Nothing Special   »   [go: up one dir, main page]

US3216669A - Apparatus for forming mill rolls of sheeted materials - Google Patents

Apparatus for forming mill rolls of sheeted materials Download PDF

Info

Publication number
US3216669A
US3216669A US181245A US18124562A US3216669A US 3216669 A US3216669 A US 3216669A US 181245 A US181245 A US 181245A US 18124562 A US18124562 A US 18124562A US 3216669 A US3216669 A US 3216669A
Authority
US
United States
Prior art keywords
arms
roll
core
winder
shafts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US181245A
Inventor
Herbert O Corbett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Petrochemicals Inc
Original Assignee
National Destillers and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Destillers and Chemical Corp filed Critical National Destillers and Chemical Corp
Priority to US181245A priority Critical patent/US3216669A/en
Priority to US435620A priority patent/US3226049A/en
Application granted granted Critical
Publication of US3216669A publication Critical patent/US3216669A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/32Coiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • Y10T83/6584Cut made parallel to direction of and during work movement
    • Y10T83/6592Interrelated work-conveying and tool-moving means

Definitions

  • the present invention relates to an improved method and apparatus for forming mill rolls of sheet materials. Further, the invention relates to an improved method of forming such rolls, wherein the sheet material is laid up under a tension applied laterally of the wound sheet in a manner adapted to smooth each layer of material as it is wound upon the roll. More particularly, the invention relates to a method and apparatus whereby the laterally tensioned sheet is trimmed as it is wound to provide and maintain a wound sheet of uniform width without substantial irregularity in the longitudinal edge portions of the sheet or in the end portions of the wound roll.
  • the sheet In the forming of mill rolls of sheet materials, it is customary to place the sheet under tension longitudinally thereof. Also, where the sheet material may have been produced by extrusion or casting, as are thermoplastic materials, or by other means as in the production of fibrous materials, such as paper, the longitudinal edges of the sheet may be of heavier or lighter gauge, or may be otherwise irregular. In such circumstances it is customary to trim the sheet edge portions to eliminate irregularities and to produce a sheet of uniform gauge and width. customarily, the sheet, under tension, is trimmed just prior to being Wound.
  • FIG. 1 is a perspective view of a preferred form of apparatus for accomplishing the invention, taken from a position to the left of the line of travel of the sheet material being wound, and looking in a direction generally opposite to such line of travel, at an angle of about 45 thereto; and
  • FIGS. 2A, 2B, 2C, and 2D are diagrammatic illustrations of the relationships of key parts of the apparatus according to FIG. 1 during certain phases of the roll forming procedure and as viewed from a position to the left of and at right angles to the line of travel of the sheet material.
  • FIGS. 3A, 3B, and 3C are diagrammatic illustrations, comparable respectively to FIGS. 2A, 2B, and 2D, of a modified form of the invention during certain phases of the roll-forming procedure.
  • the numeral 10 designates the base of a typical and conventional turret roll winding mechanism.
  • the base On this base, and in opposed relation at the respective ends of the base, are upright standards 11 and 12. These standards support a winder shaft 13 between them and a shaft drive means, such as the motor 14, outboard of the standard 12.
  • a winder frame Also supported on the standards 11 and 12, through the shaft 13, is a winder frame, including winder arms 15 and 16, and core shafts 17 and 18. The arms and shafts are arranged in respectively opposed and paired relationship, substantially in the manner shown.
  • the drive means 14 not only provides for indexing rotation of the paired arms about the shaft 13 but also for alternate rotation of the core shafts 17 and 18 during such time as one or the other is in position to permit winding of the sheet material on a core carried by the shaft so positioned.
  • the operating elements of the turret winder are not shown in detail because of its well known and generally conventional construction, including the means whereby the shafts 17 and 18 are mounted so as to permit them to receive and provide for rotation of roll core elements such as designated by the numerals 1S! and 20. It is to be noted, however, that such means include chuck elements such as generally designated by the numerals 21, 22, and 23, which are adapted to position and secure core units 19 and 20 on the shafts 17 and 18.
  • the numeral 24 designates a web of a sheeted material such as a fibrous material, or another, such as formed from polyethylene, cellulose acetate, polypropylene, or like synthetic materials.
  • a sheeted material such as a fibrous material, or another, such as formed from polyethylene, cellulose acetate, polypropylene, or like synthetic materials.
  • the present invention contemplates materials such as polyethylene and polypropylene, thermoplastic sheeted materials formed by extrusion or casting procedures.
  • FIG. 1 the origin of the web is not shown, but in the conventional extrusion or casting procedure, as formed, web usually includes a thickened portion or head, 24a and 24b, longitudinally of the respective edges.
  • the beaded edges In the finished product, namely the mill roll contemplated, the beaded edges must be trimmed. conventionally, this is done by means such as trimmer knives, indicated in FIG. 1 by the numerals 25 and 26.
  • trimmer knives are initially utilized in the method according to the present invention, but in the apparatus contemplated, they are disposed so as to permit withdrawal fro man initial operating position.
  • the trimmer knives are mounted on a supported shaft 27, which shaft may be rotated so as to position the knives 25 and 26 in intersecting relation to the plane or travel path of the material web 24 or to withdraw the knives from such position.
  • the knives are shown in an intersecting relationship, the direction of rotation of the shaft to withdraw the knives from their position being indicated by a directional arrow.
  • the knife mounts are disposed for reciprocal movement longitudinally of the shaft 27, whereby to permit adjustment of the knives so as to accommodate for different web widths.
  • the knives 25 and 26 are positioned with relation to each other to trim the web to a lateral dimension equal to that of the longitudinal dimension of the respective cores 19 and 20 with the cut Web edges aligned with the end edges of the cores.
  • the web material from whatever source, is delivered or led over idler rolls such as designated by the numerals 31 and 32.
  • the first of these is mounted in a fixed position at a level above that assumed by either of the shafts 17 or 18 and the cores 19 or 20 "mounted thereon, when in a roll winding position.
  • second idler 32 preferably is mounted for vertical adjustment relative to the core which may be in a winding position,'whereby to insure contact of the web with the core or with the surface layer of the Web wound thereon on a line not substantially above the axis of the core and in as close proximity to a vertical plane therethrough as may .be permitted by the circular path described by the shafts 17 and 18 during their rotational movement about the shaft 13.
  • the idler 32 is positioned to as to induce initial contact of the web material with the core or the surface of the outer layer of web material wound thereon at an angle not substantially greater than about 45, with reference of the plane of said web to said vertical plane through the axis of the core and shaft. This relationship of the idler 32 and the web plane to the .core and shaft is of some critical significance in carrying .out the method as later described.
  • journal blocks 47 and 48 are joined by means such as journal blocks 47 and 48.
  • the journal blocks, 47 and 48 serve to support the opposite ends of a shaft 49, on which is mounted a rider roll 51.
  • rider roll 51 At opposite ends of the rider roll 51 are circular knife blades 53 and 54. Both the roll and the blades are adapted for mounting in fixed relation to each other or to the shaft 49.
  • the roll 51 and blades 53 and 54 are intended for free rotation substantially in contact with the core members 17 or 18 or with the web material as wound thereon.
  • the roll 51 is of rubber or a like material or is provided with a surface coating having a relatively high coefiicient of friction in contact with the web material to be wound.
  • journal blocks 47 and 48 be mounted on the respective pairs of radius arms for reciprocally adjustable positioning thereon, whereby the rider roll and knives may be properly disposed relative to the respective cores when in the winding position.
  • the rider roll 51 is of a length substantially equal to that of the core rolls 19 and 20, whereby to space the knife blades 53 and 54 by a distance substantially equal to the desired longitudinal dimension of the finished mill roll.
  • the knife blades have a chamfered portion forming the cutting edge of each blade and are mounted with that portion exposed outwardly from the rider roll, the flat inner surface of each knife being disposed in very closely spaced relation to the outer ends of the rider roll or otherwise disposed so that the distance between these surfaces is very slightly greater than the length of the core rolls 1.9 and 20.
  • the diameter of the knife blades is determined to be greater than that of the rider roll, but by not substantially more than one-half the difference between the inner and outer diameters of the core roll.
  • the weight of the trimmer assembly is balanced by means such as the arms 61 and 62 and related counterweights 63 and 64, respectively. These counterweights are mounted for reciprocally adjustable movement on the respective arms whereby to balance the trimmer assembly on a radius substantially corresponding to and aligned with the arms '4 15 and 16, when disposed in position for winding the web material on mill roll core.
  • journal blocks 47 and 48 are adjustably mounted on the radius arms 43 to 46 inclusive.
  • the journal blocks are so positioned as to extend the rider roll 51 into substantially tangential relationship to a core roll, when it is initially positioned to receive the web material for winding thereon.
  • the intended disposition and relative positions of such core and rider rolls is shown by FIG. 2A.
  • the positioned. core roll, in FIG. 2A, is designated by the numeral 19, and its counterpart by the numeral 20, as in FIG. 1.
  • the shaft 27 is rotated to interpose the knives 25 and 26 in the travel plane of the web 24, whereby to trim therefrom the beaded edge portions 24a and 24b.
  • the trimmed web is then led over the idler rolls 31 and 32 and started on the core 19.
  • the rotating core roll will be positively engaged in frictional contact with the rider roll 51.
  • the rider roll will be rotated along with the mounting shaft 17, and the circular knife blades 53 and 54 mounted and secured thereon.
  • the shaft 27 may be rotated to withdraw the trimmer knives 25 and 26 from their initial position.
  • the core 19 is rotated at a rotational speed slightly higher than the rate of travel of the web 24, and thus applies a certain degree of longitudinal tension in the web as wound on the core.
  • the core roll 19 is of a lesser longitudinal dimension than the lateral dimension of the material web, when the trimmer knives 25 and 26 are moved away from the travel plane of the web, the longitudinal tension in the web draws the beaded edge portions 24a and 24b thereof downwardly over the core ends, thereby to create a certain degree of lateral tension in the web.
  • This lateral tension coupled with the induced longitudinal tension smooths the web layers as applied to the rotating roll core.
  • the uncut web may be caused to pass over a considerable portion of the core and wound roll circumference prior to contact of the bead portions 24a and 24b with the trimmer knives 53 and 54, whereby to assure an adequate application of the induced lateral tension on the web andto achieve a maximum smoothing thereof.
  • the knives 53 and 54 being spaced at a distance apart just slightly greater than the length of the core rolls 19 and 20, will produce a cut web having an initial cut width slightly greater than these cores. This difference in the web width is adjusted to an allowance for shrinkage of the web as the lateral tension therein is relieved by trimming of the beaded edge portions 24 and 24b. In the wound roll this allowed-for shrinkage results in a roll wherein the end edges of the web will lie substantially in planes common to the respective ends of the core rolls on which the web is wound. With web materials having little or no elasticity, the knives may be set closer to the core ends, but preferably still not in substantial hearing or frictional contact therewith.
  • trim exhaust conduits 65 and 66 are provided for this purpose. These tubes are disposed with inlets in close proximity to the trimmer knives and are led away therefrom so as to avoid interference with rotation of the winder frame.
  • FIGS. 2A, 2B, 2C, and 2D the lines representative of structural parts of the apparatus shown in FIG. 1 are designated by the same numerals.
  • the numerals 19 and 20 indicate core rolls, the numerals 51 a rider roll, and a winder arm, all as illustrated by FIG. 1.
  • the radius arms 43 and 45 and the journal block 47 are collectively represented in FIGS. 2B and 2C by the line designatedby the letter R.
  • the partially wound mill roll is designated by the numeral 19a, While in FIG. the completed roll is designated by the numeral 19b.
  • the radius arm units including the rider roll 51, are balanced to assume an initial operating position substantially as shown in FIG. 2A.
  • the rider roll axis is disposed in a plane common to the respective axes of the core rolls 19 and 20 and to the shaft 13 shown in FIG. 1.
  • FIG. 2B the axial plane of the elements 19, 13, and 20 is unchanged.
  • the partially wound roll 19a having a greater diameter than the core 19, has caused the rider roll to be displaced from its original aligned position.
  • FIG. 2C in turn illustrates the relative positions of the elements as the winder arms are rotated with the shaft 13 to remove the completed roll 1% from the web winding position as shown in FIGS. 2A and 2B.
  • the rider roll tends to be carried along with the completed roll, especially if there is any degree of frictional contact between it and the knives 53 and 54, and also by virtue of oscillation of the radius arms and rider roll structure about the shaft 13 in returning to its original balanced position shown in FIG. 2A.
  • Rotation of the winder arm 15 through 180 carries the core 20 into a Winding position and the core 19 and roll 1W2 into position for removal from the winder frame.
  • the core 19 is then replaced by a new core in preparation for the next cycle.
  • the position of the elements at this stage of the operation is represented in FIG. 2D.
  • FIGS. 3A, 3B, and 3C diagrammatically illustrate the relationships contemplated by such construction and also the alternate operating procedure adapted thereto.
  • FIGS. 3A, 3B, and 3C the respective elements equivalent to those illustrated and represented in FIGS. 1 through 2A are designated by similar numerals in a 100 series.
  • the represented core rolls are 119 and 120
  • the Winder arm is 115, etc.
  • the trimmer frame elements represented are radius R rider roll 151, and shaft 149.
  • the displaced axis of the frame elements is designated by the letter A.
  • FIGS. 3A, 3B, and 3C Although the method of operation when employing an apparatus such as represented by FIGS. 3A, 3B, and 3C is similar to that employing the apparatus as shown in FIG. 1 and represented in FIGS. 2A, 2B, 2C, and 2D, certain operational characteristics are peculiar to the alternate form. Chiefly, whereas the winder arms 15 and 16 of the apparatus in FIG. 1 are indexed in a clockwise direction, from the viewed position, in the alternate form, the arm 115 is indexed in a counterclockwise direction. Also, whereas in the basic form of the apparatus the rider roll 51 is initially extended into tangential but noncontact relation to a core roll, such as the core roll 19, in the apparatus represented by FIGS.
  • a core roll such as the core roll 19
  • the rider roll 151 is in tangential contact at the very beginning of the winding operation.
  • the position of the rider roll 51 being once established with reference to a core of a certain diameter, need not be changed regardless of the radial dimension of the mill roll to be produced.
  • the radial dimension of the mill roll produced is fixed at that dimension which is slightly less than the difference between the radius of the indexing rotational path described by the mill roll axis and the radius of the path described by the rider roll axis plus its own radius.
  • the radius of the rider roll axis path must be shortened. If smaller rolls are to be produced, however, no change normally need be made. As shown especially by FIG.
  • the maximum mill roll radius permit clearance between the mill roll and rider roll at some point short of the perigeal position of the axis of the rider r-oll 151 with reference to the axis 113 of the winder arm 115.
  • the counterbalanced rider roll is freed to return to engagement with the next core roll, such as designated by the numeal 12!).
  • the rider roll 151 and its supporting radius arm elements will be counterbalanced by tensional spring means adapted to avoid forceful tangential contact between the rider roll and oppositely rotated core roll.
  • An apparatus of the character described comprising in combination, a pair of winder frame arms mounted for aligned, spaced opposed relation on an axis midway between the outer ends thereof, rotatable shafts mounted in and extending between the ends of said opposed arms, each of said rotatable shafts being adapted for fixed engagement with a hollow core supported coaxially thereon, means for rotating said shafts and for intermittently indexing said arms about said axis, a counter balanced trimmer frame mounted intermediate said winder frame arms on an axis parallel to said rotatable support shafts, said trimmer frame including a pair of radius arm elements disposed in spaced, opposed, parallel relation, a journal in each radius arm, an idler shaft supported between said journals, in parallel relation to said axis parallel to said rotatable support shafts, for idle rotation therein, a rider roll coaxially mounted on said idler shaft, said radius arms being adapted to extend said rider roll into substantially tangential relation to either of said hollow core elements mounted on said rotatable winder arms
  • trimmer frame mounting axis parallel to said rotatable support shafts is comm-on to the mounting axis of said winder frame arms.
  • trimmer frame mounting axis parallel to said rotatable support shafts is in spaced parallel relation to the mounting axis of said winder frame arms.
  • trimmer frame mounting axis parallel to said rotatable support shafts is displaced radially from the mounting axis of said winder frame by a dimension substantially epual to the outside diameter of said rider roll.
  • a means for trimming opposite longitudinal edge portions of a web of a sheeted material as wound on a winding core operably positioned by said winder frame arms, comprising a pair of radius arm elements mounted in spaced parallel opposed relation intermediate said winder frame arms, for arcuate movement on an axis parallel to that of said winder shafts; and an idler shaft rotatably supported between the ends of said radius arms; a rider roll carried by said idler shaft in coaxial relation therewith, said radius arrns being adapted to extend said shaft carried rider roll into substantially tangential relation
  • said I counterbalance means comprises support arm elements substantially integral with each said radius arm extending radially away from said axis of said arms and divergently from said radius arms at an angle not less than 90, and counterbalance weights adjust-ably mounted on said arms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Replacement Of Web Rolls (AREA)

Description

Nov. 9, 1965 H. o. CORBETT FlG.E
Nov. 9, 1965 H. o. CORBETT 3,215,669
APPARATUS FOR FORMING MILL ROLLS 0F SHEETED MATERIALS Filed March 21, 1962 5 Sheets-Sheet 2 HERBERT O. CORBETT INVENTOR.
Nov. 9, 1965 H. o. CORBETT 3,
APPARATUS FOR FORMING MILL ROLLS OF SHEETED MATERIALS Filed March 21, 1962 5 Sheets-Sheet 3 Nov. 9, 1965 H. o. CORBETT 3,216,669
APPARATUS FOR FORMING MILL ROLLS OF SHEETED MATERIALS Filed March 21, 1962 5 Sheets-Sheet 4 FIG.3B
HERBERT 0. CORBETT INVENTOR.
Bygg g Nov. 9, 1965 H. o. CORBETT 3,215,659
APPARATUS FOR FORMING MILL ROLLS 0F SHEETED MATERIALS Filed March 21, 1962 5 Sheets-Sheet 5 FIG.30
HERBERT O. CORBETT INVENTOR.
United States Patent 3,216,669 APPARATUS FGR FORMING MILL ROLLS 0F SHEETED MATERIALS Herbert 0. Corbett, Canandaigua, N.Y., assignor to National Distillers and Chemical Corporation, New York, N.Y., a corporation of Virginia Filed Mar. 21, 1962, Ser. No. 181,245 7 Claims. (Cl. 242-563) The present invention relates to an improved method and apparatus for forming mill rolls of sheet materials. Further, the invention relates to an improved method of forming such rolls, wherein the sheet material is laid up under a tension applied laterally of the wound sheet in a manner adapted to smooth each layer of material as it is wound upon the roll. More particularly, the invention relates to a method and apparatus whereby the laterally tensioned sheet is trimmed as it is wound to provide and maintain a wound sheet of uniform width without substantial irregularity in the longitudinal edge portions of the sheet or in the end portions of the wound roll.
In the forming of mill rolls of sheet materials, it is customary to place the sheet under tension longitudinally thereof. Also, where the sheet material may have been produced by extrusion or casting, as are thermoplastic materials, or by other means as in the production of fibrous materials, such as paper, the longitudinal edges of the sheet may be of heavier or lighter gauge, or may be otherwise irregular. In such circumstances it is customary to trim the sheet edge portions to eliminate irregularities and to produce a sheet of uniform gauge and width. customarily, the sheet, under tension, is trimmed just prior to being Wound.
In the winding of such sheet materials, it has been found that difiiculties are experienced as a result of small variations in the sheet tension from edge to edge. These variations tend to produce small wrinkles and, at times, even definite folds extending in a generally longitudinal direction of the sheet. The wrinkles or folds may interfere with the formation of uniform and parallel edge portions as the sheet is trimmed. They may also result in a mill roll, wherein not only are the end portions of irregular conformation, but also wherein the sheet material layers are distorted and fail to be laid up in a fiat, smooth condition.
It is an object of the present invention to overcome the defects of conventional systems for winding sheet materials to form mill rolls thereof. It is a further object of the invention to provide a method and apparatus whereby to apply a lateral tensioning force to the sheet material as it is laid up or wound to form a mill roll, and thereby substantially avoid wrinkling thereof under the elfect of slight variation of the longitudinal tension-lug force applied during the winding operation. It is also an object of the present invention to provide a method and means whereby the tensioned sheet material may be trimmed evenly and uniformly to produce a mill roll wherein the sheet material is of a uniform lateral dimension, and the roll end portions are of a substantially flat, regular conformation.
The invention and its objects may be more fully understood from the following specification, when it is read with reference to the accompanying drawings, wherein:
FIG. 1 is a perspective view of a preferred form of apparatus for accomplishing the invention, taken from a position to the left of the line of travel of the sheet material being wound, and looking in a direction generally opposite to such line of travel, at an angle of about 45 thereto; and
FIGS. 2A, 2B, 2C, and 2D are diagrammatic illustrations of the relationships of key parts of the apparatus according to FIG. 1 during certain phases of the roll forming procedure and as viewed from a position to the left of and at right angles to the line of travel of the sheet material.
FIGS. 3A, 3B, and 3C are diagrammatic illustrations, comparable respectively to FIGS. 2A, 2B, and 2D, of a modified form of the invention during certain phases of the roll-forming procedure.
In the apparatus as shown by FIG. 1, the numeral 10 designates the base of a typical and conventional turret roll winding mechanism. On this base, and in opposed relation at the respective ends of the base, are upright standards 11 and 12. These standards support a winder shaft 13 between them and a shaft drive means, such as the motor 14, outboard of the standard 12. Also supported on the standards 11 and 12, through the shaft 13, is a winder frame, including winder arms 15 and 16, and core shafts 17 and 18. The arms and shafts are arranged in respectively opposed and paired relationship, substantially in the manner shown. The drive means 14 not only provides for indexing rotation of the paired arms about the shaft 13 but also for alternate rotation of the core shafts 17 and 18 during such time as one or the other is in position to permit winding of the sheet material on a core carried by the shaft so positioned.
In the FIG. 1, the operating elements of the turret winder are not shown in detail because of its well known and generally conventional construction, including the means whereby the shafts 17 and 18 are mounted so as to permit them to receive and provide for rotation of roll core elements such as designated by the numerals 1S! and 20. It is to be noted, however, that such means include chuck elements such as generally designated by the numerals 21, 22, and 23, which are adapted to position and secure core units 19 and 20 on the shafts 17 and 18.
The numeral 24 designates a web of a sheeted material such as a fibrous material, or another, such as formed from polyethylene, cellulose acetate, polypropylene, or like synthetic materials. In particular, the present invention contemplates materials such as polyethylene and polypropylene, thermoplastic sheeted materials formed by extrusion or casting procedures.
In FIG. 1, the origin of the web is not shown, but in the conventional extrusion or casting procedure, as formed, web usually includes a thickened portion or head, 24a and 24b, longitudinally of the respective edges. In the finished product, namely the mill roll contemplated, the beaded edges must be trimmed. conventionally, this is done by means such as trimmer knives, indicated in FIG. 1 by the numerals 25 and 26. Such knives are initially utilized in the method according to the present invention, but in the apparatus contemplated, they are disposed so as to permit withdrawal fro man initial operating position. The trimmer knives, as shown, are mounted on a supported shaft 27, which shaft may be rotated so as to position the knives 25 and 26 in intersecting relation to the plane or travel path of the material web 24 or to withdraw the knives from such position. The knives are shown in an intersecting relationship, the direction of rotation of the shaft to withdraw the knives from their position being indicated by a directional arrow. In addition, the knife mounts are disposed for reciprocal movement longitudinally of the shaft 27, whereby to permit adjustment of the knives so as to accommodate for different web widths. In any event, the knives 25 and 26 are positioned with relation to each other to trim the web to a lateral dimension equal to that of the longitudinal dimension of the respective cores 19 and 20 with the cut Web edges aligned with the end edges of the cores. In the operation contemplated, the
web must be formed with a lateral dimension greater than the longitudinal dimension of the cores.
As shown in FIG. 1, the web material, from whatever source, is delivered or led over idler rolls such as designated by the numerals 31 and 32. The first of these is mounted in a fixed position at a level above that assumed by either of the shafts 17 or 18 and the cores 19 or 20 "mounted thereon, when in a roll winding position. The
second idler 32 preferably is mounted for vertical adjustment relative to the core which may be in a winding position,'whereby to insure contact of the web with the core or with the surface layer of the Web wound thereon on a line not substantially above the axis of the core and in as close proximity to a vertical plane therethrough as may .be permitted by the circular path described by the shafts 17 and 18 during their rotational movement about the shaft 13. Preferably, the idler 32 is positioned to as to induce initial contact of the web material with the core or the surface of the outer layer of web material wound thereon at an angle not substantially greater than about 45, with reference of the plane of said web to said vertical plane through the axis of the core and shaft. This relationship of the idler 32 and the web plane to the .core and shaft is of some critical significance in carrying .out the method as later described.
pairs of arms are joined by means such as journal blocks 47 and 48. The journal blocks, 47 and 48, in turn serve to support the opposite ends of a shaft 49, on which is mounted a rider roll 51. At opposite ends of the rider roll 51 are circular knife blades 53 and 54. Both the roll and the blades are adapted for mounting in fixed relation to each other or to the shaft 49. In any event, the roll 51 and blades 53 and 54 are intended for free rotation substantially in contact with the core members 17 or 18 or with the web material as wound thereon. Preferably .the roll 51 is of rubber or a like material or is provided with a surface coating having a relatively high coefiicient of friction in contact with the web material to be wound. Also, it is preferred that the journal blocks 47 and 48 be mounted on the respective pairs of radius arms for reciprocally adjustable positioning thereon, whereby the rider roll and knives may be properly disposed relative to the respective cores when in the winding position.
The rider roll 51 is of a length substantially equal to that of the core rolls 19 and 20, whereby to space the knife blades 53 and 54 by a distance substantially equal to the desired longitudinal dimension of the finished mill roll. As indicated by the numeral 53a the knife blades have a chamfered portion forming the cutting edge of each blade and are mounted with that portion exposed outwardly from the rider roll, the flat inner surface of each knife being disposed in very closely spaced relation to the outer ends of the rider roll or otherwise disposed so that the distance between these surfaces is very slightly greater than the length of the core rolls 1.9 and 20. The diameter of the knife blades is determined to be greater than that of the rider roll, but by not substantially more than one-half the difference between the inner and outer diameters of the core roll.
The weight of the trimmer assembly, including the radius arms 43, 45, 44, and 46; blocks 47 and 48; roll 51; and knives 53 and 54, is balanced by means such as the arms 61 and 62 and related counterweights 63 and 64, respectively. These counterweights are mounted for reciprocally adjustable movement on the respective arms whereby to balance the trimmer assembly on a radius substantially corresponding to and aligned with the arms '4 15 and 16, when disposed in position for winding the web material on mill roll core.
As previously noted, the journal blocks 47 and 48 are adjustably mounted on the radius arms 43 to 46 inclusive. In operation, according to the method contemplated, the journal blocks are so positioned as to extend the rider roll 51 into substantially tangential relationship to a core roll, when it is initially positioned to receive the web material for winding thereon. The intended disposition and relative positions of such core and rider rolls is shown by FIG. 2A. The positioned. core roll, in FIG. 2A, is designated by the numeral 19, and its counterpart by the numeral 20, as in FIG. 1.
In such initial position of the roll 19, the shaft 27 is rotated to interpose the knives 25 and 26 in the travel plane of the web 24, whereby to trim therefrom the beaded edge portions 24a and 24b. The trimmed web is then led over the idler rolls 31 and 32 and started on the core 19.
If the rider roll 51 has been properly located, in the manner contemplated, as soon as one or two layers of the trimmed web has been laid up on the core roll 19, the rotating core roll will be positively engaged in frictional contact with the rider roll 51. In such engagement, the rider roll will be rotated along with the mounting shaft 17, and the circular knife blades 53 and 54 mounted and secured thereon. As soon as the rider roll is thus positively engaged, the shaft 27 may be rotated to withdraw the trimmer knives 25 and 26 from their initial position.
In the operation, as contemplated, the core 19 is rotated at a rotational speed slightly higher than the rate of travel of the web 24, and thus applies a certain degree of longitudinal tension in the web as wound on the core. Also, inasmuch as the core roll 19 is of a lesser longitudinal dimension than the lateral dimension of the material web, when the trimmer knives 25 and 26 are moved away from the travel plane of the web, the longitudinal tension in the web draws the beaded edge portions 24a and 24b thereof downwardly over the core ends, thereby to create a certain degree of lateral tension in the web. This lateral tension coupled with the induced longitudinal tension smooths the web layers as applied to the rotating roll core. By suitable adjustment of the roll 32 the uncut web may be caused to pass over a considerable portion of the core and wound roll circumference prior to contact of the bead portions 24a and 24b with the trimmer knives 53 and 54, whereby to assure an adequate application of the induced lateral tension on the web andto achieve a maximum smoothing thereof.
The knives 53 and 54, being spaced at a distance apart just slightly greater than the length of the core rolls 19 and 20, will produce a cut web having an initial cut width slightly greater than these cores. This difference in the web width is adjusted to an allowance for shrinkage of the web as the lateral tension therein is relieved by trimming of the beaded edge portions 24 and 24b. In the wound roll this allowed-for shrinkage results in a roll wherein the end edges of the web will lie substantially in planes common to the respective ends of the core rolls on which the web is wound. With web materials having little or no elasticity, the knives may be set closer to the core ends, but preferably still not in substantial hearing or frictional contact therewith.
As the beaded edge portions are trimmed, they are removed from the vicinity of the turret frame by any suitable and conventional means. As shown in FIG. 1,
trim exhaust conduits 65 and 66 are provided for this purpose. These tubes are disposed with inlets in close proximity to the trimmer knives and are led away therefrom so as to avoid interference with rotation of the winder frame.
The operation is further illustrated by the diagrammatic showings of FIGS. 2A, 2B, 2C, and 2D. In these drawings, the lines representative of structural parts of the apparatus shown in FIG. 1 are designated by the same numerals. Thus, in these four drawings, the numerals 19 and 20 indicate core rolls, the numerals 51 a rider roll, and a winder arm, all as illustrated by FIG. 1. The radius arms 43 and 45 and the journal block 47 are collectively represented in FIGS. 2B and 2C by the line designatedby the letter R. Also, in FIG. 2B, the partially wound mill roll is designated by the numeral 19a, While in FIG. the completed roll is designated by the numeral 19b.
As previously mentioned, the radius arm units, including the rider roll 51, are balanced to assume an initial operating position substantially as shown in FIG. 2A. In this position, the rider roll axis is disposed in a plane common to the respective axes of the core rolls 19 and 20 and to the shaft 13 shown in FIG. 1.
As shown in FIG. 2B, the axial plane of the elements 19, 13, and 20 is unchanged. In the winding operating, however, the partially wound roll 19a, having a greater diameter than the core 19, has caused the rider roll to be displaced from its original aligned position. FIG. 2C in turn illustrates the relative positions of the elements as the winder arms are rotated with the shaft 13 to remove the completed roll 1% from the web winding position as shown in FIGS. 2A and 2B. As shown, the rider roll tends to be carried along with the completed roll, especially if there is any degree of frictional contact between it and the knives 53 and 54, and also by virtue of oscillation of the radius arms and rider roll structure about the shaft 13 in returning to its original balanced position shown in FIG. 2A. Rotation of the winder arm 15 through 180 carries the core 20 into a Winding position and the core 19 and roll 1W2 into position for removal from the winder frame. The core 19 is then replaced by a new core in preparation for the next cycle. The position of the elements at this stage of the operation is represented in FIG. 2D.
In an alternate form of the apparatus the trimmer frame composed of radius arms, rider roll, trimmer knives, and idler shaft is mounted on an axis displaced radially from the axis of support for the winder arms. FIGS. 3A, 3B, and 3C diagrammatically illustrate the relationships contemplated by such construction and also the alternate operating procedure adapted thereto.
In FIGS. 3A, 3B, and 3C the respective elements equivalent to those illustrated and represented in FIGS. 1 through 2A are designated by similar numerals in a 100 series. Thus, the represented core rolls are 119 and 120, the Winder arm is 115, etc. In these figures, the trimmer frame elements represented are radius R rider roll 151, and shaft 149. The displaced axis of the frame elements is designated by the letter A.
Although the method of operation when employing an apparatus such as represented by FIGS. 3A, 3B, and 3C is similar to that employing the apparatus as shown in FIG. 1 and represented in FIGS. 2A, 2B, 2C, and 2D, certain operational characteristics are peculiar to the alternate form. Chiefly, whereas the winder arms 15 and 16 of the apparatus in FIG. 1 are indexed in a clockwise direction, from the viewed position, in the alternate form, the arm 115 is indexed in a counterclockwise direction. Also, whereas in the basic form of the apparatus the rider roll 51 is initially extended into tangential but noncontact relation to a core roll, such as the core roll 19, in the apparatus represented by FIGS. 3A, 3B, and BC, the rider roll 151 is in tangential contact at the very beginning of the winding operation. By this relationship, as shown, it is possible to attain a greater degree of lateral tension in the web material, contact of the Web with the roll or previously laid up layers extending through an are considerably greater than the desired 180 minimum mentioned above.
On the other hand, in the apparatus according to FIG. 1 the position of the rider roll 51, being once established with reference to a core of a certain diameter, need not be changed regardless of the radial dimension of the mill roll to be produced. In the apparatus as represented by FIGS. 3A, 3B, and 3C, the radial dimension of the mill roll produced is fixed at that dimension which is slightly less than the difference between the radius of the indexing rotational path described by the mill roll axis and the radius of the path described by the rider roll axis plus its own radius. Thus, if larger diameter mill rolls are to be produced, the radius of the rider roll axis path must be shortened. If smaller rolls are to be produced, however, no change normally need be made. As shown especially by FIG. 3C, it is preferred that the maximum mill roll radius permit clearance between the mill roll and rider roll at some point short of the perigeal position of the axis of the rider r-oll 151 with reference to the axis 113 of the winder arm 115.
At the point of tangential separation of the mill roll and rider roll, the counterbalanced rider roll is freed to return to engagement with the next core roll, such as designated by the numeal 12!). Preferably, the rider roll 151 and its supporting radius arm elements will be counterbalanced by tensional spring means adapted to avoid forceful tangential contact between the rider roll and oppositely rotated core roll.
The specific means for accomplishment of the invention according to the alternate system disclosed are not illustrated and described in detail for the reason that they are considered to fall within the knowledge of those skilled in the art, when afforded the information provided by the generic disclosures related to the apparatus according to FIG. 1 and supported by the operational characteristics described with reference to FIGS. 3A, 3B, and 3C. The scope of the present invention, furthermore, is to be considered to be limited only by that of the appended claims.
What is claimed is:
1. An apparatus of the character described, comprising in combination, a pair of winder frame arms mounted for aligned, spaced opposed relation on an axis midway between the outer ends thereof, rotatable shafts mounted in and extending between the ends of said opposed arms, each of said rotatable shafts being adapted for fixed engagement with a hollow core supported coaxially thereon, means for rotating said shafts and for intermittently indexing said arms about said axis, a counter balanced trimmer frame mounted intermediate said winder frame arms on an axis parallel to said rotatable support shafts, said trimmer frame including a pair of radius arm elements disposed in spaced, opposed, parallel relation, a journal in each radius arm, an idler shaft supported between said journals, in parallel relation to said axis parallel to said rotatable support shafts, for idle rotation therein, a rider roll coaxially mounted on said idler shaft, said radius arms being adapted to extend said rider roll into substantially tangential relation to either of said hollow core elements mounted on said rotatable winder arms, and a pair of circular trimmer knives mounted on said idler shaft respectively disposed at opposite ends of said rider roll; said idler shaft having a length slightly longer than the length of said hollow cores.
2. An apparatus according to claim 1, wherein said trimmer frame mounting axis parallel to said rotatable support shafts is comm-on to the mounting axis of said winder frame arms.
3. An apparatus according to claim 1, wherein said trimmer frame mounting axis parallel to said rotatable support shafts is in spaced parallel relation to the mounting axis of said winder frame arms.
4. An apparatus according to claim 3, wherein said trimmer frame mounting axis parallel to said rotatable support shafts is displaced radially from the mounting axis of said winder frame by a dimension substantially epual to the outside diameter of said rider roll.
5. An apparatus according to claim 4, wherein the distance from said trimmer frame mounting axis parallel to said rotatable support shafts to the axis of said idler shaft is substantially equal to the distance from said mounting axis of said winder frame arms and the respective axis of said rotatable shafts, minus the outside diameter of said rider roll.
6. In an apparatus of the character described, including a pair of winder frame arms mounted for aligned, spaced, opposed relation on an axis midway between the outer ends thereof, rotatable winder shafts mounted in and extending between the ends of said opposed arms, each said winder shaft being adapted to receive a hollow winding core in fixed coaxial relation, and drive means for rotating said winder shafts and for intermittently indexing said winder arms about the said axis therefor, a means for trimming opposite longitudinal edge portions of a web of a sheeted material as wound on a winding core operably positioned by said winder frame arms, comprising a pair of radius arm elements mounted in spaced parallel opposed relation intermediate said winder frame arms, for arcuate movement on an axis parallel to that of said winder shafts; and an idler shaft rotatably supported between the ends of said radius arms; a rider roll carried by said idler shaft in coaxial relation therewith, said radius arrns being adapted to extend said shaft carried rider roll into substantially tangential relation to said winding core; a pair of circular trimmer knives mounted on said idle shaft for rotation therewith respectively disposed at opposite ends of said rider roll; and means substantially integral with said radius arms adapted to counterbalance said radius arms, idler shaft, rider roll and trimmer knives whereby to maintain said tangential relation of said rider roll and said core, said idler shaft having a length slightly longer th the length of said Winding core.
7. An apparatus according to claim 6, wherein said I counterbalance means comprises support arm elements substantially integral with each said radius arm extending radially away from said axis of said arms and divergently from said radius arms at an angle not less than 90, and counterbalance weights adjust-ably mounted on said arms.
References Cited by the Examiner UNITED STATES PATENTS 722,093 3/03 Fisher 24256.4 1,026,482 5/12 White 24256.3 1,579,786 4/26 Ryberg 242-56.2 1,652,522 12/27 Ernst 24256.2 1,959,418 5/ 34 Fourness 242--56.2 1,964,076 6/34 Petersen et al. 24256.2 X 2,384,288 9/45 Eddy 24256.2 3,086,725 4/63 Zernov 242-56.2 3,093,336 6/63 Caulfield et al. 24256 FOREIGN PATENTS 833,296 7/38 France.
217,176 12/ 09 Germany.
520,210 3/31 Germany.
645,744 11/50 Great Britain.
JORDAN FRANKLIN, Primary Examiner.
HARRISON R. MOSELEY, Examinen

Claims (1)

1. AN APPARATUS OF THE CHARACTER DESCRIBED, COMPRISING IN COMBINATION, A PAIR OF WINDER FRAME ARMS MOUNTED FOR ALIGNED, SPACED OPPOSED RELATION ON AN AXIS MIDWAY BETWEEN THE OUTER ENDS THEREOF, ROTATABLE SHAFTS MOUNTED IN AND EXTENDING BETWEEN THE ENDS OF SAID OPPOSED ARMS, EACH OF SAID ROTATABLE SHAFTS BEING ADAPTED FOR FIXED ENGAGEMENT WITH A HOLLOW CORE SUPPORTED COAXIALLY THEREON, MEANS FOR ROTATING SAID SHAFTS AND FOR INTERMITTENTLY INDEXING SAID ARMS ABOUT SAID AXIS, A COUNTER BALANCED TRIMMER FRAME MOUNTED INTERMEDIATE SAID WINDER FRAME ARMS ON AN AXIS PARALLEL TO SAID ROTATABLE SUPPORT SHAFTS, SAID TRIMMER FRAME INCLUDING A PAIR OF RADIUS ARM ELEMENTS DISPOSED IN SPACED, OPPOSED, PARALLEL RELATION, A JOURNAL IN EACH RADIUS ARM, AN IDLER SHAFT SUPPORTED BETWEEN SAID JOURNALS, IN PARALLEL RELATION TO SAID AXIS PARALLEL TO SAID ROTATABLE SUPPORT SHAFTS, FOR IDLE ROTATION THEREIN, A RIDER ROLL COAXIALLY MOUNTED ON SAID IDLER SHAFT, SAID RADIUS ARMS BEING ADAPTED TO EXTEND SAID RIDER ROLL INTO SUBSTANTIALLY TANGENTIAL RELATION TO EITHER OF SAID HOLLOW CORE ELEMENTS MOUNTED ON SAID ROTATABLE WINDER ARMS, AND A PAIR OF CIRCULAR TRIMMER KNIVES MOUNTED ON SAID IDLER SHAFT RESPECTIVELY DISPOSED AT OPPOSITE ENDS OF SAID RIDER ROLL; SAID IDLER SHAFT HAVING A LENGTH SLIGHTLY LONGER THAN THE LENGTH OF SAID HOLLOW CORES.
US181245A 1962-03-21 1962-03-21 Apparatus for forming mill rolls of sheeted materials Expired - Lifetime US3216669A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US181245A US3216669A (en) 1962-03-21 1962-03-21 Apparatus for forming mill rolls of sheeted materials
US435620A US3226049A (en) 1962-03-21 1965-02-26 Method for forming mill rolls of sheeted materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US181245A US3216669A (en) 1962-03-21 1962-03-21 Apparatus for forming mill rolls of sheeted materials

Publications (1)

Publication Number Publication Date
US3216669A true US3216669A (en) 1965-11-09

Family

ID=22663476

Family Applications (1)

Application Number Title Priority Date Filing Date
US181245A Expired - Lifetime US3216669A (en) 1962-03-21 1962-03-21 Apparatus for forming mill rolls of sheeted materials

Country Status (1)

Country Link
US (1) US3216669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708275A (en) * 1986-07-23 1987-11-24 Westvaco Corporation Trim receiver
US20100258017A1 (en) * 2009-04-10 2010-10-14 Kersey Kevin T Print Media Slitter

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE217176C (en) *
US722093A (en) * 1901-12-16 1903-03-03 Frank L Fisher Machine for trimming wall-paper.
US1026482A (en) * 1911-09-05 1912-05-14 Moore And White Company Paper-slitting machine.
US1579786A (en) * 1923-12-27 1926-04-06 Ryberg Anders Emil Cutting up continuous paper webs into single sheets
US1652522A (en) * 1927-02-21 1927-12-13 Eugene C F Ernst Machine for trimming wall paper
DE520210C (en) * 1931-03-09 Josef Balensiefer Rewinding and cutting machine
US1959418A (en) * 1932-08-27 1934-05-22 Paper Patents Co Winder for sheet material
US1964076A (en) * 1930-12-04 1934-06-26 Celluloid Corp Winding machine
FR833296A (en) * 1938-02-04 1938-10-18 Machine for cutting fabrics or the like
US2384288A (en) * 1943-06-10 1945-09-04 Hilda W Striker Process of weaving, transporting, and finishing cloth
GB645744A (en) * 1948-10-16 1950-11-08 John Alfred Gee Improvements in or relating to apparatus for the slitting and reeling of paper or other material in sheet form
US3086725A (en) * 1960-09-28 1963-04-23 Miehle Goss Dexter Inc Web cutting mechanism for continuous rewinder
US3093336A (en) * 1959-11-17 1963-06-11 Champlain Company Inc Continuous turnover rewind

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE520210C (en) * 1931-03-09 Josef Balensiefer Rewinding and cutting machine
DE217176C (en) *
US722093A (en) * 1901-12-16 1903-03-03 Frank L Fisher Machine for trimming wall-paper.
US1026482A (en) * 1911-09-05 1912-05-14 Moore And White Company Paper-slitting machine.
US1579786A (en) * 1923-12-27 1926-04-06 Ryberg Anders Emil Cutting up continuous paper webs into single sheets
US1652522A (en) * 1927-02-21 1927-12-13 Eugene C F Ernst Machine for trimming wall paper
US1964076A (en) * 1930-12-04 1934-06-26 Celluloid Corp Winding machine
US1959418A (en) * 1932-08-27 1934-05-22 Paper Patents Co Winder for sheet material
FR833296A (en) * 1938-02-04 1938-10-18 Machine for cutting fabrics or the like
US2384288A (en) * 1943-06-10 1945-09-04 Hilda W Striker Process of weaving, transporting, and finishing cloth
GB645744A (en) * 1948-10-16 1950-11-08 John Alfred Gee Improvements in or relating to apparatus for the slitting and reeling of paper or other material in sheet form
US3093336A (en) * 1959-11-17 1963-06-11 Champlain Company Inc Continuous turnover rewind
US3086725A (en) * 1960-09-28 1963-04-23 Miehle Goss Dexter Inc Web cutting mechanism for continuous rewinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708275A (en) * 1986-07-23 1987-11-24 Westvaco Corporation Trim receiver
US20100258017A1 (en) * 2009-04-10 2010-10-14 Kersey Kevin T Print Media Slitter

Similar Documents

Publication Publication Date Title
US3724737A (en) Spreader for slit web material
US3536273A (en) Method of and apparatus for winding a web of plastic film
US5317885A (en) Winding device for split knitted fabric
US4183515A (en) Bag folding machine
US3226049A (en) Method for forming mill rolls of sheeted materials
US3216669A (en) Apparatus for forming mill rolls of sheeted materials
US4374575A (en) Winding machine for continuously winding strips of web material into rolls
US3630114A (en) Polymeric filament sheet slitting
US3253795A (en) Paper machinery
US2852813A (en) Method for handling and processing tubular film
GB994604A (en) Improvements in or relating to filamentous mats and their manufacture
US3792824A (en) Roll winding machine
US2124209A (en) Process and machine for making bags
US1680979A (en) Cloth-rolling machine
JPH0428653A (en) Cloth supply mechanism for automatic cutting device
JPH0641334B2 (en) Axial winding method for strip-shaped articles
US4294145A (en) Machine for the crosscutting of a web conveyed as a multi-ply web
US1633595A (en) Device for making rolls of paper
US2679986A (en) Delaminating composite web
US1345907A (en) Machine for making round belting
US1757935A (en) Fabric-feeding device
US2309609A (en) Apparatus for making regenerated cellulosic film
US2253558A (en) Apparatus for sueding cloth
US480111A (en) John j
US2731083A (en) Method and machine for cutting rubber thread with the cutting action periodically interrupted