US3282955A - Reaction products of acylated nitrogen intermediates and a boron compound - Google Patents
Reaction products of acylated nitrogen intermediates and a boron compound Download PDFInfo
- Publication number
- US3282955A US3282955A US276208A US27620863A US3282955A US 3282955 A US3282955 A US 3282955A US 276208 A US276208 A US 276208A US 27620863 A US27620863 A US 27620863A US 3282955 A US3282955 A US 3282955A
- Authority
- US
- United States
- Prior art keywords
- boron
- hydrocarbon
- hydroxy
- acid
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001639 boron compounds Chemical class 0.000 title claims description 8
- 239000000543 intermediate Substances 0.000 title description 32
- 150000002829 nitrogen Chemical class 0.000 title description 29
- 239000007795 chemical reaction product Substances 0.000 title description 4
- -1 BORON HALIDES Chemical class 0.000 claims description 116
- 239000000203 mixture Substances 0.000 claims description 54
- 239000004215 Carbon black (E152) Substances 0.000 claims description 46
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 229910052796 boron Inorganic materials 0.000 claims description 40
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical class [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 39
- 239000002253 acid Substances 0.000 claims description 36
- 229930195733 hydrocarbon Natural products 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 25
- 150000002430 hydrocarbons Chemical group 0.000 claims description 19
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 150000007513 acids Chemical class 0.000 claims description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical class [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 6
- 150000003863 ammonium salts Chemical class 0.000 claims description 5
- 229910052810 boron oxide Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical compound O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 claims 1
- 239000000047 product Substances 0.000 description 52
- 239000000314 lubricant Substances 0.000 description 25
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 24
- 239000010688 mineral lubricating oil Substances 0.000 description 23
- 150000002148 esters Chemical class 0.000 description 22
- 239000011593 sulfur Substances 0.000 description 21
- 229910052717 sulfur Inorganic materials 0.000 description 21
- 239000003921 oil Substances 0.000 description 20
- 239000011574 phosphorus Substances 0.000 description 20
- 229910052698 phosphorus Inorganic materials 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 19
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 19
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 17
- 150000001412 amines Chemical class 0.000 description 17
- 239000000654 additive Substances 0.000 description 16
- 239000000376 reactant Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 125000001424 substituent group Chemical group 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 239000003599 detergent Substances 0.000 description 13
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229910052788 barium Inorganic materials 0.000 description 12
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 12
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 12
- 150000003254 radicals Chemical class 0.000 description 12
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 11
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 11
- 239000002480 mineral oil Substances 0.000 description 11
- 235000010446 mineral oil Nutrition 0.000 description 11
- 150000002989 phenols Chemical class 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 239000010802 sludge Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000004327 boric acid Substances 0.000 description 10
- 150000001638 boron Chemical class 0.000 description 10
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 10
- 229920002367 Polyisobutene Polymers 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229920000098 polyolefin Polymers 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 150000001298 alcohols Chemical class 0.000 description 8
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 8
- 150000002924 oxiranes Chemical class 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 235000011044 succinic acid Nutrition 0.000 description 8
- 229940014800 succinic anhydride Drugs 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 6
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- 201000006747 infectious mononucleosis Diseases 0.000 description 6
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000005077 polysulfide Substances 0.000 description 6
- 229920001021 polysulfide Polymers 0.000 description 6
- 150000008117 polysulfides Polymers 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 159000000007 calcium salts Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N methyl heptene Natural products CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000001384 succinic acid Substances 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 4
- FIWYWGLEPWBBQU-UHFFFAOYSA-N 2-heptylphenol Chemical compound CCCCCCCC1=CC=CC=C1O FIWYWGLEPWBBQU-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 241000158728 Meliaceae Species 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- CETAGCPEESRQJY-UHFFFAOYSA-M [Zn+].CCCCCCCCOP([S-])(=S)OCCCCCCCC Chemical compound [Zn+].CCCCCCCCOP([S-])(=S)OCCCCCCCC CETAGCPEESRQJY-UHFFFAOYSA-M 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 150000001447 alkali salts Chemical class 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 159000000009 barium salts Chemical class 0.000 description 4
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 4
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 3
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 3
- 229910001863 barium hydroxide Inorganic materials 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- 229940043237 diethanolamine Drugs 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229940031098 ethanolamine Drugs 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000003444 succinic acids Chemical class 0.000 description 3
- 239000003784 tall oil Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- DCTMXCOHGKSXIZ-UHFFFAOYSA-N (R)-1,3-Octanediol Chemical compound CCCCCC(O)CCO DCTMXCOHGKSXIZ-UHFFFAOYSA-N 0.000 description 2
- CTMHWPIWNRWQEG-UHFFFAOYSA-N 1-methylcyclohexene Chemical compound CC1=CCCCC1 CTMHWPIWNRWQEG-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 2
- MWGATWIBSKHFMR-UHFFFAOYSA-N 2-anilinoethanol Chemical compound OCCNC1=CC=CC=C1 MWGATWIBSKHFMR-UHFFFAOYSA-N 0.000 description 2
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 2
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229930194542 Keto Natural products 0.000 description 2
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000002194 fatty esters Chemical class 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000000468 ketone group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 2
- 229940073769 methyl oleate Drugs 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229940059574 pentaerithrityl Drugs 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- RFBUNLZEBLXJKX-UHFFFAOYSA-N (4-heptylphenyl)boronic acid Chemical compound CCCCCCCC1=CC=C(B(O)O)C=C1 RFBUNLZEBLXJKX-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- QMMOXUPEWRXHJS-HYXAFXHYSA-N (z)-pent-2-ene Chemical compound CC\C=C/C QMMOXUPEWRXHJS-HYXAFXHYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- LRRZABXLOORYMC-UHFFFAOYSA-N 1,4-dioxane;tribromoborane Chemical compound BrB(Br)Br.C1COCCO1 LRRZABXLOORYMC-UHFFFAOYSA-N 0.000 description 1
- PTYXPKUPXPWHSH-UHFFFAOYSA-N 1-(butyltetrasulfanyl)butane Chemical compound CCCCSSSSCCCC PTYXPKUPXPWHSH-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- SYARXGKFRGMZAZ-UHFFFAOYSA-N 1-aminooctadecan-9-ol Chemical compound OC(CCCCCCCCN)CCCCCCCCC SYARXGKFRGMZAZ-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- GHAJHABJNNQPOA-UHFFFAOYSA-N 10-hydroxydecan-4-one Chemical compound CCCC(=O)CCCCCCO GHAJHABJNNQPOA-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- UDFARPRXWMDFQU-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanylmethyl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CSCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 UDFARPRXWMDFQU-UHFFFAOYSA-N 0.000 description 1
- OFMNOWYDHUOSEI-UHFFFAOYSA-N 2,6-ditert-butyl-6-methylcyclohexa-2,4-dien-1-ol Chemical compound CC(C)(C)C1=CC=CC(C)(C(C)(C)C)C1O OFMNOWYDHUOSEI-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- IBWLXNDOMYKTAD-UHFFFAOYSA-N 2-(4-chlorophenyl)oxirane Chemical compound C1=CC(Cl)=CC=C1C1OC1 IBWLXNDOMYKTAD-UHFFFAOYSA-N 0.000 description 1
- MGUMZJAQENFQKN-UHFFFAOYSA-N 2-(cyclohexylamino)ethanol Chemical compound OCCNC1CCCCC1 MGUMZJAQENFQKN-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- 125000005999 2-bromoethyl group Chemical group 0.000 description 1
- LVDALGYBEFALAP-UHFFFAOYSA-N 2-butylcyclohexan-1-ol Chemical compound CCCCC1CCCCC1O LVDALGYBEFALAP-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical class OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- RCBGGJURENJHKV-UHFFFAOYSA-N 2-methylhept-1-ene Chemical compound CCCCCC(C)=C RCBGGJURENJHKV-UHFFFAOYSA-N 0.000 description 1
- TXBZITDWMURSEF-UHFFFAOYSA-N 3,3-dimethylpent-1-ene Chemical compound CCC(C)(C)C=C TXBZITDWMURSEF-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- XSRHZBURGWEGHH-UHFFFAOYSA-M C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Zn+] Chemical compound C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Zn+] XSRHZBURGWEGHH-UHFFFAOYSA-M 0.000 description 1
- AZHVHQBLKBATAX-UHFFFAOYSA-M C1(CCCCC1)OP(OC1CCCCC1)(=S)[S-].[Zn+] Chemical compound C1(CCCCC1)OP(OC1CCCCC1)(=S)[S-].[Zn+] AZHVHQBLKBATAX-UHFFFAOYSA-M 0.000 description 1
- VVYHQBHOFCSIRB-UHFFFAOYSA-N C1CCCCC1S(C1CCCCC1)=P(S)(O)OCCC1=CC=CC=C1 Chemical compound C1CCCCC1S(C1CCCCC1)=P(S)(O)OCCC1=CC=CC=C1 VVYHQBHOFCSIRB-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- GXBYFVGCMPJVJX-UHFFFAOYSA-N Epoxybutene Chemical compound C=CC1CO1 GXBYFVGCMPJVJX-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001544487 Macromiidae Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- JPYPZXAFEOFGSM-UHFFFAOYSA-N O.[B]=O Chemical compound O.[B]=O JPYPZXAFEOFGSM-UHFFFAOYSA-N 0.000 description 1
- GWFGDXZQZYMSMJ-UHFFFAOYSA-N Octadecansaeure-heptadecylester Natural products CCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC GWFGDXZQZYMSMJ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- WDZCJFZKULYAMW-UHFFFAOYSA-N [O-][N+](S)=O Chemical compound [O-][N+](S)=O WDZCJFZKULYAMW-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000002199 base oil Substances 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- SYFIMIPHNTZHIN-UHFFFAOYSA-N bis(2-methylpropoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)COP(S)(=S)OCC(C)C SYFIMIPHNTZHIN-UHFFFAOYSA-N 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- FEXXLIKDYGCVGJ-UHFFFAOYSA-N butyl 8-(3-octyloxiran-2-yl)octanoate Chemical compound CCCCCCCCC1OC1CCCCCCCC(=O)OCCCC FEXXLIKDYGCVGJ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001723 carbon free-radicals Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- GCFAUZGWPDYAJN-UHFFFAOYSA-N cyclohexyl 3-phenylprop-2-enoate Chemical compound C=1C=CC=CC=1C=CC(=O)OC1CCCCC1 GCFAUZGWPDYAJN-UHFFFAOYSA-N 0.000 description 1
- XDRVAZAFNWDVOE-UHFFFAOYSA-N cyclohexylboronic acid Chemical compound OB(O)C1CCCCC1 XDRVAZAFNWDVOE-UHFFFAOYSA-N 0.000 description 1
- PAZHOQPRMVOBDD-RMRYJAPISA-N cyclopenta-1,3-diene;(1s)-1-(2-diphenylphosphanylcyclopenta-1,4-dien-1-yl)-n,n-dimethylethanamine;iron(2+) Chemical compound [Fe+2].C=1C=C[CH-]C=1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1[C@@H](N(C)C)C PAZHOQPRMVOBDD-RMRYJAPISA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- XFAYHOVTJNPDJW-UHFFFAOYSA-N di(nonoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCOP(S)(=S)OCCCCCCCCC XFAYHOVTJNPDJW-UHFFFAOYSA-N 0.000 description 1
- SZXCCXFNQHQRGF-UHFFFAOYSA-N di(propan-2-yloxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)OP(S)(=S)OC(C)C SZXCCXFNQHQRGF-UHFFFAOYSA-N 0.000 description 1
- BVXOPEOQUQWRHQ-UHFFFAOYSA-N dibutyl phosphite Chemical compound CCCCOP([O-])OCCCC BVXOPEOQUQWRHQ-UHFFFAOYSA-N 0.000 description 1
- 125000004188 dichlorophenyl group Chemical group 0.000 description 1
- HEGXHCKAUFQNPC-UHFFFAOYSA-N dicyclohexyl hydrogen phosphite Chemical compound C1CCCCC1OP(O)OC1CCCCC1 HEGXHCKAUFQNPC-UHFFFAOYSA-N 0.000 description 1
- POWRQOUEUWZUNQ-UHFFFAOYSA-N didecyl phosphite Chemical compound CCCCCCCCCCOP([O-])OCCCCCCCCCC POWRQOUEUWZUNQ-UHFFFAOYSA-N 0.000 description 1
- GHKVUVOPHDYRJC-UHFFFAOYSA-N didodecyl hexanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCC GHKVUVOPHDYRJC-UHFFFAOYSA-N 0.000 description 1
- SPBMDAHKYSRJFO-UHFFFAOYSA-N didodecyl hydrogen phosphite Chemical compound CCCCCCCCCCCCOP(O)OCCCCCCCCCCCC SPBMDAHKYSRJFO-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- CUKQEWWSHYZFKT-UHFFFAOYSA-N diheptyl hydrogen phosphite Chemical compound CCCCCCCOP(O)OCCCCCCC CUKQEWWSHYZFKT-UHFFFAOYSA-N 0.000 description 1
- BFUUWBPGPXGDMK-UHFFFAOYSA-N diheptyl phenyl phosphite Chemical compound CCCCCCCOP(OCCCCCCC)OC1=CC=CC=C1 BFUUWBPGPXGDMK-UHFFFAOYSA-N 0.000 description 1
- VFXJDWTUUZBKKT-UHFFFAOYSA-N dihexoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCOP(S)(=S)OCCCCCC VFXJDWTUUZBKKT-UHFFFAOYSA-N 0.000 description 1
- NOCMYCSJUZYBNE-UHFFFAOYSA-N dioctadecyl hydrogen phosphite Chemical compound CCCCCCCCCCCCCCCCCCOP(O)OCCCCCCCCCCCCCCCCCC NOCMYCSJUZYBNE-UHFFFAOYSA-N 0.000 description 1
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- UMJURJHHLVYBFY-UHFFFAOYSA-N dodecylboronic acid Chemical compound CCCCCCCCCCCCB(O)O UMJURJHHLVYBFY-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 1
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TXGJTWACJNYNOJ-UHFFFAOYSA-N hexane-2,4-diol Chemical compound CCC(O)CC(C)O TXGJTWACJNYNOJ-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- UNOGLHIYPXTOGD-UHFFFAOYSA-N isooctyl laurate Chemical compound CCCCCCCCCCCC(=O)OCCCCCC(C)C UNOGLHIYPXTOGD-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- WWRMRGSSMGHJPF-UHFFFAOYSA-N n-dodecyl-n-methylhydroxylamine Chemical compound CCCCCCCCCCCCN(C)O WWRMRGSSMGHJPF-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical compound CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- NKBWPOSQERPBFI-UHFFFAOYSA-N octadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC NKBWPOSQERPBFI-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- 229940113162 oleylamide Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- VGTPKLINSHNZRD-UHFFFAOYSA-N oxoborinic acid Chemical compound OB=O VGTPKLINSHNZRD-UHFFFAOYSA-N 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- VENBJVSTINLYEU-UHFFFAOYSA-N phenol;trifluoroborane Chemical compound FB(F)F.OC1=CC=CC=C1 VENBJVSTINLYEU-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- HPCIWDZYMSZAEZ-UHFFFAOYSA-N prop-2-enyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC=C HPCIWDZYMSZAEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- WQYSXVGEZYESBR-UHFFFAOYSA-N thiophosphoryl chloride Chemical compound ClP(Cl)(Cl)=S WQYSXVGEZYESBR-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- QFPJLUUPISOYFO-UHFFFAOYSA-N tris(2,3-dipentylphenyl) phosphite Chemical compound CCCCCC1=CC=CC(OP(OC=2C(=C(CCCCC)C=CC=2)CCCCC)OC=2C(=C(CCCCC)C=CC=2)CCCCC)=C1CCCCC QFPJLUUPISOYFO-UHFFFAOYSA-N 0.000 description 1
- UCUSXNYCXPURPF-UHFFFAOYSA-N tris(3-chloro-4-heptylphenyl) phosphite Chemical compound C1=C(Cl)C(CCCCCCC)=CC=C1OP(OC=1C=C(Cl)C(CCCCCCC)=CC=1)OC1=CC=C(CCCCCCC)C(Cl)=C1 UCUSXNYCXPURPF-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/022—Boron compounds without C-boron linkages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/027—Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/09—Heterocyclic compounds containing no sulfur, selenium or tellurium compounds in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/061—Metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/063—Complexes of boron halides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
Definitions
- This invention relates to oil-soluble nitrogenand boroncontaining compositions and to the process of preparing the same.
- the compositions of this invention are useful as additives in lubricants, especially lubricants intended for use in internal combustion engines, gears, and power transmitting units.
- High operating temperatures are characteristic of a lubricant in an engine that is run at relatively constant high speed.
- an engine that is run at 60 miles per hour for a long period of time it is very unlikely that there will be any accumulation of Water and it is similarly unlikely that there will be any formation and deposition of sludge, but in ordinary stop-and-go driving such as is the case with taxicabs, delivery trucks, police cruisers, etc. the crankcase lubricant will be alternately hot and cold, an ideal environment for the accumulation of water. In such cases the formation of sludge is a serious problem. This problem has been with the automotive industry for many years and its solution has been approached by the use of known detergents such as metal phenates and sulfonates but without notable success.
- compositions which are adapted for use as additives in hydrocarbon oils.
- compositions which are effective as detergents in lubricating compositions are also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.
- a process for preparing oilsoluble nitrogenand boron-containing compositions comprising forming an acylated nitrogen intermediate by the reaction of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent with at least about one-half equivalent of a hydroxyhydrocarbon amine having the structural formula H-N-R wherein R is selected from the class consisting of hydrogen, hydrocarbon, and hydroxy-hydrocarbon radicals, at least one of the two R radicals in said formula being a hydroxy-hydrocarbon radical, and reacting said acylated nitrogen intermediate with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said acylated nitrogen intermediate to about 10 atomic proportions
- the substantially hydrocarbon-substituted succinic acidproducing compounds from which the acylated nitrogen intermediates of the above process are derived are characterized by the presence Within their molecular structure of a substantially hydrocarbon group having at least about 50 aliphatic carbon atoms and at least one succinic acidproducing group.' They are illustrated by compounds having the structural formula O GHZ-ii-X wherein R is a substantially hydrocarbon radical having at least about 50 aliphatic carbon atoms and X is a halogen, hydroxy, hydrocarbon-oxy, or acyloxy radical.
- the substantially hydrocarbon substituent of the succinic acid-producing compounds may contain polar groups provided, however, that the polar groups are not present in proportions sutficiently large to alter significantly the hydrocarbon character of the substituent.
- the polar groups are exemplified by chloro, bromo, keto, ethereal, aldehydo, and nitro, etc.
- the upper limit with respect to the proportion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent.
- the sources of the substantially hydrocarbon substitwater or steam to the corresponding acid.' Either the anuent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 30 carbon atoms.
- the especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, lcotene, 2-methyl-I-heptene, 3-cycl0hexyl-1-butene, and 2- methyl-S-propyl-l-hexene.
- Polymers of medial olefins i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by Z-butene, 3-pentene, and 4-octene.
- interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins.
- Such inter-polymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; 1-hexene with 1,3-hexa- 'diene; l-octene with l-hexene; 1-heptene with l-pentene; 3-methyl-1-butene with l-octene; 3,3-dimethyl-1 pentene with 1-hexene;'isobutene with styrene and piperylene; etc.
- the relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers.
- the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95 on a weight basis of units derived from the aliphatic monoolefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be lessthan about 2% of the total number of carbon-tocar-bon covalent linkages.
- inter-polymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexene; terpolymer of 80% of isobutene with 20% of l-pentene and 20% of 1-octene;copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.
- Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbon such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
- olefin polymers having molecular weight of about 750-5000 are preferred.
- Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention.
- the use of such higher molecular weight olefin polymers often is desirable.
- the substantially saturated, aliphatic hydrocarbon-substituted succinic acids and anhydrides are especially preferred for use as the acid-producing reactant of this process for reasons of the particular effectiveness of the products obtained from such compounds as additives in hydrocarbon oils.
- the succinic compounds are readily available from the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature'about 100200 C.
- the product from such a reaction is an alkenyl succinic anhydride.
- the alkenyl group may be hydrogenated to an alkyl group.
- the anhydride may be hydrolyzed by treatment with hydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, or alcohols.
- hydrocarbons containing an activating polar substituent i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or anhydride, may be used in the. above-illustrated reaction for preparing the succinic compounds.
- Such polar substituents may be illustrated by sulfide, di-
- sulfide nitro, mercaptan, bromine, ketone, or aldehyde radicals.
- polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, bromin ated polyethylene, etc.
- Another methoduseful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight.
- olefin or a polar-substituted hydrocarbon at a temperature usually within the range from about 100 C. to about 200 C.
- the acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrideswith a halogenation agent such as phosphorus tri-bromide, phosphorus pentachloride or thionyl chloride.
- the esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadeconal, cyclohexanol, phenol, naphthol, ootylphenol, etc.
- the esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such. as sulfuric acid.
- the nature of the alcoholic or phenolic portion of the ester radical appears to have little influence on the utility of such ester as reactant in the process described hereinabove.
- hydroxy-hydrocarbon amines useful in preparing the acylated nitrogen intermediates of the process of this invention are primary and secondary mono-amines conforming for the most part to the structural formula wherein R designates a hydrogen, an inert hydrocarbon, or a hydroxy-hydrocarbon radical and at least one of the two R radicals in the formula is a hydroxy-hydrocarbon radical.
- R radical is a hydrocarbon radical it may be aromatic, aliphatic, .or cycloaliphatic. It is illustrated by aryl, alkyl, arylalkyl, alkaryl, and cycloalkyl radicals.
- an inert hydrocarbon radical is meant a radical which is substantially hydrocarbon in character, i.e., it may contain an inert, polar substituent such as chloro, bromo, iodo, alkoxy, aryloxy, nitro, keto, or aldehyde group insofar as the presence of I such polar substituent does not alter substantially the hydrocarbon character. of the radical. In most instances there should be no more than one such polar substituent in a hydrocarbon radical.
- hydrocarbon radicals are:
- phenyl 2-bromoethyl, 3-chlorocyclohexyl, and polypropylene (molecular weight of 300) -substituted phenyl radi- I cal.
- Alkyl radicals having less than about 30 carbon atoms are especially preferred.
- the hydroxy-hydrocarbon radicals include principally the mono-hydroxy-substituted derivatives of the hydro-
- the hydroxy-alkyl radicals having less than about 8 carbon atoms are pre-,,'
- radicals are hydroxy-methyl, hydroxy-ethyl, 2-hydroxy-propyl, 3-hydroxypropyl, 2-hydroxy-cyclohexyl, Z-hydroxy-cyclopentyl, 2-hydroxy-1- octyl, 1-hydroxy-3-octyl, 1-hydroxy-2-octyl, 2-hydroxy-3- phenyl-cyclohexyl, l-hydroxy-Z-phenylethyl, Z-hydroxy-lphenylethyl, 2-hydroxy-l-p-tolylethyl and 2-hydroxy-3- butyl radicals.
- hydroxy-substituted hydrocarbon radicals are exemplified by 2,5-dihydroxy-phenyl, alphahydroxybeta-naphthyl, 1-hydroxy-4-dodecyl, 3-hydroxy- 6-octadecyl, and p-(p-hydroxy-phenyl)-phenyl radicals.
- the mono-(hydroxy-alkyl) amines and the di-(hydroxysalkyl) amines having less than about 8 carbon atoms in each 'alkyl group are especially desirable.
- ethanolamine i.e., 2hydroxyethy'l amine
- diethan-olamine i.e., di-(Z-hydroxyethyl) amine
- N-hydroxy-propyl octylamine N-hydroxy-methyl dodecylamine
- 9-hydroxy-stearylamine N-hydroxy-ethyl octadecylami-ne
- N-hydroxy-butyl behenylamine N 'hydroxy-pentyl triacontanylamine, di-(lfl-hydroxy-decyl) amine, etc.
- amines are exemplified by N-hydroxyethyl aniline, N-(hydroxy-p'henyl) methylalmine, N-(ohydroxyphenyl) pchoroaniline, N-hydroxy-ethyl cyclohexylamine, di-(Z hydroxycyclohexyl)amine.
- the process of forming the acylated nitrogen intermediate by reacting the substantially hydrocarbon substituted succinic acid-producing compound with the hydroxyhydrocarbon amine compound is usually carried out by heating a mixture of the acid-producing compound and the hydroxy hydrocar-bon amine compound at a temperature above about 80 C., preferably within the range from about 100 C. to about 250 C. However, when an acid or anhydride is employed, the process often may be carried out at a lower temperature such as room temperature.
- a solvent such as benzene, toluene,
- naphtha mineral oil, xylene, n-hexane, or the like is often desirable in the above process to facilitate the control of the reaction temperature.
- the relative proportions of the acidproducing compound and the hydroxy-hydrocarbon amine reactant to be used in the :above process are such that at least about one-half of stoichiometrically equivalent amount of the hydroxy-hydrocarbon amine reactant is used for each equivalent of the acid-producing compound used.
- the equivalent weight of the hydroxy-[hydlrocarbon amine reactant is its molecular weight.
- the equivalent weight of the acid-producing compound is based upon the number of the acid-producing radicals define-d by the structural configuration JLX
- ethanol amine has one equivalent per mole
- a succinic acid or ester has two equivalents per mole, etc.
- the upper limit of the useful amount of the hydroxyhydrocarbon amine reactant appears to be about 2 moles for each equivalent of the acid-producing compound used. Such amount is required, for instance, in the formation of products having predominantly amidine linkages.
- the lower limit is about one-half equivalent of the hydroxy-hydrocarbon amine reactant used for each equivalent of the acid-producing compound. This lower limit is based upon the stoichiometry for the formation of products having predominantly imide linkages or mixed acid-amide linkages.
- the preferred amount of the nit-rogencontaining reactant is at least about one equivalent for each equivalent of the acid-producing compound used.
- boron compounds useful in reaction with the, acylated nitrogen intermediate include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (erg,
- alkyl-B (OH) 2 or aryl-B (0H) boric acid i.e., H BO tetraboric acid (i.e., H2B407)
- metalaboric acid i.e., HBO amides of such boron acids, and esters of such boron acids.
- boronic acids include methyl boroni-c acid, phenyl-boronic acid, cyclohexyl boronic acid, p-heptylphenyl boronic acid and dodecyl boronic acid.
- the boron acid esters include especially mono-, di-, and tri-organic esters of boric acid with alcohols or phenols such as, e.g., methanol, ethanol, isopropanol, cyclohexanol, cyclopentanol l-octanol, 2-octanol, dodecanol, behenyl alcohol, oleyl alcohol, stearyl alcohol, benzyl alcc hol, 2-butyl cyclohexanol, ethylene glycol propylene glycol, trimethylene glycol, 1,3-butanediol,2,4-hexanediol, 1,
- alcohols or phenols such as, e.g., methanol, ethanol, isopropanol, cyclohexanol, cyclopentanol l-octanol, 2-octanol, dodecanol, behenyl alcohol,
- the ammonium salts of boron acids include principally the salts of boric acid with ammonia or lower alkyl amines, i.e., mono-, di-, .or tri-alkyl amines having less than 12 carbon atoms in each alkyl radical. Salts of ammonia or such amines with any other boron acid illustrated above are also useful. It is often desirable to use a mixture of an ammonium salt and at least a molar amount of Water. Water tends to cause at least a partial hydrolysis of the salt so as to liberate a boron acid.
- useful products are obtained from reaction mixtures in which the reactants are present in relative proportions as to provide from about 0.1 atomic proportion of boron for each mole of the acylated nitrogen intermediate used to about 10 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen intermediate used.
- the preferred amounts of r'eactants are such as to provide from about 0.5 atomic proportion of boron for each mole of the acylated nitrogen intermediate to about 2 atomic proportions of boron for each atomic proportion of nitrogen used.
- the amount of a boron compound having one boron atom p'er molecule to be used with one mole of an acylated nitrogen intermediate ha'vinlg five nitrogen atoms per molecule is within the range from about 0.1 mole to about 50 moles, preferably from about 0.5 to about 10 moles.
- a polyisobutene substituted succinic anhydride is prepared by the reaction .of a chlorinated .polyistobutene with maleic anhydride at 200 C.
- the polyisobu-ten'e radical has an average molecular Weight of 850 and the resulting alkenyl succinic anhydride has an acid number of 100 (corresponding to an equivalent weight of 560).
- the residue is cooled to 120 C. and mixed with boric acid (450 grams, 7.3 equivalents). The mixture is heated at 130-150". C. for 6 hours whereupon 140 grams of water is distilled oif. The mixture is then heated to 160 C./ mm. and the residue filtered.
- boric acid 450 grams, 7.3 equivalents.
- filtrate has a nitrogen content of 1.2% and a boron content of 2.1%
- Example 2 An acylated nitrogen intermediate is obtained by reacting one equivalent of the polyisobutene-substituted succinic anhydride of Example 1 and one equivalent of eth-anolamine at 160 C. in the presence of toluene'as the solvent. A mixture of this acylated nitrogen intermediate and boric acid in relative proportions such as to provide one atomic proportion of boron per atomic proportion of nitrogen is heated at 150 C. for 5 hours and then at 160 C./1 mm. The residue is the nitrogenand boron-containing product.
- Example 3 A nitrogenand boron-containing product is obtained by the procedure of Example 2 except that N hydroxyethyl aniline replaces the ethanolami-ne on a nitrogen equivalent basis.
- Example 4 A nitrogenand boron-containing product is obtained
- Example 6 The procedure of Example 2 is repeated except that the acylated nitrogen intermediate is obtained by the reaction of one equivalent of di-(Z-hydroxyoctyl) amine and one equivalent of polypropene (molecularweight of 3000)-substituted succinic anhydride.
- Example 7 cluding pesticides, plasticizers, rust-inhibiting agents for treatment of metals, corrosion-inhibiting agents, extreme pressures agents, anti-Wear agents, and detergents.
- a principal utility of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the effectiveness of the nitrogenand boron-containing products to impart a specific property to a lubricant is closely related to the size of the substantially hydrocarbon substituent in the succinic radical of acylated nitrogen composition from which such products are derived. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about 50 aliphatic carbon atoms are effective to impart oxidation-inlhibiting, corrosion-inhibiting, and detergent properties to a lubricant.
- the lubricating oils in which the compositions of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oi-ls belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally the lubricating oils preferred will be fluid oils, ranging in vis-v cosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 F.
- the concentration of the nitrogenand boron-containing compositions as additives in lubricants usually ranges fromabout 0.1% to about 10% by Weight. The optimum concentrations for a particular application depend to a large measure upon the type of service to which the lubricants is to be subjected.
- lubricants for use in gasoline internal combustion engines may contain from about 0.5 to about 5% of the additive, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the addi carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular Weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- olefin polymer e.g., polyisobutene having a molecular Weight of 1000
- a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus t
- the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
- the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass.
- a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
- Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-beta-naphthylamine, and dodecylaniine.
- phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance
- alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol
- a particularly eflective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60200 C.
- the preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
- a polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours.
- the resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate.
- the acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
- oil-soluble, nitrogenand boron-containing compositions of this invention have the unique effectiveness in enhancing the extreme pressure and corrosion-inhibiting properties of a certain class of additives employed to impart these properties to a lubricant. More specifically, the additives which are so benefited are metal dithiocarbamates, xanthates, the Group II metal phos-.
- phorodithioates and their 'epoxide adducts hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulturized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.
- the Group 11 metal phosphorodithioates are the salts of acids having the formula R1 S P Rz ⁇ SE ⁇ in which R and R are substantially hydrocarbon radicals.
- the metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium.
- the barium and zinc phosphorodithioates are especially preferred.
- the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
- Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc.
- Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
- Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
- Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
- Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
- the availability of the phosphorodithioic acids from which the Group 11 metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C.
- the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
- the preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.
- Especially useful Group 11 metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
- the use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
- a mixture of isopropyl and .hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
- mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
- Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphoro' dithioates described above with an epoxide.
- the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
- the epoxides may be alkylene oxides or arylalkylene oxides.
- the arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-me-thylstyrene oxide, 3-betanaphthyl-l,3-butylene oxide, m-dodecyls-tyrene oxide, and p-chlorostyrene oxide.
- the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms.
- lower alkylene oxides examples include ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin.
- epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
- the adduct may be obtained by simply mixing the phosphorodithioate and the epoxide.
- the reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
- the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
- the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkyle-ne oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
- the hindered phenols are those in which the carbon atoms at both ortho positions to the phenolicgroup contain substantially large substituents so as to cause hinderance of the phenolic group.
- the common substituents are the secondary and tertiary alkyl radicals such as isopropyl, tert-butyl, tert-pentyl, sec-pentyLcyclohexyl, and tert-octyl radicals. They likewise may be aryl radicals or large polar radicals such as bromo or nitro radicals.
- hindered phenols examples include 2,6-di-sec-bu-tylphenol, 2,4 di-tert-butylphenol, 2,6 di-tert-octyl-4-sec-pentylphen'ol, 2-tert-pentyl-6-tert-hexylphenol, 2-tert-butyl-6-cyclovhexyl-6-heptylphenol, 4,4'-bis-methylene-(2,6-di-tert-butylphenol) 4,4-methylene-bis 2tert-butyl-6-sec-butylphen-ol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butyl-6- methylphenol, and bis-(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide.
- the sulfurized esters of the fatty acids are obtained by the treatment of the esters with a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride.
- a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride.
- the esters are exemplified by methyl oleate, methyl stearate, allyl stearate, isopropyl myristate, cyclohexyl ester of tall oil acid, ethyl pa-lmita-te', isooctyl laurate, diester of ethylene glycol with stearic acid, tetraester of pen-taerythritol with stearic acid, etc.
- esters of higher alcohols or commercial alcohol mixtures such as octadecyl alcohol and sperm oil alcohol, and phenols such as phenol, naphthol, p-cresol, and o,pdihexylphenol.
- the sulfurization is effected most conven-. iently at temperatures between 100 C. and 250 C. More than one atom of sulfur can be incorporated into the ester by the use of an excess of the sulfurizing agent.
- sulfurized esters having as many as 4 or 5 atoms of sulfur per molecule have been found to be useful.
- Examples include sulfurized sperm oil having a sulfur content of 5%, sulfurized tall oil having a sulfur content of 9%, sulfurized methyl oleate having a sulfur content of 3%, and sulfurized stearyl stearate having a sulfur content of 15%.
- Still another class of the fatty compounds consists of the phosphosulfurized fatty acid ester mentioned above. They are obtained by the treatment of the esters with a phosphorus sulfide, such as phosphorus pentasulfide, phos- The treatment is illustrated by mixing an ester with from about 0.5% to 25% of a phosphorus sulfide at a temperature within the range from 100 C. to 250 C. The product.
- the polysulfides include principally aliphatic and cycloaliphatic disulfides, trisulfides, tetrasulfides, pentasulfides, or higher polysulfides.
- the term polysulfide designates a compound in which two substantially hydrocarbon radicals are joined to a group consisting of at least 2 sulfur atoms. It is represented for the most part by any of the structural formulas below:
- R and R are alkyl or cycloalkyl radicals and n is an integer usually less than 6.
- n is an integer usually less than 6.
- the polysulfides containing at least about 6 carbon atoms per molecule have greater oil-solubility.
- the phosphites useful herein are the diand tri-hydrocarbon esters of phosphorous acid.
- Examples of the phosphites are: dibutyl phosphite, diheptylphosphite, dicyclohexylphosphite, tri (pentylphenyDphosphite, tris- (dipentylphenyl)phosphite, didecyl phosphite, di-stearyl phosphite, tris-(hexa-propylene-substituted phenyl)phosphite, tri-hexyl phosphite, di-heptyl phenyl phosphite, and
- the alkaline earth metal salts of the alkylated phenols include principally the salts of magnesium, barium, calcium, and strontium with phenolic substances containing an alkyl substituent having at least about 7 carbon atoms.
- the phenols are exemplified by alkyl phenols, alkyl naphthols, sulfurized alkyl phenols, and the condensation products of alkyl phenols with an aldehyde. Specific examples include magnesium octylphenate, barium polypropylene-substituted phenate in which the polypropylene;
- substituent has a molecular weight of 500, calcium salt of alpha-dodecyl-beta-naphthyl, barium salt of bis(heptylphenol) sulfide, calcium salt of bis(nonylphenoDsulfide, calcium salt of the condensation product of two moles of heptylphenol with formaldehyde, barium dodecylphenate, and strontium polyisobutene-substituted phenate in which the polyisobutene substitutent has a molecular weight of 350.
- esters of the phosphorodithioic acids include the;
- esters are obtained by the addition of the, phosphorodithioic acids to an olefinic compound such as an alkene or an aralkene. They are obtained, for example, by the addition of diisopropylphosphorodithioic acid with styrene, propene, isobutene, cyclohexene, l-octene, methyl cyclohexene, isoprene, butadiene, dipentene, or the like.
- Example 11 SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
- Example III SAE 10W-3O mineral lubricating oil containing 0.4%
- Example IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc'saltof an equimolar mixture of di-cyclohexylphosphorodithioic' acid and di-isobutyl phosphorodithioic acid.
- Example VI SAE 20W-30 mineral lubricating oil containing 5% of the product of Example 2.
- Example VII SAE lW-30 mineral lubricating oil containing 1.5%
- Example XVI SAE mineral lubricating oil containing 2% of the product of Example 1, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.
- Example XVII SAE 10 mineral lubricating oil containing 3% of the product of Example 1, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol,
- Example XXI SAE mineral lubricating oil containing 3% of the product of Example 6 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.
- the effectiveness of the nitrogenand boron-containing compositions as additives in lubricants is illustrated by the results obtained from a test in which a 350 cc. sample of a lubricant containing 0.001% of iron naphthenate and 1.5% by -weight of the additive to be tested is heated at 300 F. for 96 hours in a 2 x 15" borosilicate tube. Air is bubbled through the lubricant at the rate of liters per hour. The oxidized sample is allowed to cool to 122 F. whereupon 0.5% (by volume) of water is added and dispersed into the sample. The sample is allowed to stand for hours at room temperature and then filtered through dry No. 1 Whatman paper (double thickness) under slightly reduced pressure.
- the precipitant is washed with naphtha to constant weight and reported as milligrams of sludge per 100 ml. of oil.
- the quantity of sludge is an indication of the ability of the additive to alkyl amine is a mono- (hydroxy-alkyl)amine.
- the lubris cant base employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal Seconds at 100 F.
- the base oil gives from 800-900 milligrams of sludge whereas the oil containing 1.5 by weight of the product prepared by the reactionof the polyisobutene-substituted succinic anhydride (1 equivalent) with diethanolamine (1 equivalent) and boric acid (1.8 atomic proportions of boron per atomic proportion of nitrogen) gives a result of 250-300 milligrams of sludge.
- An oil-soluble, nitrogenand boron-containing composition prepared by the process comprising for'ming an acylated nitrogen intermediate by the reaction of one equivalent of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent with at least about one-half equivalent of a hydroxy-hydrocarbon amine having the structural formula wherein R is selected from the class consisting of hydrogen, inert hydrocarbon, hydroxy-hydrocarbon radicals, at least one of the two R radicals in said formula being a hydroXy-hydrocarbon radical and reacting said acylated nitrogen intermediate with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, and esters of boron acids in an amount to provide from about 0.1 gram-atomic-weight of boron for each mole of said acylated nitrogen intermediate to about 10 gram-atomic- 16 weight of boron
- An oil-soluble, nitrogenand boron-containing composition prepared by the process comprising forming an acrylated nitrogen intermediate by the reaction of one equivalent of a substantially aliphatic olefin polymer-substituted succinic anhydride having at least about 50 aliphatic carbon atoms in the olefin polymer substitutent with at least about one-half equivalent of a hydroxy-alkyl amine having less than about 30 carbon atoms and react:
- composition of claim 2 wherein the hydroxy- 4.
- composition of claim 2 wherein the hydroxyalkyl amine is a di-(hydroxy-alkyDamine.
- An oil-soluble nitrogenand boron-containing composition prepared by the process comprising forming an acylated nitrogen intermediate by the reaction at a temperature between about C. and 250 Got one equivalent of a polyisobutene-substituted succinic anhydride having from about 50 to 250 carbon atoms in the polyisobutene substitutent with about an equivalent amount of "a di-(hydroxyalkyl) amine having less than about 8 carbon atoms in each alkyl group and reacting said acylated nitrogen intermediate with boric acid in an amount to provide about 1 gram-atomic-Weight of boron for each gram-atomic-weight of nitrogen of the acylated nitrogen intermediate at a temperature between about C. and
- An oil-soluble nitrogenand boron-containing composition prepared 'by the process comprising forming an acylated nitrogen intermediate by the reaction at a tem- UNITED STATES PATENTS 2,052,192 8/1936 Piggott 260-404 2,216,618 10/1940 Katz 260401 2,234,581 3/1941 Rosen 252 51 2,611,746 9/1952 Kipp 252 49.6 3,087,936 4/1963 Le Suer 252 515 XR ALEX MAZEL, Primary Examiner. DANIEL E. WYMAN, HENRY R; JILES, Examiners.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
Description
United States Patent 3,282,955 REACTION PRODUCTS OF ACYLATED NITROGEN INTERMEDIATES AND A BORON COMPOUND William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wicklifie, Ohio, a corporation of Ohio No Drawing. Filed Apr. 29, 1963, Ser. No. 276,208 6 Claims. (Cl. 260-3263) This application is a continuation-in-part of co-pending application Ser. No. 132,305, filed August 18, 1961, now U.S. 3,087,963.
This invention relates to oil-soluble nitrogenand boroncontaining compositions and to the process of preparing the same. The compositions of this invention are useful as additives in lubricants, especially lubricants intended for use in internal combustion engines, gears, and power transmitting units.
One of the principal problems associated with present day automobile crankcase lubricants is that posed by the inevitable presence in the lubricant of foreign particles such as dirt, soot, water, and decomposition products resulting from breakdown of the lubricating oil. Even if there were none of this latter contaminant present the very nature of the design of the modern internal combustion engine is such that a significant amount of foreign matter will accumulate in the crankcase. Perhaps the most important of these contaminants is water because it seems to be responsible for the deposition of a mayonnaise-like sludge. It appears that if there were no water present the solid components of the mayonnaise-like sludge would circulate with the oil and be removed by the oil filter. It will be readily appreciated that the deposition of the sludge presents a serious problem with respect to the eflicient operation of the engine and that it is desirable to prevent such deposition of sludge-like material.
The presence of water and the precursors of sludge in a lubricating oil is dependent largely upon the operating temperature of the oil. If the oil is operated at a high temperature the water, of course, will be eliminated by evaporation about as fast as it accumulates. In the absence of water as stated above the other foreign particles will be removed by the filter. At low oil temperatures, on the other hand, water will accumulate and so consequently will sludge. It is apparent that the environment in which a crankcase lubricant is maintained will determine to a large extent the ultimate performance of that lubricant.
High operating temperatures are characteristic of a lubricant in an engine that is run at relatively constant high speed. Thus, in an engine that is run :at 60 miles per hour for a long period of time it is very unlikely that there will be any accumulation of Water and it is similarly unlikely that there will be any formation and deposition of sludge, but in ordinary stop-and-go driving such as is the case with taxicabs, delivery trucks, police cruisers, etc. the crankcase lubricant will be alternately hot and cold, an ideal environment for the accumulation of water. In such cases the formation of sludge is a serious problem. This problem has been with the automotive industry for many years and its solution has been approached by the use of known detergents such as metal phenates and sulfonates but without notable success. Although such known detergents are very elfective in solving the detergency problems associated with motor oils at high temperatures they have not been particularly effective in solving the problems associated with low temperature operatidn or, to put it better, those problems which are associated with crankcase lubricants in engines which are operated at alternating high and low temperatures.
"ice
It is accordingly a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are adapted for use as additives in hydrocarbon oils.
It is also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.
It is another object of this invention to provide a novel process for the preparation of products which are effective as dispersants in lubricant compositions.
It is another object of this invention to provide novel compositions which are effective dispersants in lubricant compositions intended for use in engines operated at alternating high and low temperatures.
It is another object of this invention to provide improved hydrocarbon oil compositions.
It is anther object of this invention to provide improved lubricating compositions.
It is another object of this invention to provide improved fuel compositions.
These and other objects are achieved in accordance with this invention by providing a process for preparing oilsoluble nitrogenand boron-containing compositions comprising forming an acylated nitrogen intermediate by the reaction of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent with at least about one-half equivalent of a hydroxyhydrocarbon amine having the structural formula H-N-R wherein R is selected from the class consisting of hydrogen, hydrocarbon, and hydroxy-hydrocarbon radicals, at least one of the two R radicals in said formula being a hydroxy-hydrocarbon radical, and reacting said acylated nitrogen intermediate with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said acylated nitrogen intermediate to about 10 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen intermediate.
The substantially hydrocarbon-substituted succinic acidproducing compounds from which the acylated nitrogen intermediates of the above process are derived are characterized by the presence Within their molecular structure of a substantially hydrocarbon group having at least about 50 aliphatic carbon atoms and at least one succinic acidproducing group.' They are illustrated by compounds having the structural formula O GHZ-ii-X wherein R is a substantially hydrocarbon radical having at least about 50 aliphatic carbon atoms and X is a halogen, hydroxy, hydrocarbon-oxy, or acyloxy radical.
The substantially hydrocarbon substituent of the succinic acid-producing compounds may contain polar groups provided, however, that the polar groups are not present in proportions sutficiently large to alter significantly the hydrocarbon character of the substituent. The polar groups are exemplified by chloro, bromo, keto, ethereal, aldehydo, and nitro, etc. The upper limit with respect to the proportion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent.
The sources of the substantially hydrocarbon substitwater or steam to the corresponding acid.' Either the anuent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 30 carbon atoms. The especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, lcotene, 2-methyl-I-heptene, 3-cycl0hexyl-1-butene, and 2- methyl-S-propyl-l-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by Z-butene, 3-pentene, and 4-octene.
Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such inter-polymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; 1-hexene with 1,3-hexa- 'diene; l-octene with l-hexene; 1-heptene with l-pentene; 3-methyl-1-butene with l-octene; 3,3-dimethyl-1 pentene with 1-hexene;'isobutene with styrene and piperylene; etc.
The relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95 on a weight basis of units derived from the aliphatic monoolefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be lessthan about 2% of the total number of carbon-tocar-bon covalent linkages.
Specific examples of such inter-polymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexene; terpolymer of 80% of isobutene with 20% of l-pentene and 20% of 1-octene;copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene. "Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbon such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
The use of olefin polymers having molecular weight of about 750-5000 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable.
The substantially saturated, aliphatic hydrocarbon-substituted succinic acids and anhydrides are especially preferred for use as the acid-producing reactant of this process for reasons of the particular effectiveness of the products obtained from such compounds as additives in hydrocarbon oils. The succinic compounds are readily available from the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature'about 100200 C. The product from such a reaction is an alkenyl succinic anhydride. The alkenyl group may be hydrogenated to an alkyl group. The anhydride may be hydrolyzed by treatment with hydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, or alcohols.
In lieu of the olefins or chlorinated hydrocarbons, other hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or anhydride, may be used in the. above-illustrated reaction for preparing the succinic compounds.
. Such polar substituents may be illustrated by sulfide, di-
sulfide, nitro, mercaptan, bromine, ketone, or aldehyde radicals. Examples of such polar-substituted hydrocarbons include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, bromin ated polyethylene, etc. Another methoduseful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight. olefin or a polar-substituted hydrocarbon at a temperature usually within the range from about 100 C. to about 200 C.
The acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrideswith a halogenation agent such as phosphorus tri-bromide, phosphorus pentachloride or thionyl chloride. The esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadeconal, cyclohexanol, phenol, naphthol, ootylphenol, etc. The esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such. as sulfuric acid. The nature of the alcoholic or phenolic portion of the ester radical appears to have little influence on the utility of such ester as reactant in the process described hereinabove.
The hydroxy-hydrocarbon amines useful in preparing the acylated nitrogen intermediates of the process of this invention are primary and secondary mono-amines conforming for the most part to the structural formula wherein R designates a hydrogen, an inert hydrocarbon, or a hydroxy-hydrocarbon radical and at least one of the two R radicals in the formula is a hydroxy-hydrocarbon radical. Where the R radical is a hydrocarbon radical it may be aromatic, aliphatic, .or cycloaliphatic. It is illustrated by aryl, alkyl, arylalkyl, alkaryl, and cycloalkyl radicals. It will be noted that by an inert hydrocarbon radical is meant a radical which is substantially hydrocarbon in character, i.e., it may contain an inert, polar substituent such as chloro, bromo, iodo, alkoxy, aryloxy, nitro, keto, or aldehyde group insofar as the presence of I such polar substituent does not alter substantially the hydrocarbon character. of the radical. In most instances there should be no more than one such polar substituent in a hydrocarbon radical.
Specific examples of the hydrocarbon radicals are:
methyl, ethyl, isopropyl, n-butyl, isobutyl, n-pentyl, dodecyl, polyisobutene radical (molecular weight of 1500), cyclohexyl, cyclopentyl, 2-heptyl-cyclohexyl, phenyl, naphthyl, p-heptylphenyl, 2,6-di-tertiary-butylphenyl, benzyl, phenylethyl, 3,5-di-dodecylphenyl, chlorophenyl,
alpha-methoxy-beta-naphthyl, p-nitrophenyl, p-phenoxy-,
phenyl, 2-bromoethyl, 3-chlorocyclohexyl, and polypropylene (molecular weight of 300) -substituted phenyl radi- I cal. Alkyl radicals having less than about 30 carbon atoms are especially preferred.
The hydroxy-hydrocarbon radicals include principally the mono-hydroxy-substituted derivatives of the hydro- The hydroxy-alkyl radicals having less than about 8 carbon atoms are pre-,,'
carbon radicals illustrated above.
ferred. Examples of such radicals are hydroxy-methyl, hydroxy-ethyl, 2-hydroxy-propyl, 3-hydroxypropyl, 2-hydroxy-cyclohexyl, Z-hydroxy-cyclopentyl, 2-hydroxy-1- octyl, 1-hydroxy-3-octyl, 1-hydroxy-2-octyl, 2-hydroxy-3- phenyl-cyclohexyl, l-hydroxy-Z-phenylethyl, Z-hydroxy-lphenylethyl, 2-hydroxy-l-p-tolylethyl and 2-hydroxy-3- butyl radicals. Other hydroxy-substituted hydrocarbon radicals are exemplified by 2,5-dihydroxy-phenyl, alphahydroxybeta-naphthyl, 1-hydroxy-4-dodecyl, 3-hydroxy- 6-octadecyl, and p-(p-hydroxy-phenyl)-phenyl radicals.
For reasons of their particular utility in preparing the .acylated nitrogen intermediates useful in the process of this invention, the mono-(hydroxy-alkyl) amines and the di-(hydroxysalkyl) amines having less than about 8 carbon atoms in each 'alkyl group are especially desirable. They are illustrated by ethanolamine (i.e., 2hydroxyethy'l amine) diethan-olamine (i.e., di-(Z-hydroxyethyl) amine), N-hydroxy-propyl octylamine, N-hydroxy-methyl dodecylamine, 9-hydroxy-stearylamine, N-hydroxy-ethyl octadecylami-ne, N-hydroxy-butyl behenylamine, N 'hydroxy-pentyl triacontanylamine, di-(lfl-hydroxy-decyl) amine, etc. Other amines are exemplified by N-hydroxyethyl aniline, N-(hydroxy-p'henyl) methylalmine, N-(ohydroxyphenyl) pchoroaniline, N-hydroxy-ethyl cyclohexylamine, di-(Z hydroxycyclohexyl)amine.
Methods for preparing the hydroxy-hydrocarbon amines are well-known. For instance, they are obtained by the reaction of an epoxide uch as ethylene oxide,
propylene oxide or epichloro'hydrin with ammonia or an amine such as methylamine, aniline, or dodecylamine. They may "also be obtained from the corresponding halohydrocarbon amines such as 2-c'hloroethyl amine by hydrolysis or other means of converting the 'halo radical to the hydroxy radical. Still other methods are available.
The process of forming the acylated nitrogen intermediate by reacting the substantially hydrocarbon substituted succinic acid-producing compound with the hydroxyhydrocarbon amine compound is usually carried out by heating a mixture of the acid-producing compound and the hydroxy hydrocar-bon amine compound at a temperature above about 80 C., preferably within the range from about 100 C. to about 250 C. However, when an acid or anhydride is employed, the process often may be carried out at a lower temperature such as room temperature. The use of a solvent such as benzene, toluene,
naphtha, mineral oil, xylene, n-hexane, or the like is often desirable in the above process to facilitate the control of the reaction temperature.
The relative proportions of the acidproducing compound and the hydroxy-hydrocarbon amine reactant to be used in the :above process are such that at least about one-half of stoichiometrically equivalent amount of the hydroxy-hydrocarbon amine reactant is used for each equivalent of the acid-producing compound used. In this regard it will be noted that the equivalent weight of the hydroxy-[hydlrocarbon amine reactant is its molecular weight. The equivalent weight of the acid-producing compound is based upon the number of the acid-producing radicals define-d by the structural configuration JLX Thus, ethanol amine has one equivalent per mole; and a succinic acid or ester has two equivalents per mole, etc.
The upper limit of the useful amount of the hydroxyhydrocarbon amine reactant appears to be about 2 moles for each equivalent of the acid-producing compound used. Such amount is required, for instance, in the formation of products having predominantly amidine linkages. On the other hand, the lower limit is about one-half equivalent of the hydroxy-hydrocarbon amine reactant used for each equivalent of the acid-producing compound. This lower limit is based upon the stoichiometry for the formation of products having predominantly imide linkages or mixed acid-amide linkages. In most instances, the preferred amount of the nit-rogencontaining reactant is at least about one equivalent for each equivalent of the acid-producing compound used.
6 The boron compounds useful in reaction with the, acylated nitrogen intermediate include boron oxide, boron oxide hydrate, boron trifluoride, boron tribromide, boron trichloride, HBF boron acids such as boronic acid (erg,
alkyl-B (OH) 2 or aryl-B (0H) boric acid, (i.e., H BO tetraboric acid (i.e., H2B407) ,metaboric acid (i.e., HBO amides of such boron acids, and esters of such boron acids. The use of complexes of a boron trihalide with others, organic acids, inorganic acids, or hydrocarbons is a convenient means of introducing the boron reactant into the reaction mixture. Such complexes are known and are exemplified =by boron tr-ifluoride-diethyl ether, boron trifluoride-phenol, boron trifiuoride-phosphoric acid, boron trichloiide-chloroacetic acid, boron tribromide-dioxane, and boron trifluoride methyl ethyl ether.
Specific examples of boronic acids include methyl boroni-c acid, phenyl-boronic acid, cyclohexyl boronic acid, p-heptylphenyl boronic acid and dodecyl boronic acid.
The boron acid esters include especially mono-, di-, and tri-organic esters of boric acid with alcohols or phenols such as, e.g., methanol, ethanol, isopropanol, cyclohexanol, cyclopentanol l-octanol, 2-octanol, dodecanol, behenyl alcohol, oleyl alcohol, stearyl alcohol, benzyl alcc hol, 2-butyl cyclohexanol, ethylene glycol propylene glycol, trimethylene glycol, 1,3-butanediol,2,4-hexanediol, 1,
2-cyclohexanediol, 1,3-octanediol, glycerol, pentaerythritol, diethylene glycol, carbitol, cellosolve, triethylene glycol, tripropylene glycol, phenol, naphthol, p-butylphenol, o,p-dil1eptylphenol, n-cyclohexylphenol, 2,2-bis- (-p-hydroxyphenyUpropa-ne, .polyisobutene (molecular weight of 1500)-substituted phenol, ethylenechlorohydrin, o-ohlorophenol, m-nitrophenol, 6-br-omo-octanol, and 7-keto-decanol. Lower alcohols, 1,2-glycols, and -1,3 tglycols, i.e., those having less than about 8 carbon atoms are especially useful for preparing the boric acid esters for the purpose of this invention.
Methods for preparing the esters of boron acid are known and disclosed in the art (such as Chemical Reviews pages 959-1064, volume 56). Thus, one method involves the reaction of boron trichloride with 3 moles of an alcohol or a phenol to result in a tri-organic borate. Another method involves the reaction of boric oxide with an alcohol or a phenol. Another method involves the direct e'sterification of tetra boric acid with 3 moles of an alcohol or a phenol. Still another method involves the direct esterification of boric acid with a glycol to form, e.g., a cyclic alkylene borate. 5
The ammonium salts of boron acids include principally the salts of boric acid with ammonia or lower alkyl amines, i.e., mono-, di-, .or tri-alkyl amines having less than 12 carbon atoms in each alkyl radical. Salts of ammonia or such amines with any other boron acid illustrated above are also useful. It is often desirable to use a mixture of an ammonium salt and at least a molar amount of Water. Water tends to cause at least a partial hydrolysis of the salt so as to liberate a boron acid.
water; trimet-hylamine salt of boric acid; dicyclo,-hexyl amine salt of boric acid, etc.
The reaction of the acylated nitrogen intermediate with the 'boron compounds r'esults in a product containing boron and substantially all of the nitrogen originally present in the nitrogen reactant. The nature of the product is not clearly understood. Inasmuch as the precise stoichiometry of the reaction is not known, the relative proportions of the reactants to be used in the process are bas'ed primarily upon the consideration of utility of the products for the purposes of this invention. In this regard, useful products are obtained from reaction mixtures in which the reactants are present in relative proportions as to provide from about 0.1 atomic proportion of boron for each mole of the acylated nitrogen intermediate used to about 10 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen intermediate used. The preferred amounts of r'eactants are such as to provide from about 0.5 atomic proportion of boron for each mole of the acylated nitrogen intermediate to about 2 atomic proportions of boron for each atomic proportion of nitrogen used. To illustrate, the amount of a boron compound having one boron atom p'er molecule to be used with one mole of an acylated nitrogen intermediate ha'vinlg five nitrogen atoms per molecule is within the range from about 0.1 mole to about 50 moles, preferably from about 0.5 to about 10 moles. The atomic proportion may be defined by a mathematical equation such as the following 1 gram-atomic-proportion= Molecular weight of the compound in grams Number of the atoms of the element in question in the molecular structure of the compound The following examples are illustrative of the process for preparing the nitrogenand boron-containing compos'itions of this invention.
' Example 1 A polyisobutene substituted succinic anhydride is prepared by the reaction .of a chlorinated .polyistobutene with maleic anhydride at 200 C. The polyisobu-ten'e radical has an average molecular Weight of 850 and the resulting alkenyl succinic anhydride has an acid number of 100 (corresponding to an equivalent weight of 560). To a mixture of 2000 grams (3.6 equivalents) of this anhydride and 1040 grams of mineral oil and toluene there is added at 120-140 C. diethanolamine (380 grams, 3.6 equivalents). The mixture is heated at 160 180 C. for 6 hours wlh'ereupon 66 grams of water is distilledolf. The residue is cooled to 120 C. and mixed with boric acid (450 grams, 7.3 equivalents). The mixture is heated at 130-150". C. for 6 hours whereupon 140 grams of water is distilled oif. The mixture is then heated to 160 C./ mm. and the residue filtered. The
filtrate has a nitrogen content of 1.2% and a boron content of 2.1%
Example 2 An acylated nitrogen intermediate is obtained by reacting one equivalent of the polyisobutene-substituted succinic anhydride of Example 1 and one equivalent of eth-anolamine at 160 C. in the presence of toluene'as the solvent. A mixture of this acylated nitrogen intermediate and boric acid in relative proportions such as to provide one atomic proportion of boron per atomic proportion of nitrogen is heated at 150 C. for 5 hours and then at 160 C./1 mm. The residue is the nitrogenand boron-containing product.
Example 3 A nitrogenand boron-containing product is obtained by the procedure of Example 2 except that N hydroxyethyl aniline replaces the ethanolami-ne on a nitrogen equivalent basis.
Example 4 A nitrogenand boron-containing product is obtained Example 6 The procedure of Example 2 is repeated except that the acylated nitrogen intermediate is obtained by the reaction of one equivalent of di-(Z-hydroxyoctyl) amine and one equivalent of polypropene (molecularweight of 3000)-substituted succinic anhydride.
Example 7 cluding pesticides, plasticizers, rust-inhibiting agents for treatment of metals, corrosion-inhibiting agents, extreme pressures agents, anti-Wear agents, and detergents.
A principal utility of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose the effectiveness of the nitrogenand boron-containing products to impart a specific property to a lubricant is closely related to the size of the substantially hydrocarbon substituent in the succinic radical of acylated nitrogen composition from which such products are derived. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about 50 aliphatic carbon atoms are effective to impart oxidation-inlhibiting, corrosion-inhibiting, and detergent properties to a lubricant. It has also been found that the detergent properties of the products diminish sharply with a decrease in the size of the substantially bydrocarbon substituent having less than about '50 aliphatic carbon atoms so that products having less than 35 aliphatic carbon atoms in this substituent are ineffective as detergent additives in lubricants.
The lubricating oils in which the compositions of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oi-ls belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-2-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally the lubricating oils preferred will be fluid oils, ranging in vis-v cosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 F.
The concentration of the nitrogenand boron-containing compositions as additives in lubricants usually ranges fromabout 0.1% to about 10% by Weight. The optimum concentrations for a particular application depend to a large measure upon the type of service to which the lubricants is to be subjected. Thus, for example, lubricants for use in gasoline internal combustion engines may contain from about 0.5 to about 5% of the additive, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the addi carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular Weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of 'a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-beta-naphthylamine, and dodecylaniine. A particularly eflective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60200 C.
The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
Furthermore, the oil-soluble, nitrogenand boron-containing compositions of this invention have the unique effectiveness in enhancing the extreme pressure and corrosion-inhibiting properties of a certain class of additives employed to impart these properties to a lubricant. More specifically, the additives which are so benefited are metal dithiocarbamates, xanthates, the Group II metal phos-.
phorodithioates and their 'epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulturized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.
The Group 11 metal phosphorodithioates are the salts of acids having the formula R1 S P Rz \SE{ in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
The availability of the phosphorodithioic acids from which the Group 11 metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C. Thus the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufficiently pure for the purposes of this invention.
Especially useful Group 11 metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and .hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphoro' dithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-me-thylstyrene oxide, 3-betanaphthyl-l,3-butylene oxide, m-dodecyls-tyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
phorus sesquisulfide, or phosphorus heptasulfide;
The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkyle-ne oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
The hindered phenols are those in which the carbon atoms at both ortho positions to the phenolicgroup contain substantially large substituents so as to cause hinderance of the phenolic group. The common substituents are the secondary and tertiary alkyl radicals such as isopropyl, tert-butyl, tert-pentyl, sec-pentyLcyclohexyl, and tert-octyl radicals. They likewise may be aryl radicals or large polar radicals such as bromo or nitro radicals. Examples of the hindered phenols include 2,6-di-sec-bu-tylphenol, 2,4 di-tert-butylphenol, 2,6 di-tert-octyl-4-sec-pentylphen'ol, 2-tert-pentyl-6-tert-hexylphenol, 2-tert-butyl-6-cyclovhexyl-6-heptylphenol, 4,4'-bis-methylene-(2,6-di-tert-butylphenol) 4,4-methylene-bis 2tert-butyl-6-sec-butylphen-ol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butyl-6- methylphenol, and bis-(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide.
The sulfurized esters of the fatty acids are obtained by the treatment of the esters with a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride. The esters are exemplified by methyl oleate, methyl stearate, allyl stearate, isopropyl myristate, cyclohexyl ester of tall oil acid, ethyl pa-lmita-te', isooctyl laurate, diester of ethylene glycol with stearic acid, tetraester of pen-taerythritol with stearic acid, etc. Likewise useful are esters of higher alcohols or commercial alcohol mixtures such as octadecyl alcohol and sperm oil alcohol, and phenols such as phenol, naphthol, p-cresol, and o,pdihexylphenol. The sulfurization is effected most conven-. iently at temperatures between 100 C. and 250 C. More than one atom of sulfur can be incorporated into the ester by the use of an excess of the sulfurizing agent. For the purpose of this invention sulfurized esters having as many as 4 or 5 atoms of sulfur per molecule have been found to be useful. Examples include sulfurized sperm oil having a sulfur content of 5%, sulfurized tall oil having a sulfur content of 9%, sulfurized methyl oleate having a sulfur content of 3%, and sulfurized stearyl stearate having a sulfur content of 15%. I
Still another class of the fatty compounds consists of the phosphosulfurized fatty acid ester mentioned above. They are obtained by the treatment of the esters with a phosphorus sulfide, such as phosphorus pentasulfide, phos- The treatment is illustrated by mixing an ester with from about 0.5% to 25% of a phosphorus sulfide at a temperature within the range from 100 C. to 250 C. The product.
contains both phosphorus and sulfur but the precise chemical constitution of such a product is not clearly understood. These and other methods for preparing the sulfurized esters and phosphosulfurized esters are known in the art.
The polysulfides include principally aliphatic and cycloaliphatic disulfides, trisulfides, tetrasulfides, pentasulfides, or higher polysulfides. The term polysulfide designates a compound in which two substantially hydrocarbon radicals are joined to a group consisting of at least 2 sulfur atoms. It is represented for the most part by any of the structural formulas below:
wherein R and R are alkyl or cycloalkyl radicals and n is an integer usually less than 6. The nature of the linkage between the sulfur atoms is not clearly understood. It is believed, however, that such linkage may be described by a single covalent bond, a double bond, or a coordinate.
covalent bond. The polysulfides containing at least about 6 carbon atoms per molecule have greater oil-solubility.
' closed in the art including, for example, the reaction of a chlorohydrocarbon with an alkaline metal polysulfide, the reaction of a mercaptan with sulfur and/or sulfur halide, the reaction of saturated and unsaturated hydrocarbons with sulfur and/or sulfur halides, the reaction of a hydrocarbon monosulfide with sulfur, etc.
The phosphites useful herein are the diand tri-hydrocarbon esters of phosphorous acid. Examples of the phosphites are: dibutyl phosphite, diheptylphosphite, dicyclohexylphosphite, tri (pentylphenyDphosphite, tris- (dipentylphenyl)phosphite, didecyl phosphite, di-stearyl phosphite, tris-(hexa-propylene-substituted phenyl)phosphite, tri-hexyl phosphite, di-heptyl phenyl phosphite, and
tri (m-chloro-p-heptylphenyl) phosphite.
The alkaline earth metal salts of the alkylated phenols include principally the salts of magnesium, barium, calcium, and strontium with phenolic substances containing an alkyl substituent having at least about 7 carbon atoms. The phenols are exemplified by alkyl phenols, alkyl naphthols, sulfurized alkyl phenols, and the condensation products of alkyl phenols with an aldehyde. Specific examples include magnesium octylphenate, barium polypropylene-substituted phenate in which the polypropylene;
substituent has a molecular weight of 500, calcium salt of alpha-dodecyl-beta-naphthyl, barium salt of bis(heptylphenol) sulfide, calcium salt of bis(nonylphenoDsulfide, calcium salt of the condensation product of two moles of heptylphenol with formaldehyde, barium dodecylphenate, and strontium polyisobutene-substituted phenate in which the polyisobutene substitutent has a molecular weight of 350.
The esters of the phosphorodithioic acids include the;
aryl and the alkyl esters of the phosphorodithioic acids described hereinabove. A particularly useful group of the esters is obtained by the addition of the, phosphorodithioic acids to an olefinic compound such as an alkene or an aralkene. They are obtained, for example, by the addition of diisopropylphosphorodithioic acid with styrene, propene, isobutene, cyclohexene, l-octene, methyl cyclohexene, isoprene, butadiene, dipentene, or the like.
The, following examples are illustrative of the lubricatmg compositions of this invention: (all percentages are by weight).
Example! SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.
Example 11 SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
Example III SAE 10W-3O mineral lubricating oil containing 0.4%
of the product of Example 3.
Example IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc'saltof an equimolar mixture of di-cyclohexylphosphorodithioic' acid and di-isobutyl phosphorodithioic acid.
13 Example V SAE 30 mineral lubricating oil containing 2% of the product of Example 4.
Example VI SAE 20W-30 mineral lubricating oil containing 5% of the product of Example 2.
Example VII SAE lW-30 mineral lubricating oil containing 1.5%
of the product of Example and 0.05% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorous pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
Example VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 5 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
Example IX SAE W-30 mineral lubricating oil containing 2% of the product of Example 4, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
Example X SAE 10VV-30 mineral lubricating oil containing 6% of the product of Example 2, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium 7 salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
Example XII SAE 10 mineral lubricating oil containing 2% of the product of Example 4, 0.075% of phosphorus as the adduct of zinc di-cyclohexylphosphorodithioate treated with 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly-(alkyl methacrylate) viscosity index improver, 0.02% of a poly- (alkyl methacrylate) pour point depressant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.
Example XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 6, 0.075 of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having a sulfur content of 15%, 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) antifoam agent, and 0.5% of lard oil.
Example XIV SAE 20 mineral lubricating oil containing 1.5% of the product of Example 7, 0.5% of di-dodecyl phosphite, 2% of the sulfurized sperm oil having a sulfur content of 9%, a basic calcium detergent prepared by carbonating a mixture comprising mineral oil, calcium mahogany sulfonate and 6 moles of calcium hydroxide in the presence of an equi-molar mixture (10% of the mixture) of methyl alcohol and n-butyl alcohol as the promoter at the reflux temperature.
Example XV SAE 10 mineral lubricating oil containing 2% of the product of Example 2, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a prolypropylene (molecular weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (weight) of decyl-methacrylate and 5% (Weight) of diethylaminoethylacrylate.
Example XVI SAE mineral lubricating oil containing 2% of the product of Example 1, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amide, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.
Example XVII SAE 10 mineral lubricating oil containing 3% of the product of Example 1, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol,
2 moles of barium oxide, and a small amount of water at 150 C.
Example XVIII SAE 20 mineral lubn'cating'oil coutaining'2% of the product of Example 2 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.
Example XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 7 and 0.1% of phosphorus as zinc di-(isobutylpheuyl)-phosphorodithioate.
Example XX SAE 50 mineral lubricating oil containing 2% of the product of Example 7.
Example XXI SAE mineral lubricating oil containing 3% of the product of Example 6 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.
Example XXII SAE 90 mineral lubricating oil containing 3% of the product of Example 2 and 0.2% of 4,4'-bis-methylene- (2,6-di-tert-butyl phenol) Example XXIII SAE 30 mineral lubricating oil containing 2% of the product of Example 2 and 0.1% of phosphorus as phenylethyl di-cyclohexylphosphorodithioate.
Example XXIV SAE 90 mineral lubricating oil containing 5% of the product of Example 3 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction of 2 moles of heptylphenol with 1 mole of sulfur.
The above lubricants are merely illustrative and the scope of invention includes the use of all of the additives 15 previously illustrated as well as others within the broad concept of this invention described herein.
The effectiveness of the nitrogenand boron-containing compositions as additives in lubricants is illustrated by the results obtained from a test in which a 350 cc. sample of a lubricant containing 0.001% of iron naphthenate and 1.5% by -weight of the additive to be tested is heated at 300 F. for 96 hours in a 2 x 15" borosilicate tube. Air is bubbled through the lubricant at the rate of liters per hour. The oxidized sample is allowed to cool to 122 F. whereupon 0.5% (by volume) of water is added and dispersed into the sample. The sample is allowed to stand for hours at room temperature and then filtered through dry No. 1 Whatman paper (double thickness) under slightly reduced pressure. The precipitant is washed with naphtha to constant weight and reported as milligrams of sludge per 100 ml. of oil. The quantity of sludge is an indication of the ability of the additive to alkyl amine is a mono- (hydroxy-alkyl)amine.
prevent the formation of harmful deposits. The lubris cant base employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal Seconds at 100 F. By this test, the base oil gives from 800-900 milligrams of sludge whereas the oil containing 1.5 by weight of the product prepared by the reactionof the polyisobutene-substituted succinic anhydride (1 equivalent) with diethanolamine (1 equivalent) and boric acid (1.8 atomic proportions of boron per atomic proportion of nitrogen) gives a result of 250-300 milligrams of sludge.
Further illustration of the usefulness of the additive of this invention in lubricants is gained from a modified version (the modification consists of extending the test period from the usual 96 hours to 144 hours) of the CRC-EX-3 engine test. This test is recognized in the field as an important test by which lubricants can be evaluated for use under light-duty service conditions.
What is claimed is:
1. An oil-soluble, nitrogenand boron-containing composition prepared by the process comprising for'ming an acylated nitrogen intermediate by the reaction of one equivalent of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent with at least about one-half equivalent of a hydroxy-hydrocarbon amine having the structural formula wherein R is selected from the class consisting of hydrogen, inert hydrocarbon, hydroxy-hydrocarbon radicals, at least one of the two R radicals in said formula being a hydroXy-hydrocarbon radical and reacting said acylated nitrogen intermediate with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids, ammonium salts of boron acids, and esters of boron acids in an amount to provide from about 0.1 gram-atomic-weight of boron for each mole of said acylated nitrogen intermediate to about 10 gram-atomic- 16 weight of boron for each gram-atomic-weight of nitrogen of said acylated nitrogen intermediate.
2. An oil-soluble, nitrogenand boron-containing composition prepared by the process comprising forming an acrylated nitrogen intermediate by the reaction of one equivalent of a substantially aliphatic olefin polymer-substituted succinic anhydride having at least about 50 aliphatic carbon atoms in the olefin polymer substitutent with at least about one-half equivalent of a hydroxy-alkyl amine having less than about 30 carbon atoms and react:
ing said acylated nitrogen intermediate with boric, acid in.
an amount to provide about 1 gram-atomic-weigh t of boron for each gram-atomic-weight of nitrogen of the acylated nitrogen intermediate.
3. The composition of claim 2 wherein the hydroxy- 4. The composition of claim 2 wherein the hydroxyalkyl amine is a di-(hydroxy-alkyDamine.
5. An oil-soluble nitrogenand boron-containing composition prepared by the process comprising forming an acylated nitrogen intermediate by the reaction at a temperature between about C. and 250 Got one equivalent of a polyisobutene-substituted succinic anhydride having from about 50 to 250 carbon atoms in the polyisobutene substitutent with about an equivalent amount of "a di-(hydroxyalkyl) amine having less than about 8 carbon atoms in each alkyl group and reacting said acylated nitrogen intermediate with boric acid in an amount to provide about 1 gram-atomic-Weight of boron for each gram-atomic-weight of nitrogen of the acylated nitrogen intermediate at a temperature between about C. and
6. An oil-soluble nitrogenand boron-containing composition prepared 'by the process comprising forming an acylated nitrogen intermediate by the reaction at a tem- UNITED STATES PATENTS 2,052,192 8/1936 Piggott 260-404 2,216,618 10/1940 Katz 260401 2,234,581 3/1941 Rosen 252 51 2,611,746 9/1952 Kipp 252 49.6 3,087,936 4/1963 Le Suer 252 515 XR ALEX MAZEL, Primary Examiner. DANIEL E. WYMAN, HENRY R; JILES, Examiners.
PATRICK P. GARVIN, JOSE TOVAR,
Assistant Examiners.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,282,955 November 1, 1966 William M. Le Suer It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 1, line 12, for "3,087,963" read 3,087,936 column 2, line 18, for "anther" read another column 4, line 28, for "octadeconal" read octadecanol column 7, line 29, for "polyistobutene" read polyisobutene column 8, line 18, for "pressures" read pressure line 36, after "than" insert about column 12, line 12, for "di(omega-bromopenyl)trisulfide" read di(omegabromopentylJtrisulfide column 13, line 13, for "phosphorous" read phosphorus column 14, line 9, for "prolypropylene" read polypropylene column 16, line 5, for "acrylated" read acylated Signed and sealed this 24th day of December 1968.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. EDWARD J. BRENNER Attesting Officer Commissioner of Patents
Claims (1)
1. AN OIL-SOLUBLE, NITROGEN- AND BORON-CONTAINING COMPOSITION PREPARED BY THE PROCESS COMPRISING FORMING AN ACYLATED NITROGEN INTERMEDIATE BY THE REACTION OF ONE EQUIVALENT OF A SUBSTANTIALLY HYDROCARBON-SUBSTITUTED SUCCINIC ACID-PRODUCING COMPOUND HAVING AT LEAST ABOUT 50 ALIPHATIC CARBON ATOMS IN THE SUBSTANTIALLY HYDROCARBON SUBSTITUENT WITH AT LEAST ABOUT ONE-HALF EQUIVALENT OF A HYDROXY-HYDROCARBON AMINE HAVING THE STRUCTURAL FORMULA R-NH-R WHEREIN R IS SELECTED FROM THE CLASS CONSISTING OF HYDROGEN, INERT HYDROCARBON, HYDROXY-HYDROCARBON RADICALS, AT LEAST ONE OF THE TWO R RADICALS IN SAID FORMULA BEING A HYDROXY-HYDROCARBON RADICAL AND REACTING SAID ACYLATED NITROGEN INTERMEDIATE WITH A BORON COMPOUND SELECTED FROM THE CLASS CONSISTING OF BORON OXIDE, BORON HALIDES, BORON ACIDS, AMMONIUM SALTS OF BORN ACIDS, AND ESTERS OF BORON ACIDS IN AN AMOUNT TO PROVIDE FROM ABOUT 0.1 GRAM-ATOMIC-WEIGHT OF BORON FOR EACH MOLE OF SAID ACYLATED NITROGEN INTERMEDIATE TO ABOUT 10 GRAM-ATOMICWEIGHT OF BORON FOR EACH GRAM-ATOMIC-WEIGHT OF NITROGEN OF SAID ACYLATED NITROGEN INTERMEDIATE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US276208A US3282955A (en) | 1963-04-29 | 1963-04-29 | Reaction products of acylated nitrogen intermediates and a boron compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US276208A US3282955A (en) | 1963-04-29 | 1963-04-29 | Reaction products of acylated nitrogen intermediates and a boron compound |
Publications (1)
Publication Number | Publication Date |
---|---|
US3282955A true US3282955A (en) | 1966-11-01 |
Family
ID=23055651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US276208A Expired - Lifetime US3282955A (en) | 1963-04-29 | 1963-04-29 | Reaction products of acylated nitrogen intermediates and a boron compound |
Country Status (1)
Country | Link |
---|---|
US (1) | US3282955A (en) |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3449362A (en) * | 1965-03-08 | 1969-06-10 | Standard Oil Co | Alkenyl hydrocarbon substituted succinimides of polyamino ureas and their boron-containing derivatives |
US3676346A (en) * | 1970-02-19 | 1972-07-11 | Exxon Research Engineering Co | Lubricating oil compositions containing improved sludge inhibiting additives |
US3903151A (en) * | 1971-07-14 | 1975-09-02 | Chevron Res | Reaction products of alkali metal meborate and hydrocarbon substituted succinimide |
FR2342296A1 (en) * | 1976-02-25 | 1977-09-23 | Cooper & Co Ltd Edwin | PHENOXY-ACETAMIDES BORIDES, THEIR OBTAINING AND USE AS ADDITIVES FOR LUBRICANTS |
US4071548A (en) * | 1971-11-30 | 1978-01-31 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
US4092127A (en) * | 1976-12-20 | 1978-05-30 | Exxon Research & Engineering Co. | Anti-dieseling additive for spark ignition engines |
US4120887A (en) * | 1971-11-30 | 1978-10-17 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
US4173540A (en) * | 1977-10-03 | 1979-11-06 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound |
US4338205A (en) * | 1980-08-25 | 1982-07-06 | Exxon Research & Engineering Co. | Lubricating oil with improved diesel dispersancy |
US4426305A (en) | 1981-03-23 | 1984-01-17 | Edwin Cooper, Inc. | Lubricating compositions containing boronated nitrogen-containing dispersants |
US4579674A (en) * | 1981-12-28 | 1986-04-01 | Texaco Inc. | Hydrocarbylsuccinimide of a secondary hydroxyl-substituted polyamine and lubricating oil containing same |
WO1986004601A1 (en) | 1985-01-31 | 1986-08-14 | The Lubrizol Corporation | Sulfur-containing compositions, and additive concentrates and lubricating oils containing same |
US4873009A (en) * | 1982-03-29 | 1989-10-10 | Amoco Corporation | Borated lube oil additive |
US4915857A (en) * | 1987-05-11 | 1990-04-10 | Exxon Chemical Patents Inc. | Amine compatibility aids in lubricating oil compositions |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
US5049290A (en) * | 1987-05-11 | 1991-09-17 | Exxon Chemical Patents Inc. | Amine compatibility aids in lubricating oil compositions |
US5225093A (en) * | 1990-02-16 | 1993-07-06 | Ethyl Petroleum Additives, Inc. | Gear oil additive compositions and gear oils containing the same |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5328619A (en) * | 1991-06-21 | 1994-07-12 | Ethyl Petroleum Additives, Inc. | Oil additive concentrates and lubricants of enhanced performance capabilities |
US5334329A (en) * | 1988-10-07 | 1994-08-02 | The Lubrizol Corporation | Lubricant and functional fluid compositions exhibiting improved demulsibility |
EP0683220A2 (en) | 1994-05-18 | 1995-11-22 | Ethyl Corporation | Lubricant additive compositions |
EP0695798A2 (en) | 1994-08-03 | 1996-02-07 | The Lubrizol Corporation | Lubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US5583099A (en) * | 1986-11-12 | 1996-12-10 | The Lubrizol Corporation | Boronated compounds |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5652201A (en) * | 1991-05-29 | 1997-07-29 | Ethyl Petroleum Additives Inc. | Lubricating oil compositions and concentrates and the use thereof |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
US6362136B1 (en) | 1994-05-23 | 2002-03-26 | The Lubrizol Corporation | Compositions for extending seal life, and lubricants and functional fluids containing the same |
US6489271B1 (en) | 1994-08-03 | 2002-12-03 | The Lubrizol Corporation | Combination of a sulfur compound and specific phosphorus compounds and their use in lubricating compositions, concentrates and greases |
US6573223B1 (en) | 2002-03-04 | 2003-06-03 | The Lubrizol Corporation | Lubricating compositions with good thermal stability and demulsibility properties |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
WO2003095595A1 (en) | 2002-05-09 | 2003-11-20 | The Lubrizol Corporation | Continuously variable transmission fluids comprising a combination of calcium- and magnesium-overbased detergents |
US6689723B2 (en) | 2002-03-05 | 2004-02-10 | Exxonmobil Chemical Patents Inc. | Sulfide- and polysulfide-containing lubricating oil additive compositions and lubricating compositions containing the same |
US20050101497A1 (en) * | 2003-11-12 | 2005-05-12 | Saathoff Lee D. | Compositions and methods for improved friction durability in power transmission fluids |
US20050262760A1 (en) * | 2003-11-12 | 2005-12-01 | Lawson J A | Chemical synthesis methods using electro-catalysis |
US20060122073A1 (en) * | 2004-12-08 | 2006-06-08 | Chip Hewette | Oxidation stable gear oil compositions |
US20060173217A1 (en) * | 2005-01-28 | 2006-08-03 | Abbas Kadkhodayan | Seal swell agent and process therefor |
WO2006094011A2 (en) | 2005-03-01 | 2006-09-08 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
US20060252660A1 (en) * | 2005-05-09 | 2006-11-09 | Akhilesh Duggal | Hydrolytically stable viscosity index improves |
US20070078066A1 (en) * | 2005-10-03 | 2007-04-05 | Milner Jeffrey L | Lubricant formulations containing extreme pressure agents |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US20070203031A1 (en) * | 2006-02-27 | 2007-08-30 | Ewa Bardasz | Nitrogen-containing Dispersant as an Ashless TBN Booster for Lubricants |
US20080015124A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant composition |
EP2017329A1 (en) | 2007-05-04 | 2009-01-21 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
EP2025737A1 (en) | 2007-08-01 | 2009-02-18 | Afton Chemical Corporation | Environmentally-friendly fuel compositions |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
WO2009045979A1 (en) | 2007-10-03 | 2009-04-09 | The Lubrizol Corporation | Lubricants that decrease micropitting for industrial gears |
US20090233822A1 (en) * | 2008-03-11 | 2009-09-17 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
DE102009001301A1 (en) | 2008-03-11 | 2009-09-24 | Volkswagen Ag | Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication |
DE102009012567A1 (en) | 2008-03-11 | 2009-10-01 | Afton Chemical Corp. | Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent |
WO2010096325A1 (en) | 2009-02-18 | 2010-08-26 | The Lubrizol Corporation | Amine derivatives as friction modifiers in lubricants |
EP2230292A1 (en) | 2003-11-10 | 2010-09-22 | Afton Chemical Corporation | Methods of lubricating transmissions |
US7833953B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant composition |
US7879775B2 (en) | 2006-07-14 | 2011-02-01 | Afton Chemical Corporation | Lubricant compositions |
US7888299B2 (en) | 2003-01-15 | 2011-02-15 | Afton Chemical Japan Corp. | Extended drain, thermally stable, gear oil formulations |
EP2302023A2 (en) | 2002-10-04 | 2011-03-30 | R.T. Vanderbilt Company, Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
US7947636B2 (en) | 2004-02-27 | 2011-05-24 | Afton Chemical Corporation | Power transmission fluids |
WO2011066142A1 (en) | 2009-11-30 | 2011-06-03 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
EP2371933A1 (en) | 2006-02-06 | 2011-10-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
WO2011143051A1 (en) | 2010-05-12 | 2011-11-17 | The Lubrizol Corporation | Tartaric acid derivatives in hths fluids |
WO2012033668A1 (en) | 2010-09-07 | 2012-03-15 | The Lubrizol Corporation | Hydroxychroman derivatives as engine oil antioxidants |
WO2012141855A1 (en) | 2011-04-15 | 2012-10-18 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
WO2012154708A1 (en) | 2011-05-12 | 2012-11-15 | The Lubrizol Corporation | Aromatic imides and esters as lubricant additives |
WO2012162027A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012162020A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing antioxidants |
WO2013013026A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Carboxylic pyrrolidinones and methods of use thereof |
WO2013012987A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Overbased friction modifiers and methods of use thereof |
WO2013070376A2 (en) | 2011-11-11 | 2013-05-16 | Vanderbilt Chemicals, Llc | Lubricant composition |
WO2013151911A1 (en) | 2012-04-04 | 2013-10-10 | The Lubrizol Corporation | Bearing lubricants for pulverizing equipment |
US8557752B2 (en) | 2005-03-23 | 2013-10-15 | Afton Chemical Corporation | Lubricating compositions |
WO2014088814A1 (en) | 2012-12-07 | 2014-06-12 | The Lubrizol Corporation | Pyran dispersants |
US20150080278A1 (en) * | 2012-03-21 | 2015-03-19 | Idemitsu Kosan Co., Ltd. | Lubricating oil additive composition and lubricating oil composition |
WO2015200592A1 (en) | 2014-06-27 | 2015-12-30 | The Lubrizol Corporation | Mixtures of friction modifiers to provide good friction performance to transmission fluids |
WO2016144639A1 (en) | 2015-03-10 | 2016-09-15 | The Lubrizol Corporation | Lubricating compositions comprising an anti-wear/friction modifying agent |
WO2017205271A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
WO2017205270A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
WO2017205274A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
WO2018053098A1 (en) | 2016-09-14 | 2018-03-22 | The Lubrizol Corporation | Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound |
WO2018057678A1 (en) | 2016-09-21 | 2018-03-29 | The Lubrizol Corporation | Fluorinated polyacrylate antifoam components for lubricating compositions |
WO2018057675A1 (en) | 2016-09-21 | 2018-03-29 | The Lubrizol Corporation | Polyacrylate antifoam components with improved thermal stability |
WO2018118163A1 (en) | 2016-12-22 | 2018-06-28 | The Lubrizol Corporation | Fluorinated polyacrylate antifoam components for lubricating compositions |
WO2019183365A1 (en) | 2018-03-21 | 2019-09-26 | The Lubrizol Corporation | NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids |
WO2020150123A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2052192A (en) * | 1935-10-23 | 1936-08-25 | Ici Ltd | Boric acid esters |
US2216618A (en) * | 1939-08-10 | 1940-10-01 | Katz Jacob | Surface active anionic boric acid ester compounds of amino alcohols |
US2234581A (en) * | 1937-09-30 | 1941-03-11 | Standard Oil Dev Co | Hydrocarbon composition containing organic boron compounds |
US2611746A (en) * | 1947-06-10 | 1952-09-23 | Aluminum Co Of America | Lubricating composition |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
-
1963
- 1963-04-29 US US276208A patent/US3282955A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2052192A (en) * | 1935-10-23 | 1936-08-25 | Ici Ltd | Boric acid esters |
US2234581A (en) * | 1937-09-30 | 1941-03-11 | Standard Oil Dev Co | Hydrocarbon composition containing organic boron compounds |
US2216618A (en) * | 1939-08-10 | 1940-10-01 | Katz Jacob | Surface active anionic boric acid ester compounds of amino alcohols |
US2611746A (en) * | 1947-06-10 | 1952-09-23 | Aluminum Co Of America | Lubricating composition |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3449362A (en) * | 1965-03-08 | 1969-06-10 | Standard Oil Co | Alkenyl hydrocarbon substituted succinimides of polyamino ureas and their boron-containing derivatives |
US3676346A (en) * | 1970-02-19 | 1972-07-11 | Exxon Research Engineering Co | Lubricating oil compositions containing improved sludge inhibiting additives |
US3903151A (en) * | 1971-07-14 | 1975-09-02 | Chevron Res | Reaction products of alkali metal meborate and hydrocarbon substituted succinimide |
US4071548A (en) * | 1971-11-30 | 1978-01-31 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
US4120887A (en) * | 1971-11-30 | 1978-10-17 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
FR2342296A1 (en) * | 1976-02-25 | 1977-09-23 | Cooper & Co Ltd Edwin | PHENOXY-ACETAMIDES BORIDES, THEIR OBTAINING AND USE AS ADDITIVES FOR LUBRICANTS |
US4092127A (en) * | 1976-12-20 | 1978-05-30 | Exxon Research & Engineering Co. | Anti-dieseling additive for spark ignition engines |
DE2755199A1 (en) * | 1976-12-20 | 1978-06-22 | Exxon Research Engineering Co | GASOLINE WITH AN ADDITIVE CONTAINING REFILLING OF GASOLINE ENGINES |
US4173540A (en) * | 1977-10-03 | 1979-11-06 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound |
US4338205A (en) * | 1980-08-25 | 1982-07-06 | Exxon Research & Engineering Co. | Lubricating oil with improved diesel dispersancy |
US4426305A (en) | 1981-03-23 | 1984-01-17 | Edwin Cooper, Inc. | Lubricating compositions containing boronated nitrogen-containing dispersants |
US4579674A (en) * | 1981-12-28 | 1986-04-01 | Texaco Inc. | Hydrocarbylsuccinimide of a secondary hydroxyl-substituted polyamine and lubricating oil containing same |
US4873009A (en) * | 1982-03-29 | 1989-10-10 | Amoco Corporation | Borated lube oil additive |
WO1986004601A1 (en) | 1985-01-31 | 1986-08-14 | The Lubrizol Corporation | Sulfur-containing compositions, and additive concentrates and lubricating oils containing same |
US5583099A (en) * | 1986-11-12 | 1996-12-10 | The Lubrizol Corporation | Boronated compounds |
US4915857A (en) * | 1987-05-11 | 1990-04-10 | Exxon Chemical Patents Inc. | Amine compatibility aids in lubricating oil compositions |
US5049290A (en) * | 1987-05-11 | 1991-09-17 | Exxon Chemical Patents Inc. | Amine compatibility aids in lubricating oil compositions |
US5334329A (en) * | 1988-10-07 | 1994-08-02 | The Lubrizol Corporation | Lubricant and functional fluid compositions exhibiting improved demulsibility |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
US5225093A (en) * | 1990-02-16 | 1993-07-06 | Ethyl Petroleum Additives, Inc. | Gear oil additive compositions and gear oils containing the same |
US5652201A (en) * | 1991-05-29 | 1997-07-29 | Ethyl Petroleum Additives Inc. | Lubricating oil compositions and concentrates and the use thereof |
US5328619A (en) * | 1991-06-21 | 1994-07-12 | Ethyl Petroleum Additives, Inc. | Oil additive concentrates and lubricants of enhanced performance capabilities |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5717039A (en) * | 1992-12-17 | 1998-02-10 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5703256A (en) * | 1992-12-17 | 1997-12-30 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5698722A (en) * | 1992-12-17 | 1997-12-16 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5696064A (en) * | 1992-12-17 | 1997-12-09 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
EP0683220A2 (en) | 1994-05-18 | 1995-11-22 | Ethyl Corporation | Lubricant additive compositions |
US6362136B1 (en) | 1994-05-23 | 2002-03-26 | The Lubrizol Corporation | Compositions for extending seal life, and lubricants and functional fluids containing the same |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
EP0695798A2 (en) | 1994-08-03 | 1996-02-07 | The Lubrizol Corporation | Lubricating compositions, concentrates, and greases containing the combination of an organic polysulfide and an overbased composition or a phosphorus or boron compound |
US6489271B1 (en) | 1994-08-03 | 2002-12-03 | The Lubrizol Corporation | Combination of a sulfur compound and specific phosphorus compounds and their use in lubricating compositions, concentrates and greases |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
US6573223B1 (en) | 2002-03-04 | 2003-06-03 | The Lubrizol Corporation | Lubricating compositions with good thermal stability and demulsibility properties |
US6689723B2 (en) | 2002-03-05 | 2004-02-10 | Exxonmobil Chemical Patents Inc. | Sulfide- and polysulfide-containing lubricating oil additive compositions and lubricating compositions containing the same |
WO2003095595A1 (en) | 2002-05-09 | 2003-11-20 | The Lubrizol Corporation | Continuously variable transmission fluids comprising a combination of calcium- and magnesium-overbased detergents |
EP2460870A1 (en) | 2002-10-04 | 2012-06-06 | R.T. Vanderbilt Company, Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
EP2302023A2 (en) | 2002-10-04 | 2011-03-30 | R.T. Vanderbilt Company, Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
EP2366762A1 (en) | 2002-10-04 | 2011-09-21 | R.T. Vanderbilt Company Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
EP2436753A1 (en) | 2002-10-04 | 2012-04-04 | R.T. Vanderbilt Company Inc. | Synergistic organoborate compositions and lubricating compositions containing same |
US7888299B2 (en) | 2003-01-15 | 2011-02-15 | Afton Chemical Japan Corp. | Extended drain, thermally stable, gear oil formulations |
US9267093B2 (en) | 2003-11-10 | 2016-02-23 | Afton Chemical Corporation | Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids |
EP2230292A1 (en) | 2003-11-10 | 2010-09-22 | Afton Chemical Corporation | Methods of lubricating transmissions |
US20100279901A1 (en) * | 2003-11-10 | 2010-11-04 | Iyer Ramnath N | Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids |
US20050101497A1 (en) * | 2003-11-12 | 2005-05-12 | Saathoff Lee D. | Compositions and methods for improved friction durability in power transmission fluids |
US20050262760A1 (en) * | 2003-11-12 | 2005-12-01 | Lawson J A | Chemical synthesis methods using electro-catalysis |
US20080090744A1 (en) * | 2003-11-12 | 2008-04-17 | Saathoff Lee D | Compositions and Methods for Improved Friction Durability in Power Transmission Fluids |
US7695534B2 (en) | 2003-11-12 | 2010-04-13 | Ecr Technologies, Inc. | Chemical synthesis methods using electro-catalysis |
US7947636B2 (en) | 2004-02-27 | 2011-05-24 | Afton Chemical Corporation | Power transmission fluids |
EP1669436A1 (en) | 2004-12-08 | 2006-06-14 | Afton Chemical Corporation | Oxidation stable gear oil compositions |
US20060122073A1 (en) * | 2004-12-08 | 2006-06-08 | Chip Hewette | Oxidation stable gear oil compositions |
US20060173217A1 (en) * | 2005-01-28 | 2006-08-03 | Abbas Kadkhodayan | Seal swell agent and process therefor |
US7485734B2 (en) | 2005-01-28 | 2009-02-03 | Afton Chemical Corporation | Seal swell agent and process therefor |
WO2006094011A2 (en) | 2005-03-01 | 2006-09-08 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
US8557752B2 (en) | 2005-03-23 | 2013-10-15 | Afton Chemical Corporation | Lubricating compositions |
US20060252660A1 (en) * | 2005-05-09 | 2006-11-09 | Akhilesh Duggal | Hydrolytically stable viscosity index improves |
US20070078066A1 (en) * | 2005-10-03 | 2007-04-05 | Milner Jeffrey L | Lubricant formulations containing extreme pressure agents |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US7928260B2 (en) | 2005-11-09 | 2011-04-19 | Afton Chemical Corporation | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
EP2371933A1 (en) | 2006-02-06 | 2011-10-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
US7749948B2 (en) | 2006-02-27 | 2010-07-06 | The Lubrizol Corporation | Nitrogen-containing dispersant as an ashless TBN booster for lubricants |
US20070203031A1 (en) * | 2006-02-27 | 2007-08-30 | Ewa Bardasz | Nitrogen-containing Dispersant as an Ashless TBN Booster for Lubricants |
US7879775B2 (en) | 2006-07-14 | 2011-02-01 | Afton Chemical Corporation | Lubricant compositions |
US7902133B2 (en) | 2006-07-14 | 2011-03-08 | Afton Chemical Corporation | Lubricant composition |
US20080015124A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant composition |
US7833953B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant composition |
EP2017329A1 (en) | 2007-05-04 | 2009-01-21 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
US20100152078A1 (en) * | 2007-05-04 | 2010-06-17 | Ian Macpherson | Environmentally-friendly lubricant compositions |
EP2420553A1 (en) | 2007-05-04 | 2012-02-22 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
EP2025737A1 (en) | 2007-08-01 | 2009-02-18 | Afton Chemical Corporation | Environmentally-friendly fuel compositions |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
WO2009045979A1 (en) | 2007-10-03 | 2009-04-09 | The Lubrizol Corporation | Lubricants that decrease micropitting for industrial gears |
DE102009001301A1 (en) | 2008-03-11 | 2009-09-24 | Volkswagen Ag | Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication |
US8703669B2 (en) | 2008-03-11 | 2014-04-22 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
US8546311B2 (en) | 2008-03-11 | 2013-10-01 | Volkswagen Aktiengesellsschaft | Method for lubricating a clutch-only automatic transmission component requiring lubrication |
US20090233822A1 (en) * | 2008-03-11 | 2009-09-17 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
DE102009012567A1 (en) | 2008-03-11 | 2009-10-01 | Afton Chemical Corp. | Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent |
WO2010096325A1 (en) | 2009-02-18 | 2010-08-26 | The Lubrizol Corporation | Amine derivatives as friction modifiers in lubricants |
WO2011066142A1 (en) | 2009-11-30 | 2011-06-03 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2011066144A1 (en) | 2009-11-30 | 2011-06-03 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2011066145A1 (en) | 2009-11-30 | 2011-06-03 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2011143051A1 (en) | 2010-05-12 | 2011-11-17 | The Lubrizol Corporation | Tartaric acid derivatives in hths fluids |
WO2012033668A1 (en) | 2010-09-07 | 2012-03-15 | The Lubrizol Corporation | Hydroxychroman derivatives as engine oil antioxidants |
EP3070153A1 (en) | 2010-09-07 | 2016-09-21 | The Lubrizol Corporation | Hydroxychroman derivatives as antioxidants |
WO2012141855A1 (en) | 2011-04-15 | 2012-10-18 | R.T. Vanderbilt Company, Inc. | Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same |
WO2012154708A1 (en) | 2011-05-12 | 2012-11-15 | The Lubrizol Corporation | Aromatic imides and esters as lubricant additives |
WO2012162027A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012162020A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing antioxidants |
WO2013013026A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Carboxylic pyrrolidinones and methods of use thereof |
WO2013012987A1 (en) | 2011-07-21 | 2013-01-24 | The Lubrizol Corporation | Overbased friction modifiers and methods of use thereof |
WO2013070376A2 (en) | 2011-11-11 | 2013-05-16 | Vanderbilt Chemicals, Llc | Lubricant composition |
US20150080278A1 (en) * | 2012-03-21 | 2015-03-19 | Idemitsu Kosan Co., Ltd. | Lubricating oil additive composition and lubricating oil composition |
US9388361B2 (en) * | 2012-03-21 | 2016-07-12 | Idemitsu Kosan Co., Ltd. | Lubricating oil additive composition and lubricating oil composition |
WO2013151911A1 (en) | 2012-04-04 | 2013-10-10 | The Lubrizol Corporation | Bearing lubricants for pulverizing equipment |
WO2014088814A1 (en) | 2012-12-07 | 2014-06-12 | The Lubrizol Corporation | Pyran dispersants |
WO2015200592A1 (en) | 2014-06-27 | 2015-12-30 | The Lubrizol Corporation | Mixtures of friction modifiers to provide good friction performance to transmission fluids |
WO2016144639A1 (en) | 2015-03-10 | 2016-09-15 | The Lubrizol Corporation | Lubricating compositions comprising an anti-wear/friction modifying agent |
WO2017205270A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
WO2017205271A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
WO2017205274A1 (en) | 2016-05-24 | 2017-11-30 | The Lubrizol Corporation | Seal swell agents for lubricating compositions |
WO2018053098A1 (en) | 2016-09-14 | 2018-03-22 | The Lubrizol Corporation | Lubricating composition comprising sulfonate detergent and ashless hydrocarbyl phenolic compound |
WO2018057678A1 (en) | 2016-09-21 | 2018-03-29 | The Lubrizol Corporation | Fluorinated polyacrylate antifoam components for lubricating compositions |
WO2018057675A1 (en) | 2016-09-21 | 2018-03-29 | The Lubrizol Corporation | Polyacrylate antifoam components with improved thermal stability |
WO2018118163A1 (en) | 2016-12-22 | 2018-06-28 | The Lubrizol Corporation | Fluorinated polyacrylate antifoam components for lubricating compositions |
WO2019183365A1 (en) | 2018-03-21 | 2019-09-26 | The Lubrizol Corporation | NOVEL FLUORINATED POLYACRYLATES ANTIFOAMS IN ULTRA-LOW VISCOSITY (<5 CST) finished fluids |
WO2020150123A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3282955A (en) | Reaction products of acylated nitrogen intermediates and a boron compound | |
US3338832A (en) | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3281428A (en) | Reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3254025A (en) | Boron-containing acylated amine and lubricating compositions containing the same | |
US3533945A (en) | Lubricating oil composition | |
US3346493A (en) | Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product | |
US4034038A (en) | Boron-containing esters | |
US3306908A (en) | Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds | |
US3344069A (en) | Lubricant additive and lubricant containing same | |
US3513093A (en) | Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives | |
US3403102A (en) | Lubricant containing phosphorus acid esters | |
US3284409A (en) | Substituted succinic acid-boron-alkylene amine phosphatide derived additive and lubricating oil containing same | |
US3502677A (en) | Nitrogen-containing and phosphorus-containing succinic derivatives | |
US3197405A (en) | Phosphorus-and nitrogen-containing compositions and process for preparing the same | |
US3284410A (en) | Substituted succinic acid-boron-alkylene amine-cyanamido derived additive and lubricating oil containing same | |
US3876550A (en) | Lubricant compositions | |
US3632510A (en) | Mixed ester-metal salts and lubricants and fuels containing the same | |
US3948800A (en) | Dispersant compositions | |
US3366569A (en) | Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide | |
US3390082A (en) | Lubricants containing metal-free dispersants and inhibitors | |
US3200107A (en) | Process for preparing acylated amine-cs2 compositions and products | |
US3381022A (en) | Polymerized olefin substituted succinic acid esters | |
AU595358B2 (en) | Phosphorus-containing lubricant and functional fluid compositions | |
AU608248B2 (en) | Borated amine salts of monothiophosphoric acids | |
US3184411A (en) | Lubricants for reducing corrosion |