Nothing Special   »   [go: up one dir, main page]

US6906058B2 - 1,5-Benzothiazepines and their use as hypolipidaemics - Google Patents

1,5-Benzothiazepines and their use as hypolipidaemics Download PDF

Info

Publication number
US6906058B2
US6906058B2 US10/220,877 US22087702A US6906058B2 US 6906058 B2 US6906058 B2 US 6906058B2 US 22087702 A US22087702 A US 22087702A US 6906058 B2 US6906058 B2 US 6906058B2
Authority
US
United States
Prior art keywords
alkyl
formula
carboxy
carbamoyl
carbamoylmethoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/220,877
Other versions
US20030166927A1 (en
Inventor
Ingemar Starke
Mickael Dahlström
David Blomberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albireo AB
Original Assignee
AstraZeneca AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AstraZeneca AB filed Critical AstraZeneca AB
Publication of US20030166927A1 publication Critical patent/US20030166927A1/en
Assigned to ASTRAZENECA AB reassignment ASTRAZENECA AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLOMBERG, DAVID, DAHLSTROM, MICKAEL, STARKE, INGEMAR
Application granted granted Critical
Publication of US6906058B2 publication Critical patent/US6906058B2/en
Assigned to ALBIREO AB reassignment ALBIREO AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASTRAZENECA AB
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D281/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D281/02Seven-membered rings
    • C07D281/04Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D281/08Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D281/10Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6536Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and sulfur atoms with or without oxygen atoms, as the only ring hetero atoms

Definitions

  • This invention relates to benzothiazepine derivatives, or pharmaceutically acceptable salts, solvates, solvates of such salts and prodrugs thereof.
  • These benzothiazepines possess ileal bile acid transport (IBAT) inhibitory activity and accordingly have value in the treatment of disease states associated with hyperlipidaemic conditions and they are useful in methods of treatment of a warm-blooded animal, such as man.
  • IBAT ileal bile acid transport
  • the invention also relates to processes for the manufacture of said benzothiazepine derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments to inhibit IBAT in a warm-blooded animal, such as man.
  • HMG-CoA reductase inhibitors preferably statins such as simvastatin and fluvastatin
  • bile acid binders such as resins.
  • statins such as simvastatin and fluvastatin
  • bile acid binders are for instance cholestyramine and cholestipol.
  • One recently proposed therapy (“Bile Acids and Lipoprotein Metabolism: a Renaissance for Bile Acids in the Post Statin Era” Angelin B, Eriksson M, Rudling M; Current Opinion on Lipidology, 1999, 10, 269-74) involved the treatment with substances with an IBAT inhibitory effect.
  • Inhibitors of BAT can be used in the treatment of hypercholesterolaemia (see for instance “Interaction of bile acids and cholesterol with nonsystemic agents having hypocholesterolaemic properties”, Biochemica et Biophysica Acta, 1210 (1994) 255-287). Thus, suitable compounds having such inhibitory IBAT activity are also useful in the treatment of hyperlipidaemic conditions.
  • Substituted benzothiazepines possessing such IBAT inhibitory activity have been described, see for instance hypolipidaemic benzothiazepine compounds described in WO 93/16055, WO 94/18183, WO 94/18184, WO 96/05188, WO 96/08484, WO 96/16051, WO 97/33882, WO 98/38182, WO 99/35135, WO 98/40375 and EP 0 864 582.
  • the present invention is based on the discovery that certain benzothiazepine compounds surprisingly inhibit IBAT and that they posses characteristics that make them particularly suitable as medicaments. Such properties are expected to be of value in the treatment of disease states associated with hyperlipidaemic conditions.
  • R 1 and R 2 are independently selected from C 1-6 alkyl
  • R 4 and R 5 are a group of formula (IA):
  • R 3 and R 6 and the other of R 4 and R 5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, C 1-4 alkanoyl, C 1-4 alkanoyloxy, N-(C 1-4 alkyl)amino, N,N-(C 1-4 alkyl) 2 amino, C 1-4 alkanoylamino, N-(C 1-4 alkyl)carbamoyl, N,N-(C 1-4 alkyl) 2 carbamoyl, C 1-4 alkylS(O) a wherein a is 0 to 2, C 1-4 alkoxycarbonyl, N-(C 1-4 alkyl)sulphamoyl and N,N-(C 1-4 alkyl) 2 sulphamoyl; where
  • R 7 is carboxy, sulpho, sulphino, phosphono, —P(O)(OR a )(OR b ), P(O)(OH)(OR a ), —P(O)(OH)(R a ) or P(O)(OR a )(R b ), wherein R a , R b , are independently selected from C 1-6 alkyl; or R 7 is a group of formula (IB):
  • R 8 and R 9 are independently hydrogen, C 1-4 alkyl or a saturated cyclic group, or R 8 and R 9 together form C 2-6 alkylene; wherein R 8 and R 9 or R 8 and R 9 together may be independently optionally substituted on carbon by one or more substituents selected from R 15 ; and wherein if said saturated cyclic group contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R 20 ;
  • R 10 is hydrogen or C 1-4 alkyl; wherein R 10 is optionally substituted on carbon by one or more substituents selected from R 24 ;
  • R 11 is hydrogen, C 1-4 alkyl, carbocyclyl or heterocyclyl; wherein R 11 is optionally substituted on carbon by one or more substituents selected from R 16 ; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R 21 ;
  • R 12 is hydrogen or C 1-4 alkyl, carbocyclyl or heterocyclyl; wherein R 12 is optionally substituted on carbon by one or more substituents selected from R 17 ; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R 22 ;
  • R 13 is carboxy, sulpho, sulphino, phosphono, —P(O)(OR c )(OR d ), —P(O)(OH)(OR c ), —P(O)(OH)(R c ) or —P(O)(OR c )(R d ) wherein R c and R d are independently selected from C 6-4 alkyl;
  • n 1-3; wherein the values of R 8 and R 9 may be the same or different;
  • n 1-3; wherein the values of R 11 may be the same or different;
  • R 12 is 1-3; wherein the values of R 12 may be the same or different;
  • R 14 and R 16 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, C 1-4 alkanoyl, C 1-4 alkanoyloxy, N-(C 1-4 alkyl)amino, N,N-(C 1-4 alkyl) 2 amino, C 1-4 alkanoylamino, N-(C 1-4 alkyl)carbamoyl, N,N-(C 1-4 alkyl) 2 carbamoyl, C 1-4 alkylS(O) a wherein a is 0 to 2, C 1-4 alkoxycarbonyl, N-(C 1-4 alkyl)sulphamoyl and N,N-(C 1-4 alkyl) 2 sulphamoyl; wherein R 14 and R 16 may be independently optionally
  • R 15 and R 17 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, C 1-4 alkanoyl, C 1-4 alkanoyloxy, N-(C 1-4 alkyl)amino, N,N-(C 1-4 alkyl) 2 amino, C 1-4 alkanoylamino, N-(C 1-4 alkyl)carbamoyl, N,N-(C 1-4 alkyl) 2 carbamoyl, C 1-4 alkylS(O) a wherein a is 0 to 2, C 1-4 alkoxycarbonyl, N-(C 1-4 alkyl)sulphamoyl and N,N-(C 1-4 alkyl) 2 sulphamoyl, carbocyclyl, heterocyclyl,
  • R 18 , R 19 and R 25 are independently selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N,N-dimethylsulphamoyl;
  • R 20 , R 21 , R 22 , R 23 and R 26 are independently C 1-4 alkyl, C 4 alkanoyl, C 1-4 alkylsulphonyl, sulphamoyl, N-(C 1-4 alkyl)sulphamoyl, N,N-(C 1-4 alkyl) 2 sulphamoyl, C 1-4 alkoxycarbonyl, carbamoyl, N-(C 1-4 alkyl)carbamoyl, N,N-(C 1-4 alkyl) 2 carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;
  • R 24 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, C 1-4 alkanoyl, C 1-4 alkanoyloxy, N-(C 1-4 alkyl)amino, N)N-(C 1-4 alkyl) 2 amino, C 1-4 alkanoylamino, N-(C 1-4 alkyl)carbamoyl, N,N-(C 1-4 alkyl) 2 carbamoyl, C 1-4 alkylS(O) a wherein a is 0 to 2, C 1-4 alkoxycarbonyl, N-(C 1-4 alkyl)sulphamoyl and N,N-(C 1-4 allyl) 2 sulphamoyl, carbocyclyl, heterocyclyl; wherein R 24 may
  • alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only.
  • C 1-6 alkyl includes C 1-4 alkyl, C 1-3 alkyl, propyl, isopropyl and t-butyl.
  • references to individual alkyl groups such as ‘propyl’ are specific for the straight chained version only and references to individual branched chain alkyl groups such as ‘isopropyl’ are specific for the branched chain version only.
  • phenylC 1-6 alkyl would include phenylC 1-4 alkyl, benzyl, 1-phenylethyl and 2-phenylethyl.
  • halo refers to fluoro, fluoro, bromo and iodo.
  • a “saturated cyclic group” is a totally or partially saturated, mono or bicyclic ring containing 3-12 atoms of which 0-4 atoms are chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked.
  • saturated cyclic group refers to a totally saturated, monocyclic ring containing 5 or 6 atoms or a totally saturated bicyclic ring containing 9 or 10 atoms of which 0-4 atoms are chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked.
  • saturated cyclic group examples and suitable values of the term “saturated cyclic group” are cyclohexyl, cyclopropyl, pyrrolidinyl, morpholino and piperidyl. Preferably “saturated cyclic group” is cyclohexyl.
  • a “heterocyclyl” is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 3-12 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a —CH 2 — group can optionally be replaced by a —C(O)— or a ring sulphur atom may be optionally oxidised to form the S-oxides.
  • a “heterocyclyl” is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 5 or 6 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a —CH 2 — group can optionally be replaced by a —C(O)— or a ring sulphur atom may be optionally oxidised to form S-oxide(s).
  • heterocyclyl examples and suitable values of the term “heterocyclyl” are thiazolidinyl, pyrrolidinyl, pyrrolinyl, 2-pyrrolidonyl, 2,5-dioxopyrrolidinyl, 2-benzoxazolinonyl, 1,1-dioxotetrahydrothienyl, 2,4dioxoimidazolidinyl, 2-oxo-1,3,4-(4-triazolinyl), 2-oxazolidinonyl, 5,6-dihydrouracilyl, 1,3-benzodioxolyl, 1,2,4oxadiazolyl, 2-azabicyclo[2.2.1]heptyl, 4-thiazolidonyl, morpholino, 2-oxotetrahydrofuranyl, tetrahydrofliranyl, 2,3-dihydrobenzofuranyl, benzothienyl, tetrahydropyranyl
  • a “carbocyclyl” is a saturated, partially saturated or unsaturated, mono or bicyclic carbon ring that contains 3-12 atoms; wherein a —CH 2 — group can optionally be replaced by a —C(O)—.
  • Preferably “carbocycly” is a monocyclic ring containing 5 or 6 atoms or a bicyclic ring containing 9 or 10 atoms.
  • Suitable values for “carbocyclyl” include cyclopropyl, cyclobutyl, 1-oxocyclopentyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, phenyl, naphthyl, tetralinyl, indanyl or 1-oxoindanyl.
  • Particularly “carbocyclyl” is cyclopropyl, cyclobutyl, 1-oxocyclopentyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, phenyl or 1-oxoindanyl.
  • C 1-4 alkanoyloxy is acetoxy.
  • C 1-4 alkoxycarbonyl include methoxycarbonyl, ethoxycarbonyl, n- and t-butoxycarbonyl.
  • Examples of “C 1-4 alkoxy” include methoxy, ethoxy and propoxy.
  • Examples of “C 1-4 alkanoylamino” include formamido, acetamido and propionylamino.
  • Examples of “C 1-4 alkylS(O) a wherein a is 0 to 2” include methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl and ethylsulphonyl.
  • Examples of “C 1-4 alkylsulphanyl” are methyl thio and ethylthio.
  • Examples of “C 1-4 alkanoyl” include C 1-3 alkanoyl, propionyl and acetyl.
  • Examples of “N-C 1-4 alkylamino” include methylamino and ethylamino.
  • Examples of “N,N-(C 1-4 alkyl) 2 amino” include di-N-methylamino, di-(N-ethyl)amino and N-ethyl-N-methylamino.
  • Examples of “C 2-4 alkenyl” are vinyl, allyl and 1-propenyl.
  • Examples of “C 2-4 alkynyl” are ethynyl, 1-propynyl and 2-propynyl.
  • Examples of “N-(C 1-4 alkyl)sulphamoyl” are N-(C 1-3 alkyl)sulphamoyl, N-(methyl)sulphamoyl and N-(ethyl)sulphamoyl.
  • Examples of “N-(C 1-4 alkyl) 2 sulphamoyl” are N,N-(dimethyl)sulphamoyl and N-(methyl)-N-(ethyl)sulphamoyl.
  • N-(C 1-4 alkyl)carbamoyl are methylaminocarbonyl and ethylaminocarbonyl.
  • N,N-(C 1-4 allyl) 2 carbamoyl are dimethylaminocarbonyl and methylethylaminocarbonyl.
  • C 2-6 alkylene is ethylene and propylene.
  • a suitable pharmaceutically acceptable salt of a compound of the invention is, for example, an acid-addition salt of a compound of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid.
  • a suitable pharmaceutically acceptable salt of a compound of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • an alkali metal salt for example a sodium or potassium salt
  • an alkaline earth metal salt for example a calcium or magnesium salt
  • an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation
  • a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxye
  • the compounds of the formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula (I).
  • pro-drugs include in vivo hydrolysable esters and in vivo hydrolysable amides of a compound of the formula (I).
  • An in vivo hydrolysable ester of a compound of the formula (I) containing carboxy or hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
  • Suitable pharmaceutically acceptable esters for carboxy include C 1-6 alkoxymethyl esters for example methoxymethyl, C 1-6 alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C 3-8 cycloalkoxycarbonyloxyC 1-6 alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters for example 5-methyl-1,3-dioxolen-2-onylmethyl; and C 1-6 alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
  • An in vivo hydrolysable ester of a compound of the formula (I) containing a hydroxy group includes inorganic esters such as phosphate esters and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
  • inorganic esters such as phosphate esters and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
  • a-acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxy-methoxy.
  • a selection of in vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxyacetyl.
  • substituents on benzoyl include morpholino and piperazino linked from a ring nitrogen atom via a methylene group to the 3- or 4-position of the benzoyl ring.
  • a suitable value for an in vivo hydrolysable amide of a compound of the formula (I) containing a carboxy group is, for example, a N-C 1-6 alkyl or N,N-di-C 1-6 alkyl amide such as N-methyl, N-ethyl, N-propyl, N,N-dimethyl, N-ethyl-N-methyl or N,N-diethyl amide.
  • Some compounds of the formula (I) may have chiral centres and/or geometric isomeric centres (E- and Z-isomers), and it is to be understood that the invention encompasses all such optical, diastereoisomers and geometric isomers that possess IBAT inhibitory activity.
  • the invention relates to any and all tautomeric forms of the compounds of the formula (I) that possess IBAT inhibitory activity.
  • R 1 and R 2 are independently selected from C 1-6 alkyl
  • R 4 and R 5 are a group of formula (IA):
  • R 3 and R 6 and the other of R 4 and R 5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C 1-4 alkyl (optionally substituted by halo), C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy (optionally substituted by halo), C 1-4 alkanoyl, C 1-4 alkanoyloxy, N-(C 1-4 allyl)amino, N,N-(C 1-4 alkyl) 2 amino, C 1-4 alkanoylamino, N-(C 1-4 alkyl)carbamoyl, N,N-(C 1-4 alkyl) 2 carbamoyl, C 1-4 alkylS(O) a wherein a is 0 to 2, C 1-4 alkoxycarbonyl, N-(C 1-4 alkyl)sulphamoyl and N,N-
  • R 7 is carboxy, sulpho, phosphono, —P(O)(OR a )(OR b ) or P(O)(OH)(OR c ) wherein R a , R b and R c are independently selected from C 1-6 alkyl;
  • R 8 is hydrogen or C 1-4 alkyl optionally substituted by one or more hydroxy, carboxy, sulpho, amino, amidino, phosphono, C 1-4 alkoxy, C 1-4 alkylS(O) a wherein a is 0 to 2, —P(O)(OR d )(OR e ) or —P(O)(OH)(OR f ) wherein R d , R e and R f are independently selected from C 1-6 alkyl;
  • n 1-3;
  • n 1-3;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , m and n are as follows. Such values may be used where appropriate with any of the definitions, claims or embodiments defined hereinbefore or hereinafter.
  • R 1 and R 2 are independently selected from C 1-4 alkyl.
  • R 1 and R 2 are ethyl, propyl or butyl and the other is butyl.
  • R 1 and R 2 are ethyl and the other is butyl.
  • R 1 and R 2 are ethyl or butyl and the other is butyl.
  • R 1 and R 2 are both butyl.
  • R 3 is hydrogen
  • R 4 is a group of formula (IA).
  • R 5 is a group of formula (IA).
  • R 4 is a group of formula (IA)
  • R 5 is hydrogen, halo, hydroxy, C 1-4 alkyl (optionally substituted by halo) or C 1-4 alkoxy (optionally substituted by halo).
  • R 5 is hydrogen, fluoro, chloro, bromo, hydroxy, methyl, ethyl, trifluoromethyl, methoxy, ethoxy, trifluoromethoxy or difluoromethoxy.
  • R 5 is hydrogen, hydroxy or methoxy.
  • R 5 is hydrogen
  • R 4 is hydrogen, halo, hydroxy, amino, C 1-4 alkyl (optionally substituted by halo), C 1-4 alkoxy (optionally substituted by halo), N-(C 1-4 alkyl)amino or N,N-(C 1-4 alkyl) 2 amino.
  • R 4 is hydrogen, fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, isopropyl, butyl, trifluoromethyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, trifluoromethoxy, difluoromethoxy, amino, methylamino, ethylamino, isopropylamino, butylamino, dimethylamino or diethylamino.
  • R 4 is hydrogen, chloro, bromo, hydroxy, methyl, ethyl, isopropyl, trifluoromethyl, methoxy, ethoxy, trifluoromethoxy, difluoromethoxy, amino, methylamino, ethylamino, dimethylamino or diethylamino.
  • R 4 is bromo.
  • R 4 is halo, C 1-4 alkoxy or C 1-4 alkylsulphanyl.
  • R 4 is bromo, methoxy or methylthio.
  • R 4 is methylthio, ethylthio and isopropylthio.
  • R 4 is methylthio.
  • R 6 is hydrogen
  • R 7 is carboxy, sulpho, phosphono or P(O)(OH)(OR c ) wherein R c is C 1-4 alkyl.
  • R 7 is carboxy or sulpho.
  • R 7 is carboxy, sulpho or a group of formula (IB).
  • R 7 is phosphono or P(O)(OH)(OR c ) wherein R c is C 1-4 alkyl.
  • R 7 is carboxy
  • R 7 is sulpho
  • R 8 is hydrogen or C 1-6 alkyl substituted by carboxy.
  • R 8 is hydrogen or C 1-4 alkyl substituted by carboxy.
  • R 8 is hydrogen or 2-carboxyethyl.
  • R 8 is hydrogen
  • m is 1.
  • n 2
  • m is 3.
  • n 1
  • n is 2.
  • n 3
  • R 7 is carboxy, sulpho, phosphono or P(O)(OH)(OR c ) wherein R c is C 1-4 alkyl, R 8 is hydrogen or C 1-6 alkyl substituted by carboxy, m is 1-3 and n is 1.
  • R 7 is carboxy, sulpho, phosphono or P(O)(OH)(OR c ) wherein R c is C 1-4 alkyl, R 8 is hydrogen, m is 1-3 and n is 1.
  • R 7 is carboxy or sulpho
  • R 8 is hydrogen
  • m is 1-2 and n is 1.
  • R 7 is carboxy or sulpho
  • R 8 is hydrogen or C 1-6 alkyl substituted by carboxy
  • m is 1-3 and n is 1.
  • R 7 is carboxy or sulpho
  • R 8 is hydrogen or 2-carboxyethyl
  • m is 1-3 and n is 1.
  • group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-[1-(carboxyethyl)-1-(carboxy)methyl]carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy or N-(3-sulphopropyl)carbamoylmethoxy.
  • group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy or N-(2-sulphoethyl)carbamoylmethoxy.
  • the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy, N-(1,3-dicarboxypropyl)carbamoylmethoxy, N-(3-sulphopropyl)carbamoylmethoxy, N-[N-(2-sulphoethyl)carbamoylmethyl]carbamoylmethoxy, N-[1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-phenylethyl)carbamoylmethoxy, N-(1-carboxy-3-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2
  • R 8 and R 9 are independently hydrogen, C 1-4 alkyl or a saturated cyclic group, or R 8 and R 9 together form C 2-6 alkylene; wherein R 8 and R 9 or R 8 and R 9 together may be independently optionally substituted on carbon by one or more substituents selected from R 15 ; wherein
  • R 15 is selected from hydroxy, carboxy, C 1-4 alkoxy, C 1-4 alkylS(O) a wherein a is 0, carbocyclyl and heterocyclyl; wherein R 15 may be optionally substituted on carbon by one or more R 19 ; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R 23 ;
  • R 19 is hydroxy
  • R 23 is C 1-4 alkyl.
  • R 8 and R 9 are independently hydrogen, C 1-4 alkyl or a cyclohexyl, or R 8 and R 9 together form C 2-6 alkylene; wherein R 8 and R 9 or R 8 and R 9 together may be independently optionally substituted on carbon by one or more substituents selected from R 15 ; wherein
  • R 15 is selected from hydroxy, carboxy, C 1-4 alkoxy, C 1-4 alkylS(O) a wherein a is 0, phenyl, pyridyl, imidazolyl and indolyl; wherein R 15 may be optionally substituted on carbon by one or more R 19 ; and wherein said imidazolyl and indolyl may be optionally substituted on nitrogen by one or more R 23 ;
  • R 19 is hydroxy
  • R 23 is C 1-4 alkyl.
  • R 8 and R 9 are independently hydrogen, 2-carboxyethyl, 4-hydroxybenzyl, benzyl, iso-butyl, indol-3-ylmethyl, pyrid-3-ylmethyl, methyl, hydroxymethyl, cyclohexylmethyl, isopropyl, imidazol-4-ylmethyl, 1-methylimidazol-4-ylmethyl, 1-t-butoxyethyl, 2-methylthioethyl, sec-butyl, 1-hydroxyethyl or cyclohexyl; or R 8 and R 9 together form cyclopropyl.
  • R 8 is selected from hydrogen, 2-carboxyethyl, 4-hydroxybenzyl, benzyl, iso-butyl, indol-3-ylmethyl, pyrid-3-ylmethyl, methyl, hydroxymethyl, cyclohexylmethyl, isopropyl, imidazol-4-ylmethyl, 1-methylimidazol-4-ylmethyl, 1-t-butoxyethyl, 2-methylthioethyl, sec-butyl, 1-hydroxyethyl or cyclohexyl; R 9 is selected from hydrogen or methyl; or R 8 and R 9 together form cyclopropyl.
  • R 10 is hydrogen or C 1-4 alkyl; wherein R 10 is optionally substituted on carbon by one or more substituents selected from R 24 ; wherein
  • R 24 is carbocyclyl
  • R 10 is hydrogen or benzyl.
  • R 10 is hydrogen
  • R 10 is benzyl
  • R 11 is hydrogen or C 1-4 alkyl.
  • R 11 is hydrogen or methyl.
  • R 11 is hydrogen
  • R 11 is methyl
  • R 12 is hydrogen
  • R 13 is carboxy or sulpho.
  • R 13 is carboxy
  • R 13 is sulpho
  • p is 1.
  • p is 2; wherein the values of R 12 may be the same or different.
  • p is 3; wherein the values of R 12 may be the same or different.
  • R 1 and R 2 are independently selected from C 1-4 alkyl
  • R 3 is hydrogen
  • R 4 is a group of formula (IA) and R 5 is hydrogen, or R 5 is a group of formula (IA) and R 4 is halo;
  • R 6 is hydrogen
  • R 7 is carboxy or sulpho
  • R 8 is hydrogen or C 1-6 alkyl substituted by carboxy
  • m is 1-3 and n is 1;
  • R 1 and R 2 are ethyl and the other is butyl;
  • R 3 is hydrogen
  • R 4 is a group of formula (IA) and R 5 is hydrogen, or R 5 is a group of formula (IA) and R 4 is bromo;
  • R 6 is hydrogen
  • the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-[1-(carboxyethyl)-1-(carboxy)methyl]carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy or N-(3-sulphopropyl)carbamoylmethoxy;
  • R 1 and R 2 are ethyl or butyl and the other is butyl;
  • R 3 is hydrogen
  • R 4 is selected from bromo, methoxy or methylthio
  • R 5 is a group of formula (IA);
  • R 6 is hydrogen
  • the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy, N-(1,3-dicarboxypropyl)carbamoylmethoxy, N-(3-sulphopropyl)carbamoylmethoxy, N-[N-(2-sulphoethyl)carbamoylmethyl]carbamoylmethoxy, N-[1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-phenylethyl)carbamoylmethoxy, N-(1-carboxy-3-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2
  • preferred compounds of the invention are any one of Examples 1, 5, 6, 8, 9 or 10 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • preferred compounds of the invention are any one of Examples or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • Preferred aspects of the invention are those which relate to the compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • Another aspect of the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof which process (wherein variable groups are, unless otherwise specified, as defined in formula (I)) comprises of:
  • L is a displaceable group, suitable values for L are for example, a halogeno or sulphonyloxy group, for example a chloro, bromo, methanesulphonyloxy or toluene-4-sulphonyloxy group.
  • Benzothiazepines of formula (II) may be oxidised under standard sulphur oxidation conditions; for example using hydrogen peroxide and trifluoroacetic acid at a temperature in the range of 0° C. to reflux, preferably at or near room temperature.
  • Alcohols of formula (IIIa) or (IIIb) may be reacted with compounds of formula (V) in the presence of a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base, in the presence of a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of 0° C. to reflux, preferably at or near reflux.
  • a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base
  • a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of 0° C. to reflux, preferably at or near reflux.
  • Acids of formula (Va) or (Vb) and amines of formula (VI) and acids of formula (VIIa) or (VIIb) and amines of formula (IX) may be coupled together in the presence of a suitable coupling reagent.
  • Standard peptide coupling reagents known in the art can be employed as suitable coupling reagents, or for example carbonyldiimidazole and dicyclohexyl-carbodiimide, optionally in the presence of a catalyst such as dimethylaminopyridine or 4-pyrrolidinopyridine, optionally in the presence of a base for example triethylamine, pyridine, or 2,6-di-alkyl-pyridines such as 2,6-lutidine or 2,6-di-tert-butylpyridine.
  • Suitable solvents include dimethylacetamide, dichloromethane, benzene, tetrahydrofaran and dimethylformamide.
  • the coupling reaction may conveniently be performed at a temperature in the range of ⁇ 40 to 40° C.
  • Suitable activated acid derivatives include acid halides, for example acid chlorides, and active esters, for example pentafluorophenyl esters.
  • the reaction of these types of compounds with amines is well known in the art, for example they may be reacted in the presence of a base, such as those described above, and in a suitable solvent, such as those described above.
  • the reaction may conveniently be performed at a temperature in the range of ⁇ 40 to 40° C.
  • aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogeno group.
  • modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl.
  • a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
  • the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
  • a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
  • a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl.
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a base such as sodium hydroxide
  • a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • the protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.
  • the compounds defined in the present invention possess IBAT inhibitory activity. These properties may be assessed, for example, using an in vitro test assay for studying the effect on bile acid uptake in IBAT-transfected cells (Smith L., Price-Jones M. J., Hugnes K. T. and Jones N. R. A.; J Biomolecular Screening, 3, 227-230) or in vivo by studying the effect on radiolabelled bile acid absorption in mice/rats (Lewis M. C., Brieaddy L. E. and Root C., J., J Lip Res 1995, 36, 1098-1105).
  • Example 9 In the in vitro test assay described in the above reference the compound of Example 9 had an IC 50 of 2.1 ⁇ M.
  • a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
  • composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.
  • parenteral injection including intravenous, subcutaneous, intramuscular, intravascular or infusion
  • sterile solution emulsion
  • topical administration as an ointment or cream or for rectal administration as a suppository.
  • compositions may be prepared in a conventional manner using conventional excipients.
  • the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square meter body area of the animal, i.e. approximately 0.1-100 mg/kg, and this normally provides a therapeutically-effective dose.
  • a unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient.
  • Preferably a daily dose in the range of 1-50 mg/kg is employed. However the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
  • the compounds defined in the present invention are effective IBAT inhibitors, and accordingly have value in the treatment of disease states associated with hyperlipidaemic conditions.
  • a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • the size of the dose required for the therapeutic or prophylactic treatment will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated.
  • a unit dose in the range, for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged.
  • the IBAT inhibitory activity defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment.
  • a pharmaceutical product comprising a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore and an additional IBAT inhibitory substance as defined hereinbefore and an additional hypolipidaemic agent for the conjoint treatment of hyperlipidaemia.
  • the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with an HMG Co-A reductase inhibitor, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof.
  • HMG Co-A reductase inhibitors, pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof are statins well known in the art.
  • statins are fluvastatin, lovastatin, pravastatin, simvastatin, atorvastatin, cerivastatin, bervastatin, dalvastatin, mevastatin and (E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulphonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof
  • a particular statin is atorvastatm, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • a further particular statin is (E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulphonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • the compound of formula (1), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and/or a bile acid binder thereby avoiding a possible risk of excess of bile acids in colon caused by the inhibition of the ileal bile acid transport system. An excess of bile acids in the visceral contents may cause diarrhoea.
  • the present invention also provides a treatment of a possible side effect such as diarrhoea in patients during therapy comprising the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • An HMG CoA-reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof will by its action decrease the endogenous cholesterol available for the bile acid synthesis and have an additive effect in combination with the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof on lipid lowering.
  • Suitable bile acid binders for such a combination therapy are resins, such as cholestyramine and cholestipol.
  • One advantage is that the dose of bile acid binder might be kept lower than the therapeutic dose for treatment of cholesterolaemia in single treatment comprising solely a bile acid binder. By a low dose of bile acid binder any possible side effects caused by poor tolerance of the patient to the therapeutic dose could also be avoided.
  • a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with a bile acid binder.
  • a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in simultaneous, sequential or separate administration with a bile acid binder.
  • a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in simultaneous, sequential or separate administration with a bile acid binder.
  • a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of a bile acid binder.
  • a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in simultaneous, sequential or separate administration with a bile acid binder.
  • a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in simultaneous, sequential or separate administration with a bile acid binder.
  • a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
  • a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder, in association with a pharmaceutically acceptable diluent or carrier.
  • a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder in association with a pharmaceutically acceptable diluent or carrier.
  • kits comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • kits comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder.
  • kits comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof and a bile acid binder.
  • a kit comprising:
  • a kit comprising:
  • a kit comprising:
  • container means for containing said first, second and third dosage forms.
  • a kit comprising:
  • a kit comprising:
  • a kit comprising:
  • container means for containing said first, second and third dosage forms.
  • a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
  • a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, a bile acid binder in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
  • a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
  • a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
  • a combination) treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of a bile acid binder, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
  • a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable excipient, with the simultaneous, sequential or separate administration of an effective amount of a bile acid binder, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
  • the compounds of formula a), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of IBAT in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • a pharmaceutical composition which comprises a compound of formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
  • a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
  • the starting materials for the Examples above are either commercially available or are readily prepared by standard methods from known materials.
  • the following reactions are an illustration, but not a limitation, of some of the starting materials used in the above reactions.
  • 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (synthesised by the of WO9616051 for the corresponding 3-butyl-3-ethyl analogue; 2.0 g, 4.16 mmol), ethyl bromoacetate (0.84 g, 5.03 mmol), sodium carbonate (2.0 g, 18.9 mmol) and tetrabutylammonium bromide (80 mg, 0.25 mmol) were added to MeCN (20 ml). The mixture was refluxed for 2 hours and then evaporated under reduced pressure. The residue was extracted with DCM/water.
  • 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 41; 2.2 g, 3.88 mmol) was dissolved in ethanol (15 ml). NaOH (0.8 g in 1.5 ml water) was added to the solution and the mixture was stirred for 30 min at room temperature. AcOH (2 ml) was added. The solvent was evaporated under reduced pressure and the residue was extracted with EtOAc/water. The EtOAc layer was separated, dried and evaporated under reduced pressure to give the title compound 2.0 g (95%).
  • Lithium hydroxide (0.062 g) was added to a solution of 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methoxy-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 45; 0.448 g, 0.865 mmol) in THF/H 2 O (2/1, 6 ml). After 1 hour AcOH (0.5 ml) was added and most of the solvent was removed under reduced pressure. The crude product was purified by HPLC (MeCN) to give the title compound 0.408 g (96%) as a white solid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Steroid Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to compounds of formula (I) wherein R1 and R2 are independently selected from C1-6alkyl; one of R4 and R5 is a group of formula (IA): R3, R6, R7, R8, R9, R10 and R11 and the other of R4 and R5 are as defined within, pharmaceutically acceptable salts, solvates, solvates of such salts and prodrugs thereof and there use as ileal bile acid transport (IBAT) inhibitors for the treatment of hyperlipidaemia. Processes for their manufacture and pharmaceutical compositions containing them are also described.

Description

This invention relates to benzothiazepine derivatives, or pharmaceutically acceptable salts, solvates, solvates of such salts and prodrugs thereof. These benzothiazepines possess ileal bile acid transport (IBAT) inhibitory activity and accordingly have value in the treatment of disease states associated with hyperlipidaemic conditions and they are useful in methods of treatment of a warm-blooded animal, such as man. The invention also relates to processes for the manufacture of said benzothiazepine derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments to inhibit IBAT in a warm-blooded animal, such as man.
It is well-known that hyperlipidaemic conditions associated with elevated concentrations of total cholesterol and low-density lipoprotein cholesterol are major risk factors for cardiovascular atherosclerotic disease (for instance “Coronary Heart Disease: Reducing the Risk; a Worldwide View” Assman G., Carmena R. Cullen P. et al; Circulation 1999, 100, 1930-1938 and “diabetes and Cardiovascular Disease: A Statement for Healthcare Professionals from the American Heart Association” Grundy S, Benjamin I., Burke G., et al; Circulation, 1999, 100, 1134-46). Interfering with the circulation of bile acids within the lumen of the intestinal tracts is found to reduce the level of cholesterol. Previous established therapies to reduce the concentration of cholesterol involve, for instance, treatment with HMG-CoA reductase inhibitors, preferably statins such as simvastatin and fluvastatin, or treatment with bile acid binders, such as resins. Frequently used bile acid binders are for instance cholestyramine and cholestipol. One recently proposed therapy (“Bile Acids and Lipoprotein Metabolism: a Renaissance for Bile Acids in the Post Statin Era” Angelin B, Eriksson M, Rudling M; Current Opinion on Lipidology, 1999, 10, 269-74) involved the treatment with substances with an IBAT inhibitory effect.
Re-absorption of bile acid from the gastro-intestinal tract is a normal physiological process which mainly takes place in the ileum by the IBAT mechanism. Inhibitors of BAT can be used in the treatment of hypercholesterolaemia (see for instance “Interaction of bile acids and cholesterol with nonsystemic agents having hypocholesterolaemic properties”, Biochemica et Biophysica Acta, 1210 (1994) 255-287). Thus, suitable compounds having such inhibitory IBAT activity are also useful in the treatment of hyperlipidaemic conditions. Substituted benzothiazepines possessing such IBAT inhibitory activity have been described, see for instance hypolipidaemic benzothiazepine compounds described in WO 93/16055, WO 94/18183, WO 94/18184, WO 96/05188, WO 96/08484, WO 96/16051, WO 97/33882, WO 98/38182, WO 99/35135, WO 98/40375 and EP 0 864 582.
The present invention is based on the discovery that certain benzothiazepine compounds surprisingly inhibit IBAT and that they posses characteristics that make them particularly suitable as medicaments. Such properties are expected to be of value in the treatment of disease states associated with hyperlipidaemic conditions.
Accordingly, the present invention provides a compound of formula (I):
Figure US06906058-20050614-C00001

wherein:
R1 and R2 are independently selected from C1-6alkyl;
one of R4 and R5 is a group of formula (IA):
Figure US06906058-20050614-C00002
R3 and R6 and the other of R4 and R5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl; wherein R3 and R6 and the other of R4 and R5 may be optionally substituted on carbon by one or more R14;
R7 is carboxy, sulpho, sulphino, phosphono, —P(O)(ORa)(ORb), P(O)(OH)(ORa), —P(O)(OH)(Ra) or P(O)(ORa)(Rb), wherein Ra, Rb, are independently selected from C1-6alkyl; or R7 is a group of formula (IB):
Figure US06906058-20050614-C00003
R8 and R9 are independently hydrogen, C1-4alkyl or a saturated cyclic group, or R8 and R9 together form C2-6alkylene; wherein R8 and R9 or R8 and R9 together may be independently optionally substituted on carbon by one or more substituents selected from R15; and wherein if said saturated cyclic group contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R20;
R10 is hydrogen or C1-4alkyl; wherein R10 is optionally substituted on carbon by one or more substituents selected from R24;
R11 is hydrogen, C1-4alkyl, carbocyclyl or heterocyclyl; wherein R11 is optionally substituted on carbon by one or more substituents selected from R16; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R21;
R12 is hydrogen or C1-4alkyl, carbocyclyl or heterocyclyl; wherein R12 is optionally substituted on carbon by one or more substituents selected from R17; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R22;
R13 is carboxy, sulpho, sulphino, phosphono, —P(O)(ORc)(ORd), —P(O)(OH)(ORc), —P(O)(OH)(Rc) or —P(O)(ORc)(Rd) wherein Rc and Rd are independently selected from C6-4alkyl;
m is 1-3; wherein the values of R8 and R9 may be the same or different;
n is 1-3; wherein the values of R11 may be the same or different;
p is 1-3; wherein the values of R12 may be the same or different;
R14 and R16 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl; wherein R14 and R16 may be independently optionally substituted on carbon by one or more R18;
R15 and R17 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl, carbocyclyl, heterocyclyl, sulpho, sulphino, amidino, phosphono, —P(O)(ORe)(ORf), —P(O)(OH)(ORe), —P(O)(OH)(Re) or —P(O)(ORe)(Rf), wherein Re and Rf are independently selected from C1-6alkyl; wherein R15 and R17 may be independently optionally substituted on carbon by one or more R19; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R23;
R18, R19 and R25 are independently selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N,N-dimethylsulphamoyl;
R20, R21, R22, R23 and R26 are independently C1-4alkyl, C4alkanoyl, C1-4alkylsulphonyl, sulphamoyl, N-(C1-4alkyl)sulphamoyl, N,N-(C1-4alkyl)2sulphamoyl, C1-4alkoxycarbonyl, carbamoyl, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;
R24 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N)N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4allyl)2sulphamoyl, carbocyclyl, heterocyclyl; wherein R24 may be independently optionally substituted on carbon by one or more R25; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R26;
or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
In this specification the term “alkyl” includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only. For example, “C1-6alkyl” includes C1-4alkyl, C1-3alkyl, propyl, isopropyl and t-butyl. However, references to individual alkyl groups such as ‘propyl’ are specific for the straight chained version only and references to individual branched chain alkyl groups such as ‘isopropyl’ are specific for the branched chain version only. A similar convention applies to other radicals, for example “phenylC1-6alkyl” would include phenylC1-4alkyl, benzyl, 1-phenylethyl and 2-phenylethyl. The term “halo” refers to fluoro, fluoro, bromo and iodo. For the avoidance of doubt where m>1 the values of R8 may be the same or different.
Where optional substituents are chosen from “one or more” groups it is to be understood that this definition includes all substituents being chosen from one of the specified groups or the substituents being chosen from two or more of the specified groups.
A “saturated cyclic group” is a totally or partially saturated, mono or bicyclic ring containing 3-12 atoms of which 0-4 atoms are chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked. Preferably “saturated cyclic group” refers to a totally saturated, monocyclic ring containing 5 or 6 atoms or a totally saturated bicyclic ring containing 9 or 10 atoms of which 0-4 atoms are chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked. Examples and suitable values of the term “saturated cyclic group” are cyclohexyl, cyclopropyl, pyrrolidinyl, morpholino and piperidyl. Preferably “saturated cyclic group” is cyclohexyl.
A “heterocyclyl” is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 3-12 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a —CH2— group can optionally be replaced by a —C(O)— or a ring sulphur atom may be optionally oxidised to form the S-oxides. Preferably a “heterocyclyl” is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 5 or 6 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a —CH2— group can optionally be replaced by a —C(O)— or a ring sulphur atom may be optionally oxidised to form S-oxide(s). Examples and suitable values of the term “heterocyclyl” are thiazolidinyl, pyrrolidinyl, pyrrolinyl, 2-pyrrolidonyl, 2,5-dioxopyrrolidinyl, 2-benzoxazolinonyl, 1,1-dioxotetrahydrothienyl, 2,4dioxoimidazolidinyl, 2-oxo-1,3,4-(4-triazolinyl), 2-oxazolidinonyl, 5,6-dihydrouracilyl, 1,3-benzodioxolyl, 1,2,4oxadiazolyl, 2-azabicyclo[2.2.1]heptyl, 4-thiazolidonyl, morpholino, 2-oxotetrahydrofuranyl, tetrahydrofliranyl, 2,3-dihydrobenzofuranyl, benzothienyl, tetrahydropyranyl, piperidyl, 1-oxo-1,3-dihydroisoindolyl, piperazinyl, thiomorpholino, 1,1-dioxothiomorpholino, tetrahydropyranyl, 1,3-dioxolanyl, homopiperazinyl, thienyl, isoxazolyl, imidazolyl, pyrrolyl, thiadiazolyl, isothiazolyl, 1,2,4-triazolyl, 1,3,4-triazolyl, pyranyl, indolyl, pyrimidyl, thiazolyl, pyrazinyl, pyridazinyl, pyridyl, 4-pyridonyl, quinolyl and 1-isoquinolonyl.
A “carbocyclyl” is a saturated, partially saturated or unsaturated, mono or bicyclic carbon ring that contains 3-12 atoms; wherein a —CH2— group can optionally be replaced by a —C(O)—. Preferably “carbocycly” is a monocyclic ring containing 5 or 6 atoms or a bicyclic ring containing 9 or 10 atoms. Suitable values for “carbocyclyl” include cyclopropyl, cyclobutyl, 1-oxocyclopentyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, phenyl, naphthyl, tetralinyl, indanyl or 1-oxoindanyl. Particularly “carbocyclyl” is cyclopropyl, cyclobutyl, 1-oxocyclopentyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, phenyl or 1-oxoindanyl.
An example of “C1-4alkanoyloxy” is acetoxy. Examples of “C1-4alkoxycarbonyl” include methoxycarbonyl, ethoxycarbonyl, n- and t-butoxycarbonyl. Examples of “C1-4alkoxy” include methoxy, ethoxy and propoxy. Examples of “C1-4alkanoylamino” include formamido, acetamido and propionylamino. Examples of “C1-4alkylS(O)a wherein a is 0 to 2” include methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl and ethylsulphonyl. Examples of “C1-4alkylsulphanyl” are methyl thio and ethylthio. Examples of “C1-4alkanoyl” include C1-3alkanoyl, propionyl and acetyl. Examples of “N-C1-4alkylamino” include methylamino and ethylamino. Examples of “N,N-(C1-4alkyl)2amino” include di-N-methylamino, di-(N-ethyl)amino and N-ethyl-N-methylamino. Examples of “C2-4alkenyl” are vinyl, allyl and 1-propenyl. Examples of “C2-4alkynyl” are ethynyl, 1-propynyl and 2-propynyl. Examples of “N-(C1-4alkyl)sulphamoyl” are N-(C1-3alkyl)sulphamoyl, N-(methyl)sulphamoyl and N-(ethyl)sulphamoyl. Examples of “N-(C1-4alkyl)2sulphamoyl” are N,N-(dimethyl)sulphamoyl and N-(methyl)-N-(ethyl)sulphamoyl. Examples of “N-(C1-4alkyl)carbamoyl” are methylaminocarbonyl and ethylaminocarbonyl. Examples of “N,N-(C1-4allyl)2carbamoyl” are dimethylaminocarbonyl and methylethylaminocarbonyl. An example of “C2-6alkylene” is ethylene and propylene.
A suitable pharmaceutically acceptable salt of a compound of the invention is, for example, an acid-addition salt of a compound of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid. In addition a suitable pharmaceutically acceptable salt of a compound of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
The compounds of the formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula (I). Examples of pro-drugs include in vivo hydrolysable esters and in vivo hydrolysable amides of a compound of the formula (I).
An in vivo hydrolysable ester of a compound of the formula (I) containing carboxy or hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol. Suitable pharmaceutically acceptable esters for carboxy include C1-6alkoxymethyl esters for example methoxymethyl, C1-6alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C3-8cycloalkoxycarbonyloxyC1-6alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters for example 5-methyl-1,3-dioxolen-2-onylmethyl; and C1-6alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
An in vivo hydrolysable ester of a compound of the formula (I) containing a hydroxy group includes inorganic esters such as phosphate esters and α-acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group. Examples of a-acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxy-methoxy. A selection of in vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxyacetyl. Examples of substituents on benzoyl include morpholino and piperazino linked from a ring nitrogen atom via a methylene group to the 3- or 4-position of the benzoyl ring.
A suitable value for an in vivo hydrolysable amide of a compound of the formula (I) containing a carboxy group is, for example, a N-C1-6alkyl or N,N-di-C1-6alkyl amide such as N-methyl, N-ethyl, N-propyl, N,N-dimethyl, N-ethyl-N-methyl or N,N-diethyl amide.
Some compounds of the formula (I) may have chiral centres and/or geometric isomeric centres (E- and Z-isomers), and it is to be understood that the invention encompasses all such optical, diastereoisomers and geometric isomers that possess IBAT inhibitory activity.
The invention relates to any and all tautomeric forms of the compounds of the formula (I) that possess IBAT inhibitory activity.
It is also to be understood that certain compounds of the formula (I) can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which possess IBAT inhibitory activity.
In another aspect of the present invention, there is provided a compound of formula (I):
Figure US06906058-20050614-C00004

wherein:
R1 and R2 are independently selected from C1-6alkyl;
one of R4 and R5 is a group of formula (IA):
Figure US06906058-20050614-C00005
R3 and R6 and the other of R4 and R5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl (optionally substituted by halo), C2-4alkenyl, C2-4alkynyl, C1-4alkoxy (optionally substituted by halo), C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4allyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl;
R7 is carboxy, sulpho, phosphono, —P(O)(ORa)(ORb) or P(O)(OH)(ORc) wherein Ra, Rb and Rc are independently selected from C1-6alkyl;
R8 is hydrogen or C1-4alkyl optionally substituted by one or more hydroxy, carboxy, sulpho, amino, amidino, phosphono, C1-4alkoxy, C1-4alkylS(O)a wherein a is 0 to 2, —P(O)(ORd)(ORe) or —P(O)(OH)(ORf) wherein Rd, Re and Rf are independently selected from C1-6alkyl;
m is 1-3;
n is 1-3;
or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Preferred values of R1, R2, R3, R4, R5, R6, R7, R8, m and n are as follows. Such values may be used where appropriate with any of the definitions, claims or embodiments defined hereinbefore or hereinafter.
Preferably R1 and R2 are independently selected from C1-4alkyl.
More preferably one of R1 and R2 is ethyl, propyl or butyl and the other is butyl.
Particularly one of R1 and R2 is ethyl and the other is butyl.
In another aspect of the invention, particularly one of R1 and R2 is ethyl or butyl and the other is butyl.
In a further aspect of the invention, particularly R1 and R2 are both butyl.
Preferably R3 is hydrogen.
In one aspect of the invention, preferably R4 is a group of formula (IA).
In one aspect of the invention, preferably R5 is a group of formula (IA).
Preferably when R4 is a group of formula (IA), R5 is hydrogen, halo, hydroxy, C1-4alkyl (optionally substituted by halo) or C1-4alkoxy (optionally substituted by halo).
More preferably when R4 is a group of formula (IA), R5 is hydrogen, fluoro, chloro, bromo, hydroxy, methyl, ethyl, trifluoromethyl, methoxy, ethoxy, trifluoromethoxy or difluoromethoxy.
Particularly when R4 is a group of formula (IA), R5 is hydrogen, hydroxy or methoxy.
More particularly when R4 is a group of formula (IA), R5 is hydrogen.
Preferably when R5 is a group of formula (IA), R4 is hydrogen, halo, hydroxy, amino, C1-4alkyl (optionally substituted by halo), C1-4alkoxy (optionally substituted by halo), N-(C1-4alkyl)amino or N,N-(C1-4alkyl)2amino.
More preferably when R5 is a group of formula (IA), R4 is hydrogen, fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, isopropyl, butyl, trifluoromethyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, trifluoromethoxy, difluoromethoxy, amino, methylamino, ethylamino, isopropylamino, butylamino, dimethylamino or diethylamino.
Particularly when R5 is a group of formula (IA), R4 is hydrogen, chloro, bromo, hydroxy, methyl, ethyl, isopropyl, trifluoromethyl, methoxy, ethoxy, trifluoromethoxy, difluoromethoxy, amino, methylamino, ethylamino, dimethylamino or diethylamino.
More particularly when R5 is a group of formula (IA), R4 is bromo.
In another aspect of the invention, preferably when R5 is a group of formula (IA), R4 is halo, C1-4alkoxy or C1-4alkylsulphanyl.
In another aspect of the invention, preferably when R5 is a group of formula (IA), R4 is bromo, methoxy or methylthio.
In another aspect of the invention, preferably when R5 is a group of formula (IA), R4 is methylthio, ethylthio and isopropylthio.
In another aspect of the invention, preferably when R5 is a group of formula (IA), R4 is methylthio.
Preferably R6 is hydrogen.
Preferably R7 is carboxy, sulpho, phosphono or P(O)(OH)(ORc) wherein Rc is C1-4alkyl.
More preferably R7 is carboxy or sulpho.
In another aspect of the invention, preferably R7 is carboxy, sulpho or a group of formula (IB).
In a further aspect of the invention, preferably R7 is phosphono or P(O)(OH)(ORc) wherein Rc is C1-4alkyl.
In one aspect of the invention, preferably R7 is carboxy.
In another aspect of the invention, preferably R7 is sulpho.
Preferably R8 is hydrogen or C1-6alkyl substituted by carboxy.
More preferably R8 is hydrogen or C1-4alkyl substituted by carboxy.
Particularly R8 is hydrogen or 2-carboxyethyl.
More particularly R8 is hydrogen.
In one aspect of the invention preferably m is 1.
In another aspect of the invention preferably m is 2.
In a further aspect of the invention preferably m is 3.
In one aspect of the invention preferably n is 1.
In another aspect of the invention preferably n is 2.
In a further aspect of the invention preferably n is 3.
Preferably for the group of formula (IA), R7 is carboxy, sulpho, phosphono or P(O)(OH)(ORc) wherein Rc is C1-4alkyl, R8 is hydrogen or C1-6alkyl substituted by carboxy, m is 1-3 and n is 1.
More preferably for the group of formula (IA), R7 is carboxy, sulpho, phosphono or P(O)(OH)(ORc) wherein Rc is C1-4alkyl, R8 is hydrogen, m is 1-3 and n is 1.
Particularly for the group of formula (IA), R7 is carboxy or sulpho, R8 is hydrogen, m is 1-2 and n is 1.
In another aspect of the invention preferably for the group of formula (IA), R7 is carboxy or sulpho, R8 is hydrogen or C1-6alkyl substituted by carboxy, m is 1-3 and n is 1.
More preferably for the group of formula (IA), R7 is carboxy or sulpho, R8 is hydrogen or 2-carboxyethyl, m is 1-3 and n is 1.
Particularly the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-[1-(carboxyethyl)-1-(carboxy)methyl]carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy or N-(3-sulphopropyl)carbamoylmethoxy.
More particularly the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy or N-(2-sulphoethyl)carbamoylmethoxy.
In one aspect of the invention, preferably the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy, N-(1,3-dicarboxypropyl)carbamoylmethoxy, N-(3-sulphopropyl)carbamoylmethoxy, N-[N-(2-sulphoethyl)carbamoylmethyl]carbamoylmethoxy, N-[1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-phenylethyl)carbamoylmethoxy, N-(1-carboxy-3-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2-pyrid-3-ylethyl)carbamoylmethoxy, N-(carboxymethyl)-N-(benzyl)carbamoylmethoxy, N-(1-carboxyethyl)carbamoylmethoxy, 1-[N-(carboxymethyl)carbamoyl]ethoxy, N-(1-carboxy-2-hydroxyethyl)carbamoylmethoxy, N-(1-carboxycycloprop-1-yl)carbamoylmethoxy, N-(1-carboxy-1-methylethyl)carbamoylmethoxy, N-(1-carboxy-2-cyclohexylethyl)carbamoylmethoxy, N-(1-carboxy-2-methylpropyl)carbamoylmethoxy, N-(1-carboxy-2-imidazol-4-ylethyl)carbamoylmethoxy, N-[1-carboxy-2-(1-methylimidazol-4-yl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-t-butoxypropyl)carbamoylmethoxy, N-(1-carboxy-3-methylthiopropyl)carbamoylmethoxy, N-(1-carboxy-2-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-imethylpropyl)carbamoylmethoxy, N-(1-carboxy-1-methyl-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2-hydroxypropyl)carbamoylmethoxy and N-(1-carboxy-1-cyclohexylmethyl)carbamoylmethoxy.
In another aspect of the invention, preferably R8 and R9 are independently hydrogen, C1-4alkyl or a saturated cyclic group, or R8 and R9 together form C2-6alkylene; wherein R8 and R9 or R8 and R9 together may be independently optionally substituted on carbon by one or more substituents selected from R15; wherein
R15 is selected from hydroxy, carboxy, C1-4alkoxy, C1-4alkylS(O)a wherein a is 0, carbocyclyl and heterocyclyl; wherein R15 may be optionally substituted on carbon by one or more R19; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R23;
R19 is hydroxy; and
R23 is C1-4alkyl.
In another aspect of the invention, more preferably R8 and R9 are independently hydrogen, C1-4alkyl or a cyclohexyl, or R8 and R9 together form C2-6alkylene; wherein R8 and R9 or R8 and R9 together may be independently optionally substituted on carbon by one or more substituents selected from R15; wherein
R15 is selected from hydroxy, carboxy, C1-4alkoxy, C1-4alkylS(O)a wherein a is 0, phenyl, pyridyl, imidazolyl and indolyl; wherein R15 may be optionally substituted on carbon by one or more R19; and wherein said imidazolyl and indolyl may be optionally substituted on nitrogen by one or more R23;
R19 is hydroxy; and
R23 is C1-4alkyl.
In another aspect of the invention, particularly R8 and R9 are independently hydrogen, 2-carboxyethyl, 4-hydroxybenzyl, benzyl, iso-butyl, indol-3-ylmethyl, pyrid-3-ylmethyl, methyl, hydroxymethyl, cyclohexylmethyl, isopropyl, imidazol-4-ylmethyl, 1-methylimidazol-4-ylmethyl, 1-t-butoxyethyl, 2-methylthioethyl, sec-butyl, 1-hydroxyethyl or cyclohexyl; or R8 and R9 together form cyclopropyl.
In another aspect of the invention, more particularly R8 is selected from hydrogen, 2-carboxyethyl, 4-hydroxybenzyl, benzyl, iso-butyl, indol-3-ylmethyl, pyrid-3-ylmethyl, methyl, hydroxymethyl, cyclohexylmethyl, isopropyl, imidazol-4-ylmethyl, 1-methylimidazol-4-ylmethyl, 1-t-butoxyethyl, 2-methylthioethyl, sec-butyl, 1-hydroxyethyl or cyclohexyl; R9 is selected from hydrogen or methyl; or R8 and R9 together form cyclopropyl.
Preferably R10 is hydrogen or C1-4alkyl; wherein R10 is optionally substituted on carbon by one or more substituents selected from R24; wherein
R24 is carbocyclyl.
More preferably R10 is hydrogen or benzyl.
In one aspect of the invention, particularly R10 is hydrogen.
In another aspect of the invention, particularly R10 is benzyl.
Preferably R11 is hydrogen or C1-4alkyl.
More preferably R11 is hydrogen or methyl.
In one aspect of the invention particularly R11 is hydrogen.
In another aspect of the invention particularly R11 is methyl.
Preferably R12 is hydrogen.
Preferably R13 is carboxy or sulpho.
In one aspect of the invention, more preferably R13 is carboxy.
In another aspect of the invention, more preferably R13 is sulpho.
In one aspect of the invention preferably p is 1.
In another aspect of the invention preferably p is 2; wherein the values of R12 may be the same or different.
In a further aspect of the invention preferably p is 3; wherein the values of R12 may be the same or different.
Therefore in a further aspect of the invention, there is provided a compound of formula (I) as depicted above wherein:
R1 and R2 are independently selected from C1-4alkyl;
R3 is hydrogen;
R4 is a group of formula (IA) and R5 is hydrogen, or R5 is a group of formula (IA) and R4 is halo;
R6 is hydrogen; and
in the group of formula (IA), R7 is carboxy or sulpho, R8 is hydrogen or C1-6alkyl substituted by carboxy, m is 1-3 and n is 1;
or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Therefore in an additional aspect of the invention, there is provided a compound of formula (I) as depicted above wherein:
one of R1 and R2 is ethyl and the other is butyl;
R3 is hydrogen;
R4 is a group of formula (IA) and R5 is hydrogen, or R5 is a group of formula (IA) and R4 is bromo;
R6 is hydrogen; and
the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-[1-(carboxyethyl)-1-(carboxy)methyl]carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy or N-(3-sulphopropyl)carbamoylmethoxy;
or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Therefore in an additional aspect of the invention, there is provided a compound of formula (I) as depicted above wherein:
one of R1 and R2 is ethyl or butyl and the other is butyl;
R3 is hydrogen;
R4 is selected from bromo, methoxy or methylthio;
R5 is a group of formula (IA);
R6 is hydrogen; and
the group of formula (IA) is N-(carboxymethyl)carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy, N-(1,3-dicarboxypropyl)carbamoylmethoxy, N-(3-sulphopropyl)carbamoylmethoxy, N-[N-(2-sulphoethyl)carbamoylmethyl]carbamoylmethoxy, N-[1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-phenylethyl)carbamoylmethoxy, N-(1-carboxy-3-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2-pyrid-3-ylethyl)carbamoylmethoxy, N-(carboxymethyl)-N-(benzyl)carbamoylmethoxy, N-(1-carboxyethyl)carbamoylmethoxy, 1-[N-(carboxymethyl)carbamoyl]ethoxy, N-(1-carboxy-2-hydroxyethyl)carbamoylmethoxy, N-(1-carboxycycloprop-1-yl)carbamoylmethoxy, N-(1-carboxy-1-methylethyl)carbamoylmethoxy, N-(1-carboxy-2-cyclohexylethyl)carbamoylmethoxy, N-(1-carboxy-2-methylpropyl)carbamoylmethoxy, N-(1-carboxy-2-imidazol-4-ylethyl)carbamoylmethoxy, N-[1-carboxy-2-(1-methylimidazol-4-yl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-t-butoxypropyl)carbamoylmethoxy, N-(1-carboxy-3-methylthiopropyl)carbamoylmethoxy, N-(1-carboxy-2-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-imethylpropyl)carbamoylmethoxy, N-(1-carboxy-1-methyl-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2-hydroxypropyl)carbamoylmethoxy and N-(1-carboxy-1-cyclohexylmethyl)carbamoylmethoxy;
or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
In another aspect of the invention, preferred compounds of the invention are any one of Examples 1, 5, 6, 8, 9 or 10 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
In another aspect of the invention, preferred compounds of the invention are any one of Examples or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Preferred aspects of the invention are those which relate to the compound of formula (I) or a pharmaceutically acceptable salt thereof.
Another aspect of the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof which process (wherein variable groups are, unless otherwise specified, as defined in formula (I)) comprises of:
Process 1):
Oxidising a Benzothiazepine of Formula (II):
Figure US06906058-20050614-C00006
Process 2):
Reacting an Alcohol of Formula (IIIa) or (IIIb):
Figure US06906058-20050614-C00007

with a compound of formula (IV):
Figure US06906058-20050614-C00008

wherein L is a displaceable group;
Process 3):
Seacting an Acid of Formula (Va) or (Vb):
Figure US06906058-20050614-C00009

or an activated derivative thereof; with an amine of formula (VI:
Figure US06906058-20050614-C00010

Process 4):
for Compounds of Formula (I) wherein R7 is a Group of Formula (IB); Reacting an Acid of Formula (VIIa) or (VIIb):
Figure US06906058-20050614-C00011

or an activated derivative thereof; with an amine of formula (IX):
Figure US06906058-20050614-C00012

and thereafter if necessary or desirable:
i) converting a compound of the formula (I) into another compound of the formula (I);
ii) removing any protecting groups;
iii) forming a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug.
L is a displaceable group, suitable values for L are for example, a halogeno or sulphonyloxy group, for example a chloro, bromo, methanesulphonyloxy or toluene-4-sulphonyloxy group.
Specific reaction conditions for the above reactions are as follows.
1) Benzothiazepines of formula (II) may be oxidised under standard sulphur oxidation conditions; for example using hydrogen peroxide and trifluoroacetic acid at a temperature in the range of 0° C. to reflux, preferably at or near room temperature.
Compounds of formula (II) may be prepared according to the following scheme.
Figure US06906058-20050614-C00013

wherein L is a displaceable group as defined above, and Y is a displaceable group, for example halo.
Compounds of formula (IIa) and (IIc) are commercially available compounds, or they are known in the literature, or they are prepared by standard processes known in the art.
2) Alcohols of formula (IIIa) or (IIIb) may be reacted with compounds of formula (V) in the presence of a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base, in the presence of a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of 0° C. to reflux, preferably at or near reflux.
Compounds of formula (IIIa) or (IIIb) may be prepared in a similar manner to compounds of formula (II) (but wherein R4 or R5 is hydroxy) followed by the oxidation step of Process 1.
Compounds of formula (IV) are commercially available compounds, or they are known in the literature, or they are prepared by standard processes known in the art.
3) Acids of formula (Va) or (Vb) and amines of formula (VI) and acids of formula (VIIa) or (VIIb) and amines of formula (IX) may be coupled together in the presence of a suitable coupling reagent. Standard peptide coupling reagents known in the art can be employed as suitable coupling reagents, or for example carbonyldiimidazole and dicyclohexyl-carbodiimide, optionally in the presence of a catalyst such as dimethylaminopyridine or 4-pyrrolidinopyridine, optionally in the presence of a base for example triethylamine, pyridine, or 2,6-di-alkyl-pyridines such as 2,6-lutidine or 2,6-di-tert-butylpyridine. Suitable solvents include dimethylacetamide, dichloromethane, benzene, tetrahydrofaran and dimethylformamide. The coupling reaction may conveniently be performed at a temperature in the range of −40 to 40° C.
Suitable activated acid derivatives include acid halides, for example acid chlorides, and active esters, for example pentafluorophenyl esters. The reaction of these types of compounds with amines is well known in the art, for example they may be reacted in the presence of a base, such as those described above, and in a suitable solvent, such as those described above. The reaction may conveniently be performed at a temperature in the range of −40 to 40° C.
Compounds of formula (Va) or (Vb) may be prepared according to the following scheme.
Figure US06906058-20050614-C00014

wherein L is a displaceable group as defined above and Pg is a carboxy protecting group such as those described below.
Compounds of formula (VIIa) or (VIIb) may be prepared according to the following scheme.
Figure US06906058-20050614-C00015

wherein Pg is an acid protecting group such as those described below.
Compounds of formula (Vc) and (VI) and compounds of formula (VIIc) and (IX) are commercially available compounds, or they are known in the literature, or they are prepared by standard processes known in the art.
It will be appreciated that certain of the various ring substituents in the compounds of the present invention may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention. Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents. The reagents and reaction conditions for such procedures are well known in the chemical art. Particular examples of aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogeno group. Particular examples of modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl.
It will also be appreciated that in some of the reactions mentioned herein it may be necessary/desirable to protect any sensitive groups in the compounds. The instances where protection is necessary or desirable and suitable methods for protection are known to those skilled in the art. Conventional protecting groups may be used in accordance with standard practice (for illustration see T. W. Green, Protective Groups in Organic Synthesis, John Wiley and Sons, 1991). Thus, if reactants include groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.
A suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
The protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.
As stated hereinbefore the compounds defined in the present invention possess IBAT inhibitory activity. These properties may be assessed, for example, using an in vitro test assay for studying the effect on bile acid uptake in IBAT-transfected cells (Smith L., Price-Jones M. J., Hugnes K. T. and Jones N. R. A.; J Biomolecular Screening, 3, 227-230) or in vivo by studying the effect on radiolabelled bile acid absorption in mice/rats (Lewis M. C., Brieaddy L. E. and Root C., J., J Lip Res 1995, 36, 1098-1105).
In the in vitro test assay described in the above reference the compound of Example 9 had an IC50 of 2.1 μM.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
The composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.
In general the above compositions may be prepared in a conventional manner using conventional excipients.
The compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square meter body area of the animal, i.e. approximately 0.1-100 mg/kg, and this normally provides a therapeutically-effective dose. A unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient. Preferably a daily dose in the range of 1-50 mg/kg is employed. However the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
According to a further aspect of the present invention there is provided a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.
We have found that the compounds defined in the present invention, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, are effective IBAT inhibitors, and accordingly have value in the treatment of disease states associated with hyperlipidaemic conditions.
Thus according to this aspect of the invention there is provided a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore for use as a medicament.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
According to a further feature of this aspect of the invention there is provided a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
The size of the dose required for the therapeutic or prophylactic treatment will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated. A unit dose in the range, for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged.
The IBAT inhibitory activity defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment. According to this aspect of the invention there is provided a pharmaceutical product comprising a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore and an additional IBAT inhibitory substance as defined hereinbefore and an additional hypolipidaemic agent for the conjoint treatment of hyperlipidaemia.
In another aspect of the invention, the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, may be administered in association with an HMG Co-A reductase inhibitor, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof. Suitable HMG Co-A reductase inhibitors, pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof are statins well known in the art. Particular statins are fluvastatin, lovastatin, pravastatin, simvastatin, atorvastatin, cerivastatin, bervastatin, dalvastatin, mevastatin and (E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulphonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof A particular statin is atorvastatm, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof. A further particular statin is (E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulphonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
In an additional aspect of the invention, the compound of formula (1), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and/or a bile acid binder thereby avoiding a possible risk of excess of bile acids in colon caused by the inhibition of the ileal bile acid transport system. An excess of bile acids in the visceral contents may cause diarrhoea. Thus, the present invention also provides a treatment of a possible side effect such as diarrhoea in patients during therapy comprising the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
An HMG CoA-reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof will by its action decrease the endogenous cholesterol available for the bile acid synthesis and have an additive effect in combination with the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof on lipid lowering.
Suitable bile acid binders for such a combination therapy are resins, such as cholestyramine and cholestipol. One advantage is that the dose of bile acid binder might be kept lower than the therapeutic dose for treatment of cholesterolaemia in single treatment comprising solely a bile acid binder. By a low dose of bile acid binder any possible side effects caused by poor tolerance of the patient to the therapeutic dose could also be avoided.
Therefore in an additional feature of the invention, there is provided a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Therefore in an additional feature of the invention, there is provided a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with a bile acid binder.
Therefore in an additional feature of the invention, there is provided a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in simultaneous, sequential or separate administration with a bile acid binder.
Therefore in an additional feature of the invention, there is provided a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Therefore in an additional feature of the invention, there is provided a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of a bile acid binder.
Therefore in an additional feature of the invention, there is provided a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in simultaneous, sequential or separate administration with a bile acid binder.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder, in association with a pharmaceutically acceptable diluent or carrier.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder in association with a pharmaceutically acceptable diluent or carrier.
According to a further aspect of the present invention there is provided a kit comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
According to a further aspect of the present invention there is provided a kit comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder.
According to a further aspect of the present invention there is provided a kit comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof and a bile acid binder.
According to a further aspect of the present invention there is provided a kit comprising:
a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a first unit dosage form;
b) an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof; in a second unit dosage form; and
c) container means for containing said first and second dosage forms.
According to a further aspect of the present invention there is provided a kit comprising:
a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a first unit dosage form;
b) a bile acid binder; in a second unit dosage form; and
c) container means for containing said first and second dosage forms.
According to a further aspect of the present invention there is provided a kit comprising:
a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in a first unit dosage form;
b) an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof; in a second unit dosage form;
c) a bile acid binder; in a third unit dosage form; and
d) container means for containing said first, second and third dosage forms.
According to a further aspect of the present invention there is provided a kit comprising:
a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, together with a pharmaceutically acceptable diluent or carrier, in a first unit dosage form;
b) an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a second unit dosage form; and
c) container means for containing said first and second dosage forms.
According to a further aspect of the present invention there is provided a kit comprising:
a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, together with a pharmaceutically acceptable diluent or carrier, in a first unit dosage form;
b) a bile acid binder, in a second unit dosage form; and
c) container means for containing said first and second dosage forms.
According to a further aspect of the present invention there is provided a kit comprising:
a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, together with a pharmaceutically acceptable diluent or carrier, in a first unit dosage form;
b) an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a second unit dosage form; and
c) a bile acid binder; in a third unit dosage form; and
d) container means for containing said first, second and third dosage forms.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder, in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder, in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, a bile acid binder, in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder, in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
According to a further aspect of the present invention there is provided a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
According to a further aspect of the present invention there is provided a combination) treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of a bile acid binder, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
According to a further aspect of the present invention there is provided a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable excipient, with the simultaneous, sequential or separate administration of an effective amount of a bile acid binder, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
In addition to their use in therapeutic medicine, the compounds of formula a), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of IBAT in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
Many of the intermediates described herein are novel and are thus provided as a further feature of the invention. For example compounds of formula (Va) and (Vb) and/or compounds of formula (VIIa) and (VIIb) show IBAT inhibitory activity when tested in the above referenced in vitro test assay and are thus claimed as a further feature of the invention.
Thus in a further feature of the invention, there is provided a compound of formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
Therefore according to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
According to an additional aspect of the present invention there is provided a compound of the formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.
Thus according to this aspect of the invention there is provided a compound of the formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore for use as a medicament.
According to another feature of the invention there is provided the use of a compound of the formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof as defined hereinbefore in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.
According to another feature of the invention there is provided the use of a compound of the formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof as defined hereinbefore in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
According to a further feature of this aspect of the invention there is provided a method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (Va) or (Vb) and/or a compound of formula (VIIa) or (VIIb), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
In the above other pharmaceutical composition, process, method, use and medicament manufacture features, the alternative and preferred embodiments of the compounds of the invention described herein also apply.
EXAMPLES
The invention will now be illustrated in the following non limiting Examples, in which standard techniques known to the skilled chemist and techniques analogous to those described in these Examples may be used where appropriate, and in which, unless otherwise stated:
(i) evaporations were carried out by rotary evaporation in vacuo and work up procedures were carried out after removal of residual solids such as drying agents by filtration;
(ii) all reactions were carried out under an inert atmosphere at ambient temperature, typically in the range 18-25° C., with solvents of HPLC grade under anhydrous conditions, unless otherwise stated;
(iii) column chromatography (by the flash procedure) was performed on Silica gel 40-63 μm (Merck);
(iv) yields are given for illustration only and are not necessarily the maximum attainable;
(v) the structures of the end products of the formula (I) were generally confirmed by nuclear (generally proton) magnetic resonance (NMR) and mass spectral techniques; magnetic resonance chemical shift values were measured in deuterated CDCl3 (unless otherwise stated) on the delta scale (ppm downfield from tetramethylsilane); proton data is quoted unless otherwise stated; spectra were recorded on a Varian Mercury-300 MHz, Varian Unity plus-400 MHz, Varian Unity plus-600 MHz or on Varian Inova-500 MHz spectrometer; and peak multiplicities are shown as follows: s, singlet; d, doublet; dd, double doublet; t, triplet; tt, triple triplet; q, quartet; tq, triple quartet; m, multiplet; br, broad; LCMS were recorded on a Waters ZMD, LC column xTerra MS C8(Waters), detection with a HP 1100 MS-detector diode array equipped; mass spectra (MS) (loop) were recorded on VG Platform II (Fisons Instruments) with a HP-1100 MS-detector diode array equipped;
(vi) unless further details are specified in the text, analytical high performance liquid chromatography (HPLC) was performed on Prep LC 2000 (Waters), Cromasil C8, 7 μm, (Akzo Nobel); acetonitrile and de-ionised water 100 mM ammonium acetate as mobile phases, with suitable composition;
(vii) TLC was performed on Silica gel 60 F254 (Merck) with detection by UV light and charring with PAA (para-anisaldehyde, ethanol and sulphuric acid) if necessary.
(ix) intermediates were not generally filly characterised and purity was assessed by thin layer chromatography (TLC), HPLC, infra-red (IR), MS or NMR analysis;
(x) where solutions were dried sodium sulphate was the drying agent;
(xi) the following abbreviations may be used hereinbefore or hereinafter:
DCM dichloromethane;
DMF N,N-dimethylformamide;
MeCN acetonitrile;
AcOH acetic acid;
TFA trifluoroacetic acid;
TBTU o-Benzotriazol-1-yl-N,N,N′N′-tetramethyluronium tetrafluoro-
borate;
DIPEA di-isopropylethylamine; and
THF tetrahydrofuran;

(xii) where an “ISOLUTE” column is referred to, this means a column containing 2 g of silica, the silica being contained in a 6 ml disposable syringe and supported by a porous disc of 54 Å pore size, obtained from International Sorbent Technology under the name “ISOLUTE”; “ISOLUTE” is a registered trade mark;
EXAMPLE 1 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-[N-(carboxymethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-[N-(t-butoxycarbonylmethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 5; 70 mg, 0.13 mmol) was dissolved in DCM (3 ml). TFA (0.5 ml) was added and the mixture was stirred at room temperature for 2 h. The reaction mixture was evaporated under reduced pressure. The residue was placed on a silica column and the product was eluted with DCM/methanol (85:15). 54 mg (86%) of the title compound was obtained. NMR (500 MHz): 0.7-0.9 (m, 6H), 1.1-1.7 (m, 8H), 3.1-3.3 (m, 2H), 3.6-3.8 (br d, 2H), 4.2 (d, 2H), 4.6 (s, 2H), 6.9-7.3 (m, 8H), 7.6 (d, 1H).
EXAMPLES 2-4
The following compounds were synthesised from the appropriate starting materials by the procedure of Example 1.
Figure US06906058-20050614-C00016
Ex R1 R2 NMR m/z SM
2
Figure US06906058-20050614-C00017
Et (400 Mhz) 0.6-0.8 (m, 6H), 0.9-1.6 (m, 8H), 2.9 (brs, 2H), 3.1-3.3 (m, 2H), 3.7 (brs, 2H), 4.3-4.6 (m, 3H), 6.6 (m, 2H), 6.9-7.1 (m, 6H), 7.2-7.4 (m, 4H) 674.3 Meth 11
3
Figure US06906058-20050614-C00018
n-Bu (500 MHz) 0.7-0.8 (m, 6H), 0.9- 1.6 (m, 12H), 3.0 (brs, 2H), 3.2 (brs, 2H), 3.6-3.8 (m, 2H), 4.4 (m, 2H), 4.6 (s, 1H), 6.6 (d, 2H), 6.9- 7.1 (m, 6H), 7.2-7.4 (m, 4H) 701.7 Meth 12
4
Figure US06906058-20050614-C00019
n-Bu (500 MHz) 0.7-0.8 (m, 6H), 0.9- 1.6 (m, 12H), 3.2 (brs, 2H), 3.5- 3.9 (m, 4H), 4.4 (brs, 1H), 4.6 (m, 2H), 6.9-7.1 (m, 4H), 7.2-7.3 (m, 2H), 7.4 (s, 1H), 7.9 (d, 1H) 625.6 Meth 13
EXAMPLE 5 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-(carboxymethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
The title compound was synthesised from 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-(t-butoxycarbonylmethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 6) by the procedure of Example 1. NMR (300 MHz): 0.7-0.8 (m, 6H), 0.9-1.6 (m, 8H), 3.1-3.3 (m, 2H), 3.7 (brs, 2H), 3.9 (brs, 2H), 4.6 (s, 2H), 6.9-7.1 (m, 4H), 7.2 (m, 2H), 7.5 (s, 1H), 7.7 (brs, 1H).
EXAMPLE 6 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-S-(1,3-dicarboxypropyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
To 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-S-(1,3-diethoxycarbonylpropyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 7; 127 mg, 0.18 mmol) was added THF (2 ml), water (1 ml) and LiOH (15 mg, 0.63 mmol). The reaction mixture was stirred at room temperature for 3 h and then was the solvent removed under reduced pressure. The crude product was then dissolved in MeCN/water (9:1), purified by HPLC to give a yield of the product of 85 mg (73%/0) as a white solid. MS: 638.2 (M+H)+.
EXAMPLES 7
The following compound was synthesised from the appropriate starting materials by the procedure of Example 6.
Ex R1 NMR SM
7
Figure US06906058-20050614-C00020
(400 MHz): 0.7-0.75 (m, 6H), 1.0-1.5 (m, 8H), 1.55 (d, 3H), 2.0 (s, 3H), 3.1-3.25 (m, 2H), 3.6- 3.95 (m, 4H), 4.8 (q, 1H), 6.95-7.35 (m, 7H), 7.5 (s, 1H), 7.7 (s, 1H) Meth 9
EXAMPLE 8 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-(2-sulphoethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(carboxymethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 2; 70 mg, 0.137 mmol, taurine (20 mg, 0.160 mmol) and DIPEA (100 mg, 0.78 mmol) were added to DMF (2 ml). The mixture was stirred for 15 min at 50° C. TBTU (60 mg, 0.187 mmol) was added and the mixture was stirred for 1 h at 50° C. The solvent was evaporated under reduced pressure. The residue was purified by preparative HPLC using MeCN/ammonium acetate buffer (45:55) as eluent. 35 mg (40%) of the title compound (as ammonium salt) was obtained. NMR (500 MHz): 0.6-0.8 (m, 6H), 0.9-1.6 (m, 8H), 3.1-3.3 (m, 4H), 3.6-3.8 (brs, 4H), 4.6 (s, 2H), 6.9-7.1 (m, 4H), 7.2 (m, 2H), 7.4 (s, 1H), 7.7 (brs, 1H).
EXAMPLES 9-11
The following compounds were synthesised by the procedure of Example 8.
Figure US06906058-20050614-C00021
Ex R1 R2 NMR SM
9 HOS(O)2(CH2)3NH— Br 500 Mhz: 0.6-0.8 (m, 6H), 0.9- Meth 2
C(O)CH2O- 1.6 (m, 8H), 2.0 (brs, 2H), 2.9
(brs, 2H), 3.2 (m, 2H), 3.4 (brs,
2H), 3.7 (brs, 2H), 4.6 (s, 2H),
6.9-7.1 (m, 4H), 7.2 (m, 2H), 7.4
(brs, 1H), 7.5 (s, 1H)
10 H HOS(O)2(CH2)2NH- 300 MHz: 0.6-0.8 (m, 6H), 0.9- Meth 1
C(O)CH2O- 1.6 (m, 8H), 3.1 (brs, 4H), 3.6
(brs, 4H), 4.4 (s, 2H), 6.8-7.2
(m, 7H), 7.4 (brs, 1H), 7.5 (s,
1H)
11 HOS(O)2(CH2)2NH- Br 0.6-0.8 (m, 6H), 0.9-1.6 (m, 8H), Ex 5
C(O)CH2NHC(O)- 3.0-3.2 (m, 4H), 3.6 (brs, 4H),
CH2O— 4.0 (s, 2H), 4.6 (s, 2H), 6.9-7.1
(m, 4H), 7.2 (m, 2H), 7.5 (s,
1H), 7.8 (brs, 2H)
EXAMPLE 12 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-{N-R-[1-carboxy-2-(pyrid-3-yl)ethyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-{N-R-[1-methoxycarbonyl-2-(pyrid-3-yl)ethyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 8; 85 mg, 0.13 mmol) was dissolved in ethanol (2 ml). NaOH (40 mg in 0.1 nil water) was added to the solution and the mixture was stirred at 50° C. for 15 min. AcOH (0.1 ml) was added. The reaction mixture was evaporated under reduced pressure. The residue was purified by preparative HPLC using MeCN/ammonium acetate buffer (40:60) as eluent to yielded 56 mg (67%) of the title compound. NMR (500 MHz) 0.7-0.8 (m, 6H), 0.9-1.6 (m, 8H), 3.1-3.3 (m, 4H), 3.6-3.8 (m, 2H), 4.6 (s, 2H), 4.8 (s, 1H), 7.0-7.1 (m, 4H), 7.3-7.4 (m, 3H), 7.45 (s, 1H), 7.6 (m, 1H), 7.7 (m, 1H), 8.4 (s, 1H), 8.5 (s, 1H).
EXAMPLE 13
The following compound was synthesised from the appropriate starting materials by the procedure of Example 12.
Ex R1 NMR SM
13
Figure US06906058-20050614-C00022
(400 MHz) 0.6-0.8 (m, 6H), 0.9-1.6 (m, 8H), 2.9 (brs, 2H), 3.1-3.3 (m, 2H), 3.7 (brs, 2H), 3.9 (brs, 1H), 4.0 (brs, 1H), 4.6-4.7 (m, 2H), 5.0 (s, 2H), 7.0-7.5 (m, 12H) Meth 10
EXAMPLES 14 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-{N-S-[1-carboxy-3-methylbutyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-{N-S-[1-methoxycarbonyl-3-methylbutyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 15; 53 mg, 0.083 mmol) was dissolved in THF (1 ml). Water (1 ml) and LiOH (monohydrate) (11 mg, 0.26 mg) were added. The reaction mixture was stirred at room temperature for 3.5 hours. Water was added and the solution was acidified with HCl-solution (aq, 2M). The water-layer was extracted twice with EtOAc. The combined organic layer was washed once with brine, dried, filtered and evaporated under reduced pressure. The residue was purified by preparative HPLC using an MeCN/ammonium acetate buffer gradient (5/95 to 100/0) as eluent to yield 44 mg (85%) of the title compound. NMR (400 MHz, CD3OD) 0.73-0.86 (m, 6H), 0.94 (d, 6H), 0.99-1.3 (m, 4H), 1.3-1.76 (m, 7H), 3.27 (brs, 2H), 3.6-3.9 (m, 2H), 4.47-4.53 (m, 1H) (ABq, 2H), 7.02 (brt, 1H), 7.09-7.16 (m, 3H), 7.31 (brt, 2H), 7.52 (s, 1H).
EXAMPLES 15-35
The following compounds were synthesised from the appropriate starting materials by the procedure of Example 14.
Figure US06906058-20050614-C00023
Ex R1 R2 R3 NMR SM
151
Figure US06906058-20050614-C00024
Br Et (400 MHz) 0.73-0.85 (m, 6H), 0.98- 1.28 (m, 4H), 1.3-1.54 (m, 3H), 1.54- 1.71 (m, 1H), 3.13-3.34 (m, 4H), 3.60- 3.86 (m, 2H), 4.57 (ABq, 2H), 5.01 (q, 1H), 7.04-7.13 (m, 4H), 7.16-7.37 (m, 8H), 7.46 (s, 1H) Meth 14
16
Figure US06906058-20050614-C00025
Br Et (400 MHz, CD3OD) 0.73-0.87 (m, 6H), 0.99-1.3 (m, 4H), 1.3-1.66 (m, 4H), 3.25 (brs, 2H), 3.29-3.44 (m, 2H), 3.52-3.92 (m, 2H), 4.59 (ABq, 2H), 4.79-4.90 (m, 1H), 6.92 (t, 1H), 7.0- 7.07 (m, 3H), 7.07-7.16 (m, 3H), 7.26- 7.35 (m, 3H), 7.45 (s, 1H), 7.51 (d, 1H), 7.72 (brd, NH), 10.29 (brs, NH) Meth 16
172
Figure US06906058-20050614-C00026
MeO Et (400 MHz) 0.73-0.88 (m, 6H), 1.0-1.3 (m, 4H), 1.3-1.56 (m, 3H), 1.56-1.75 (m, 1H), 3.09-3.31 (m, 4H), 3.49 (s, 3H), 3.6-3.9 (m, 2H), 4.55 (s, 2H), 4.97 (q, 1H), 6.34 (s, 1H), 7.03 (t, 1H), 7.07-7.35 (m, 9H), 7.47 (brd, NH), 7.53 (s, 1H) Meth 19
183
Figure US06906058-20050614-C00027
Br Et (400 MHz, CD3OD) 0.73-0.83 (m, 6H), 0.98-1.26 (m, 4H), 1.35-1.65 (m, 4H), 3.25 (brs, 2H), 3.30-3.44 (m, 2H), 3.5-3.9 (m, 2H), 4.59 (Abq, 2H), 4.81- 4.89 (m, 1H), 6.92 (t, 1H), 6.99-7.06 (m, 3H), 7.07-7.14 (m, 3H), 7.26-7.34 (m, 3H), 7.45 (s, 1H), 7.51 (d, 1H) Meth 21
194
Figure US06906058-20050614-C00028
Br Et (400 Mhz, CD3OD) 0.73-0.88 (m, 6H), 0.98-1.3 (m, 4H), 1.35-1.65 (m, 7H), 3.28 (brs, 2H), 3.6-3.9 (m, 2H), 4.47-4.56 (m, 1H), 4.68 (s, 2H), 7.03 (t, 1H), 7.09-7.2 (m, 3H), 7.31 (t, 2H), 7.53 (s, 1H), 8.14 (brd, NH) Meth 22
20
Figure US06906058-20050614-C00029
Br Et (400 MHz, CD3OD) 0.73-0.85 (m, 6H), 0.99-1.27 (m, 4H), 1.37-1.65 (m, 7H), 3.28 (brs, 2H), 3.6-3.9 (m, 2H), 4.47-4.56 (m, 1H), 4.68 (s, 2H), 7.03 (t, 1H), 7.08-7.19 (m, 3H), 7.30 (brt, 2H), 7.52 (s, 1H), 8.14 (brd, NH) Meth 23
215
Figure US06906058-20050614-C00030
Br Et (400 Mhz, CD3OD) 0.74-0.83 (m, 6H), 1.0-1.25 (m, 6H), 1.36-1.64 (m, 6H), 3.27 (brs, 2H), 3.6-3.9 (m, 2H), 4.65 (s, 2H), 7.03 (t, 1H), 7.08-7.16 (m, 3H), 7.31 (t, 2H), 7.47 (s, 1H) Meth 24
225
Figure US06906058-20050614-C00031
Br Et (400 MHz, CD3OD) 0.74-0.85 (m, 6H), 0.99-1.26 (m, 4H), 1.38-1.65 (m, 10H), 3.27 (brs, 2H), 3.6-3.9 (m, 2H), 4.61 (s, 2H), 7.02 (brt, 1H), 7.09-7.17 (m, 3H), 7.31 (brt, 2H), 7.50 (s, 1H) Meth 25
236
Figure US06906058-20050614-C00032
Br Et (400 MHz, CD3OD) 0.73-0.83 (m, 6H), 0.99-1.25 (m, 4H), 1.35-1.64 (m, 4H), 1.73 (s, 3H), 3.24 (brs, 2H), 3.40 (d, 1H), 3.55-3.85 (m, 3H), 4.45 (ABq, 2H), 6.90 (t, 1H), 6.95-7.04 (m, 3H), 7.06 (s, 1H), 7.10 (brd, 2H), 7.23 (d, 1H), 7.30 (brt, 2H), 7.41 (s, 1H), 7.53 (d, 1H) Meth 26
245
Figure US06906058-20050614-C00033
Br Et (400 Mhz, CD3OD) 0.75-1.9 (m, 27H), 3.27 (brs, 2H), 3.6-3.9 (m, 2H), 4.55 (dd, 1H), 4.70 (ABq, 2H), 7.03 (t, 1H), 7.10-7.18 (m, 3H), 7.31 (brt, 2H), 7.53 (s, 1H) Meth 27
255
Figure US06906058-20050614-C00034
Br Et (400 MHz, CD3OD) 0.73-0.83 (m, 6H), 0.98 (t, 6H), 1.0-1.27 (m, 4H), 1.38-1.65 (m, 4H), 2.20-2.32 (m, 1H), 3.27 (brs, 2H), 3.6-3.9 (m, 2H), 4.47 (d, 1H), 4.73 (s, 2H), 7.03 (t, 1H), 7.10-7.16 (m, 3H), 7.31 (t, 2H), 7.53 (s, 1H) Meth 28
265
Figure US06906058-20050614-C00035
Br Et (400 MHz, CD3CN) 0.73-0.83 (m, 6H), 0.98-1.63 (m, 8H), 3.14 (dd, 1H), 3.23 (brs, 2H), 3.41 (dd, 1H), 3.57-3.8 (m, 2H), 4.66 (ABq, 2H), 4.88-4.95 (m, 1H), 6.99 (t, 1H), 7.08 (d, 2H), 7.16 (s, 1H), 7.20 (s, 1H), 7.29 (t, 2H), 7.41 (s, 1H), 7.73 (brd, NH), 8.40 (s, 1H) Meth 29
275
Figure US06906058-20050614-C00036
Br Et (400 MHz, CD3CN) 0.73-0.83 (m, 6H), 0.98-1.63 (m, 8H), 3.14 (dd, 1H), 3.23 (brs, 2H), 3.37 (dd, 1H), 3.6-3.8 (m, 5H), 4.68 (ABq, 2H), 4.82-4.91 (m, 1H), 6.99 (t, 1H), 7.07 (d, 2H), 7.14 (s, 1H), 7.16 (s, 1H), 7.29 (t, 2H), 7.40 (s, 1H), 7.86 (brd, NH), 8.30 (s, 1H) Meth 30
285
Figure US06906058-20050614-C00037
Br Et (400 MHz, CD3CD) 0.75-0.84 (m, 6H), 1.0-1.33 (m, 16H), 1.33-1.65 (m, 4H), 3.28 (brs, 2H), 3.55-3.95 (m, 2H), 4.33-4.40 (m, 1H), 4.44 (d, 1H), 4.75 (d, 2H), 7.03 (t, 1H), 7.11-7.16 (m, 3H), 7.31 (brt, 2H), 7.55 (s, 1H) Meth 31
295
Figure US06906058-20050614-C00038
Br Et (400 MHz, CD3CD) 0.73-0.85 (m, 6H), 0.98-1.3 (m, 4H), 1.36-1.64 (m, 4H), 1.98-2.10 (m, 4H), 2.12-2.26 (m, 1H), 2.46-2.61 (m, 2H), 3.28 (brs, 2H), 3.6- 2.9 (m, 2H), 4.63-4.77 (m, 3H), 7.02 (t, 1H), 7.09-7.17 (m, 3H), 7.31 (t, 2H), 7.52 (s, 1H) Meth 32
305
Figure US06906058-20050614-C00039
Br Et (400 MHz, CD3CD) 0.74-0.85 (m, 6H), 0.89-1.35 (m, 11H), 1.35-1.65 (m, 5H), 1.92-2.04 (m, 1H), 3.28 (brs, 2H), 3.6- 3.9 (m, 2H), 4.49-4.54 (m, 1H), 4.72 (s, 2H), 7.03 (t, 1H), 7.08-7.18 (m, 3H), 7.31 (brt, 2H), 7.52 (s, 1H) Meth 33
315
Figure US06906058-20050614-C00040
Br Et (400 MHz, CD3CD) 0.73-1.9 (m, 27H), 3.27 (brs, 2H), 3.6-3.9 (m, 2H), 4.55 (dd, 1H), 4.70 (ABq, 2H), 7.03 (t, 1H), 7.10-7.17 (m, 3H), 7.31 (brt, 2H), 7.53 (s, 1H) Meth 34
325
Figure US06906058-20050614-C00041
Br Et (400 Mhz, CD3CD) 0.73-0.88 (m, 6H), 0.92-1.3 (m, 10H), 1.3-1.65 (m, 4H), 2.20-2.32 (m, 1H), 3.28 (brs, 2H), 3.6- 3.9 (m, 2H), 4.47 (d, 1H), 4.73 (s, 2H), 7.03 (t, 1H), 7.10-7.17 (m, 3H), 7.31 (brt, 2H), 7.53 (s, 1H) Meth 35
335
Figure US06906058-20050614-C00042
Br Et (400 Mhz, CD3CN) 0.73-0.84 (m, 6H), 0.96-1.63 (m, 8H), 3.14 (dd, 1H), 3.24 (brs, 2H), 3.40 (dd, 1H), 3.56-3.81 (m, 2H), 4.66 (ABq, 2H), 4.87-4.94 (m, 1H), 6.99 (t, 1H), 7.07 (d, 2H), 7.17 (s, 1H), 7.19 (s, 1H), 7.29 (t, 2H), 7.41 (s, 1H), 7.73 (brd, NH), 8.36 (brs, 1H) Meth 36
345
Figure US06906058-20050614-C00043
MeS n-Bu (400 MHz, CD3OD) 0.75-0.85 (m, 6H), 0.97-1.94 (m, 23H), 2.18 (s, 3H), 3.25 (brs, 2H), 3.6-3.9 (m, 2H), 4.33 (d, 1H), 4.67 (ABq, 2H), 6.71 (s, 1H), 6.98 (t, 1H), 7.12 (brd, 2H), 7.28 (t, 2H), 7.41 (s, 1H) Meth 37
355
Figure US06906058-20050614-C00044
MeO n-Bu (400 MHz, CD3OD): δ 0.75-0.85 (m, 6H), 0.96-1.91 (m, 23H), 3.22 (brs, 2H), 3.6-3.9 (m, 5H), 4.33 (d, 1H), 4.59 (d, 2H), 6.51 (s, 1H), 6.98 (t, 1H), 7.13 (brd, 2H), 7.28 (t, 2H), 7.52 (s, 1H) Meth 38
1The compound was not purified.
21.9 eq LiOH and no purification.
37.6 eq of LiOH, added in portions, total reaction time approximately 6 hours.
44 eq LiOH.
5Extracted with DCM, no further purification.
68 eq of LiOH, reaction time was 5 days and then extracted with DCM, no further purification.
EXAMPLE 36 1,1-Dioxo-3-butyl-3-ethyl-5phenyl-7-bromo-8-{N-R-[1-carboxy-2-phenylethyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-{N-R-[1-t-butoxycarbonyl-2-phenylethyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 17; 47 mg, 0.066 mmol) was dissolved in DCM (4 ml). TFA (1 ml) was added and the mixture was stirred at room temperature for 1 hour and 15 minutes. The reaction mixture was evaporated at reduced pressure. The residue was purified by preparative HPLC using an MeCN/ammonium acetate buffer gradient (5/95 to 100/0) as eluent. The fraction with the product was concentrated and then acidified with HCl-solution (aq, 2M). The water-layer was extracted twice with EtOAc. The combined organic layer was washed once with brine, dried, filtered and evaporated under reduced pressure to yield 31 mg (72%) of the title compound. NMR (400 MHz, CD3OD) 0.74-0.83 (m, 6H), 1.0-1.27 (m, 4H), 1.36-1.65 (m, 4H), 3.08-3.3 (m, 4H), 3.54-3.92 (m, 2H), 4.09 (ABq, 2H), 4.78-4.88 (m, 1M), 7.03 (t, 1H), 7.1-7.34 (m, 9H), 7.49 (s, 1H), 7.79 (brd, NH).
EXAMPLES 37-38
The following compounds were synthesised from the appropriate starting materials by the procedure of Example 36.
Figure US06906058-20050614-C00045
Ex R1 R2 R3 NMR SM
37
Figure US06906058-20050614-C00046
MeO Et (400 MHz, CD3OD) 0.73-0.94 (m, 6H), 0.99-1.34 (m, 4H), 1.37-1.69 (m, 4H), 3.06-3.28 (m, 4H), 3.45-3.95 (m, 5H), 4.53 (ABq, 2H), 4.75-4.9 (m, 1H), 6.45 (s, 1H), 6.99 (t, 1H), 7.1-7.37 (m, 9H), 7.51 (s, 1H), 8.03 (brd, NH) Meth 18
381
Figure US06906058-20050614-C00047
Br Et (400 MHz, CD3OD) 0.73-0.86 (m, 6H), 0.90-1.27 (m, 10H), 1.39-1.65 (m, 4H), 1.65-1.78 (m, 3H), 3.27 (brs, 2H), 3.55-3.92 (m, 2H), 4.5-4.6 (m, 1H), 4.71 (ABq, 2H), 7.02 (brt, 1H), 7.1- 7.17 (m, 3H), 7.31 (brt, 2H), 7.52 (s, 1H) Meth 20
13 ml DCM:TFA 3:1
EXAMPLE 39 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-(S-1-carboxy-2-R-hydroxypropyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-(S-1-carboxy-2-R-hybutoxypropyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine (Example 28; 18 mg, 0.027 mmol) was dissolved in TFA (1.5 ml). The mixture was stirred at room temperature for 4 hours. The reaction mixture was evaporated at reduced pressure. The residue was purified by preparative HPLC using an MeCN/ammonium acetate buffer gradient (5/95 to 100/0) as eluent. The fraction with the product was concentrated and then acidified with HCl-solution (aq, 2M). The water-layer was extracted twice with EtOAc. The combined organic layer was washed once with brine, dried, filtered and evaporated under reduced pressure to yield 11 mg (67%) of the title compound. NMR (400 MHz, CD3OD) 0.73-0.95 (m, 6H), 0.95-1.35 (m, 7H), 1.35-1.66 (m, 4H), 3.28 (brs, 2H), 3.55-3.93 (m, 2H), 4.35-4.44 (m, 1H), 4.45-4.53 (m, 1H), 4.75 (s, 2H),7.03 (brt 1H), 7.10-7.20 (m, 3H), 7.31 (brt, 2H), 7.55 (s, 1H).
Preparation of Starting Materials:
The starting materials for the Examples above are either commercially available or are readily prepared by standard methods from known materials. For example, the following reactions are an illustration, but not a limitation, of some of the starting materials used in the above reactions.
Method 1 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-(carboxymethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-(ethoxycarbonylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 3; 110 mg, 0.24 mmol) and sodium hydroxide (100 mg, 2.5 mmol) were added to ethanol (5 ml, 95%). The mixture was refluxed for 1 h. AcOH (0.30 ml) was added and the reaction mixture was evaporated under reduced pressure. The residue was extracted with DCM/water. The DCM layer was separated, dried and evaporated under reduced pressure. The residue crystallised when treated with hexane. 82 mg (79%) of the title compound was obtained. NMR (500 MHz): 0.7-0.9 (m, 6H), 1.1-1.7 (m, 8H), 3.1-3.25 (m, 2H), 3.6-3.8 (br d, 2H), 4.6 (s, 2H), 6.9-7.1 (m, 5H), 7.2-7.3 (m, 2H),
Method 2 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(carboxymethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine
The title compound was synthesised from 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(ethoxycarbonylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 4) by the procedure of Method 1. NMR (500 MHz): 0.7-0.8 (m, 6H), 1.0-1.7 (m, 8H), 3.1-3.2 (m, 2H), 3.6 (brs, 2H), 4.6 (s, 2H), 6.9-7.1 (m, 4H), 7.2 (m, 2H), 7.5 (s, 1H).
Method 3 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-(ethoxycarbonylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (WO 96/16051; 100 mg, 0.27 mmol), ethyl bromoacetate (50 mg, 0.30 mmol), sodium carbonate (100 mg, 0.94 mmol) and tetrabutylammonium bromide (10 mg 0.031 mmol) were added to MeCN (4 ml). The mixture was refluxed for 20 h and then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel. The product was eluted with DCM: ethyl acetate (50:50). 120 mg (97%) of the title compound was obtained. NMR (300 MHz): 0.7-0.9 (m, 6H), 1.0-1.8 (m, 11H), 3.1-3.25 (m, 2H), 3.6-3.8 (m, 2H), 4.3 (q, 2H), 4.6 (s, 2H), 6.9-7.1 (m, 5H), 7.2-7.3 (m, 2H), 7.5 (d, 1H).
Method 4 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(ethoxycarbonylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine
The title compound was synthesised from 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (WO 96/16051) by the procedure of Method 3. NMR (500 MHz): 0.7-0.9 (m, 6H), 1.0-1.8 (m, 11H), 3.2 (m, 2H), 3.6-3.8 (brs, 2H), 4.3 (q, 2H), 4.7 (s, 2H), 7.0-7.1 (m, 3H), 7.15 (s, 1H), 7.3 (m, 2H), (s, 1H).
Method 5 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-[N-(t-butoxycarbonylmethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-(carboxymethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 1; 66 mg, 0.15 mmol), glycine-t-butyl ester hydrochloride (30 mg, 0.18 mmol) and triethylamine (100 mg, 0.99 mmol) were dissolved in DCM (2 ml). The mixture was stirred for 5 min at room temperature. TBTU (60 mg, 0.19 mmol) was added and the mixture was stirred for 1 h at room temperature. The solvent was evaporated at reduced pressure and the residue was placed on a silica column and the product was eluted with DCM/methanol (95:5). 80 mg (96%) of the title compound was obtained. NMR (500 MHz): 0.7-0.9 (m, 6H), 1.1-1.7 (m, 17H), 3.1-3.3 (m, 2H), 3.6-3.8 (br d, 2H), 4.0 (d, 2H), 6.9-7.1 (m, 6H), 7.2-7.3 (m, 2H), 7.6 (d, 1H).
Methods 6-13
The following compounds were synthesised from 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(carboxymethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 2), 1,1-dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-carboxymethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine Method 42) or 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(1-carboxyethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 40) by the procedure of Method 5.
Figure US06906058-20050614-C00048
Method R1 R2 NMR/M/z
6
Figure US06906058-20050614-C00049
Et 500 MHz: 0.7-0.8 (m, 6H), 1.0-1.7 (m, 17H), 3.2 (m, 2H), 3.7 (brs, 2H), 4.1 (d, 2H), 4.6 (s, 2H), 7.0-7.1 (m, 3H), 7.15 (s, 1H), 7.3 (m, 2H), 7.5 (s, 1H)
7
Figure US06906058-20050614-C00050
Et 300 MHz: 0.7-0.8 (m, 6H), 1-1.7 (m, 14H), 2-2.5 (m, 4H), 3.2 (m, 2H), 3.8 (brs, 2H), 4.1 (q, 2H), 4.2 (q, 2H), 4.6 (dd, 2H), 4.8 (m, 1H), 7-7.15 (m, 4H), 7.3 (m, 2H), 7.4 (d, 1H), 7.5 (s, 1H)
8
Figure US06906058-20050614-C00051
Et m/z = 673.3
9
Figure US06906058-20050614-C00052
Et m/z = 610.2
10
Figure US06906058-20050614-C00053
Et m/z = 686.3
11
Figure US06906058-20050614-C00054
Et m/z = 730.1
12
Figure US06906058-20050614-C00055
n-Bu m/z = 758.0
13
Figure US06906058-20050614-C00056
n-Bu (400 MHz) 0.6-0.8 (m, 6H), 1.0-1.6 (m, 30H), 3.19 (m, 2H), 3.5-3.9 (m, 4H), 4.5-4.7 (m, 3H), 7.0-7.1 (m, 4H), 7.3- 7.4 (m, 2H), 7.5 (s, 1H), 7.6 (d, 1H)
Method 14 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-[N-S-(1-ethoxycarbonyl-2-phenylethyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(carboxymethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 2; 71.7 mg, 0.14 mmol) was dissolved in DCM (2 ml) methyl L-phenylalaninate (36 mg, 0.17 mmol) and DIPEA (0.097 ml, 0.56 mmol) was added and the reaction was stirred for 2 minutes. TBTU (54.3 mg, 0.17 mmol) was added and the mixture was stirred for 30 minutes at room temperature. The mixture was evaporated at reduced pressure. The product was purified using an ISOLUTE column eluting with DCM/ethyl acetate 8/2. 92 mg (97%) of the title compound was obtained. M/z 671.7.
Methods 1-38
The following compounds were synthesised from the appropriate starting materials by the procedure of Method 14.
Figure US06906058-20050614-C00057
Meth R1 R2 R3 NMR/M/z SM
15
Figure US06906058-20050614-C00058
Br Et m/z 637.6 Meth 2
161
Figure US06906058-20050614-C00059
Br Et m/z 710.7 Meth 2
172
Figure US06906058-20050614-C00060
Br Et m/z 713.7 Meth 2
18
Figure US06906058-20050614-C00061
MeO Et m/z 664.9 Meth 48
194
Figure US06906058-20050614-C00062
MeO Et m/z 622.8 Meth 48
205
Figure US06906058-20050614-C00063
Br Et m/z 679.7 Meth 2
216
Figure US06906058-20050614-C00064
Br Et m/z 710.7 Meth 2
226
Figure US06906058-20050614-C00065
Br Et m/z 609.6 Meth 2
237
Figure US06906058-20050614-C00066
Br Et m/z 595.6 Meth 2
242
Figure US06906058-20050614-C00067
Br Et m/z 607.6 Meth 2
258
Figure US06906058-20050614-C00068
Br Et m/z 609.6 Meth 2
268
Figure US06906058-20050614-C00069
Br Et m/z 724.7 Meth 2
278
Figure US06906058-20050614-C00070
Br Et m/z 677.7 Meth 2
288
Figure US06906058-20050614-C00071
Br Et m/z 623.6 Meth 2
299
Figure US06906058-20050614-C00072
Br Et m/z 661.6 Meth 2
309
Figure US06906058-20050614-C00073
Br Et m/z 675.6 Meth 2
318
Figure US06906058-20050614-C00074
Br Et m/z 681.7 Meth 2
328
Figure US06906058-20050614-C00075
Br Et m/z 656.7 Meth 2
332
Figure US06906058-20050614-C00076
Br Et m/z 637.6 Meth 2
348
Figure US06906058-20050614-C00077
Br Et m/z 677.7 Meth 2
358
Figure US06906058-20050614-C00078
Br Et m/z 623.6 Meth 2
369
Figure US06906058-20050614-C00079
Br Et m/z 661.6 Meth 2
378,10
Figure US06906058-20050614-C00080
MeS n-Bu m/z 658.9 Meth 44
388,10
Figure US06906058-20050614-C00081
MeO n-Bu m/z 642.7 Meth 46
1Reaction time 40 minutes.
2Reaction time 1.5 hours.
3Reaction time 2 hours and chromatographed twice.
41.3 eqv amino acid, TBTU 1.3 eqv and eluted first with DCM then DCM:EtOAc 9:1 to 8:2.
5Reaction time 45 minutes and eluted first with DCM then DCM:EtOAc 9:1 to 8:2.
6Reaction time 1 hour and eluted first with DCM then DCM:EtOAc 9:1 to 8:2.
7Reaction time 40 minutes and eluted first with DCM then DCM:EtOAc 9:1 to 8:2.
8Reaction time overnight.
9Reaction time overnight and the product was eluted with EtAC:MeOH (saturated with NH3) 9:1
10Amine: Justus Liebigs Ann. Chem.; 523; 1936; 199
Method 39 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(1-ethoxycarbonylethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine
Sodium carbonate (0.30 g, 2.83 mmol), 2-bromopropanoic acid ethyl ester (0.145 g, 0.796 mmol) and tetrabutylammonium bromide (0.022 g, 0.07 mmol) was added to a solution of 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (WO 96/16051; 0.300 g, 0.663 mmol) in MeCN (10 ml). The suspension was heated under reflux over night. The solvent was evaporated and the crude mixture was extracted (DCM/H2O), dried (MgSO4), evaporated and purified by flash chromatography (Hex:EtOAc-5:1) to give the title compound 0.346 g (95%) as a white solid. NM (400 MHz) 0.70-0.85 (m, 6H), 1.00-1.75 (m, 8H), 1.35 (t, 3H), 1.70 (d, 3H), 3.05-3.25 (m, 2H), 3.55-3.90 (m, 2H), 4.20-4.35 (m, 2H), 4.80 (q, 1H), 7.00-7.10 (m, 3H), 7.15 (s, 1H), 7.25-7.35 (m, 2H), 7.45 (s, 1H).
Method 40 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(-carboxyethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine
Sodium hydroxide (0.045 g, 1.13 mmol) was added to a solution of 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-(1-ethoxycarbonylethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 39; 0.050 g, 0.090 mmol) in EtOH (4 ml, 95%) and heated under reflux. After 1.5 hours AcOH (0.2 ml) was added and most of the solvent was removed under reduced pressure. The crude product was extracted (DCM/H2), dried (MgSO4) and evaporated to give the title compound 0.031 g (65%) as white solid. NMR (500 MHz, CD3OD) 0.70-0.85 (m, 6H), 0.95-1.25 (m, 4H), 1.35-1.70 (m, 4H), 2.65 (d, 3H), 3.10-3.35 (m, 2H), 3.45-3.95 (m, 2H), 4.70 (q, 1H), 6.90-7.35 (m, 6H), 7.45 (s, 1H).
Method 41 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (synthesised by the of WO9616051 for the corresponding 3-butyl-3-ethyl analogue; 2.0 g, 4.16 mmol), ethyl bromoacetate (0.84 g, 5.03 mmol), sodium carbonate (2.0 g, 18.9 mmol) and tetrabutylammonium bromide (80 mg, 0.25 mmol) were added to MeCN (20 ml). The mixture was refluxed for 2 hours and then evaporated under reduced pressure. The residue was extracted with DCM/water. The DCM layer was separated and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel. The product was eluted with DCM/EtOAc (90:10) to give the title compound 2.2 g (93%). NMR (400 MHz) 0.7-0.8 (m, 6H), 1.0-1.6 (m, 15H), 3.2 (brs, 2H), 3.7 (brs, 2H), 4.3 (q, 2H), 4.7 (s, 2H), 7.0-7.3 (m, 6H), 7.4 (s, 1H).
Method 42 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-carboxymethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3,3-dibutyl-5-phenyl-7-bromo-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 41; 2.2 g, 3.88 mmol) was dissolved in ethanol (15 ml). NaOH (0.8 g in 1.5 ml water) was added to the solution and the mixture was stirred for 30 min at room temperature. AcOH (2 ml) was added. The solvent was evaporated under reduced pressure and the residue was extracted with EtOAc/water. The EtOAc layer was separated, dried and evaporated under reduced pressure to give the title compound 2.0 g (95%). NMR (500 MHz) 0.7-0.8 (m, 6H), 1.0-1.5 (m, 12H), 3.2 (brs, 2H), 3.7 (brs, 2H), 4.7 (s, 2H), 7.0-7.3 (m, 6H), 7.4 (s, 1H).
Method 43 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
To 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine Method 49; 500 mg, 1.2 mmol) was added MeCN (30 ml), tetrabutylammonium bromide (30 mg, 0.08 mmol), anhydrous sodium carbonate (500 mg, 4.7 mmol), ethyl bromoacetate (0.14 ml, 1.26 mmol) and caesium carbonate (20 mg, 0.06 mmol). This reaction mixture was then stirred over night at 80° C. Then the solvent was removed under reduced pressure, water and DCM were added and the aqueous phase was extracted three times with DCM. The combined organic phases were then dried, concentrated and purified by flash chromatography [DCM: EtOAc, 1:0, 9:1] to give the title compound 600 mg (99%). NMR (300 MHz) 0.8-1.0 (m, 6, 1.0-1.8 (m, 1H), 2.2 (s, 3H), 3.2 (q, 2H), 3.75 (brq, 2H), 4.3 (q, 2), 4.75 (s, 1H), 6.7 (s, 1H), 6.95 (t, 1H), 7.05 (d, 2H), 7.25 (t, 2H), 7.3 (s, 1H).
Method 44 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-ethylthio-8-carboxymethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-ethoxycarbonylmethoxy-2,3,4,5 tetrahydro-1,5-benzothiazepine (Method 43; 478 mg, 0.95 mmol) was added THF (15 ml), water (3 ml) and LiOH (34 mg, 1.4 mmol). The reaction was then stirred for 1 hour. Then AcOH (0.2 ml) was added along with water (10 ml) and DCM (10 ml) The aqueous layer was then extracted three times with DCM. The combined organic phases were then dried and concentrated to give the title compound 450 mg (99%). NMR (400 MHz) 0.7-0.9 (m, 6H), 1.0-1.7 (m, 8H), 2.2 (s, 3H), 3.2 (q, 2H), 3.7 (m, 2H), 4.8 (s, 2H), 6.65 (s, 1H), 0-7.9 (m, 6H), 7.05 (d, 2H), 7.25 (t, 2H), 7.35 (s, 1H), 8.4 (brs, 1H).
Method 45 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methoxy-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
Ethyl bromoacetate (0.13 ml), Na2CO3 (0.40 g) and tetrabutylammonium bromide (0.030 g) were added to a solution of 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methoxy-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (synthesised by the of WO9616051 for the corresponding 3-butyl-3-ethyl analogue; 0.400 g, 0.927 mmol) in MeCN (10 ml). The suspension was heated under reflux overnight before most of the solvent was removed under reduced pressure. The crude product was extracted (DCM/H2O) and filtered through a short silica-column (DCM:EtOAc-1:4) to give the title compound 0.476 g (99%). NMR (400 MHz 0.65-0.85 (m, 6H), 0.95-1.65 (m, 8H), 3.00-3.15 (m, 2H), 3.50-3.80 (m, 2H), 3.70-3.80 (s, 3H), 5.60 (s, 1H), 5.65 (d, 1H), 7.00-7.60 (m, 17H), 8.05-8.20 (d, 1H).
Method 46 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methoxy-8-carboxymethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
Lithium hydroxide (0.062 g) was added to a solution of 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methoxy-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 45; 0.448 g, 0.865 mmol) in THF/H2O (2/1, 6 ml). After 1 hour AcOH (0.5 ml) was added and most of the solvent was removed under reduced pressure. The crude product was purified by HPLC (MeCN) to give the title compound 0.408 g (96%) as a white solid. NMR (400 MHz, CD3OD): 0.75-0.85 (m, 6H), 1.00-1.30 (m, 8H), 1.35-1.55 (m, 4H), 3.20 (s, 2H), 3.65 (s, 3H), 3.70 (brs, 2H), 4.50 (s, 2H), 6.50 (s, 1H), 6.90-7.30 (m, 5H),
Method 47 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-methoxy-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methoxy-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (WO 9616051; 1.0 g), ethyl bromoacetate (0,50 g), sodium carbonate (1.2 g) and tetrabutylammonium bromide (60 mg) in MeCN (15 ml) were refluxed over night. The solvent was removed under reduced pressure and the residue was extracted (DCM/H2O). The organic layer was separated and the solvent was removed under reduced pressure. The residue purified by chromatography (DCM/EtOAc (90:10)) to give the title compound 1.2 g (98%). NMR (400 MHz, CD3OD) 0.75-0.85 (m, 6H), 1.00-1.30 (m, 8H), 1.35-1.55 (m, 4H), 3.20 (s, 2H), 3.65 (s, 3H), 3.70 (brs, 2H), 4.50 (s, 2H), 6.50 (s, 1H), 6.90-7.30 (m,5H), 7.40 (s, 1H).
Method 48 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-methoxy-8-carboxymethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-methoxy-8-ethoxycarbonylmethoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (Method 47; 1.2 g) was dissolved in ethanol (20 ml). Sodium hydroxide (0.5) dissolved in H2O (1 ml) was added and the reaction mixture was warmed to 40° C. for 30 min. AcOH (1 ml) was added and the solvent was removed at reduced pressure. The residue was partitioned between DCM/H2O and the organic layer was separated and dried. Trituration of the residue with n-hexane gave the title compound 1.1 g (97%) as a solid. NMR (400 MHz; CDCl3): 0.75-0.85 (m, 3H), 0.9 (t, 3H), 1.0-1.7 (m, 8H), 3.2 (q, 2H), 3.65 (s, 3H), 3.65-3.85 (m, 2H), 4.7 (s, 2H), 6.4 (s, 1H), 7.0 (t, 1H), 7.1 (d, 2H), 7.3 (t, 2H), 7.5 (s, 1H).
Method 49 1,1-Dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-hydroxy-2,3,4,5-tetrahydro-1,5-benzothiazepine
To 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-bromo-8-methoxy-2,3,4,5-tetrahydro-1,5-benzothiazepine (WO9616051; 600 mg, 1.29 mmol) were added DMF (5 ml) and sodium methanethiolate (450 mg, 6.42 mmol). The reaction was then heated to 60° C. for 1 hour. The oil bath was then heated to 120° C. for 4 hours. To quench the reaction, the temperature was lowered to room temperature and excess acetic acid was added quickly. The reaction was kept under a flow of nitrogen through sodium hypochlorite for 2 hours. Water and EtOAc were added and the aqueous phase was extracted three times with EtOAc. The combined organic phases were washed with water, dried and concentrated under reduced pressure. The residue was then purified by flash chromatography [DCM: EtOAc, 9:1] to give the title compound 0.5 g (92%). NMR (400 MHz) 0.65-0.8 (m, 6H), 0.95-1.6 (m, 8h), 3.1 (q, 2H), 3.6 (brq, 2H), 6.75 (s, 1H), 6.8 (t, 1H), 6.9 (d, 2H), 7.15 (t, 2H), 7.55 (s, 1H).
Example 40
The following illustrate representative pharmaceutical dosage forms containing the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof (hereafter compound X), for therapeutic or prophylactic use in humans
(a): Tablet I mg/tablet
Compound X 100
Lactose Ph.Eur 182.75
Croscarmellose sodium  12.0
Maize starch paste (5% w/v paste)  2.25
Magnesium stearate  3.0
(b): Tablet II mg/tablet
Compound X  50
Lactose Ph.Eur 223.75
Croscarmellose sodium  6.0
Maize starch  15.0
Polyvinylpyrrolidone (5% w/v paste)  2.25
Magnesium stearate  3.0
(c): Tablet III mg/tablet
Compound X  1.0
Lactose Ph.Eur  93.25
Croscarmellose sodium  4.0
Maize starch paste (5% w/v paste)  0.75
Magnesium stearate  1.0
(d): Capsule mg/capsule
Compound X  10
Lactose Ph.Eur 488.5
Magnesium stearate  1.5
(e): Injection I (50 mg/ml)
Compound X  5.0% w/v
1 M Sodium hydroxide solution 15.0% v/v
0.1 M Hydrochloric acid (to adjust pH to 7.6)
Polyethylene glycol 400  4.5% w/v
Water for injection to 100%
(f): Injection II 10 mg/ml
Compound X  1.0% w/v
Sodium phosphate BP  3.6% w/v
0.1 M Sodium hydroxide solution 15.0% v/v
Water for injection to 100%
(g): Injection III (1 mg/ml, buffered to pH 6)
Compound X  0.1% w/v
Sodium phosphate BP 2.26% w/v
Citric acid 0.38% w/v
Polyethylene glycol 400  3.5% w/v
Water for injection to 100%
Note
The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

Claims (12)

1. A compound of formula (I):
Figure US06906058-20050614-C00082
wherein:
R1 and R2 are independently selected from C1-6alkyl;
one of R4 and R5 is a group of formula (IA):
Figure US06906058-20050614-C00083
R3 and R6 and the other of R4 and R5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl; wherein R3 and R6 and the other of R4 and R5 may be optionally substituted on carbon by one or more R14;
R7 is carboxy, sulpho, sulphino, phosphono, —P(O)(ORa)(ORb), P(O)(OH)(ORa), —P(O)(OH)(Ra) or P(O)(ORa)(Rb), wherein Ra and Rb are independently selected from C1-6alkyl; or R7 is a group of formula (IB):
Figure US06906058-20050614-C00084
R8 and R9 are independently hydrogen, C1-4alkyl or a saturated cyclic group, or R8 and R9 together form C2-6alkylene; wherein R8 and R9 or R8 and R9 together may be independently optionally substituted on carbon by one or more substituents selected from R15; and wherein if said saturated cyclic group contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R20;
R10 is hydrogen or C1-4alkyl; wherein R10 is optionally substituted on carbon by one or more substituents selected from R24;
R11 is hydrogen, C1-4alkyl, carbocyclyl or heterocyclyl; wherein R11 is optionally substituted on carbon by one or more substituents selected from R16; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R21;
R12 is hydrogen or C1-4alkyl, carbocyclyl or heterocyclyl; wherein R12 optionally substituted on carbon by one or more substituents selected from R17; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R22;
R13 is carboxy, sulpho, sulphino, phosphono, —P(O)(ORc)(ORd), —P(O)(OH)(ORc), —P(O)(OH)(Rc) or —P(O)(ORc)(Rd) wherein Rc and Rd are independently selected from C1-6alkyl;
m is 1-3; wherein the values of R8 and R9 may be the same or different;
n is 1-3; wherein the values of R11 may be the same or different;
p is 1-3; wherein the values of R12 may be the same or different;
R14 and R16 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl; wherein R14 and R16 may be independently optionally substituted on carbon by one or more R18;
R15 and R17 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl, carbocyclyl, heterocyclyl, sulpho, sulphino, amidino, phosphono, —P(O)(ORe)(ORf), —P(O)(OH)(ORe), —P(O)(OH)(Re) or —P(O)(ORe)(Rf), wherein Re and Rf are independently selected from C1-6alkyl; wherein R15 and R17 may be independently optionally substituted on carbon by one or more R19; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R23;
R18, R19 and R25 are independently selected from halo, hydroxy, cyano, carbamoyl, ureido amino nitro, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N,N-dimethylsulphamoyl;
R20, R21, R22, R23 and R26 are independently C1-4alkyl, C1-4alkanoyl, C1-4alkylsulphonyl, sulphamoyl, N-(C1-4alkyl)sulphamoyl, N,N-(C1-4alkyl)2sulphamoyl, C1-4alkoxycarbonyl, carbamoyl, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;
R24 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl, carbocyclyl, heterocyclyl; wherein R24 may be independently optionally substituted on carbon by one or more R25; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R26;
wherein any saturated cyclic group is a totally or partially saturated, mono or bicyclic ring containing 3-12 atoms of which 0-4 atoms are chosen from nitrogen, sulphur or oxygen, which may be carbon or nitrogen linked;
wherein any heterocyclyl is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 3-12 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may be carbon or nitrogen linked, wherein a —CH2— group can optionally be replaced by a —C(O)— or a ring sulphur atom may be optionally oxidised to form the S-oxides; and
wherein any carbocyclyl is a saturated, partially saturated or unsaturated, mono or bicyclic carbon ring that contains 3-12 atoms, wherein a —CH2— group can optionally be replaced by a —C(O)—;
or a pharmaceutically acceptable salt thereof.
2. A compound of formula (I) according to claim 1 wherein R1 and R2 are independently selected from ethyl or butyl or a pharmaceutically acceptable salt thereof.
3. A compound of formula (I) according to claim 1 wherein R3 is hydrogen or a pharmaceutically acceptable salt thereof.
4. A compound of formula (I) according to claim 1 wherein R5 is a group of formula (IA) and R4 is bromo, methoxy or methylthio or a pharmaceutically acceptable salt thereof.
5. A compound of formula (I) according to claim 1 wherein R5 is N-(carboxymethyl)carbamoylmethoxy, N-(2-sulphoethyl)carbamoylmethoxy, N-(1,3-dicarboxypropyl)carbamoylmethoxy, N-(3-sulphopropyl)carbamoylmethoxy, N-[N-(2-sulphoethyl)carbamoylmethyl]carbamoylmethoxy, N-[1-carboxy-2-(4-hydroxyphenyl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-phenylethyl)carbamoylmethoxy, N-(1-carboxy-3-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2-pyrid-3-ylethyl)carbamoylmethoxy, N-(carboxymethyl)-N-(benzyl)carbamoylmethoxy, N-(1-carboxyethyl)carbamoylmethoxy, 1-[N-(carboxymethyl)carbamoyl]ethoxy, N-(1-carboxy-2-hydroxyethyl)carbamoylmethoxy, N-(1-carboxycycloprop-1-yl)carbamoylmethoxy, N-(1-carboxy-1-methylethyl)carbamoylmethoxy, N-(1-carboxy-2-cyclohexylethyl)carbamoylmethoxy, N-(1-carboxy-2-methylpropyl)carbamoylmethoxy, N-(1-carboxy-2-imidazol-4-ylethyl)carbamoylmethoxy, N-(1-carboxy-2-(1-methylimidazol-4-yl)ethyl]carbamoylmethoxy, N-(1-carboxy-2-t-butoxypropyl)carbamoylmethoxy, N-(1-carboxy-3-methylthiopropyl)carbamoylmethoxy, N-(1-carboxy-2-methylbutyl)carbamoylmethoxy, N-(1-carboxy-2-imethylpropyl)carbamoylmethoxy, N-(1-carboxy-1-methyl-2-indol-3-ylethyl)carbamoylmethoxy, N-(1-carboxy-2hydroxypropyl)carbamoylmethoxy and N-(1-carboxy-1-cyclohexylmethyl)carbamoylmethoxy and R4 is bromo, methoxy or methylthio or a pharmaceutically acceptable salt thereof.
6. A compound of formula (I) according to claim 1 wherein R6 is hydrogen or a pharmaceutically acceptable salt thereof.
7. A process for preparing a compound of the formula (I) as claimed in claim 1 which comprises:
Process 1):
oxidising a benzothiazepine of formula (II):
Figure US06906058-20050614-C00085
Process 2):
reacting an alcohol of formula (IIIa) or (IIIb):
Figure US06906058-20050614-C00086
with a compound of formula (IV):
Figure US06906058-20050614-C00087
wherein L is a displaceable group;
Process 3):
reacting an acid of formula (Va) or (Vb):
Figure US06906058-20050614-C00088
or an activated derivative thereof; with an amine of formula (VI):
Figure US06906058-20050614-C00089
Process 4):
for compounds of formula (I) wherein R7 is a group of formula (IB); reacting an acid of formula (VIIa) or (VIIb):
Figure US06906058-20050614-C00090
or an activated derivative thereof; with an amine of formula (IX):
Figure US06906058-20050614-C00091
wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13, m, n, and p are as defined in claim 1;
and optionally:
i) converting a compound of the formula (I) into another compound of the formula (I);
ii) removing any protecting groups;
iii) forming a pharmaceutically acceptable salt.
8. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1 to 6, in association with a pharmaceutically-acceptable diluent or carrier.
9. A compound of formula (Va), (Vb), (VIIa) or (VIIb):
Figure US06906058-20050614-C00092
wherein:
R1 and R2 are independently selected from C1-6alkyl;
R3, R4, R5 and R6 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl; wherein R3, R4, R5 and R6 may be optionally substituted on carbon by one or more R14;
R8 and R9 are independently hydrogen, C1-4alkyl or a saturated cyclic group, or R8 and R9 together form C2-6alkylene; wherein R8 and R9 or R8 and R9 together may be independently optionally substituted on carbon by one or more substituents selected from R15; and wherein if said saturated cyclic group contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R20;
R10 is hydrogen or C1-4alkyl; wherein R10 is optionally substituted on carbon by one or more substituents selected from R24;
R11 is hydrogen, C1-4alkyl, carbocyclyl or heterocyclyl; wherein R11 is optionally substituted on carbon by one or more substituents selected from R16; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R21;
m is 1-3; wherein the values of R8 and R9 may be the same or different;
n is 1-3; wherein the values of R11 may be the same or different;
R14 and R16 are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl; wherein R14 and R16 may be independently optionally substituted on carbon by one or more R18;
R15 is independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-C1-4alkyl)2sulphamoyl, carbocyclyl, heterocyclyl, sulpho, sulphino, amidino, phosphono, —P(O)(ORe)(ORf), —P(O)(OH)(ORe), —P(O)(OH)(Re) or —P(O)(ORe)(Rf), wherein Re and Rf are independently selected from C1-6alkyl; wherein R15 may be independently optionally substituted on carbon by one or more R19; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R23;
R18, R19 and R25 are independently selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N,N-dimethylsulphamoyl;
R20, R21, R23 and R26 are independently C1-4alkyl, C1-4alkanoyl, C1-4alkylsulphonyl, sulphamoyl, N-(C1-4alkyl)sulphamoyl, N,N-(C1-4alkyl)2sulphamoyl, C1-4alkoxycarbonyl, carbamoyl, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;
R24 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C1-4alkyl, C2-4alkenyl, C2-4alkynyl, C1-4alkoxy, C1-4alkanoyl, C1-4alkanoyloxy, N-(C1-4alkyl)amino, N,N-(C1-4alkyl)2amino, C1-4alkanoylamino, N-(C1-4alkyl)carbamoyl, N,N-(C1-4alkyl)2carbamoyl, C1-4alkylS(O)a wherein a is 0 to 2, C1-4alkoxycarbonyl, N-(C1-4alkyl)sulphamoyl and N,N-(C1-4alkyl)2sulphamoyl, carbocyclyl, heterocyclyl; wherein R24 may be independently optionally substituted on carbon by one or more R25; and wherein if said heterocyclyl contains an —NH— moiety, that nitrogen may be optionally substituted by one or more R26;
wherein any saturated cyclic group is a totally or partially saturated, mono or bicyclic ring containing 3-12 atoms of which 0-4 atoms are chosen from nitrogen, sulphur or oxygen, which may be carbon or nitrogen linked;
wherein any heterocyclyl is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 3-12 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may be carbon or nitrogen linked, wherein a —CH2— group can optionally be replaced by a —C(O)— or a ring sulphur atom may be optionally oxidised to form the S-oxides; and
wherein any carbocyclyl is a saturated, partially saturated or unsaturated, mono or bicyclic carbon ring that contains 3-12 atoms, wherein a —CH2— group can optionally be replaced by a —C(O)—;
or a pharmaceutically acceptable salt thereof.
10. A pharmaceutical composition which comprises a compound of formula (Va), (Vb) (VIIa) or (VIIb), or a pharmaceutically acceptable salt thereof, as claimed in claim 9 in association with a pharmaceutically-acceptable diluent or earner.
11. A method of treating a hyperlipidaemic condition in a warm-blooded animal in need of such treatment, which comprises administering to said animal an effective amount of a compound of formula (I) as defined in any one of claims 1 to 6, or a pharmaceutically acceptable salt thereof.
12. A method of treating a hyperlipidaemic condition in a warm-blooded animal in need of such treatment, which comprises administering to said animal an effective amount of a compound of formula (Va), (Vb), (VIIa) or (VIIb) as defined in claim 9, or a pharmaceutically acceptable salt thereof.
US10/220,877 2000-03-08 2001-03-05 1,5-Benzothiazepines and their use as hypolipidaemics Expired - Fee Related US6906058B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0000772A SE0000772D0 (en) 2000-03-08 2000-03-08 Chemical compounds
SE0000772-4 2000-03-08
PCT/GB2001/000909 WO2001066533A1 (en) 2000-03-08 2001-03-05 1,5-benzothiazepines and their use as hypolipidaemics

Publications (2)

Publication Number Publication Date
US20030166927A1 US20030166927A1 (en) 2003-09-04
US6906058B2 true US6906058B2 (en) 2005-06-14

Family

ID=20278738

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/220,877 Expired - Fee Related US6906058B2 (en) 2000-03-08 2001-03-05 1,5-Benzothiazepines and their use as hypolipidaemics

Country Status (17)

Country Link
US (1) US6906058B2 (en)
EP (1) EP1263747B1 (en)
JP (1) JP5204361B2 (en)
KR (1) KR20020079990A (en)
CN (1) CN1416425A (en)
AT (1) ATE283266T1 (en)
AU (2) AU3755601A (en)
BR (1) BR0109011A (en)
CA (1) CA2401055A1 (en)
DE (1) DE60107395T2 (en)
IL (1) IL151296A0 (en)
MX (1) MXPA02008600A (en)
NO (1) NO20024217L (en)
NZ (1) NZ520951A (en)
SE (1) SE0000772D0 (en)
WO (1) WO2001066533A1 (en)
ZA (1) ZA200206739B (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067933A1 (en) * 2000-12-21 2004-04-08 Ingemar Starke Chemical compounds
US20040254160A1 (en) * 2001-09-04 2004-12-16 Ingemar Starke Benzothiazepine derivatives
US20050043393A1 (en) * 2001-09-07 2005-02-24 Astrazeneca Ab Benzothiepine ileal bile acid transport inhibitors
US20050215630A1 (en) * 2001-12-19 2005-09-29 Astrazeneca Ab 3-Phenyl-2-arylalkylthiopropionic acid derivatives as selective agonists of ppar-alpha
US20050222120A1 (en) * 2002-06-14 2005-10-06 Ingemar Starke Peptides derivatives comprising thiazepine group for the treatment of hyperlipidermic conditions
US20050256198A1 (en) * 2002-06-20 2005-11-17 Lanna Li Ortho-substituted benzoic acid derivatives for the treatmetn of insulin resistance
US20060094884A1 (en) * 2003-02-25 2006-05-04 Ingemar Starke Benzothiazepine and benzothiepine derivatives
US20060199797A1 (en) * 2003-04-05 2006-09-07 Abrahamsson Hasse R Use of an ibat inhibitor for the treatment of prophylaxis of constipation
US20070099997A1 (en) * 2003-06-18 2007-05-03 Matti Ahlqvist Potassium or sodium salt of (-)-2-{'2-(4-hydroxyphenyl) ethyl!-thio-3-'4-(2-{4-'(methylsulfonyl) oxy! phenoxy}ethyl) phenyl! propanoic acid and their use in medicine
US7238684B2 (en) 2002-04-25 2007-07-03 Astrazeneca Ab Benzothiadiazepine derivatives, processes for their preparation and pharmaceutical compositions containing them
US20100130472A1 (en) * 2008-11-26 2010-05-27 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of obesity and diabetes
US20100311713A1 (en) * 2005-09-29 2010-12-09 Rolf Bergman Novel Azetidine Compounds Useful in the Treatment of Functional Gastrointestinal Disorders, Ibs and Functional Dyspepsia
US20110166157A1 (en) * 2007-03-08 2011-07-07 Albireo Ab 2-Substituted-3-Phenylpropionic Acid Derivatives and Their Use in the Treatment of Inflammatory Bowel Disease
WO2013063526A1 (en) 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of hypercholemia and cholestatic liver disease
WO2014144485A1 (en) 2013-03-15 2014-09-18 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of barrett's esophagus and gastroesophageal reflux disease
WO2014144650A2 (en) 2013-03-15 2014-09-18 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of primary sclerosing cholangitis and inflammatory bowel disease
EP2995317A1 (en) 2010-05-26 2016-03-16 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
US9409875B2 (en) 2013-04-26 2016-08-09 Elobix Ab Crystal modifications of elobixibat
US9688720B2 (en) 2010-11-08 2017-06-27 Albireo Ab IBAT inhibitors for the treatment of liver diseases
EP3266457A1 (en) 2011-10-28 2018-01-10 Lumena Pharmaceuticals LLC Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
US10183920B2 (en) 2014-10-24 2019-01-22 Elobix Ab Crystal modifications of elobixibat
US10441604B2 (en) 2016-02-09 2019-10-15 Albireo Ab Cholestyramine pellets and methods for preparation thereof
US10441605B2 (en) 2016-02-09 2019-10-15 Albireo Ab Oral cholestyramine formulation and use thereof
US10709755B2 (en) 2014-06-25 2020-07-14 Elobix Ab Solid formulation and method for preventing or reducing coloration thereof
US10722457B2 (en) 2018-08-09 2020-07-28 Albireo Ab Oral cholestyramine formulation and use thereof
US20200247768A1 (en) * 2019-02-06 2020-08-06 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
US10786529B2 (en) 2016-02-09 2020-09-29 Albireo Ab Oral cholestyramine formulation and use thereof
US10793534B2 (en) 2018-06-05 2020-10-06 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US10881685B2 (en) 2017-08-09 2021-01-05 Albireo Ab Cholestyramine granules, oral cholestyramine formulations and use thereof
US10941127B2 (en) 2019-02-06 2021-03-09 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
US10975046B2 (en) 2018-06-20 2021-04-13 Albireo Ab Crystal modifications of odevixibat
US11007142B2 (en) 2018-08-09 2021-05-18 Albireo Ab Oral cholestyramine formulation and use thereof
US11014898B1 (en) 2020-12-04 2021-05-25 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
US11111224B2 (en) 2019-12-04 2021-09-07 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11180465B2 (en) * 2019-12-04 2021-11-23 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11225466B2 (en) 2019-12-04 2022-01-18 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
US11267794B2 (en) * 2019-12-04 2022-03-08 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11306064B2 (en) 2018-06-05 2022-04-19 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
WO2022101379A1 (en) 2020-11-12 2022-05-19 Albireo Ab Odevixibat for treating progressive familial intrahepatic cholestasis (pfic)
US11377429B2 (en) 2020-08-03 2022-07-05 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11549878B2 (en) 2018-08-09 2023-01-10 Albireo Ab In vitro method for determining the adsorbing capacity of an insoluble adsorbant
US11572350B1 (en) 2020-12-04 2023-02-07 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11583539B2 (en) 2020-11-12 2023-02-21 Albireo Ab Treating progressive familial intrahepatic cholestasis (PFIC) with IBAT inhibitors
US11801226B2 (en) 2018-06-20 2023-10-31 Albireo Ab Pharmaceutical formulation of odevixibat
WO2024094841A1 (en) 2022-11-03 2024-05-10 Albireo Ab Treating alagille syndrome (algs)
EP4424363A2 (en) 2019-02-12 2024-09-04 Mirum Pharmaceuticals, Inc. Methods for increasing growth in pediatric subjects having cholestatic liver disease
US12134606B2 (en) 2020-12-04 2024-11-05 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0121621D0 (en) * 2001-09-07 2001-10-31 Astrazeneca Ab Chemical compounds
TWI331143B (en) * 2001-09-08 2010-10-01 Astrazeneca Uk Ltd Benzothiadiazepine derivatives, process for preparing them, and pharmaceutical composition comprising them
GB0201850D0 (en) * 2002-01-26 2002-03-13 Astrazeneca Ab Therapeutic treatment
AU2003203482B2 (en) 2002-04-09 2005-06-02 Syngenta Participations Ag Process for the preparation of cyclic diketones
US8044100B2 (en) 2004-12-22 2011-10-25 Bellus Health Inc. Methods and compositions for treating amyloid-related diseases
EP3851447B1 (en) * 2006-10-12 2023-09-06 Bellus Health Inc. Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid
CN103228270B (en) 2010-11-08 2016-02-10 阿尔比里奥公司 Containing the drug regimen of ibat inhibitor and bile acid binding agent
KR101674806B1 (en) * 2014-10-20 2016-11-10 씨제이헬스케어 주식회사 Novel aminoalkylbenzothiazepine derivatives and use thereof
ES2874669T3 (en) 2016-02-09 2021-11-05 Albireo Ab Oral formulation of cholestyramine and its use
JP6954927B2 (en) 2016-02-09 2021-10-27 アルビレオ・アクチボラグ Oral cholestyramine preparation and its use
KR101844184B1 (en) * 2017-07-21 2018-04-02 씨제이헬스케어 주식회사 Use of an aminoalkylbenzothiazepine derivative
CN110996915B (en) 2017-08-09 2023-10-03 阿尔比里奥公司 Cholestyramine pellet, oral cholestyramine preparation and application thereof
US10428109B1 (en) 2018-03-09 2019-10-01 Elobix Ab Process for the preparation of 1,5-benzothiazepine compounds
EP3921027B1 (en) 2019-02-06 2023-07-19 Albireo AB Benzothiazepine compounds and their use as bile acid modulators
PE20212251A1 (en) 2019-02-06 2021-11-24 Albireo Ab BENZOTHIADIAZEPINE COMPOUNDS AND THEIR USE AS BILE ACID MODULATORS
TW202134222A (en) 2019-12-04 2021-09-16 瑞典商艾爾比瑞歐公司 Benzothia(di)azepine compounds and their use as bile acid modulators
AR120674A1 (en) 2019-12-04 2022-03-09 Albireo Ab BENZOTHIAZEPINE COMPOUNDS AND THEIR USE AS BILE ACID
TW202134221A (en) 2019-12-04 2021-09-16 瑞典商艾爾比瑞歐公司 Benzothiadiazepine compounds and their use as bile acid modulators
AR120679A1 (en) 2019-12-04 2022-03-09 Albireo Ab BENZOTHI(DI)AZEPINE COMPOUNDS AND THEIR USE AS BILE ACID MODULATORS
AR120676A1 (en) 2019-12-04 2022-03-09 Albireo Ab BENZOTHI(DI)AZEPINE COMPOUNDS AND THEIR USE AS BILIARY ACID
US20230398125A1 (en) 2022-06-09 2023-12-14 Albireo Ab Treating hepatitis
WO2024008766A1 (en) * 2022-07-05 2024-01-11 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016055A1 (en) 1992-02-17 1993-08-19 The Wellcome Foundation Limited Hypolipidaemic benzothiazepine compounds
WO1994018184A1 (en) 1993-02-15 1994-08-18 The Wellcome Foundation Limited Hypolipidaemic compounds
WO1994018183A1 (en) 1993-02-15 1994-08-18 The Wellcome Foundation Limited Hypolipidaemic condensed 1,4-thiazepines
WO1996005188A1 (en) 1994-08-10 1996-02-22 The Wellcome Foundation Limited Hypolipidemic 1,4-benzothiazepine-1,1-dioxides
WO1996008484A1 (en) 1994-09-13 1996-03-21 Monsanto Company Novel benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
WO1996016051A1 (en) 1994-11-17 1996-05-30 The Wellcome Foundation Limited Hypolipidemic benzothiazepines
WO1997033882A1 (en) 1996-03-11 1997-09-18 G.D. Searle And Co. Novel benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
WO1998038182A1 (en) 1997-02-28 1998-09-03 Glaxo Group Limited Hypolipidemic bicyclic derivatives
EP0864582A2 (en) 1997-03-14 1998-09-16 Hoechst Aktiengesellschaft Hypolipidemic 1,4-benzothiazepine-1,-dioxides
WO1998040375A2 (en) 1997-03-11 1998-09-17 G.D. Searle & Co. COMBINATION OF ILEAL BILE ACID TRANSPORT INHIBITING BENZOTHIEPINES AND HMG Co-A REDUCTASE INHIBITORS
WO1999034278A1 (en) 1997-12-31 1999-07-08 Infodream Corporation Bubble edit
WO1999035135A1 (en) 1998-01-10 1999-07-15 Glaxo Group Limited Hypolipidemic benzothiazepine compounds
WO1999064410A1 (en) 1998-06-10 1999-12-16 Aventis Pharma Deutschland Gmbh BENZO(b)THIEPINE-1,1-DIOXIDE DERIVATIVES, A METHOD FOR THE PRODUCTION THEREOF, MEDICAMENTS CONTAINING THESE COMPOUNDS, AND THEIR USE
WO2000001687A1 (en) 1998-07-02 2000-01-13 G.D. Searle & Co. Benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
WO2000038728A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and bile acid sequestring agents for cardiovascular indications
WO2000038726A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and cholesteryl ester transfer protein inhibitors for cardiovascular indications
WO2000038727A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and fibric acid derivatives for cardiovascular indications
WO2000038725A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations for cardiovascular indications
WO2000038729A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and nicotinic acid derivatives for cardiovascular indications
WO2000047568A2 (en) 1999-02-12 2000-08-17 G.D. Searle Llc 1,2-benzothiazepines for the treatment of hyperlipidemic diseases
WO2000061568A2 (en) 1999-04-09 2000-10-19 Aventis Pharma Deutschland Gmbh 1,4-benzothiazepine-1,1-dioxide derivatives substituted by sugar radicals, methods for the production thereof, medicaments containing these compounds and the use thereof
WO2000062810A1 (en) 1999-04-19 2000-10-26 Astrazeneca Ab An oral formulation for ileum administering comprising an inhibitor compound of the ileal bile acid transport
WO2001060807A1 (en) 2000-02-18 2001-08-23 Merck & Co. Inc. Aryloxyacetic acids for diabetes and lipid disorders
WO2001068637A2 (en) 2000-03-10 2001-09-20 Pharmacia Corporation Method for the preparation of tetrahydrobenzothiepines
WO2001068096A2 (en) 2000-03-10 2001-09-20 Pharmacia Corporation Combination therapy for the prophylaxis and treatment of hyperlipidemic conditions and disorders
WO2002008211A2 (en) 2000-07-26 2002-01-31 G.D. Searle, Llc. Benzothiazepines and their use as antihyperlipidemics
WO2002032428A1 (en) 2000-10-18 2002-04-25 Astrazeneca Ab Oral formulation comprising an inhibitor compound of the ileal bile transport and an hmg co-a reductase inhibitor
WO2002050051A1 (en) 2000-12-21 2002-06-27 Astrazeneca Ab Chemical compounds
WO2003020710A1 (en) 2001-09-04 2003-03-13 Astrazeneca Ab Benzothiazepine derivatives
WO2003022830A1 (en) 2001-09-07 2003-03-20 Astrazeneca Ab Benzothiepine ileal bile acid transport inhibitors
WO2003022286A1 (en) 2001-09-08 2003-03-20 Astrazeneca Ab Benzothiazepine and benzothiadiazepine derivatives with ileal bile acid transport (ibat) inhibitory activity for the treatment hyperlipidaemia
WO2003022825A1 (en) 2001-09-07 2003-03-20 Astrazeneca Ab Benzothiazepine derivatives for the treatment of hyperlipidemia

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016055A1 (en) 1992-02-17 1993-08-19 The Wellcome Foundation Limited Hypolipidaemic benzothiazepine compounds
WO1994018184A1 (en) 1993-02-15 1994-08-18 The Wellcome Foundation Limited Hypolipidaemic compounds
WO1994018183A1 (en) 1993-02-15 1994-08-18 The Wellcome Foundation Limited Hypolipidaemic condensed 1,4-thiazepines
WO1996005188A1 (en) 1994-08-10 1996-02-22 The Wellcome Foundation Limited Hypolipidemic 1,4-benzothiazepine-1,1-dioxides
WO1996008484A1 (en) 1994-09-13 1996-03-21 Monsanto Company Novel benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
WO1996016051A1 (en) 1994-11-17 1996-05-30 The Wellcome Foundation Limited Hypolipidemic benzothiazepines
WO1997033882A1 (en) 1996-03-11 1997-09-18 G.D. Searle And Co. Novel benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
WO1998038182A1 (en) 1997-02-28 1998-09-03 Glaxo Group Limited Hypolipidemic bicyclic derivatives
WO1998040375A2 (en) 1997-03-11 1998-09-17 G.D. Searle & Co. COMBINATION OF ILEAL BILE ACID TRANSPORT INHIBITING BENZOTHIEPINES AND HMG Co-A REDUCTASE INHIBITORS
EP0864582A2 (en) 1997-03-14 1998-09-16 Hoechst Aktiengesellschaft Hypolipidemic 1,4-benzothiazepine-1,-dioxides
WO1999034278A1 (en) 1997-12-31 1999-07-08 Infodream Corporation Bubble edit
WO1999035135A1 (en) 1998-01-10 1999-07-15 Glaxo Group Limited Hypolipidemic benzothiazepine compounds
WO1999064410A1 (en) 1998-06-10 1999-12-16 Aventis Pharma Deutschland Gmbh BENZO(b)THIEPINE-1,1-DIOXIDE DERIVATIVES, A METHOD FOR THE PRODUCTION THEREOF, MEDICAMENTS CONTAINING THESE COMPOUNDS, AND THEIR USE
WO1999064409A2 (en) 1998-06-10 1999-12-16 Aventis Pharma Deutschland Gmbh Benzothiepine-1,1-dioxide derivatives, method for producing them, medicaments containing these compounds and their use
DE19825804A1 (en) 1998-06-10 1999-12-16 Hoechst Marion Roussel De Gmbh 1,4-Benzothiazepine-1,1-dioxide derivatives, processes for their preparation, medicaments containing these compounds and their use
WO2000001687A1 (en) 1998-07-02 2000-01-13 G.D. Searle & Co. Benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
WO2000038728A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and bile acid sequestring agents for cardiovascular indications
WO2000038726A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and cholesteryl ester transfer protein inhibitors for cardiovascular indications
WO2000038727A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and fibric acid derivatives for cardiovascular indications
WO2000038725A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations for cardiovascular indications
WO2000038729A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations of ileal bile acid transport inhibitors and nicotinic acid derivatives for cardiovascular indications
WO2000047568A2 (en) 1999-02-12 2000-08-17 G.D. Searle Llc 1,2-benzothiazepines for the treatment of hyperlipidemic diseases
WO2000061568A2 (en) 1999-04-09 2000-10-19 Aventis Pharma Deutschland Gmbh 1,4-benzothiazepine-1,1-dioxide derivatives substituted by sugar radicals, methods for the production thereof, medicaments containing these compounds and the use thereof
WO2000062810A1 (en) 1999-04-19 2000-10-26 Astrazeneca Ab An oral formulation for ileum administering comprising an inhibitor compound of the ileal bile acid transport
WO2001060807A1 (en) 2000-02-18 2001-08-23 Merck & Co. Inc. Aryloxyacetic acids for diabetes and lipid disorders
WO2001068637A2 (en) 2000-03-10 2001-09-20 Pharmacia Corporation Method for the preparation of tetrahydrobenzothiepines
WO2001068096A2 (en) 2000-03-10 2001-09-20 Pharmacia Corporation Combination therapy for the prophylaxis and treatment of hyperlipidemic conditions and disorders
WO2002008211A2 (en) 2000-07-26 2002-01-31 G.D. Searle, Llc. Benzothiazepines and their use as antihyperlipidemics
WO2002032428A1 (en) 2000-10-18 2002-04-25 Astrazeneca Ab Oral formulation comprising an inhibitor compound of the ileal bile transport and an hmg co-a reductase inhibitor
WO2002050051A1 (en) 2000-12-21 2002-06-27 Astrazeneca Ab Chemical compounds
WO2003020710A1 (en) 2001-09-04 2003-03-13 Astrazeneca Ab Benzothiazepine derivatives
WO2003022830A1 (en) 2001-09-07 2003-03-20 Astrazeneca Ab Benzothiepine ileal bile acid transport inhibitors
WO2003022825A1 (en) 2001-09-07 2003-03-20 Astrazeneca Ab Benzothiazepine derivatives for the treatment of hyperlipidemia
WO2003022286A1 (en) 2001-09-08 2003-03-20 Astrazeneca Ab Benzothiazepine and benzothiadiazepine derivatives with ileal bile acid transport (ibat) inhibitory activity for the treatment hyperlipidaemia

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067933A1 (en) * 2000-12-21 2004-04-08 Ingemar Starke Chemical compounds
US7192945B2 (en) * 2000-12-21 2007-03-20 Astrazeneca Ab Benzothiazepine derivatives
US7192946B2 (en) * 2001-09-04 2007-03-20 Astrazeneca Ab Benzothiazepine derivatives
US20040254160A1 (en) * 2001-09-04 2004-12-16 Ingemar Starke Benzothiazepine derivatives
US20050043393A1 (en) * 2001-09-07 2005-02-24 Astrazeneca Ab Benzothiepine ileal bile acid transport inhibitors
US7226943B2 (en) 2001-09-07 2007-06-05 Astrazeneca Ab Benzothiepine ileal bile acid transport inhibitors
US20050215630A1 (en) * 2001-12-19 2005-09-29 Astrazeneca Ab 3-Phenyl-2-arylalkylthiopropionic acid derivatives as selective agonists of ppar-alpha
US7276539B2 (en) 2001-12-19 2007-10-02 Astrazeneca Ab 3-Phenyl-2-arylalkylthiopropionic acid derivatives as selective agonists of ppar-alpha
US7238684B2 (en) 2002-04-25 2007-07-03 Astrazeneca Ab Benzothiadiazepine derivatives, processes for their preparation and pharmaceutical compositions containing them
US20050222120A1 (en) * 2002-06-14 2005-10-06 Ingemar Starke Peptides derivatives comprising thiazepine group for the treatment of hyperlipidermic conditions
US7192947B2 (en) * 2002-06-14 2007-03-20 Astrazeneca Ab Peptides derivatives comprising thiazepine group for the treatment of hyperlipidemic conditions
US20050256198A1 (en) * 2002-06-20 2005-11-17 Lanna Li Ortho-substituted benzoic acid derivatives for the treatmetn of insulin resistance
US7355069B2 (en) 2002-06-20 2008-04-08 Astrazeneca Ab Ortho-substituted benzoic acid derivatives for the treatment of insulin resistance
US8067584B2 (en) 2003-02-25 2011-11-29 Albireo Ab Benzothiazepine derivatives
US20060094884A1 (en) * 2003-02-25 2006-05-04 Ingemar Starke Benzothiazepine and benzothiepine derivatives
US20060199797A1 (en) * 2003-04-05 2006-09-07 Abrahamsson Hasse R Use of an ibat inhibitor for the treatment of prophylaxis of constipation
US7514421B2 (en) 2003-04-05 2009-04-07 Albireo Ab Use of an IBAT inhibitor for the treatment of constipation
US20070099997A1 (en) * 2003-06-18 2007-05-03 Matti Ahlqvist Potassium or sodium salt of (-)-2-{'2-(4-hydroxyphenyl) ethyl!-thio-3-'4-(2-{4-'(methylsulfonyl) oxy! phenoxy}ethyl) phenyl! propanoic acid and their use in medicine
US8288370B2 (en) 2005-09-29 2012-10-16 Albireo Ab Substituted azetidine compounds of formula (I) useful in the treatment of functional gastrointestinal disorders, IBS, and functional dyspepsia
US20100311713A1 (en) * 2005-09-29 2010-12-09 Rolf Bergman Novel Azetidine Compounds Useful in the Treatment of Functional Gastrointestinal Disorders, Ibs and Functional Dyspepsia
US9181181B2 (en) 2007-03-08 2015-11-10 Albireo Ab 2-substituted-3-phenylpropionic acid derivatives and their use in the treatment of inflammatory bowel disease
US8785681B2 (en) 2007-03-08 2014-07-22 Albireo Ab 2-substituted-3-phenylpropionic acid derivatives and their use in the treatment of inflammatory bowel disease
US20110166157A1 (en) * 2007-03-08 2011-07-07 Albireo Ab 2-Substituted-3-Phenylpropionic Acid Derivatives and Their Use in the Treatment of Inflammatory Bowel Disease
US20100130472A1 (en) * 2008-11-26 2010-05-27 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of obesity and diabetes
US10555950B2 (en) 2008-11-26 2020-02-11 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of obesity and diabetes
US9339480B2 (en) 2008-11-26 2016-05-17 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of obesity and diabetes
US11260053B2 (en) 2010-05-26 2022-03-01 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
EP2995317A1 (en) 2010-05-26 2016-03-16 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
US10188646B2 (en) 2010-05-26 2019-01-29 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
EP4137137A1 (en) 2010-05-26 2023-02-22 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
US10251880B2 (en) 2010-05-26 2019-04-09 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
EP3593802A2 (en) 2010-05-26 2020-01-15 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors and satiogens for treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
US11732006B2 (en) 2010-11-08 2023-08-22 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10981952B2 (en) 2010-11-08 2021-04-20 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US9694018B1 (en) 2010-11-08 2017-07-04 Albireo Ab IBAT inhibitors for the treatment of liver disease
US9688720B2 (en) 2010-11-08 2017-06-27 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10000528B2 (en) 2010-11-08 2018-06-19 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10011633B2 (en) 2010-11-08 2018-07-03 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10093697B2 (en) 2010-11-08 2018-10-09 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10487111B2 (en) 2010-11-08 2019-11-26 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US11261212B2 (en) 2010-11-08 2022-03-01 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10221212B2 (en) 2010-11-08 2019-03-05 Albireo Ab IBAT inhibitors for the treatment of liver diseases
US10512657B2 (en) 2011-10-28 2019-12-24 Lumena Pharmaceutials Llc Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
EP3266457A1 (en) 2011-10-28 2018-01-10 Lumena Pharmaceuticals LLC Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
US11376251B2 (en) 2011-10-28 2022-07-05 Shire Human Genetic Therapies, Inc. Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
WO2013063526A1 (en) 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of hypercholemia and cholestatic liver disease
US11229661B2 (en) 2011-10-28 2022-01-25 Shire Human Genetic Therapies, Inc. Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
EP3278796A1 (en) 2011-10-28 2018-02-07 Lumena Pharmaceuticals LLC Bile acid recycling inhibitors for treatment of hypercholemia and cholestatic liver disease
WO2014144650A2 (en) 2013-03-15 2014-09-18 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of primary sclerosing cholangitis and inflammatory bowel disease
WO2014144485A1 (en) 2013-03-15 2014-09-18 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of barrett's esophagus and gastroesophageal reflux disease
US9745276B2 (en) 2013-04-26 2017-08-29 Elobix Ab Crystal modifications of elobixibat
US9409875B2 (en) 2013-04-26 2016-08-09 Elobix Ab Crystal modifications of elobixibat
US9701649B2 (en) 2013-04-26 2017-07-11 Elobix Ab Crystal modifications of elobixibat
US10709755B2 (en) 2014-06-25 2020-07-14 Elobix Ab Solid formulation and method for preventing or reducing coloration thereof
US11844822B2 (en) 2014-06-25 2023-12-19 Elobix Ab Solid formulation and method for preventing or reducing coloration thereof
US10519120B2 (en) 2014-10-24 2019-12-31 Elobix Ab Crystal modifications of elobixibat
US10183920B2 (en) 2014-10-24 2019-01-22 Elobix Ab Crystal modifications of elobixibat
US10610543B2 (en) 2016-02-09 2020-04-07 Albireo Ab Cholestyramine pellets and methods for preparation thereof
US10441604B2 (en) 2016-02-09 2019-10-15 Albireo Ab Cholestyramine pellets and methods for preparation thereof
US10864228B2 (en) 2016-02-09 2020-12-15 Albireo Ab Oral cholestyramine formulation and use thereof
US10441605B2 (en) 2016-02-09 2019-10-15 Albireo Ab Oral cholestyramine formulation and use thereof
US10786529B2 (en) 2016-02-09 2020-09-29 Albireo Ab Oral cholestyramine formulation and use thereof
US10493096B2 (en) 2016-02-09 2019-12-03 Albireo Ab Oral cholestyramine formulation and use thereof
US10799527B2 (en) 2016-02-09 2020-10-13 Albireo Ab Oral cholestyramine formulation and use thereof
US10758563B2 (en) 2016-02-09 2020-09-01 Albireo Ab Oral cholestyramine formulation and use thereof
US10881685B2 (en) 2017-08-09 2021-01-05 Albireo Ab Cholestyramine granules, oral cholestyramine formulations and use thereof
US10793534B2 (en) 2018-06-05 2020-10-06 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11306064B2 (en) 2018-06-05 2022-04-19 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11801226B2 (en) 2018-06-20 2023-10-31 Albireo Ab Pharmaceutical formulation of odevixibat
US12091394B2 (en) 2018-06-20 2024-09-17 Albireo Ab Crystal modifications of odevixibat
US11365182B2 (en) 2018-06-20 2022-06-21 Albireo Ab Crystal modifications of odevixibat
US11802115B2 (en) 2018-06-20 2023-10-31 Albireo Ab Pharmaceutical formulation of odevixibat
US10975046B2 (en) 2018-06-20 2021-04-13 Albireo Ab Crystal modifications of odevixibat
US10722457B2 (en) 2018-08-09 2020-07-28 Albireo Ab Oral cholestyramine formulation and use thereof
US11007142B2 (en) 2018-08-09 2021-05-18 Albireo Ab Oral cholestyramine formulation and use thereof
US11549878B2 (en) 2018-08-09 2023-01-10 Albireo Ab In vitro method for determining the adsorbing capacity of an insoluble adsorbant
US11603359B2 (en) 2019-02-06 2023-03-14 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
US11773071B2 (en) 2019-02-06 2023-10-03 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
US20200247768A1 (en) * 2019-02-06 2020-08-06 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
US10941127B2 (en) 2019-02-06 2021-03-09 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
US10975045B2 (en) 2019-02-06 2021-04-13 Aibireo AB Benzothiazepine compounds and their use as bile acid modulators
EP4424363A2 (en) 2019-02-12 2024-09-04 Mirum Pharmaceuticals, Inc. Methods for increasing growth in pediatric subjects having cholestatic liver disease
US12024495B2 (en) 2019-12-04 2024-07-02 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
US11891368B2 (en) 2019-12-04 2024-02-06 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11708340B2 (en) 2019-12-04 2023-07-25 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11111224B2 (en) 2019-12-04 2021-09-07 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11225466B2 (en) 2019-12-04 2022-01-18 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
US11267794B2 (en) * 2019-12-04 2022-03-08 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US12060338B2 (en) 2019-12-04 2024-08-13 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11180465B2 (en) * 2019-12-04 2021-11-23 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11377429B2 (en) 2020-08-03 2022-07-05 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11583539B2 (en) 2020-11-12 2023-02-21 Albireo Ab Treating progressive familial intrahepatic cholestasis (PFIC) with IBAT inhibitors
WO2022101379A1 (en) 2020-11-12 2022-05-19 Albireo Ab Odevixibat for treating progressive familial intrahepatic cholestasis (pfic)
US11572350B1 (en) 2020-12-04 2023-02-07 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
US11014898B1 (en) 2020-12-04 2021-05-25 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
US12134606B2 (en) 2020-12-04 2024-11-05 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
WO2024094841A1 (en) 2022-11-03 2024-05-10 Albireo Ab Treating alagille syndrome (algs)

Also Published As

Publication number Publication date
US20030166927A1 (en) 2003-09-04
IL151296A0 (en) 2003-04-10
NO20024217D0 (en) 2002-09-04
MXPA02008600A (en) 2003-02-24
WO2001066533A1 (en) 2001-09-13
KR20020079990A (en) 2002-10-21
SE0000772D0 (en) 2000-03-08
NZ520951A (en) 2004-05-28
AU3755601A (en) 2001-09-17
CA2401055A1 (en) 2001-09-13
JP2003525933A (en) 2003-09-02
EP1263747B1 (en) 2004-11-24
DE60107395D1 (en) 2004-12-30
EP1263747A1 (en) 2002-12-11
AU2001237556B2 (en) 2004-10-07
BR0109011A (en) 2003-06-03
DE60107395T2 (en) 2005-12-01
JP5204361B2 (en) 2013-06-05
NO20024217L (en) 2002-10-09
ATE283266T1 (en) 2004-12-15
ZA200206739B (en) 2003-11-24
CN1416425A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
US6906058B2 (en) 1,5-Benzothiazepines and their use as hypolipidaemics
AU2001237556A1 (en) 1,5-benzothiazepines and their use as hypolipidaemics
EP1345918B1 (en) 1,5 benzothiazepines and their use as antihyperlipidemics
EP1430040B1 (en) Benzothiazepine derivatives
JP4716980B2 (en) Benzothiazepine and benzothiepine derivatives
KR100935623B1 (en) Benzothiazepine and benzothiadiazepine derivatives with ileal bile acid transport ibat inhibitory activity for the treatment hyperlipidaemia
JP4494780B2 (en) Benzothiazepine derivatives for the treatment of hyperlipidemia
EP1515984B1 (en) Peptide derivatives comprising thiazepine group for the treatment of hyperlipidemic conditions
JP4589624B2 (en) Benzothiepine ileal bile acid transport inhibitor
KR20050007329A (en) Benzothiadiazepine derivatives, processes for their preparation and pharmaceutical compositions containing them

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASTRAZENECA AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STARKE, INGEMAR;DAHLSTROM, MICKAEL;BLOMBERG, DAVID;REEL/FRAME:016094/0931

Effective date: 20020903

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ALBIREO AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTRAZENECA AB;REEL/FRAME:023429/0202

Effective date: 20090401

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170614