus and infusion efficacy For bolus and infusion protocols, fractional shortening is determined using echocardiography as described above. For bolus and infusion protocols, five pre-dose M-Mode images are taken at 30 second intervals prior to bolus injection or infusion of compounds. After injection, M-mode images are taken at 1 min and at five minute intervals thereafter up to 30 min.
- Bolus injection (0.5-5 mg/kg) or infusion is via a tail vein catheter.
- Infusion parameters are determined from pharmacokinetic profiles of the compounds. For infusion, animals received a 1 minute loading dose immediately followed by a 29 minute infusion dose via a tail vein catheter. The loading dose is calculated by determining the target concentration ⁇ the steady state volume of distribution. The maintenance dose concentration is determined by taking the target concentration ⁇ the clearance.
- Compounds are formulated in 25% cavitron vehicle for bolus and infusion protocols. Blood samples are taken to determine the plasma concentration of the compounds.
- Animals are anesthetized with isoflurane, maintained within a surgical plane, and then shaven in preparation for catheterization. An incision is made in the neck region and the right carotid artery cleared and isolated. A 2 French Millar Micro-tip Pressure Catheter (Millar Instruments, Houston, Tex.) is cannulated into the right carotid artery and threaded past the aorta and into the left ventricle. End diastolic pressure readings, max ⁇ dp/dt, systolic pressures and heart rate are determined continuously while compound or vehicle is infused. Measurements are recorded and analyzed using a PowerLab and the Chart 4 software program (ADInstruments, Mountain View, Calif.). Hemodynamics measurements are performed at a select infusion concentration. Blood samples are taken to determine the plasma concentration of the compounds.
- ADInstruments Mountain View, Calif.
- the underlying muscles are dissected with care to avoid the lateral thoracic vein, to expose the intercostal muscles.
- the chest cavity is entered through 4 th -5 th intercostal space, and the incision expanded to allow visualization of the heart.
- the pericardium is opened to expose the heart.
- a 6-0 silk suture with a taper needle is passed around the left coronary artery near its origin, which lies in contact with the left margin of the pulmonary cone, at about 1 mm from the insertion of the left auricular appendage.
- the left coronary artery is occluded by tying the suture around the artery (“LCO”). Sham animals are treated the same, except that the suture is not tied.
- the incision is closed in three layers.
- the rat is ventilated until able to ventilate on its own.
- the rats are extubated and allowed to recover on a heating pad.
- Animals receive buprenorphine (0.01-0.05 mg/kg SQ) for post operative analgesia. Once awake, they are returned to their cage. Animals are monitored daily for signs of infection or distress. Infected or moribund animals are euthanized. Animals are weighed once a week.
- rats are scanned for signs of myocardial infarction using echocardiography. Only those animals with decreased fractional shortening compared to sham rats are utilized further in efficacy experiments. In all experiments, there are four groups, sham+vehicle, sham+compound, LCL+vehicle and LCL+compound. At 10-12 weeks post LCL, rats are infused at a select infusion concentration. As before, five pre-dose M-Mode images are taken at 30 second intervals prior to infusion of compounds and M-mode images are taken at 30 second intervals up to 10 minutes and every minute or at five minute intervals thereafter. Fractional shortening is determined from the M-mode images.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Hospice & Palliative Care (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pyridine Compounds (AREA)
Abstract
Description
This application is a continuation application of application Ser. No. 10/550,398 with a 371 (c) date of Sep. 20, 2006 now U.S. Pat. No. 7,595,322, which is the National Stage of International Application No. PCT/US04/09408, filed Mar. 26, 2004, and claims the benefit of Provisional Application No. 60/458,702, filed Mar. 27, 2003; all of which are incorporated herein by reference.
The invention relates to substituted sulfonamide derivatives, particularly to compounds that selectively modulate the cardiac sarcomere, and specifically to compounds, pharmaceutical formulations and methods of treatment for systolic heart failure, including congestive heart failure.
The Cardiac Sarcomere
The “sarcomere” is an elegantly organized cellular structure found in cardiac and skeletal muscle made up of interdigitating thin and thick filaments; it comprises nearly 60% of cardiac cell volume. The thick filaments are composed of “myosin,” the protein responsible for transducing chemical energy (ATP hydrolysis) into force and directed movement. Myosin and its functionally related cousins are called motor proteins. The thin filaments are composed of a complex of proteins. One of these proteins, “actin” (a filamentous polymer) is the substrate upon which myosin pulls during force generation. Bound to actin are a set of regulatory proteins, the “troponin complex” and “tropomyosin,” which make the actin-myosin interaction dependent on changes in intracellular Ca2+ levels. With each heartbeat, Ca2+ levels rise and fall, initiating cardiac muscle contraction and then cardiac muscle relaxation (Robbins J and Leinwand L A. (1999) Molecular Basis of Cardiovascular Disease, Chapter 8. editor Chien, K. R., W. B. Saunders, Philadelphia). Each of the components of the sarcomere contributes to its contractile response.
Myosin is the most extensively studied of all the motor proteins. Of the thirteen distinct classes of myosin in human cells, the myosin-II class is responsible for contraction of skeletal, cardiac, and smooth muscle. This class of myosin is significantly different in amino acid composition and in overall structure from myosin in the other twelve distinct classes (Goodson H V and Spudich J A. (1993) Proc. Natl. Acad. Sci. USA 90:659-663). Myosin-II consists of two globular head domains linked together by a long alpha-helical coiled-coiled tail that assembles with other myosin-IIs to form the core of the sarcomere's thick filament. The globular heads have a catalytic domain where the actin binding and ATP functions of myosin take place. Once bound to an actin filament, the release of phosphate (cf. ATP to ADP) leads to a change in structural conformation of the catalytic domain that in turn alters the orientation of the light-chain binding lever arm domain that extends from the globular head; this movement is termed the powerstroke. This change in orientation of the myosin head in relationship to actin causes the thick filament of which it is a part to move with respect to the thin actin filament to which it is bound (Spudich J A. (2001) Nat Rev Mol Cell Biol. 2(5):387-92). Un-binding of the globular head from the actin filament (also Ca2+ modulated) coupled with return of the catalytic domain and light chain to their starting conformation/orientation completes the contraction and relaxation cycle.
Mammalian heart muscle consists of two forms of cardiac myosin, alpha and beta, and they are well characterized (Robbins, supra). The beta form is the predominant form (>90 percent) in adult human cardiac muscle. Both have been observed to be regulated in human heart failure conditions at both transcriptional and translational levels (Miyata supra), with the alpha form being down-regulated in heart failure.
The sequences of all of the human skeletal, cardiac, and smooth muscle myosins have been determined. While the cardiac alpha and beta myosins are very similar (93% identity), they are both considerably different from human smooth muscle (42% identity) and more closely related to skeletal myosins (80% identity). Conveniently, cardiac muscle myosins are incredibly conserved across mammalian species. For example, both alpha and beta cardiac myosins are >96% conserved between humans and rats, and the available 250-residue sequence of porcine cardiac beta myosin is 100% conserved with the corresponding human cardiac beta myosin sequence. Such sequence conservation contributes to the predictability of studying myosin based therapeutics in animal based models of heart failure.
The components of the cardiac sarcomere present targets for the treatment of heart failure, for example by increasing contractility or facilitating complete relaxation to modulate systolic and diastolic function, respectively.
Heart Failure
Congestive heart failure (“CHF”) is not a specific disease, but rather a constellation of signs and symptoms, all of which are caused by an inability of the heart to adequately respond to exertion by increasing cardiac output. The dominant pathophysiology associated with CHF is systolic dysfunction, an impairment of cardiac contractility (with a consequent reduction in the amount of blood ejected with each heartbeat). Systolic dysfunction with compensatory dilation of the ventricular cavities results in the most common form of heart failure, “dilated cardiomyopathy,” which is often considered to be one in the same as CHF. The counterpoint to systolic dysfunction is diastolic dysfunction, an impairment of the ability to fill the ventricles with blood, which can also result in heart failure even with preserved left ventricular function. Congestive heart failure is ultimately associated with improper function of the cardiac myocyte itself, involving a decrease in its ability to contract and relax.
Many of the same underlying conditions can give rise to systolic and/or diastolic dysfunction, such as atherosclerosis, hypertension, viral infection, valvular dysfunction, and genetic disorders. Patients with these conditions typically present with the same classical symptoms: shortness of breath, edema and overwhelming fatigue. In approximately half of the patients with dilated cardiomyopathy, the cause of their heart dysfunction is ischemic heart disease due to coronary atherosclerosis. These patients have had either a single myocardial infarction or multiple myocardial infarctions; here, the consequent scarring and remodeling results in the development of a dilated and hypocontractile heart. At times the causative agent cannot be identified, so the disease is referred to as “idiopathic dilated cardiomyopathy.” Irrespective of ischemic or other origin, patients with dilated cardiomyopathy share an abysmal prognosis, excessive morbidity and high mortality.
The prevalence of CHF has grown to epidemic proportions as the population ages and as cardiologists have become more successful at reducing mortality from ischemic heart disease, the most common prelude to CHF. Roughly 4.6 million people in the United States have been diagnosed with CHF; the incidence of such diagnosis is approaching 10 per 1000 after 65 years of age. Hospitalization for CHF is usually the result of inadequate outpatient therapy. Hospital discharges for CHF rose from 377,000 (in 1979) to 957,000 (in 1997) making CHF the most common discharge diagnosis in people age 65 and over The five-year mortality from CHF approaches 50% (Levy D. (2002) New Engl J Med. 347(18):1442-4). Hence, while therapies for heart disease have greatly improved and life expectancies have extended over the last several years, new and better therapies continue to be sought, particularly for CHF.
“Acute” congestive heart failure (also known as acute “decompensated” heart failure) involves a precipitous drop in heart function resulting from a variety of causes. For example in a patient who already has congestive heart failure, a new myocardial infarction, discontinuation of medications, and dietary indiscretions may all lead to accumulation of edema fluid and metabolic insufficiency even in the resting state. A therapeutic agent that increases heart function during such an acute episode could assist in relieving this metabolic insufficiency and speeding the removal of edema, facilitating the return to the more stable “compensated” congestive heart failure state. Patients with very advanced congestive heart failure particularly those at the end stage of the disease also could benefit from a therapeutic agent that increases heart function, for example, for stabilization while waiting for a heart transplant. Other potential benefits could be provided to patients coming off a bypass pump, for example, by administration of an agent that assists the stopped or slowed heart in resuming normal function. Patients who have diastolic dysfunction (insufficient relaxation of the heart muscle) could benefit from a therapeutic agent that modulates relaxation.
Therapeutic Active Agents
Inotropes are drugs that increase the contractile ability of the heart. As a group, all current inotropes have failed to meet the gold standard for heart failure therapy, i.e., to prolong patient survival. In addition, current agents are poorly selective for cardiac tissue, in part leading to recognized adverse effects that limit their use. Despite this fact, intravenous inotropes continue to be widely used in acute heart failure (e.g., to allow for reinstitution of oral medications or to bridge patients to heart transplantation) whereas in chronic heart failure, orally given digoxin is used as an inotrope to relieve patient symptoms, improve the quality of life, and reduce hospital admissions.
Given the limitations of current agents, new approaches are needed to improve cardiac function in congestive heart failure. The most recently approved short-term intravenous agent, milrinone, is now nearly fifteen years old. The only available oral drug, digoxin, is over 200 hundred years old. There remains a great need for agents that exploit new mechanisms of action and may have better outcomes in terms of relief of symptoms, safety, and patient mortality, both short-term and long-term. New agents with an improved therapeutic index over current agents will provide a means to achieve these clinical outcomes.
The selectivity of agents directed at the cardiac sarcomere (for example, by targeting cardiac beta myosin) has been identified as an important means to achieve this improved therapeutic index. The present invention provides such agents (particularly sarcomere activating agents) and methods for their identification and use.
The present invention provides compounds, pharmaceutical compositions and methods for the treatment of heart failure including CHF, particularly systolic heart failure. The compositions are selective modulators of the cardiac sarcomere, for example, potentiating cardiac myosin.
In one aspect, the invention relates to one or more compounds of the group represented by Formula I:
-
- R1 and R2 are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aralkyl, and optionally substituted heteroaralkyl; or R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R3 is an optionally substituted aryl or optionally substituted heteroaryl;
- R4 is halogen;
- R5 is hydrogen, halogen, hydroxy, or optionally substituted lower alkyl; and
- R6 and R7 are independently selected from the group consisting of hydrogen, halogen, hydroxy, and optionally substituted lower alkyl;
including single stereoisomers, mixtures of stereoisomers, and the pharmaceutically acceptable salts, solvates, and solvates of pharmaceutically acceptable salts thereof. The compounds of Formula I are useful as active agents in practice of the methods of treatment and in manufacture of the pharmaceutical formulations of the invention, and as intermediates in the synthesis of such active agents.
Yet other aspects of the invention relate to a pharmaceutical formulation including a pharmaceutically acceptable excipient, and to a method of treatment for heart disease, each entailing a therapeutically effective amount of a compound, isomer, salt or solvate represented by Formula I.
In an additional aspect, the present invention provides methods of screening for compounds that will bind to myosin (particularly myosin ii or β myosin), for example compounds that will displace or compete with the binding of the compounds of Formula I. The methods comprise combining an optionally-labeled compound of Formula I, myosin, and at least one candidate agent and determining the binding of the candidate agent to myosin.
In a further aspect, the invention provides methods of screening for modulators of the activity of myosin. The methods comprise combining a compound of Formula I, myosin, and at least one candidate agent and determining the effect of the candidate agent on the activity of myosin.
Other aspects and embodiments will be apparent to those skilled in the art form the following detailed description.
The present invention provides compounds useful in selective modulation of the cardiac sarcomere, for example, by potentiating cardiac myosin. The compounds can be used to treat heart failure including CHF, particularly systolic heart failure. The invention further relates to pharmaceutical formulations comprising compounds of the invention, and to methods of treatment employing such compounds or compositions. The compositions are selective modulators of the cardiac sarcomere, for example, potentiating cardiac myosin.
Definitions
As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise. The following abbreviations and terms have the indicated meanings throughout:
-
- Ac=acetyl
- Boc=t-butyloxy carbonyl
- c-=cyclo
- CBZ=carbobenzoxy=benzyloxycarbonyl
- DCM=dichloromethane=methylene chloride=CH2Cl2
- DIEA=DIPEA=N,N-diisopropylethylamine
- DMF=N,N-dimethylformamide
- DMSO=dimethyl sulfoxide
- Et=ethyl
- EtOAc=ethyl acetate
- EtOH=ethanol
- GC=gas chromatograghy
- h=hour
- HATU=O-(7-azabenzotriazol-1-yl)-N,N,N′,N″-tetramethyluronium hexafluorophosphate
- HBTU=2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
- HOAt=7-aza-1-hydroxybenzotriazole
- HOBt=1-Hydroxybenzotriazole
- Me=methyl
- min=minute
- mL=milliliter
- Ph=phenyl
- rt=room temperature
- s-=secondary
- t-=tertiary
- TES=triethylsilane
- TFA=trifluoroacetic acid
- THF=tetrahydrofuran
- TLC=thin layer chromatography
The term “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted alkyl” means either “alkyl” or “substituted alkyl,” as defined below. It will be understood by those skilled in the art with respect to any group containing one or more substituents that such groups are not intended to introduce any substitution or substitution patterns that are sterically impractical, synthetically non-feasible and/or inherently unstable.
“Alkyl” is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof. Lower alkyl refers to alkyl groups of from 1 to 5 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s-and t-butyl and the like. Preferred alkyl groups are those of C20 or below. More preferred alkyl groups are those of C13 or below. Still more preferred alkyl groups are those of C6 and below. Cycloalkyl is a subset of alkyl and includes cyclic hydrocarbon groups of from 3 to 13 carbon atoms. Examples of cycloalkyl groups include c-propyl, c-butyl, c-pentyl, norbornyl, adamantyl and the like. In this application, alkyl refers to alkanyl, alkenyl and alkynyl residues; it is intended to include cyclohexylmethyl, vinyl, allyl, isoprenyl and the like. Alkylene is another subset of alkyl, referring to the same residues, as alkyl, but having two points of attachment. Examples of alkylene include ethylene (—CH2CH2—), propylene (—CH2CH2CH2—), dimethylpropylene (—CH2C(CH3)2CH2—) and cyclohexylpropylene (—CH2CH2CH(C6H13)—). When an alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, “butyl” is meant to include n-butyl, sec-butyl, isobutyl and t-butyl; “propyl” includes n-propyl and isopropyl.
The term “alkoxy” or “alkoxyl” refers to the group —O-alkyl, preferably including from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. Lower-alkoxy refers to groups containing one to four carbons.
The term “substituted alkoxy” refers to the group —O-(substituted alkyl). One preferred substituted alkoxy group is “polyalkoxy” or —O-(optionally substituted alkylene)-(optionally substituted alkoxy), and includes groups such as —OCH2CH2OCH3, and glycol ethers such as polyethyleneglycol and —O(CH2CH2O)xCH3, where x is an integer of about 2-20, preferably about 2-10, and more preferably about 2-5. Another preferred substituted alkoxy group is hydroxyalkoxy or —OCH2(CH2)yOH, where y is an integer of about 1-10, preferably about 1-4.
“Acyl” refers to groups of from 1 to 10 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. One or more carbons in the acyl residue may be replaced by nitrogen, oxygen or sulfur as long as the point of attachment to the parent remains at the carbonyl. Examples include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, benzyloxycarbonyl and the like. “Lower-acyl” refers to groups containing one to four carbons and “acyloxy” refers to the group O-acyl.
The term “amino” refers to the group —NH2. The term “substituted amino” refers to the group —NHR or —NRR where each R is independently selected from the group: optionally substituted alkyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, acyl, alkoxycarbonyl, sulfanyl, sulfinyl and sulfonyl, e.g., diethylamino, methylsulfonylamino, furanyl-oxy-sulfonamino.
“Aryl” means a 5- or 6-membered aromatic ring, a bicyclic 9- or 10-membered aromatic ring system, or a tricyclic 12- to 14-membered aromatic ring system. Examples include cyclopenta-1,3-diene, phenyl, naphthyl, indane, tetraline, fluorene, cyclopenta[b]naphthalene and anthracene;
“Aralkoxy” refers to the group —O-aralkyl. Similarly, “heteroaralkoxy” refers to the group —O-heteroaralkyl; “aryloxy” refers to —O-aryl; and “heteroaryloxy” refers to the group —O-heteroaryl.
“Aralkyl” refers to a residue in which an aryl moiety is attached to the parent structure via an alkyl residue. Examples include benzyl, phenethyl, phenylvinyl, phenylallyl and the like. “Heteroaralkyl” refers to a residue in which a heteroaryl moiety is attached to the parent structure via an alkyl residue. Examples include furanylmethyl, pyridinylmethyl, pyrimidinylethyl and the like.
“ATPase” refers to an enzyme that hydrolyzes ATP. ATPases include proteins comprising molecular motors such as the myosins.
“Halogen” or “halo” refers to fluorine, chlorine, bromine or iodine. Fluorine, chlorine and bromine are preferred. Dihaloaryl, dihaloalkyl, trihaloaryl etc. refer to aryl and alkyl substituted with a plurality of halogens, but not necessarily a plurality of the same halogen; thus 4-chloro-3-fluorophenyl is within the scope of dihaloaryl.
“Heteroaryl” means a 5- or 6-membered aromatic ring containing 1-4 heteroatoms, a bicyclic 8-, 9- or 10-membered aromatic ring system containing 1-4 (or more) heteroatoms, or a tricyclic 11- to 14-membered aromatic ring system containing 1-4 (or more) heteroatoms; the heteroatoms are selected from O, N and S. Examples include furan, pyrrole, thiophene, pyrazole, imidazole, triazole, tetrazole, dithiole, oxazole, isoxazole, oxadiazole, thiazole, thiopyran, pyridine, pyridazine, pyrimidine, pyrazine, indole, benzofuran, benzothiophene, quinoline, isoquinoline and quinoxaline.
“Heterocycle” or “heterocyclyl” refers to a cycloalkyl residue in which one to four of the carbons is replaced by a heteroatom such as oxygen, nitrogen or sulfur. a 4-, 5-, 6- or 7-membered non-aromatic ring containing 1-4 heteroatoms, a bicyclic 8-, 9- or 10-membered non-aromatic ring system containing 1-4 (or more) heteroatoms, or a tricyclic 11- to 14-membered non-aromatic ring system containing 1-4 (or more) heteroatoms; the heteroatoms are selected from O, N and S. Examples include pyrrolidine, tetrahydrofuran, tetrahydro-thiophene, thiazolidine, piperidine, tetrahydro-pyran, tetrahydro-thiopyran, piperazine, morpholine, thiomorpholine and dioxane. Heterocyclyl also includes ring systems including unsaturated bonds, provided the number and placement of unsaturation does not render the group aromatic. Examples include imidazoline, oxazoline, tetrahydroisoquinoline, benzodioxan, benzodioxole and 3,5-dihydrobenzoxazinyl. Examples of substituted heterocyclyl include 4-methyl-1-piperazinyl and 4-benzyl- 1-piperidinyl.
“Isomers” are different compounds that have the same molecular formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space. “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “(.±.)” is used to designate a racemic mixture where appropriate. “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system. When a compound is a pure enantiomer the stereochemistry at each chiral carbon may be specified by either R or S. Resolved compounds whose absolute configuration is unknown can be designated (+) or (−) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line. Certain of the compounds described herein contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-. The present invention is meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures. Optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.
The term “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
The term “pharmaceutically acceptable salt” refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which are not biologically or otherwise undesirable. In many cases, the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto. Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like. Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases. Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like; particularly preferred are the ammonium, potassium, sodium, calcium and magnesium salts. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.
The term “solvate” refers to a compound (e.g., a compound of Formula I or a pharmaceutically acceptable salt thereof) in physical association with one or more molecules of a pharmaceutically acceptable solvent. It will be understood that phrases such as “a compound of Formula I or a pharmaceutically acceptable salt or solvate thereof” are intended to encompass the compound of Formula I, a pharmaceutically acceptable salt of the compound, a solvate of the compound, and a solvate of a pharmaceutically acceptable salt of the compound.
“Substituted-”alkyl, aryl, heteroaryl and heterocyclyl refer respectively to alkyl, aryl, heteroaryl and heterocyclyl wherein one or more (up to about 5, preferably up to about 3) hydrogen atoms are replaced by a substituent independently selected from the group: acyl, optionally substituted alkyl (e.g., fluoroalkyl), optionally substituted alkoxy, alkylenedioxy (e.g. methylenedioxy), optionally substituted amino (e.g., alkylamino and dialkylamino), optionally substituted amidino, optionally substituted aryl (e.g., phenyl), optionally substituted aralkyl (e.g., benzyl), optionally substituted aryloxy (e.g., phenoxy), optionally substituted aralkoxy (e.g., benzyloxy), carboxy (—COOH), acyloxy (—OOCR), alkoxycarbonyl (i.e., esters or —COOR), aminocarbonyl, benzyloxycarbonylamino (CBZ-amino), cyano, carbonyl, halogen, hydroxy, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted heteroaryloxy, optionally substituted heteroaralkoxy, nitro, sulfanyl, sulfinyl, sulfonyl, and thio.
The term “sulfanyl” refers to the groups: —S-(optionally substituted alkyl), —S-(optionally substituted aryl), —S-(optionally substituted heteroaryl), and —S-(optionally substituted heterocyclyl).
The term “sulfinyl” refers to the groups: —S(O)—H, —S(O)-(optionally substituted alkyl), —S(O)-(optionally substituted amino), —S(O)-(optionally substituted aryl), —S(O)-(optionally substituted heteroaryl), and —S(O)-(optionally substituted heterocyclyl).
The term “sulfonyl” refers to the groups: —S(O2)—H, —S(O2)-(optionally substituted alkyl), —S(O2)-(optionally substituted amino), —S(O2)-(optionally substituted aryl), —S(O2)-(optionally substituted heteroaryl), —S(O2)-(optionally substituted heterocyclyl), —S(O2)-(optionally substituted alkoxy), —S(O2)-optionally substituted aryloxy), —S(O2)-(optionally substituted heteroaryloxy), and —S(O2)-(optionally substituted heterocyclyloxy).
The term “therapeutically effective amount” or “effective amount” refers to that amount of a compound of Formula I that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment. The therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the particular compound of Formula I chosen, the dosing regimen to be followed, timing of administration, the manner of administration and the like, all of which can readily be determined by one of ordinary skill in the art.
The term “treatment” or “treating” means any treatment of a disease in a mammal, including:
-
- a) preventing the disease, that is, causing the clinical symptoms of the disease not to develop;
- b) inhibiting the disease, that is, slowing or arresting the development of clinical symptoms; and/or
- c) relieving the disease, that is, causing the regression of clinical symptoms
The present invention is directed to the compounds that are selective modulators of the cardiac sarcomere (e.g., by stimulating or otherwise potentiating the activity of cardiac myosin), as represented by Formula I:
-
- R1 and R2 are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aralkyl, and optionally substituted heteroaralkyl; or R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
- R3 is optionally substituted aryl or optionally substituted heteroaryl;
- R4 is halogen;
- R5 is hydrogen, halogen, hydroxy, or optionally substituted lower alkyl; and
- R6 and R7 are independently selected from the group consisting of hydrogen, halogen, hydroxy, and optionally substituted lower alkyl;
including single stereoisomers, mixtures of stereoisomers, and the pharmaceutically acceptable salts thereof. The compounds of Formula I are useful as active agents in practice of the methods of treatment and in manufacture of the pharmaceutical formulations of the invention, and as intermediates in the synthesis of such active agents.
Nomenclature
The compounds of Formula I can be named and numbered (e.g., using AutoNom version 2.2) as described below. For example, the compound:
i.e., the compound according to Formula I where R1 and R2 together with the nitrogen to which they are attached form a substituted piperazine ring; R3 is a substituted thiadiazole ring; R4 is chloro; and R5, R6, and R7 are hydrogen can be named 4-[4-chloro-3-(5-phenyl-[1,3,4]thiadiazol-2-ylcarbamoyl)-benzenesulfonyl]-piperazine-1-carboxylic acid ethyl ester.
Likewise, the compound:
i.e., the compound according to Formula I where R1 and R2 together with the nitrogen to which they are attached form a substituted piperazine ring; R3 is an imidazole ring; R4 is chloro; and R5, R6, and R7 are hydrogen can be named 2-chloro-5-[4-(N-cyclopentyl-N′-cyano-carbamimidoyl)-piperazine-1-sulfonyl]-N-(1H-imidazol-2-yl)-benzamide.
The compounds of the invention can be synthesized utilizing techniques well known in the art, e.g., as illustrated below with reference to the Reaction Schemes.
Synthetic Reaction Parameters
Unless specified to the contrary, the reactions described herein take place at atmospheric pressure, generally within a temperature range from −10° C. to 110° C. Further, except as employed in the Examples or as otherwise specified, reaction times and conditions are intended to be approximate, e.g., taking place at about atmospheric pressure within a temperature range of about −10° C. to about 110° C. over a period of about 1 to about 24 hours; reactions left to run overnight average a period of about 16 hours.
The terms “solvent”, “organic solvent” or “inert solvent” each mean a solvent inert under the conditions of the reaction being described in conjunction therewith [including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like]. Unless specified to the contrary, the solvents used in the reactions of the present invention are inert organic solvents.
Isolation and purification of the compounds and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, or a combination of these procedures. Specific illustrations of suitable separation and isolation procedures can be had by reference to the examples hereinbelow. However, other equivalent separation or isolation procedures can, of course, also be used.
When desired, the (R)- and (S)-isomers may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereoisomeric derivatives which may be separated; for example, by cyrstallization, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent. For example, a compound of Formula I can be dissolved in a lower alkanol and placed on a Chiralpak AD (205×20 mm) column (Chiral Technologies, Inc.) conditioned for 60 min at 70% EtOAc in Hexane. It will be appreciated that where the desired enantiomer is converted into another chemical entity by one of the separation procedures described above, a further step may be required to liberate the desired enantiomeric form. Alternatively, a specific enantiomer may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.
Starting Materials
The optionally substituted benzoic acids of Formula 101 are commercially available, e.g., from Acros Organic or Aldrich Chemical Company, Milwaukee, Wis., or may be readily prepared by those skilled in the art using commonly employed synthetic methodology. One of skill in the art will appreciate that the commercially available compounds may lack a carboxyl protecting group PG. Other reactants are likewise commercially available or may be readily prepared by those skilled in the art using commonly employed synthetic methodology.
Referring to Reaction Scheme 1, Step 1, a compound of Formula 101 is placed in a vial. The vial is flushed with nitrogen and a positive pressure is maintained. An anhydrous, nonpolar solvent, such as dichloromethane is added, followed by an excess (preferably about 1.2 equivalents) of a compound of formula R1R2NH and a base such as ethyldiisopropylamine. The mixture is stirred for about 1.5 hours after which time an additional aliquot (preferably about 0.8 equivalent) of the amine of formula R1R2NH is added. After about 14 hours the mixture is analyzed by reverse-phase HPLC-MS in negative ionization mode. If the sulfonyl fluoride starting material is present, an additional amount (preferably about 0.35 equivalent) of the amine of formula R1R2NH and ethyldiisopropylamine are added and the mixture is stirred for about 4 hours. This may be repeated again as necessary. The resulting product, a compound of Formula 103, can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation. It should be noted that addition of excess nucleophilic amine at the beginning of the reaction may result in significant bis addition, giving sulfonamide and carboxamide product. Stepwise addition of nucleophilic amine as needed suppresses formation of this side product.
Preparation of Compounds of Formula 105
Referring to Reaction Scheme 1, Step 2, a compound of Formula 103 is placed in a vial along with an excess (preferably about 1.2 equivalents) of a compound of Formula R3NH2, an excess (preferably about 1.5 equivalents) of HBTU and an excess (preferably about 1.5 equivalents) of HOBt hydrate. The vial is flushed with nitrogen and a positive pressure is maintained. An anhydrous solvent, such as dimethylformamide is added, followed by a base such as ethyldiisopropylamine and the mixture is stirred for about 14 hours. The resulting product, a compound of Formula 105, can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation.
Referring to Reaction Scheme 2, Step 1, an excess (preferably about 10 equivalents) of diphenylcyanocarbonimidate is added to a compound of Formula 201 wherein n is 1 or 2. The vial is capped, flushed with nitrogen and a positive pressure is maintained. Anhydrous, inert solvent such as THF is added, followed by a base such as ethyldiisopropylamine. The mixture is stirred for about one hour. The resulting product, a compound of Formula 203, can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation.
Preparation of Compounds of Formula 205
Referring to Reaction Scheme 2, Step 2, a compound of Formula 203 is placed in a vial. The vial is flushed with nitrogen and a positive pressure is maintained. An anhydrous inert solvent such as THF is added followed by an excess (especially about five equivalents) of an amine of formula R10NH2 wherein R10 is optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl. The mixture is stirred until the reaction is complete. The resulting product, a compound of Formula 205, can be recovered by conventional methods, such as chromatography, filtration, evaporation, crystallization, and the like or, alternatively, used in the next step without purification and/or isolation.
Compounds prepared by the above-described, processes of the invention can be identified, e.g., by the presence of a detectable amount of one or more of the starting materials or reagents. While it is well known that pharmaceuticals must meet pharmacopoeia standards before approval and/or marketing, and that synthetic reagents (such as the various substituted amines or alcohols) and precursors should not exceed the limits prescribed by pharmacopoeia standards, final compounds prepared by a process of the present invention may have minor, but detectable, amounts of such materials present, for example at levels in the range of 95% purity with no single impurity greater than 1%. These levels can be detected, e.g., by emission spectroscopy. It is important to monitor the purity of pharmaceutical compounds for the presence of such materials, which presence is additionally disclosed as a method of detecting use of a synthetic process of the invention.
A racemic mixture of isomers of a compound of Formula I is placed on a chromatography column and separated into (R)- and (S)-enantiomers.
A compound of Formula I is contacted with a pharmaceutically acceptable acid to form the corresponding acid addition salt.
A pharmaceutically acceptable acid addition salt of Formula I is contacted with a base to form the corresponding free base of Formula I.
Provided for the compounds, pharmaceutical formulations, methods of manufacture and use of the present invention are the following combinations and permutations of substituent groups of Formula I. Particular embodiments of the invention include or employ the compounds of Formula I having the following combinations and permutations of substituent groups. These are presented in support of the appended claims to support other combinations and permutations of substituent groups, which for the sake of brevity have not been specifically claimed, but should be appreciated as encompassed within the teachings of the present disclosure.
R1 and R2
When referring to compounds of Formula I, in a particular embodiment, R1 and R2 are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aralkyl, and optionally substituted heteroaralkyl. [Brad—any sub-preferences for the non-cyclic version?]
When referring to compounds of Formula I, in another particular embodiment, R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring. In a more particular embodiment, R1, R2 and the nitrogen to which they are attached form a piperidin-1-yl; piperazin-1-yl; morpholin-4-yl; pyrrolidin-1-yl; thiomorpholin-4-yl or diazepan-1-yl, which optionally is substituted with one, two or three of the following groups: optionally substituted alkyl, halogen, hydroxy, alkoxy, alkylenedioxy (e.g. methylenedioxy), carboxy (—COOH), optionally substituted acyloxy (RCOO—), optionally substituted alkoxycarbonyl- (—COOR), optionally substituted aminocarbonyl, cyano, optionally substituted acyl, oxo, nitro, optionally substituted amino, sulfanyl, sulfinyl, sulfonyl, optionally substituted aminosulfonyl-, amidino, phenyl, benzyl, heteroaryl, heterocyclyl, substituted heterocyclyl, aryloxy, arallkoxy, heteroaryloxy, and heteroaralkoxy.
When R1, R2 and the nitrogen to which they are attached form an optionally substituted diazepan-1-yl ring, in a particular embodiment, the diazepane nitrogen is further substituted with optionally substituted acyl, optionally substituted alkoxycarbonyl, or optionally substituted aminosulfonyl.
When R1, R2 and the nitrogen to which they are attached form an optionally substituted piperazin-1-yl ring, in a particular embodiment, the piperazine nitrogen is further substituted with hydrogen, an optionally substituted acyl, optionally substituted alkoxycarbonyl, optionally substituted aminosulfonyl, optionally substituted heteroaryl, optionally substituted alkyl, or optionally substituted sulfonyl.
When R1, R2 and the nitrogen to which they are attached form an optionally substituted piperadin-1-yl ring, in a particular embodiment, the piperidine ring is further substituted with hydrogen, optionally substituted alkoxycarbonyl, optionally substituted aminocarbonyl, optionally substituted amino, hydroxy, optionally substituted alkoxy, or alkylenedioxy.
When R1, R2 and the nitrogen to which they are attached form an optionally substituted pyrrolidin-1-yl ring, in a particular embodiment, the pyrrolidine ring is further substituted with optionally substituted amino.
R3
When referring to compounds of Formula I, in a particular embodiment, R3 is optionally substituted aryl or optionally substituted heteroaryl. More particularly, R3 is phenyl, isoxazolyl, oxazolyl, pyridinyl, pyrazinyl, pyrimidinyl, tetrazol-5-yl, thiazolyl, thiadiazolyl or imidazolyl, which is optionally substituted with a halogen, lower alkoxy, an optionally substituted aryl or heteroaryl group.
In one particular embodiment, R3 is phenyl which is optionally substituted with halogen (especially fluoro) or lower alkoxy (especially methoxy). In another particular embodiment, R3 is a heteroaryl group which is optionally substituted with an optionally substituted aryl or heteroaryl group. Yet more particularly, R3 is [1,3,4]thiadiazol-2-yl which is optionally substituted with an optionally substituted phenyl group or R3 is 1H-imidazol-2-yl. In a most particular embodiment, R3 is oxazol-2-yl, 5-phenyl-[1,3,4]thiadiazol-2-yl or 1H-imidazol-2-yl.
R4
When referring to compounds of Formula I, in a particular embodiment, R4 is halogen. More particularly, R4 is chloro.
R5, R6, and R7
When referring to compounds of Formula I, in a particular embodiment, R5 is hydrogen, halogen, hydroxy, or optionally substituted lower alkyl; and R6 and R7 are independently selected from the group consisting of hydrogen, hydrogen, halogen, hydroxy, and optionally substituted lower alkyl. In another embodiment, R5, R6 and R7 are hydrogen.
Particular Subgenus
When considering the compounds of Formula I, in a particular embodiment,
R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
R3 is optionally substituted aryl or optionally substituted heteroaryl;
R4 is halogen; and
R5, R8 and R7 are hydrogen.
In another particular embodiment,
R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
R3 is optionally substituted aryl or optionally substituted heteroaryl;
R4 is chloro; and
R5, R6 and R7 are hydrogen.
In another particular embodiment,
R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
R3 is [1,3,4]thiadiazol-2-yl which is optionally substituted with an optionally substituted phenyl group or R3 is 1H-imidazol-2-yl group;
R4 is a halogen; and
R5, R6 and R7 are hydrogen.
In another particular embodiment,
R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
R3 is [1,3,4]thiadiazol-2-yl which is optionally substituted with an optionally substituted phenyl group or R3 is a 1H-imidazol-2-yl group;
R4 is chloro; and
R5, R8 and R7 are hydrogen.
In another particular embodiment,
R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
R3 is 5-phenyl-[1,3,4]thiadiazol-2-yl or 1H-imidazol-2-yl;
R4 is halogen; and
R5, R6 and R7 are hydrogen.
In another particular embodiment,
R1, R2 and the nitrogen to which they are attached form an optionally substituted 5-, 6-, or 7-membered heterocyclic ring;
R3 is 5-phenyl-[1,3,4]thiadiazol-2-yl or 1H-imidazol-2-yl;
R4 is chloro; and
R5, R6 and R7 are hydrogen.
Particular compounds include
|
X | R8 | R9 | R3 | R4 | R5 | R6 | R7 |
CHR9NR8 | t-Butoxycarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Acetyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | i-Propoxycarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Methoxycarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | 3-Methylbutanoyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Isobutyryl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Cyclopropylacetyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Dimethylaminosulfonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | sec-Butoxy-carbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Propanoyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Cyclohexyloxycarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CHR9NR8 | Acetyl- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Hydrogen | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Hydrogen | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Methoxycarbonyl- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Hydrogen | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | Carbamoyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | Methoxycarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | N-(t-butoxycarbonyl)-N- | H | 1H-imidazol-2-yl | Cl | H | H | H |
methylamino- | |||||||
CR9R8 | Acetamido- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | N-acetyl-N-methylamino- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | Methylaminocarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | Ethoxycarbonyl- | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | OH | H | 1H-imidazol-2-yl | Cl | H | H | H |
CR9R8 | N-(t-butoxycarbonyl)amino- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Methoxycarbonyl- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Carbamoyl- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Hydroxy- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Ethylenedioxy- | 5-Phenyl- | Cl | H | H | H | |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Ethylenedioxy- | 1H-imidazol-2-yl | Cl | H | H | H | |
CR9R8 | Ethylenedioxy- | 5-Phenyl- | Cl | H | H | H | |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Ethoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Acetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methoxyacetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | 3-Methylbutanoyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Propoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | i-Propoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Dimethylaminocarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Propoxycarbonyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | sec-Butoxycarbonyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
(especially the R-isomer) | |||||||
NR8 | 2-Cyclopentylacetyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | 2-Cyclohexylacetyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | Ethoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methoxyacetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Acetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Ethoxycarbonyl- | — | Fluorophenyl- | F | H | H | H |
NR8 | Pyridinyl- | — | Methoxyphenyl- | F | H | H | H |
NR8 | Methyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Butyryl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Ethylcarbamoyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Ethoxycarbonyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | Ethoxycarbonyl- | — | Isoxazol-3-yl | Cl | H | H | H |
NR8 | Butyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Formyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Isobutyryl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | 2,3-Dihydroxypropionyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | (1-hydroxypropan-2- | — | 5-Phenyl- | Cl | H | H | H |
yloxy)carbonyl- | [1,3,4]thiadiazol- | ||||||
2-yl | |||||||
NR8 | Ethoxycarbonyl- | — | Oxazol-2-yl | Cl | H | H | H |
NR8 | Ethoxycarbonyl- | — | 2H-tetrazol-5-yl | Cl | H | H | H |
NR8 | t-Butoxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Acetyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Ethoxycarbonyl- | — | 4-Methyl-1H- | Cl | H | H | H |
imidazol-2-yl | |||||||
NR8 | i-Propoxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Methoxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Butyrl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Dimethylaminocarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Methoxyacetyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | 2-Methylpropan-1- | — | 1H-imidazol-2-yl | Cl | H | H | H |
oxycarbonyl | |||||||
NR8 | 3-Methylbutyrl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | 2,2-Dimethylpropan-1- | — | 1H-imidazol-2-yl | Cl | H | H | H |
oxycarbonyl- | |||||||
NR8 | Isobutyrl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Ethylsulfonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Butoxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Cyclohexyloxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Cyclopentyloxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Formyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | sec-butoxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
(especially the S-isomer) | |||||||
NR8 | Piperidin-1-ylcarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | pyrrolidin-1-ylcarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | 4-methylpiperazin-1- | — | 1H-imidazol-2-yl | Cl | H | H | H |
ylcarbonyl- | |||||||
NR8 | Diethylaminocarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Ethylaminocarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Cyclohexylcarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | 2-(tetrahydro-2H-pyran-4- | — | 1H-imidazol-2-yl | Cl | H | H | H |
yl)acetyl- | |||||||
NR8 | 2-(1-(tert- | — | 1H-imidazol-2-yl | Cl | H | H | H |
butoxycarbonyl)piperidin-4- | |||||||
yl)acetyl- | |||||||
NR8 | 2-(piperidin-4-yl)acetyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Pentanoyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Cyclopropylacetyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Propanoyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | 3,3-dimethylbutanoyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Cyclopentylcarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | t-butoxycarbonyl- | — | 4,5-Dihydro-5- | Cl | H | H | H |
— | oxo-1H-imidazol- | ||||||
2-yl | |||||||
NR8 | Cyclopropylcarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Ethoxyacetyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Benzyloxyacetyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | tetrahydrofuran-2-ylcarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Dimethylaminosulfonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | N-(t-butoxycarbonyl) | — | 1H-imidazol-2-yl | Cl | H | H | H |
aminosulfonyl- | |||||||
NR8 | Aminosulfonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | t-butoxycarbonyl- | — | Pyrazin-2-yl | Cl | H | H | H |
NR8 | t-butoxycarbonyl- | — | Pyridinyl- | Cl | H | H | H |
NR8 | t-butoxycarbonyl- | — | Methyl-pyridinyl- | Cl | H | H | H |
NR8 | t-butoxycarbonyl- | — | Isoxazol-3-yl | Cl | H | H | H |
NR8 | Methoxycarbonyl- | — | 1H-imidazol-2-yl | Cl | H | H | H |
NR8 | Acetyl- | — | Pyridinyl | Cl | H | H | H |
NR8 | Methoxycarbonyl- | — | Pyridinyl | Cl | H | H | H |
NR8 | t-butoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | 2-cyclohexylacetyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8CH2 | sec-butoxycarbonyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
(especially the S-isomer) | |||||||
NR8CH2 | Ethoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | Isobutyryl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | Methoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | Isobutyryl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | Formyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 1H-imidazol-2yl | Cl | H | H | H |
O | — | — | Thiazol-2-yl | Cl | H | H | H |
O | — | — | Thiazol-2-yl | Cl | H | H | H |
O | — | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 5-(p-Chloro- | Cl | H | H | H |
phenyl)- | |||||||
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 5-Phenyl- | F | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 1H-imidazol-2yl | Cl | H | H | H |
O | — | — | 5-phenyl-1H- | Cl | H | H | H |
imidazol-2-yl | |||||||
O | — | — | 5- | Cl | H | H | H |
phenylpyrimidin- | |||||||
2-yl | |||||||
S | — | — | 1H-imidazol-2-yl | Cl | H | H | H |
|
X | R8 | R3 | R4 | R5 | R6 | R7 |
CHR8 | N-methyl-N-acetyl-amino- | 1H-imidazol-2-yl | Cl | H | H | H |
CHR8 | N-(t-butoxycarbonyl)-N- | 1H-imidazol-2-yl | Cl | H | H | H |
methylamino- | ||||||
CHR8 | Hydrogen | 1H-imidazol-2-yl | Cl | H | H | H |
CHR8 | N-(Dimethylaminocarbonyl)-N- | 5-Phenyl- | Cl | H | H | H |
methylamino- | [1,3,4]thiadiazol- | |||||
2-yl | ||||||
CHR8 | N-(3-methylbutyrl)-N- | 5-Phenyl- | Cl | H | H | H |
methylamino- | [1,3,4]thiadiazol- | |||||
2-yl | ||||||
CHR8 | N-(Propoxycarbonyl)-N- | 5-Phenyl- | Cl | H | H | H |
methylamino- | [1,3,4]thiadiazol- | |||||
2-yl | ||||||
CHR8 | N-(i-propoxycarbonyl)-N- | 5-Phenyl- | Cl | H | H | H |
methylamino- | [1,3,4]thiadiazol- | |||||
2-yl | ||||||
CHR8 | N-butyryl-N-methylamino- | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | ||||||
2-yl | ||||||
CHR8 | N-(ethoxycarbonyl)-N- | 5-Phenyl- | Cl | H | H | H |
methylamino- | [1,3,4]thiadiazol- | |||||
2-yl | ||||||
CHR8 | N-(Ethoxycarbonyl)amino- | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | ||||||
2-yl | ||||||
CHR8 | N-(isopropoxycarbonyl)amino- | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | ||||||
2-yl | ||||||
CHR8 | N-(methoxycarbonyl)amino- | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | ||||||
2-yl | ||||||
More particularly, compounds of the invention include
|
X | R8 | R9 | R3 | R4 | R5 | R6 | R7 |
CHR8 | Methoxycarbonyl- | H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR8R8 | Methylenedioxy- | 5-Phenyl- | Cl | H | H | H | |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
CR9R8 | Ethylenedioxy- | 5-Phenyl- | Cl | H | H | H | |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Ethoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Acetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methoxyacetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | 3-Methylbutanoyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Propoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | i-Propoxycarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Dimethylaminocarbonyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Propoxycarbonyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | sec-Butoxycarbonyl- | — | 1H-imadazol-2yl | Cl | H | H | H |
(especially the R- | |||||||
isomer) | |||||||
NR8 | 2-Cyclopentylacetyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | 2-Cyclohexylacetyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8 | Butyrl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Ethoxycarbonyl- | —H | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methoxyacetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Acetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8 | Methyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | Acetyl- | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
NR8CH2 | 2-Cyclohexylacetyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
NR8CH2 | sec-Butoxycarbonyl- | — | 1H-imidazol-2yl | Cl | H | H | H |
(especially the S- | |||||||
isomer) | |||||||
O | — | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 5-Phenyl- | Cl | H | H | H |
[1,3,4]thiadiazol- | |||||||
2-yl | |||||||
O | — | — | 1H-imidazol-2yl | Cl | H | H | H |
O | — | — | Thiazol-2-yl | Cl | H | H | H |
Utility
The compounds of the present invention are selective for and modulate the cardiac sarcomere, and are useful to bind to and/or potentiate the activity of cardiac myosin, increasing the rate at which myosin hydrolyzes ATP. As used in this context, “modulate” means either increasing or decreasing myosin activity, whereas “potentiate” means to increase activity. It has also been determined in testing representative compounds of the invention, that their administration can also increase the contractile force in cardiac muscle fiber.
The compounds, pharmaceutical formulations and methods of the invention are used to treat heart disease, including but not limited to: acute (or decompensated) congestive heart failure, and chronic congestive heart failure; particularly diseases associated with systolic heart dysfunction. Additional therapeutic utilities include administration to stabilize heart function in patients awaiting a heart transplant, and to assist a stopped or slowed heart in resuming normal function following use of a bypass pump.
Testing
ATP hydrolysis is employed by myosin in the sarcomere to produce force. Therefore, an increase in ATP hydrolysis would correspond to an increase in the force or velocity of muscle contraction. In the presence of actin, myosin ATPase activity is stimulated>100 fold. Thus, ATP hydrolysis not only measures myosin enzymatic activity but also its interaction with the actin filament. A compound that modulates the cardiac sarcomere can be identified by an increase or decrease in the rate of ATP hydrolysis by myosin, preferably exhibiting a 1.4 fold increase at concentrations less than 10 μM (more preferably, less than 1 μM). Preferred assays for such activity will employ myosin from a human source, although myosin from other organisms can also be used. Systems that model the regulatory role of calcium in myosin binding are also preferred.
Alternatively, a biochemically functional sarcomere preparation can be used to determine in vitro ATPase activity, for example, as described in U.S. Ser. No. 09/539,164, filed Mar. 29, 2000. The functional biochemical behavior of the sarcomere, including calcium sensitivity of ATPase hydrolysis, can be reconstituted by combining its purified individual components (particularly including its regulatory components and myosin). Another functional preparation is the in vitro motility assay. It can be performed by adding test compound to a myosin-bound slide and observing the velocity of actin filaments sliding over the myosin covered glass surface (Kron S J. (1991) Methods Enzymol. 196:399-416).
The in vitro rate of ATP hydrolysis correlates to myosin potentiating activity, which can be determined by monitoring the production of either ADP or phosphate, for example as described in Ser. No. 09/314,464, filed May 18, 1999. ADP production can also be monitored by coupling the ADP production to NADH oxidation (using the enzymes pyruvate kinase and lactate dehydrogenase) and monitoring the NADH level either by absorbance or fluorescence (Greengard, P., Nature 178 (Part 4534): 632-634 (1956); Mol Pharmacol 1970 January; 6(1):31-40). Phosphate production can be monitored using purine nucleoside phosphorylase to couple phosphate production to the cleavage of a purine analog, which results in either a change in absorbance (Proc Natl Acad Sci USA 1992 Jun. 1; 89(11):4884-7) or fluorescence (Biochem J 1990 Mar. 1; 266(2):611-4). While a single measurement can be employed, it is preferred to take multiple measurements of the same sample at different times in order to determine the absolute rate of the protein activity; such measurements have higher specificity particularly in the presence of test compounds that have similar absorbance or fluorescence properties with those of the enzymatic readout.
Test compounds can be assayed in a highly parallel fashion using multiwell plates by placing the compounds either individually in wells or testing them in mixtures. Assay components including the target protein complex, coupling enzymes and substrates, and ATP can then be added to the wells and the absorbance or fluorescence of each well of the plate can be measured with a plate reader.
A preferred method uses a 384 well plate format and a 25 μL reaction volume. A pyruvate kinase/lactate dehydrogenase coupled enzyme system (Huang T G and Hackney D D. (1994) J Biol Chem 269(23):16493-16501) is used to measure the rate of ATP hydrolysis in each well. As will be appreciated by those in the art, the assay components are added in buffers and reagents. Since the methods outlined herein allow kinetic measurements, incubation periods are optimized to give adequate detection signals over the background. The assay is done in real time giving the kinetics of ATP hydrolysis, which increases the signal to noise ratio of the assay.
Modulation of cardiac muscle fiber contractile force can be measured using detergent permeabilized cardiac fibers (also referred to as skinned cardiac fibers), for example, as described by Haikala H, et al (1995) J Cardiovasc Pharmacol 25(5):794-801. Skinned cardiac fibers retain their intrinsic sarcomeric organization, but do not retain all aspects of cellular calcium cycling, this model offers two advantages: first, the cellular membrane is not a barrier to compound penetration, and second, calcium concentration is controlled. Therefore, any increase in contractile force is a direct measure of the test compound's effect on sarcomeric proteins. Tension measurements are made by mounting one end of the muscle fiber to a stationary post and the other end to a transducer that can measure force. After stretching the fiber to remove slack, the force transducer records increased tension as the fiber begins to contract. This measurement is called the isometric tension, since the fiber is not allowed to shorten. Activation of the permeabilized muscle fiber is accomplished by placing it in a buffered calcium solution, followed by addition of test compound or control. When tested in this manner, compounds of the invention caused an increase in force at calcium concentrations associated with physiologic contractile activity, but very little augmentation of force in relaxing buffer at low calcium concentrations or in the absence of calcium (the EGTA data point).
Selectivity for the cardiac sarcomere and cardiac myosin can be determined by substituting non-cardiac sarcomere components and myosin in one or more of the above-described assays and comparing the results obtained against those obtained using the cardiac equivalents.
A compound's ability to increase observed ATPase rate in an in vitro reconstituted sarcomere assay could result from the increased turnover rate of S1-myosin or, alternatively, increased sensitivity of a decorated actin filament to Ca++-activation. To distinguish between these two possible modes of action, the effect of the compound on ATPase activity of S1 with undecorated actin filaments is initially measured. If an increase of activity is observed, the compound's effect on the Ca-responsive regulatory apparatus could be disproved. A second, more sensitive assay, can be employed to identify compounds whose activating effect on S1-myosin is enhanced in the presence of a decorated actin (compared to pure actin filaments). In this second assay activities of cardiac-S1 and skeletal-S1 on cardiac and skeletal regulated actin filaments (in all 4 permutations) are compared. A compound that displays its effect on cardiac-S1/cardiac actin and cardiac-S1/skeletal actin, but not on skeletal-S1/skeletal actin and skeletal-S1/cardiac actin systems, can be confidently classified as cardiac-S1 activator.
Initial evaluation of in vivo activity can be determined in cellular models of myocyte contractility, e.g., as described by Popping S, et al ((1996) Am. J. Physiol. 271: H357-H364) and Wolska B M, et al ((1996) Am. J. Physiol. 39:H24-H32). One advantage of the myocyte model is that the component systems that result in changes in contractility can be isolated and the major site(s) of action determined. Compounds with cellular activity (for example, selecting compounds having the following profile: >120% increase in fractional shortening over basal at 2 μM, limited changes in diastolic length (<5% change), and no significant decrease in contraction or relaxation velocities) can then be assessed in whole organ models, such as such as the Isolated Heart (Langendorff) model of cardiac function, in vivo using echocardiography or invasive hemodynamic measures, and in animal-based heart failure models, such as the Rat Left Coronary Artery Occlusion model. Ultimately, activity for treating heart disease is demonstrated in blinded, placebo-controlled, human clinical trials.
Administration
The compounds of Formula I are administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for the disease states previously described. While human dosage levels have yet to be optimized for the compounds of the invention, generally, a daily dose is from about 0.05 to 100 mg/kg of body weight, preferably about 0.10 to 10.0 mg/kg of body weight, and most preferably about 0.15 to 1.0 mg/kg of body weight. Thus, for administration to a 70 kg person, the dosage range would be about 3.5 to 7000 mg per day, preferably about 7.0 to 700.0 mg per day, and most preferably about 10.0 to 100.0 mg per day. The amount of active compound administered will, of course, be dependent on the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician; for example, a likely dose range for oral administration would be about 70 to 700 mg per day, whereas for intravenous administration a likely dose range would be about 700 to 7000 mg per day, the active agents being selected for longer or shorter plasma half-lives, respectively.
Administration of the compounds of the invention or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, orally, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, or intraocularly. Oral and parenteral administration are customary in treating the indications that are the subject of the present invention.
Pharmaceutically acceptable compositions include solid, semi-solid, liquid and aerosol dosage forms, such as, e.g., tablets, capsules, powders, liquids, suspensions, suppositories, aerosols or the like. The compounds can also be administered in sustained or controlled release dosage forms, including depot injections, osmotic pumps, pills, transdermal (including electrotransport) patches, and the like, for prolonged and/or timed, pulsed administration at a predetermined rate. Preferably, the compositions are provided in unit dosage forms suitable for single administration of a precise dose.
The compounds can be administered either alone or more typically in combination with a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like). If desired, the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like). Generally, depending on the intended mode of administration, the pharmaceutical formulation will contain about 0.005% to 95%, preferably about 0.5% to 50% by weight of a compound of the invention. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.
In addition, the compounds of the invention can be co-administered with, and the pharmaceutical compositions can include, other medicinal agents, pharmaceutical agents, adjuvants, and the like. Suitable additional active agents include, for example: therapies that retard the progression of heart failure by down-regulating neurohormonal stimulation of the heart and attempt to prevent cardiac remodeling (e.g., ACE inhibitors or β-blockers); therapies that improve cardiac function by stimulating cardiac contractility (e.g., positive inotropic agents, such as the β-adrenergic agonist dobutamine or the phosphodiesterase inhibitor milrinone); and therapies that reduce cardiac preload (e.g., diuretics, such as furosemide).
In one preferred embodiment, the compositions will take the form of a pill or tablet and thus the composition will contain, along with the active ingredient, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like. In another solid dosage form, a powder, marume, solution or suspension (e.g., in propylene carbonate, vegetable oils or triglycerides) is encapsulated in a gelatin capsule.
Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. an active compound as defined above and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution or suspension. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, as emulsions, or in solid forms suitable for dissolution or suspension in liquid prior to injection. The percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject. However, percentages of active ingredient of 0.01% to 10% in solution are employable, and will be higher if the composition is a solid which will be subsequently diluted to the above percentages. Preferably the composition will comprise 0.2-2% of the active agent in solution.
Formulations of the active compound or a salt may also be administered to the respiratory tract as an aerosol or solution form nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose. In such a case, the particles of the formulation have diameters of less than 50 microns, preferably less than 10 microns.
Use in Screening
Generally, to employ the compounds of the invention in a method of screening for myosin binding, myosin is bound to a support and a compound of the invention is added to the assay. Alternatively, the compound of the invention can be bound to the support and the myosin added. Classes of compounds among which novel binding agents may be sought include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for candidate agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like. See, e.g., U.S. Pat. No. 6,495,337, incorporated herein by reference.
The following examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All references cited herein are incorporated by reference in their entirety.
2-Chloro-5-fluorosulfonylbenzoic acid (Acros Organics, 105 mg, 440 μmol, 1.0 eq) was placed in a vial and the vial was flushed with nitrogen and a positive pressure was maintained. Anhydrous dichloromethane (1.4 mL) was added, followed by ethyl 1-piperazine carboxylate (80 μL, 528 μmol, 1.2 eq) and ethyldiisopropylamine (redistilled, 80 μL, 440 μmol, 1.0 eq). The mixture was stirred for 1.5 h after which time additional piperazine was added (60 μL, 352 μmol, 0.8 eq). After 14 h the mixture was analyzed by reverse-phase HPLC-MS in negative ionization mode. The sulfonyl fluoride starting material was present, as well as a less polar compound showing (M−1) ion in about 35:65 ratio. An additional 0.35 eq of piperazine and ethyldiisopropylamine each (154 μmol, 30 μl) were added and the mixture was stirred for 4 h. HPLC-MS at this time indicated little progress and an additional 0.25 eq of piperazine (100 μmol, 20 μL) was added. After stirring for 14 h HPLC-MS indicated the reaction was complete. The reaction mixture was diluted with 2 mL of ethyl acetate, washed with 1M HCl solution (2×1 mL) and dried over anhydrous sodium sulfate. The solution was filtered, the solvents removed on a rotary evaporator and vacuum pump to afford 134 mg of a white solid, 81%. NOTE: Addition of excess nucleophilic amine at the beginning of the reaction results in significant bis addition, giving sulfonamide and carboxamide product. Stepwise addition of nucleophilic amine as needed suppresses formation of this side product.
The benzoic acid piperazine ethyl ester from above (131 mg, 348 μmol, 1.0 eq) was placed in a vial along with 2-amino-5-phenyl-1,3,4-thiadiazole sulfate (115 mg, 417 μmol, 1.2 eq), HBTU (Advanced Chem Tech, 198 mg, 521 μmol, 1.5 eq) and HOBt hydrate (80 mg, 521 μmol, 1.5 eq). The vial was flushed with nitrogen and a positive pressure was maintained. Anhydrous dimethylformamide (1.7 mL) was added, followed by ethyldiisopropylamine (redistilled, 120 μL, 695 μmol, 2.0 eq) and the mixture was stirred for 14 h. Analysis by reverse-phase HPLC-MS in positive mode indicated that the acid starting material had been consumed and replaced with a much less polar compound showing the desired (M+1). The reaction mixture was diluted with 4 mL of water, the resulting precipitate was collected by filtration and washed with the following: water×2, 1M HCl solution×2, saturated sodium bicarbonate solution×2, water×2 and hexanes×1 and dried under suction. 119 mg of an off-white solid was obtained, 64% yield.
Prepared as for the compound above with these modifications: after the addition of 2.0 eq total of tert-butyl 1-piperazine carboxylate on day 1, HPLC-MS analysis showed the reaction to be only ⅓ complete. An additional 1.4 eq of piperazine was added and the reaction was stirred for 24 h. After this time the reaction was found to be complete and the workup was performed as for the ethyl case. Instead of washing with 1M HCl solution, 0.3M potassium hydrogen sulfate solution was used and a wash with saturated sodium chloride solution was also added prior to drying and concentrating. A quantitative yield of desired product was obtained.
The benzoic acid piperazine tert-butyl ester from above (1.57 g, 3.88 mmol, 1.0 eq) was placed in a 100 mL round-bottom flask along with 2-aminoimidazole sulfate (Aldrich, 615 mg, 4.65 mmol, 1.2 eq), HATU (PE Biosystems, 2.21 g, 5.82 mmol, 1.5 eq) and HOAt (Avocado, 792 mg, 5.82 mmol, 1.5 eq). The flask was capped with a septum, flushed with nitrogen and a positive pressure was maintained. Anhydrous dimethylformamide (17 mL) was added, followed by ethyldiisopropylamine (redistilled, 1.4 mL, 7.76 mmol, 2.0 eq) and the mixture was stirred for 14 h. Analysis by reverse-phase HPLC-MS in positive mode indicated that the acid starting material had been consumed and replaced with a much less polar compound showing the desired (M+1). The reaction mixture was diluted with 80 mL of water, the resulting precipitate was collected by filtration and washed with the following: water×3, hexanes×2 and dried under suction to afford 1.46 g of an off-white solid. The crude material was purified (silica gel flash column, 5.1 cm×15 cm) eluting with EtOAc-hexanes-triethylamine (89:10:1 v/v) then EtOAc to provide 896 mg off-white solid, 49% yield. TLC EtOAc-triethylamine (99:1 v/v) Rf=0.27.
The Boc-piperazine imidazole compound from above (109 mg, 232 μmol, 1.0 eq) was placed in a vial and treated with 2.6 mL of 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane. After 15 min Boc removal was complete as evidenced by reverse-phase HPLC-MS, and the solvents were removed in vacuo. The residue was azeotroped 3×chloroform and placed under vacuum for 1 h. 1-ethyl-(3-dimethylaminopropyl)carbodiimide HCl (EDC) (Advanced Chem Tech, 67 mg, 348 μmol, 1.5 eq), HOBt hydrate (57 mg, 371 μmol, 1.6 eq) were added to the vial, the vial was capped, flushed with nitrogen and a positive pressure was maintained. Anhydrous dichloromethane (1.7 mL) was added, followed by ethyldiisopropylamine (redistilled, 250 μL, 1.39 mmol, 6.0 eq) and cyclohexylacetic acid (TCI, 40 μL, 278 μmol, 1.2 eq) and the mixture was stirred for 14 h. Analysis by reverse-phase HPLC-MS in positive mode indicated that the piperazine starting material had been consumed and replaced with a much less polar compound showing the desired (M+1). The reaction mixture was diluted with 4 mL of EtOAc, and the organic layer was washed with 2 mL each of the following: water×3, saturated sodium bicarbonate solution×1, saturated sodium chloride×1. The organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated to afford 61 mg of an off-white solid, 78% yield.
The Boc-piperazine imidazole compound from above (148 mg, 315 μmol, 1.0 eq) was placed in a vial and treated with 3.6 mL of 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane as described above for the cyclohexyl acetamide compound. (R)-Carbonic acid sec-butyl ester 4-nitro-phenyl ester, 93% wt. (89 mg, 346 μmol, 1.1 eq) and 3 mg DMAP were added to the vial, the vial was capped, flushed with nitrogen and a positive pressure was maintained. Anhydrous DMF (2.1 mL) was added, followed by ethyldiisopropylamine (redistilled, 170 μL, 945 μmol, 3.0 eq) and the mixture was stirred for 14 h at 40° C. Analysis by reverse-phase HPLC-MS in positive mode indicated that the very polar unprotected piperazine starting material had been consumed and replaced with a much less polar compound showing the desired (M+1), as well as a small amount of even less polar bis-acylated material. The heat was removed and the reaction mixture was diluted with 4 mL of 2N NaOH solution and stirred for 10 min. The mixture was extracted with EtOAc (3×2 mL), and the organic layer was washed with 2 mL each of the following: 2N NaOH×5 (until yellow color disappeared), water×1, 10% HOAc solution×1, water×1, saturated sodium bicarbonate solution×1, saturated sodium chloride×1. The organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated to afford 121 mg of an off-white solid, 82% yield.
The Boc-piperazine imidazole compound from above (86 mg, 183 μmol, 1.0 eq) was placed in a vial and treated with 1.8 mL of 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane as described above for the cyclohexyl acetamide compound. DMAP (2 mg) were added to the vial, the vial was capped, flushed with nitrogen and a positive pressure was maintained. Anhydrous DCM (2.1 mL) was added, followed by ethyldiisopropylamine (redistilled, 120 μL, 640 μmol, 3.5 eq) and a 1.0 M solution of isopropyl chloroformate in toluene (220 μL, 220 μmol, 1.2 eq) and the mixture was stirred for 14 h. Analysis by reverse-phase HPLC-MS in positive mode indicated that the very polar unprotected piperazine starting material had been consumed and replaced with a much less polar compound showing the desired (M+1). A solid had precipitated. The solvent was removed in vacuo and the solid was taken up in 1 mL of DMF and re-precipitated with 4 mL of water, isolated by filtration and washed with: water×3, hexanes×2 and dried under suction. A white solid was obtained, 50 mg (60% yield).
The Boc-piperazine imidazole compound from above (2.04 g, 4.33 mmol, 1.0 eq) was treated with 50:49:1 trifluoroacetic acid/dichloromethane/triethylsilane as described above for the cyclohexyl acetamide compound. The residue was treated with saturated sodium bicarbonate solution until pH>8, then the solution was extracted with EtOAc and concentrated in vacuo to afford 1.6 g free amine. Diphenylcyanocarbonimidate (1.08 g, 4.54 mmol, 10.5 eq) was added to the flask and it was capped, flushed with nitrogen and a positive pressure was maintained. Anhydrous THF (30 mL) was added, followed by ethyldiisopropylamine (redistilled, 830 μL, 4.76 mmol, 1.1 eq) and the mixture was stirred for 1 h. Analysis by reverse-phase HPLC-MS in positive mode indicated that the very polar unprotected piperazine starting material had been consumed and replaced with a compound showing the desired (M+1). The solvents were removed in vacuo.
The phenyl imidate from above (100 mg, 195 μmol, 1.0 eq) was placed in a vial which was capped, flushed with nitrogen and a positive pressure was maintained. Anhydrous THF (5 mL) was added, followed by cyclopentylamine (100 μL, 973 μmol, 5.0 eq) and the mixture was stirred for 48 h after which the solvent was removed in vacuo. The residue was purified by reverse-phase HPLC to afford 27 mg product, 27% yield.
2-Chloro-5-fluorosulfonylbenzoic acid (Acros Organics, 195 mg, 813 1.0 eq) was placed in a vial and the vial was flushed with nitrogen and a positive pressure was maintained. Anhydrous dichloromethane (2.7 mL) was added, followed by 1-methylpiperazine (110 μL, 976 μmol, 1.2 eq). The mixture was stirred for 2 h after which time an additional 1.2 eq was added. After 14 h the mixture was analyzed by reverse-phase HPLC-MS in positive ionization mode. The less polar sulfonyl fluoride starting material was gone and replaced with a very polar compound with the desired (M+1). The solvents were removed in vacuo to afford 407 mg of a pale yellow solid. By 1H-NMR the desired compound was present, contaminated with methylpiperazine.
The crude methylpiperazine benzoic acid from above (259 mg, 813 μmol, 1.0 eq) was dissolved in 4 mL of 30% MeOH in benzene. 2.0 M Trimethylsilyl diazomethane in hexanes solution (410 μL, 813 μmol, 1.0 eq) was added dropwise. After 15 min the mixture was analyzed by reverse-phase HPLC-MS in positive mode. Starting material was present, as well as less polar product. Another 1.0 eq of diazomethane compound was added and the reaction was monitored again after 15 min. An additional 0.2 eq of diazomethane was added (90 μL, 178 μmol) and after 15 min the reaction was judged to be complete by HPLC-MS. A few drops glacial HOAc were added until the yellow color disappeared and the solvents were removed in vacuo to afford 491 mg of a yellow glass. This was taken up in 2 mL 50%-saturated sodium bicarbonate solution (pH>8) and extracted with dichloromethane (3×1 mL). The extracts were dried over anhydrous sodium sulfate, filtered and concentrated to afford 224 mg of yellow oil, 83%.
The methylpiperazine methyl ester from above (197 mg, 592 μmol, 1.0 eq) was placed in a vial, dissolved in 1.5 mL of MeOH and 30 μL of water. LiOH hydrate (26 mg, 622 μmol, 1.05 eq) was added and the vial was capped, flushed with nitrogen and a positive pressure was maintained. The mixture was heated at 60° C. for 4 h at which time it was judged to be complete by reverse-phase HPLC-MS. The solvents were removed in vacuo to afford 197 mg of a white solid.
The methylpiperazine acid salt from above (93 mg, 286 μmol, 1.0 eq) was coupled with 2-amino-5-phenyl-1,3,4-thiadiazole sulfate using the HBTU protocol as described above, except that the ethyldiisopropylamine was added 1 h after the reaction was started in order to neutralize the acid salt and effect dissolution. After 3 h total the reaction was complete by reverse-phase HPLC-MS analysis in positive mode. The reaction mixture was diluted with 3 mL of water and taken to pH=8 by addition of saturated bicarbonate solution. The resulting precipitate was collected by filtration and washed with the following: water×2 and hexanes×1. The product was isolated as 109 mg of an off-white solid, 80% yield.
Synthesis of Starting Materials
2-Amino-4-phenylimidazole, a reagent in the synthesis of compounds of Formula I, was synthesized from the procedure of: Little, T. L.; Webber, S. E. “A Simple and Practical Synthesis of 2-Aminoimidazoles” J. Org. Chem. 1994, 59, 7299-7305, which is incorporated herein by reference.
2-Amino-5-phenylpyrimidine was synthesized in an analogous fashion to the procedure described in: Gong, Y.; Pauls, H. W. “A Convenient Synthesis of Heteroarylbenzoic Acids via Suzuki Reaction” Synlett, 2000, 6, 829-831, which is incorporated herein by reference.
2-Aminooxazole was prepared from the procedure of: Cockerill, A. F.; Deacon, A.; Harrison, R. G.; Osborne, D. J.; Prime, D. M.; Ross, W. J.; Todd, A.; Verge, J. P. “An Improved Synthesis of 2-Amino-1,3-Oxazoles Under Basic Conditions” Synthesis, 1976, 591-593, which is incorporated herein by reference.
2-Amino-4-methylimidazole was prepared according to the procedure described in: Little, T. L.; Webber, S. E. “A Simple and Practical Synthesis of 2-Aminoimidazoles” J. Org. Chem. 1994, 59, 7299-7305, which is incorporated herein by reference.
4-Nitrophenyl chloroformate (1.91 g, 9.50 mmol, 1.1 eq) was placed in a vial and the vial was flushed with nitrogen and a positive pressure was maintained. Anhydrous dichloromethane (10 mL) was added, followed by (R)-sec-butyl alcohol (Acros Organics, 800 μL, 8.63 mmol, 1.0 eq) and anhydrous pyridine (770 μL, 9.50 mmol, 1.1 eq). After 15 h one nonpolar compound was observed by HPLC-MS but which did not ionize in either positive or negative mode. The reaction mixture was diluted with 10 mL of ethyl acetate, washed with 7 mL each of the following: 0.5 M NaOH solution×2, water×1, 1M HCl solution×1, water×1, saturated sodium chloride×1 and dried over anhydrous sodium sulfate. The solution was filtered, the solvents removed on a rotary evaporator and vacuum pump to afford 2.11 g of a pale yellow solid. This was shown to contain 11 mol % 4-nitrophenol by 1H-NMR and was judged to be 93% pure by weight. Total yield was therefore 95%.
Target Identification Assays
Specificity assays: Compound specificity towards cardiac myosin is evaluated by comparing the effect of the compound on actin-stimulated ATPase of a panel of myosin isoforms: cardiac, skeletal and smooth muscle, at a single 50 μM compound concentration.
Myofibril assays: To evaluate the effect of compounds on the ATPase activity of full-length cardiac myosin in the context of native sarcomere, skinned myofibril assays are performed. Rat cardiac myofibrils are obtained by homogenizing rat cardiac tissue in the presence of detergent. Such treatment removes membranes and majority of soluble cytoplasmic proteins but leaves intact cardiac sarcomeric acto-myosin apparatus. Myofibril preparations retain the ability to hydrolyze ATP in an Ca++ controlled manner. ATPase activities of such myofibril preparations in the presence and absence of compounds are assayed at Ca++ concentrations giving 50% and 100% of a maximal rate.
In vitro Model of Dose Dependent Cardiac Myosin ATPase Modulation
Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl2 (2 mM), ATP (1 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and antifoam (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition of potassium hydroxide. Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1×10−4 M to 1×10−8 M.
The protein components specific to this assay are bovine cardiac myosin subfragment-1 (typically 0.5 μM), bovine cardiac actin (14 μM), bovine cardiac tropomyosin (typically 3 μM), and bovine cardiac troponin (typically 3-8 μM). The exact concentrations of tropomyosin and troponin are determined empirically, by titration to achieve maximal difference in ATPase activity when measured in the presence of 1 mM EGTA versus that measured in the presence of 0.2 mM CaCl2. The exact concentration of myosin in the assay is also determined empirically, by titration to achieve a desired rate of ATP hydrolysis. This varies between protein preparations, due to variations in the fraction of active molecules in each preparation.
Compound dose responses are typically measured at the calcium concentration corresponding to 50% of maximal ATPase activity (pCa50), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1×10−4 M to 1×10−8 M. Subsequently, the assay mixture is adjusted to the pCa50 (typically 3×10−7 M). Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl2, BSA, DTT, pyruvate kinase, lactate dehydrogenase, myosin subfragment-1, antifoam, EGTA, CaCl2, and water. The assay is started by adding an equal volume of solution containing potassium Pipes, MgCl2, BSA, DTT, ATP, NADH, PEP, actin, tropomyosin, troponin, antifoam, and water. ATP hydrolysis is monitored by absorbance at 340 nm. The resulting dose response curve is fit by the 4 parameter equation y=Bottom+((Top−Bottom)/(1+((EC50/X)^Hill))). The AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
Myocyte Assays
Preparation of adult cardiac ventricular rat myocytes. Adult male Sprague-Dawley rats are anesthetized with a mixture of isoflurane gas and oxygen. Hearts are quickly excised, rinsed and the ascending aorta cannulated. Continuous retrograde perfusion is initiated on the hearts at a perfusion pressure of 60 cm H20. Hearts are first perfused with a nominally Ca2+ free modified Krebs solution of the following composition: 110 mM NaCl, 2.6 mM KCL, 1.2 mM KH2PO4 7 H20, 1.2 mM MgSO4, 2.1 mM NaHCO3, 11 mM glucose and 4 mM Hepes (all Sigma). This medium is not recirculated and is continually gassed with O2. After approximately 3 minutes the heart is perfused with modified Krebs buffer supplemented with 3.3% collagenase (169 μ/mg activity, Class II, Worthington Biochemical Corp., Freehold, N.J.) and 25 μM final calcium concentration until the heart becomes sufficiently blanched and soft. The heart is removed from the cannulae, the atria and vessels discarded and the ventricles are cut into small pieces. The myocytes are dispersed by gentle agitation of the ventricular tissue in fresh collagenase containing Krebs prior to being gently forced through a 200 μm nylon mesh in a 50 cc tube. The resulting myocytes are resuspended in modified Krebs solution containing 25 μm calcium. Myocytes are made calcium tolerant by addition of a calcium solution (100 mM stock) at 10 minute intervals until 100 μM calcium is achieved. After 30 minutes the supernatant is discarded and 30-50 ml of Tyrode buffer (137 mM NaCL, 3.7 mM KCL, 0.5 mM MgCL, 11 mM glucose, 4 mM Hepes, and 1.2 mM CaCl2, pH 7.4) is added to cells. Cells are kept for 60 min at 37° C. prior to initiating experiments and used within 5 hrs of isolation. Preparations of cells are used only if cells first passed QC criteria by responding to a standard (>150% of basal) and isoproterenol (ISO; >250% of basal). Additionally, only cells whose basal contractility is between 3 and 8% are used in the following experiments.
Adult ventricular myocyte contractility experiments. Aliquots of Tyrode buffer containing myocytes are placed in perfusion chambers (series 20 RC-27NE; Warner Instruments) complete with heating platforms. Myocytes are allowed to attach, the chambers heated to 37° C., and the cells then perfused with 37° C. Tyrode buffer. Myocytes are field stimulated at 1 Hz in with platinum electrodes (20% above threshold). Only cells that have clear striations, and are quiescent prior to pacing are used for contractility experiments. To determine basal contractility, myocytes are imaged through a 40× objective and using a variable frame rate (60-240 Hz) charge-coupled device camera, the images are digitized and displayed on a computer screen at a sampling speed of 240 Hz. [Frame grabber, myopacer, acquisition, and analysis software for cell contractility are available from IonOptix (Milton, Mass.).] After a minimum 5 minute basal contractility period, test compounds (0.01-15 μM) are perfused on the myocytes for 5 minutes. After this time, fresh Tyrode buffer is perfused to determine compound washout characteristics. Using edge detection strategy, contractility of the myocytes and contraction and relaxation velocities are continuously recorded.
Contractility analysis: Three or more individual myocytes are tested per compound, using two or more different myocyte preparations. For each cell, twenty or more contractility transients at basal (defined as 1 min prior to compound infusion) and after compound addition, are averaged and compared. These average transients are analyzed to determine changes in diastolic length, and using the Ionwizard analysis program (IonOptix), fractional shortening (% decrease in the diastolic length), and maximum contraction and relaxation velocities (um/sec) are determined. Analysis of individual cells are combined. Increase in fractional shortening over basal indicates potentiation of myocyte contractility.
Calcium transient analysis: Fura loading: Cell permeable Fura-2 (Molecular Probes) is dissolved in equal amounts of pluronic (Mol Probes) and FBS for 10 min at RT. A 1 μM Fura stock solution is made in Tyrode buffer containing 500 mM probenecid (Sigma). To load cells, this solution is added to myocytes at RT. After 10 min. the buffer is removed, the cells washed with Tyrode containing probenecid and incubated at RT for 10 min. This wash and incubation is repeated. Simultaneous contractility and calcium measurements are determined within 40 min. of loading.
Imaging: A test compound is perfused on cells. Simultaneous contractility and calcium transient ratios are determined at baseline and after compound addition. Cells are digitally imaged and contractility determined as described above, using that a red filter in the light path to avoid interference with fluorescent calcium measurements. Acquisition, analysis software and hardware for calcium transient analysis are obtained from IonOptix. The instrumentation for fluorescence measurement includes a xenon arc lamp and a Hyperswitch dual excitation light source that alternates between 340 and 380 wavelengths at 100 Hz by a galvo-driven mirror. A liquid filled light guide delivers the dual excitation light to the microscope and the emission fluorescence is determined using a photomultiplier tube (PMT). The fluorescence system interface routes the PMT signal and the ratios are recorded using the IonWizard acquisition program.
Analysis: For each cell, ten or more contractility and calcium ratio transients at basal and after compound addition, where averaged and compared. Contractility average transients are analyzed using the Ionwizard analysis program to determine changes in diastolic length, and fractional shortening (% decrease in the diastolic length). The averaged calcium ratio transients are analyzed using the Ionwizard analysis program to determine changes in diastolic and systolic ratios and the 75% time to baseline (T75).
Durability: To determine the durability of response, myocytes are challenged with a test compound for 25 minutes followed by a 2 min. washout period. Contractility response is compared at 5 and 25 min. following compound infusion.
Threshold potential: Myocytes are field stimulated at a voltage approximately 20% above threshold. In these experiments the threshold voltage (minimum voltage to pace cell) is empirically determined, the cell paced at that threshold and then the test compound is infused. After the compound activity is at steady state, the voltage is decreased for 20 seconds and then restarted. Alteration of ion channels corresponds to increasing or lowering the threshold action potential.
Hz frequency: Contractility of myocytes is determined at 3 Hz as follows: a 1 min. basal time point followed by perfusion of the test compound for 5 min. followed by a 2 min. washout. After the cell contractility has returned completely to baseline the Hz frequency is decreased to 1. After an initial acclimation period the cell is challenged by the same compound. As this species, rat, exhibits a negative force frequency at 1Hz, at 3 Hz the FS of the cell should be lower, but the cell should still respond by increasing its fractional shortening in the presence of the compound.
Additive WITH Isoproterenol: To demonstrate that a compound act via a different mechanism than the adrenergic stimulant isoproterenol, cells are loaded with fura-2 and simultaneous measurement of contractility and calcium ratios are determined. The myocytes are sequentially challenged with 5 μm a test compound, buffer, 2 nM isoproterenol, buffer, and a combination of a test compound and isoproterenol.
In vitro Model of Dose Dependent Cardiac Myosin ATPase Modulation
Bovine and rat cardiac myosins are purified from the respective cardiac tissues. Skeletal and smooth muscle myosins used in the specificity studies are purified from rabbit skeletal muscle and chicken gizzards, respectively. All myosins used in the assays are converted to a single-headed soluble form (S1) by a limited proteolysis with chymotrypsin. Other sarcomeric components: troponin complex, tropomyosin and actin are purified from bovine hearts (cardiac sarcomere) or chicken pectoral muscle (skeletal sarcomere).
Activity of myosins is monitored by measuring the rates of hydrolysis of ATP. Myosin ATPase is very significantly activated by actin filaments. ATP turnover is detected in a coupled enzymatic assay using pyruvate kinase (PK) and lactate dehydrogenase (LDH). In this assay each ADP produced as a result of ATP hydrolysis is recycled to ATP by PK with a simultaneous oxidation of NADH molecule by LDH. NADH oxidation can be conveniently monitored by decrease in absorbance at 340 nm wavelength.
Dose responses are measured using a calcium-buffered, pyruvate kinase and lactate dehydrogenase-coupled ATPase assay containing the following reagents (concentrations expressed are final assay concentrations): Potassium PIPES (12 mM), MgCl2 (2 mM), ATP (1 mM), DTT (1 mM), BSA (0.1 mg/ml), NADH (0.5 mM), PEP (1.5 mM), pyruvate kinase (4 U/ml), lactate dehydrogenase (8 U/ml), and antifoam (90 ppm). The pH is adjusted to 6.80 at 22° C. by addition of potassium hydroxide. Calcium levels are controlled by a buffering system containing 0.6 mM EGTA and varying concentrations of calcium, to achieve a free calcium concentration of 1×10−4 M to 1×10−4 M.
The protein components specific to this assay are bovine cardiac myosin subfragment-1 (typically 0.5 μM), bovine cardiac actin (14 μM), bovine cardiac tropomyosin (typically 3 μM), and bovine cardiac troponin (typically 3-8 μM). The exact concentrations of tropomyosin and troponin are determined empirically, by titration to achieve maximal difference in ATPase activity when measured in the presence of 1 mM EGTA versus that measured in the presence of 0.2 mM CaCl2. The exact concentration of myosin in the assay is also determined empirically, by titration to achieve a desired rate of ATP hydrolysis. This varies between protein preparations, due to variations in the fraction of active molecules in each preparation.
Compound dose responses are typically measured at the calcium concentration corresponding to 50% of maximal ATPase activity (pCa50), so a preliminary experiment is performed to test the response of the ATPase activity to free calcium concentrations in the range of 1×10−4 M to 1×10−8 M. Subsequently, the assay mixture is adjusted to the pCa50 (typically 3×10−7 M). Assays are performed by first preparing a dilution series of test compound, each with an assay mixture containing potassium Pipes, MgCl2, BSA, DTT, pyruvate kinase, lactate dehydrogenase, myosin subfragment-1, antifoam, EGTA, CaCl2, and water. The assay is started by adding an equal volume of solution containing potassium Pipes, MgCl2, BSA, DTT, ATP, NADH, PEP, actin, tropomyosin, troponin, antifoam, and water. ATP hydrolysis is monitored by absorbance at 340 nm. The resulting dose response curve is fit by the 4 parameter equation y=Bottom+((Top−Bottom)/(1+((EC50/X)^Hill))). The AC1.4 is defined as the concentration at which ATPase activity is 1.4-fold higher than the bottom of the dose curve.
Ability of a compound to activate cardiac myosin is evaluated by the effect of the compound on the actin stimulated ATPase of S1 subfragment. Actin filaments in the assay are decorated with troponin and tropomyosin and Ca++ concentration is adjusted to a value that would result in 50% of maximal activation. S1 ATPase is measured in the presence of a dilution series of the compound. Compound concentration required for 40% activation above the ATPase rate measured in the presence of control (equivalent volume of DMSO) is reported as AC40.
In vivo Fractional Shortening Assay
Animals Male Sprague Dawley rats from Charles River Laboratories (275-350 g) are used for bolus efficacy and infusion studies. Heart failure animals are described below. They are housed two per cage and have access to food and water ad libitum. There is a minimum three-day acclimation period prior to experiments.
Echocardiography Animals are anesthetized with isoflurane and maintained within a surgical plane throughout the procedure. Core body temperature is maintained at 37° C. by using a heating pad. Once anesthetized, animals are shaven and hair remover is applied to remove all traces of fur from the chest area. The chest area is further prepped with 70% ETOH and ultrasound gel is applied. Using a GE System Vingmed ultrasound system (General Electric Medical Systems), a 10 MHz probe is placed on the chest wall and images are acquired in the short axis view at the level of the papillary muscles. 2-D M-mode images of the left ventricle are taken prior to, and after, compound bolus injection or infusion. In vivo fractional shortening ((end diastolic diameter−end systolic diameter)/end diastolic diameter×100) is determined by analysis of the M-mode images using the GE EchoPak software program.
Bolus and infusion efficacy For bolus and infusion protocols, fractional shortening is determined using echocardiography as described above. For bolus and infusion protocols, five pre-dose M-Mode images are taken at 30 second intervals prior to bolus injection or infusion of compounds. After injection, M-mode images are taken at 1 min and at five minute intervals thereafter up to 30 min. Bolus injection (0.5-5 mg/kg) or infusion is via a tail vein catheter. Infusion parameters are determined from pharmacokinetic profiles of the compounds. For infusion, animals received a 1 minute loading dose immediately followed by a 29 minute infusion dose via a tail vein catheter. The loading dose is calculated by determining the target concentration×the steady state volume of distribution. The maintenance dose concentration is determined by taking the target concentration×the clearance. Compounds are formulated in 25% cavitron vehicle for bolus and infusion protocols. Blood samples are taken to determine the plasma concentration of the compounds.
Hemodynamics in Normal and Heart Failure Animals
Animals are anesthetized with isoflurane, maintained within a surgical plane, and then shaven in preparation for catheterization. An incision is made in the neck region and the right carotid artery cleared and isolated. A 2 French Millar Micro-tip Pressure Catheter (Millar Instruments, Houston, Tex.) is cannulated into the right carotid artery and threaded past the aorta and into the left ventricle. End diastolic pressure readings, max±dp/dt, systolic pressures and heart rate are determined continuously while compound or vehicle is infused. Measurements are recorded and analyzed using a PowerLab and the Chart 4 software program (ADInstruments, Mountain View, Calif.). Hemodynamics measurements are performed at a select infusion concentration. Blood samples are taken to determine the plasma concentration of the compounds.
Left Coronary Artery Occlusion Model of Congestive Heart Failure
Animals Male Sprague-Dawley CD (220-225 g; Charles River) rats are used in this experiment. Animals are allowed free access to water and commercial rodent diet under standard laboratory conditions. Room temperature is maintained at 20-23° C. and room illumination is on a 12/12-hour light/dark cycle. Animals are acclimatized to the laboratory environment 5 to 7 days prior to the study. The animals are fasted overnight prior to surgery.
Occlusion Procedure Animals are anaesthetized with ketamine/xylazine (95 mg/kg and 5 mg/kg) and intubated with a 14-16-gauge modified intravenous catheter. Anesthesia level is checked by toe pinch. Core body temperature is maintained at 37° C. by using a heating blanket. The surgical area is clipped and scrubbed. The animal is placed in right lateral recumbency and initially placed on a ventilator with a peak inspiratory pressure of 10-15 cm H2O and respiratory rate 60-110 breaths/min. 100% O2 is delivered to the animals by the ventilator. The surgical site is scrubbed with surgical scrub and alcohol. An incision is made over the rib cage at the 4th-5th intercostal space. The underlying muscles are dissected with care to avoid the lateral thoracic vein, to expose the intercostal muscles. The chest cavity is entered through 4th-5th intercostal space, and the incision expanded to allow visualization of the heart. The pericardium is opened to expose the heart. A 6-0 silk suture with a taper needle is passed around the left coronary artery near its origin, which lies in contact with the left margin of the pulmonary cone, at about 1 mm from the insertion of the left auricular appendage. The left coronary artery is occluded by tying the suture around the artery (“LCO”). Sham animals are treated the same, except that the suture is not tied. The incision is closed in three layers. The rat is ventilated until able to ventilate on its own. The rats are extubated and allowed to recover on a heating pad. Animals receive buprenorphine (0.01-0.05 mg/kg SQ) for post operative analgesia. Once awake, they are returned to their cage. Animals are monitored daily for signs of infection or distress. Infected or moribund animals are euthanized. Animals are weighed once a week.
Efficacy analysis Approximately eight weeks after infarction surgery, rats are scanned for signs of myocardial infarction using echocardiography. Only those animals with decreased fractional shortening compared to sham rats are utilized further in efficacy experiments. In all experiments, there are four groups, sham+vehicle, sham+compound, LCL+vehicle and LCL+compound. At 10-12 weeks post LCL, rats are infused at a select infusion concentration. As before, five pre-dose M-Mode images are taken at 30 second intervals prior to infusion of compounds and M-mode images are taken at 30 second intervals up to 10 minutes and every minute or at five minute intervals thereafter. Fractional shortening is determined from the M-mode images. Comparisons between the pre-dose fractional shortening and compound treatment are performed by ANOVA and a post-hoc Student—Newman—Keuls. Animals are allowed to recover and within 7-10 days, animals are again infused with compounds using the hemodynamic protocol to determine hemodynamic changes of the compounds in heart failure animals. At the end to the infusion, rats are killed and the heart weights determined.
When tested as described above, compounds of Formula I are shown to have the desired activity.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto. All patents and publications cited above are hereby incorporated by reference.
Claims (11)
1. A compound represented by Formula I:
wherein:
R1, R2 and the nitrogen to which they are attached form a piperidine-1-yl ring, wherein the piperidin-1-yl ring is optionally substituted with one, two or three of the following groups: alkyl, halogen, hydroxy, alkoxy, alkylenedioxy, carboxy, acyloxy, alkoxycarbonyl, alkoxycarbonylamino, aminocarbonyl, cyano, acyl, oxo, nitro, amino, sulfanyl, sulfinyl, sulfonyl, aminosulfonyl, amidino, phenyl, benzyl, heteroaryl, heterocyclyl, aryloxy, arallkoxy, heteroaryloxy, and heteroaralkoxy;
R3 is an aryl or heteroaryl group, which is optionally substituted with a halogen, lower alkoxy, aryl or heteroaryl group;
R4 is halogen;
R5 is hydrogen, halogen, hydroxy, or lower alkyl; and
R6 and R7 are independently selected from hydrogen, halogen, hydroxy, and lower alkyl;
or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein R3 is a phenyl, isoxazolyl, oxazolyl, pyridinyl, pyrazinyl, pyrimidinyl, tetrazol-5-yl, thiazolyl, thiadiazolyl or imidazolyl group, which is optionally substituted with a halogen, lower alkoxy, aryl or heteroaryl group.
3. The compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein R3 is an [1,3,4]thiadiazol-2-yl group which is optionally substituted with a phenyl group.
4. The compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein R3 is 5-phenyl-[1,3,4]thiadiazol-2-yl.
5. The compound of claim 4 , or a pharmaceutically acceptable salt thereof, wherein
R4 is chloro; and
R5, R6 and R7 are hydrogen.
6. The compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein R3 is a 1H-imidazol-2-yl group.
7. The compound of claim 6 , or a pharmaceutically acceptable salt thereof, wherein
R4 is chloro; and
R5, R6 and R7 are hydrogen.
8. The compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein R3 is oxazol-2-yl.
9. The compound of claim 8 , or a pharmaceutically acceptable salt thereof, wherein
R4 is chloro; and
R5, R6 and R7 are hydrogen.
10. The compound of claim 1 , or a pharmaceutically acceptable salt thereof, wherein
R4 is chloro; and
R5, R6 and R7 are hydrogen.
11. A pharmaceutical formulation comprising a pharmaceutically accepted excipient and a therapeutically effective amount of a compound of claim 1 , or a pharmaceutically acceptable salt thereof.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/553,311 US7888373B2 (en) | 2003-03-27 | 2009-09-03 | Heterocyclic sulfonamides as modulators of cardiac sarcomeres |
US13/008,432 US8101620B2 (en) | 2003-03-27 | 2011-01-18 | Heterocyclic sulfonamides |
US13/330,356 US8202859B2 (en) | 2003-03-27 | 2011-12-19 | Heterocyclic sulfonamides |
US13/474,824 US8367661B2 (en) | 2003-03-27 | 2012-05-18 | Heterocyclic sulfonamides |
US13/759,903 US8604025B2 (en) | 2003-03-27 | 2013-02-05 | Heterocyclic sulfonamides |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45870203P | 2003-03-27 | 2003-03-27 | |
PCT/US2004/009408 WO2004086865A1 (en) | 2003-03-27 | 2004-03-26 | Compounds, compositions and methods |
US55039806A | 2006-09-20 | 2006-09-20 | |
US12/553,311 US7888373B2 (en) | 2003-03-27 | 2009-09-03 | Heterocyclic sulfonamides as modulators of cardiac sarcomeres |
Related Parent Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/550,398 Continuation US7595322B2 (en) | 2003-03-27 | 2004-03-26 | Heterocyclic sulfonamides as modulators of cardiac sarcomeres |
USPCT/US2004/409408 Continuation | 2004-03-26 | ||
PCT/US2004/009408 Continuation WO2004086865A1 (en) | 2003-03-27 | 2004-03-26 | Compounds, compositions and methods |
US55039806A Continuation | 2003-03-27 | 2006-09-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/008,432 Division US8101620B2 (en) | 2003-03-27 | 2011-01-18 | Heterocyclic sulfonamides |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100069370A1 US20100069370A1 (en) | 2010-03-18 |
US7888373B2 true US7888373B2 (en) | 2011-02-15 |
Family
ID=33131818
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/550,398 Active 2025-03-19 US7595322B2 (en) | 2003-03-27 | 2004-03-26 | Heterocyclic sulfonamides as modulators of cardiac sarcomeres |
US12/553,311 Expired - Lifetime US7888373B2 (en) | 2003-03-27 | 2009-09-03 | Heterocyclic sulfonamides as modulators of cardiac sarcomeres |
US13/008,432 Expired - Lifetime US8101620B2 (en) | 2003-03-27 | 2011-01-18 | Heterocyclic sulfonamides |
US13/330,356 Expired - Fee Related US8202859B2 (en) | 2003-03-27 | 2011-12-19 | Heterocyclic sulfonamides |
US13/474,824 Expired - Lifetime US8367661B2 (en) | 2003-03-27 | 2012-05-18 | Heterocyclic sulfonamides |
US13/759,903 Expired - Lifetime US8604025B2 (en) | 2003-03-27 | 2013-02-05 | Heterocyclic sulfonamides |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/550,398 Active 2025-03-19 US7595322B2 (en) | 2003-03-27 | 2004-03-26 | Heterocyclic sulfonamides as modulators of cardiac sarcomeres |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/008,432 Expired - Lifetime US8101620B2 (en) | 2003-03-27 | 2011-01-18 | Heterocyclic sulfonamides |
US13/330,356 Expired - Fee Related US8202859B2 (en) | 2003-03-27 | 2011-12-19 | Heterocyclic sulfonamides |
US13/474,824 Expired - Lifetime US8367661B2 (en) | 2003-03-27 | 2012-05-18 | Heterocyclic sulfonamides |
US13/759,903 Expired - Lifetime US8604025B2 (en) | 2003-03-27 | 2013-02-05 | Heterocyclic sulfonamides |
Country Status (6)
Country | Link |
---|---|
US (6) | US7595322B2 (en) |
EP (1) | EP1605752B1 (en) |
JP (2) | JP4969238B2 (en) |
AT (1) | ATE524452T1 (en) |
ES (1) | ES2378620T3 (en) |
WO (1) | WO2004086865A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629274B2 (en) | 2011-12-21 | 2014-01-14 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US8993771B2 (en) | 2013-03-12 | 2015-03-31 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9169212B2 (en) | 2014-01-16 | 2015-10-27 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US9181288B2 (en) | 2014-01-16 | 2015-11-10 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US9400280B2 (en) | 2014-03-27 | 2016-07-26 | Novira Therapeutics, Inc. | Piperidine derivatives and methods of treating hepatitis B infections |
US9884818B2 (en) | 2013-05-17 | 2018-02-06 | Janssen Sciences Ireland Uc | Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US9884831B2 (en) | 2015-03-19 | 2018-02-06 | Novira Therapeutics, Inc. | Azocane and azonane derivatives and methods of treating hepatitis B infections |
US9895349B2 (en) | 2013-04-03 | 2018-02-20 | Janssen Sciences Ireland Us | N-phenyl-carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10071961B2 (en) | 2013-10-23 | 2018-09-11 | Janssen Sciences Ireland Uc | Carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10077239B2 (en) | 2015-09-29 | 2018-09-18 | Novira Therapeutics, Inc. | Crystalline forms of a hepatitis B antiviral agent |
US10125094B2 (en) | 2013-02-28 | 2018-11-13 | Janssen Sciences Ireland Uc | Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B |
US10160743B2 (en) | 2013-05-17 | 2018-12-25 | Janssen Sciences Ireland Uc | Sulphamoylthiophenamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10213420B2 (en) | 2014-02-05 | 2019-02-26 | Novira Therapeutics, Inc. | Combination therapy for treatment of HBV infections |
US10392349B2 (en) | 2014-01-16 | 2019-08-27 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US10441589B2 (en) | 2016-04-15 | 2019-10-15 | Novira Therapeutics, Inc. | Combinations and methods comprising a capsid assembly inhibitor |
US10450270B2 (en) | 2013-07-25 | 2019-10-22 | Janssen Sciences Ireland Uc | Glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10676429B2 (en) | 2012-08-28 | 2020-06-09 | Janssen Sciences Ireland Uc | Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B |
US10875876B2 (en) | 2015-07-02 | 2020-12-29 | Janssen Sciences Ireland Uc | Cyclized sulfamoylarylamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10973801B2 (en) | 2018-03-14 | 2021-04-13 | Janssen Sciences Ireland Unlimited Company | Capsid assembly modulator dosing regimen |
US11078193B2 (en) | 2014-02-06 | 2021-08-03 | Janssen Sciences Ireland Uc | Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US11096931B2 (en) | 2019-02-22 | 2021-08-24 | Janssen Sciences Ireland Unlimited Company | Amide derivatives useful in the treatment of HBV infection or HBV-induced diseases |
US11491148B2 (en) | 2019-05-06 | 2022-11-08 | Janssen Sciences Ireland Unlimited Company | Amide derivatives useful in the treatment of HBV infection or HBV-induced diseases |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI691493B (en) * | 2009-06-29 | 2020-04-21 | 美商阿吉歐斯製藥公司 | Therapeutic compounds and compositions |
MX2017008330A (en) * | 2014-12-22 | 2018-04-24 | Consiglio Nazionale Ricerche | Products for the delivery of therapeutic/diagnostic compounds to the heart. |
TW201825458A (en) | 2016-09-20 | 2018-07-16 | 英商葛蘭素史克智慧財產(第二)有限公司 | TRPV 4 antagonists |
EP3515889A1 (en) | 2016-09-20 | 2019-07-31 | GlaxoSmithKline Intellectual Property (No. 2) Limited | Trpv4 antagonists |
AU2017330620A1 (en) | 2016-09-20 | 2019-03-28 | Glaxosmithkline Intellectual Property (No.2) Limited | TRPV4 antagonists |
EP3681882A1 (en) * | 2017-09-13 | 2020-07-22 | Amgen Inc. | Bisamide sarcomere activating compounds and uses thereof |
US10836755B2 (en) | 2018-01-19 | 2020-11-17 | Cytokinetics, Inc. | Cardiac sarcomere inhibitors |
US11964967B2 (en) | 2018-06-26 | 2024-04-23 | Cytokinetics, Inc. | Cardiac sarcomere inhibitors |
IL305628A (en) | 2021-03-04 | 2023-11-01 | Cytokinetics Inc | Cardiac sarcomere inhibitors |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB882090A (en) | 1958-03-04 | 1961-11-08 | Geigy Ag J R | New sulphamoyl benzamides and processes for the production thereof |
US3055905A (en) | 1958-03-04 | 1962-09-25 | Geigy Chem Corp | New sulphamyl benzamides |
US3567746A (en) | 1968-07-10 | 1971-03-02 | Pennwalt Corp | N-aryl benzamides |
EP0107735A1 (en) | 1981-10-20 | 1984-05-09 | Mitsui Toatsu Kagaku Kabushiki Kaisha | Novel pyridazinone derivatives |
EP0994115A2 (en) | 1998-10-12 | 2000-04-19 | Pfizer Limited | Process for preparation of pyrazolo-(4,3-d)pyrimidin-7-ones and intermediates thereof |
WO2000026202A1 (en) | 1998-10-30 | 2000-05-11 | Pharmacia & Upjohn S.P.A. | 2-amino-thiazole derivatives, process for their preparation, and their use as antitumor agents |
DE19912638A1 (en) | 1999-03-20 | 2000-09-21 | Bayer Ag | Naphthylcarboxamide substituted sulfonamides |
DE19929076A1 (en) | 1999-06-25 | 2000-12-28 | Aventis Pharma Gmbh | New indanyl-substituted benzenesulfonamide derivatives, as potassium channel blockers useful as safe antiarrhythmic agents, e.g. for treating atrial fibrillation or flutter |
WO2004018414A2 (en) | 2002-08-23 | 2004-03-04 | Pharmacia & Upjohn Company Llc | Antibacterial agents |
-
2004
- 2004-03-26 AT AT04758456T patent/ATE524452T1/en not_active IP Right Cessation
- 2004-03-26 JP JP2006509380A patent/JP4969238B2/en not_active Expired - Lifetime
- 2004-03-26 ES ES04758456T patent/ES2378620T3/en not_active Expired - Lifetime
- 2004-03-26 WO PCT/US2004/009408 patent/WO2004086865A1/en active Application Filing
- 2004-03-26 US US10/550,398 patent/US7595322B2/en active Active
- 2004-03-26 EP EP04758456A patent/EP1605752B1/en not_active Expired - Lifetime
-
2009
- 2009-09-03 US US12/553,311 patent/US7888373B2/en not_active Expired - Lifetime
-
2011
- 2011-01-18 US US13/008,432 patent/US8101620B2/en not_active Expired - Lifetime
- 2011-12-19 US US13/330,356 patent/US8202859B2/en not_active Expired - Fee Related
- 2011-12-27 JP JP2011284586A patent/JP2012092135A/en active Pending
-
2012
- 2012-05-18 US US13/474,824 patent/US8367661B2/en not_active Expired - Lifetime
-
2013
- 2013-02-05 US US13/759,903 patent/US8604025B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB882090A (en) | 1958-03-04 | 1961-11-08 | Geigy Ag J R | New sulphamoyl benzamides and processes for the production thereof |
US3055905A (en) | 1958-03-04 | 1962-09-25 | Geigy Chem Corp | New sulphamyl benzamides |
US3567746A (en) | 1968-07-10 | 1971-03-02 | Pennwalt Corp | N-aryl benzamides |
EP0107735A1 (en) | 1981-10-20 | 1984-05-09 | Mitsui Toatsu Kagaku Kabushiki Kaisha | Novel pyridazinone derivatives |
EP0994115A2 (en) | 1998-10-12 | 2000-04-19 | Pfizer Limited | Process for preparation of pyrazolo-(4,3-d)pyrimidin-7-ones and intermediates thereof |
US6207829B1 (en) | 1998-10-12 | 2001-03-27 | Pfizer Inc. | Process for preparation of pyrazolo[4,3-d]pyrimidin-7-ones and intermediates thereof |
WO2000026202A1 (en) | 1998-10-30 | 2000-05-11 | Pharmacia & Upjohn S.P.A. | 2-amino-thiazole derivatives, process for their preparation, and their use as antitumor agents |
DE19912638A1 (en) | 1999-03-20 | 2000-09-21 | Bayer Ag | Naphthylcarboxamide substituted sulfonamides |
DE19929076A1 (en) | 1999-06-25 | 2000-12-28 | Aventis Pharma Gmbh | New indanyl-substituted benzenesulfonamide derivatives, as potassium channel blockers useful as safe antiarrhythmic agents, e.g. for treating atrial fibrillation or flutter |
WO2004018414A2 (en) | 2002-08-23 | 2004-03-04 | Pharmacia & Upjohn Company Llc | Antibacterial agents |
Non-Patent Citations (9)
Title |
---|
Asakawa et al., "Chemistry of Salicylic Acid and Anthranilic Acid. IV. Synthesis of 6-Chloro-5-sulfamoyl- and 6-Chloro-3-sulfamoylanthranilic Acid Derivatives," Chemical and Pharmaceutical Bulletin, Pharmaceutical Society of Japan, Tokyo, JP, 27(6):2187-2198 (1979). |
El-Sharief et al. Synthesis of different types of chlorinated sulfonamides with expected insecticidal and bacterial activities. 1987, Proceedings of the Indian National Science Academy, 53, 179-88. * |
El-Sharief et al., "Synthesis of Different Types of Chlorinated Sulfonamides with Expected Insecticidal and Bactericidal Activities," Proceedings of the Indian National Science Academy, Part A, Physical Sciences, Indian National Science Academy, New Delhi, IN, 53(1):179-188 (1987). |
European Supplementary Search Report for European Application No. EP04758456.0, completed Mar. 25, 2008. |
International Search Report and Written Opinion mailed Sep. 9, 2004, for International Application No. PCT/US2004/09408, filed Mar. 26, 2004. |
Jucker et al., "Konstitution und salidiuretischer Effekt von 3-Sulfamyl-4-chlorbenzoesäure-Derivaten und verwandten Verbindungen," Arzneimittel Forschung, Drug Research, ECV Editio Cantor Verlag, Aulendorf, DE, 13(4):269-280 (1963). |
Künzle et al., "70. Dibenz[b,f]-1,4-oxazepin-11(10H)-one und Dibenz[b,e]-1,4-oxazepin-11(5H)-one," Helvetica Chimica Acta, vol. 52, Fasc. 3, No. 70, pp. 622-628 (1969). |
Pinto De Souza et al., "Synthesis of 3-methyl-1(2H)-isoquinolinone Derivatives and Their Biological Activities," Indian Journal of Chemistry, Section B: Organic and Medicinal Chemistry, Scientific Publishers, Jodhpur, IN, 29B(10):961-965 (1990). |
West, Anthony R., "Solid State Chemistry and its Applications", Wiley, New York, 1988, pp. 358 and 365. |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10196376B2 (en) | 2011-12-21 | 2019-02-05 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9061008B2 (en) | 2011-12-21 | 2015-06-23 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9066932B2 (en) | 2011-12-21 | 2015-06-30 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US8629274B2 (en) | 2011-12-21 | 2014-01-14 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9751857B2 (en) | 2011-12-21 | 2017-09-05 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9676747B2 (en) | 2011-12-21 | 2017-06-13 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US10676429B2 (en) | 2012-08-28 | 2020-06-09 | Janssen Sciences Ireland Uc | Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B |
US10995064B2 (en) | 2012-08-28 | 2021-05-04 | Janssen Sciences Ireland Uc | Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B |
US10941113B2 (en) | 2013-02-28 | 2021-03-09 | Janssen Sciences Ireland Uc | Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B |
US10125094B2 (en) | 2013-02-28 | 2018-11-13 | Janssen Sciences Ireland Uc | Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B |
US9579313B2 (en) | 2013-03-12 | 2017-02-28 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9205079B2 (en) | 2013-03-12 | 2015-12-08 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US8993771B2 (en) | 2013-03-12 | 2015-03-31 | Novira Therapeutics, Inc. | Hepatitis B antiviral agents |
US9895349B2 (en) | 2013-04-03 | 2018-02-20 | Janssen Sciences Ireland Us | N-phenyl-carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10398677B2 (en) | 2013-04-03 | 2019-09-03 | Janssen Sciences Ireland Uc | N-phenyl-carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10160743B2 (en) | 2013-05-17 | 2018-12-25 | Janssen Sciences Ireland Uc | Sulphamoylthiophenamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US9884818B2 (en) | 2013-05-17 | 2018-02-06 | Janssen Sciences Ireland Uc | Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10457638B2 (en) | 2013-05-17 | 2019-10-29 | Janssen Sciences Ireland Uc | Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10450270B2 (en) | 2013-07-25 | 2019-10-22 | Janssen Sciences Ireland Uc | Glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10071961B2 (en) | 2013-10-23 | 2018-09-11 | Janssen Sciences Ireland Uc | Carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10377709B2 (en) | 2013-10-23 | 2019-08-13 | Janssen Sciences Ireland Uc | Carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US9169212B2 (en) | 2014-01-16 | 2015-10-27 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US9873671B2 (en) | 2014-01-16 | 2018-01-23 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US9505722B2 (en) | 2014-01-16 | 2016-11-29 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US9181288B2 (en) | 2014-01-16 | 2015-11-10 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US10392349B2 (en) | 2014-01-16 | 2019-08-27 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US9339510B2 (en) | 2014-01-16 | 2016-05-17 | Novira Therapeutics, Inc. | Azepane derivatives and methods of treating hepatitis B infections |
US10213420B2 (en) | 2014-02-05 | 2019-02-26 | Novira Therapeutics, Inc. | Combination therapy for treatment of HBV infections |
US10632112B2 (en) | 2014-02-05 | 2020-04-28 | Novira Therapeutics, Inc. | Combination therapy for treatment of HBV infections |
US11078193B2 (en) | 2014-02-06 | 2021-08-03 | Janssen Sciences Ireland Uc | Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US9400280B2 (en) | 2014-03-27 | 2016-07-26 | Novira Therapeutics, Inc. | Piperidine derivatives and methods of treating hepatitis B infections |
US10537580B2 (en) | 2015-03-19 | 2020-01-21 | Novira Therapeutics, Inc. | Azocane and azonane derivatives and methods of treating hepatitis B infections |
US9884831B2 (en) | 2015-03-19 | 2018-02-06 | Novira Therapeutics, Inc. | Azocane and azonane derivatives and methods of treating hepatitis B infections |
US10875876B2 (en) | 2015-07-02 | 2020-12-29 | Janssen Sciences Ireland Uc | Cyclized sulfamoylarylamide derivatives and the use thereof as medicaments for the treatment of hepatitis B |
US10077239B2 (en) | 2015-09-29 | 2018-09-18 | Novira Therapeutics, Inc. | Crystalline forms of a hepatitis B antiviral agent |
US10441589B2 (en) | 2016-04-15 | 2019-10-15 | Novira Therapeutics, Inc. | Combinations and methods comprising a capsid assembly inhibitor |
US11129834B2 (en) | 2016-04-15 | 2021-09-28 | Novira Therapeutics, Inc. | Combinations and methods comprising a capsid assembly inhibitor |
US10973801B2 (en) | 2018-03-14 | 2021-04-13 | Janssen Sciences Ireland Unlimited Company | Capsid assembly modulator dosing regimen |
US11096931B2 (en) | 2019-02-22 | 2021-08-24 | Janssen Sciences Ireland Unlimited Company | Amide derivatives useful in the treatment of HBV infection or HBV-induced diseases |
US11491148B2 (en) | 2019-05-06 | 2022-11-08 | Janssen Sciences Ireland Unlimited Company | Amide derivatives useful in the treatment of HBV infection or HBV-induced diseases |
Also Published As
Publication number | Publication date |
---|---|
US20070078126A1 (en) | 2007-04-05 |
US20100069370A1 (en) | 2010-03-18 |
US8604025B2 (en) | 2013-12-10 |
WO2004086865A1 (en) | 2004-10-14 |
US20120088779A1 (en) | 2012-04-12 |
JP2006523234A (en) | 2006-10-12 |
US20130267537A1 (en) | 2013-10-10 |
JP4969238B2 (en) | 2012-07-04 |
US20110112154A1 (en) | 2011-05-12 |
US8202859B2 (en) | 2012-06-19 |
EP1605752A1 (en) | 2005-12-21 |
US8367661B2 (en) | 2013-02-05 |
EP1605752A4 (en) | 2008-05-07 |
US20120232092A1 (en) | 2012-09-13 |
JP2012092135A (en) | 2012-05-17 |
ES2378620T3 (en) | 2012-04-16 |
ATE524452T1 (en) | 2011-09-15 |
US8101620B2 (en) | 2012-01-24 |
US7595322B2 (en) | 2009-09-29 |
EP1605752B1 (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7888373B2 (en) | Heterocyclic sulfonamides as modulators of cardiac sarcomeres | |
US8410108B2 (en) | Certain chemical entities, compositions and methods | |
US7825120B2 (en) | Certain substituted ((piperazin-1-ylmethyl)benzyl)ureas | |
EP1765327B1 (en) | Compounds, compositions and methods | |
EP1959960B1 (en) | Certain chemical entities, compositions and methods | |
US7989455B2 (en) | Compounds, compositions and methods | |
US7605164B2 (en) | Compositions and methods for treating heart failure | |
US7910743B2 (en) | Compounds, compositions and methods | |
US20090192168A1 (en) | Compounds, Compositions and Methods | |
US20070208000A1 (en) | Certain chemical entities, compositions and methods | |
US20030158186A1 (en) | Compositions and methods for treating heart failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |