US3837347A - Inflatable balloon-type pacing probe - Google Patents
Inflatable balloon-type pacing probe Download PDFInfo
- Publication number
- US3837347A US3837347A US00245938A US24593872A US3837347A US 3837347 A US3837347 A US 3837347A US 00245938 A US00245938 A US 00245938A US 24593872 A US24593872 A US 24593872A US 3837347 A US3837347 A US 3837347A
- Authority
- US
- United States
- Prior art keywords
- proximal
- distal
- balloon
- electrode
- forward end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
Definitions
- a catheter device having a tubular assembly with a [51] Int. Cl .2. A61n 1/04 forward probe portion including Spaced proximal and [58] Field of Search 128/4O4 419 P 340 B distal members having electrodes secured thereto and 128/340 D 340 E 205 R 6 E R being provided with inflatable means comprising a bal- M 6 R 349R loon member interconnecting said members; and fluid 1 receiving means in communication with the probe [56] References Cited portion for dilating said balloon member upon exposure to fluid introduced under pressure through the UNITED STATES PATENTS fluid receiving means.
- This invention relates generally to insertion probes and/or catheters and, more specifically, to an inflatable balloon-type pacing probe capable of being moved within body cavities and/or blood vessels of persons and animals.
- catheters and probes which are introduced or inserted into body channels and blood vessels.
- Catheters are most frequently employed within the urinary tract to withdraw urine from the bladder, for example, by passing the catheter through the urethra or passage through which urine is normally discharged.
- Probes on the other hand, which are not provided with openings to receive body fluids, must also be capable of insertion into and movement within relatively small body cavities, such as blood vessels, without injuring vessel and organ tissues or causing discomfort to the patient or animal being treated.
- While the present invention is principally directed to probes for use in pacing or regulating the heartbeats of a person or animal, it is contemplated and within the scope of this invention to provide medical personnel with insertion apparatus such as probes and the like equipped with structural safety features which minimize or eliminate tissue damage and discomfort.
- Balloon-type insertion devices are well known to the art.
- a bag or balloon formed of rubber other stretchable material is provided on catheters, for example, to retain the catheter within a body channel by inflating the balloon once the device is properly located.
- the expanded bag or balloon contacts the tissue walls defining the body channel and further movement into or out of the channel is prevented.
- Such insertion devices known to the art often cause considerable tissue damage and patient discomfort both when being inserted as well as when being inflated.
- Such devices are fabricated of relatively flexible and resilient material, most of these flexibility and resilience characteristics are exhibited in transverse directions with respect to the relatively longitudinal axes of these normally elongated tubes.
- the tube of a catheter will easily bend to conform to the contour of a body channel, there yet will be an uncushioned relatively longitudinal transfer of forces to the forward tip or end of this tube which are required to advance it upon insertion.
- Another object of the present invention is to provide a novel balloon-type pacing probe for use in stimulating the hearts muscles.
- Yet another object of this invention is to provide a segmented insertion device for use within elongated cavities wherein thesegments are joined by an inflatable balloon adapted to isolate forces from being transmitted between segments.
- a further object of my invention is to provide a segmented balloon-type pacing probe for use within body blood vessels, and which is of a predetermined relatively small diameter with respect to the diameter of said blood vessels, such that the normal flow of blood is not restricted during its use.
- Yet another object of the present invention is to provide a flow directed, balloon-type pacing probe for use in indicating and/or evaluating heart block Adams- Stokes seizures, marked bradycardia, ventricular tachy-arrhythmias and digitalis induced arrhythmias.
- an elongated, relatively flexible tubular assembly is formed with a hollow resilient insertion tube extending between forward and rearward ends thereof.
- the assembly is preferrably provided at its forward end with a multielectrode or multi-polar pacing probe capable of regulating the frequency of heartbeats in response to signals generated outside the body. This probe is introduced,
- the hollow insertion tube is formed in two spaced segments of different lengths which are mechanically interconnected by an inflatable balloon which, in turn, extends annularly about the space between said segments.
- the longer or proximal tube segment carries a proximal electrode to which an electrical conductor is secured.
- the shorter or distal tube segment carries a distal electrode to which another electrical conductor is soldered and which is electrically insulated from the proximal electrode and its respective conductor. Both the proximal and distal electrodes serve to stimulate the heart in response to impulses carried to them from remote signal-generating apparatus via said conductors.
- FIG. 1 is a fragmentary view of the entire probe assembly according to one embodiment of the invention.
- FIG. 2 is an enlarged fragmentary view of the insertion balloon-type tipor probe portion of the invention shown in FIG. 1;
- FIG. 3 is a cross-sectional elevational view of the insertion tip or probe portion of FIG. 2, illustrating the balloon in its inflated condition;
- FIG. 4 is an enlarged cross-sectional elevational view looking along line 4-4 of FIG. 3.
- FIG. 1 a balloon-type bi-polar pacing insertion assembly, generally designated numeral 10, is shown to include elongated hollow tubing 12 which extends between a valved adaptor assembly 14 and a probe assembly 16.
- Tubing 12 is a preferred embodiment of the invention, consists of a chemically and organically nonporous material such as Corolan which is manufactured by the Electro-Catheter Corporation of Rahway, New Jersey, and which is capable of being sterilized by heat or chemical action, and which further has a substantially smooth, low-friction surface so as to be capable of easy insertion into and through a body cavity, such as a vein.
- Other suitable materials may be substituted for tubing 12 and are contemplated by this invention, including, without limitation, radio opaque vinyl-type tubing which is visible by X-ray.
- Tubing 12 is relatively flexible to permit its passage through irregular body channels such as the veins leading to the heart.
- Valved adaptor assembly 14 as shown in FIG. 1, consists of a Y-shaped plastic or rubber housing 18 formed with a leg or end 20 which receives and is secured airtightly to the rearward end of tubing 12, such as by potting or cementing. Another leg or end 22 of housing 18 holds two insulated electrical wires or conductors 24 and 26, which extend from housing end 22 at their most rearward ends to male electrical connector pins 28 and 30, respectively. Connector pins 28 and 30 are of a conventional type which will matingly engage electrical sockets (not shown) of remote apparatus, described in more detail below. Housing legs or ends 20 and 22 serve as strain-reliefs in receiving tubing 12 and conductors 24 and 26 such that the possibility of breakage or fracture is minimized. Legs or ends 20 and 22 further serve as air-tight junctions, thereby preventing the undesirable flow of air between the interior of adaptor assembly housing 18 and the environment.
- a tapered opening 34 which is adapted to receive the forward end of a vented-type syringe, or air duct, designated reference numeral 34 in FIG. 1.
- air or another pre-selected fluid may be introduced under pressure through opening 34, such as by moving the plunger of a vented syringe 36 forward within its barrel, and thereafter through hollow tubing 12 toward probe assembly 16.
- Vented syringe 36 is preferably a 2% cubic centimeter (cc) syringe formed with a hole through its barrel at a location corresponding to 1 %cc, thereby preventing the possibility of bursting balloon 70, described below. No more than 1 /2 cc of fluid is thus introduced.
- Adaptor assembly 14 is preferable equipped with a valve of a type known to the art, for preventing undesirable fluid or air flow through the housing 18, as well as to enable personnel to control the fluid pressure within tubing 12.
- assembly 16 comprises two forward segments of tubing 12 which, for convenience, are designated proximal tubing segment 38 and distal tubing segment 40 in FIG. 3.
- proximal tubing segment 38 and distal tubing segment 40 in FIG. 3.
- distal segment 40 is substantially shorter than proximal segment 38 and is preferable formed by severing a predetermined length of tubing from the forward end of tubing 12.
- Proximal tubing segment 38 terminates at a forward end 42 which defines an opening 44.
- Distal tubing segment 40 extends between its rearward end 46 and a forward end 48, both ends defining openings 50 and 52, respectively.
- Forward end 42 and rearward end 46 are spaced from one another a predetermined distance which, in a preferred embodiment of the invention, is three (3) millimeters. It is within the scope of this invention for this distance to vary, preferably between two (2) and five (5) millimeters, although my invention contemplates a spacing of from one (I) to ten (10 millimeters.
- Probe assembly 16 further includes an annular proximal electrode 54 which is bonded to tubing segment 38 a small distance from forward end 42.
- Proximal electrode '54 is formed of an electrically conductive metal, preferably platinum.
- a cup-shaped distal electrode 56 is bonded to distal tubing segment 40 such that the interior of distal electrode 56 annularly surrounds and encloses forward end 48 of segment 40.
- Distal electrode 56 is preferably made of platinum or other suitable electrically conductive material, and is formed with a hollow nose portion 58 which constitutes the forwardmost tip of insertion assembly 10. The outer surfaces of nose portion 58 are smooth and frictionless, and are rounded to provide a blunt convex surface designed not to irritate, puncture or damage body tissue.
- a predetermined quantity of solder 60 located within the hollow nose portion 58 of distal electrode 56 firmly, both mechanically and electrically, secures distal electrode 56 to a central cabe assembly 62 which, in turn, extends relatively longitudinally through the confines of tubing from adaptor assembly 14 to segments 38 and 40 and thereafter to solder 60. It is important here to emphasize the importance of the strong mechanical locking of distal electrode 56 to the remainder of the insertion assembly 10 since, as it should be apparent, separation of the distal electrode and/or tubing segment 40 within the circulatory system of a patient could result in substantial injury, or possibly death.
- the firm bonding of distal electrode 56 to tubing segment 40, coupled with the firm soldered bond of distal electrode 56 to cable assembly 62 effectively precludes this danger.
- the presence of an inflatable bag or balloon 70 shown in FIGS. 2 and 3 are described in more detail below, serves to yet further eliminate this danger of separation.
- Cable assembly 62 preferably comprises a Teflon coated, brass plated electrical conductor 64, such as copper (Teflon is a registered trademark of the E. I. du- Pont de Nemours, Inc. of Wilmington, Delaware). Assembly 62 is relatively flexible and easily bends such that forces applied directly to the nose portion 58 of distal electrode 56 will result in a lessening of the distance between tubing segment ends 42 and 46.
- a conductive wire 68 extends through proximal tubing segment 38 of elongated tubing 12 to and through an aperture 66 formed through the wall of proximal tubing segment 38, and thereafter to and in mechanical and electrical contact with proximal electrode 54, such as by soldering or brazing.
- Conductor 64 and wire 68 are electrically insulated from one another by virtue of the presence of the Teflon coating around the length of conductor 64.
- Conductor 64 and wire 68 are mechanically and electrically connected within adaptor assembly 14 to conductors 24 and 26, respectively, and thus, also to connector pins 28 and 30, respectively. It is contemplated by and within the scope of the present invention to substitute a single conductor or wire in the place of conductors 64 and 24; and similarly, to substitute a single conductor or wire in the place of wire 68 and conductor 26.
- Balloon 70 in a preferred embodiment of this invention, comprises a latex tube which extends annularly over and in firm airtight, bonded contact with the outer surfaces of both forward end 42 of tubing segment 38 and rearward end 46 of tubing segment 40. Bonding of the inner extremities of balloon 70 to tubing segments 38 and 40 may be accomplished by cementing, heat-induced welding or fusion, or other suitable conventional means. Balloon 70 may be fabricated from suitable stretchable materials other than latex, which are inert and which are capable of being sterilized by heat or chemical action.
- balloon 70 will gradually stretch or expand both radially outwardly to a diameter approximately one-quarter to one-half the diameter of the blood vessel within which it is situated, as well as longitudinally from the relaxed position shown in FIG. 2 to that shown in FIG. 3.
- the longitudinal expansion of balloon 70 causes distal electrode 56 to be biased away from proximal electrode 54, such that the spacing or distance between ends 42 and 46 of tubing segments 38 and 40 is increased.
- segment 40 will once again return to its original spacing from segment 38.
- the probe assembly 16 of insertion assembly 10 is caused to enter a blood vessel through a placement or percutaneous needle inserted through an incision made in the skin of a patient, and probe assembly 16 together with portions of tubing 12 are manipulated through the blood vessel toward the heart. This is accomplished with the balloon 70 completely relaxed and without the presence of pressures greater than atmospheric pressure within tubing 12. Either by noting the length of tubing 12 inserted, or by monitoring of the location of probe assembly 16 in a conventional manner known to the medical arts, a relatively precise positioning of the proximal and distal electrodes is accomplished.
- balloon 70 Once positioned within the superior vena cava balloon 70 is inflated in the manner heretofore described and the inflated probe assembly is advanced to the right ventricle of the heart, whereupon the balloon is deflated and the probe assembly is stabilized in the apex of the ventricle. The position of the probe can be verified by X-ray of the patients chest, or fluoroscopy.
- Connector pins 28 and 30 can be mechanically and electrically connected to an electrocardiograph apparatus, so that monitoring of the position of the distal electrode has been enabled, and thereafter connected to an impulse generator, such as a Pacemaker, a registered trademark of the Electro-Catheter Corporation of Rahway, New Jersey. Electrical impulses generated by the Pacemaker are carried to proximal and distal electrodes 54 and 56, thereby stimulating the rhythmic contractions within the heart commonly known as heartbeats.
- an impulse generator such as a Pacemaker, a registered trademark of the Electro-Catheter Corporation of Rahway, New Jersey. Electrical impulses generated by the Pacemaker are carried to proximal and distal electrodes 54 and 56, thereby stimulating the rhythmic contractions within the heart commonly known as heartbeats.
- nose portion 58 may come into contact with body tissue on its journey towards the heart, clue to the irregular path defined by the blood vessel. This contact with body tissue will impede the progress of the probe and will both result in displacement of the tissue, and will create forces on the probe tip or nose. The result will be movement of distal tubing segment 40 and proximal tubing segment 38 towards one another. This safety feature of relative movement as between these segments prevents the puncturing of body tissue and is facilitated by both the presence of the space between the segments, as well as the resilient compressibility of the relaxed balloon 70.
- Yet another novel safety feature of this invention resides in the characteristics exhibited by probe assembly 16 once it has been properly positioned and it is desired to inflate balloon 70.
- balloon 70 Upon inflation of balloon in the manner described, should the outer walls of the balloon gradually contact and come to bear against the inner body tissue walls defining the cavity within which the probe assembly has been positioned, increases in pressure within tubing 12 will result in corresponding increases in bearing forces against this wall tissue as a result of the balloons attempts to expand under this pressure.
- the present invention prevents these bearing forces from becoming dangerously excessive by permitting elongation of balloon 70 when restrained by body tissue from expanding outwardly or transversely from the axis of tubing 12, and by permitting a separation of tubing segments 38 and 40 from one another by virtue of their resilient interconnection with balloon 70. It is also significant that once balloon 70 has been inflated, movement of either of segments 38 or 40 will not be carried directly to the body tissue, but will result in a flexing of the resilient pressurized balloon.
- probe assembly 16 and its elements exhibit a greater flexibility and resilience than heretofore made possible in the art. Greater angular displacements of distal electrode 56 from its normal longitudinal axis are possible with this electrode than are possible with known, more rigid continuous tubings.
- FIG. 3 clearly illustrates the fact that less angular and shear stresses will be present at the points of securement of balloon 70 to tubing segments 38 and 40 than in prior art-type balloon devices, due to the break or gap between these segments. The ability of segments 38 and 40 to move away from one another greatly relieves any stress concentrations at the points at which the annular balloon joins these segments.
- a single pole device may be employed wherein a second electrode is positioned on the patients skin.
- a balloon-type probe strucure of the type described may be used in non-pacing medical applications, such as the curing of an embolemia within a person or animal, by utilizing the inflatable balloon 70 to remove a clot from the circulatory system.
- a pacing and sensing catheter device for use within body cavities, comprising: an elongated tubular assembly formed at a forward end thereof with a probe portion adapted to be inserted into and moved within said body cavities, said tubular assembly being further formed at a rearward end thereof with means communicative with said forward end for receiving a fluid; said probe portion including spaced proximal and distal members and proximal and distal electrodes secured to said proximal and distal members, respectively; a first conductor electrically connected to said proximal electrode, a second conductor electrically connected to said distal electrode, and said first and second conductors being electrically insulated from each other; inflatable means formed of an elastic material secured to and interconnecting each of said spaced proximal and distal members; and said inflatable means, comprising a balloon member adapted to be inflated upon fluid introduced under pressure through said fluid receiving means, whereby the forward end of said probe portion is resiliently mounted for inhibiting the transfer of forces between said proximal and distal members.
- the device according to claim 2 for use with remote heartbeat pacing apparatus, further comprising first and second electrical connectors secured to said first and second conductors, respectively, for electrically interconnecting said proximal and distal electrodes with said remote apparatus.
- proximal and distal members comprise spaced segments of said elongated tubular assembly, said proximal member being substantially longer than said distal member and being formed with a forward end which defines an opening communicative with interior walls of said balloon member, said distal member extending between forward and rearward ends thereof which define foward and rearward openings, respectively, the forward end of said proximal member and the rearward end of said distal member being disposed in variably juxtaposed relationship with respect to one another.
- said proximal electrode comprises an annular platinum sleeve secured to the outer surface of said proximal member, said proximal member being formed with an aperture through which said first electrical conductor extends to said proximal electrode, said distal electrode comprising a cup-shaped platinum member surrounding the forward end of said distal member and being secured to the outer annular surface of said distal member, said second electrical conductor extending from within said proximal member through the rearward and forward ends of said distal member, and being electrically connected to said cup-shaped distal electrode by a soldered deposit disposed within and in electrical contact with the inner portion of said cup-shaped distal electrode.
- said fluid receiving means comprises an adaptor formed with an opening which is adapted to matingly accept an end of a fluid bearing conduit.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Electrotherapy Devices (AREA)
Abstract
A catheter device having a tubular assembly with a forward probe portion including spaced proximal and distal members having electrodes secured thereto and being provided with inflatable means comprising a balloon member interconnecting said members; and fluid receiving means in communication with the probe portion for dilating said balloon member upon exposure to fluid introduced under pressure through the fluid-receiving means.
Description
finite tates i tet [19 Tower Sept. 24, 1974 INFLATABLE BALLOON-TYPE FACING 3.397.699 8/1968 K0111 1214/349 R PROBE 3,528,406 9/1970 Jcckc1clu1...... 128/2115 R 3,599,620 8/1971 Balin 1 128/3491) Inventor: Allen J- Tower, d g NJ. 3,674,014 7 1972 Tillandcr 128/2.05 R 3,680,544 8/1972 Shinnick eta1.. [28/419 P [73] Asslgnee' glfggg i g corporat'on 3,707,960 1/1973 Freed .1 128/2.06 E
[22] Filed: Apr. 20, 1972 Primary Examiner-William E. Kamm {21] pp NO 245 938 Attorney, Agent, or FirmLilling & Siegel 57 ABSTRACT [52] US. Cl. 128/404, 128/344, 128/349 B, t 1
128/419 P A catheter device having a tubular assembly with a [51] Int. Cl .2. A61n 1/04 forward probe portion including Spaced proximal and [58] Field of Search 128/4O4 419 P 340 B distal members having electrodes secured thereto and 128/340 D 340 E 205 R 6 E R being provided with inflatable means comprising a bal- M 6 R 349R loon member interconnecting said members; and fluid 1 receiving means in communication with the probe [56] References Cited portion for dilating said balloon member upon exposure to fluid introduced under pressure through the UNITED STATES PATENTS fluid receiving means. 3,087,492 4/1963 Garth 128/350 R 3,348,548 10 1967 Chardack 128/419 P 8 Claims, 4 Drawmg Flgllles INFLATABLE BALLOON-TYPE PACING PROBE This invention relates generally to insertion probes and/or catheters and, more specifically, to an inflatable balloon-type pacing probe capable of being moved within body cavities and/or blood vessels of persons and animals.
The medical professions have enjoyed considerable success over the years using devices such as catheters and probes, which are introduced or inserted into body channels and blood vessels. Catheters are most frequently employed within the urinary tract to withdraw urine from the bladder, for example, by passing the catheter through the urethra or passage through which urine is normally discharged. Probes, on the other hand, which are not provided with openings to receive body fluids, must also be capable of insertion into and movement within relatively small body cavities, such as blood vessels, without injuring vessel and organ tissues or causing discomfort to the patient or animal being treated.
While the present invention is principally directed to probes for use in pacing or regulating the heartbeats of a person or animal, it is contemplated and within the scope of this invention to provide medical personnel with insertion apparatus such as probes and the like equipped with structural safety features which minimize or eliminate tissue damage and discomfort.
Balloon-type insertion devices are well known to the art. In many instances a bag or balloon formed of rubber other stretchable material is provided on catheters, for example, to retain the catheter within a body channel by inflating the balloon once the device is properly located. The expanded bag or balloon contacts the tissue walls defining the body channel and further movement into or out of the channel is prevented. Such insertion devices known to the art, however, often cause considerable tissue damage and patient discomfort both when being inserted as well as when being inflated. Although such devices are fabricated of relatively flexible and resilient material, most of these flexibility and resilience characteristics are exhibited in transverse directions with respect to the relatively longitudinal axes of these normally elongated tubes. Thus, while the tube of a catheter will easily bend to conform to the contour of a body channel, there yet will be an uncushioned relatively longitudinal transfer of forces to the forward tip or end of this tube which are required to advance it upon insertion.
Another problem associated with conventional balloon-type insertion devices concerns itself with the inflation of the balloon. Here again, since conventional devices already described are formed with a balloon extending annularly around a continuous portion of the tubing near or adjacent its forward tip, the presence of a continuous length of tubing prevents substantial elongation or shortening of this tube when body tissue is contacted by either the forward tip of this tubing or the expanded balloon. Forces are thus transmitted directly to the tissue without being cushioned and, as is sometimes the case, tissue walls are damaged or even punctured or torn.
Accordingly, it is an object of the present invention to provide a balloon-type, flow-directed insertion device equipped with safety cushioning means for preventing tissue damage.
Another object of the present invention is to provide a novel balloon-type pacing probe for use in stimulating the hearts muscles.
Yet another object of this invention is to provide a segmented insertion device for use within elongated cavities wherein thesegments are joined by an inflatable balloon adapted to isolate forces from being transmitted between segments.
A further object of my invention is to provide a segmented balloon-type pacing probe for use within body blood vessels, and which is of a predetermined relatively small diameter with respect to the diameter of said blood vessels, such that the normal flow of blood is not restricted during its use.
Yet another object of the present invention is to provide a flow directed, balloon-type pacing probe for use in indicating and/or evaluating heart block Adams- Stokes seizures, marked bradycardia, ventricular tachy-arrhythmias and digitalis induced arrhythmias.
The present invention fulfills the aforementioned objects and overcomes limitations and disadvantages of prior art solutions to problems associated with this art. According to one aspect of the invention, an elongated, relatively flexible tubular assembly is formed with a hollow resilient insertion tube extending between forward and rearward ends thereof. The assembly is preferrably provided at its forward end with a multielectrode or multi-polar pacing probe capable of regulating the frequency of heartbeats in response to signals generated outside the body. This probe is introduced,
for example, into the right shoulder region of the patient via a 14 gauge cannula or cut-down. The hollow insertion tube is formed in two spaced segments of different lengths which are mechanically interconnected by an inflatable balloon which, in turn, extends annularly about the space between said segments. The longer or proximal tube segment carries a proximal electrode to which an electrical conductor is secured. The shorter or distal tube segment carries a distal electrode to which another electrical conductor is soldered and which is electrically insulated from the proximal electrode and its respective conductor. Both the proximal and distal electrodes serve to stimulate the heart in response to impulses carried to them from remote signal-generating apparatus via said conductors.
The invention will be more clearly understood from the following description of a specific embodiment of the invention, together with the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and in which:
FIG. 1 is a fragmentary view of the entire probe assembly according to one embodiment of the invention;
FIG. 2 is an enlarged fragmentary view of the insertion balloon-type tipor probe portion of the invention shown in FIG. 1;
FIG. 3 is a cross-sectional elevational view of the insertion tip or probe portion of FIG. 2, illustrating the balloon in its inflated condition; and
FIG. 4 is an enlarged cross-sectional elevational view looking along line 4-4 of FIG. 3.
Referring now in more detail to the drawing, in FIG. 1 a balloon-type bi-polar pacing insertion assembly, generally designated numeral 10, is shown to include elongated hollow tubing 12 which extends between a valved adaptor assembly 14 and a probe assembly 16.
Larger leg or end 32 of housing 18 is formed with a tapered opening 34 which is adapted to receive the forward end of a vented-type syringe, or air duct, designated reference numeral 34 in FIG. 1. Thus, air or another pre-selected fluid may be introduced under pressure through opening 34, such as by moving the plunger of a vented syringe 36 forward within its barrel, and thereafter through hollow tubing 12 toward probe assembly 16. Vented syringe 36 is preferably a 2% cubic centimeter (cc) syringe formed with a hole through its barrel at a location corresponding to 1 %cc, thereby preventing the possibility of bursting balloon 70, described below. No more than 1 /2 cc of fluid is thus introduced. Adaptor assembly 14 is preferable equipped with a valve of a type known to the art, for preventing undesirable fluid or air flow through the housing 18, as well as to enable personnel to control the fluid pressure within tubing 12.
Looking now at probe assembly 16 in FIGS. 2 and 3, it is seen that assembly 16 comprises two forward segments of tubing 12 which, for convenience, are designated proximal tubing segment 38 and distal tubing segment 40 in FIG. 3. The adjectives proximal and distal are hereinafter used merely to denote locations with respect to valved adaptor assembly 14. Distal segment 40 is substantially shorter than proximal segment 38 and is preferable formed by severing a predetermined length of tubing from the forward end of tubing 12.
A predetermined quantity of solder 60 located within the hollow nose portion 58 of distal electrode 56 firmly, both mechanically and electrically, secures distal electrode 56 to a central cabe assembly 62 which, in turn, extends relatively longitudinally through the confines of tubing from adaptor assembly 14 to segments 38 and 40 and thereafter to solder 60. It is important here to emphasize the importance of the strong mechanical locking of distal electrode 56 to the remainder of the insertion assembly 10 since, as it should be apparent, separation of the distal electrode and/or tubing segment 40 within the circulatory system of a patient could result in substantial injury, or possibly death. The firm bonding of distal electrode 56 to tubing segment 40, coupled with the firm soldered bond of distal electrode 56 to cable assembly 62 effectively precludes this danger. The presence of an inflatable bag or balloon 70, shown in FIGS. 2 and 3 are described in more detail below, serves to yet further eliminate this danger of separation.
An inflatable bag or balloon 70 is shown relaxed in FIG. 2 and inflated in FIGS. 3 and 4. Balloon 70, in a preferred embodiment of this invention, comprises a latex tube which extends annularly over and in firm airtight, bonded contact with the outer surfaces of both forward end 42 of tubing segment 38 and rearward end 46 of tubing segment 40. Bonding of the inner extremities of balloon 70 to tubing segments 38 and 40 may be accomplished by cementing, heat-induced welding or fusion, or other suitable conventional means. Balloon 70 may be fabricated from suitable stretchable materials other than latex, which are inert and which are capable of being sterilized by heat or chemical action.
It should now be apparentthatfluid, preferably air, introduced under predetermined pressures into elongated tubing 12 by syringe 36, for example, will cause balloon 70 to gradually stretch or expand both radially outwardly to a diameter approximately one-quarter to one-half the diameter of the blood vessel within which it is situated, as well as longitudinally from the relaxed position shown in FIG. 2 to that shown in FIG. 3. The longitudinal expansion of balloon 70, in turn, causes distal electrode 56 to be biased away from proximal electrode 54, such that the spacing or distance between ends 42 and 46 of tubing segments 38 and 40 is increased. Upon deflation of balloon 70, segment 40 will once again return to its original spacing from segment 38.
In use, the probe assembly 16 of insertion assembly 10 is caused to enter a blood vessel through a placement or percutaneous needle inserted through an incision made in the skin of a patient, and probe assembly 16 together with portions of tubing 12 are manipulated through the blood vessel toward the heart. This is accomplished with the balloon 70 completely relaxed and without the presence of pressures greater than atmospheric pressure within tubing 12. Either by noting the length of tubing 12 inserted, or by monitoring of the location of probe assembly 16 in a conventional manner known to the medical arts, a relatively precise positioning of the proximal and distal electrodes is accomplished. Once positioned within the superior vena cava balloon 70 is inflated in the manner heretofore described and the inflated probe assembly is advanced to the right ventricle of the heart, whereupon the balloon is deflated and the probe assembly is stabilized in the apex of the ventricle. The position of the probe can be verified by X-ray of the patients chest, or fluoroscopy.
Connector pins 28 and 30 can be mechanically and electrically connected to an electrocardiograph apparatus, so that monitoring of the position of the distal electrode has been enabled, and thereafter connected to an impulse generator, such as a Pacemaker, a registered trademark of the Electro-Catheter Corporation of Rahway, New Jersey. Electrical impulses generated by the Pacemaker are carried to proximal and distal electrodes 54 and 56, thereby stimulating the rhythmic contractions within the heart commonly known as heartbeats.
During the insertion of the probe, nose portion 58 may come into contact with body tissue on its journey towards the heart, clue to the irregular path defined by the blood vessel. This contact with body tissue will impede the progress of the probe and will both result in displacement of the tissue, and will create forces on the probe tip or nose. The result will be movement of distal tubing segment 40 and proximal tubing segment 38 towards one another. This safety feature of relative movement as between these segments prevents the puncturing of body tissue and is facilitated by both the presence of the space between the segments, as well as the resilient compressibility of the relaxed balloon 70.
Thus, forces existing in proximal tubing segment 38 necessary to advance the probe will not be transmitted directly to body tissue, but will be absorbed by the cushioning effect of the collapsible balloon 70.
Yet another novel safety feature of this invention resides in the characteristics exhibited by probe assembly 16 once it has been properly positioned and it is desired to inflate balloon 70. Upon inflation of balloon in the manner described, should the outer walls of the balloon gradually contact and come to bear against the inner body tissue walls defining the cavity within which the probe assembly has been positioned, increases in pressure within tubing 12 will result in corresponding increases in bearing forces against this wall tissue as a result of the balloons attempts to expand under this pressure. The present invention prevents these bearing forces from becoming dangerously excessive by permitting elongation of balloon 70 when restrained by body tissue from expanding outwardly or transversely from the axis of tubing 12, and by permitting a separation of tubing segments 38 and 40 from one another by virtue of their resilient interconnection with balloon 70. It is also significant that once balloon 70 has been inflated, movement of either of segments 38 or 40 will not be carried directly to the body tissue, but will result in a flexing of the resilient pressurized balloon.
Both in the case just described where balloon 70 is relaxed, as well as in the case where the balloon is being inflated, probe assembly 16 and its elements exhibit a greater flexibility and resilience than heretofore made possible in the art. Greater angular displacements of distal electrode 56 from its normal longitudinal axis are possible with this electrode than are possible with known, more rigid continuous tubings. Furthermore, FIG. 3 clearly illustrates the fact that less angular and shear stresses will be present at the points of securement of balloon 70 to tubing segments 38 and 40 than in prior art-type balloon devices, due to the break or gap between these segments. The ability of segments 38 and 40 to move away from one another greatly relieves any stress concentrations at the points at which the annular balloon joins these segments.
While the invention has been described for a single pole or bi-polar pacing probe for use in persons, it is contemplated that the safety features of the invention have considerable advantageous use in veterinary medicine. A single pole device may be employed wherein a second electrode is positioned on the patients skin. It is also contemplated and within the scope of this invention that a balloon-type probe strucure of the type described may be used in non-pacing medical applications, such as the curing of an embolemia within a person or animal, by utilizing the inflatable balloon 70 to remove a clot from the circulatory system.
The embodiment of the invention particularly disclosed is presented merely as an example of the invention. Other embodiments, forms and modifications of the invention coming within the properscope of the appended claims will, of course, readily suggest themselves to those skilled in the art.
What is claimed is:
l. A pacing and sensing catheter device for use within body cavities, comprising: an elongated tubular assembly formed at a forward end thereof with a probe portion adapted to be inserted into and moved within said body cavities, said tubular assembly being further formed at a rearward end thereof with means communicative with said forward end for receiving a fluid; said probe portion including spaced proximal and distal members and proximal and distal electrodes secured to said proximal and distal members, respectively; a first conductor electrically connected to said proximal electrode, a second conductor electrically connected to said distal electrode, and said first and second conductors being electrically insulated from each other; inflatable means formed of an elastic material secured to and interconnecting each of said spaced proximal and distal members; and said inflatable means, comprising a balloon member adapted to be inflated upon fluid introduced under pressure through said fluid receiving means, whereby the forward end of said probe portion is resiliently mounted for inhibiting the transfer of forces between said proximal and distal members.
2. The device according to claim 1, wherein said first and second electrical conductors are elongated and extend in spaced relationship within said tubular assembly.
3. The device according to claim 2 for use with remote heartbeat pacing apparatus, further comprising first and second electrical connectors secured to said first and second conductors, respectively, for electrically interconnecting said proximal and distal electrodes with said remote apparatus.
4. The device according to claim 3, wherein said proximal and distal members comprise spaced segments of said elongated tubular assembly, said proximal member being substantially longer than said distal member and being formed with a forward end which defines an opening communicative with interior walls of said balloon member, said distal member extending between forward and rearward ends thereof which define foward and rearward openings, respectively, the forward end of said proximal member and the rearward end of said distal member being disposed in variably juxtaposed relationship with respect to one another.
5. The device according to claim 4, wherein said balloon member is secured to and extends between outer annular surfaces of said proximal and distal members adjacent the juxtaposed ends thereof.
6. The device according to claim 5, wherein said proximal electrode comprises an annular platinum sleeve secured to the outer surface of said proximal member, said proximal member being formed with an aperture through which said first electrical conductor extends to said proximal electrode, said distal electrode comprising a cup-shaped platinum member surrounding the forward end of said distal member and being secured to the outer annular surface of said distal member, said second electrical conductor extending from within said proximal member through the rearward and forward ends of said distal member, and being electrically connected to said cup-shaped distal electrode by a soldered deposit disposed within and in electrical contact with the inner portion of said cup-shaped distal electrode.
7. The device according to claim 1, wherein said fluid receiving means comprises an adaptor formed with an opening which is adapted to matingly accept an end of a fluid bearing conduit.
8. The device according to claim 7, further including a vented syringe adapted to be sealingly connected to said fluid bearing conduit for pressurizing said balloon member to a pre-determined value.
Claims (8)
1. A pacing and sensing catheter device for use within body cavities, comprising: an elongated tubular assembly formed at a forward end thereof with a probe portion adapted to be inserted into and moved within said body cavities, said tubular assembly being further formed at a rearward end thereof with means communicative with said forward end for receiving a fluid; said probe portion including spaced proximal and distal members and proximal and distal electrodes secured to said proximal and distal members, respectively; a first conductor electrically connected to said proximal electrode, a second conductor electrically connected to said distal electrode, and said first and second conductors being electrically insulated from each other; inflatable means formed of an elastic material secured to and interconnecting each of said spaced proximal and distal members; and said inflatable means, comprising a balloon member adapted to be inflated upon fluid introduced under pressure through said fluid receiving means, whereby the forward end of said probe portion is resiliently mounted for inhibiting the transfer of forces between said proximal and distal members.
2. The device according to claim 1, wherein said first and second electrical conductors are elongated and extend in spaced relationship within said tubular assembly.
3. The device according to claim 2 for use with remote heartbeat pacing apparatus, further comprising first and second electrical connectors secured to said first and second conductors, respectively, for electrically interconnecting said proximal and distal electrodes with said remote apparatus.
4. The device according to claim 3, wherein said proximal and distal members comprise spaced segments of said elongated tubular assembly, said proximal member being substantially longer than said distal member and being formed with a forward end which defines an opening communicative with interior walls of said balloon member, said distal member extending between forward and rearward ends thereof which define foward and rearward openings, respectively, the forward end of said proximal member and the rearward end of said distal member being disposed in variably juxtaposed relationship with respect to one another.
5. The device according to claim 4, wherein said balloon member is secured to and extends between outer annular surfaces of said proximal and distal members adjacent the juxtaposed ends thereof.
6. The device according to claim 5, wherein said proximal electrode comprises an annular platinum sleeve secured to the outer surface of said proximal member, said proximal member being formed with an aperture through which said first electrical conductor extends to said proximal electrode, said distal electrode comprising a cup-shaped platinum member surrounding the forward end of said distal member and being secured to the outer annular surface of said distal member, said second electrical conductor extending from within said proximal member through the rearward and forward ends of said distal member, and being electrically connected to said cup-shaped distal electrode by a soldered deposit disposed within and in electrical contact with the inner portion of said cup-shaped distal electrode.
7. The device according to claim 1, wherein said fluid receiving means comprises an adaptor formed with an opening which is adapted to matingly accept an end of a fluid bearing conduit.
8. The device according to claim 7, further including a vented syringe adapted to be sealingly connected to said fluid bearing conduit for pressurizing said balloon member to a pre-determined value.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00245938A US3837347A (en) | 1972-04-20 | 1972-04-20 | Inflatable balloon-type pacing probe |
GB4355372A GB1401477A (en) | 1972-04-20 | 1972-09-20 | Probes for use within body cavities and devices using such probes |
FR7234779A FR2180631B1 (en) | 1972-04-20 | 1972-10-02 | |
DE2252478A DE2252478A1 (en) | 1972-04-20 | 1972-10-26 | PROBE INSERTABLE INTO BODY CAVES |
JP11341872A JPS5544623B2 (en) | 1972-04-20 | 1972-11-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00245938A US3837347A (en) | 1972-04-20 | 1972-04-20 | Inflatable balloon-type pacing probe |
Publications (1)
Publication Number | Publication Date |
---|---|
US3837347A true US3837347A (en) | 1974-09-24 |
Family
ID=22928705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00245938A Expired - Lifetime US3837347A (en) | 1972-04-20 | 1972-04-20 | Inflatable balloon-type pacing probe |
Country Status (5)
Country | Link |
---|---|
US (1) | US3837347A (en) |
JP (1) | JPS5544623B2 (en) |
DE (1) | DE2252478A1 (en) |
FR (1) | FR2180631B1 (en) |
GB (1) | GB1401477A (en) |
Cited By (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3937225A (en) * | 1973-02-02 | 1976-02-10 | Siemens Aktiengesellschaft | Electrode adapted for implantation |
US3995623A (en) * | 1974-12-23 | 1976-12-07 | American Hospital Supply Corporation | Multipurpose flow-directed catheter |
US4033357A (en) * | 1975-02-07 | 1977-07-05 | Medtronic, Inc. | Non-fibrosing cardiac electrode |
US4090518A (en) * | 1975-08-25 | 1978-05-23 | Elam James O | Esophago-pharyngeal airway |
US4169479A (en) * | 1977-02-24 | 1979-10-02 | Rudolph Muto | Elongated, tapered flexible front guide for electrical catheters and method of use |
US4195637A (en) * | 1977-10-21 | 1980-04-01 | Schneider Medintag Ag | Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element |
US4198963A (en) * | 1978-10-19 | 1980-04-22 | Michigan Instruments, Inc. | Cardiopulmonary resuscitator, defibrillator and monitor |
US4202347A (en) * | 1975-06-05 | 1980-05-13 | Sacks Alvin H | Method and apparatus for determining blood pressure |
US4261339A (en) * | 1978-03-06 | 1981-04-14 | Datascope Corp. | Balloon catheter with rotatable support |
US4273114A (en) * | 1978-10-19 | 1981-06-16 | Michigan Instruments, Inc. | Cardiopulmonary resuscitator, defibrillator and monitor |
US4280511A (en) * | 1980-02-25 | 1981-07-28 | Medtronic, Inc. | Ring electrode for pacing lead and process of making same |
WO1981002110A1 (en) * | 1980-01-30 | 1981-08-06 | T Fogarty | Dilatation catheter apparatus and method |
US4327709A (en) * | 1978-03-06 | 1982-05-04 | Datascope Corp. | Apparatus and method for the percutaneous introduction of intra-aortic balloons into the human body |
US4338942A (en) * | 1980-10-20 | 1982-07-13 | Fogarty Thomas J | Dilatation catherter apparatus |
US4381014A (en) * | 1980-10-10 | 1983-04-26 | Medtronic, Inc. | Ring electrode for pacing lead and method of making same |
US4403612A (en) * | 1980-10-20 | 1983-09-13 | Fogarty Thomas J | Dilatation method |
WO1983003204A1 (en) * | 1982-03-12 | 1983-09-29 | Webster, Wilton, W., Jr. | Autoinflatable catheter |
US4444188A (en) * | 1980-08-15 | 1984-04-24 | Seymour Bazell | Balloon catheter |
US4483340A (en) * | 1980-10-20 | 1984-11-20 | Thomas J. Fogarty | Dilatation catheter |
US4514589A (en) * | 1981-09-03 | 1985-04-30 | Heraeus Quarschmelze Gmbh | Electrode connecting cable for cardiac pacemaker |
EP0058708B1 (en) * | 1980-09-03 | 1985-05-08 | The University Court Of The University Of Edinburgh | Therapeutic device |
US4519403A (en) * | 1983-04-29 | 1985-05-28 | Medtronic, Inc. | Balloon lead and inflator |
US4552127A (en) * | 1983-04-01 | 1985-11-12 | Peter Schiff | Percutaneous intra-aortic balloon having an EKG electrode and a twisting stylet for coupling the EKG electrode to monitoring and/or pacing instrumentation external to the body |
US4587975A (en) * | 1984-07-02 | 1986-05-13 | Cardiac Pacemakers, Inc. | Dimension sensitive angioplasty catheter |
US4608984A (en) * | 1980-10-17 | 1986-09-02 | Fogarty Thomas J | Self-retracting dilatation catheter |
US4608986A (en) * | 1984-10-01 | 1986-09-02 | Cordis Corporation | Pacing lead with straight wire conductors |
US4662383A (en) * | 1982-09-27 | 1987-05-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Endotract antenna device for hyperthermia |
US4776349A (en) * | 1985-10-04 | 1988-10-11 | Basem Nashef | Tubular device for the treatment of hollow organs with electric current |
US4896669A (en) * | 1988-08-31 | 1990-01-30 | Meadox Medicals, Inc. | Dilatation catheter |
US4913701A (en) * | 1988-10-06 | 1990-04-03 | Numed, Inc. | Balloon catheter and method of manufacturing the same |
US4994072A (en) * | 1988-08-31 | 1991-02-19 | Meadox Medicals, Inc. | Dilation catheter |
US5141518A (en) * | 1991-03-05 | 1992-08-25 | Progressive Angioplasty Systems, Inc. | Angioplasty catheter with close-fitting guidewire and tube |
US5192296A (en) * | 1988-08-31 | 1993-03-09 | Meadox Medicals, Inc. | Dilatation catheter |
US5205822A (en) * | 1991-06-10 | 1993-04-27 | Cordis Corporation | Replaceable dilatation catheter |
US5290232A (en) * | 1991-06-10 | 1994-03-01 | Cordis Corporation | Replaceable dilatation catheter |
US5312340A (en) * | 1992-03-17 | 1994-05-17 | Scimed Life Systems, Inc. | Balloon dilatation catheter having dual sealing plugs |
US5324260A (en) * | 1992-04-27 | 1994-06-28 | Minnesota Mining And Manufacturing Company | Retrograde coronary sinus catheter |
US5395331A (en) * | 1992-04-27 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Retrograde coronary sinus catheter having a ribbed balloon |
US5411479A (en) * | 1988-10-21 | 1995-05-02 | Bgh Medical Products Inc | Cancer treatment and catheter for use in treatment |
US5417658A (en) * | 1992-03-17 | 1995-05-23 | Scimed Life Systems, Inc. | Balloon dilatation catheter having a torsionally soft component |
US5441484A (en) * | 1992-03-17 | 1995-08-15 | Scimed Life Systems, Inc. | Balloon dilatation catheter having a free core wire |
US5558644A (en) * | 1991-07-16 | 1996-09-24 | Heartport, Inc. | Retrograde delivery catheter and method for inducing cardioplegic arrest |
US5755687A (en) * | 1997-04-01 | 1998-05-26 | Heartport, Inc. | Methods and devices for occluding a patient's ascending aorta |
US5765568A (en) * | 1994-05-27 | 1998-06-16 | Heartport, Inc. | Catheter system and method for venting the left ventricle |
US5769812A (en) * | 1991-07-16 | 1998-06-23 | Heartport, Inc. | System for cardiac procedures |
US5792094A (en) * | 1991-07-16 | 1998-08-11 | Heartport, Inc. | Method of delivering cardioplegic fluid to a patient's heart |
US5797877A (en) * | 1993-10-01 | 1998-08-25 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US5817046A (en) * | 1997-07-14 | 1998-10-06 | Delcath Systems, Inc. | Apparatus and method for isolated pelvic perfusion |
US5876417A (en) * | 1995-07-10 | 1999-03-02 | Devonec; Marian | Detachable catheter apparatus |
US5919163A (en) * | 1997-07-14 | 1999-07-06 | Delcath Systems, Inc. | Catheter with slidable balloon |
US5935103A (en) * | 1991-12-17 | 1999-08-10 | Heartport, Inc. | Blood vessel occlusion device |
US6132824A (en) * | 1989-09-25 | 2000-10-17 | Schneider (Usa) Inc. | Multilayer catheter balloon |
US6136258A (en) * | 1991-04-26 | 2000-10-24 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US6159178A (en) * | 1998-01-23 | 2000-12-12 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US6186146B1 (en) | 1996-08-30 | 2001-02-13 | Delcath Systems Inc | Cancer treatment method |
US20020026195A1 (en) * | 2000-04-07 | 2002-02-28 | Kyphon Inc. | Insertion devices and method of use |
US20020125617A1 (en) * | 2001-03-06 | 2002-09-12 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US6482171B1 (en) | 1991-07-16 | 2002-11-19 | Heartport, Inc. | Multi-lumen catheter |
US6561788B1 (en) | 2000-05-31 | 2003-05-13 | Advanced Cardiovascular Systems, Inc. | Modular mold designs |
US20040210211A1 (en) * | 2003-02-26 | 2004-10-21 | Devens Douglas A. | Balloon catheter |
US20050059929A1 (en) * | 2003-09-17 | 2005-03-17 | Magnus Bolmsjo | Partial-length, indwelling prostatic catheter using coiled inflation tube as an anchor and methods of draining urine and flushing clots |
US20050090852A1 (en) * | 2000-04-07 | 2005-04-28 | Kyphon Inc. | Insertion devices and method of use |
US6896842B1 (en) | 1993-10-01 | 2005-05-24 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US20050113919A1 (en) * | 2000-02-16 | 2005-05-26 | Cragg Andrew H. | Prosthetic nucleus apparatus |
US20060058800A1 (en) * | 2002-12-03 | 2006-03-16 | Trans1 Inc. | Methods and apparatus for provision of therapy to adjacent motion segments |
US20060079898A1 (en) * | 2003-10-23 | 2006-04-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US20060111691A1 (en) * | 2003-09-17 | 2006-05-25 | Magnus Bolmsjo | Partial-length indwelling urinary catheter and method permitting selective urine discharge |
US20060155297A1 (en) * | 2003-10-23 | 2006-07-13 | Ainsworth Stephen D | Driver assembly for simultaneous axial delivery of spinal implants |
US7166099B2 (en) | 2003-08-21 | 2007-01-23 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
US20070168036A1 (en) * | 2003-10-23 | 2007-07-19 | Trans1 Inc. | Spinal motion preservation assemblies |
US20080004707A1 (en) * | 2003-10-23 | 2008-01-03 | Cragg Andrew H | Prosthetic nucleus apparatus and method |
US20080262502A1 (en) * | 2006-10-24 | 2008-10-23 | Trans1, Inc. | Multi-membrane prosthetic nucleus |
US20090093857A1 (en) * | 2006-12-28 | 2009-04-09 | Markowitz H Toby | System and method to evaluate electrode position and spacing |
US20090264740A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Locating an Introducer |
US20090262980A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Method and Apparatus for Determining Tracking a Virtual Point Defined Relative to a Tracked Member |
US20090318992A1 (en) * | 2008-06-19 | 2009-12-24 | Tracee Eidenschink | Pacing catheter releasing conductive liquid |
US20100010530A1 (en) * | 2006-07-14 | 2010-01-14 | Ams Research Corporation | Balloon Dilation for Implantable Prosthesis |
US20100022893A1 (en) * | 2008-07-24 | 2010-01-28 | Hart Douglas P | Self-inflating bladder |
US20100145462A1 (en) * | 2006-10-24 | 2010-06-10 | Trans1 Inc. | Preformed membranes for use in intervertebral disc spaces |
WO2010137025A2 (en) | 2009-05-29 | 2010-12-02 | Smart Medical Systems Ltd. | Anchoring assemblies for endoscopes |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
WO2011111040A2 (en) | 2010-03-09 | 2011-09-15 | Smart Medical Systems Ltd | Balloon endoscope and methods of manufacture and use thereof |
US8106905B2 (en) | 2008-04-18 | 2012-01-31 | Medtronic, Inc. | Illustrating a three-dimensional nature of a data set on a two-dimensional display |
US8135467B2 (en) | 2007-04-18 | 2012-03-13 | Medtronic, Inc. | Chronically-implantable active fixation medical electrical leads and related methods for non-fluoroscopic implantation |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US8260395B2 (en) | 2008-04-18 | 2012-09-04 | Medtronic, Inc. | Method and apparatus for mapping a structure |
WO2012120492A1 (en) | 2011-03-07 | 2012-09-13 | Smart Medical Systems Ltd | Balloon-equipped endoscopic devices and methods thereof |
US8355774B2 (en) | 2009-10-30 | 2013-01-15 | Medtronic, Inc. | System and method to evaluate electrode position and spacing |
US8457738B2 (en) | 2008-06-19 | 2013-06-04 | Cardiac Pacemakers, Inc. | Pacing catheter for access to multiple vessels |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8639357B2 (en) | 2008-06-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Pacing catheter with stent electrode |
US8663120B2 (en) | 2008-04-18 | 2014-03-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8839798B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | System and method for determining sheath location |
US8939962B2 (en) * | 2013-04-17 | 2015-01-27 | Ramyar Azar | System and method for urinary catheterization |
US9037235B2 (en) | 2008-06-19 | 2015-05-19 | Cardiac Pacemakers, Inc. | Pacing catheter with expandable distal end |
US9409012B2 (en) | 2008-06-19 | 2016-08-09 | Cardiac Pacemakers, Inc. | Pacemaker integrated with vascular intervention catheter |
US20170312000A1 (en) * | 2013-03-15 | 2017-11-02 | Kyphon Sarl | Device for performing a surgical procedure and method |
US10314471B2 (en) | 2013-05-21 | 2019-06-11 | Smart Medical Systems Ltd. | Endoscope reprocessing method |
US10398295B2 (en) | 2014-12-22 | 2019-09-03 | Smart Medical Systems Ltd. | Balloon endoscope reprocessing system and method |
US10518068B2 (en) | 2012-12-31 | 2019-12-31 | C.R. Bard, Inc. | Balloon catheter with adjustable inner member |
US10835107B2 (en) | 2015-04-03 | 2020-11-17 | Smart Medical Systems Ltd. | Endoscope electro-pneumatic adaptor |
US20210378593A1 (en) * | 2016-03-24 | 2021-12-09 | C. R. Bard, Inc. | Catheter Assembly Including Transitioning Lumens |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE32204E (en) * | 1980-06-09 | 1986-07-15 | Mansfield Scientific, Inc. | Electrode assembly for temporary pacing and heart measurements |
US4329994A (en) * | 1980-06-18 | 1982-05-18 | American Hospital Supply Corporation | Multilumen catheter |
JPH0111260Y2 (en) * | 1981-05-19 | 1989-03-31 | ||
FR2561929B1 (en) * | 1984-03-27 | 1989-02-03 | Atesys | IMPLANTED AUTOMATIC APPARATUS FOR VENTRICULAR DEFIBRILLATION |
DE3534124A1 (en) * | 1985-09-25 | 1987-04-02 | Celltek Gmbh & Co Kg | Sphincter trainer |
JPH0346348U (en) * | 1989-09-13 | 1991-04-30 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087492A (en) * | 1960-12-29 | 1963-04-30 | May L Chester | Valved catheters |
US3348548A (en) * | 1965-04-26 | 1967-10-24 | William M Chardack | Implantable electrode with stiffening stylet |
US3397699A (en) * | 1966-05-05 | 1968-08-20 | Gerald C. Kohl | Retaining catheter having resiliently biased wing flanges |
US3528406A (en) * | 1965-10-29 | 1970-09-15 | Us Catheter & Instr Corp | Flexible spring guide tip for insertion of vascular catheters |
US3599620A (en) * | 1969-08-18 | 1971-08-17 | Kendall & Co | Resilient reservoir assembly |
US3674014A (en) * | 1969-10-28 | 1972-07-04 | Astra Meditec Ab | Magnetically guidable catheter-tip and method |
US3680544A (en) * | 1970-09-09 | 1972-08-01 | James P Shinnick | Transthoracic cannula-type device for cardiopulmonary resuscitation |
US3707960A (en) * | 1970-09-03 | 1973-01-02 | Us Health | Balloon cardiac assisting pump having intraaortic electrocardiographic electrodes |
-
1972
- 1972-04-20 US US00245938A patent/US3837347A/en not_active Expired - Lifetime
- 1972-09-20 GB GB4355372A patent/GB1401477A/en not_active Expired
- 1972-10-02 FR FR7234779A patent/FR2180631B1/fr not_active Expired
- 1972-10-26 DE DE2252478A patent/DE2252478A1/en active Pending
- 1972-11-11 JP JP11341872A patent/JPS5544623B2/ja not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087492A (en) * | 1960-12-29 | 1963-04-30 | May L Chester | Valved catheters |
US3348548A (en) * | 1965-04-26 | 1967-10-24 | William M Chardack | Implantable electrode with stiffening stylet |
US3528406A (en) * | 1965-10-29 | 1970-09-15 | Us Catheter & Instr Corp | Flexible spring guide tip for insertion of vascular catheters |
US3397699A (en) * | 1966-05-05 | 1968-08-20 | Gerald C. Kohl | Retaining catheter having resiliently biased wing flanges |
US3599620A (en) * | 1969-08-18 | 1971-08-17 | Kendall & Co | Resilient reservoir assembly |
US3674014A (en) * | 1969-10-28 | 1972-07-04 | Astra Meditec Ab | Magnetically guidable catheter-tip and method |
US3707960A (en) * | 1970-09-03 | 1973-01-02 | Us Health | Balloon cardiac assisting pump having intraaortic electrocardiographic electrodes |
US3680544A (en) * | 1970-09-09 | 1972-08-01 | James P Shinnick | Transthoracic cannula-type device for cardiopulmonary resuscitation |
Cited By (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3937225A (en) * | 1973-02-02 | 1976-02-10 | Siemens Aktiengesellschaft | Electrode adapted for implantation |
US3995623A (en) * | 1974-12-23 | 1976-12-07 | American Hospital Supply Corporation | Multipurpose flow-directed catheter |
US4033357A (en) * | 1975-02-07 | 1977-07-05 | Medtronic, Inc. | Non-fibrosing cardiac electrode |
US4202347A (en) * | 1975-06-05 | 1980-05-13 | Sacks Alvin H | Method and apparatus for determining blood pressure |
US4090518A (en) * | 1975-08-25 | 1978-05-23 | Elam James O | Esophago-pharyngeal airway |
US4169479A (en) * | 1977-02-24 | 1979-10-02 | Rudolph Muto | Elongated, tapered flexible front guide for electrical catheters and method of use |
US4195637A (en) * | 1977-10-21 | 1980-04-01 | Schneider Medintag Ag | Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element |
US4261339A (en) * | 1978-03-06 | 1981-04-14 | Datascope Corp. | Balloon catheter with rotatable support |
US4327709A (en) * | 1978-03-06 | 1982-05-04 | Datascope Corp. | Apparatus and method for the percutaneous introduction of intra-aortic balloons into the human body |
US4346698A (en) * | 1978-03-06 | 1982-08-31 | Datascope Corp. | Balloon catheter with rotatable support |
US4273114A (en) * | 1978-10-19 | 1981-06-16 | Michigan Instruments, Inc. | Cardiopulmonary resuscitator, defibrillator and monitor |
US4198963A (en) * | 1978-10-19 | 1980-04-22 | Michigan Instruments, Inc. | Cardiopulmonary resuscitator, defibrillator and monitor |
WO1981002110A1 (en) * | 1980-01-30 | 1981-08-06 | T Fogarty | Dilatation catheter apparatus and method |
US4292974A (en) * | 1980-01-30 | 1981-10-06 | Thomas J. Fogarty | Dilatation catheter apparatus and method |
US4280511A (en) * | 1980-02-25 | 1981-07-28 | Medtronic, Inc. | Ring electrode for pacing lead and process of making same |
US4444188A (en) * | 1980-08-15 | 1984-04-24 | Seymour Bazell | Balloon catheter |
US4522205A (en) * | 1980-09-03 | 1985-06-11 | The University Court Of The University Of Edinburgh | Therapeutic device and method of inducing thrombosis in a blood vessel |
EP0058708B1 (en) * | 1980-09-03 | 1985-05-08 | The University Court Of The University Of Edinburgh | Therapeutic device |
US4381014A (en) * | 1980-10-10 | 1983-04-26 | Medtronic, Inc. | Ring electrode for pacing lead and method of making same |
US4608984A (en) * | 1980-10-17 | 1986-09-02 | Fogarty Thomas J | Self-retracting dilatation catheter |
US4403612A (en) * | 1980-10-20 | 1983-09-13 | Fogarty Thomas J | Dilatation method |
US4338942A (en) * | 1980-10-20 | 1982-07-13 | Fogarty Thomas J | Dilatation catherter apparatus |
US4483340A (en) * | 1980-10-20 | 1984-11-20 | Thomas J. Fogarty | Dilatation catheter |
US4514589A (en) * | 1981-09-03 | 1985-04-30 | Heraeus Quarschmelze Gmbh | Electrode connecting cable for cardiac pacemaker |
US4535757A (en) * | 1982-03-12 | 1985-08-20 | Webster Wilton W Jr | Autoinflatable catheter |
WO1983003204A1 (en) * | 1982-03-12 | 1983-09-29 | Webster, Wilton, W., Jr. | Autoinflatable catheter |
US4662383A (en) * | 1982-09-27 | 1987-05-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Endotract antenna device for hyperthermia |
US4552127A (en) * | 1983-04-01 | 1985-11-12 | Peter Schiff | Percutaneous intra-aortic balloon having an EKG electrode and a twisting stylet for coupling the EKG electrode to monitoring and/or pacing instrumentation external to the body |
US4519403A (en) * | 1983-04-29 | 1985-05-28 | Medtronic, Inc. | Balloon lead and inflator |
US4587975A (en) * | 1984-07-02 | 1986-05-13 | Cardiac Pacemakers, Inc. | Dimension sensitive angioplasty catheter |
US4608986A (en) * | 1984-10-01 | 1986-09-02 | Cordis Corporation | Pacing lead with straight wire conductors |
AU593021B2 (en) * | 1985-10-04 | 1990-02-01 | Helmuth Denck | Tubular device for the treatment of hollow organs with electric current |
US4776349A (en) * | 1985-10-04 | 1988-10-11 | Basem Nashef | Tubular device for the treatment of hollow organs with electric current |
US4994072A (en) * | 1988-08-31 | 1991-02-19 | Meadox Medicals, Inc. | Dilation catheter |
US5192296A (en) * | 1988-08-31 | 1993-03-09 | Meadox Medicals, Inc. | Dilatation catheter |
US4896669A (en) * | 1988-08-31 | 1990-01-30 | Meadox Medicals, Inc. | Dilatation catheter |
US4913701A (en) * | 1988-10-06 | 1990-04-03 | Numed, Inc. | Balloon catheter and method of manufacturing the same |
US5411479A (en) * | 1988-10-21 | 1995-05-02 | Bgh Medical Products Inc | Cancer treatment and catheter for use in treatment |
US6132824A (en) * | 1989-09-25 | 2000-10-17 | Schneider (Usa) Inc. | Multilayer catheter balloon |
US5141518A (en) * | 1991-03-05 | 1992-08-25 | Progressive Angioplasty Systems, Inc. | Angioplasty catheter with close-fitting guidewire and tube |
US7585289B2 (en) | 1991-04-26 | 2009-09-08 | Boston Scientific Scimed, Inc. | Co-extruded medical balloon |
US6136258A (en) * | 1991-04-26 | 2000-10-24 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US6482348B1 (en) | 1991-04-26 | 2002-11-19 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US5205822A (en) * | 1991-06-10 | 1993-04-27 | Cordis Corporation | Replaceable dilatation catheter |
US5290232A (en) * | 1991-06-10 | 1994-03-01 | Cordis Corporation | Replaceable dilatation catheter |
US5885238A (en) * | 1991-07-16 | 1999-03-23 | Heartport, Inc. | System for cardiac procedures |
US5558644A (en) * | 1991-07-16 | 1996-09-24 | Heartport, Inc. | Retrograde delivery catheter and method for inducing cardioplegic arrest |
US5738652A (en) * | 1991-07-16 | 1998-04-14 | Heartport, Inc. | Retrograde delivery catheter and method for inducing cardioplegic arrest |
US5792094A (en) * | 1991-07-16 | 1998-08-11 | Heartport, Inc. | Method of delivering cardioplegic fluid to a patient's heart |
US6482171B1 (en) | 1991-07-16 | 2002-11-19 | Heartport, Inc. | Multi-lumen catheter |
US5769812A (en) * | 1991-07-16 | 1998-06-23 | Heartport, Inc. | System for cardiac procedures |
US5997505A (en) * | 1991-12-17 | 1999-12-07 | Heartport, Inc. | Method of cannulating an ascending aorta using a blood vessel occlusion device |
US5935103A (en) * | 1991-12-17 | 1999-08-10 | Heartport, Inc. | Blood vessel occlusion device |
US6224619B1 (en) | 1991-12-17 | 2001-05-01 | Heartport, Inc. | Blood vessel occlusion trocar having size and shape varying insertion body |
US5941894A (en) * | 1991-12-17 | 1999-08-24 | Heartport, Inc. | Blood vessel occlusion device |
US5312340A (en) * | 1992-03-17 | 1994-05-17 | Scimed Life Systems, Inc. | Balloon dilatation catheter having dual sealing plugs |
US5417658A (en) * | 1992-03-17 | 1995-05-23 | Scimed Life Systems, Inc. | Balloon dilatation catheter having a torsionally soft component |
US5441484A (en) * | 1992-03-17 | 1995-08-15 | Scimed Life Systems, Inc. | Balloon dilatation catheter having a free core wire |
US5324260A (en) * | 1992-04-27 | 1994-06-28 | Minnesota Mining And Manufacturing Company | Retrograde coronary sinus catheter |
US5395331A (en) * | 1992-04-27 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Retrograde coronary sinus catheter having a ribbed balloon |
US6896842B1 (en) | 1993-10-01 | 2005-05-24 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US7781038B2 (en) | 1993-10-01 | 2010-08-24 | Boston Scientific Scimed, Inc. | Medical device balloons containing thermoplastic elastomers |
US6086556A (en) * | 1993-10-01 | 2000-07-11 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US5797877A (en) * | 1993-10-01 | 1998-08-25 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US5765568A (en) * | 1994-05-27 | 1998-06-16 | Heartport, Inc. | Catheter system and method for venting the left ventricle |
US5810757A (en) * | 1994-05-27 | 1998-09-22 | Heartport, Inc. | Catheter system and method for total isolation of the heart |
US6293920B1 (en) | 1994-05-27 | 2001-09-25 | Heartport, Inc. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
US6398752B1 (en) | 1994-05-27 | 2002-06-04 | William P. Sweezer, Jr. | Method of occluding a patient's ascending aorta and delivery cardioplegic fluid |
US5800375A (en) * | 1994-05-27 | 1998-09-01 | Heartport, Inc. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
US6248086B1 (en) | 1994-05-27 | 2001-06-19 | Heartport, Inc. | Method for cannulating a patient's aortic arch and occluding the patient's ascending aortic arch |
US5876417A (en) * | 1995-07-10 | 1999-03-02 | Devonec; Marian | Detachable catheter apparatus |
US6186146B1 (en) | 1996-08-30 | 2001-02-13 | Delcath Systems Inc | Cancer treatment method |
US6056723A (en) * | 1997-04-01 | 2000-05-02 | Heartport, Inc. | Methods and devices for occluding a patient's ascending aorta |
US5755687A (en) * | 1997-04-01 | 1998-05-26 | Heartport, Inc. | Methods and devices for occluding a patient's ascending aorta |
US6423031B1 (en) | 1997-04-01 | 2002-07-23 | Brian S. Donlon | Methods and devices for occluding a patient's ascending aorta |
US5919163A (en) * | 1997-07-14 | 1999-07-06 | Delcath Systems, Inc. | Catheter with slidable balloon |
US5817046A (en) * | 1997-07-14 | 1998-10-06 | Delcath Systems, Inc. | Apparatus and method for isolated pelvic perfusion |
US6350252B2 (en) | 1998-01-23 | 2002-02-26 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US6902556B2 (en) | 1998-01-23 | 2005-06-07 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation oxygenated blood in the patient when the patient's heart is arrested |
US6589206B1 (en) | 1998-01-23 | 2003-07-08 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US6159178A (en) * | 1998-01-23 | 2000-12-12 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US7905908B2 (en) | 2000-02-16 | 2011-03-15 | Trans1, Inc. | Spinal mobility preservation method |
US7547324B2 (en) * | 2000-02-16 | 2009-06-16 | Trans1, Inc. | Spinal mobility preservation apparatus having an expandable membrane |
US7662173B2 (en) | 2000-02-16 | 2010-02-16 | Transl, Inc. | Spinal mobility preservation apparatus |
US20050113919A1 (en) * | 2000-02-16 | 2005-05-26 | Cragg Andrew H. | Prosthetic nucleus apparatus |
US20050149191A1 (en) * | 2000-02-16 | 2005-07-07 | Cragg Andrew H. | Spinal mobility preservation apparatus having an expandable membrane |
US7905905B2 (en) | 2000-02-16 | 2011-03-15 | Trans1, Inc. | Spinal mobility preservation apparatus |
US7717958B2 (en) | 2000-02-16 | 2010-05-18 | Trans1, Inc. | Prosthetic nucleus apparatus |
US7815649B2 (en) * | 2000-04-07 | 2010-10-19 | Kyphon SÀRL | Insertion devices and method of use |
US20020026195A1 (en) * | 2000-04-07 | 2002-02-28 | Kyphon Inc. | Insertion devices and method of use |
US20050090852A1 (en) * | 2000-04-07 | 2005-04-28 | Kyphon Inc. | Insertion devices and method of use |
US8092480B2 (en) | 2000-04-07 | 2012-01-10 | Kyphon Sarl | Platform cannula for guiding the expansion of expandable bodies and method of use |
US6561788B1 (en) | 2000-05-31 | 2003-05-13 | Advanced Cardiovascular Systems, Inc. | Modular mold designs |
US7399444B2 (en) | 2001-03-06 | 2008-07-15 | Advanced Cardivascular Systems, Inc. | Adjustable length mold assemblies |
US6835059B2 (en) | 2001-03-06 | 2004-12-28 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US20060182833A1 (en) * | 2001-03-06 | 2006-08-17 | Skinner Johann J | Adjustable length mold assemblies |
US20020125617A1 (en) * | 2001-03-06 | 2002-09-12 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US7060218B2 (en) | 2001-03-06 | 2006-06-13 | Advanced Cardiovascular Systems, Inc. | Adjustable length mold assemblies |
US20050087913A1 (en) * | 2001-03-06 | 2005-04-28 | Skinner Johann J. | Adjustable length mold assemblies |
US7776042B2 (en) | 2002-12-03 | 2010-08-17 | Trans1 Inc. | Methods and apparatus for provision of therapy to adjacent motion segments |
US8167947B2 (en) | 2002-12-03 | 2012-05-01 | Trans1 Inc. | Methods for push distraction and for provision of therapy to adjacent motion segments |
US8328847B2 (en) | 2002-12-03 | 2012-12-11 | Trans1 Inc. | Assemblies for provision of therapy to motion segments |
US8523918B2 (en) | 2002-12-03 | 2013-09-03 | Baxano Surgical, Inc. | Therapy to adjacent motion segments |
US20060058800A1 (en) * | 2002-12-03 | 2006-03-16 | Trans1 Inc. | Methods and apparatus for provision of therapy to adjacent motion segments |
US20040210211A1 (en) * | 2003-02-26 | 2004-10-21 | Devens Douglas A. | Balloon catheter |
US7163523B2 (en) | 2003-02-26 | 2007-01-16 | Scimed Life Systems, Inc. | Balloon catheter |
US20090125000A1 (en) * | 2003-08-21 | 2009-05-14 | Boston Scientific Scimed, Inc. | Multilayer Medical Devices |
US7815628B2 (en) | 2003-08-21 | 2010-10-19 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
US7166099B2 (en) | 2003-08-21 | 2007-01-23 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
US20050059929A1 (en) * | 2003-09-17 | 2005-03-17 | Magnus Bolmsjo | Partial-length, indwelling prostatic catheter using coiled inflation tube as an anchor and methods of draining urine and flushing clots |
US20050080399A1 (en) * | 2003-09-17 | 2005-04-14 | Magnus Bolmsjo | Urinary catheter and method with increased resistance to obstructions |
US20060111691A1 (en) * | 2003-09-17 | 2006-05-25 | Magnus Bolmsjo | Partial-length indwelling urinary catheter and method permitting selective urine discharge |
US7766899B2 (en) | 2003-09-17 | 2010-08-03 | Prostalund Operations Ab | Partial-length, indwelling prostatic catheter using coiled inflation tube as an anchor and methods of draining urine and flushing clots |
US7662145B2 (en) | 2003-09-17 | 2010-02-16 | Prostalund Operations Ab | Partial-length indwelling urinary catheter and method permitting selective urine discharge |
US20070168036A1 (en) * | 2003-10-23 | 2007-07-19 | Trans1 Inc. | Spinal motion preservation assemblies |
US20060079898A1 (en) * | 2003-10-23 | 2006-04-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US20070167951A1 (en) * | 2003-10-23 | 2007-07-19 | Trans1 Inc. | Methods and tools for delivery of spinal motion preservation assemblies |
US20060155297A1 (en) * | 2003-10-23 | 2006-07-13 | Ainsworth Stephen D | Driver assembly for simultaneous axial delivery of spinal implants |
US20080004707A1 (en) * | 2003-10-23 | 2008-01-03 | Cragg Andrew H | Prosthetic nucleus apparatus and method |
US8038680B2 (en) | 2003-10-23 | 2011-10-18 | Trans1 Inc. | Drivers for inserts to bone anchors |
US7938836B2 (en) | 2003-10-23 | 2011-05-10 | Trans1, Inc. | Driver assembly for simultaneous axial delivery of spinal implants |
US7776068B2 (en) | 2003-10-23 | 2010-08-17 | Trans1 Inc. | Spinal motion preservation assemblies |
US20080195156A1 (en) * | 2003-10-23 | 2008-08-14 | Trans1 Inc. | Methods for Deploying Spinal Motion Preservation Assemblies |
US7601171B2 (en) | 2003-10-23 | 2009-10-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US9649495B2 (en) | 2005-04-25 | 2017-05-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US9415225B2 (en) | 2005-04-25 | 2016-08-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US10549101B2 (en) | 2005-04-25 | 2020-02-04 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US8452400B2 (en) | 2005-04-25 | 2013-05-28 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US20100010530A1 (en) * | 2006-07-14 | 2010-01-14 | Ams Research Corporation | Balloon Dilation for Implantable Prosthesis |
US8328846B2 (en) | 2006-10-24 | 2012-12-11 | Trans1 Inc. | Prosthetic nucleus with a preformed membrane |
US8088147B2 (en) | 2006-10-24 | 2012-01-03 | Trans1 Inc. | Multi-membrane prosthetic nucleus |
US20100145462A1 (en) * | 2006-10-24 | 2010-06-10 | Trans1 Inc. | Preformed membranes for use in intervertebral disc spaces |
US20100137991A1 (en) * | 2006-10-24 | 2010-06-03 | Trans1, Inc. | Prosthetic nucleus with a preformed membrane |
US20080262502A1 (en) * | 2006-10-24 | 2008-10-23 | Trans1, Inc. | Multi-membrane prosthetic nucleus |
US7941213B2 (en) | 2006-12-28 | 2011-05-10 | Medtronic, Inc. | System and method to evaluate electrode position and spacing |
US20090093857A1 (en) * | 2006-12-28 | 2009-04-09 | Markowitz H Toby | System and method to evaluate electrode position and spacing |
US8135467B2 (en) | 2007-04-18 | 2012-03-13 | Medtronic, Inc. | Chronically-implantable active fixation medical electrical leads and related methods for non-fluoroscopic implantation |
US9332928B2 (en) | 2008-04-18 | 2016-05-10 | Medtronic, Inc. | Method and apparatus to synchronize a location determination in a structure with a characteristic of the structure |
US8831701B2 (en) | 2008-04-18 | 2014-09-09 | Medtronic, Inc. | Uni-polar and bi-polar switchable tracking system between |
US8208991B2 (en) | 2008-04-18 | 2012-06-26 | Medtronic, Inc. | Determining a material flow characteristic in a structure |
US8214018B2 (en) | 2008-04-18 | 2012-07-03 | Medtronic, Inc. | Determining a flow characteristic of a material in a structure |
US10426377B2 (en) | 2008-04-18 | 2019-10-01 | Medtronic, Inc. | Determining a location of a member |
US8260395B2 (en) | 2008-04-18 | 2012-09-04 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US9662041B2 (en) | 2008-04-18 | 2017-05-30 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US20090262980A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Method and Apparatus for Determining Tracking a Virtual Point Defined Relative to a Tracked Member |
US8106905B2 (en) | 2008-04-18 | 2012-01-31 | Medtronic, Inc. | Illustrating a three-dimensional nature of a data set on a two-dimensional display |
US8340751B2 (en) | 2008-04-18 | 2012-12-25 | Medtronic, Inc. | Method and apparatus for determining tracking a virtual point defined relative to a tracked member |
US8345067B2 (en) | 2008-04-18 | 2013-01-01 | Regents Of The University Of Minnesota | Volumetrically illustrating a structure |
US20090264740A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Locating an Introducer |
US8364252B2 (en) | 2008-04-18 | 2013-01-29 | Medtronic, Inc. | Identifying a structure for cannulation |
US8391965B2 (en) | 2008-04-18 | 2013-03-05 | Regents Of The University Of Minnesota | Determining the position of an electrode relative to an insulative cover |
US8421799B2 (en) | 2008-04-18 | 2013-04-16 | Regents Of The University Of Minnesota | Illustrating a three-dimensional nature of a data set on a two-dimensional display |
US8424536B2 (en) | 2008-04-18 | 2013-04-23 | Regents Of The University Of Minnesota | Locating a member in a structure |
US8442625B2 (en) | 2008-04-18 | 2013-05-14 | Regents Of The University Of Minnesota | Determining and illustrating tracking system members |
US9179860B2 (en) | 2008-04-18 | 2015-11-10 | Medtronic, Inc. | Determining a location of a member |
US8185192B2 (en) | 2008-04-18 | 2012-05-22 | Regents Of The University Of Minnesota | Correcting for distortion in a tracking system |
US8457371B2 (en) | 2008-04-18 | 2013-06-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US9131872B2 (en) | 2008-04-18 | 2015-09-15 | Medtronic, Inc. | Multiple sensor input for structure identification |
US9101285B2 (en) | 2008-04-18 | 2015-08-11 | Medtronic, Inc. | Reference structure for a tracking system |
US8494608B2 (en) | 2008-04-18 | 2013-07-23 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US8887736B2 (en) | 2008-04-18 | 2014-11-18 | Medtronic, Inc. | Tracking a guide member |
US8532734B2 (en) | 2008-04-18 | 2013-09-10 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8560042B2 (en) | 2008-04-18 | 2013-10-15 | Medtronic, Inc. | Locating an indicator |
US8843189B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | Interference blocking and frequency selection |
US8660640B2 (en) | 2008-04-18 | 2014-02-25 | Medtronic, Inc. | Determining a size of a representation of a tracked member |
US8663120B2 (en) | 2008-04-18 | 2014-03-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8839798B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | System and method for determining sheath location |
US8768434B2 (en) | 2008-04-18 | 2014-07-01 | Medtronic, Inc. | Determining and illustrating a structure |
US8457738B2 (en) | 2008-06-19 | 2013-06-04 | Cardiac Pacemakers, Inc. | Pacing catheter for access to multiple vessels |
US9037235B2 (en) | 2008-06-19 | 2015-05-19 | Cardiac Pacemakers, Inc. | Pacing catheter with expandable distal end |
US8639357B2 (en) | 2008-06-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Pacing catheter with stent electrode |
US8244352B2 (en) | 2008-06-19 | 2012-08-14 | Cardiac Pacemakers, Inc. | Pacing catheter releasing conductive liquid |
US20090318992A1 (en) * | 2008-06-19 | 2009-12-24 | Tracee Eidenschink | Pacing catheter releasing conductive liquid |
US9409012B2 (en) | 2008-06-19 | 2016-08-09 | Cardiac Pacemakers, Inc. | Pacemaker integrated with vascular intervention catheter |
US20100022893A1 (en) * | 2008-07-24 | 2010-01-28 | Hart Douglas P | Self-inflating bladder |
US9820636B2 (en) | 2008-07-24 | 2017-11-21 | Massachusetts Institute Of Technology | Layered medium for three-dimensional imaging |
US9097512B2 (en) | 2008-07-24 | 2015-08-04 | Massachusetts Institute Of Technology | Layered medium for three-dimensional imaging |
US8976263B2 (en) | 2008-07-24 | 2015-03-10 | Massachusetts Institute Of Technology | Three-dimensional imaging using a single camera |
US9504546B2 (en) | 2008-07-24 | 2016-11-29 | Massachusetts Institute Of Technology | Layered medium for three-dimensional imaging |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US8731641B2 (en) | 2008-12-16 | 2014-05-20 | Medtronic Navigation, Inc. | Combination of electromagnetic and electropotential localization |
EP3510913A1 (en) | 2009-05-29 | 2019-07-17 | Smart Medical Systems Ltd. | Anchoring assemblies for endoscopes |
WO2010137025A2 (en) | 2009-05-29 | 2010-12-02 | Smart Medical Systems Ltd. | Anchoring assemblies for endoscopes |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
US8355774B2 (en) | 2009-10-30 | 2013-01-15 | Medtronic, Inc. | System and method to evaluate electrode position and spacing |
WO2011111040A2 (en) | 2010-03-09 | 2011-09-15 | Smart Medical Systems Ltd | Balloon endoscope and methods of manufacture and use thereof |
US10052014B2 (en) | 2010-03-09 | 2018-08-21 | Smart Medical Systems Ltd. | Balloon endoscope and methods of manufacture and use thereof |
EP3892183A1 (en) | 2010-03-09 | 2021-10-13 | Smart Medical Systems Ltd | Balloon endoscope and methods of manufacture and use thereof |
US10610086B2 (en) | 2010-03-09 | 2020-04-07 | Smart Medical Systems Ltd. | Balloon endoscope and methods of manufacture and use thereof |
US10456564B2 (en) | 2011-03-07 | 2019-10-29 | Smart Medical Systems Ltd. | Balloon-equipped endoscopic devices and methods thereof |
EP3461527A1 (en) | 2011-03-07 | 2019-04-03 | Smart Medical Systems Ltd. | Open-loop pressure control system for an endoscope |
WO2012120492A1 (en) | 2011-03-07 | 2012-09-13 | Smart Medical Systems Ltd | Balloon-equipped endoscopic devices and methods thereof |
EP3998099A1 (en) | 2011-03-07 | 2022-05-18 | Smart Medical Systems Ltd. | Balloon-equipped endoscopic devices and methods thereof |
US10518068B2 (en) | 2012-12-31 | 2019-12-31 | C.R. Bard, Inc. | Balloon catheter with adjustable inner member |
US20170312000A1 (en) * | 2013-03-15 | 2017-11-02 | Kyphon Sarl | Device for performing a surgical procedure and method |
US10959765B2 (en) * | 2013-03-15 | 2021-03-30 | Kyphon Sarl | Device for performing a surgical procedure and method |
US8939962B2 (en) * | 2013-04-17 | 2015-01-27 | Ramyar Azar | System and method for urinary catheterization |
US10314471B2 (en) | 2013-05-21 | 2019-06-11 | Smart Medical Systems Ltd. | Endoscope reprocessing method |
US10398295B2 (en) | 2014-12-22 | 2019-09-03 | Smart Medical Systems Ltd. | Balloon endoscope reprocessing system and method |
US10835107B2 (en) | 2015-04-03 | 2020-11-17 | Smart Medical Systems Ltd. | Endoscope electro-pneumatic adaptor |
US20210378593A1 (en) * | 2016-03-24 | 2021-12-09 | C. R. Bard, Inc. | Catheter Assembly Including Transitioning Lumens |
Also Published As
Publication number | Publication date |
---|---|
FR2180631A1 (en) | 1973-11-30 |
DE2252478A1 (en) | 1973-10-31 |
GB1401477A (en) | 1975-07-16 |
JPS5544623B2 (en) | 1980-11-13 |
JPS4917088A (en) | 1974-02-15 |
FR2180631B1 (en) | 1975-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3837347A (en) | Inflatable balloon-type pacing probe | |
US5345936A (en) | Apparatus with basket assembly for endocardial mapping | |
US5891027A (en) | Cardiovascular catheter system with an inflatable soft tip | |
US5520645A (en) | Low profile angioplasty catheter and/or guide wire and method | |
US6016437A (en) | Catheter probe system with inflatable soft shafts | |
US5029585A (en) | Comformable intralumen electrodes | |
US6371943B1 (en) | Spring tip needle combination | |
US5056532A (en) | Esophageal pacing lead | |
US4290428A (en) | Catheter with bulb | |
US3952742A (en) | Needle-carried, transthoracic, cannula-type cardiac resuscitation instrument | |
US7736362B2 (en) | Catheter balloons | |
US5807324A (en) | Steerable catheter | |
US6728579B1 (en) | “Medical electrode lead” | |
EP0476807A1 (en) | Core wire steerable catheters | |
EP0970718A2 (en) | Esophageal catheter | |
US4624657A (en) | Medical devices having inflatable portions | |
JP3804351B2 (en) | Balloon catheter | |
WO2004020018A3 (en) | Ultrasonic imaging devices and methods of fabrication | |
GB2145932A (en) | Electrosurgical catheters | |
JP2736896B2 (en) | Balloon catheter | |
CN112702965B (en) | Medical apparatus and instruments | |
CN113349918A (en) | Multi-balloon catheter | |
US20230054269A1 (en) | Basket Catheter with Porous Sheath | |
CN116350918A (en) | Balloon catheter for myocardial infarction treatment | |
EP3949884A1 (en) | Medical device |