US3272746A - Lubricating composition containing an acylated nitrogen compound - Google Patents
Lubricating composition containing an acylated nitrogen compound Download PDFInfo
- Publication number
- US3272746A US3272746A US509172A US50917265A US3272746A US 3272746 A US3272746 A US 3272746A US 509172 A US509172 A US 509172A US 50917265 A US50917265 A US 50917265A US 3272746 A US3272746 A US 3272746A
- Authority
- US
- United States
- Prior art keywords
- grams
- nitrogen
- mixture
- acid
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 248
- 229910017464 nitrogen compound Inorganic materials 0.000 title claims description 11
- 150000002830 nitrogen compounds Chemical class 0.000 title claims description 11
- 230000001050 lubricating effect Effects 0.000 title description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 123
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 34
- 229930195733 hydrocarbon Natural products 0.000 claims description 33
- 239000004215 Carbon black (E152) Substances 0.000 claims description 30
- 150000002430 hydrocarbons Chemical class 0.000 claims description 29
- 239000010687 lubricating oil Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 201
- -1 dirt Substances 0.000 description 118
- 239000000047 product Substances 0.000 description 117
- 229960005419 nitrogen Drugs 0.000 description 101
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 90
- 239000002480 mineral oil Substances 0.000 description 83
- 235000010446 mineral oil Nutrition 0.000 description 83
- 239000002253 acid Substances 0.000 description 73
- 229940014800 succinic anhydride Drugs 0.000 description 72
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 66
- 238000000034 method Methods 0.000 description 57
- 239000003921 oil Substances 0.000 description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 57
- 238000006243 chemical reaction Methods 0.000 description 53
- 150000003254 radicals Chemical class 0.000 description 45
- 150000001875 compounds Chemical class 0.000 description 43
- 239000000243 solution Substances 0.000 description 42
- 150000002829 nitrogen Chemical class 0.000 description 39
- 229920000768 polyamine Polymers 0.000 description 36
- 229920002367 Polyisobutene Polymers 0.000 description 31
- 150000001408 amides Chemical class 0.000 description 31
- 125000001183 hydrocarbyl group Chemical group 0.000 description 27
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 26
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 26
- 239000000706 filtrate Substances 0.000 description 26
- 150000008064 anhydrides Chemical class 0.000 description 22
- 238000010992 reflux Methods 0.000 description 22
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 20
- 239000010688 mineral lubricating oil Substances 0.000 description 20
- 125000004433 nitrogen atom Chemical group N* 0.000 description 20
- 239000000376 reactant Substances 0.000 description 20
- 125000003277 amino group Chemical group 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 239000000654 additive Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 18
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 18
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 18
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 17
- 229910052801 chlorine Inorganic materials 0.000 description 17
- 239000000314 lubricant Substances 0.000 description 17
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 16
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 15
- 239000011574 phosphorus Substances 0.000 description 15
- 229910052698 phosphorus Inorganic materials 0.000 description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 14
- 150000001412 amines Chemical class 0.000 description 14
- 239000003599 detergent Substances 0.000 description 14
- 239000002270 dispersing agent Substances 0.000 description 14
- 229940012017 ethylenediamine Drugs 0.000 description 14
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 14
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 13
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 13
- 229910021529 ammonia Inorganic materials 0.000 description 13
- 229920000098 polyolefin Polymers 0.000 description 13
- 239000008096 xylene Substances 0.000 description 13
- 239000005977 Ethylene Substances 0.000 description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 12
- 150000003949 imides Chemical group 0.000 description 12
- 125000001424 substituent group Chemical group 0.000 description 12
- 150000007513 acids Chemical class 0.000 description 11
- 150000001336 alkenes Chemical class 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 11
- 229920006395 saturated elastomer Polymers 0.000 description 11
- 239000010802 sludge Substances 0.000 description 11
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical class NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 229930195734 saturated hydrocarbon Natural products 0.000 description 10
- 235000011044 succinic acid Nutrition 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229960002317 succinimide Drugs 0.000 description 9
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 8
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 125000002947 alkylene group Chemical group 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 229960001124 trientine Drugs 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 150000001409 amidines Chemical class 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 7
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 7
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 7
- 239000001384 succinic acid Substances 0.000 description 7
- 229960005137 succinic acid Drugs 0.000 description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 150000003141 primary amines Chemical class 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 5
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 150000004702 methyl esters Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- CETAGCPEESRQJY-UHFFFAOYSA-M [Zn+].CCCCCCCCOP([S-])(=S)OCCCCCCCC Chemical compound [Zn+].CCCCCCCCOP([S-])(=S)OCCCCCCCC CETAGCPEESRQJY-UHFFFAOYSA-M 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 150000001447 alkali salts Chemical class 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000002518 antifoaming agent Substances 0.000 description 4
- 238000010533 azeotropic distillation Methods 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 4
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N methyl heptene Natural products CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 4
- 150000002825 nitriles Chemical class 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 150000003385 sodium Chemical class 0.000 description 4
- 150000003444 succinic acids Chemical class 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 150000003751 zinc Chemical class 0.000 description 4
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 3
- LKLLNYWECKEQIB-UHFFFAOYSA-N 1,3,5-triazinane Chemical compound C1NCNCN1 LKLLNYWECKEQIB-UHFFFAOYSA-N 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 241000158728 Meliaceae Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 235000013877 carbamide Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 3
- 229940113162 oleylamide Drugs 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 150000004885 piperazines Chemical class 0.000 description 3
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- CMQCNTNASCDNGR-UHFFFAOYSA-N toluene;hydrate Chemical compound O.CC1=CC=CC=C1 CMQCNTNASCDNGR-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- ZQHJVIHCDHJVII-OWOJBTEDSA-N (e)-2-chlorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\Cl)C(O)=O ZQHJVIHCDHJVII-OWOJBTEDSA-N 0.000 description 2
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 2
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 2
- PTYXPKUPXPWHSH-UHFFFAOYSA-N 1-(butyltetrasulfanyl)butane Chemical compound CCCCSSSSCCCC PTYXPKUPXPWHSH-UHFFFAOYSA-N 0.000 description 2
- XWHKJSDRWVTJCH-UHFFFAOYSA-N 1-n,4-n-dibutylbenzene-1,4-diamine Chemical compound CCCCNC1=CC=C(NCCCC)C=C1 XWHKJSDRWVTJCH-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- SZTBMYHIYNGYIA-UHFFFAOYSA-N 2-chloroacrylic acid Chemical compound OC(=O)C(Cl)=C SZTBMYHIYNGYIA-UHFFFAOYSA-N 0.000 description 2
- CXJAFLQWMOMYOW-UHFFFAOYSA-N 3-chlorofuran-2,5-dione Chemical compound ClC1=CC(=O)OC1=O CXJAFLQWMOMYOW-UHFFFAOYSA-N 0.000 description 2
- KOGSPLLRMRSADR-UHFFFAOYSA-N 4-(2-aminopropan-2-yl)-1-methylcyclohexan-1-amine Chemical compound CC(C)(N)C1CCC(C)(N)CC1 KOGSPLLRMRSADR-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 239000004129 EU approved improving agent Substances 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- SQSPRWMERUQXNE-UHFFFAOYSA-N Guanylurea Chemical compound NC(=N)NC(N)=O SQSPRWMERUQXNE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical group [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 2
- 241000779819 Syncarpia glomulifera Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 159000000009 barium salts Chemical class 0.000 description 2
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical class NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 230000000881 depressing effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- XFAYHOVTJNPDJW-UHFFFAOYSA-N di(nonoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCOP(S)(=S)OCCCCCCCCC XFAYHOVTJNPDJW-UHFFFAOYSA-N 0.000 description 2
- GVPWHKZIJBODOX-UHFFFAOYSA-N dibenzyl disulfide Chemical compound C=1C=CC=CC=1CSSCC1=CC=CC=C1 GVPWHKZIJBODOX-UHFFFAOYSA-N 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005911 haloform reaction Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- HUIFRRVDYSWLLY-UHFFFAOYSA-N pent-2-ene-1,3,5-tricarboxylic acid Chemical compound OC(=O)CCC(C(O)=O)=CCC(O)=O HUIFRRVDYSWLLY-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 150000003017 phosphorus Chemical class 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 239000001739 pinus spp. Substances 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 238000007056 transamidation reaction Methods 0.000 description 2
- 229940036248 turpentine Drugs 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- OTXHZHQQWQTQMW-UHFFFAOYSA-N (diaminomethylideneamino)azanium;hydrogen carbonate Chemical compound OC([O-])=O.N[NH2+]C(N)=N OTXHZHQQWQTQMW-UHFFFAOYSA-N 0.000 description 1
- BEWIWYDBTBVVIA-PLNGDYQASA-N (z)-4-(butylamino)-4-oxobut-2-enoic acid Chemical compound CCCCNC(=O)\C=C/C(O)=O BEWIWYDBTBVVIA-PLNGDYQASA-N 0.000 description 1
- BSSNZUFKXJJCBG-UPHRSURJSA-N (z)-but-2-enediamide Chemical compound NC(=O)\C=C/C(N)=O BSSNZUFKXJJCBG-UPHRSURJSA-N 0.000 description 1
- GLQKSXFFEWKIEL-ARJAWSKDSA-N (z)-n',n'-dimethylbut-2-enediamide Chemical compound CN(C)C(=O)\C=C/C(N)=O GLQKSXFFEWKIEL-ARJAWSKDSA-N 0.000 description 1
- YIEYZLFLWMYCAS-PLNGDYQASA-N (z)-n'-butylbut-2-enediamide Chemical compound CCCCNC(=O)\C=C/C(N)=O YIEYZLFLWMYCAS-PLNGDYQASA-N 0.000 description 1
- JOOWUNKQFDHPRH-IHWYPQMZSA-N (z)-n'-methylbut-2-enediamide Chemical compound CNC(=O)\C=C/C(N)=O JOOWUNKQFDHPRH-IHWYPQMZSA-N 0.000 description 1
- QMMOXUPEWRXHJS-HYXAFXHYSA-N (z)-pent-2-ene Chemical compound CC\C=C/C QMMOXUPEWRXHJS-HYXAFXHYSA-N 0.000 description 1
- OQJVXNHMUWQQEW-UHFFFAOYSA-N 1,2,3,4-tetrahydropyrazine Chemical compound C1CNC=CN1 OQJVXNHMUWQQEW-UHFFFAOYSA-N 0.000 description 1
- UENDTCZCTZOTFC-UHFFFAOYSA-N 1,2,3-tributylguanidine Chemical compound CCCCNC(NCCCC)=NCCCC UENDTCZCTZOTFC-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- YBQZXXMEJHZYMB-UHFFFAOYSA-N 1,2-diphenylhydrazine Chemical compound C=1C=CC=CC=1NNC1=CC=CC=C1 YBQZXXMEJHZYMB-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- BZJTUOGZUKFLQT-UHFFFAOYSA-N 1,3,5,7-tetramethylcyclooctane Chemical group CC1CC(C)CC(C)CC(C)C1 BZJTUOGZUKFLQT-UHFFFAOYSA-N 0.000 description 1
- PSNNVVJCYNGNOO-UHFFFAOYSA-N 1,4,2-dithiazolidine Chemical compound C1NSCS1 PSNNVVJCYNGNOO-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- NWWCWUDRWYAUEC-UHFFFAOYSA-N 1-(2-methylpiperazin-1-yl)butan-2-amine Chemical compound CCC(N)CN1CCNCC1C NWWCWUDRWYAUEC-UHFFFAOYSA-N 0.000 description 1
- ZHWQJZALWKLWNG-UHFFFAOYSA-N 1-(2-octadecyl-4,5-dihydroimidazol-1-yl)ethanamine Chemical compound CCCCCCCCCCCCCCCCCCC1=NCCN1C(C)N ZHWQJZALWKLWNG-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- GPXSTLAIBOEFST-UHFFFAOYSA-N 1-[4-(2-hydroxypropyl)-3-methylpiperazin-1-yl]propan-2-ol Chemical compound CC(O)CN1CCN(CC(C)O)C(C)C1 GPXSTLAIBOEFST-UHFFFAOYSA-N 0.000 description 1
- ZRMOLCPODIMNPJ-UHFFFAOYSA-N 1-[4-(2-hydroxypropyl)piperazin-1-yl]propan-2-ol Chemical class CC(O)CN1CCN(CC(C)O)CC1 ZRMOLCPODIMNPJ-UHFFFAOYSA-N 0.000 description 1
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 1
- HKAIIKVJIRPASO-UHFFFAOYSA-N 1-butylpyrrolidine-2,5-dione Chemical class CCCCN1C(=O)CCC1=O HKAIIKVJIRPASO-UHFFFAOYSA-N 0.000 description 1
- NJEGACMQQWBZTP-UHFFFAOYSA-N 1-piperazin-1-ylpropan-2-amine Chemical compound CC(N)CN1CCNCC1 NJEGACMQQWBZTP-UHFFFAOYSA-N 0.000 description 1
- DABFKTHTXOELJF-UHFFFAOYSA-N 1-propylpyrrole-2,5-dione Chemical compound CCCN1C(=O)C=CC1=O DABFKTHTXOELJF-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- SODQFLRLAOALCF-UHFFFAOYSA-N 1lambda3-bromacyclohexa-1,3,5-triene Chemical group Br1=CC=CC=C1 SODQFLRLAOALCF-UHFFFAOYSA-N 0.000 description 1
- NQRRNCDWJYBMJW-UHFFFAOYSA-N 2,5-dimethyloct-1-ene Chemical compound CCCC(C)CCC(C)=C NQRRNCDWJYBMJW-UHFFFAOYSA-N 0.000 description 1
- GHKSKVKCKMGRDU-UHFFFAOYSA-N 2-(3-aminopropylamino)ethanol Chemical compound NCCCNCCO GHKSKVKCKMGRDU-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- GFIWSSUBVYLTRF-UHFFFAOYSA-N 2-[2-(2-hydroxyethylamino)ethylamino]ethanol Chemical compound OCCNCCNCCO GFIWSSUBVYLTRF-UHFFFAOYSA-N 0.000 description 1
- FEUFEGJTJIHPOF-UHFFFAOYSA-N 2-butyl acrylic acid Chemical compound CCCCC(=C)C(O)=O FEUFEGJTJIHPOF-UHFFFAOYSA-N 0.000 description 1
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CBHDAVKCAYCRCE-UHFFFAOYSA-N 2-heptyl-1,3-oxazolidine Chemical compound CCCCCCCC1NCCO1 CBHDAVKCAYCRCE-UHFFFAOYSA-N 0.000 description 1
- RCBGGJURENJHKV-UHFFFAOYSA-N 2-methylhept-1-ene Chemical compound CCCCCC(C)=C RCBGGJURENJHKV-UHFFFAOYSA-N 0.000 description 1
- NVPLQKBUZZEYKW-UHFFFAOYSA-N 2-methylidenepentanoyl chloride Chemical compound CCCC(=C)C(Cl)=O NVPLQKBUZZEYKW-UHFFFAOYSA-N 0.000 description 1
- VRIBUWOAMIKHGX-UHFFFAOYSA-N 2-octadecyl-4,5-dihydro-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCCC1=NCCN1 VRIBUWOAMIKHGX-UHFFFAOYSA-N 0.000 description 1
- WFCSWCVEJLETKA-UHFFFAOYSA-N 2-piperazin-1-ylethanol Chemical compound OCCN1CCNCC1 WFCSWCVEJLETKA-UHFFFAOYSA-N 0.000 description 1
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 description 1
- TXBZITDWMURSEF-UHFFFAOYSA-N 3,3-dimethylpent-1-ene Chemical compound CCC(C)(C)C=C TXBZITDWMURSEF-UHFFFAOYSA-N 0.000 description 1
- RGUABPVONIGVAT-UHFFFAOYSA-N 3-(4-methylpiperazin-1-yl)propan-1-amine Chemical compound CN1CCN(CCCN)CC1 RGUABPVONIGVAT-UHFFFAOYSA-N 0.000 description 1
- KMRNTNDWADEIIX-UHFFFAOYSA-N 3-Iodopropanoic acid Chemical compound OC(=O)CCI KMRNTNDWADEIIX-UHFFFAOYSA-N 0.000 description 1
- POTQBGGWSWSMCX-UHFFFAOYSA-N 3-[2-(3-aminopropoxy)ethoxy]propan-1-amine Chemical compound NCCCOCCOCCCN POTQBGGWSWSMCX-UHFFFAOYSA-N 0.000 description 1
- JCEZOHLWDIONSP-UHFFFAOYSA-N 3-[2-[2-(3-aminopropoxy)ethoxy]ethoxy]propan-1-amine Chemical compound NCCCOCCOCCOCCCN JCEZOHLWDIONSP-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- MHVSDBBBHVTDQL-UHFFFAOYSA-N 3-sulfanylfuran-2,5-dione Chemical compound S/C=1/C(=O)OC(C1)=O MHVSDBBBHVTDQL-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- NZRHOWNFGASHMN-UHFFFAOYSA-N 5,6-diphenyl-1,2,4-triazin-3-amine Chemical compound C=1C=CC=CC=1C1=NC(N)=NN=C1C1=CC=CC=C1 NZRHOWNFGASHMN-UHFFFAOYSA-N 0.000 description 1
- STFIZEBRSSCPKA-UHFFFAOYSA-N 5-methyl-4,5-dihydro-1h-imidazole Chemical compound CC1CNC=N1 STFIZEBRSSCPKA-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZTWQTBDEQSLEAF-UHFFFAOYSA-N C(=O)C=C.N Chemical compound C(=O)C=C.N ZTWQTBDEQSLEAF-UHFFFAOYSA-N 0.000 description 1
- HKKMQJBMGBURAB-UHFFFAOYSA-M C(C(C)C)C1=C(C=CC=C1)OP(OC1=C(C=CC=C1)CC(C)C)(=S)[S-].[Zn+] Chemical compound C(C(C)C)C1=C(C=CC=C1)OP(OC1=C(C=CC=C1)CC(C)C)(=S)[S-].[Zn+] HKKMQJBMGBURAB-UHFFFAOYSA-M 0.000 description 1
- YVNHVLQOLKSPDW-UHFFFAOYSA-M C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Cd+] Chemical compound C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Cd+] YVNHVLQOLKSPDW-UHFFFAOYSA-M 0.000 description 1
- XSRHZBURGWEGHH-UHFFFAOYSA-M C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Zn+] Chemical compound C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Zn+] XSRHZBURGWEGHH-UHFFFAOYSA-M 0.000 description 1
- AZHVHQBLKBATAX-UHFFFAOYSA-M C1(CCCCC1)OP(OC1CCCCC1)(=S)[S-].[Zn+] Chemical compound C1(CCCCC1)OP(OC1CCCCC1)(=S)[S-].[Zn+] AZHVHQBLKBATAX-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical compound CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001544487 Macromiidae Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WDZCJFZKULYAMW-UHFFFAOYSA-N [O-][N+](S)=O Chemical compound [O-][N+](S)=O WDZCJFZKULYAMW-UHFFFAOYSA-N 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- XVJWBPOOPNSRMW-UHFFFAOYSA-L barium(2+);bis(2-heptylphenoxy)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Ba+2].CCCCCCCC1=CC=CC=C1OP([S-])(=S)OC1=CC=CC=C1CCCCCCC.CCCCCCCC1=CC=CC=C1OP([S-])(=S)OC1=CC=CC=C1CCCCCCC XVJWBPOOPNSRMW-UHFFFAOYSA-L 0.000 description 1
- NUPTUJRFJNJRBS-UHFFFAOYSA-N barium;(2-heptylphenyl) carbamodithioate Chemical group [Ba].CCCCCCCC1=CC=CC=C1SC(N)=S NUPTUJRFJNJRBS-UHFFFAOYSA-N 0.000 description 1
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- WARCRYXKINZHGQ-UHFFFAOYSA-N benzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1 WARCRYXKINZHGQ-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- VNBGVYNPGOMPHX-UHFFFAOYSA-N but-3-en-2-ylcyclohexane Chemical compound C=CC(C)C1CCCCC1 VNBGVYNPGOMPHX-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000005467 butylenyl group Chemical group 0.000 description 1
- CNWSQCLBDWYLAN-UHFFFAOYSA-N butylurea Chemical compound CCCCNC(N)=O CNWSQCLBDWYLAN-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 150000001912 cyanamides Chemical class 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- BVXOPEOQUQWRHQ-UHFFFAOYSA-N dibutyl phosphite Chemical compound CCCCOP([O-])OCCCC BVXOPEOQUQWRHQ-UHFFFAOYSA-N 0.000 description 1
- HEGXHCKAUFQNPC-UHFFFAOYSA-N dicyclohexyl hydrogen phosphite Chemical compound C1CCCCC1OP(O)OC1CCCCC1 HEGXHCKAUFQNPC-UHFFFAOYSA-N 0.000 description 1
- SPBMDAHKYSRJFO-UHFFFAOYSA-N didodecyl hydrogen phosphite Chemical compound CCCCCCCCCCCCOP(O)OCCCCCCCCCCCC SPBMDAHKYSRJFO-UHFFFAOYSA-N 0.000 description 1
- ZEFVHSWKYCYFFL-UHFFFAOYSA-N diethyl 2-methylidenebutanedioate Chemical compound CCOC(=O)CC(=C)C(=O)OCC ZEFVHSWKYCYFFL-UHFFFAOYSA-N 0.000 description 1
- CUKQEWWSHYZFKT-UHFFFAOYSA-N diheptyl hydrogen phosphite Chemical compound CCCCCCCOP(O)OCCCCCCC CUKQEWWSHYZFKT-UHFFFAOYSA-N 0.000 description 1
- VFXJDWTUUZBKKT-UHFFFAOYSA-N dihexoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCOP(S)(=S)OCCCCCC VFXJDWTUUZBKKT-UHFFFAOYSA-N 0.000 description 1
- WQEXBUQDXKPVHR-PLNGDYQASA-N dimethyl (z)-2-methylbut-2-enedioate Chemical compound COC(=O)\C=C(\C)C(=O)OC WQEXBUQDXKPVHR-PLNGDYQASA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 1
- SSLPFELLEWJMTN-UHFFFAOYSA-N dimethyl naphthalen-1-yl phosphite Chemical compound C1=CC=C2C(OP(OC)OC)=CC=CC2=C1 SSLPFELLEWJMTN-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- OKXAFOJPRGDZPB-UHFFFAOYSA-N dioctadecoxy(oxo)phosphanium Chemical compound CCCCCCCCCCCCCCCCCCO[P+](=O)OCCCCCCCCCCCCCCCCCC OKXAFOJPRGDZPB-UHFFFAOYSA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- IFYLVUHLOOCYBG-UHFFFAOYSA-N eticyclidine Chemical compound C=1C=CC=CC=1C1(NCC)CCCCC1 IFYLVUHLOOCYBG-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- SMNYMBFIYBIWQK-UHFFFAOYSA-N hexapentacontanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O SMNYMBFIYBIWQK-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000004678 hydrides Chemical group 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- OHOUDFCBMQMDLK-UHFFFAOYSA-N indene-1,3-diimine Chemical compound C1=CC=C2C(=N)CC(=N)C2=C1 OHOUDFCBMQMDLK-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- XPOXIRBXYPGDNE-UHFFFAOYSA-N methanediamine Chemical compound N[CH]N XPOXIRBXYPGDNE-UHFFFAOYSA-N 0.000 description 1
- 229960004011 methenamine Drugs 0.000 description 1
- AWJZTPWDQYFQPQ-UHFFFAOYSA-N methyl 2-chloroprop-2-enoate Chemical compound COC(=O)C(Cl)=C AWJZTPWDQYFQPQ-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 1
- 229940073769 methyl oleate Drugs 0.000 description 1
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940113083 morpholine Drugs 0.000 description 1
- QHJABUZHRJTCAR-UHFFFAOYSA-N n'-methylpropane-1,3-diamine Chemical compound CNCCCN QHJABUZHRJTCAR-UHFFFAOYSA-N 0.000 description 1
- DXYUWQFEDOQSQY-UHFFFAOYSA-N n'-octadecylpropane-1,3-diamine Chemical compound CCCCCCCCCCCCCCCCCCNCCCN DXYUWQFEDOQSQY-UHFFFAOYSA-N 0.000 description 1
- BXYVQNNEFZOBOZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]-n',n'-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCNCCCN(C)C BXYVQNNEFZOBOZ-UHFFFAOYSA-N 0.000 description 1
- RWIVICVCHVMHMU-UHFFFAOYSA-N n-aminoethylmorpholine Chemical compound NCCN1CCOCC1 RWIVICVCHVMHMU-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- SEGJNMCIMOLEDM-UHFFFAOYSA-N n-methyloctan-1-amine Chemical compound CCCCCCCCNC SEGJNMCIMOLEDM-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical compound CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- ZRBSSYMJCKNFFZ-UHFFFAOYSA-N octadecylhydrazine Chemical compound CCCCCCCCCCCCCCCCCCNN ZRBSSYMJCKNFFZ-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- QAKUNEDFMJPMGO-UHFFFAOYSA-N octylthiourea Chemical compound CCCCCCCCNC(N)=S QAKUNEDFMJPMGO-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- OSMTZRGOBRHZNO-UHFFFAOYSA-N pentyl phenyl hydrogen phosphite Chemical compound CCCCCOP(O)OC1=CC=CC=C1 OSMTZRGOBRHZNO-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- CUQCMXFWIMOWRP-UHFFFAOYSA-N phenyl biguanide Chemical compound NC(N)=NC(N)=NC1=CC=CC=C1 CUQCMXFWIMOWRP-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- AFDMODCXODAXLC-UHFFFAOYSA-N phenylmethanimine Chemical compound N=CC1=CC=CC=C1 AFDMODCXODAXLC-UHFFFAOYSA-N 0.000 description 1
- YZTJYBJCZXZGCT-UHFFFAOYSA-N phenylpiperazine Chemical compound C1CNCCN1C1=CC=CC=C1 YZTJYBJCZXZGCT-UHFFFAOYSA-N 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- VWQXLMJSFGLQIT-UHFFFAOYSA-N prop-2-enoyl bromide Chemical compound BrC(=O)C=C VWQXLMJSFGLQIT-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- VHNQIURBCCNWDN-UHFFFAOYSA-N pyridine-2,6-diamine Chemical compound NC1=CC=CC(N)=N1 VHNQIURBCCNWDN-UHFFFAOYSA-N 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003556 thioamides Chemical class 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- WQYSXVGEZYESBR-UHFFFAOYSA-N thiophosphoryl chloride Chemical compound ClP(Cl)(Cl)=S WQYSXVGEZYESBR-UHFFFAOYSA-N 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical class C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- USEBTXRETYRZKO-UHFFFAOYSA-L zinc;n,n-dioctylcarbamodithioate Chemical compound [Zn+2].CCCCCCCCN(C([S-])=S)CCCCCCCC.CCCCCCCCN(C([S-])=S)CCCCCCCC USEBTXRETYRZKO-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/34—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/36—Oxygen or sulfur atoms
- C07D207/40—2,5-Pyrrolidine-diones
- C07D207/404—2,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
- C07D207/408—Radicals containing only hydrogen and carbon atoms attached to ring carbon atoms
- C07D207/412—Acyclic radicals containing more than six carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/08—Halogenated waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
- C10M2215/102—Ureas; Semicarbazides; Allophanates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/022—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
- C10M2217/023—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/044—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/045—Polyureas; Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/064—Thiourea type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/083—Dibenzyl sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/02—Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
- C10M2225/041—Hydrocarbon polymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
Definitions
- This invention relates to oil-soluble nitrogen-containing compositions and to the process of preparing the same.
- the compositions of this invention are useful as dispersing agents in lubricants, especially lubricants intended for use in the crankcase of internal combustion engines, gears, and power transmitting units.
- compositions which are adapted for use as additives in hydrocarbon oils.
- compositions which are effective as detergents in lubricating compositions are also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.
- a detergent composition comprising an oil-soluble, acylated nitrogen composition characterized by the presence Within its structure of (A) a hydrocarbon-substituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals wherein the substantially hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said relatively polar group.
- a critical aspect of this invention is the size of the hydrocarbon substituent in the acylated nitrogen compounds.
- acylated nitrogen compositions having at least about 50 aliphatic carbon atoms in the hydrocarbon substituent are contemplated as being within the scope of this invention.
- the hydrocarbon substituent must then contain at least about 25 aliphatic carbon atoms per each polar group. This lower limit is based not only upon the consideration of the oilsolubility of the acylated nitrogen compositions but also upon the effectiveness of such compounds as additives in hydrocarbon oils for the purposes of this invention.
- acylated nitrogen compositions having less than the minimum number of such aliphatic carbon atoms may be sufi iciently oil-soluble, they nevertheless are not sufficiently effective to be useful as additives of this invention. Furthermore, it has been discovered that their effectiveness diminishes sharply with a corresponding decrease in the size of the hydrocarbon substituent so that acylated nitrogen compositions having less than about 35 aliphatic car-hon atoms in such substituent either are ineffective or produce detrimental results when added to a hydrocarbon oil.
- the radical preferably should be substantially saturated, i.e., at least about of the total number of carbonto-carbon covalent linkages are saturated linkages.
- An excessive proportion of unsaturated linkages renders the molecule susceptible to oxidation, degradation, and polymerization and results in products unsuitable for use in hydrocarbon oils in many applications.
- the hydrocarbon substituent of the acylated nitro gen compositions of this invention preferably should be substantially free from large oil-solubilizing pendant groups, i.e., groups having more than about 6 aliphatic carbon atoms. While some large oil-solubilizing pendant groups may be present, they preferably should be present in proportions less than about one such group for every 25 aliphatic carbon atoms in the main hydrocarbon chain. A higher proportion of large pendant groups impairs the effectiveness of the acylated nitrogen compositions of this invention as additives in hydrocarbon oils.
- the hydrocarbon substituent may contain polar substituents provided, however, that the polar substituents are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the radical.
- the polar substituents are exemplified by chloro, bromo, keto, ethereal, aldehydro, nitro, etc.
- the upper limit with respect to the proportion of such polar substituents in the radical is approximately based on the weight of the hydrocarbon portion of the radical.
- the sources of the hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to about 30 carbon atoms.
- the especially useful polymers are the polymers of l-monoolefins such as ethylene, propene, l-butene, isobutene, I-hexene, l-octene, 2-methyl-1-heptene, 3-cyclohexyl-1- butene, and 2-methyl-5-propyl-l-hexene.
- Polymers of medial olefins i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by Z-butene, 3-pentene, and 4-octene.
- interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins.
- Such interpolymers include, for example, those prepared "by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; I-heptene with l-pentene, 3-methyl-1-butene with l-octene; 3,3-dimethyl-l-pentene with l-hexene; isobutene with styrene and piperylene; etc.
- the relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final acylated nitrogen compositions derived from such interpolymers.
- the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis of units derived from the aliphatic mono-olefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-tocarbon covalent linkages.
- interpolymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of 1-butene and 3% of l-hexene; terpolymer of 60% of isobutene with of l-pentene and 20% of l-octene; copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.
- Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molectular weight olefinic substances.
- olefin polymers having molecular weights of about 7505000 are preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the acylated nitrogen compositions of this invention. In many instances the use of such higher molecular weight olefin polymers is desirable. On the other hand, olefin polymers having molecular weights less than about 700 are not useful.
- the relatively polar group of the acylated nitrogen compositions is selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals. These radicals have the following structural configurations, respectively:
- R represents the substantially hydrocarbon substituent described hereinbefore and R represents a hydrogen radical or an organic radical such as a hydrocarbon radical or a polar-substituted hydrocarbon radical.
- the nitrogen-containing group of the acylated nitrogen compositions of this invention is derived from compounds characterized by a radical having the structural configuration
- the two remaining valences of the nitrogen atom of the above radical preferably are satisfied by hydrogen, amino, or organic radicals bonded to said nitrogen atom through direct carbon-to-nitrogen linkages.
- the compounds from which the nitrogen-containing group may be derived include principally ammonia, aliphatic amines, aromatic amines, heterocyclic amines or carbocyclic amines.
- the amines may be primary or secondary amines and may also be polyamines such as alkylene amines, arylene amines, cyclic polyamines, and the hydroxy-substituted derivatives of such polyamines.
- amines of these types are methylamine, N- methylethylamine, N-methyl-octylamine, N-cyclohexylanaline, dibutylamine, cyclohexylamine, aniline, di(pmethylphenyl)amine, dodecylamine, octadecylamine, ophenylenediamine, N,N di-n-butyl-p-phenylenediamine, mor-pholine, piperazine, tetrahydropyr-azine, indole, hexahydro-1,3,5-triazine, 1-H-1,2,4-triazole, melamine, bis-(paminophenyl)methane, phenyl-methylenimine, menthanediamine, cyclohexamine, pyrrolidine, 3-amino-5,6-diphenyl-1,2,4 triazine, quinonediimine, 1,3 indandii
- a preferred source of the nitrogen-containing group consists of polyamines, especially alkylene amines conforming for the most part to the formula HN alky1eue-N H l K i).
- A is a substantially hydrocarbon or hydrogen radical
- the alkylene radical is preferably a lower alkylene radical having less than about 8 carbon atoms.
- the alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines, and also the cyclic and the higher homologs of such amines such as piperazines and amino-alkyl-substituted piperazines. They are exemplified specifically by: ethylene diamine, triethylene.
- the ethylene amines are especially useful. They are described in some detail under the heading Ethylene Amines in Encycylopedia of Chemical Technology Kirk and Othmer, volume 5, pages 898905, Interscience Publishers, New York (1950). Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia. The reaction results in the production of somewhat complex mixtures of alkylene amines, including cyclic condensation products such as piperazines. These mixtures find use in the process of this invention. On the other hand, quite satisfactory products may be obtained also by the use of pure alkylene amines.
- alkylene amine for reasons of economy as well as effectiveness of the products derived therefrom is a mixture of ethylene amines prepared by the reaction of ethylene chloride and ammonia and having a composition which corresponds to that of tetraethylene pentamine.
- Hydroxyalkyl-substituted alkylene amines i.e., alkylene amines having one or more hydroxyalkyl substituents on the nitrogen atoms, likewise are contemplated for use herein.
- the hydroxyalkyl-substituted alkylene amines are preferably those in which the alkyl group is a lower alkyl group, i.e., having less than about 6 carbon atoms.
- amines examples include N-(2-hydroxyethyl) ethylene diamine, N,N' bis(2 hydroxyethyl)ethylene diamine, 1-(Z-hydroxyethyl)piperazine, mono-hydroxypropyl-substituted diethylene triamine, 1,4-bis(2-hydroxypropyl) piperazine, di-hydroxypropyl-substituted tetraethylene pentamine, N-(3-hydroxypropyl)tetramethylene diamine, and 2-heptadecyl-1-(2-hy droxyethyl) imidazoline.
- nitrogen-containing group examples include ureas, thioureas, hydrazines, guanidines, amidines, amides, thioamides, cyanamides, etc.
- Specific examples illustrating such compounds are: hydrazine, phenylhydrazine, N, N'-diphenylhydrazine, octadecylhydrazine, benzoylhydrazine, urea, thiourea, N-butylurea, stearylamide, oleylamide, guanidine, 1,3-diphenylguanidine, 1,2,3-tributylguanidine, benzamidine, octadecamidine, N,N-dimethylstearamidine, cyanamide, dicyandiamide, guanylurea, aminoguanidine, etc.
- the nitrogen-containing group in the acylated nitrogen compositions of this invention is characterized by a nitrogen atom attached directly to the relatively polar group.
- the linkage between a nitrogen atom and an acyl radical is representative of an amide or an imide structure
- the linkage between a nitrogen atom and an acylimidoyl radical is representative of an amidine structure
- the linkage between a nitrogen atom and an acyloxy radical is representative of an ammonium-carboxylic acid salt structure.
- the acylated nitrogen compositions of this invention are characterized. by amide, imide, amidine, or salt linkages and in many instances a mixture of such linkages.
- Those containing two such linkages separated by a lower alkylene radical i.e., one having less than about 6 carbon atoms
- succinic, glutaric, or adipic radicals are especially preferred in this invention.
- a convenient method for preparing the acylated nitrogen compositions of this invention comprises reacting a high molecular weight acid-producing compoundv characterized by the presence within its structure of a high molecular weight oil-solubilizing group having at least about 50 aliphatic carbon atoms and at least one acid-producing group having the structural configuration o ax wherein X is selected from the class consisting of halogen, hydroxy, hydrocarbon-oxy, acyloxy, and amino radicals derived from ammonia or a lower primary amine such as a mono-alkylamine or mono-arylamine having no more than about 6 aliphatic carbon atoms with at least about one-half an equivalent amount of a nitrogen-containing compound characterized by the presence within its structure of at least one radical having the structural configuration
- the above process involves a reaction between the acidproducing group with the nitrogen-containing radical to result in the direct attachment of the nitrogen atoms to a polar radical, i.e., acyl, acylimidoyl, or
- the linkage formed between the nitrogen atom and the polar radical may thus be that representative of a salt, amide, imide, or amidine radical.
- the product of the above process contains a mixture of linkages representative of such radicals.
- the precise relative proportions of such radicals in the product usually are not known as they depend to a large measure upon the type of the acidproducing group and the nitrogen-containing radical involved in the reaction and also upon the environment (e.g., temperature) in which the reaction is carried out.
- the reaction involving an acid or an'hydride group with an amino nitrogen-containing radical at relatively low temperatures such as below about 60 C. results predominantly in a salt linkage (i.e.,
- the acid-producing compounds contemplated for use in the above process include mono-carboxylic and polycarboxylic acids, acid halides, esters, and anhydrides as well as imides and amides derived from ammonia or a lower primary amine, and also mixtures of such compounds.
- the imide or amide of ammonia or a lower primary amine is especially useful for preparing the acylated nitrogen compositions having more than one nitrogencontaining radicals.
- the nature of the oil-solubilizing group in such compounds should be the same as that which characterized the hydrocarbon substituent, described previously, in the acylated nitrogen compositions of this invention.
- the substantially saturated, aliphatic hydrocarbon-substituted succinic acids and anhydrides are especially preferred for use as the acid-producing reactant in this process for reasons of the particular effectiveness of the products obtained from such compounds as additives in hydrocarbon oils.
- the succinic compounds are readily available from the reaction of maleic anhydride with a high molecular Weight olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature about 100-200 C.
- the product from such a reaction is an alkenyl succinic anhydride.
- the alkenyl group may be hydrogenated to an alkyl group.
- the anhydride may be hydrolyzed by treatment with Water or steam to the corresponding acid.
- Either the anhydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols or alcohols or to the corresponding imide or amide by reaction with ammonia or a lower primary amine.
- high molecular Weight olefins or chlorinated hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or anhydride may be used in the above-illustrated reaction for preparing the succinic compounds.
- polar substituents may be illustrated by sulfide, disulfide, nitro, mercaptan, bromine, ketone, and aldehyde radicals.
- polar-substituted hydrocarbons examples include polypr-opene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc.
- Another method useful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight olefin or a polar-substituted hydrocarbon at a, temperature usually within the range from about 100 C. to about 200 C.
- the polycarboxylic acids and derivatives thereof having more than two carboxylic radicals per molecule which are contemplated for use in this invention are those containing at least about 50 aliphatic carbon atoms per molecule and furthermore, at least about 25 aliphatic carbon atoms per each carboxylic radical.
- Such acids may be prepared by halogenating a high molecular weight hydrocarbon such as the olefin polymer described hereinabove to produce a poly-halogenated product, converting the polyhalogenated product to a poly-nitrile, and then hydrolyzing the poly-nitrile. They maybe prepared also by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a like oxidizing agent.
- Another method for preparing such polycarboxylic acids involves the reaction of an olefin or a polarsubstituted hydrocarbon such as a chloro-polyisobutene with an unsaturated poly-carboxylic acid such as 2- pentene-1,3,5-tricarboxylic acid obtained by dehydration of citric acid.
- an olefin or a polarsubstituted hydrocarbon such as a chloro-polyisobutene
- an unsaturated poly-carboxylic acid such as 2- pentene-1,3,5-tricarboxylic acid obtained by dehydration of citric acid.
- the mono-carboxylic acids and derivatives thereof may be obtained by oxidizing a mono-hydric alcohol with potassium permanganate or by reacting a halogenated high molecular olefin polymer with a ketene.
- Another convenient method for preparing the monocarboxylic acids involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reaction of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene.
- Other methods include the reaction of a high molecular weight olefin with ozone; the Haloform Reaction; the reaction of an organometallic complex (such as lithium-olefin complex) with carbon dioxide; the reaction of a chlorinated hydrocarbon with a lactone; the reaction of a chlorinated hydrocanbon with chloromaleic acid or mercapto-maleic anhydride.
- organometallic complex such as lithium-olefin complex
- the mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about 70 C. preferably in the presence of a dehydration agent, e.g., acetic anhy- 8 dride.
- Cyclic anhydrides are usually obtained from poly-cariboxylic acids having the acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acids, whereas linear polymeric anhydrides are obtained from poly-carboxylic acids having the acid radicals separated by four or more carbon atoms.
- the acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride.
- the esters of such acids can be prepared simply by the reaction of the acids or their anhydrides With an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexanol, phenol, naphthol, octylphenol, etc.
- the esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid.
- the nature of the alcoholic or phenolic portion of the ester radical appears to have little infiuence on the utility of such ester as reactant in the process described herein-above.
- the nitrogen-containing reactants useful in the above process are the compounds, described previously in this specification, from which the nitrogen-containing group the acylated nitrogen compositions of this invention can be derived.
- the above process is usually carried out by heating a mixture of the acid-producing compound and the nitrogen-containing reactant at a temperature above about C., preferably within the range from about C. to about 250 C.
- a temperature above about C. preferably within the range from about C. to about 250 C.
- the process may be carried out at a lower temperature such as room temperature to obtain products having predominantly salt linkages or mixed saltamide linkages.
- Such products may be converted, if desired, by heating to above 80 C. to products having predominantly amide, imide, or amidine linkages.
- a solvent such as benzene, toluene, naphtha, mineral oil, xylene, n-hexane, or the like is often desirable in the above process to facilitate the control of the reaction temperature.
- Another method for preparing the acylated nitrogen compositions of this invention involves first reacting the nitrogen-containing reactant with an olefinic acid-producing compound to form a nitrogen containing intermediate and then incorporating a large hydrocarbon substituent (i.e., having at least about 50 aliphatic carbon atoms) into the intermediate by reacting the intermediate with a high molecular weight hydrocarbon reactant, such as an olefin, a chlorinated hydrocarbon, or a polar substituted hydrocarbon illustrated previously.
- a high molecular weight hydrocarbon reactant such as an olefin, a chlorinated hydrocarbon, or a polar substituted hydrocarbon illustrated previously.
- the olefinic acid-producing compound useful in the process may be an acid, anhydride, acid halide, or ester and it likewise may be an imide or amide derived from ammonia or a lower primary amine such as is described previously.
- the acid-producing compound may be that of maleic acid, itaconic acid, acrylic acid, aconitic acid, methacrylic acid, chloromaleic acid, alpha-chloroacrylic acid, alpha-butylacrylic acid, crotonic acid, citraconic acid, mesaconic acid, or a like acid preferably having less than about 8 carbon atoms and an olefinic linkage adjacent to the acid-producing radical.
- olefinic acid-producing compound examples include maleic acid, maleic anhydride, chloromaleic anhydride, maleamic acid, acrylic acid, acrylyl chloride, acrylyl bromide, methacrylic acid, alphapropylacrylyl chloride, crotonic acid, methyl acrylate, ethyl methacrylate, dimethyl maleate, diethyl itaconate, dibutyl maleate, maleimide, maleamide, N-methyl maleamide, dimethyl maleamide, N-butyl maleamide acid, N- propyl maleimide, methyl chlo-roacrylate, dimethyl citraconate, etc.
- the ester groups, imide groups, and amide groups of such olefinic acid-producing compounds include those discussed previously in connection with the high molecular weight acid-producing compounds useful in preparing the acylated nitrogen compositions of the invention.
- the reaction of the nitrogen-containing reactant with an olefinic acid-producing compound may be carried out at a temperature from about 25 C. to 300 C. or any temperature below the decomposition point of the reaction mixture.
- the reaction is sirnilar to that which characterizes the formation of acylated nitrogen compositions described previously and results in a nitrogen-containing inter-mediate.
- the intermediate produced by such reaction is thus characterized by the presence therein of an amide, imide or amidine linkage or a mixture of such linkages.
- a convenient method of incorporating a high molecular weight hydrocarbon substituent into the nitrogen-containing intermediate involves reacting the intermediate with a high molecular weight reactant olefin, chlorinated hydrocarbon such as a chlorinated olefin polymer, or a polar substituted high molecular Weight hydrocarbon at a temperature above about 100 C., preferably below about 200 C.
- a high molecular Weight reactant is as described previously in connection with the preparation of the high molecular weight succinic acidproducin-g compounds of this invention.
- the relative proportions of the acid-producing compounds and the nitrogen-containing reactants to be used in the above process are such that at least about one-half of a stoichiometrically equivalent amount of the nitrogencontaining reactant is used for each equivalent of the acidproducing compound used.
- the equivalent weight of the nitrogen-containing reactant is based upon the number of the nitrogen-containing radicals defined by the structural configuration
- the equivalent weight of the acid-producing compound is based upon the number of the acid-producing radicals defined by the structural configuration
- the upper limit of the useful amount of the nitrogen-containing reactant appears to be about two moles for each equivalent of the acid-producing compound used. Such amount is required, for instance, in the formation of products having predominantly amidine linkages. Beyond this limit, the excess amount of the nitrogen-containing reactant appears not to take part in the reaction and thus simply remains in the product apparently Without any adverse effects.
- the lower limit of about one-half equivalent of the nitrogen-containing reactant used for each equivalent of the acid-producing compound is based upon the stoichiome'try for the formation of products having predominantly imide linkages. In most instances, the preferred amount of the nitrogencontaining reactant is approximately one equivalent for each equivalent of the acid-producing compound used.
- a high molecular weight substituted succinic acid-producing compound such as acid or anhyd-ride
- an alkylene polyamine such as ethylene diamine or polyethylene polyamine
- x is at least 1
- R is a hydrocarbon group having at least about 50 aliphatic carbon atoms and at least about 25 aliphatic carbon atoms for each unit of x
- NR' is selected from the class consist-ing of (A) radicals derived 10 from an alyklene polyamine by the removal of a hydrogen atom from an amino group and (B) radicals derived from an alkylene polyamine by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substituent having the formula
- the value of x is at least one for each mole of the
- the radical R is the residue derived from an alkylene polyamine by the removal of one amino group; it may further contain a complex substituent (illustrated above) on the nitrogen atom of at least one additional amino group, or on the nitrogen atom of each of the other amino groups of the alkylene polyamine residue.
- the amide is illustrated by one present in the acylated nitrogen composition obtained by the reaction of one mole of an alkylene polyamine with as many equivalents of the substituted succinic acid or anhydride as there are amino groups in the polyamine.
- Example 1 A polyisobutenyl succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200 C.
- the polyisobutenyl radical has an average molecular weight of 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of 500).
- the mixture then is heated and a water-toluene azeotrope distilled from the mixture. When no more water would distill the mixture is heated to C. at reduced pressure to remove the toluene. The residue is diluted with 350 grams of mineral oil and this solution is found to have a nitrogen content of 1.6%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula where R is a polyisobutene radical, x has a value of one for each mole of the polyisobutene group, and NR is a radical derived from diethylene triamine by the removal of a hydrogen atom from an amino group and characterized by the presence on the nitrogen atom of at least one remaining amino group of a radical selected from the class consisting of Example 2
- the procedure of Example 1 is repeated using 31 grams (1 equivalent) of ethylene diamine as the amine reactant.
- the nitrogen content of the resulting product is 1.4%.
- Example 3 The procedure of Example 1 is repeated using 55.5 grams (1.5 equivalents) of an ethylene amine mixture having a composition corresponding to that of triethylene tetramine. The resulting product has a nitrogen content of 1.9%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
- Example 4 The procedure of Example 1 is repeated using 55.0 grams (1.5 equivalents) of triethylene tetramine as the amine reactant. The resulting product has a nitrogen content of 2.9%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from triethylene tetramine.
- Example 5 To a mixture of 140 grams of toluene and 400 grams (0.78 equivalent) of a polyisobutenyl succinic anhydride (having an acid number of 109 and prepared from maleic anhydride and the chlorinated polyisobutylene of Example 1) there is added at room temperature 63.6 grams (1.55 equivalents) of an ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and available from Carbide and Carbon under the trade name Polyamine H. The mixture is heated to distill the water-toluene azeotrope and then to 150 C. at reduced pressure to remove the remaining toluene. The residual polyamide has a nitrogen content of 4.7%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
- Example 6 The procedure of Example 1 is repeated using 46 grams 1.5 equivalents) of ethylene diamine as the amine reactant.
- the product which resulted has a nitrogen content of 1.5%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from ethylene diamine.
- Example 7 A polyisobutenyl succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1,050 and a chlorine content of 4.3%) and maleic anhydride. To a mixture of 300 parts by weight of the polyisobutenyl succinic anhydride and 160 parts by weight of mineral oil there is added at 65 95 C. an equivalent amount (25 parts by weight) of Polyamine H (identified in Example 5). This mixture then is heated to 150 C. to distill all of the water formed in the reaction. Nitrogen is bubbled through the mixture at this temperature to insure removal of the last traces of water.
- the residue is diluted by 79 parts by weight of mineral oil and this oil solution found to have a nitrogen content of 1.6%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
- Example 8 A mixture of 2,112 grams (3.9 equivalents) of the polyisobutenyl succinic anhydride of Example 7, 136
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula showin in Example 1.
- Example 9 To a solution of 1,000 grams (1.87 equivalents) of the polyisobuentyl succinic anhydride of Example 7, in 500 grams of mineral oil there is added at 85-95 C. 70 grams (1.87 equivalents) of tetraethylene pentamine. The mixture then is heated at -165 C. for four hours, blowing with nitrogen to aid in the removal of Water. The residue is diluted with 200 grams of mineral oil and the oil solution found to have a nitrogen content of 1.4%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from tetraethylene pentamine.
- Example 10 A polypropenyl succinic anhydride is prepared by the reaction of a chlorinated polypropylene (having a molecular weight of about 900 and a chlorine content of 4%) and maleic anhydride at 200 C.. The product has an acid number of 75. To a mixture of 390 grams (0.52 equivalent) of this polypropenyl succinic anhydride, 500 grams of toluene, and grams of mineral oil there is added portionwise 22 grams (0.52 equivalent) of Polyamine H. The reaction mixture is heated at reflux temperature for three hours and water removed from an azeotrope with toluene. The toluene then is removed by heating to 150 C./2O millimeters. The residue was found to contain 1.3% of nitrogen. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
- Example 11 A substituted succinic anhydride is prepared by reacting maleic anhydride with a chlorinated copolymer of isobutylene and styrene.
- the copolymer consists of 94 parts by weight of isobutylene units and 6 parts by weight of styrene units, has an average molecular weight of 1,200, and is chlorinated to a chlorine content of 2.8% by weight.
- the resulting substituted succinic anhydride has an acid number of 40. To 710 grams (0.51 equivalent) of this substituted succinic anhydride and 500 grams of toluene there is added portion wise 22 grams (0.51 equivalent) of Polyamine H.
- the mixture is heated at reflux temperature for three hours to remove by azeot-ropic distillation all of the water formed in the reaction, and then at 150 C./20 millimeters to remove the toluene.
- the residue contains 1.1% by weight of nitrogen.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1.
- Example 12 A substituted succinic anhydride is prepared by reacting maleic anhydride with a chlorinated copolymer of isobutylene and isoprene.
- the copolymer consists of 99 parts by weight of isobutylene units and 1% by weight of isoprene units.
- the molecular weight of the copolymer is 28,000 and the chlorine content of the chlorinated copolymer is 1.95%.
- the resulting alkenyl succinic anhydride had an acid number of 54.
- Example 13 To a mixture of 228 grams (0.22 equivalent) of an oil solution of this alkenyl succinic anhydride, 58 grams of additional mineral oil, 500 grams of toluene and 9.3 grams (0.22 equivalent) of Example 13 A polyisobutenyl succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride.
- the chlorinated polyisobutylene has a chlorine content of 2% and an average molecular weight of 11,000.
- the polyisobutenyl succinic anhydride has an acid number of 48.
- Example 14 The procedure of Example is repeated except that 0.94 equivalent of Polyamine H is used instead of 1.55 equivalents.
- the nitrogen content of the product is 3%.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1.
- Example 15 A polyisobutenylsubstituted succinic acid is prepared by hydrolysis of the corresponding anhydride (prepared in turn by the condensation of a chlorinated polyisobutylene and maleic anhydride). To 1152 grams (1.5 equivalents) of a 70% mineral oil solution of this polyisobutylenyl succinic acid having an acid number of 62 there is added at room temperature 59.5 grams (1.5 equivalents) of Polyamine H. This mixture is heated at 150- 167 C. for 7 hours during which time a total of 19.5 grams of Water is distilled from the mixture. The residue is diluted with 174 grams of mineral oil and then filtered at 150 C. The filtrate has a nitrogen content of 1.6%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1.
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from di-( 1,2-propylene triamine.
- Example 17 A polyisobutylene having an average molecular weight of 50,000 is chlorinated to a chlorine content of by Weight. This chlorinated polyisobutylene is reacted with maleic anhydride to produce the corresponding polyisobutenyl succinic anhydride having an acid number of 24. To 6,000 grams (2.55 equivalents) of this anhydride there is added portionwise at 70-105 C. 108
- the product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
- Example 18 A mixture of 1 equivalent of a polyisobutene-substituted succinic anhydride having an acid number of 98 (prepared according to the procedure described in Example 1) and 1 equivalent of an acrolein-ammonia (molar ratio of 1: 1) interpolymer having a nitrogen content of 23% by Weight is diluted with 40% by its Weight of a mineral oil. The resulting mixture is heated to 155 C. and nitrogen is bubbled through the mixture at this temperature for 5 hours. The residue is found to have a nitrogen content of 1.35%.
- Example 19 A cyanoethyl-substituted ethylene amine is prepared by mixing 21-2 grams of acrylonitrile with 216 grams of an ethylene amine mixture consisting of 75% by weight of triethylene tetramine and 25% by weight of diethylene triamine at room temperature and heating the mixture at l'l-0130 C. for 5 hours and then to C./mm. To a mixture of 111110 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 825 grams of mineral oil there is added at 60 C. 143 grams dropwise of the above cyanoethyl-substituted ethylene amine (having a nitrogen content of 31.8%), The mixture is heated at C. C. for 5 hours while being purged with nitrogen. A total of 6 cc. of water is removed by distillation. The residue has a nitrogen content of 1.6 6%.
- Example 20 To a mixture of 430 grams of the polyisobutenesubstituted succinic anhydride of Example 1 and 355 grams of mineral oil there is added at 60-80 C. 108 grams of N-aminopropyl morpholine throughout a period of 1 hour. The mixture is heated at 150-155 C. for 5 'hours until no more Water distills. The residue is found to have a nitrogen content of 2.3%.
- Example 21 To a mixture of 1000 grams of the polyisobutenesubstituted succinic anhydride of Example 1 and 500 grams of mineral oil there is introduced at 150 1 60 C. beneath its surface a sufficient quantity of ammonia for formation of an imide within a period of 1 hour. The mixture is diluted with 169 grams of mineral oil, heated to 150 C. and filtered. The filtrate is found to have a nitrogen content of 0.77%.
- Example 23 A mixture of 286 grams of polyisobutene-substituted succinic anhydride of Example 1, 96 grams of N, N-di- 'butyl ethylene-diamine and 252 grams of mineral oil is prepared at 60 C. and heated at 150-165 C. for 5 hours while being purged with nitrogen. The residue is found to have a nitrogen content of 2.24%.
- Example 24 A mixture of 417 grams of polyisobutene-substituted succinic anhydride of Example 1, 30 grams of N-(2- aminoethyl) trimethylene diamine and 293 grams of mineral oil is prepared at 6080 C. and then heated at 150155 C. -for hours while being purged with nitrogen. The residue is found to have a nitrogen content of 1.51%.
- Example 25 A mixture of 430 grams of the polyisobutene-substituted succinic anhydride of Example 1, 64 grams of 1,l-(dimethylaminoethyl)-4-methyl-piperazine and 324 grams of mineral oil is prepared at 60 C. and then heated at 150-155 C. while being blown with nitrogen. The residue is found to have a nitrogen content of 1.81%.
- Example 26 A mixture of 416 grams of polyisobutene-substituted succinic anhydride of Example 1, 124 grams of N-phenyl piperazine and 356 grams of mineral oil is prepared at 60 C. and then heated at l50-155 C. for 5 hours while being purged with nitrogen. No water is removed by such heating. The residue is found to have a nitrogen content of 2.07%.
- Example 27 A mixture of 1110 grams of polyisobutene-substituted succinic anhydride of Example 1, 105 grams of anthranilic acid and 844 grams of mineral oil is heated at 100 C. for 2 hours. The mixture is cooled and is mixed with 72 grams of a mixture consisting of 75% by weight of triethylene tetramine and 25% by weight of diethylenetriamine at 6080 C. The resulting mixture is heated at 150-155 C. for 5 hours while being purged with nitrogen. The residue is found to have a nitrogen content of 1.72%.
- Example 28 A diisobutenyl-substituted ethylene amine is prepared by reacting 590 grams of diisobutenyl chloride and 264 grams of a mixture consisting of 75 by weight of triethylene tetramine and 20% by weight of diethylene triamine in the presence of 264 grams of potassium hydroxide (85% purity) and 2200 grams of isopropyl alcohol at 85-90 C.
- a mixture of 528 grams of polyisobutene-substituted succinic anhydride of Example 1 101 grams of the above diisobutenyl-substituted ethylene amine and 411 grams of mineral oil is heated at 150- 160 C. while being purged with nitrogen until no more water distills. The residue has a nitrogen content of 1.98%.
- Example 29 A mixture of 45 grams of di-(polypropoxy)cocoamine having a molecular weight of 2265, 22 grams of polyisobutene-substituted succinic anhydride of Example 1 and 44 grams of mineral oil is heated at 150155 C. for 7 hours. The residue is found to have a nitrogen content of 0.25%.
- Example 30 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 159 grams of menthane diamine and 500 grams of mineral oil is prepared at 70100 C.- and heated at 150-190 C. while being blown with nitrogen until no water distills. The residue is diluted with 258 grams of mineral oil and the solution is found to have a nitrogen content of 1.32%.
- Example 31 A polypropylene-substituted succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and molecular weight of 1200 with maleic anhydride. A mixture of 813 grams of the polypropylene-substi- 16 tuted succinic anhydride, 50 grams of a commercial ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and 566 grams of mineral oil is heated at 150 C. for 5 hours. The residue is found to have a nitrogen content of 1.18%.
- Example 32 A mixture of 206 grams of N,N'-disecondary-butyl p-phenylene diamine, 1000 grams of the polyisobutenesubstituted succinic anhydride of Example 1 and 500 grams of mineral oil is prepared at C. and heated at 150200 C. for 9.5 hours. The mixture is diluted with 290 grams of mineral oil, heated to 160 C. and filtered. The filtrate is found to have a nitrogen content of 1.29%.
- Example 33 To 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 500 grams of mineral oil there is added 17.6 grams of hydrazine at 70-80 C. The reaction is exothermic. The mixture is heated at 140150 C. for 1 hour whereupon 9 grams of water is collected as the distillate. To the residue there is then added 40 grams of an ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine at 70-80 C. The mixture i then heated at 150160 C. while being purged with nitrogen until no more water is removed by distillation. The residue is diluted with 200 grams of mineral oil, heated to 160 C. and filtered. The filtrate has a nitrogen content of 1.16%.
- Example 34 T o a solution of 1000 grams of the polyisobutene-substituted snccinic anhydride of Example 1 in 500 grams of mineral oil there is added 28 grams of 1,1-dimethyl hydrazine at 5060 C. The mixture is heated at 60- C. for 3 hours and then mixed with 40 grams of an ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine at 85- 95C. The mixture is then heated at 150-185 C. for 6 hours whereupon 14 grams of water is collected as the distillate. The residue is diluted with 197 grams of mineral oil, heated to 160 C. and filtered. The filtrate has a nitrogen content of 1.53%.
- Example 35 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 333 grams of 1,2-di(3-aminopropoxy) ethane and 500 grams of mineral oil is heated at 170 C. for 5 hours whereupon 18 grams of Water is collected as the distillate. The residue is diluted with 380 grams of mineral oil, heated to 160 C. and filtered. The filtrate has a nitrogen content of 2.3%.
- Example 36 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 418 grams of di- (3-aminopropoxy ethyl) ether and 500 grams of mineral oil is heated at 170 C. for 4 hours. A total of 17 grams of water is collected as the distillate. The residue is diluted with 433 grams of mineral oil heated to 160 C. and filtered. The filtrate has the nitrogen content of 2.18%.
- Example 37 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 361 grams of a technical tertiary-alkyl primary amine wherein the tertiary-alkyl radical contains 12-14 carbon atoms and 500 grams of mineral oil is heated at 250 C. for 13 hours while being purged with nitrogen. The residue is then heated to 150 C./1 mm., diluted with 337 grams of mineral oil, heated to C. and filtered. The filtrate has a nitrogen content of 0.87%.
- Example 38 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 254 grams of aminoguanidine bicarbonate and 500 grams of mineral oil is prepared at 80 C. and heated at 130-165 C. for hours. The residue is mixed with 223 grams of mineral oil, heated to 150 C., and filtered. The filtrate has the nitrogen content of 3.38%.
- Example 39 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 178 grams of Z-amino-pyridine and 500 grams of mineral oil is heated at 140175 C. for 10 hours while being purged with nitrogen. A total of 16 grams of water is collected as the distillate. The residue is diluted with 273 grams of mineral oil and filtered. The filtrate ha a nitrogen content of 2.55%.
- Example 40 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 103 grams of 2,6-diamino-pyridine and 500 grams of mineral oil is heated at 140-180 C. for 11 hours while being purged with nitrogen. A total of 16 grams of Water is collected as the distillate. The residue is diluted with 223 grams of mineral oil, heated to 150 C. and filtered. The filtrate has a nitrogen content of 2.15%.
- Example 41 A mixture of 1000 grams of polyisobutene-substituted succinic anhydride of Example 1, 159 grams of cyanoguanidine and 233 grams of toluene is heated at the reflux temperature of 14 hours while 7.15 grams of water is removed by azeotropic distillation. The mixture is diluted With 740 grams of mineral oil and toluene is then removed by heating the mixture to 150 C. The residue is filtered and the filtrate has the nitrogen content of 4.74%.
- Example 42 A mixture of 1632 grams of polyisobutene-substituted succinic anhydride of Example 1, 207 grams of a condensation product of acrolein with ammonia (molar ratio of 1:1) having a nitrogen content of 20%, 604 grams of mineral oil and 1750 grams of toluene is heated at the reflux temperature for 3 hours. A total of 31 grams of water is removed as the distillate. Toluene is then removed by heating the mixture to 150 C./ 20 mm. The residue is found to have a nitrogen content of 1.89%.
- Example 43 I A nitrogen-containing compound is prepared by mixing 100 grams of cyanoguanidine with 500 grams of ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and heating the mixture at 70-80 C. for 3 hours to obtain a homogeneous mass and filtering the mass.
- a mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 96 grams of the above filtrate and 164 grams of toluene is heated at the reflux temperature for 10 hours. The toluene is then removed by heating the mixture to 150 C./2O mm. The residue is diluted with 400 grams of mineral oil and filtered. The filtrate has a nitrogen content of 3.43%.
- Example 44 To a mixture of 544 .grams of the polyisobutene-substituted succinic anhydride of Example 1, 283 grams of mineral oil and 281 grams of toluene there is added 30 grams of urea at 45 C. The resulting mixture is heated at 130-135 C. for 11 hours whereupon 2.5 cc. of Water is removed as the distillate. The residue is then heated to 140 C./20 mm. and filtered. The filtrate has a nitrogen content of 1%.
- Example 45 A mixture of 1088 grams of the polyisobutene-substituted succinic anhydride of Example 1, 106 grams of dipropylene triamine, 500 grams of toluene is heated at the reflux temperature for 4 hours until no more Water distills. The residue is then heated to C./20 mm. and diluted with 392 grams of mineral oil. The oil solution is found to have a nitrogen content of 1.74%.
- Example 46 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 174 grams of phenylbiguanide and 270 grams of toluene is heated at the reflux temperature for 6.5 hours whereupon 25 grams of water is removed by distillation. The residue is diluted With 500 grams of mineral oil and heated to C./2O mm. to distill ofi toluene. The residue is diluted further with 265 grams of mineral oil, heated to 150 C. and filtered. The filtrate has a nitrogen content of 3.4%.
- Example 47 A mixture of 920 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 249 grams of bis-(dimethylaminopropyl) amine is heated at reflux temperature until no more water distills. The residue has a nitrogen content of 4%.
- Example 48 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 363 grams of aminopropyl octadecylamine and 1314 grams of mineral oil is heated at 200 C. for 24 hours. The residue is filtered. The filtrate has a nitrogen content of 1.02%.
- Example 49 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 258 grams of di-n-butylamine is heated at C. for 12 hours and then to 200 C./ 25 mm. The residue is diluted with 1157 grams of mineral oil and filtered. The filtrate has a nitrogen content of 0.8%.
- Example 50 A mixture of 297 grams of the polyisobutene-substituted succinic anhydride of Example 1, 25 grams of melamine and 200 grams of mineral oil is heated at -260 C. for 9 hours and then at 290295 C. for 7 more hours. The residue is mixed with 50 grams of water, heated at reflux for 7 hours, dried and filtered. The filtrate has a nitrogen content of 2%.
- Example 51 A mixture of 100 grams of the polyisobutene-substituted anhydride of Example 1 and 67 grams of mineral oil is heated to 50 C. To this mixture there is added 59 grams of an 85% aqueous solution of hydrazine hydrate. The mixture is heated at 100110 C. for 1.25 hours, diluted with toluene, and heated at 107 C. until no more water distills. Toluene is removed by distillation. The residue has a nitrogen content of 0.8%.
- Example 52 A mixture of 1.0 equivalent of a mono-carboxylic acid (prepared by chlorinating a polyisobutene having a molecular weight of 750 to a product having a chlorine content of 3.6% by weight, converting the product to the corresponding nitrile by reaction with an equivalent amount of potassium cyanide in the presence of a catalytic amount of cuprous cyanide and hydrolyzing the resulting nitrile by treatment with 50% excess of a dilute aqueous sulfuric acid at the reflux temperautre) and 0.5 equivalent of ethylene diamine is mixed with twice its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by distillation. The mixture is heated further and the xylene is 19 removed by distillation under reduced pressure. residue is the acylated nitrogen compound.
- a mono-carboxylic acid prepared by chlorinating a polyisobutene having a molecular weight of 750 to a product having a chlorine content of 3.6% by weight, converting the
- Example 53 A methyl ester of a high molecular weight mono-carboxylic acid is prepared by heating an equi-molar mixture of a chlorinated polyisobutene having a molecular weight of 1000 and a chlorine content of 4.7% by weight and methyl methacrylate at l40220 C. The resulting ester is then heated with a stoichiometrically equivalent amount of triethylene tetramine at 100200 C. to produce an acylated nitrogen compound of this invention.
- Example 54 A dimethyl wax-substituted malonate is prepared by reacting dimethyl malonate with sodium ethoxide to form a sodium derivative of the ester, heating the sodium derivative with a brominated wax having 75 carbon atoms and 1 bromine atom per molecule.
- a mixture of 1.0 equivalent of the ester of 1.0 equivalent of N,N-dibuty1 thiourea is dissolved in five times its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by azeotropic distillation. The mixture is heated further and the xylene is removed by distillation. The residue is the acylated nitrogen compound.
- Example 55 A high molecular weight mono-carboxylic acid is prepared by telomerizing ethylene with carbon tetrachloride to a telomer having an average of 35 ethylene radicals per molecule and hydrolyzing the telomer to the corresponding acid in accordance with the procedure described in British Patent No. 581,899.
- a mixture of 1.5 equivalent of the acid and 0.75 equivalent of amino-propy-l octylamine is mixed with twice its volume of a mineral oil and twice its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by azeotropic distillation. Xylene is then removed by distillation under reduced pressure and the residue is filtered.
- Example 56 A mixture of 2000 grams of mineral oil, 3 equivalents of trimethylene diamine and 3 equivalents of a high molecular weight tricarboxylic acid prepared by the reaction of a brominated poly (l-hexene) having a molecular weight of 2000 and a bromine content of 4% by weight of 2-pentene-1,3,5-tricarboxylic acid (prepared by dehydration of citric acid) is heated at 150 C. for 20 hours. The residue is filtered to give a homogeneous mineral oil solution of the acylated nitrogen product.
- a brominated poly l-hexene
- 2-pentene-1,3,5-tricarboxylic acid prepared by dehydration of citric acid
- Example 57 An equi-molar mixture of 2-aminoethyl morpholine and a mono-carboxylic acid (prepared by the reaction of ketene with a brominated poly(1-octene) having a molecular weight of 1500 and one atom of bromine per molecule) is diluted with three times its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by distillation. The residue is an xylene solution of the :acylated nitrogen compound.
- Example 58 A mixture of 1 equivalent of methane diamine and 1 equivalent of a high molecular glutaric acid-ester (prepared by the reaction of silver with an equi-molar mixture of beta-iodopropanoic acid and alpha-iodo derivative of the methyl ester of the mono-carboxylic acid of the preceding example) is diluted with an equal weight of a mineral oil and the resulting solution is heated at 180 C. until no more water distills. The residue is then filtered.
- a high molecular glutaric acid-ester prepared by the reaction of silver with an equi-molar mixture of beta-iodopropanoic acid and alpha-iodo derivative of the methyl ester of the mono-carboxylic acid of the preceding example
- Example 59 An equi-molar mixture of a technical ethylene amine mixture having an average composition corresponding to A high molecular weight dicarboxylic acid is prepared by reacting two moles of the Omega-brorno derivative of the hexapentacontanoic acid of the preceding example with one mole of zinc. The dicarboxylic acid is then treated with 2 equivalents of ethylene diamine to produce a diamide.
- Example 61 A mixture of 1 equivalent of 1-aminoethyl-2-octadecylimidazoline with 1 equivalent of the high molecular weight monocarboxylic acid of Example is mixed with twice its volume of diphenyl oxide. The resulting mixture is heated at the reflux temperature until no more water distills. The residue is then filtered.
- Example 62 A product is obtained by the procedure described in the preceding example except that N,N'-di-n-butyl-p-phenylenediamine (1 equivalent) is used in lieu of the imidazoline used.
- Example 63 To a solution of 1 equivalent of di-methyl ester of a polyethylene (molecular weight of 1500)-substituted malonic acid in 5000 grams of xylene, there is added 1 mole of melamine at C. The resulting mixture is heated at the reflux temperature for 25 hours. The residue is mixed with 2000 grams of mineral oil and xylene is removed by heating the oil solution to 180 C./2 mm.
- Example 64 A product is obtained by the procedure of Example 1, except that pyrrolidine (1 equivalent) is used in lieu of the diethylene triamine used.
- Example 65 A product is obtained by the procedure of Example 1, except that hexahydro-1,3,5-triazine (1 equivalent) is used in lieu of the diethylene triamine used.
- Example 66 A product is obtained by the procedure of Example 1, except that 1,3,4-dithiazolidine (1 equivalent) is used in lieu of the ethylene diamine used.
- Example 67 A product is obtained by the procedure of Example 1, except that hexamethylene tetramine (2 equivalents) is used in lieu of the ethylene diamine used.
- Example 68 A product is obtained by the procedure of Example 1, except that tripentylene tetramine (3 equivalents) is used in lieu of the ethylene diamine used.
- Example 69 An equi-molar mixture of the polyisobutene-substituted succinic anhydride of Example 1 and N-octyl thiourea is diluted with an equal volume of xylene. The resulting mixture is heated at the reflux temperature for 30 hours. The residue is a xylene solution of the product.
- Example 70 A product is obtained by the procedure of Example 69 except that oleylamide is used in lieu of the thiourea used.
- Example 71 A product is obtained by the procedure of Example 69 except that 1,3-diphenyl guanidine is used in lieu of the thiourea used.
- Example 72 A product is obtained by the procedure of Example 69 except that octadecamidine is used in lieu of the thiourea used.
- Example 73 A product is obtained by the procedure of Example 69 except that guanylurea is used in lieu of the thiourea used.
- Example 74 To a mixture of 396 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 282 grams of mineral oil there was added 34 grams of N-methyltrimethylene diamine at 60 C. Within a period of one hour. The mixture was blown with nitrogen at 150- 155 C. for hours. The residue was found to have a nitrogen content of 1.41%.
- Example 75 A mixture of 308 grams of mineral oil, 400 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 70 grams of N-(2-ethylhexyl)-trimethylene diamine was prepared at 60 C. The mixture was heated to 250 C. and was then blown with nitrogen at 150- 155 C. for 5 hours. The residue had a nitrogen content of 1.4%.
- Example 76 A mixture of 386 grams of mineral oil, 528 grams of the polyisobutene-suostituted succinic anhydride of Example 1, and 59 grams of N-(2-hydroxyethyl)-trimethylenediamine was prepared at 60 C. The mixture was blown with nitrogen at 150-155 C. for 5 hours. The residue had a nitrogen content of 1.56%.
- Example 77 A mixture of 185 grams of mineral oil, 330 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 88.5 grams of 1,4-bis(2-hydroxypropyl)-2- methyl piperazine was prepared at 60 C. The mixture was heated at 180-276 C./40 mm. for 14.5 hours. The residue had a nitrogen content of 1.12%.
- Example 78 To a mixture of 314 grams of mineral oil and 430 grams of of the polyisobutene-substituted succinic anhydride of Example 1 there was added at 60 C., 49 grams of 1-(2-hydroxyethyl)piperazine. The mixture was heated to 150 C. and blown with nitrogen at this temperature for 5 hours. The residue had a nitrogen content of 1.38%.
- Example 79 A mixture of 382 grams of mineral oil, 528 grams of polyisobutene-substituted succinic anhydride of Example 1, and 53 grams of 1-methyl-4-(3-aminopropyl)piperazine was prepared at 60 C., heated to 150 C., and blown with nitrogen at 150155 C. for 5 hours. The residue had a nitrogen content of 1.57%.
- Example 80 To a mixture of 800 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 175 grams of toluene there was added 77 grams of a commercial mixture of alkylene amines and hydroxy alkyl-substituted alkylene amines consisting of approximately 2% (by weight) of diethylene triamine, 36% of 1-(2-aminoethyl)piperazine, 11% of 1-(Z-hydroxyethyl)piperazine, 11% of NlZ-hydroxyethyl)ethylenediamine, and 40% of higher homologues obtained as a result of condensation of the above-indicated amine components.
- the result- 22 ing mixture was heated at the reflux temperature for 16.5 hours whereupon 12 cc. of water was collected as the distillate. The residue was then heated to 160 C./25 mm. and diluted with 570 grams of mineral oil. The final product was found to have a nitrogen content of 1.57%.
- Example 81 A product is obtained by the procedure of Example 69 except that an equimolar mixture of ammonia and bis(2-hydroxyethyl)amine is used in lieu of the thiourea used.
- Example 82 A product is obtained by the procedure of Example 69 except that an equimolar mixture of benzidine is is used in lieu of the thiourea used.
- Example 83 An alkenyl succinic anhydride in which the alkenyl group has less than 50 carbon atoms is prepared from a polyisobutylene having an average molecular weight of 375. This polymer is chlorinated to a chlorine content of 9.7% and then reacted with maleic anhydride. The resulting polyisobutenyl succinic anhydride has an acid number of 190 and an equivalent weight of 300. The procedure of Example 1 is followed using 1.0 equivalent of this polyisobutenyl succinic anhydride and 1.0 equivalent of Polyamine H. The resulting product then is diluted with mineral oil to a 58% solution therein; the nitrogen content is 3.2%
- Example 84 Another alkenyl succinic anhydride in which the alkenyl group has less than 50 carbons is prepared by alkylation of maleic anhydride with tetra-propylene. Equivalent amounts of this tetrapropenyl succinic anhydride and triethylene tetramine in toluene are heated at reflux temperature until substantially all of the water is removed. The toluene then is removed by heating at 155 C. under reduced pressure and the residue is dissolved in mineral oil to a 60% solution. This oil solution is found to have a nitrogen content of 4.8%.
- Example 85 A polyisobutene having an average molecular weight of 520 corresponding to 37 carbon atoms) is chlorinated to a chlorine content of 6.25% and then is made to react with an equivalent amount of maleic anhydride to yield a polyisobutene-substituted succinic anhydride having a saponification of 152. To 552 grams (1.5 equivalents) of this anhydride dissolved in 276 grams of mineral oil there is added at 60 C. 63 grams (1.5 equivalents) of Polyamine H portionwise over a period of 1 hour. The resulting mixture is heated for 6 hours at 150 C. and then blown with nitrogen at this temperature for 1 hour. The residue is diluted with grams of mineral oil and the final oil solution is found to have a nitrogen content of 2.1%.
- Example 87 A mixture of 1 equivalent of N-butyl maleimide and 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4.33% and a molecular wieght of 850 is heated at 100 C".210 C. in nitrogen atmosphere and then heated at l03114 C./12l mm. The reaction mixture is then filtered and the filtrate is an N-butyl polyisobutene substituted succinimide having a nitrogen content of 1.23%. A mixture of this substituted N-butyl succinimide (177 grams, 0.156 equivalent of nitrogen) and tetraethylene pentamine (12.8 grams, 0.311 equivalent of nitrogen) is diluted with mineral oil (86 grams) and heated at 150158 C. in nitrogen atmosphere.
- the reaction mixture is diluted with mineral oil (41 grams) and filtered.
- the filtrate is blown with nitrogen at 190204 C. for 5 hours, heated at 140/1 mm. and again blown with nitrogen at 24025S C. for 5.9 hours.
- the mixture is filtered.
- the filtrate is an oil solution of an acylated polyamine and has a nitrogen content of 1.13
- Example 88 A mixture of 1 equivalent of maleic anhydride and 2 equivalents of tetraethylene pentamine is heated at a temperature of 100-180 C. to form an intermediate product. The intermediate product is then mixed with 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4% and a molecular weight of 1500 at 150-2l0 C. The product is diluted with equal Weight of mineral oil and filtered. The filtrate is an oil solution of the acylated polyamine.
- Example 89 The procedure of Example 88 is repeated except the chlorinated polyisobutene is replaced on a weight basis with a polyisobutene having a molecular weight of 2000.
- Example 90 A polyisobutene having a molecular weight of 1000 (1000 grams) and maleic anhydride (100 grams), is heated at 150220 C. to form a polyisobutene-substituted maleic anhydride. The anhydride is then mixed with tetraethylene pentamine (1.5 equivalents per equivalent of anhydride) and the mixture is heated at 18020'0 C. to form an acylated polyamine.
- Example 91 An acid producing compound is prepared by heating chloromaleic anhydride (1 equivalent) and 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4% and a molecular weight of 2500 at 150200 C. The product of the reaction is then mixed with tetraethylene pentamine (2.5 equivalents) at 50 C. and the mixture is heated at 180-210 C. to form an acylated polyamine.
- Example 92 A substituted monocarboxylic acid producing compound is obtained by reacting acrylic acid (1 equivalent) with a chlorinated polyisobutene (1 equivalent) having a chlorine content of 4.5% and a. molecular weight of 850 at 150200 C. The product of the reaction is then mixed with 1.25 equivalents of pentaethylene hexamine at 5075 C. and the resulting mixture is heated at 180-200 C. to form an acylated polyamine.
- Example 93 The procedure of Example 92 is repeated except that the acrylic acid is replaced on a chemically equivalent basis with alpha-chloroacrylic acid and the pentaethylene hexamine is replaced on a nitrogen basis with ethylene diamine.
- Example 94 The procedure of Example 91 is repeated except that the acid-producing compound used is one which is obtained by the reaction (Haloform reaction) of methyl heptapentacontanyl ketone with iodine, sodium hydroxide, and acidification of the haloform product.
- the acid-producing compound used is one which is obtained by the reaction (Haloform reaction) of methyl heptapentacontanyl ketone with iodine, sodium hydroxide, and acidification of the haloform product.
- Example 95 The procedure of Example 91 is repeated except that the acid-producing compound used is one which is obtained by the reaction of equivalent amounts of the chlorinated polyisobutene with methyl ester of N-butyl maleamic acid.
- Example 96 The polyisobutene-substituted succinimide is obtained by reacting the polyisobutene-substituted succinic anhydride of Example 1 with ammonia (0.5 equivalent per equivalent of the anhydride). A mixture of the succinimide (1 equivalent of nitrogen) and tetraethylene penta mine (1 equivalent of nitrogen) is diluted with an equal weight of mineral oil and heated at 180 -250 C. to effect trans-amidation. The product is an acylated tetraethylene pentamine.
- Example 97 The procedure of Example 96 is repeated except that the succinimide is N-methyl polyisobutene-substituted succinimide obtained by reacting the corresponding polyisobutene-substituted succinic anhydride with methylamine (0.5 equivalent per equivalent of the anhydride).
- Example 98 The procedure of Example 96 is repeated except that the succinimide is N phenyl polyisobutene-substituted succinimide obtained by reacting the corresponding polyisobutene-substituted succinic anhydride with aniline (0.5 equivalent per equivalent of the anhydride).
- Example 99 A polyisobutene-substituted succinamide is obtained by reacting 1 equivalent of the polyisobutene-substituted succinic anhydride of Example 1 with 1 equivalent of dimethylamine. The succinamide so obtained is then reacted with 2 equivalents of pentaethylene hexamine at 160-210 C. to effect trans-amidation and form an acylated polyamine.
- Example 100 The procedure of Example 88 is repeated except that maleic anhydride used is replaced with itaconic acid on a stoichiometrically equivalent basis.
- acylated nitrogen-containing composition is usually present in lubricating oils in amounts ranging from about 0.1% to about 10% by weight.
- the optimum amounts for a particular application depend to a large measure upon the type of surface to which the lubricating composition is to be subjected.
- lubricating compositions for use in gasoline internal combustion engines may contain from about 0.5 to about 5% of an acylated nitrogen-containing composition, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.
- additives include, for example, detergents of the ash-containing type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and oxidation and corrosion inhibiting agents.
- the ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulf-onic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- olefin polymer e.g., polyisobutene having a molecular weight of 1000
- a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
- the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
- the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature above 50 C. and filtering the resulting mass.
- a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
- Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenylbeta-naphthylamine, and dodecylamine.
- a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60-200 C.
- chlorinated aliphatic hydrocarbons such as chlorinated wax
- organic sulfides and polysulfides such as benzyl disulfide, bis- (chlorobenzyDdisulfide, dibutyl tetrasulfide, sulfurized sperm oil, sulfurized methyl ester of oleic acid, sulfurized alkyphenol, sulfurized dipentene, and sulfurized terpene
- phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpentine or methyl oleate
- phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentyl phenyl phosphite, dipentyl phen
- the lubricating compositions may also contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as of a metal detergent additive. They may also contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range of from about 0.1% to about 10%.
- Example B SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
- Example C SAE 10W-30 mineral lubricating oil containing 0.4% of the product of Example 7.
- Example D SAE mineral lubricating oil containing 0.1% of the product of Example 7 and 0.15% of the zinc salt of an equimolar mixture of di-cylohexylphosphorodithioic acid and di-isobutyl phosphorodithioc acid.
- Example E SAE 30 mineral lubricating oil containing 2% of the product of Example 3.
- Example F SAE 20W-30 mineral lubricating oil containing 5% of the product of Example 14.
- Example G SAE 10W-30 mineral lubricating oil containing 1.5% of the product of Example 25 and 0.05% of phosphorous as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of npentyl alcohol.
- Example I SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 48, 0.06% of phosphorus as zinc di-n-octyl-phosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
- Example I SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 60, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at C.
- a basic calcium detergent prepared by carbonating a mixture comprising mineral oil, calcium mahogany sulfonate and 6 moles of calcium hydroxide in the presence of an equi-molar mixture 10% of the mixture) of methyl alcohol and n-butyl alcohol as the promoter at the reflux temperature.
- Example SAE 10 mineral lubricating oil containing 2% of the product of Example 7, 0.07% of phosphorus as zinc diocytlphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polypropylene (molecular weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (weight) of decyl-methacrylate and (weight) of diethylamino-ethylacrylate.
- Example Q SAE 10 mineral lubricating oil containing 3% of the product of Example 16, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
- crankcase lubricant used in taxicabs which had been operated for over 50,000 miles each.
- ten 6-cylinder 1958 Chevrolet cars (with no oil filters) were operated as a fleet of taxicabs.
- the crankcase lubricant was a solvent refined Mid-Continent petroleum oil having a viscosity of 185 SUS/ F. and a viscosity index of 112, and containing 5.9% by volume of a poly-alkylrnethacrylate viscosity index improver and 0.59% by volume of a zinc dialky'l phosphorodithioate (the alkyl groups being isobutyl and a mixture of primary amyl).
- Crankcase oil drains were taken from each car at oilchange intervals of about 3,000 miles of service and these drains combined.
- a 30-cc. sample of each of the combined drains was mixed with 1% by weight of the dispersant additive to be tested and 2% by weight of water. This mixture then was homogenized, placed in a 100-cc. graduated cone-shaped centrifuge tube and centrifuged for two hours at 1500 rpm.
- the various dispersants were evaluated by noting the volume of deposited sediment in terms of cubic centimeters and also the turbidity of the supernatant oil layer. It is apparent that the more effective dispersants will give test results which show a minimum of deposited sediment and a relatively hazy supernatant oil layer.
- the clarity of the supernatant oil layer was determined by the amount of light transmitted through it from a 3-volt, 0.75 watt incandescent bulb.
- the dispersant properties of the compositions of this invention may be illustrated also by the results of an oxidation-dispersancy test which is useful as a screening test for determining the effectiveness of the dispersant additive under light-duty service conditions.
- a 350-cc. sample of a lubricating oil containing the dispersant additive is placed in a 2 x 15" borosilicate tube.
- a 1%" x 5%" SAE 1020 steel panel is immersed in the oil.
- the sample then is heated at 300 F. for 48 hours while air is bubbled through the oil at the rate of 10 liters per hour.
- the oxidized sample is cooled to F., homogenized, allowed to stand at room temperature for 24 hours and then filtered through two layers of No.
- Two modifications of the above procedure may be employed; both make the test more severe: one consists of extending the test from 48 hours to 96 hours, and the other involves adding 0.5 of water, based on the weight of the test sample, to the oxidized oil before homogenization.
- the lubricating oil employed in this test was a Mid-Continent conventionally refined petroleum oil having a viscosity of about 200 SUS/ 100 F., and
- the engine is dismantled and various parts of the engine are examined for engine deposits.
- the lubricant dispersant addition agent is then rated according to 1) the extent of piston ring-filling, (2) the amount of sludge formed in the engine (on a scale of 80*0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), and (3) the total amount of engine deposits, i.e., sludge and varnish, formed in the engine (on a scale of 100-0, 100 being indicative of no deposits and 0 being indicative of extremely heavy deposits).
- Table III The results are summarized in Table III.
- a composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen compound characterized by the presence within its structure of (A) a substantially saturated hydrocarbonsubstituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloXy radicals wherein the substantially saturated hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said polar radical.
- composition of claim 1 wherein the hydrocarbon substituent contains at least about 25 aliphatic carbon atoms per each polar radical.
- composition of claim 1 wherein the hydrocarbon substituent is a polymer of butene.
- composition of claim 1 wherein the hydrocarbon substituent is a polyisobutene having a molecular Weight within the range from about 700 to about 100,000.
- composition of claim 1 wherein the nitrogencontaining group has the formula wherein R and R are selected from the group consisting of hydrogen, hydrocarbon, amino-substituted hydrocarbon, hydroxy-substituted hydrocarbon, alkoxy-substituted hydrocarbon, amino, carbamyl, thiocaribamyl, guanyl, and acylimidoyl radicals.
- a composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen compound characterized by the presence within its structure of (A) a substantially saturated hydrocarbonsubstituted succinic radical selected from the class consisting of succinoyl, succinoylimidoyl, and succinoyloxy radicals and having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent and (B) an amino group characterized by a nitrogen atom attached directly to said succinic radical.
- a composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen compound characterized by the presence within its structure of (A) an olefin polymer-substituted succinic radical selected from the class consisting of succinoyl, succinimidoyl, and succinoyloxy radicals, said olefin polymer having a molecular weight within the range from about 700 to about 50,000 and being a polymer of a 1- mono-olefin having from 2, to about 8 aliphatic carbon atoms, and (B) a nitrogen-containing group characterized by at least one nitrogen atom attached directly to said succinic radical, said nitrogen-containing group being derived from an alkylene amine.
- A an olefin polymer-substituted succinic radical selected from the class consisting of succinoyl, succinimidoyl, and succinoyloxy radicals, said olefin
- a composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen-containing composition prepared by the process comprising rcacting at a temperature of from about C. and up to the decomposition point a high molecular weight acid-producing compound characterized by the presence within its structure of a high molecular weight oil-solubiliz'ing substantially saturated group having at least about 50 aliphatic carbon atoms and at least one acid-producing group having the structural configuration 2 moles, per equivalent of said acid producing compound, of a nitrogen-containing compound characterized by the 31 presence within its structure of at least one radical having the structural configuration 1I]' H 9.
- composition of claim 8 wherein the high molecular weight acid-producing compound is selected from the group consisting of substituted succinic acids having the structural formula RC
- composition of claim 8 wherein the nitrogencontaining compound is characterized by the structural formula RNH Iii!
- structural formula R and R" are selected from the group consisting of hydrogen, hydrocarbon, amino-su'bstituted hydrocarbon, alkoxy-substitut ed hydrocarbon, amino, carbamyl, thiocarbamyl, guanyl, and acyl-imidoyl radicals.
- composition of claim 8 wherein the nitrogencontaining compound is a polyethylene polyamine.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to impart detergency thereto, of an amide having the structural formula wherein x is at least 1, R is a substantially saturated hydrocarbon group having at least about 50 aliphatic carbon atoms and at least about 25 aliphatic carbon atoms for each unit of x, and NR' is selected from the class consisting of (A) radicals derived from an alkylene polyamine by the removal of a hydrogen atom from an amino group and (B) radicals derived from an alkylene polyamine by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substituent having the formula 13.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to impart detergency thereto, of an amide having the structural formula wherein x is at least 1, R is a substantially saturated hydrocarbon group having at least about 50 aliphatic carbon atoms and at least about 25 aliphatic carbon atoms for each unit of x, and NR is selected from the class consisting of (A) radicals derived from an ethylene polyamine by the removal of a hydrogen atom from an amino group and (B) radicals derived from an ethylene polyamine by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substituent having the formula 14.
- the lubricating composition of claim 12 wherein R of the structural formula is a polyisobutene group having a molecular weight of from about 750 to 5000, x is about 1, and NR' is derived from an ethylene polyamine having from 2 to 8 amino groups by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substitutent having the formula 15.
- the composition of claim 8 wherein the oil-soluble acylated nitrogen-containing composition is prepared by a process which comprises reacting at a temperature within the range of from about C. to about 250 C.
- a substantially saturated hydrocarbon substituted succinicacid-proclucing compound having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent with from about one-half equivalent to about 2 moles, per equivalent of said succinic-acidproducing compound, of an alkylene polyamine.
- composition of claim 8 wherein the oil-soluble acylated nitrogen-containing composition is prepared by a process which comprises reacting at a temperature within the range of from about 80 C. to about 250 C. a substantially saturated hydrocarbon substituted succinicacid-producing compound having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent with from about one-half equivalent to about 2 moles per equivalent of said succinic-acidproducing compound, of a polyethylene polyamine.
- composition of claim 8 wherein the oil-soluble acylated nitrogen-containing composition is prepared by a process which comprises reacting at a temperature within the range of from about 80 C. to about 250 C. a substantially saturated hydrocarbon substituted succinicacid-producing compound having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent with from about one-half equivalent to about 2 moles, per equivalent of said succinic-acidproducing compound, of a hydroxyalkyl amine.
- composition of claim 1 wherein it contains additionally an ash-containing detergent is additionally present.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
Description
United States Patent Office Fatented Sept. 13, 1966 3,272,746 LUBIRECATING COMPUSHIUN CUNTAHNING AN ACYLATED NITROGEN COMPQUND William M. Le Suer, Cleveland, and George R. Norman,
Lyndhurst, Uhio, assignors to The Lnbrizol Corporation, Wickiiiie, ()hio, a corporation of Qhio No Drawing. Filed Nov. 22, 1965, Ser. No. 509,172 18 Claims. (Cl. 252-475) This is a continuation-in-part of copending application Serial No. 126,809 filed July 21, 1961, now U.S. 3,219,666 which was a continuation-in-part of application Serial No. 802,667 filed March 30, 1959, now U.S. 3,172,892. This application is also a continuation-in-part of copending application Serial No. 437,547 filed March 5, 1965, now abandoned and copending application Serial No. 468,948 filed July 1, 1965.
This invention relates to oil-soluble nitrogen-containing compositions and to the process of preparing the same. The compositions of this invention are useful as dispersing agents in lubricants, especially lubricants intended for use in the crankcase of internal combustion engines, gears, and power transmitting units.
One of the principal problems associated with present day crankcase lubricants is that posed by the inevitable presence in the lubricant of foreign particles such as dirt, soot, water and decomposition products resulting from breakdown of the lubricating oil. Even if there were none of this latter contaminant present the very nature of the design of the modern internal combustion engine is such that a significant amount of foreign matter will accumulate in the crankcase. Perhaps the most important of these contaminants is water because it seems to be responsible for the deposition of a mayonnaise-like sludge. It appears that if there were no water present the solid components of the mayonnaise-like sludge would circulate with the oil and be removed by the oil filter. It will be readily appreciated that the deposition of the sludge presents a serious problem with respect to the eflicient operation of the engine and that it is desirable to prevent such deposition of sludge-like material.
The presence of water and the precursors of sludge in a lubricating oil is dependent largely upon the operating temperature of the oil. If the oil is operated at a high temperature the water, of course, will be eliminated by evaporation about as fast as it accumulates. In the absence of water as stated above the other foreign particles will be removed by the filter. At low oil temperatures, on the other hand, water will accumulate and so consequently will sludge. It is apparent that the environment in which a crankcase lubricant is maintained will determine to a large extent the ultimate performance of that lubricant.
High operating temperatures are characteristic of a lubricant in an engine that is run at relatively constant high speed. Thus, in an engine that is run at 60 miles per hours for a long period of time it is very unlikely that there will be any accumulation of water and it is similarly unlikely that there will be any formation and deposition of sludge, but in ordinary stop-and-go driving such as is the case with taxicabs, delivery trucks, police cruisers, etc., the crankcase lubricant will be alternately hot and cold, an ideal environment for the accumulation of water. In such cases the formation of sludge is a serious problem. This problem has been with the automotive industry for many years and its solution has been approached by the use of known detergents such as metal phenates and sulfonates but without notable success. Although such known detergents are very effective in solving the detergency problems associated with motor oils at high temperatures they have not been particularly effective in solving the problems associated with low temperature operation or, to put it better, those problems which are associated with crankcase lubricants in engines which are operated at alternating high and low temperatures.
It is accordingly, a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are adapted for use as additives in hydrocarbon oils.
It is also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.
It is another object of this invention to provide a novel process for the preparation of products which are effective as dispersants in lubricant compositions.
It is another object of this invention to provide novel compositions which are effective dispersants in lubricant compositions intended for use in engines operated at alternating high and low temperatures.
It is another object of this invention to provide improvide hydrocarbon oil compositions.
It is another object of this invention to provide improved lubricating compositions.
It is another object of this invention to provide improved fuel compositions.
These and other objects are achieved in accordance with this invention by providing a detergent composition comprising an oil-soluble, acylated nitrogen composition characterized by the presence Within its structure of (A) a hydrocarbon-substituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals wherein the substantially hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said relatively polar group.
A critical aspect of this invention is the size of the hydrocarbon substituent in the acylated nitrogen compounds. Thus, only acylated nitrogen compositions having at least about 50 aliphatic carbon atoms in the hydrocarbon substituent are contemplated as being within the scope of this invention. Furthermore, in the case of acylated nitrogen compositions having two or more polar groups in a molecule, the hydrocarbon substituent must then contain at least about 25 aliphatic carbon atoms per each polar group. This lower limit is based not only upon the consideration of the oilsolubility of the acylated nitrogen compositions but also upon the effectiveness of such compounds as additives in hydrocarbon oils for the purposes of this invention. It has now been discovered that while acylated nitrogen compositions having less than the minimum number of such aliphatic carbon atoms may be sufi iciently oil-soluble, they nevertheless are not sufficiently effective to be useful as additives of this invention. Furthermore, it has been discovered that their effectiveness diminishes sharply with a corresponding decrease in the size of the hydrocarbon substituent so that acylated nitrogen compositions having less than about 35 aliphatic car-hon atoms in such substituent either are ineffective or produce detrimental results when added to a hydrocarbon oil.
Another important aspect of this invention is the structural constitution of the hydrocarbon substituent. Thus, the radical preferably should be substantially saturated, i.e., at least about of the total number of carbonto-carbon covalent linkages are saturated linkages. An excessive proportion of unsaturated linkages renders the molecule susceptible to oxidation, degradation, and polymerization and results in products unsuitable for use in hydrocarbon oils in many applications.
The hydrocarbon substituent of the acylated nitro gen compositions of this invention preferably should be substantially free from large oil-solubilizing pendant groups, i.e., groups having more than about 6 aliphatic carbon atoms. While some large oil-solubilizing pendant groups may be present, they preferably should be present in proportions less than about one such group for every 25 aliphatic carbon atoms in the main hydrocarbon chain. A higher proportion of large pendant groups impairs the effectiveness of the acylated nitrogen compositions of this invention as additives in hydrocarbon oils.
The hydrocarbon substituent may contain polar substituents provided, however, that the polar substituents are not present in proportions sufficiently large to alter significantly the hydrocarbon character of the radical. The polar substituents are exemplified by chloro, bromo, keto, ethereal, aldehydro, nitro, etc. The upper limit with respect to the proportion of such polar substituents in the radical is approximately based on the weight of the hydrocarbon portion of the radical.
The sources of the hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to about 30 carbon atoms. The especially useful polymers are the polymers of l-monoolefins such as ethylene, propene, l-butene, isobutene, I-hexene, l-octene, 2-methyl-1-heptene, 3-cyclohexyl-1- butene, and 2-methyl-5-propyl-l-hexene. Polymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by Z-butene, 3-pentene, and 4-octene.
Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such interpolymers include, for example, those prepared "by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; I-heptene with l-pentene, 3-methyl-1-butene with l-octene; 3,3-dimethyl-l-pentene with l-hexene; isobutene with styrene and piperylene; etc.
The relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final acylated nitrogen compositions derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis of units derived from the aliphatic mono-olefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbon-tocarbon covalent linkages.
Specific examples of such interpolymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of 1-butene and 3% of l-hexene; terpolymer of 60% of isobutene with of l-pentene and 20% of l-octene; copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.
Another source of the substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molectular weight olefinic substances.
The use of olefin polymers having molecular weights of about 7505000 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the acylated nitrogen compositions of this invention. In many instances the use of such higher molecular weight olefin polymers is desirable. On the other hand, olefin polymers having molecular weights less than about 700 are not useful.
The relatively polar group of the acylated nitrogen compositions is selected from the class consisting of acyl, acylimidoyl, and acyloxy radicals. These radicals have the following structural configurations, respectively:
NR2 R1("], R1(i7and Ri( JO- wherein R represents the substantially hydrocarbon substituent described hereinbefore and R represents a hydrogen radical or an organic radical such as a hydrocarbon radical or a polar-substituted hydrocarbon radical.
The nitrogen-containing group of the acylated nitrogen compositions of this invention is derived from compounds characterized by a radical having the structural configuration The two remaining valences of the nitrogen atom of the above radical preferably are satisfied by hydrogen, amino, or organic radicals bonded to said nitrogen atom through direct carbon-to-nitrogen linkages. Thus, the compounds from which the nitrogen-containing group may be derived include principally ammonia, aliphatic amines, aromatic amines, heterocyclic amines or carbocyclic amines. The amines may be primary or secondary amines and may also be polyamines such as alkylene amines, arylene amines, cyclic polyamines, and the hydroxy-substituted derivatives of such polyamines.
Specific amines of these types are methylamine, N- methylethylamine, N-methyl-octylamine, N-cyclohexylanaline, dibutylamine, cyclohexylamine, aniline, di(pmethylphenyl)amine, dodecylamine, octadecylamine, ophenylenediamine, N,N di-n-butyl-p-phenylenediamine, mor-pholine, piperazine, tetrahydropyr-azine, indole, hexahydro-1,3,5-triazine, 1-H-1,2,4-triazole, melamine, bis-(paminophenyl)methane, phenyl-methylenimine, menthanediamine, cyclohexamine, pyrrolidine, 3-amino-5,6-diphenyl-1,2,4 triazine, quinonediimine, 1,3 indandiimine, 2- octadecyl-imidazoline, 2 phenyl-4-methyl-imidazolidine, oxazolidine, ethanolamine, diethanolamine, and 2-heptyloxazolidine.
A preferred source of the nitrogen-containing group consists of polyamines, especially alkylene amines conforming for the most part to the formula HN alky1eue-N H l K i).
wherein n is an integer preferably less than about 10, A is a substantially hydrocarbon or hydrogen radical, and the alkylene radical is preferably a lower alkylene radical having less than about 8 carbon atoms. The alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines, and also the cyclic and the higher homologs of such amines such as piperazines and amino-alkyl-substituted piperazines. They are exemplified specifically by: ethylene diamine, triethylene.
tetramine, propylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene)tria-mine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pen-taethylene hexamine, di(trimethylene triamine, 2-heptyl-3- Z-aminopropyl irnidazoline, 4-methylimidazoline, 1,3 -bis (Z-aminoethyl imidazo- Iline, pyrimidine, 1-(2-aminopropyl)piperazine, l,4-bis(2- aminoethyl)piperazine, and 2-methyl-1-(2-aminobutyl) piperazine. High homologs such as are obtained by condensing two or more of the above illustrated alkylene amines likewise are useful.
The ethylene amines are especially useful. They are described in some detail under the heading Ethylene Amines in Encycylopedia of Chemical Technology Kirk and Othmer, volume 5, pages 898905, Interscience Publishers, New York (1950). Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia. The reaction results in the production of somewhat complex mixtures of alkylene amines, including cyclic condensation products such as piperazines. These mixtures find use in the process of this invention. On the other hand, quite satisfactory products may be obtained also by the use of pure alkylene amines. An especially useful alkylene amine for reasons of economy as well as effectiveness of the products derived therefrom is a mixture of ethylene amines prepared by the reaction of ethylene chloride and ammonia and having a composition which corresponds to that of tetraethylene pentamine.
Hydroxyalkyl-substituted alkylene amines, i.e., alkylene amines having one or more hydroxyalkyl substituents on the nitrogen atoms, likewise are contemplated for use herein. The hydroxyalkyl-substituted alkylene amines are preferably those in which the alkyl group is a lower alkyl group, i.e., having less than about 6 carbon atoms. Examples of such amines include N-(2-hydroxyethyl) ethylene diamine, N,N' bis(2 hydroxyethyl)ethylene diamine, 1-(Z-hydroxyethyl)piperazine, mono-hydroxypropyl-substituted diethylene triamine, 1,4-bis(2-hydroxypropyl) piperazine, di-hydroxypropyl-substituted tetraethylene pentamine, N-(3-hydroxypropyl)tetramethylene diamine, and 2-heptadecyl-1-(2-hy droxyethyl) imidazoline.
Higher homologs such as are obtained by condensation of the above-illustrated alkylene amines or hydroxy alkyl-substituted alkylene amines through amino radicals or through hydroxy radicals are likewise useful. It will be appreciated that condensation through amino radicals results in a higher amine accompanied with removal of ammonia and that condensation through the hydroxy radicals results in products containing ether linkages accompanied with removal of water.
Other sources of the nitrogen-containing group include ureas, thioureas, hydrazines, guanidines, amidines, amides, thioamides, cyanamides, etc. Specific examples illustrating such compounds are: hydrazine, phenylhydrazine, N, N'-diphenylhydrazine, octadecylhydrazine, benzoylhydrazine, urea, thiourea, N-butylurea, stearylamide, oleylamide, guanidine, 1,3-diphenylguanidine, 1,2,3-tributylguanidine, benzamidine, octadecamidine, N,N-dimethylstearamidine, cyanamide, dicyandiamide, guanylurea, aminoguanidine, etc.
As indicated previously, the nitrogen-containing group in the acylated nitrogen compositions of this invention is characterized by a nitrogen atom attached directly to the relatively polar group. It will be appreciated, of course, that the linkage between a nitrogen atom and an acyl radical is representative of an amide or an imide structure, that the linkage between a nitrogen atom and an acylimidoyl radical is representative of an amidine structure, and that the linkage between a nitrogen atom and an acyloxy radical is representative of an ammonium-carboxylic acid salt structure. Thus, the acylated nitrogen compositions of this invention are characterized. by amide, imide, amidine, or salt linkages and in many instances a mixture of such linkages. Those containing two such linkages separated by a lower alkylene radical (i.e., one having less than about 6 carbon atoms), such as are derived from succinic, glutaric, or adipic radicals, are especially preferred in this invention.
A convenient method for preparing the acylated nitrogen compositions of this invention comprises reacting a high molecular weight acid-producing compoundv characterized by the presence within its structure of a high molecular weight oil-solubilizing group having at least about 50 aliphatic carbon atoms and at least one acid-producing group having the structural configuration o ax wherein X is selected from the class consisting of halogen, hydroxy, hydrocarbon-oxy, acyloxy, and amino radicals derived from ammonia or a lower primary amine such as a mono-alkylamine or mono-arylamine having no more than about 6 aliphatic carbon atoms with at least about one-half an equivalent amount of a nitrogen-containing compound characterized by the presence within its structure of at least one radical having the structural configuration The above process involves a reaction between the acidproducing group with the nitrogen-containing radical to result in the direct attachment of the nitrogen atoms to a polar radical, i.e., acyl, acylimidoyl, or acyloxy radical derived from the acid-producing group. The linkage formed between the nitrogen atom and the polar radical may thus be that representative of a salt, amide, imide, or amidine radical. In most instances, the product of the above process contains a mixture of linkages representative of such radicals. The precise relative proportions of such radicals in the product usually are not known as they depend to a large measure upon the type of the acidproducing group and the nitrogen-containing radical involved in the reaction and also upon the environment (e.g., temperature) in which the reaction is carried out. To illustrate, the reaction involving an acid or an'hydride group with an amino nitrogen-containing radical at relatively low temperatures such as below about 60 C. results predominantly in a salt linkage (i.e.,
but at relatively high temperatures such as above about C. results predominantly in an amide, imide, or amidine linkage (i.e.,
0 ll ll -C--N 0r -CN) The products obtained by the above process, irrespective of the nature or relative proportions of the linkages present therein, have been found to be effective as additives in hydrocarbon oils for the purposes of this invention.
The acid-producing compounds contemplated for use in the above process include mono-carboxylic and polycarboxylic acids, acid halides, esters, and anhydrides as well as imides and amides derived from ammonia or a lower primary amine, and also mixtures of such compounds. The imide or amide of ammonia or a lower primary amine is especially useful for preparing the acylated nitrogen compositions having more than one nitrogencontaining radicals. The nature of the oil-solubilizing group in such compounds should be the same as that which characterized the hydrocarbon substituent, described previously, in the acylated nitrogen compositions of this invention.
The substantially saturated, aliphatic hydrocarbon-substituted succinic acids and anhydrides are especially preferred for use as the acid-producing reactant in this process for reasons of the particular effectiveness of the products obtained from such compounds as additives in hydrocarbon oils. The succinic compounds are readily available from the reaction of maleic anhydride with a high molecular Weight olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature about 100-200 C. The product from such a reaction is an alkenyl succinic anhydride. The alkenyl group may be hydrogenated to an alkyl group. The anhydride may be hydrolyzed by treatment with Water or steam to the corresponding acid. Either the anhydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols or alcohols or to the corresponding imide or amide by reaction with ammonia or a lower primary amine.
In lieu of the high molecular Weight olefins or chlorinated hydrocarbons, other high molecular weight hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or anhydride may be used in the above-illustrated reaction for preparing the succinic compounds. Such polar substituents may be illustrated by sulfide, disulfide, nitro, mercaptan, bromine, ketone, and aldehyde radicals. Examples of such polar-substituted hydrocarbons include polypr-opene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc. Another method useful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight olefin or a polar-substituted hydrocarbon at a, temperature usually within the range from about 100 C. to about 200 C.
The polycarboxylic acids and derivatives thereof having more than two carboxylic radicals per molecule which are contemplated for use in this invention are those containing at least about 50 aliphatic carbon atoms per molecule and furthermore, at least about 25 aliphatic carbon atoms per each carboxylic radical. Such acids may be prepared by halogenating a high molecular weight hydrocarbon such as the olefin polymer described hereinabove to produce a poly-halogenated product, converting the polyhalogenated product to a poly-nitrile, and then hydrolyzing the poly-nitrile. They maybe prepared also by oxidation of a high molecular weight polyhydric alcohol with potassium permanganate, nitric acid, or a like oxidizing agent. Another method for preparing such polycarboxylic acids involves the reaction of an olefin or a polarsubstituted hydrocarbon such as a chloro-polyisobutene with an unsaturated poly-carboxylic acid such as 2- pentene-1,3,5-tricarboxylic acid obtained by dehydration of citric acid.
The mono-carboxylic acids and derivatives thereof may be obtained by oxidizing a mono-hydric alcohol with potassium permanganate or by reacting a halogenated high molecular olefin polymer with a ketene. Another convenient method for preparing the monocarboxylic acids involves the reaction of metallic sodium with an acetoacetic ester or a malonic ester of an alkanol to form a sodium derivative of the ester and the subsequent reaction of the sodium derivative with a halogenated high molecular weight hydrocarbon such as brominated wax or brominated polyisobutene. Other methods include the reaction of a high molecular weight olefin with ozone; the Haloform Reaction; the reaction of an organometallic complex (such as lithium-olefin complex) with carbon dioxide; the reaction of a chlorinated hydrocarbon with a lactone; the reaction of a chlorinated hydrocanbon with chloromaleic acid or mercapto-maleic anhydride.
The mono-carboxylic and poly-carboxylic acid anhydrides are obtained by dehydrating the corresponding acids. Dehydration is readily accomplished by heating the acid to a temperature above about 70 C. preferably in the presence of a dehydration agent, e.g., acetic anhy- 8 dride. Cyclic anhydrides are usually obtained from poly-cariboxylic acids having the acid radicals separated by no more than three carbon atoms such as substituted succinic or glutaric acids, whereas linear polymeric anhydrides are obtained from poly-carboxylic acids having the acid radicals separated by four or more carbon atoms.
The acid halides of the mono-carboxylic and polycarboxylic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tribromide, phosphorus pentachloride, or thionyl chloride. The esters of such acids can be prepared simply by the reaction of the acids or their anhydrides With an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexanol, phenol, naphthol, octylphenol, etc. The esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid. The nature of the alcoholic or phenolic portion of the ester radical appears to have little infiuence on the utility of such ester as reactant in the process described herein-above.
The nitrogen-containing reactants useful in the above process are the compounds, described previously in this specification, from which the nitrogen-containing group the acylated nitrogen compositions of this invention can be derived.
The above process is usually carried out by heating a mixture of the acid-producing compound and the nitrogen-containing reactant at a temperature above about C., preferably within the range from about C. to about 250 C. However, when an acid or anhydride is employed in reactions with an amino nitrogen-containingreactant, the process may be carried out at a lower temperature such as room temperature to obtain products having predominantly salt linkages or mixed saltamide linkages. Such products may be converted, if desired, by heating to above 80 C. to products having predominantly amide, imide, or amidine linkages. The use of a solvent such as benzene, toluene, naphtha, mineral oil, xylene, n-hexane, or the like is often desirable in the above process to facilitate the control of the reaction temperature.
Another method for preparing the acylated nitrogen compositions of this invention involves first reacting the nitrogen-containing reactant with an olefinic acid-producing compound to form a nitrogen containing intermediate and then incorporating a large hydrocarbon substituent (i.e., having at least about 50 aliphatic carbon atoms) into the intermediate by reacting the intermediate with a high molecular weight hydrocarbon reactant, such as an olefin, a chlorinated hydrocarbon, or a polar substituted hydrocarbon illustrated previously.
The olefinic acid-producing compound useful in the process may be an acid, anhydride, acid halide, or ester and it likewise may be an imide or amide derived from ammonia or a lower primary amine such as is described previously. The acid-producing compound may be that of maleic acid, itaconic acid, acrylic acid, aconitic acid, methacrylic acid, chloromaleic acid, alpha-chloroacrylic acid, alpha-butylacrylic acid, crotonic acid, citraconic acid, mesaconic acid, or a like acid preferably having less than about 8 carbon atoms and an olefinic linkage adjacent to the acid-producing radical.
Specific examples of such olefinic acid-producing compound include maleic acid, maleic anhydride, chloromaleic anhydride, maleamic acid, acrylic acid, acrylyl chloride, acrylyl bromide, methacrylic acid, alphapropylacrylyl chloride, crotonic acid, methyl acrylate, ethyl methacrylate, dimethyl maleate, diethyl itaconate, dibutyl maleate, maleimide, maleamide, N-methyl maleamide, dimethyl maleamide, N-butyl maleamide acid, N- propyl maleimide, methyl chlo-roacrylate, dimethyl citraconate, etc. The ester groups, imide groups, and amide groups of such olefinic acid-producing compounds include those discussed previously in connection with the high molecular weight acid-producing compounds useful in preparing the acylated nitrogen compositions of the invention.
The reaction of the nitrogen-containing reactant with an olefinic acid-producing compound may be carried out at a temperature from about 25 C. to 300 C. or any temperature below the decomposition point of the reaction mixture. The reaction is sirnilar to that which characterizes the formation of acylated nitrogen compositions described previously and results in a nitrogen-containing inter-mediate. The intermediate produced by such reaction is thus characterized by the presence therein of an amide, imide or amidine linkage or a mixture of such linkages. A convenient method of incorporating a high molecular weight hydrocarbon substituent into the nitrogen-containing intermediate involves reacting the intermediate with a high molecular weight reactant olefin, chlorinated hydrocarbon such as a chlorinated olefin polymer, or a polar substituted high molecular Weight hydrocarbon at a temperature above about 100 C., preferably below about 200 C. Such high molecular Weight reactant is as described previously in connection with the preparation of the high molecular weight succinic acidproducin-g compounds of this invention.
The relative proportions of the acid-producing compounds and the nitrogen-containing reactants to be used in the above process are such that at least about one-half of a stoichiometrically equivalent amount of the nitrogencontaining reactant is used for each equivalent of the acidproducing compound used. In this regard it will be noted that the equivalent weight of the nitrogen-containing reactant is based upon the number of the nitrogen-containing radicals defined by the structural configuration Similarly the equivalent weight of the acid-producing compound is based upon the number of the acid-producing radicals defined by the structural configuration Thus, ethylene diamine has two equivalents per mole; amino guanidine has four equivalents per mole; a succinic acid or ester has two equivalents per mole, etc. The upper limit of the useful amount of the nitrogen-containing reactant appears to be about two moles for each equivalent of the acid-producing compound used. Such amount is required, for instance, in the formation of products having predominantly amidine linkages. Beyond this limit, the excess amount of the nitrogen-containing reactant appears not to take part in the reaction and thus simply remains in the product apparently Without any adverse effects. On the other hand, the lower limit of about one-half equivalent of the nitrogen-containing reactant used for each equivalent of the acid-producing compound is based upon the stoichiome'try for the formation of products having predominantly imide linkages. In most instances, the preferred amount of the nitrogencontaining reactant is approximately one equivalent for each equivalent of the acid-producing compound used.
It should be noted that the reaction of a high molecular weight substituted succinic acid-producing compound (such as acid or anhyd-ride) with an alkylene polyamine (such as ethylene diamine or polyethylene polyamine) produces an acylated nitrogen composition which contains an amide conforming to the structural formula 0 R- CH%NR2 JI-IiO-NR2 where x is at least 1, R is a hydrocarbon group having at least about 50 aliphatic carbon atoms and at least about 25 aliphatic carbon atoms for each unit of x, and NR' is selected from the class consist-ing of (A) radicals derived 10 from an alyklene polyamine by the removal of a hydrogen atom from an amino group and (B) radicals derived from an alkylene polyamine by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substituent having the formula The value of x is at least one for each mole of the hydrocarbon substituent present in the amide molecule and it may be greater than one provided that it does not exceed one per each 50 aliphatic carbon atoms present in the hydrocarbon substituent. The radical R is the residue derived from an alkylene polyamine by the removal of one amino group; it may further contain a complex substituent (illustrated above) on the nitrogen atom of at least one additional amino group, or on the nitrogen atom of each of the other amino groups of the alkylene polyamine residue. In the latter case, the amide is illustrated by one present in the acylated nitrogen composition obtained by the reaction of one mole of an alkylene polyamine with as many equivalents of the substituted succinic acid or anhydride as there are amino groups in the polyamine.
The following examples illustrate the processes useful for preparing the acylated nitrogen compounds of this invention:
Example 1 A polyisobutenyl succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride at 200 C. The polyisobutenyl radical has an average molecular weight of 850 and the resulting alkenyl succinic anhydride is found to have an acid number of 113 (corresponding to an equivalent weight of 500). To a mixture of 500 grams (1 equivalent) of this polyisobutenyl succinic anhydride and 160 grams of toluene there is added at room temperature 35 grams (1 equivalent) of diethylene triamine. The addition is made portionwise throughout a period of 15 minutes, and an initial exothermic reaction caused the temperature to rise to 50 C. The mixture then is heated and a water-toluene azeotrope distilled from the mixture. When no more water would distill the mixture is heated to C. at reduced pressure to remove the toluene. The residue is diluted with 350 grams of mineral oil and this solution is found to have a nitrogen content of 1.6%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula where R is a polyisobutene radical, x has a value of one for each mole of the polyisobutene group, and NR is a radical derived from diethylene triamine by the removal of a hydrogen atom from an amino group and characterized by the presence on the nitrogen atom of at least one remaining amino group of a radical selected from the class consisting of Example 2 The procedure of Example 1 is repeated using 31 grams (1 equivalent) of ethylene diamine as the amine reactant. The nitrogen content of the resulting product is 1.4%.
Example 3 The procedure of Example 1 is repeated using 55.5 grams (1.5 equivalents) of an ethylene amine mixture having a composition corresponding to that of triethylene tetramine. The resulting product has a nitrogen content of 1.9%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
Example 4 The procedure of Example 1 is repeated using 55.0 grams (1.5 equivalents) of triethylene tetramine as the amine reactant. The resulting product has a nitrogen content of 2.9%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from triethylene tetramine.
Example 5 To a mixture of 140 grams of toluene and 400 grams (0.78 equivalent) of a polyisobutenyl succinic anhydride (having an acid number of 109 and prepared from maleic anhydride and the chlorinated polyisobutylene of Example 1) there is added at room temperature 63.6 grams (1.55 equivalents) of an ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and available from Carbide and Carbon under the trade name Polyamine H. The mixture is heated to distill the water-toluene azeotrope and then to 150 C. at reduced pressure to remove the remaining toluene. The residual polyamide has a nitrogen content of 4.7%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
Example 6 The procedure of Example 1 is repeated using 46 grams 1.5 equivalents) of ethylene diamine as the amine reactant. The product which resulted has a nitrogen content of 1.5%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from ethylene diamine.
Example 7 A polyisobutenyl succinic anhydride having an acid number of 105 and an equivalent weight of 540 is prepared by the reaction of a chlorinated polyisobutylene (having an average molecular weight of 1,050 and a chlorine content of 4.3%) and maleic anhydride. To a mixture of 300 parts by weight of the polyisobutenyl succinic anhydride and 160 parts by weight of mineral oil there is added at 65 95 C. an equivalent amount (25 parts by weight) of Polyamine H (identified in Example 5). This mixture then is heated to 150 C. to distill all of the water formed in the reaction. Nitrogen is bubbled through the mixture at this temperature to insure removal of the last traces of water. The residue is diluted by 79 parts by weight of mineral oil and this oil solution found to have a nitrogen content of 1.6%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
Example 8 A mixture of 2,112 grams (3.9 equivalents) of the polyisobutenyl succinic anhydride of Example 7, 136
grams (3.9 equivalents) of diethylene triamine, and 1060 grams of mineral oil is heated at l50 C. for one hour. Nitrogen is bubbled through the mixture at this temperature for four more hours to aid in the removal of water. The residue is diluted with 420 grams of mineral oil and this oil solution is found to have a nitrogen content of 1.3%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula showin in Example 1.
Example 9 To a solution of 1,000 grams (1.87 equivalents) of the polyisobuentyl succinic anhydride of Example 7, in 500 grams of mineral oil there is added at 85-95 C. 70 grams (1.87 equivalents) of tetraethylene pentamine. The mixture then is heated at -165 C. for four hours, blowing with nitrogen to aid in the removal of Water. The residue is diluted with 200 grams of mineral oil and the oil solution found to have a nitrogen content of 1.4%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from tetraethylene pentamine.
Example 10 A polypropenyl succinic anhydride is prepared by the reaction of a chlorinated polypropylene (having a molecular weight of about 900 and a chlorine content of 4%) and maleic anhydride at 200 C.. The product has an acid number of 75. To a mixture of 390 grams (0.52 equivalent) of this polypropenyl succinic anhydride, 500 grams of toluene, and grams of mineral oil there is added portionwise 22 grams (0.52 equivalent) of Polyamine H. The reaction mixture is heated at reflux temperature for three hours and water removed from an azeotrope with toluene. The toluene then is removed by heating to 150 C./2O millimeters. The residue was found to contain 1.3% of nitrogen. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
Example 11 A substituted succinic anhydride is prepared by reacting maleic anhydride with a chlorinated copolymer of isobutylene and styrene. The copolymer consists of 94 parts by weight of isobutylene units and 6 parts by weight of styrene units, has an average molecular weight of 1,200, and is chlorinated to a chlorine content of 2.8% by weight. The resulting substituted succinic anhydride has an acid number of 40. To 710 grams (0.51 equivalent) of this substituted succinic anhydride and 500 grams of toluene there is added portion wise 22 grams (0.51 equivalent) of Polyamine H. The mixture is heated at reflux temperature for three hours to remove by azeot-ropic distillation all of the water formed in the reaction, and then at 150 C./20 millimeters to remove the toluene. The residue contains 1.1% by weight of nitrogen. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1.
Example 12 A substituted succinic anhydride is prepared by reacting maleic anhydride with a chlorinated copolymer of isobutylene and isoprene. The copolymer consists of 99 parts by weight of isobutylene units and 1% by weight of isoprene units. The molecular weight of the copolymer is 28,000 and the chlorine content of the chlorinated copolymer is 1.95%. The resulting alkenyl succinic anhydride had an acid number of 54. To a mixture of 228 grams (0.22 equivalent) of an oil solution of this alkenyl succinic anhydride, 58 grams of additional mineral oil, 500 grams of toluene and 9.3 grams (0.22 equivalent) of Example 13 A polyisobutenyl succinic anhydride is prepared by the reaction of a chlorinated polyisobutylene with maleic anhydride. The chlorinated polyisobutylene has a chlorine content of 2% and an average molecular weight of 11,000. The polyisobutenyl succinic anhydride has an acid number of 48. A mixture of 410 grams (0.35 equivalent) of this anhydride, 15 grams (0.35 equivalent) of Polyamine H and 500 grams of toluene is heated at reflux temperature for four hours to remove water from an azeotrope with toluene. The toluene then is removed by heating to 150 C./20 millimeters. The nitrogen content of the residue is 1.3%. The product is an oil solution of an acylated nitrogen composition containing an amine conforming to the structural formula shown in Example 1.
Example 14 The procedure of Example is repeated except that 0.94 equivalent of Polyamine H is used instead of 1.55 equivalents. The nitrogen content of the product is 3%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1.
Example 15 A polyisobutenylsubstituted succinic acid is prepared by hydrolysis of the corresponding anhydride (prepared in turn by the condensation of a chlorinated polyisobutylene and maleic anhydride). To 1152 grams (1.5 equivalents) of a 70% mineral oil solution of this polyisobutylenyl succinic acid having an acid number of 62 there is added at room temperature 59.5 grams (1.5 equivalents) of Polyamine H. This mixture is heated at 150- 167 C. for 7 hours during which time a total of 19.5 grams of Water is distilled from the mixture. The residue is diluted with 174 grams of mineral oil and then filtered at 150 C. The filtrate has a nitrogen content of 1.6%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1.
Example 16 A mixture of 1056 grams (2.0 equivalents) of the polyisobutenyl succinic anhydride of the preceding example (in which the polyisobutenyl group has a molecular weight of 850), 89 grams (2.0 equivalents) of di-(l,2-propylene) triamine (having a nitrogen content of 31.3%), 370 grams of mineral oil and 100 grams of toluene is heated at reflux temperature (180-190= C.) for 5 hours. A total of 18 grams of water is collected from the water-toluene azeotrope. The residue is heated to 150 C./20 mm. to remove any last traces of water which might have remained. The nitrogen analysis of this residue is 1.9%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from di-( 1,2-propylene triamine.
Example 17 A polyisobutylene having an average molecular weight of 50,000 is chlorinated to a chlorine content of by Weight. This chlorinated polyisobutylene is reacted with maleic anhydride to produce the corresponding polyisobutenyl succinic anhydride having an acid number of 24. To 6,000 grams (2.55 equivalents) of this anhydride there is added portionwise at 70-105 C. 108
grams (2.55 equivalents) of :Polyamine H over a period of 45 minutes. The resulting mixture is heated for four hours at 1'601'80 C. While nitrogen is bubbled throughout to remove water. When all of the Water has been removed the product is (filtered and the filtrate found to have a nitrogen content of 0.6%. The product is an oil solution of an acylated nitrogen composition containing an amide conforming to the structural formula shown in Example 1 except that R is derived from the ethylene amine mixture.
Example 18 A mixture of 1 equivalent of a polyisobutene-substituted succinic anhydride having an acid number of 98 (prepared according to the procedure described in Example 1) and 1 equivalent of an acrolein-ammonia (molar ratio of 1: 1) interpolymer having a nitrogen content of 23% by Weight is diluted with 40% by its Weight of a mineral oil. The resulting mixture is heated to 155 C. and nitrogen is bubbled through the mixture at this temperature for 5 hours. The residue is found to have a nitrogen content of 1.35%.
Example 19 A cyanoethyl-substituted ethylene amine is prepared by mixing 21-2 grams of acrylonitrile with 216 grams of an ethylene amine mixture consisting of 75% by weight of triethylene tetramine and 25% by weight of diethylene triamine at room temperature and heating the mixture at l'l-0130 C. for 5 hours and then to C./mm. To a mixture of 111110 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 825 grams of mineral oil there is added at 60 C. 143 grams dropwise of the above cyanoethyl-substituted ethylene amine (having a nitrogen content of 31.8%), The mixture is heated at C. C. for 5 hours while being purged with nitrogen. A total of 6 cc. of water is removed by distillation. The residue has a nitrogen content of 1.6 6%.
Example 20 To a mixture of 430 grams of the polyisobutenesubstituted succinic anhydride of Example 1 and 355 grams of mineral oil there is added at 60-80 C. 108 grams of N-aminopropyl morpholine throughout a period of 1 hour. The mixture is heated at 150-155 C. for 5 'hours until no more Water distills. The residue is found to have a nitrogen content of 2.3%.
Example 21 To a mixture of 1000 grams of the polyisobutenesubstituted succinic anhydride of Example 1 and 500 grams of mineral oil there is introduced at 150 1 60 C. beneath its surface a sufficient quantity of ammonia for formation of an imide within a period of 1 hour. The mixture is diluted with 169 grams of mineral oil, heated to 150 C. and filtered. The filtrate is found to have a nitrogen content of 0.77%.
Example 23 A mixture of 286 grams of polyisobutene-substituted succinic anhydride of Example 1, 96 grams of N, N-di- 'butyl ethylene-diamine and 252 grams of mineral oil is prepared at 60 C. and heated at 150-165 C. for 5 hours while being purged with nitrogen. The residue is found to have a nitrogen content of 2.24%.
15 Example 24 -A mixture of 417 grams of polyisobutene-substituted succinic anhydride of Example 1, 30 grams of N-(2- aminoethyl) trimethylene diamine and 293 grams of mineral oil is prepared at 6080 C. and then heated at 150155 C. -for hours while being purged with nitrogen. The residue is found to have a nitrogen content of 1.51%.
Example 25 A mixture of 430 grams of the polyisobutene-substituted succinic anhydride of Example 1, 64 grams of 1,l-(dimethylaminoethyl)-4-methyl-piperazine and 324 grams of mineral oil is prepared at 60 C. and then heated at 150-155 C. while being blown with nitrogen. The residue is found to have a nitrogen content of 1.81%.
Example 26 A mixture of 416 grams of polyisobutene-substituted succinic anhydride of Example 1, 124 grams of N-phenyl piperazine and 356 grams of mineral oil is prepared at 60 C. and then heated at l50-155 C. for 5 hours while being purged with nitrogen. No water is removed by such heating. The residue is found to have a nitrogen content of 2.07%.
Example 27 A mixture of 1110 grams of polyisobutene-substituted succinic anhydride of Example 1, 105 grams of anthranilic acid and 844 grams of mineral oil is heated at 100 C. for 2 hours. The mixture is cooled and is mixed with 72 grams of a mixture consisting of 75% by weight of triethylene tetramine and 25% by weight of diethylenetriamine at 6080 C. The resulting mixture is heated at 150-155 C. for 5 hours while being purged with nitrogen. The residue is found to have a nitrogen content of 1.72%.
Example 28 A diisobutenyl-substituted ethylene amine is prepared by reacting 590 grams of diisobutenyl chloride and 264 grams of a mixture consisting of 75 by weight of triethylene tetramine and 20% by weight of diethylene triamine in the presence of 264 grams of potassium hydroxide (85% purity) and 2200 grams of isopropyl alcohol at 85-90 C. A mixture of 528 grams of polyisobutene-substituted succinic anhydride of Example 1, 101 grams of the above diisobutenyl-substituted ethylene amine and 411 grams of mineral oil is heated at 150- 160 C. while being purged with nitrogen until no more water distills. The residue has a nitrogen content of 1.98%.
Example 29 A mixture of 45 grams of di-(polypropoxy)cocoamine having a molecular weight of 2265, 22 grams of polyisobutene-substituted succinic anhydride of Example 1 and 44 grams of mineral oil is heated at 150155 C. for 7 hours. The residue is found to have a nitrogen content of 0.25%.
Example 30 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 159 grams of menthane diamine and 500 grams of mineral oil is prepared at 70100 C.- and heated at 150-190 C. while being blown with nitrogen until no water distills. The residue is diluted with 258 grams of mineral oil and the solution is found to have a nitrogen content of 1.32%.
Example 31 A polypropylene-substituted succinic anhydride having an acid number of 84 is prepared by the reaction of a chlorinated polypropylene having a chlorine content of 3% and molecular weight of 1200 with maleic anhydride. A mixture of 813 grams of the polypropylene-substi- 16 tuted succinic anhydride, 50 grams of a commercial ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and 566 grams of mineral oil is heated at 150 C. for 5 hours. The residue is found to have a nitrogen content of 1.18%.
Example 32 A mixture of 206 grams of N,N'-disecondary-butyl p-phenylene diamine, 1000 grams of the polyisobutenesubstituted succinic anhydride of Example 1 and 500 grams of mineral oil is prepared at C. and heated at 150200 C. for 9.5 hours. The mixture is diluted with 290 grams of mineral oil, heated to 160 C. and filtered. The filtrate is found to have a nitrogen content of 1.29%.
Example 33 To 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 500 grams of mineral oil there is added 17.6 grams of hydrazine at 70-80 C. The reaction is exothermic. The mixture is heated at 140150 C. for 1 hour whereupon 9 grams of water is collected as the distillate. To the residue there is then added 40 grams of an ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine at 70-80 C. The mixture i then heated at 150160 C. while being purged with nitrogen until no more water is removed by distillation. The residue is diluted with 200 grams of mineral oil, heated to 160 C. and filtered. The filtrate has a nitrogen content of 1.16%.
Example 34 T o a solution of 1000 grams of the polyisobutene-substituted snccinic anhydride of Example 1 in 500 grams of mineral oil there is added 28 grams of 1,1-dimethyl hydrazine at 5060 C. The mixture is heated at 60- C. for 3 hours and then mixed with 40 grams of an ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine at 85- 95C. The mixture is then heated at 150-185 C. for 6 hours whereupon 14 grams of water is collected as the distillate. The residue is diluted with 197 grams of mineral oil, heated to 160 C. and filtered. The filtrate has a nitrogen content of 1.53%.
Example 35 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 333 grams of 1,2-di(3-aminopropoxy) ethane and 500 grams of mineral oil is heated at 170 C. for 5 hours whereupon 18 grams of Water is collected as the distillate. The residue is diluted with 380 grams of mineral oil, heated to 160 C. and filtered. The filtrate has a nitrogen content of 2.3%.
Example 36 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 418 grams of di- (3-aminopropoxy ethyl) ether and 500 grams of mineral oil is heated at 170 C. for 4 hours. A total of 17 grams of water is collected as the distillate. The residue is diluted with 433 grams of mineral oil heated to 160 C. and filtered. The filtrate has the nitrogen content of 2.18%.
Example 37 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 361 grams of a technical tertiary-alkyl primary amine wherein the tertiary-alkyl radical contains 12-14 carbon atoms and 500 grams of mineral oil is heated at 250 C. for 13 hours while being purged with nitrogen. The residue is then heated to 150 C./1 mm., diluted with 337 grams of mineral oil, heated to C. and filtered. The filtrate has a nitrogen content of 0.87%.
1 7 Example 38 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 254 grams of aminoguanidine bicarbonate and 500 grams of mineral oil is prepared at 80 C. and heated at 130-165 C. for hours. The residue is mixed with 223 grams of mineral oil, heated to 150 C., and filtered. The filtrate has the nitrogen content of 3.38%.
Example 39 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 178 grams of Z-amino-pyridine and 500 grams of mineral oil is heated at 140175 C. for 10 hours while being purged with nitrogen. A total of 16 grams of water is collected as the distillate. The residue is diluted with 273 grams of mineral oil and filtered. The filtrate ha a nitrogen content of 2.55%.
Example 40 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 103 grams of 2,6-diamino-pyridine and 500 grams of mineral oil is heated at 140-180 C. for 11 hours while being purged with nitrogen. A total of 16 grams of Water is collected as the distillate. The residue is diluted with 223 grams of mineral oil, heated to 150 C. and filtered. The filtrate has a nitrogen content of 2.15%.
Example 41 A mixture of 1000 grams of polyisobutene-substituted succinic anhydride of Example 1, 159 grams of cyanoguanidine and 233 grams of toluene is heated at the reflux temperature of 14 hours while 7.15 grams of water is removed by azeotropic distillation. The mixture is diluted With 740 grams of mineral oil and toluene is then removed by heating the mixture to 150 C. The residue is filtered and the filtrate has the nitrogen content of 4.74%.
Example 42 A mixture of 1632 grams of polyisobutene-substituted succinic anhydride of Example 1, 207 grams of a condensation product of acrolein with ammonia (molar ratio of 1:1) having a nitrogen content of 20%, 604 grams of mineral oil and 1750 grams of toluene is heated at the reflux temperature for 3 hours. A total of 31 grams of water is removed as the distillate. Toluene is then removed by heating the mixture to 150 C./ 20 mm. The residue is found to have a nitrogen content of 1.89%.
Example 43 I A nitrogen-containing compound is prepared by mixing 100 grams of cyanoguanidine with 500 grams of ethylene amine mixture having an average composition corresponding to that of tetraethylene pentamine and heating the mixture at 70-80 C. for 3 hours to obtain a homogeneous mass and filtering the mass. A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 96 grams of the above filtrate and 164 grams of toluene is heated at the reflux temperature for 10 hours. The toluene is then removed by heating the mixture to 150 C./2O mm. The residue is diluted with 400 grams of mineral oil and filtered. The filtrate has a nitrogen content of 3.43%.
Example 44 To a mixture of 544 .grams of the polyisobutene-substituted succinic anhydride of Example 1, 283 grams of mineral oil and 281 grams of toluene there is added 30 grams of urea at 45 C. The resulting mixture is heated at 130-135 C. for 11 hours whereupon 2.5 cc. of Water is removed as the distillate. The residue is then heated to 140 C./20 mm. and filtered. The filtrate has a nitrogen content of 1%.
18 Example 45 A mixture of 1088 grams of the polyisobutene-substituted succinic anhydride of Example 1, 106 grams of dipropylene triamine, 500 grams of toluene is heated at the reflux temperature for 4 hours until no more Water distills. The residue is then heated to C./20 mm. and diluted with 392 grams of mineral oil. The oil solution is found to have a nitrogen content of 1.74%.
Example 46 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 174 grams of phenylbiguanide and 270 grams of toluene is heated at the reflux temperature for 6.5 hours whereupon 25 grams of water is removed by distillation. The residue is diluted With 500 grams of mineral oil and heated to C./2O mm. to distill ofi toluene. The residue is diluted further with 265 grams of mineral oil, heated to 150 C. and filtered. The filtrate has a nitrogen content of 3.4%.
Example 47 A mixture of 920 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 249 grams of bis-(dimethylaminopropyl) amine is heated at reflux temperature until no more water distills. The residue has a nitrogen content of 4%.
Example 48 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, 363 grams of aminopropyl octadecylamine and 1314 grams of mineral oil is heated at 200 C. for 24 hours. The residue is filtered. The filtrate has a nitrogen content of 1.02%.
Example 49 A mixture of 1000 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 258 grams of di-n-butylamine is heated at C. for 12 hours and then to 200 C./ 25 mm. The residue is diluted with 1157 grams of mineral oil and filtered. The filtrate has a nitrogen content of 0.8%.
Example 50 A mixture of 297 grams of the polyisobutene-substituted succinic anhydride of Example 1, 25 grams of melamine and 200 grams of mineral oil is heated at -260 C. for 9 hours and then at 290295 C. for 7 more hours. The residue is mixed with 50 grams of water, heated at reflux for 7 hours, dried and filtered. The filtrate has a nitrogen content of 2%.
Example 51 A mixture of 100 grams of the polyisobutene-substituted anhydride of Example 1 and 67 grams of mineral oil is heated to 50 C. To this mixture there is added 59 grams of an 85% aqueous solution of hydrazine hydrate. The mixture is heated at 100110 C. for 1.25 hours, diluted with toluene, and heated at 107 C. until no more water distills. Toluene is removed by distillation. The residue has a nitrogen content of 0.8%.
Example 52 A mixture of 1.0 equivalent of a mono-carboxylic acid (prepared by chlorinating a polyisobutene having a molecular weight of 750 to a product having a chlorine content of 3.6% by weight, converting the product to the corresponding nitrile by reaction with an equivalent amount of potassium cyanide in the presence of a catalytic amount of cuprous cyanide and hydrolyzing the resulting nitrile by treatment with 50% excess of a dilute aqueous sulfuric acid at the reflux temperautre) and 0.5 equivalent of ethylene diamine is mixed with twice its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by distillation. The mixture is heated further and the xylene is 19 removed by distillation under reduced pressure. residue is the acylated nitrogen compound.
Example 53 A methyl ester of a high molecular weight mono-carboxylic acid is prepared by heating an equi-molar mixture of a chlorinated polyisobutene having a molecular weight of 1000 and a chlorine content of 4.7% by weight and methyl methacrylate at l40220 C. The resulting ester is then heated with a stoichiometrically equivalent amount of triethylene tetramine at 100200 C. to produce an acylated nitrogen compound of this invention.
Example 54 A dimethyl wax-substituted malonate is prepared by reacting dimethyl malonate with sodium ethoxide to form a sodium derivative of the ester, heating the sodium derivative with a brominated wax having 75 carbon atoms and 1 bromine atom per molecule. A mixture of 1.0 equivalent of the ester of 1.0 equivalent of N,N-dibuty1 thiourea is dissolved in five times its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by azeotropic distillation. The mixture is heated further and the xylene is removed by distillation. The residue is the acylated nitrogen compound.
The
Example 55 A high molecular weight mono-carboxylic acid is prepared by telomerizing ethylene with carbon tetrachloride to a telomer having an average of 35 ethylene radicals per molecule and hydrolyzing the telomer to the corresponding acid in accordance with the procedure described in British Patent No. 581,899. A mixture of 1.5 equivalent of the acid and 0.75 equivalent of amino-propy-l octylamine is mixed with twice its volume of a mineral oil and twice its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by azeotropic distillation. Xylene is then removed by distillation under reduced pressure and the residue is filtered.
Example 56 A mixture of 2000 grams of mineral oil, 3 equivalents of trimethylene diamine and 3 equivalents of a high molecular weight tricarboxylic acid prepared by the reaction of a brominated poly (l-hexene) having a molecular weight of 2000 and a bromine content of 4% by weight of 2-pentene-1,3,5-tricarboxylic acid (prepared by dehydration of citric acid) is heated at 150 C. for 20 hours. The residue is filtered to give a homogeneous mineral oil solution of the acylated nitrogen product.
Example 57 An equi-molar mixture of 2-aminoethyl morpholine and a mono-carboxylic acid (prepared by the reaction of ketene with a brominated poly(1-octene) having a molecular weight of 1500 and one atom of bromine per molecule) is diluted with three times its volume of xylene. The resulting mixture is heated at the reflux temperature until no more water is removed by distillation. The residue is an xylene solution of the :acylated nitrogen compound.
Example 58 A mixture of 1 equivalent of methane diamine and 1 equivalent of a high molecular glutaric acid-ester (prepared by the reaction of silver with an equi-molar mixture of beta-iodopropanoic acid and alpha-iodo derivative of the methyl ester of the mono-carboxylic acid of the preceding example) is diluted with an equal weight of a mineral oil and the resulting solution is heated at 180 C. until no more water distills. The residue is then filtered.
Example 59 An equi-molar mixture of a technical ethylene amine mixture having an average composition corresponding to A high molecular weight dicarboxylic acid is prepared by reacting two moles of the Omega-brorno derivative of the hexapentacontanoic acid of the preceding example with one mole of zinc. The dicarboxylic acid is then treated with 2 equivalents of ethylene diamine to produce a diamide.
Example 61 A mixture of 1 equivalent of 1-aminoethyl-2-octadecylimidazoline with 1 equivalent of the high molecular weight monocarboxylic acid of Example is mixed with twice its volume of diphenyl oxide. The resulting mixture is heated at the reflux temperature until no more water distills. The residue is then filtered.
Example 62 A product is obtained by the procedure described in the preceding example except that N,N'-di-n-butyl-p-phenylenediamine (1 equivalent) is used in lieu of the imidazoline used.
Example 63 To a solution of 1 equivalent of di-methyl ester of a polyethylene (molecular weight of 1500)-substituted malonic acid in 5000 grams of xylene, there is added 1 mole of melamine at C. The resulting mixture is heated at the reflux temperature for 25 hours. The residue is mixed with 2000 grams of mineral oil and xylene is removed by heating the oil solution to 180 C./2 mm.
Example 64 A product is obtained by the procedure of Example 1, except that pyrrolidine (1 equivalent) is used in lieu of the diethylene triamine used.
Example 65 A product is obtained by the procedure of Example 1, except that hexahydro-1,3,5-triazine (1 equivalent) is used in lieu of the diethylene triamine used.
Example 66 A product is obtained by the procedure of Example 1, except that 1,3,4-dithiazolidine (1 equivalent) is used in lieu of the ethylene diamine used.
Example 67 A product is obtained by the procedure of Example 1, except that hexamethylene tetramine (2 equivalents) is used in lieu of the ethylene diamine used.
Example 68 A product is obtained by the procedure of Example 1, except that tripentylene tetramine (3 equivalents) is used in lieu of the ethylene diamine used.
Example 69 An equi-molar mixture of the polyisobutene-substituted succinic anhydride of Example 1 and N-octyl thiourea is diluted with an equal volume of xylene. The resulting mixture is heated at the reflux temperature for 30 hours. The residue is a xylene solution of the product.
Example 70 A product is obtained by the procedure of Example 69 except that oleylamide is used in lieu of the thiourea used.
21 Example 71 A product is obtained by the procedure of Example 69 except that 1,3-diphenyl guanidine is used in lieu of the thiourea used.
Example 72 A product is obtained by the procedure of Example 69 except that octadecamidine is used in lieu of the thiourea used.
Example 73 A product is obtained by the procedure of Example 69 except that guanylurea is used in lieu of the thiourea used.
Example 74 To a mixture of 396 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 282 grams of mineral oil there was added 34 grams of N-methyltrimethylene diamine at 60 C. Within a period of one hour. The mixture was blown with nitrogen at 150- 155 C. for hours. The residue was found to have a nitrogen content of 1.41%.
Example 75 A mixture of 308 grams of mineral oil, 400 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 70 grams of N-(2-ethylhexyl)-trimethylene diamine was prepared at 60 C. The mixture was heated to 250 C. and was then blown with nitrogen at 150- 155 C. for 5 hours. The residue had a nitrogen content of 1.4%.
Example 76 A mixture of 386 grams of mineral oil, 528 grams of the polyisobutene-suostituted succinic anhydride of Example 1, and 59 grams of N-(2-hydroxyethyl)-trimethylenediamine was prepared at 60 C. The mixture was blown with nitrogen at 150-155 C. for 5 hours. The residue had a nitrogen content of 1.56%.
Example 77 A mixture of 185 grams of mineral oil, 330 grams of the polyisobutene-substituted succinic anhydride of Example 1, and 88.5 grams of 1,4-bis(2-hydroxypropyl)-2- methyl piperazine was prepared at 60 C. The mixture was heated at 180-276 C./40 mm. for 14.5 hours. The residue had a nitrogen content of 1.12%.
Example 78 To a mixture of 314 grams of mineral oil and 430 grams of of the polyisobutene-substituted succinic anhydride of Example 1 there was added at 60 C., 49 grams of 1-(2-hydroxyethyl)piperazine. The mixture was heated to 150 C. and blown with nitrogen at this temperature for 5 hours. The residue had a nitrogen content of 1.38%.
Example 79 A mixture of 382 grams of mineral oil, 528 grams of polyisobutene-substituted succinic anhydride of Example 1, and 53 grams of 1-methyl-4-(3-aminopropyl)piperazine was prepared at 60 C., heated to 150 C., and blown with nitrogen at 150155 C. for 5 hours. The residue had a nitrogen content of 1.57%.
Example 80 To a mixture of 800 grams of the polyisobutene-substituted succinic anhydride of Example 1 and 175 grams of toluene there was added 77 grams of a commercial mixture of alkylene amines and hydroxy alkyl-substituted alkylene amines consisting of approximately 2% (by weight) of diethylene triamine, 36% of 1-(2-aminoethyl)piperazine, 11% of 1-(Z-hydroxyethyl)piperazine, 11% of NlZ-hydroxyethyl)ethylenediamine, and 40% of higher homologues obtained as a result of condensation of the above-indicated amine components. The result- 22 ing mixture Was heated at the reflux temperature for 16.5 hours whereupon 12 cc. of water was collected as the distillate. The residue was then heated to 160 C./25 mm. and diluted with 570 grams of mineral oil. The final product was found to have a nitrogen content of 1.57%.
Example 81 A product is obtained by the procedure of Example 69 except that an equimolar mixture of ammonia and bis(2-hydroxyethyl)amine is used in lieu of the thiourea used.
Example 82 A product is obtained by the procedure of Example 69 except that an equimolar mixture of benzidine is is used in lieu of the thiourea used.
Example 83 An alkenyl succinic anhydride in which the alkenyl group has less than 50 carbon atoms is prepared from a polyisobutylene having an average molecular weight of 375. This polymer is chlorinated to a chlorine content of 9.7% and then reacted with maleic anhydride. The resulting polyisobutenyl succinic anhydride has an acid number of 190 and an equivalent weight of 300. The procedure of Example 1 is followed using 1.0 equivalent of this polyisobutenyl succinic anhydride and 1.0 equivalent of Polyamine H. The resulting product then is diluted with mineral oil to a 58% solution therein; the nitrogen content is 3.2%
Example 84 Another alkenyl succinic anhydride in which the alkenyl group has less than 50 carbons is prepared by alkylation of maleic anhydride with tetra-propylene. Equivalent amounts of this tetrapropenyl succinic anhydride and triethylene tetramine in toluene are heated at reflux temperature until substantially all of the water is removed. The toluene then is removed by heating at 155 C. under reduced pressure and the residue is dissolved in mineral oil to a 60% solution. This oil solution is found to have a nitrogen content of 4.8%.
Example 85 A polyisobutene having an average molecular weight of 520 corresponding to 37 carbon atoms) is chlorinated to a chlorine content of 6.25% and then is made to react with an equivalent amount of maleic anhydride to yield a polyisobutene-substituted succinic anhydride having a saponification of 152. To 552 grams (1.5 equivalents) of this anhydride dissolved in 276 grams of mineral oil there is added at 60 C. 63 grams (1.5 equivalents) of Polyamine H portionwise over a period of 1 hour. The resulting mixture is heated for 6 hours at 150 C. and then blown with nitrogen at this temperature for 1 hour. The residue is diluted with grams of mineral oil and the final oil solution is found to have a nitrogen content of 2.1%.
Example 86 A mixture of 1 equivalent of maleimide (i.e.,
and 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4.34% and a molecular weight of 350 is heated to C. in 2 hours and then blown with nitrogen at 150-204 C., cooled, diluted with benzene, mixed with a filter aid and filtered. The filtrate is heated to C./30 mm. to remove volatile materials. The residue is a polyisobutene-substituted succinimide having a nitrogen content of 1.44%. A mixture of this substituted succinimide (58.3 grams, 0.06 equivalent of nitrogen), tetraethylene pentamine (9.9 grams, 0.24 equivalent of nitrogen), and mineral oil (44.8 grams) is heated at 150-455 C. for 2.75 hours, cooled to room tem- 23 perature, diluted with benzene (500 grams), mixed with a filter aid and filtered. The filtrate is heated at 135 C./40 mm. to remove volatile materials. The residue is an oil solution of the desired acylated tetraethylene pentamine and has a nitrogen content of 2.94%.
Example 87 A mixture of 1 equivalent of N-butyl maleimide and 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4.33% and a molecular wieght of 850 is heated at 100 C".210 C. in nitrogen atmosphere and then heated at l03114 C./12l mm. The reaction mixture is then filtered and the filtrate is an N-butyl polyisobutene substituted succinimide having a nitrogen content of 1.23%. A mixture of this substituted N-butyl succinimide (177 grams, 0.156 equivalent of nitrogen) and tetraethylene pentamine (12.8 grams, 0.311 equivalent of nitrogen) is diluted with mineral oil (86 grams) and heated at 150158 C. in nitrogen atmosphere. The reaction mixture is diluted with mineral oil (41 grams) and filtered. The filtrate is blown with nitrogen at 190204 C. for 5 hours, heated at 140/1 mm. and again blown with nitrogen at 24025S C. for 5.9 hours. The mixture is filtered. The filtrate is an oil solution of an acylated polyamine and has a nitrogen content of 1.13
Example 88 A mixture of 1 equivalent of maleic anhydride and 2 equivalents of tetraethylene pentamine is heated at a temperature of 100-180 C. to form an intermediate product. The intermediate product is then mixed with 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4% and a molecular weight of 1500 at 150-2l0 C. The product is diluted with equal Weight of mineral oil and filtered. The filtrate is an oil solution of the acylated polyamine.
Example 89 The procedure of Example 88 is repeated except the chlorinated polyisobutene is replaced on a weight basis with a polyisobutene having a molecular weight of 2000.
Example 90 A polyisobutene having a molecular weight of 1000 (1000 grams) and maleic anhydride (100 grams), is heated at 150220 C. to form a polyisobutene-substituted maleic anhydride. The anhydride is then mixed with tetraethylene pentamine (1.5 equivalents per equivalent of anhydride) and the mixture is heated at 18020'0 C. to form an acylated polyamine.
Example 91 An acid producing compound is prepared by heating chloromaleic anhydride (1 equivalent) and 1 equivalent of a chlorinated polyisobutene having a chlorine content of 4% and a molecular weight of 2500 at 150200 C. The product of the reaction is then mixed with tetraethylene pentamine (2.5 equivalents) at 50 C. and the mixture is heated at 180-210 C. to form an acylated polyamine.
Example 92 A substituted monocarboxylic acid producing compound is obtained by reacting acrylic acid (1 equivalent) with a chlorinated polyisobutene (1 equivalent) having a chlorine content of 4.5% and a. molecular weight of 850 at 150200 C. The product of the reaction is then mixed with 1.25 equivalents of pentaethylene hexamine at 5075 C. and the resulting mixture is heated at 180-200 C. to form an acylated polyamine.
Example 93 The procedure of Example 92 is repeated except that the acrylic acid is replaced on a chemically equivalent basis with alpha-chloroacrylic acid and the pentaethylene hexamine is replaced on a nitrogen basis with ethylene diamine.
Example 94 The procedure of Example 91 is repeated except that the acid-producing compound used is one which is obtained by the reaction (Haloform reaction) of methyl heptapentacontanyl ketone with iodine, sodium hydroxide, and acidification of the haloform product.
Example 95 The procedure of Example 91 is repeated except that the acid-producing compound used is one which is obtained by the reaction of equivalent amounts of the chlorinated polyisobutene with methyl ester of N-butyl maleamic acid.
Example 96 The polyisobutene-substituted succinimide is obtained by reacting the polyisobutene-substituted succinic anhydride of Example 1 with ammonia (0.5 equivalent per equivalent of the anhydride). A mixture of the succinimide (1 equivalent of nitrogen) and tetraethylene penta mine (1 equivalent of nitrogen) is diluted with an equal weight of mineral oil and heated at 180 -250 C. to effect trans-amidation. The product is an acylated tetraethylene pentamine.
Example 97 The procedure of Example 96 is repeated except that the succinimide is N-methyl polyisobutene-substituted succinimide obtained by reacting the corresponding polyisobutene-substituted succinic anhydride with methylamine (0.5 equivalent per equivalent of the anhydride).
Example 98 The procedure of Example 96 is repeated except that the succinimide is N phenyl polyisobutene-substituted succinimide obtained by reacting the corresponding polyisobutene-substituted succinic anhydride with aniline (0.5 equivalent per equivalent of the anhydride).
Example 99 A polyisobutene-substituted succinamide is obtained by reacting 1 equivalent of the polyisobutene-substituted succinic anhydride of Example 1 with 1 equivalent of dimethylamine. The succinamide so obtained is then reacted with 2 equivalents of pentaethylene hexamine at 160-210 C. to effect trans-amidation and form an acylated polyamine.
Example 100 The procedure of Example 88 is repeated except that maleic anhydride used is replaced with itaconic acid on a stoichiometrically equivalent basis.
As indicated previously the acylated nitrogen-containing composition is usually present in lubricating oils in amounts ranging from about 0.1% to about 10% by weight. The optimum amounts for a particular application depend to a large measure upon the type of surface to which the lubricating composition is to be subjected. Thus, for example, lubricating compositions for use in gasoline internal combustion engines may contain from about 0.5 to about 5% of an acylated nitrogen-containing composition, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.
This invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, detergents of the ash-containing type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and oxidation and corrosion inhibiting agents.
The ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulf-onic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature above 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenylbeta-naphthylamine, and dodecylamine. A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60-200 C.
Extreme pressure agents and corrosion-inhibiting and oxidation-inhibiting agents are exemplified by chlorinated aliphatic hydrocarbons such as chlorinated wax; organic sulfides and polysulfides such as benzyl disulfide, bis- (chlorobenzyDdisulfide, dibutyl tetrasulfide, sulfurized sperm oil, sulfurized methyl ester of oleic acid, sulfurized alkyphenol, sulfurized dipentene, and sulfurized terpene; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpentine or methyl oleate; phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentyl phenyl phosphite, dipentyl phenyl phoshite, tridecyl phosphite, distearyl phosphite, dimethyl naphthyl phosphite, oleyl 4-pentylphenyl phosphite, polypropylene (molecular weight 500)-substituted phenyl phosphite, diisobutylsubstituted phenyl phosphite; metal thiocarbamates, such as Zinc dioctyl-dithiocarbamate, and barium heptylphenyl dithiocarbamate: Group 11 metal phosphorodithioates such as zinc dicyclohexylphosphorodithioate, zinc dioctylphosphorodithioate, barium di(heptylphenyl) phosphorodithioate, cadmium dinonylphosphorodithioate, and zinc salt of a phosphorodithioic acid produced by the reaction of phosphorus pentasulfide with an equimolar mixture of isopropyl alcohol and n-hexyl alcohol.
The lubricating compositions may also contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as of a metal detergent additive. They may also contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range of from about 0.1% to about 10%.
The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight) 26% Example A SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.
Example B SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
Example C SAE 10W-30 mineral lubricating oil containing 0.4% of the product of Example 7.
Example D SAE mineral lubricating oil containing 0.1% of the product of Example 7 and 0.15% of the zinc salt of an equimolar mixture of di-cylohexylphosphorodithioic acid and di-isobutyl phosphorodithioc acid.
Example E SAE 30 mineral lubricating oil containing 2% of the product of Example 3.
Example F SAE 20W-30 mineral lubricating oil containing 5% of the product of Example 14.
Example G SAE 10W-30 mineral lubricating oil containing 1.5% of the product of Example 25 and 0.05% of phosphorous as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of npentyl alcohol.
Example H SAE 50 mineral lubricating oil containing 3% of the product of Example 36 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
Example I SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 48, 0.06% of phosphorus as zinc di-n-octyl-phosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
Example I SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 60, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular weight of 60,000 with parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at C.
Example L SAE 10 mineral lubricating oil containing 2% of the product of Example 74, 0.075% of phosphorus as the adduct of zinc di-cyclohexylphosp-horodithioate treated with 0.3 mole of ethylene oxide, 2% of sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly-(alkyl methacrylate) viscosity index improver, 0.02% of a poly- (alkyl methacrylate) pour point depressant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.
27 Example M SAE 10 mineral lubricating oil containing 1.5% of the product of Example 51, 0.075 of phosphorus as the ad duct obtained by heating zinc di-nonylphosphordithioate with 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having .a sulfur content of 15%, 6% of a polybutene vicosity index improver, 0.005% of a poly-(alkyl methacrylate) anti-foam agent, and 0.5% of lard oil.
Example N SAE 20 mineral lubricating oil containing 1.5% of the product of Example 13, 0.5% of di-dodecyl phosphite, 2% of the sulfurized sperm oil having a sulfur content of 9%, a basic calcium detergent prepared by carbonating a mixture comprising mineral oil, calcium mahogany sulfonate and 6 moles of calcium hydroxide in the presence of an equi-molar mixture 10% of the mixture) of methyl alcohol and n-butyl alcohol as the promoter at the reflux temperature.
Example SAE 10 mineral lubricating oil containing 2% of the product of Example 7, 0.07% of phosphorus as zinc diocytlphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polypropylene (molecular weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (weight) of decyl-methacrylate and (weight) of diethylamino-ethylacrylate.
Example P SAE 80 mineral lubricating oil containing 2% of the product of Example 7, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, of a chlorinated parafiin wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amide, 0.03% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.
Example Q SAE 10 mineral lubricating oil containing 3% of the product of Example 16, 0.075% of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of water at 150 C.
Example R SAE 20 mineral lubricating oil containing 2% of the product of Example 17 and 0.07% of phosphorus as zinc di-n-octyl-phosphorodithioate.
Example S SAE 30 mineral lubricating oil containing 3% of the product of Example 48 and 0.1% of phosphorus as zinc di-(isobutyl-phenyl)-phosphorodithioate.
Example T SAE 50 mineral lubricating oil containing 2% of the product of Example 39.
Example U SAE 90 mineral lubricating oil containing 3% of the product of Example 20 and 0.2% of phosphorus as the reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.
The above lubricants are merely illustrative and the scope of invention includes the use of all of the additives previously illustrated as well as others within the broad concept of this invention described herein.
The utility of the dispersant additives of this invention is shown by the results of an evaluation of the crankcase lubricants used in taxicabs which had been operated for over 50,000 miles each. In this test ten 6-cylinder 1958 Chevrolet cars (with no oil filters) were operated as a fleet of taxicabs. In each case the crankcase lubricant was a solvent refined Mid-Continent petroleum oil having a viscosity of 185 SUS/ F. and a viscosity index of 112, and containing 5.9% by volume of a poly-alkylrnethacrylate viscosity index improver and 0.59% by volume of a zinc dialky'l phosphorodithioate (the alkyl groups being isobutyl and a mixture of primary amyl). Crankcase oil drains were taken from each car at oilchange intervals of about 3,000 miles of service and these drains combined. A 30-cc. sample of each of the combined drains was mixed with 1% by weight of the dispersant additive to be tested and 2% by weight of water. This mixture then was homogenized, placed in a 100-cc. graduated cone-shaped centrifuge tube and centrifuged for two hours at 1500 rpm. The various dispersants were evaluated by noting the volume of deposited sediment in terms of cubic centimeters and also the turbidity of the supernatant oil layer. It is apparent that the more effective dispersants will give test results which show a minimum of deposited sediment and a relatively hazy supernatant oil layer.
The clarity of the supernatant oil layer was determined by the amount of light transmitted through it from a 3-volt, 0.75 watt incandescent bulb.
The results of these tests are shown in Table I.
TAB LE I Centimeters of Sediment Turbidity of Oil Layer None Prior art Product of Example 83- Product of Example 5- Product of Example 3. Product of Example 1- Product of Example 2 Product of Example 6 Clear-translucent.
o. Opaque.
s q pppp CHI-c0030,
Do. Heavy haze. Do.
The dispersant properties of the compositions of this invention may be illustrated also by the results of an oxidation-dispersancy test which is useful as a screening test for determining the effectiveness of the dispersant additive under light-duty service conditions. In this test a 350-cc. sample of a lubricating oil containing the dispersant additive is placed in a 2 x 15" borosilicate tube. A 1%" x 5%" SAE 1020 steel panel is immersed in the oil. The sample then is heated at 300 F. for 48 hours while air is bubbled through the oil at the rate of 10 liters per hour. The oxidized sample is cooled to F., homogenized, allowed to stand at room temperature for 24 hours and then filtered through two layers of No. 1 Whatman filter paper at 20 mm. Hg pressure. The weight of the precipitate, washed with naphtha and dried, is taken as a measure of the effectiveness of the dispersant additive, i.e., the greater this weight of precipitate the less effective the dispersant.
Two modifications of the above procedure may be employed; both make the test more severe: one consists of extending the test from 48 hours to 96 hours, and the other involves adding 0.5 of water, based on the weight of the test sample, to the oxidized oil before homogenization.
The lubricating oil employed in this test (Table II) was a Mid-Continent conventionally refined petroleum oil having a viscosity of about 200 SUS/ 100 F., and
29 containing 0.001% by weight of iron naphthenate (to promote oxidation).
TAB LE II Oxidation-Dispersance Test Result, mg. of deposit 100 ml. of oil tested Additive Tested (1.5% by weight of diluentlree chemical) None .s 144 o- 275 (b) Dos l, 000 (a, b) Prior art product of Example 83- 738 Prior art product of Example 84- 1,060 (b) Prior art product of Example 85- Product of Example 1-. Product of Example 2.. Product of Example 3.- Product of Example 4..
Product of Example 10 Product of Example 11- Product of Example 12. Product of Example 13. Product of Example 14. Product of Example 14- Product of Example l4 Product of Example l5 Product of Example 16 Product of Example 38 Product of Example 38 Product of Example 4L Product of Example 4L Product of Example 40 Product of Example 40. Product of Example 35 Product of Example 47-.. Product of Example 44 Product of Example 49 Modification (a): 96 hours testing. Modification (b): 0.5% of water used in the test.
Further illustration of the usefulness of the products of this invention as dispersants in motor oils was gained from a modified version of the CRC-EX-3 Engine Test. This test is recognized in the field as an important test by which lubricants can be evaluated for use under light duty service conditions. In this particular test the lubricant is used in the crankcase of a 1954 6-cylinder Chevrolet Powerglide engine for 144 hours under recurring cycling conditions, each cycle consisting of:
2 hours at an engine speed of 500 :25 r.p.m. under zero load at an oil sump temperature of 100125 F.; air-fuel ratio of 10:1;
2 hours at an engine speed of 2500 :25 r.p.m. under a load of 40 brake-horsepower at an oil sump temperature of 160-l70 F.; air-fuel ratio of 16:1;
2 hours at an engine speed of 2500 :25 rpm. under a load of 40 brake-horsepower at an oil sump temperature of 240-250 F.; air-fuel ratio of 16:1.
After completion of the test, the engine is dismantled and various parts of the engine are examined for engine deposits. The lubricant dispersant addition agent is then rated according to 1) the extent of piston ring-filling, (2) the amount of sludge formed in the engine (on a scale of 80*0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), and (3) the total amount of engine deposits, i.e., sludge and varnish, formed in the engine (on a scale of 100-0, 100 being indicative of no deposits and 0 being indicative of extremely heavy deposits). The results are summarized in Table III.
TAB LE III 1 Ordinarily this test lasts for 96 hours.
What is claimed is:
1. A composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen compound characterized by the presence within its structure of (A) a substantially saturated hydrocarbonsubstituted polar group selected from the class consisting of acyl, acylimidoyl, and acyloXy radicals wherein the substantially saturated hydrocarbon substituent contains at least about 50 aliphatic carbon atoms and (B) a nitrogen-containing group characterized by a nitrogen atom attached directly to said polar radical.
2. The composition of claim 1 wherein the hydrocarbon substituent contains at least about 25 aliphatic carbon atoms per each polar radical.
3. The composition of claim 1 wherein the hydrocarbon substituent is a polymer of butene.
4. The composition of claim 1 wherein the hydrocarbon substituent is a polyisobutene having a molecular Weight within the range from about 700 to about 100,000.
5. The composition of claim 1 wherein the nitrogencontaining group has the formula wherein R and R are selected from the group consisting of hydrogen, hydrocarbon, amino-substituted hydrocarbon, hydroxy-substituted hydrocarbon, alkoxy-substituted hydrocarbon, amino, carbamyl, thiocaribamyl, guanyl, and acylimidoyl radicals.
6. A composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen compound characterized by the presence within its structure of (A) a substantially saturated hydrocarbonsubstituted succinic radical selected from the class consisting of succinoyl, succinoylimidoyl, and succinoyloxy radicals and having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent and (B) an amino group characterized by a nitrogen atom attached directly to said succinic radical.
7. A composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen compound characterized by the presence within its structure of (A) an olefin polymer-substituted succinic radical selected from the class consisting of succinoyl, succinimidoyl, and succinoyloxy radicals, said olefin polymer having a molecular weight within the range from about 700 to about 50,000 and being a polymer of a 1- mono-olefin having from 2, to about 8 aliphatic carbon atoms, and (B) a nitrogen-containing group characterized by at least one nitrogen atom attached directly to said succinic radical, said nitrogen-containing group being derived from an alkylene amine.
8. A composition comprising a major proportion of a lubricating oil and a minor proportion sufficient to impart detergency thereto of an oil-soluble acylated nitrogen-containing composition prepared by the process comprising rcacting at a temperature of from about C. and up to the decomposition point a high molecular weight acid-producing compound characterized by the presence within its structure of a high molecular weight oil-solubiliz'ing substantially saturated group having at least about 50 aliphatic carbon atoms and at least one acid-producing group having the structural configuration 2 moles, per equivalent of said acid producing compound, of a nitrogen-containing compound characterized by the 31 presence within its structure of at least one radical having the structural configuration 1I]' H 9. The composition of claim 8 wherein the high molecular weight acid-producing compound is selected from the group consisting of substituted succinic acids having the structural formula RC|1HCOOH CH2-COOH and substituted succinic anhydrides having the structural formula RCHCO o CHz-GO in which structural formulas R is a substantially saturated radical having at least about 50 aliphatic carbon atoms and a butene polymer group.
10. The composition of claim 8 wherein the nitrogencontaining compound is characterized by the structural formula RNH Iii!
in which structural formula R and R" are selected from the group consisting of hydrogen, hydrocarbon, amino-su'bstituted hydrocarbon, alkoxy-substitut ed hydrocarbon, amino, carbamyl, thiocarbamyl, guanyl, and acyl-imidoyl radicals.
11. The composition of claim 8 wherein the nitrogencontaining compound is a polyethylene polyamine.
12. A lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to impart detergency thereto, of an amide having the structural formula wherein x is at least 1, R is a substantially saturated hydrocarbon group having at least about 50 aliphatic carbon atoms and at least about 25 aliphatic carbon atoms for each unit of x, and NR' is selected from the class consisting of (A) radicals derived from an alkylene polyamine by the removal of a hydrogen atom from an amino group and (B) radicals derived from an alkylene polyamine by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substituent having the formula 13. A lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to impart detergency thereto, of an amide having the structural formula wherein x is at least 1, R is a substantially saturated hydrocarbon group having at least about 50 aliphatic carbon atoms and at least about 25 aliphatic carbon atoms for each unit of x, and NR is selected from the class consisting of (A) radicals derived from an ethylene polyamine by the removal of a hydrogen atom from an amino group and (B) radicals derived from an ethylene polyamine by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substituent having the formula 14. The lubricating composition of claim 12 wherein R of the structural formula is a polyisobutene group having a molecular weight of from about 750 to 5000, x is about 1, and NR' is derived from an ethylene polyamine having from 2 to 8 amino groups by the removal of a hydrogen atom from an amino group and characterized by the presence, on the nitrogen atom of at least one additional amino group, of a complex substitutent having the formula 15. The composition of claim 8 wherein the oil-soluble acylated nitrogen-containing composition is prepared by a process which comprises reacting at a temperature within the range of from about C. to about 250 C. a substantially saturated hydrocarbon substituted succinicacid-proclucing compound having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent with from about one-half equivalent to about 2 moles, per equivalent of said succinic-acidproducing compound, of an alkylene polyamine.
16. The composition of claim 8 wherein the oil-soluble acylated nitrogen-containing composition is prepared by a process which comprises reacting at a temperature within the range of from about 80 C. to about 250 C. a substantially saturated hydrocarbon substituted succinicacid-producing compound having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent with from about one-half equivalent to about 2 moles per equivalent of said succinic-acidproducing compound, of a polyethylene polyamine.
17. The composition of claim 8 wherein the oil-soluble acylated nitrogen-containing composition is prepared by a process which comprises reacting at a temperature within the range of from about 80 C. to about 250 C. a substantially saturated hydrocarbon substituted succinicacid-producing compound having at least about 50 aliphatic carbon atoms in the substantially saturated hydrocarbon substituent with from about one-half equivalent to about 2 moles, per equivalent of said succinic-acidproducing compound, of a hydroxyalkyl amine.
18. The composition of claim 1 wherein it contains additionally an ash-containing detergent.
References Cited by the Examiner UNITED STATES PATENTS 3,018,250 1/1962 Anderson et al 25251 3,024,195 3/ 1962 Drummond et al. 252-51.5 3,131,150 4/1964 Stuart et al. 252-51.5 X 3,154,560 10/1964 Osuch 252-51.5 X 3,172,892 3/1965 Le Suer et al 25251.5 X 3,219,666 11/1965 Norman et al 2525l.5 X
DANIEL E. WYMAN, Primary Examiner.
P. P. GARVIN, Assistant Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3 ,272 746 September 13 1966 William M. Le Suer et al.
It is hereby certified'that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 1, line 57, for "hours" read hour column 2, line 20, for "provide" read proved column 3, line 16, for "aldehydrp g read aldehydo column 4, lines 17 and I 2 18 for "R C read R C- column 5, line 9, for "High" read Higher line 14, for "Encycylopedia" read Encyclopedia column 10, lines 8 to 10, the right-hand formula should appear as shown below instead of as in the patent column 12 line 9 for "showin" read shown in line 13 for "polyisobuentyl" read polyisobutenyl column 13,
line 24, for "amine" read amide line 40, for "butylenyl" read butenyl column 14, line 31, for "125 C./mm."
read 125 C./30 mm. column 18, line 71, for "temperautre" read temperature column 22, line 45, for "corresponding" read (corresponding column 26, line 18, for "phosphorodithioc" read phosphorodithioic line 49, for "diosopropyl-" read di-isopropyl column 27, line 4, for "dinonylphosphordithioate" read dinonylphosphorodithioate line 24, for "octlphosphorodithioate" read octylphosphorodithioate line 43, for "0.03%" read 0.003%
Signed and sealed this 3rd day of September 1968.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. EDWARD J. BRENNER Attesting Officer Commissioner of Patents
Claims (2)
1. A COMPOSITION COMPRISING A MAJOR PROPORTION OF A LUBRICATING OIL AND A MINOR PROPORTION SUFFICIENT TO IMPART DETERGENCY THERETO OF AN OIL-SOLUBLE ACYLATED NITROGEN COMPOUND CHARACTERIZED BY THE PRESENCE WITHIN ITS STRUCTURE OF (A) A SUBSTANTIALLY STURATED HYDROCARBONSUBSTITUTED POLAR GROUP SELECTED FROM THE CLASS CONSISTING OF ACYL, ACYLIMIDOYL, AND ACYLOXY RADICALS WHEREIN THE SUBSTANTIALLY STURATED HYDROCARBON STBSTITUENT CONTAINS AT LEAST ABOUT 50 ALIPHATIC CARBON ATOMS AND (B) A NITRO-CONTTAINING GROUP CAHRACTERIZED BY A NITROGEN ATOM ATTACHED DIRECTLY TO SAID POLAR RADICAL.
5. THE COMPOSITION OF CLAIM 1 WHEREIN THE NITROGENCONTAINING GROUP HAS THE FORMULA
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US509172A US3272746A (en) | 1965-11-22 | 1965-11-22 | Lubricating composition containing an acylated nitrogen compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US509172A US3272746A (en) | 1965-11-22 | 1965-11-22 | Lubricating composition containing an acylated nitrogen compound |
Publications (1)
Publication Number | Publication Date |
---|---|
US3272746A true US3272746A (en) | 1966-09-13 |
Family
ID=24025602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US509172A Expired - Lifetime US3272746A (en) | 1965-11-22 | 1965-11-22 | Lubricating composition containing an acylated nitrogen compound |
Country Status (1)
Country | Link |
---|---|
US (1) | US3272746A (en) |
Cited By (571)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340281A (en) * | 1965-06-14 | 1967-09-05 | Standard Oil Co | Method for producing lubricating oil additives |
US3359204A (en) * | 1966-12-19 | 1967-12-19 | Ethyl Corp | Lubricating oil dispersant |
US3415750A (en) * | 1963-10-04 | 1968-12-10 | Monsanto Co | Imidazolines having polyalkenylsuccinimido-containing substituents |
US3438899A (en) * | 1968-02-23 | 1969-04-15 | Chevron Res | Alkenyl succinimide of tris (aminoalkyl) amine |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3445386A (en) * | 1967-01-13 | 1969-05-20 | Mobil Oil Corp | Detergent compositions |
US3448048A (en) * | 1967-01-23 | 1969-06-03 | Lubrizol Corp | Lubricant containing a high molecular weight acylated amine |
US3452002A (en) * | 1966-12-22 | 1969-06-24 | Exxon Research Engineering Co | Adducts of alkylene imines and carboxylic acids |
US3519565A (en) * | 1967-09-19 | 1970-07-07 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3522179A (en) * | 1963-04-23 | 1970-07-28 | Lubrizol Corp | Lubricating composition containing esters of hydrocarbon-substituted succinic acid |
US3793201A (en) * | 1970-12-28 | 1974-02-19 | Lubrizol Corp | Stabilized basic magnesium sulfonate compositions |
US3879306A (en) * | 1973-11-05 | 1975-04-22 | Texaco Inc | Automatic transmission fluid |
US3883320A (en) * | 1972-12-07 | 1975-05-13 | Standard Oil Co | Reducing deposits and smoke from jet fuels with additives incorporating an ammonium salt |
US3960889A (en) * | 1973-07-09 | 1976-06-01 | Texaco Inc. | Dehydrohalogenated polyalkene-maleic anhydride reaction product |
US4005021A (en) * | 1974-06-10 | 1977-01-25 | Standard Oil Company (Indiana) | Oil-soluble reaction products of (a) a high molecular weight olefin polymer, acrylonitrile, chlorine, an amine and maleic anhydride, with (g) an aliphatic amines; and lubricant compositions containing the same |
US4029148A (en) * | 1976-09-13 | 1977-06-14 | Atlantic Richfield Company | Well fracturing method |
US4081388A (en) * | 1975-04-18 | 1978-03-28 | Orogil | Compositions based on alkenylsuccinimides as additives for lubricating oils |
US4089794A (en) * | 1975-06-25 | 1978-05-16 | Exxon Research & Engineering Co. | Polymeric additives for fuels and lubricants |
US4138370A (en) * | 1976-04-26 | 1979-02-06 | Exxon Research & Engineering Co. | Multipurpose lubricating oil additive based on electrophilically terminated anion of oxidized ethylene copolymer |
US4151173A (en) * | 1971-05-17 | 1979-04-24 | The Lubrizol Corporation | Acylated polyoxyalkylene polyamines |
FR2404668A1 (en) * | 1977-10-03 | 1979-04-27 | Exxon Research Engineering Co | COMPOSITION OF LUBRICATING OIL ADDITIONED TO A POLYOL ESTER AND AN IMIDE |
US4153567A (en) * | 1977-11-10 | 1979-05-08 | Milliken Research Corporation | Additives for lubricants and fuels |
US4159956A (en) * | 1978-06-30 | 1979-07-03 | Chevron Research Company | Succinimide dispersant combination |
US4163644A (en) * | 1978-04-25 | 1979-08-07 | The Rolfite Company | Suspension of coal in fuel oils |
US4171273A (en) * | 1977-03-14 | 1979-10-16 | Texaco Inc. | Fatty alkyl succinate ester and succinimide modified copolymers of ethylene and an alpha olefin |
US4194985A (en) * | 1974-01-14 | 1980-03-25 | The Lubrizol Corporation | Polymeric compositions, method for their preparation, and lubricants containing them |
US4237022A (en) * | 1979-10-01 | 1980-12-02 | The Lubrizol Corporation | Tartarimides and lubricants and fuels containing the same |
US4239633A (en) * | 1979-06-04 | 1980-12-16 | Exxon Research & Engineering Co. | Molybdenum complexes of ashless polyol ester dispersants as friction-reducing antiwear additives for lubricating oils |
US4240803A (en) * | 1978-09-11 | 1980-12-23 | Mobil Oil Corporation | Fuel containing novel detergent |
US4248719A (en) * | 1979-08-24 | 1981-02-03 | Texaco Inc. | Quaternary ammonium salts and lubricating oil containing said salts as dispersants |
US4256595A (en) * | 1978-09-28 | 1981-03-17 | Texaco Inc. | Diesel lubricant composition containing 5-amino-triazole-succinic anhydride reaction product |
US4257779A (en) * | 1976-12-23 | 1981-03-24 | Texaco Inc. | Hydrocarbylsuccinic anhydride and aminotriazole reaction product additive for fuel and mineral oils |
US4263015A (en) * | 1976-12-23 | 1981-04-21 | Texaco Inc. | Rust inhibitor and oil composition containing same |
EP0031236A2 (en) * | 1979-12-20 | 1981-07-01 | The British Petroleum Company p.l.c. | Lubricant additives, their method of preparation and lubricants containing them |
US4326973A (en) * | 1981-01-13 | 1982-04-27 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4326972A (en) * | 1978-06-14 | 1982-04-27 | The Lubrizol Corporation | Concentrates, lubricant compositions and methods for improving fuel economy of internal combustion engine |
US4400282A (en) * | 1980-12-05 | 1983-08-23 | Gulf Research & Development Company | Lubricating oils containing quaternary ammonium thiomolybdates |
US4440658A (en) * | 1981-01-16 | 1984-04-03 | Mobil Oil Corporation | Anti-rust compositions |
US4440659A (en) * | 1982-02-19 | 1984-04-03 | Ethyl Corporation | Lubricating oil ashless dispersant and lubricating oils containing same |
US4491527A (en) * | 1982-04-26 | 1985-01-01 | The Lubrizol Corporation | Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants |
US4491455A (en) * | 1982-02-10 | 1985-01-01 | Nippon Oil And Fats Co., Ltd. | Method for improving cold flow of fuel oils |
US4505718A (en) * | 1981-01-22 | 1985-03-19 | The Lubrizol Corporation | Organo transition metal salt/ashless detergent-dispersant combinations |
US4559155A (en) * | 1982-08-09 | 1985-12-17 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4560490A (en) * | 1983-02-04 | 1985-12-24 | Institut Francais Du Petrole | Dispersing additive compositions for lubricating oils and their manufacture |
US4564460A (en) * | 1982-08-09 | 1986-01-14 | The Lubrizol Corporation | Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4575526A (en) * | 1982-08-09 | 1986-03-11 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same |
US4579674A (en) * | 1981-12-28 | 1986-04-01 | Texaco Inc. | Hydrocarbylsuccinimide of a secondary hydroxyl-substituted polyamine and lubricating oil containing same |
US4596663A (en) * | 1982-08-09 | 1986-06-24 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4613342A (en) * | 1982-08-09 | 1986-09-23 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4617137A (en) * | 1984-11-21 | 1986-10-14 | Chevron Research Company | Glycidol modified succinimides |
US4623684A (en) | 1982-08-09 | 1986-11-18 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4631070A (en) * | 1984-11-21 | 1986-12-23 | Chevron Research Company | Glycidol modified succinimides and fuel compositions containing the same |
US4637886A (en) * | 1982-12-27 | 1987-01-20 | Exxon Research & Engineering Co. | Macrocyclic polyamine and polycyclic polyamine multifunctional lubricating oil additives |
US4652273A (en) * | 1981-07-30 | 1987-03-24 | Institut Francais Du Petrole | Hydrocarbon middle distillates composition containing nitrogen-containing additives for decreasing its cloud point |
US4659338A (en) * | 1985-08-16 | 1987-04-21 | The Lubrizol Corporation | Fuel compositions for lessening valve seat recession |
WO1987003003A1 (en) | 1985-11-08 | 1987-05-21 | The Lubrizol Corporation | Fuel compositions |
US4695390A (en) * | 1985-01-04 | 1987-09-22 | The Lubrizol Corporation | Reaction product of polyalrylene-substituted polycarboxylic acid acylating agent, polyamine and sulfolene as a dispersant |
WO1988001272A2 (en) | 1986-08-14 | 1988-02-25 | The Lubrizol Corporation | Borated amine salts of monothiophosphoric acids |
US4744798A (en) * | 1982-09-30 | 1988-05-17 | Mobil Oil Corporation | Benzophenone derivatives as fuel additives |
US4804389A (en) * | 1985-08-16 | 1989-02-14 | The Lubrizol Corporation | Fuel products |
EP0310367A1 (en) * | 1987-09-30 | 1989-04-05 | Amoco Corporation | Medium speed diesel engine lubricating oils |
EP0310365A1 (en) * | 1987-09-30 | 1989-04-05 | Amoco Corporation | Engine seal compatible dispersant for lubricating oils |
US4820432A (en) * | 1987-07-24 | 1989-04-11 | Exxon Chemical Patents Inc. | Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions |
US4855074A (en) * | 1988-03-14 | 1989-08-08 | Ethyl Petroleum Additives, Inc. | Homogeneous additive concentrates and their formation |
US4863624A (en) * | 1987-09-09 | 1989-09-05 | Exxon Chemical Patents Inc. | Dispersant additives mixtures for oleaginous compositions |
US4866139A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterified dispersant additives useful in oleaginous compositions |
US4866141A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same |
US4866140A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4870197A (en) * | 1986-12-12 | 1989-09-26 | Exxon Chemical Patents Inc. | Method for preparing salts of polyolefinic substituted dicarboxylic acids |
EP0351964A1 (en) | 1988-06-24 | 1990-01-24 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
US4904401A (en) * | 1988-06-13 | 1990-02-27 | The Lubrizol Corporation | Lubricating oil compositions |
US4906394A (en) * | 1986-10-07 | 1990-03-06 | Exxon Chemical Patents Inc. | Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions |
US4938881A (en) * | 1988-08-01 | 1990-07-03 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US4943382A (en) * | 1988-04-06 | 1990-07-24 | Exxon Chemical Patents Inc. | Lactone modified dispersant additives useful in oleaginous compositions |
US4952328A (en) * | 1988-05-27 | 1990-08-28 | The Lubrizol Corporation | Lubricating oil compositions |
US4954276A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4954572A (en) * | 1988-11-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Dispersant additives prepared from monoepoxy alcohols |
US4954277A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same |
US4957649A (en) * | 1988-08-01 | 1990-09-18 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US4957645A (en) * | 1988-02-29 | 1990-09-18 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US4971711A (en) * | 1987-07-24 | 1990-11-20 | Exxon Chemical Patents, Inc. | Lactone-modified, mannich base dispersant additives useful in oleaginous compositions |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
US4981602A (en) * | 1988-06-13 | 1991-01-01 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US5024677A (en) * | 1990-06-11 | 1991-06-18 | Nalco Chemical Company | Corrosion inhibitor for alcohol and gasohol fuels |
US5026495A (en) * | 1987-11-19 | 1991-06-25 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5030369A (en) * | 1988-02-29 | 1991-07-09 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5032320A (en) * | 1986-10-07 | 1991-07-16 | Exxon Chemical Patents Inc. | Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions |
US5041622A (en) * | 1988-04-22 | 1991-08-20 | The Lubrizol Corporation | Three-step process for making substituted carboxylic acids and derivatives thereof |
US5053152A (en) * | 1985-03-14 | 1991-10-01 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US5053150A (en) * | 1988-02-29 | 1991-10-01 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US5057617A (en) * | 1988-11-07 | 1991-10-15 | Exxon Chemical Patents Inc. | Dispersant additives prepared from monoepoxy thiols |
US5080815A (en) * | 1987-09-30 | 1992-01-14 | Amoco Corporation | Method for preparing engine seal compatible dispersant for lubricating oils comprising reacting hydrocarbyl substituted discarboxylic compound with aminoguanirise or basic salt thereof |
US5085788A (en) * | 1987-11-19 | 1992-02-04 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5102566A (en) * | 1987-10-02 | 1992-04-07 | Exxon Chemical Patents Inc. | Low ash lubricant compositions for internal combustion engines (pt-727) |
US5141658A (en) * | 1986-11-07 | 1992-08-25 | Dibiase Stephen A | Lubricant composition comprising a sulfur additive and a borated dispersant |
US5141657A (en) * | 1987-10-02 | 1992-08-25 | Exxon Chemical Patents Inc. | Lubricant compositions for internal combustion engines |
US5147414A (en) * | 1989-08-03 | 1992-09-15 | Texaco Inc. | Process for producing ori control additives |
US5160350A (en) * | 1988-01-27 | 1992-11-03 | The Lubrizol Corporation | Fuel compositions |
US5164103A (en) * | 1988-03-14 | 1992-11-17 | Ethyl Petroleum Additives, Inc. | Preconditioned atf fluids and their preparation |
US5174915A (en) * | 1987-09-30 | 1992-12-29 | Ethyl Petroleum Additives, Inc. | Medium speed diesel engine lubricating oils |
US5182041A (en) * | 1989-05-01 | 1993-01-26 | Texaco Inc. | Dispersant - anti-oxidant additive and lubricating oil composition containing same |
US5198133A (en) * | 1988-03-14 | 1993-03-30 | Ethyl Petroleum Additives, Inc. | Modified succinimide or sucinamide dispersants and their production |
US5205947A (en) * | 1988-11-07 | 1993-04-27 | Exxon Chemical Patents Inc. | Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products |
US5217634A (en) * | 1988-02-29 | 1993-06-08 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US5221491A (en) * | 1991-08-09 | 1993-06-22 | Exxon Chemical Patents Inc. | Two-cycle oil additive |
US5232616A (en) * | 1990-08-21 | 1993-08-03 | Chevron Research And Technology Company | Lubricating compositions |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5256325A (en) * | 1988-02-29 | 1993-10-26 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US5275748A (en) * | 1988-02-29 | 1994-01-04 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US5292813A (en) * | 1992-10-02 | 1994-03-08 | Exxon Research & Engineering Co. | Fullerene-grafted polymers and processes of making |
US5292444A (en) * | 1992-10-02 | 1994-03-08 | Exxon Research And Engineering Company | Lube oil compositions containing fullerene-grafted polymers |
US5302304A (en) * | 1990-12-21 | 1994-04-12 | Ethyl Corporation | Silver protective lubricant composition |
US5304315A (en) * | 1992-04-15 | 1994-04-19 | Exxon Chemical Patents Inc. | Prevention of gel formation in two-cycle oils |
US5312554A (en) * | 1987-05-26 | 1994-05-17 | Exxon Chemical Patents Inc. | Process for preparing stable oleaginous compositions |
US5312555A (en) * | 1990-02-16 | 1994-05-17 | Ethyl Petroleum Additives, Inc. | Succinimides |
US5320765A (en) * | 1987-10-02 | 1994-06-14 | Exxon Chemical Patents Inc. | Low ash lubricant compositions for internal combustion engines |
US5330667A (en) * | 1992-04-15 | 1994-07-19 | Exxon Chemical Patents Inc. | Two-cycle oil additive |
US5334329A (en) * | 1988-10-07 | 1994-08-02 | The Lubrizol Corporation | Lubricant and functional fluid compositions exhibiting improved demulsibility |
EP0611818A1 (en) | 1990-07-31 | 1994-08-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same |
US5354484A (en) * | 1986-06-13 | 1994-10-11 | The Lubrizol Corporation | Phosphorus-containing lubricant and functional fluid compositions |
US5356552A (en) * | 1993-03-09 | 1994-10-18 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Chlorine-free lubricating oils having modified high molecular weight succinimides |
EP0629614A1 (en) * | 1993-05-27 | 1994-12-21 | Hoechst Aktiengesellschaft | Substituted succinimides |
WO1994029413A1 (en) * | 1993-06-16 | 1994-12-22 | Ethyl Corporation | Ashless dispersants, their preparation, and their use |
WO1995000607A1 (en) * | 1993-06-25 | 1995-01-05 | Ethyl Corporation | Fluoroelastomer-friendly crankcase and drivetrain lubricants and their use |
US5389273A (en) * | 1988-03-14 | 1995-02-14 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US5430105A (en) * | 1992-12-17 | 1995-07-04 | Exxon Chemical Patents Inc. | Low sediment process for forming borated dispersant |
US5439606A (en) * | 1988-03-14 | 1995-08-08 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US5439607A (en) * | 1993-12-30 | 1995-08-08 | Exxon Chemical Patents Inc. | Multifunctional viscosity index improver-dispersant antioxidant |
EP0683220A2 (en) | 1994-05-18 | 1995-11-22 | Ethyl Corporation | Lubricant additive compositions |
US5490945A (en) * | 1991-04-19 | 1996-02-13 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
EP0713907A2 (en) | 1994-09-26 | 1996-05-29 | Ethyl Petroleum Additives Limited | Zinc additives of enhanced performance capabilities |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US5554310A (en) * | 1992-12-17 | 1996-09-10 | Exxon Chemical Patents Inc. | Trisubstituted unsaturated polymers |
US5562864A (en) * | 1991-04-19 | 1996-10-08 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5614480A (en) * | 1991-04-19 | 1997-03-25 | The Lubrizol Corporation | Lubricating compositions and concentrates |
EP0776963A1 (en) | 1995-12-01 | 1997-06-04 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
EP0778333A2 (en) | 1995-11-09 | 1997-06-11 | The Lubrizol Corporation | Carboxylic compositions, derivatives, lubricants, fuels and concentrates |
EP0831104A2 (en) | 1996-08-20 | 1998-03-25 | Chevron Chemical Company | Novel dispersant terpolymers |
US5756428A (en) * | 1986-10-16 | 1998-05-26 | Exxon Chemical Patents Inc. | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous composition |
US5814111A (en) * | 1995-03-14 | 1998-09-29 | Shell Oil Company | Gasoline compositions |
JP2864146B2 (en) | 1989-04-21 | 1999-03-03 | アジップ・ペトローリ・エセ・ピ・ア | Manufacturing method of fuel or lubricating oil |
EP0921136A1 (en) * | 1997-12-03 | 1999-06-09 | The Lubrizol Corporation | Nitrogen containing dispersant-viscosity improvers |
US5955404A (en) * | 1991-04-17 | 1999-09-21 | Mobil Oil Corporation | Lubricant and fuel compositions containing an organo-substituted diphenyl sulfide |
US6051537A (en) * | 1985-07-11 | 2000-04-18 | Exxon Chemical Patents Inc | Dispersant additive mixtures for oleaginous compositions |
US6127321A (en) * | 1985-07-11 | 2000-10-03 | Exxon Chemical Patents Inc | Oil soluble dispersant additives useful in oleaginous compositions |
CN1064271C (en) * | 1995-12-28 | 2001-04-11 | 华南理工大学 | Surfactant for emulsified-liquid film and preparation method thereof |
US6294506B1 (en) | 1993-03-09 | 2001-09-25 | Chevron Chemical Company | Lubricating oils having carbonated sulfurized metal alkyl phenates and carbonated metal alkyl aryl sulfonates |
US6306802B1 (en) | 1994-09-30 | 2001-10-23 | Exxon Chemical Patents Inc. | Mixed antioxidant composition |
EP1188813A1 (en) * | 2000-09-19 | 2002-03-20 | Ethyl Corporation | Lubricants comprising friction modifiers |
US6376434B1 (en) * | 1996-10-29 | 2002-04-23 | Idemitsu Kosan Co., Ltd. | Lube oil compositions for diesel engines |
US6440905B1 (en) * | 2001-04-24 | 2002-08-27 | The Lubrizol Corporation | Surfactants and dispersants by in-line reaction |
US20020193650A1 (en) * | 2001-05-17 | 2002-12-19 | Goze Maria Caridad B. | Low noack volatility poly alpha-olefins |
US6617287B2 (en) | 2001-10-22 | 2003-09-09 | The Lubrizol Corporation | Manual transmission lubricants with improved synchromesh performance |
US20030173251A1 (en) * | 2000-12-22 | 2003-09-18 | Antonio Gutierrez | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
US20030172584A1 (en) * | 2002-03-13 | 2003-09-18 | Henly Timothy J. | Fuel lubricity additives derived from hydrocarbyl succinic anhydrides and hydroxy amines, and middle distillate fuels containing same |
US6624123B2 (en) * | 1997-04-11 | 2003-09-23 | Chevron Chemical S.A. | Use of surfactants with high molecular weight for improving the filterability in hydraulic lubricants |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
US6642191B2 (en) | 2001-11-29 | 2003-11-04 | Chevron Oronite Company Llc | Lubricating oil additive system particularly useful for natural gas fueled engines |
US20040033908A1 (en) * | 2002-08-16 | 2004-02-19 | Deckman Douglas E. | Functional fluid lubricant using low Noack volatility base stock fluids |
US6756348B2 (en) | 2001-11-29 | 2004-06-29 | Chevron Oronite Company Llc | Lubricating oil having enhanced resistance to oxidation, nitration and viscosity increase |
US20040147410A1 (en) * | 2003-01-15 | 2004-07-29 | Milner Jeffrey L | Extended drain, thermally stable, gear oil formulations |
US20040235682A1 (en) * | 2003-05-22 | 2004-11-25 | Chevron Oronite Company Llc | Low emission diesel lubricant with improved corrosion protection |
US6827750B2 (en) | 2001-08-24 | 2004-12-07 | Dober Chemical Corp | Controlled release additives in fuel systems |
US6835218B1 (en) | 2001-08-24 | 2004-12-28 | Dober Chemical Corp. | Fuel additive compositions |
EP1503316A1 (en) | 2003-07-30 | 2005-02-02 | Ethyl Petroleum Additives, Inc. | Fuel consumption economy credits method |
US6860241B2 (en) | 1999-06-16 | 2005-03-01 | Dober Chemical Corp. | Fuel filter including slow release additive |
EP1512736A1 (en) * | 2003-09-05 | 2005-03-09 | Infineum International Limited | Stabilised diesel fuel additive compositions |
US20050065043A1 (en) * | 2003-09-23 | 2005-03-24 | Henly Timothy J. | Power transmission fluids having extended durability |
US20050070445A1 (en) * | 2003-09-30 | 2005-03-31 | Nelson Kenneth D. | Stable colloidal suspensions and lubricating oil compositions containing same |
US20050101497A1 (en) * | 2003-11-12 | 2005-05-12 | Saathoff Lee D. | Compositions and methods for improved friction durability in power transmission fluids |
US20050101494A1 (en) * | 2003-11-10 | 2005-05-12 | Iyer Ramnath N. | Lubricant compositions for power transmitting fluids |
US20050181959A1 (en) * | 2004-02-17 | 2005-08-18 | Esche Carl K.Jr. | Lubricant and fuel additives derived from treated amines |
EP1568759A2 (en) | 2004-02-27 | 2005-08-31 | Afton Chemical Corporation | Power transmission fluids |
US20050202980A1 (en) * | 2004-03-10 | 2005-09-15 | Loper John T. | Novel additives for lubricants and fuels |
US20060025313A1 (en) * | 2004-07-29 | 2006-02-02 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
US7001531B2 (en) | 2001-08-24 | 2006-02-21 | Dober Chemical Corp. | Sustained release coolant additive composition |
US20060059770A1 (en) * | 2004-09-17 | 2006-03-23 | Sutkowski Andrew C | Fuel oils |
EP1640438A1 (en) | 2004-09-17 | 2006-03-29 | Infineum International Limited | Improvements in Fuel Oils |
US20060135375A1 (en) * | 2004-12-21 | 2006-06-22 | Chevron Oronite Company Llc | Anti-shudder additive composition and lubricating oil composition containing the same |
US20060264339A1 (en) * | 2005-05-19 | 2006-11-23 | Devlin Mark T | Power transmission fluids with enhanced lifetime characteristics |
US20070000745A1 (en) * | 2005-06-30 | 2007-01-04 | Cameron Timothy M | Methods for improved power transmission performance |
US20070004603A1 (en) * | 2005-06-30 | 2007-01-04 | Iyer Ramnath N | Methods for improved power transmission performance and compositions therefor |
US20070027267A1 (en) * | 2005-04-29 | 2007-02-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070042916A1 (en) * | 2005-06-30 | 2007-02-22 | Iyer Ramnath N | Methods for improved power transmission performance and compositions therefor |
US20070042917A1 (en) * | 2005-07-12 | 2007-02-22 | Ramanathan Ravichandran | Amine Tungstates and Lubricant Compositions |
EP1757673A1 (en) | 2005-08-23 | 2007-02-28 | Chevron Oronite Company LLC | Lubricating oil composition for internal combustion engines |
US20070049503A1 (en) * | 2005-08-31 | 2007-03-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070054813A1 (en) * | 2003-09-25 | 2007-03-08 | Chip Hewette | Boron free automotive gear oil |
US20070078066A1 (en) * | 2005-10-03 | 2007-04-05 | Milner Jeffrey L | Lubricant formulations containing extreme pressure agents |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
US20070123437A1 (en) * | 2005-11-30 | 2007-05-31 | Chevron Oronite Company Llc | Lubricating oil composition with improved emission compatibility |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
US20070149689A1 (en) * | 2005-12-28 | 2007-06-28 | Xiaorong Wang | Rubber composition having good wet-traction properties and a low aromatic-oil content |
US20070270317A1 (en) * | 2006-05-19 | 2007-11-22 | Milner Jeffrey L | Power Transmission Fluids |
US20080015124A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant composition |
WO2008013698A1 (en) | 2006-07-21 | 2008-01-31 | Exxonmobil Research And Engineering Company | Method for lubricating heavy duty geared apparatus |
EP1916293A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
EP1916292A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
US20080103236A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103074A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103076A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080113889A1 (en) * | 2006-10-27 | 2008-05-15 | Chevron Oronite Company Llc | lubricating oil additive composition and method of making the same |
US20080153972A1 (en) * | 2006-12-22 | 2008-06-26 | Xiaorong Wang | Reduced Oil Rubber Compositions Including N-Substituted Polyalkylene Succinimide Derivates and Methods For Preparing Such Compositions |
EP1942177A2 (en) | 2006-12-19 | 2008-07-09 | Chevron Oronite Company LLC | Lubricating oil providing enhanced piston cleanliness |
EP1947164A1 (en) | 2006-12-21 | 2008-07-23 | Chevron Oronite Technology B.V. | Engine lubricant with enhanced thermal stability |
EP1947161A1 (en) | 2006-12-13 | 2008-07-23 | Infineum International Limited | Fuel oil compositions |
US20080182768A1 (en) * | 2007-01-31 | 2008-07-31 | Devlin Cathy C | Lubricant composition for bio-diesel fuel engine applications |
EP1959003A2 (en) | 2007-02-08 | 2008-08-20 | Infineum International Limited | Soot dispersants and lubricating oil compositions containing same |
EP1970430A2 (en) | 2007-03-09 | 2008-09-17 | Afton Chemical Corporation | Fuel composition containing a hydrocarbyl-substituted succinimide |
US20080241095A1 (en) * | 2007-03-26 | 2008-10-02 | Syrinek Allen R | Antifoulant for hydrocarbon processing equipment |
US20080274921A1 (en) * | 2007-05-04 | 2008-11-06 | Ian Macpherson | Environmentally-Friendly Lubricant Compositions |
US20080289249A1 (en) * | 2007-05-22 | 2008-11-27 | Peter Wangqi Hou | Fuel additive to control deposit formation |
EP2000523A1 (en) | 2007-05-30 | 2008-12-10 | Chevron Oronite S.A. | Lubricating oil with enhanced protection against wear and corrosion |
WO2008154334A1 (en) | 2007-06-08 | 2008-12-18 | Infineum International Limited | Additives and lubricating oil compositions containing same |
EP2009082A2 (en) | 2007-06-20 | 2008-12-31 | Chevron Oronite Company LLC | Synergistic lubricating oil composition containing a mixture of a nitro-substituted diarylamine and a diarylamine |
US20090029888A1 (en) * | 2005-07-12 | 2009-01-29 | Ramanathan Ravichandran | Amine tungstates and lubricant compositions |
US20090031614A1 (en) * | 2007-08-01 | 2009-02-05 | Ian Macpherson | Environmentally-Friendly Fuel Compositions |
EP2025737A1 (en) | 2007-08-01 | 2009-02-18 | Afton Chemical Corporation | Environmentally-friendly fuel compositions |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
EP2042582A2 (en) | 2007-09-24 | 2009-04-01 | Afton Chemical Corporation | Surface passivation and to methods for the reduction of fuel thermal degradation deposits |
US20090093384A1 (en) * | 2007-10-03 | 2009-04-09 | The Lubrizol Corporation | Lubricants That Decrease Micropitting for Industrial Gears |
US20090156445A1 (en) * | 2007-12-13 | 2009-06-18 | Lam William Y | Lubricant composition suitable for engines fueled by alternate fuels |
EP2075264A1 (en) | 2007-12-26 | 2009-07-01 | Infineum International Limited | Method of forming polyalkene substituted carboxylic acid compositions |
EP2077315A1 (en) | 2007-12-20 | 2009-07-08 | Chevron Oronite Company LLC | Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant |
EP2078745A1 (en) | 2007-12-20 | 2009-07-15 | Chevron Oronite Company LLC | Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate |
EP2083024A1 (en) | 2008-01-24 | 2009-07-29 | Afton Chemical Corporation | Olefin copolymer dispersant VI improver and lubricant compositions and uses thereof |
EP2083063A1 (en) | 2008-01-22 | 2009-07-29 | Infineum International Limited | Lubricating oil composition |
EP2090642A1 (en) | 2008-02-08 | 2009-08-19 | Infineum International Limited | Engine lubrication |
US7581558B2 (en) | 2001-08-24 | 2009-09-01 | Cummins Filtration Ip Inc. | Controlled release of additives in fluid systems |
US20090233822A1 (en) * | 2008-03-11 | 2009-09-17 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
DE102009001301A1 (en) | 2008-03-11 | 2009-09-24 | Volkswagen Ag | Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication |
WO2009119831A1 (en) | 2008-03-28 | 2009-10-01 | 富士フイルム株式会社 | Composition and method for forming coating film |
DE102009012567A1 (en) | 2008-03-11 | 2009-10-01 | Afton Chemical Corp. | Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent |
EP2107102A2 (en) | 2008-04-04 | 2009-10-07 | Afton Chemical Corporation | A succinimide lubricity additive for diesel fuel |
US20090270531A1 (en) * | 2008-04-25 | 2009-10-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP2116590A1 (en) | 2005-02-18 | 2009-11-11 | Infineum International Limited | Soot dispersants and lubricating oil compositions containing same |
EP2133406A1 (en) * | 2008-06-09 | 2009-12-16 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition for internal combustion engine |
WO2010005947A2 (en) | 2008-07-11 | 2010-01-14 | Innospec Fuel Specialties, LLC | Fuel composition with enhanced low temperature properties |
DE202009013309U1 (en) | 2009-10-05 | 2010-03-04 | Afton Chemical Corp. | Fuel and fuel compositions |
JP2010047747A (en) * | 2008-07-22 | 2010-03-04 | Sanyo Chem Ind Ltd | Lubricant additive and lubricant composition |
US20100075876A1 (en) * | 2008-09-24 | 2010-03-25 | David John Claydon | Fuel compositions |
EP2169034A2 (en) | 2009-10-05 | 2010-03-31 | Afton Chemical Corporation | Fuel compositions |
US20100081588A1 (en) * | 2008-09-30 | 2010-04-01 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20100081594A1 (en) * | 2008-09-30 | 2010-04-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP2199377A1 (en) | 2008-12-22 | 2010-06-23 | Infineum International Limited | Additives for fuel oils |
US20100160193A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | Additive composition and method of making the same |
US20100160194A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | Post-treated additive composition and method of making the same |
US20100160192A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | lubricating oil additive composition and method of making the same |
US20100206260A1 (en) * | 2009-02-18 | 2010-08-19 | Chevron Oronite Company Llc | Method for preventing exhaust valve seat recession |
WO2010104738A1 (en) | 2009-03-12 | 2010-09-16 | Nalco Company | An improved process for reacting an a, b-unsaturated dicarboxylic acid compound with an ethylenically unsaturated hydrocarbon |
EP2236590A1 (en) | 2009-04-01 | 2010-10-06 | Infineum International Limited | Lubricating oil composition |
US20100258070A1 (en) * | 2007-09-27 | 2010-10-14 | Innospec Limited | Fuel compositions |
WO2010115594A1 (en) | 2009-04-07 | 2010-10-14 | Infineum International Limited | Marine engine lubrication |
US7833953B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant composition |
US20100293844A1 (en) * | 2007-09-27 | 2010-11-25 | Macmillan John Alexander | Additives for Diesel Engines |
US20100299992A1 (en) * | 2007-09-27 | 2010-12-02 | Jacqueline Reid | Fuel compositions |
WO2010136822A2 (en) | 2009-05-29 | 2010-12-02 | Innospec Limited | Method and use |
WO2010139994A1 (en) | 2009-06-01 | 2010-12-09 | Innospec Limited | Improvements in efficiency |
WO2010147993A1 (en) | 2009-06-16 | 2010-12-23 | Chevron Phillips Chemical Company Lp | Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends |
EP2272940A1 (en) | 2001-09-14 | 2011-01-12 | Afton Chemical Intangibles LLC | Fuels compositions for direct injection gasoline engines |
US7879775B2 (en) | 2006-07-14 | 2011-02-01 | Afton Chemical Corporation | Lubricant compositions |
US7883638B2 (en) | 2008-05-27 | 2011-02-08 | Dober Chemical Corporation | Controlled release cooling additive compositions |
US20110039994A1 (en) * | 2009-07-01 | 2011-02-17 | Xiaorong Wang | Multiple-Acid-Derived Metal Soaps Incorporated In Rubber Compositions And Method For Incorporating Such Soaps In Rubber Compositions |
EP2290041A2 (en) | 2009-08-24 | 2011-03-02 | Infineum International Limited | A lubricating oil composition |
EP2290040A1 (en) | 2009-07-31 | 2011-03-02 | Chevron Japan Ltd. | Friction modifier and transmission oil |
US20110060062A1 (en) * | 2009-09-10 | 2011-03-10 | Bridgestone Corporation | Compositions and method for making hollow nanoparticles from metal soaps |
EP2302020A1 (en) | 2007-07-28 | 2011-03-30 | Innospec Limited | Use of additives for improving oxidation stability of a fuel oil composition |
US20110098378A1 (en) * | 2008-06-26 | 2011-04-28 | Xiaorong Wang | Rubber compositions including metal-functionalized polyisobutylene derivatives and methods for preparing such compositions |
US20110105371A1 (en) * | 2009-11-05 | 2011-05-05 | Afton Chemical Corporation | Olefin copolymer vi improvers and lubricant compositions and uses thereof |
US7938277B2 (en) | 2001-08-24 | 2011-05-10 | Dober Chemical Corporation | Controlled release of microbiocides |
US20110118160A1 (en) * | 2009-11-18 | 2011-05-19 | Chevron Oronite Company Llc | Alkylated hydroxyaromatic compound substantially free of endocrine disruptive chemicals |
WO2011059626A1 (en) | 2009-11-10 | 2011-05-19 | The Lubrizol Corporation | Lubricant system clean-up compositions and methods thereof |
US20110143979A1 (en) * | 2009-12-15 | 2011-06-16 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20110143980A1 (en) * | 2009-12-15 | 2011-06-16 | Chevron Oronite Company Llc | Lubricating oil compositions containing titanium complexes |
EP2363444A1 (en) | 2006-06-15 | 2011-09-07 | Dow Global Technologies LLC | Functionalized olefin interpolymers, compositions and articles prepared therefrom, and methods for making the same |
WO2011110860A1 (en) | 2010-03-10 | 2011-09-15 | Innospec Limited | Fuel composition comprising detergent and quaternary ammonium salt additive |
EP2371933A1 (en) | 2006-02-06 | 2011-10-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
WO2011126641A2 (en) | 2010-03-31 | 2011-10-13 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
WO2011126642A2 (en) | 2010-03-31 | 2011-10-13 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
WO2011141731A1 (en) | 2010-05-10 | 2011-11-17 | Innospec Limited | Composition, method and use |
WO2011143051A1 (en) | 2010-05-12 | 2011-11-17 | The Lubrizol Corporation | Tartaric acid derivatives in hths fluids |
WO2011146289A1 (en) | 2010-05-18 | 2011-11-24 | The Lubrizol Corporation | Methods and compositions that provide detergency |
WO2011149799A1 (en) | 2010-05-25 | 2011-12-01 | The Lubrizol Corporation | Method to provide power gain in an engine |
WO2011159742A1 (en) | 2010-06-15 | 2011-12-22 | The Lubrizol Corporation | Methods of removing deposits in oil and gas applications |
EP2402421A2 (en) | 2010-06-29 | 2012-01-04 | Chevron Oronite Technology B.V. | Trunk Piston Engine Lubricating Oil Compositions |
WO2012033668A1 (en) | 2010-09-07 | 2012-03-15 | The Lubrizol Corporation | Hydroxychroman derivatives as engine oil antioxidants |
WO2012051075A2 (en) | 2010-10-12 | 2012-04-19 | Chevron Oronite Company Llc | Lubricating composition containing multifunctional borated hydroxylated amine salt of a hindered phenolic acid |
WO2012051064A2 (en) | 2010-10-12 | 2012-04-19 | Chevron Oronite Company Llc | Lubricating composition containing multifunctional hydroxylated amine salt of a hindered phenolic acid |
WO2012076896A1 (en) | 2010-12-09 | 2012-06-14 | Innospec Limited | Improvements in or relating to additives for fuels and lubricants |
WO2012084906A1 (en) | 2010-12-22 | 2012-06-28 | Rhodia Operations | Fuel additive composition containing a dispersion of iron particles and a detergent |
EP2479245A1 (en) | 2011-01-19 | 2012-07-25 | Afton Chemical Corporation | Fuel additives and gasoline containing the additives |
WO2012099736A2 (en) | 2011-01-21 | 2012-07-26 | Chevron Oronite Company Llc | Improved process for preparation of high molecular weight molybdenum succinimide complexes |
WO2012099734A2 (en) | 2011-01-21 | 2012-07-26 | Chevron Oronite Company Llc | Improved process for preparation of low molecular weight molybdenum succinimide complexes |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
WO2012162282A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012162027A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012162020A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing antioxidants |
WO2012162219A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012177529A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating compositions containing salts of hydrocarbyl substituted acylating agents |
WO2013003394A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyetheramines |
WO2013003405A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyalkylene glycol mono ethers |
WO2013003392A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
WO2013003406A1 (en) | 2011-06-29 | 2013-01-03 | Exxonmobil Research And Engineering Company | Low viscosity engine oil with superior engine wear protection |
WO2013043332A1 (en) | 2011-09-23 | 2013-03-28 | The Lubrizol Corporation | Quaternary ammonium salts in heating oils |
WO2013055480A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | Low viscosity engine oil compositions |
US8425772B2 (en) | 2006-12-12 | 2013-04-23 | Cummins Filtration Ip, Inc. | Filtration device with releasable additive |
WO2013066915A1 (en) | 2011-11-01 | 2013-05-10 | Exxonmobil Research And Engineering Company | Lubricants with improved low-temperature fuel economy |
WO2013074498A1 (en) | 2011-11-14 | 2013-05-23 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
EP2604676A1 (en) | 2011-12-16 | 2013-06-19 | Chevron Oronite Technology B.V. | Trunk piston engine lubricating oil compositions |
WO2013096532A1 (en) | 2011-12-22 | 2013-06-27 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2013123160A1 (en) | 2012-02-17 | 2013-08-22 | The Lubrizol Corporation | Mixtures of olefin-ester copolymer with polyolefin as viscosity modifier |
WO2013123102A2 (en) | 2012-02-17 | 2013-08-22 | The Lubrizol Corporation | Lubricating composition including esterified copolymer and low dispersant levels suitable for driveline applications |
EP2644684A1 (en) | 2009-02-25 | 2013-10-02 | Innospec Limited | Methods and uses relating to fuel compositions |
US8557752B2 (en) | 2005-03-23 | 2013-10-15 | Afton Chemical Corporation | Lubricating compositions |
US8586520B2 (en) | 2011-06-30 | 2013-11-19 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
US8591747B2 (en) | 2008-05-27 | 2013-11-26 | Dober Chemical Corp. | Devices and methods for controlled release of additive compositions |
WO2013181318A1 (en) | 2012-06-01 | 2013-12-05 | Exxonmobil Research And Engineering Company | Lubricant compostions and processes for preparing same |
WO2014008121A1 (en) | 2012-07-02 | 2014-01-09 | Exxonmobil Research And Engineering Company | Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets |
WO2014047017A1 (en) | 2012-09-24 | 2014-03-27 | The Lubrizol Corporation | Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer |
US8702995B2 (en) | 2008-05-27 | 2014-04-22 | Dober Chemical Corp. | Controlled release of microbiocides |
US8703680B2 (en) | 2010-11-24 | 2014-04-22 | Chevron Oronite Company Llc | Lubricating composition containing friction modifier blend |
US8702968B2 (en) | 2011-04-05 | 2014-04-22 | Chevron Oronite Technology B.V. | Low viscosity marine cylinder lubricating oil compositions |
WO2014066344A1 (en) | 2012-10-23 | 2014-05-01 | The Lubrizol Corporation | Diesel detergent without a low molecular weight penalty |
WO2014066444A1 (en) | 2012-10-24 | 2014-05-01 | Exxonmobil Research And Engineering Comapny | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
US8716202B2 (en) | 2010-12-14 | 2014-05-06 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
EP2727984A1 (en) | 2012-11-02 | 2014-05-07 | Infineum International Limited | Marine engine lubrication |
EP2735603A1 (en) | 2012-11-21 | 2014-05-28 | Infineum International Limited | Marine engine lubrication |
WO2014107315A1 (en) | 2013-01-04 | 2014-07-10 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
US8796192B2 (en) | 2010-10-29 | 2014-08-05 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
US8802755B2 (en) | 2011-01-18 | 2014-08-12 | Bridgestone Corporation | Rubber compositions including metal phosphate esters |
EP2765179A1 (en) | 2013-02-07 | 2014-08-13 | Infineum International Limited | Marine engine lubrication |
WO2014137800A1 (en) | 2013-03-07 | 2014-09-12 | The Lubrizol Corporation | Ion tolerant corrosion inhibitors and inhibitor combinations for fuels |
US8841243B2 (en) | 2010-03-31 | 2014-09-23 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
WO2014158533A1 (en) | 2013-03-14 | 2014-10-02 | Exxonmobil Research And Engineering Company | Lubricating composition providing high wear resistance |
WO2014193692A1 (en) | 2013-05-28 | 2014-12-04 | The Lubrizol Corporation | Asphaltene inhibition |
US8933002B2 (en) | 2011-11-10 | 2015-01-13 | Chevron Oronite Company Llc | Lubricating oil compositions |
US8933001B2 (en) | 2010-03-31 | 2015-01-13 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
US8969273B2 (en) | 2009-02-18 | 2015-03-03 | Chevron Oronite Company Llc | Lubricating oil compositions |
EP2851413A1 (en) | 2013-09-23 | 2015-03-25 | Chevron Japan Ltd. | Fuel economy engine oil composition |
EP2851412A1 (en) | 2013-09-24 | 2015-03-25 | Infineum International Limited | Marine engine lubrication |
US8993496B2 (en) | 2010-03-31 | 2015-03-31 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
WO2015050690A1 (en) | 2013-10-03 | 2015-04-09 | Exxonmobil Research And Engineering Company | Compositions with improved varnish control properties |
WO2015073296A2 (en) | 2013-11-18 | 2015-05-21 | Russo Joseph M | Mixed detergent composition for intake valve deposit control |
US9062271B2 (en) | 2013-10-30 | 2015-06-23 | Chevron Oronite Technology B.V. | Process for preparing an overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition |
WO2015095336A1 (en) | 2013-12-18 | 2015-06-25 | Chevron Phillips Chemical Company Lp | Method for making polyolefins using aluminum halide catalyzed oligomerization of olefins |
WO2015099907A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Low viscosity ester lubricant and method for using |
WO2015099820A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2015099819A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2015099821A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
US9090127B2 (en) | 2007-12-31 | 2015-07-28 | Bridgestone Corporation | Metal soaps incorporated in rubber compositions and method for incorporating such soaps in rubber compositions |
EP2913387A1 (en) | 2009-09-02 | 2015-09-02 | Chevron Oronite Company LLC | Natural gas engine lubricating oil compositions |
WO2015134129A2 (en) | 2014-03-05 | 2015-09-11 | The Lubrizol Corporation | Emulsifier components and methods of using the same |
US9149814B2 (en) | 2013-03-13 | 2015-10-06 | Ecolab Usa Inc. | Composition and method for improvement in froth flotation |
EP2940110A1 (en) | 2014-04-29 | 2015-11-04 | Infineum International Limited | Lubricating oil compositions |
WO2015171978A1 (en) | 2014-05-09 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition |
WO2015171980A1 (en) | 2014-05-09 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition |
WO2015171981A1 (en) | 2014-05-09 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition |
WO2015171292A1 (en) | 2014-05-08 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing engine knock and pre-ignition |
WO2015184301A2 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Coupled quaternary ammonium salts |
WO2015183455A1 (en) | 2014-05-29 | 2015-12-03 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
WO2015184247A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight imide containing quaternary ammonium salts |
WO2015184276A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Epoxide quaternized quaternary ammonium salts |
WO2015183916A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
WO2015184251A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Branched amine containing quaternary ammonium salts |
WO2015183908A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
WO2015184280A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Imidazole containing quaternary ammonium salts |
WO2015184254A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight amide/ester containing quaternary ammonium salts |
US9243199B2 (en) | 2007-09-27 | 2016-01-26 | Innospec Limited | Fuel compositions |
US9249091B2 (en) | 2011-12-27 | 2016-02-02 | Chevron Oronite Company Llc | Post-treated sulfurized salt of an alkyl-substituted hydroxyaromatic composition |
WO2016018462A1 (en) | 2014-07-31 | 2016-02-04 | Chevron U.S.A. Inc. | Sae 15w-30 lubricating oil composition having improved oxidative stability |
EP2998384A1 (en) | 2005-06-16 | 2016-03-23 | The Lubrizol Corporation | Diesel fuel composition comprising a quaternary ammonium salt detergent |
WO2016043944A1 (en) | 2014-09-17 | 2016-03-24 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
US9315752B2 (en) | 2007-09-27 | 2016-04-19 | Innospec Limited | Fuel compositions |
WO2016073149A1 (en) | 2014-11-03 | 2016-05-12 | Exxonmobil Research And Engineering Company | Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof |
EP3020790A1 (en) | 2014-11-14 | 2016-05-18 | Chevron Oronite Technology B.V. | Trunk piston engine oil composition for low sulfur marine distillate fueled engines |
EP3029133A1 (en) | 2014-12-04 | 2016-06-08 | Infineum International Limited | Marine engine lubrication |
WO2016106214A1 (en) | 2014-12-24 | 2016-06-30 | Exxonmobil Research And Engineering Company | Methods for determining condition and quality of petroleum products |
WO2016106211A1 (en) | 2014-12-24 | 2016-06-30 | Exxonmobil Research And Engineering Company | Methods for authentication and identification of petroleum products |
WO2016109322A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing encapsulated microscale particles |
WO2016109382A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
WO2016109376A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US9434906B2 (en) | 2013-03-25 | 2016-09-06 | Chevron Oronite Company, Llc | Marine diesel engine lubricating oil compositions |
WO2016140998A1 (en) | 2015-03-04 | 2016-09-09 | Huntsman Petrochemical Llc | Novel organic friction modifiers |
EP3072948A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil compositions for construction machines |
EP3072949A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil composition for construction machines |
US9481841B2 (en) | 2004-12-09 | 2016-11-01 | The Lubrizol Corporation | Process of preparation of an additive and its use |
US9506008B2 (en) | 2013-12-23 | 2016-11-29 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2016191409A1 (en) | 2015-05-28 | 2016-12-01 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
WO2016200606A1 (en) | 2015-06-09 | 2016-12-15 | Exxonmobil Research And Engineering Company | Inverse micellar compositions containing lubricant additives |
US9523057B2 (en) | 2011-02-22 | 2016-12-20 | Afton Chemical Corporation | Fuel additives to maintain optimum injector performance |
US9528071B2 (en) | 2015-02-13 | 2016-12-27 | Chevron Oronite Technology B.V. | Lubricating oil compositions with enhanced piston cleanliness |
US9528074B2 (en) | 2015-02-13 | 2016-12-27 | Chevron Oronite Technology B.V. | Lubricating oil compositions with enhanced piston cleanliness |
WO2017007670A1 (en) | 2015-07-07 | 2017-01-12 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
WO2017013257A1 (en) | 2015-07-22 | 2017-01-26 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
EP3127992A1 (en) | 2008-10-10 | 2017-02-08 | The Lubrizol Corporation | Additives to reduce metal pick-up in fuels |
EP3135750A1 (en) | 2015-08-26 | 2017-03-01 | Infineum International Limited | Lubricating oil compositions |
WO2017079123A1 (en) | 2015-11-02 | 2017-05-11 | Lubrizol Oilfield Solutions, Inc. | Lubricant for water based drilling fluid |
WO2017083042A1 (en) | 2015-11-09 | 2017-05-18 | The Lubrizol Corporation | Using quaternary amine additives to improve water separation |
US9670341B2 (en) | 2012-11-02 | 2017-06-06 | Bridgestone Corporation | Rubber compositions comprising metal carboxylates and processes for making the same |
WO2017096175A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails |
WO2017096159A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails |
WO2017117178A1 (en) | 2015-12-28 | 2017-07-06 | Exxonmobil Research And Engineering Company | Bright stock production from deasphalted oil |
US9732300B2 (en) | 2015-07-23 | 2017-08-15 | Chevron Phillipa Chemical Company LP | Liquid propylene oligomers and methods of making same |
WO2017146897A1 (en) | 2016-02-26 | 2017-08-31 | Exxonmobil Research And Engineering Company | Lubricant compositions containing controlled release additives |
WO2017146896A1 (en) | 2016-02-26 | 2017-08-31 | Exxonmobil Research And Engineering Company | Lubricant compositions containing controlled release additives |
WO2017172254A1 (en) | 2016-03-31 | 2017-10-05 | Exxonmobil Research And Engineering Company | Lubricant compositions |
WO2017223306A1 (en) | 2016-06-22 | 2017-12-28 | Lubrizol Oilfield Solutions, Inc. | Gas hydrate inhibitors |
WO2018013249A1 (en) | 2016-07-12 | 2018-01-18 | Chevron Phillips Chemical Company Lp | Decene oligomers |
WO2018013181A1 (en) | 2016-07-13 | 2018-01-18 | Chevron Oronite Company Llc | Synergistic lubricating oil composition containing mixture of antioxidants |
US9879202B2 (en) | 2014-12-04 | 2018-01-30 | Infineum International Limited | Marine engine lubrication |
US9885004B2 (en) | 2013-12-23 | 2018-02-06 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2018027227A1 (en) | 2016-08-05 | 2018-02-08 | Rutgers, The State University Of New Jersey | Thermocleavable friction modifiers and methods thereof |
WO2018026982A1 (en) | 2016-08-03 | 2018-02-08 | Exxonmobil Research And Engineering Company | Lubricating engine oil for improved wear protection and fuel efficiency |
WO2018039571A1 (en) | 2016-08-25 | 2018-03-01 | Evonik Degussa Gmbh | Amine alkenyl substituted succinimide reaction product fuel additives, compositions, and methods |
US9909079B2 (en) | 2013-10-18 | 2018-03-06 | Chevron Oronite Company Llc | Lubricating oil composition for protection of silver bearings in medium speed diesel engines |
WO2018041732A1 (en) | 2016-08-29 | 2018-03-08 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
WO2018048781A1 (en) | 2016-09-12 | 2018-03-15 | The Lubrizol Corporation | Total base number boosters for marine diesel engine lubricating compositions |
US9926509B2 (en) | 2015-01-19 | 2018-03-27 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection and solubility |
WO2018057377A1 (en) | 2016-09-20 | 2018-03-29 | Exxonmobil Research And Engineering Company | Non-newtonian engine oil with superior engine wear protection and fuel economy |
WO2018067905A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains |
WO2018067903A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains |
WO2018067902A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Lubricating oil compositions for electric vehicle powertrains |
WO2018069460A1 (en) | 2016-10-12 | 2018-04-19 | Chevron Oronite Technology B.V. | Marine diesel lubricant oil compositions |
WO2018073268A1 (en) | 2016-10-18 | 2018-04-26 | Chevron Oronite Technology B.V. | Marine diesel lubricant oil compositions |
WO2018075147A1 (en) | 2016-10-17 | 2018-04-26 | The Lubrizol Corporation | Acid emulsifier technology for continuous mixed emulsified acid systems |
WO2018077621A1 (en) | 2016-10-25 | 2018-05-03 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a dispersant |
WO2018101282A1 (en) | 2016-11-30 | 2018-06-07 | Chevron Japan Ltd. | Lubricating oil compositions for motorcycles |
EP3339404A1 (en) | 2006-07-18 | 2018-06-27 | Infineum International Limited | Lubricating oil compositions |
WO2018118477A1 (en) | 2016-12-19 | 2018-06-28 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines |
WO2018125956A1 (en) | 2016-12-30 | 2018-07-05 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oil compositions for turbomachines |
WO2018144167A1 (en) | 2017-02-01 | 2018-08-09 | Exxonmobil Research And Engineering Company | Lubricating engine oil and method for improving engine fuel efficiency |
WO2018156304A1 (en) | 2017-02-21 | 2018-08-30 | Exxonmobil Research And Engineering Company | Lubricating oil compositions and methods of use thereof |
EP3369802A1 (en) | 2017-03-01 | 2018-09-05 | Infineum International Limited | Improvements in and relating to lubricating compositions |
EP3375848A1 (en) | 2017-03-13 | 2018-09-19 | Afton Chemical Corporation | Polyol carrier fluids and fuel compositions including polyol carrier fluids |
WO2018170110A1 (en) | 2017-03-16 | 2018-09-20 | Chevron Phillips Chemical Company Lp | Lubricant compositions containing hexene-based oligomers |
WO2018175830A1 (en) | 2017-03-24 | 2018-09-27 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency and energy efficiency |
EP3381998A1 (en) | 2009-05-15 | 2018-10-03 | The Lubrizol Corporation | Quaternary ammonium ester salts |
WO2018197312A1 (en) | 2017-04-27 | 2018-11-01 | Shell Internationale Research Maatschappij B.V. | Lubricating composition |
WO2018211466A1 (en) | 2017-05-19 | 2018-11-22 | Chevron Oronite Company Llc | Dispersants, method of making, and using same |
US10138438B2 (en) | 2015-02-18 | 2018-11-27 | Chevron Oronite Technology B.V. | Low sulfur marine distillate fuel trunk piston engine oil composition |
EP3421576A1 (en) | 2017-06-30 | 2019-01-02 | Infineum International Limited | Refinery antifoulant process |
WO2019003176A1 (en) | 2017-06-30 | 2019-01-03 | Chevron Oronite Company Llc | Lubricating oil magnesium detergents and method of making and using same |
WO2019003177A1 (en) | 2017-06-30 | 2019-01-03 | Chevron Oronite Company Llc | Lubricating engine oil compositions containing detergent compounds |
WO2019012447A1 (en) | 2017-07-14 | 2019-01-17 | Chevron Oronite Company Llc | Lubricating oil compositions containing zirconium and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
WO2019014092A1 (en) | 2017-07-13 | 2019-01-17 | Exxonmobil Research And Engineering Company | Continuous process for the manufacture of grease |
WO2019012450A1 (en) | 2017-07-14 | 2019-01-17 | Chevron Oronite Company Llc | Lubricating oil compositions containing non-sulfur-phosphorus containing zinc compounds and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
WO2019018145A1 (en) | 2017-07-21 | 2019-01-24 | Exxonmobil Research And Engineering Company | Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil |
US10190072B2 (en) | 2013-12-23 | 2019-01-29 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2019028310A1 (en) | 2017-08-04 | 2019-02-07 | Exxonmobil Research And Engineering Company | Novel formulation for lubrication of hyper compressors providing improved pumpability under high-pressure conditions |
WO2019055291A1 (en) | 2017-09-18 | 2019-03-21 | Exxonmobil Research And Engineering Company | Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability |
WO2019053635A1 (en) | 2017-09-13 | 2019-03-21 | Chevron U.S.A. Inc. | Method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines with cobalt-containing lubricant |
WO2019060144A1 (en) | 2017-09-22 | 2019-03-28 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with viscosity and deposit control |
EP3461877A1 (en) | 2017-09-27 | 2019-04-03 | Infineum International Limited | Improvements in and relating to lubricating compositions |
WO2019069197A1 (en) | 2017-10-06 | 2019-04-11 | Chevron Japan Ltd. | Passenger car lubricating oil compositions for fuel economy |
WO2019077462A1 (en) | 2017-10-20 | 2019-04-25 | Chevron Japan Ltd. | Low viscosity lubricating oil composition |
WO2019089177A1 (en) | 2017-10-30 | 2019-05-09 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
WO2019090038A1 (en) | 2017-11-03 | 2019-05-09 | Exxonmobil Research And Engineering Company | Lubricant compositions with improved performance and methods of preparing and using the same |
WO2019094019A1 (en) | 2017-11-09 | 2019-05-16 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness |
WO2019103808A1 (en) | 2017-11-22 | 2019-05-31 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with oxidative stability in diesel engines |
US10308593B2 (en) | 2009-03-18 | 2019-06-04 | Infineum International Limited | Additives for fuel oils |
WO2019108723A1 (en) | 2017-11-30 | 2019-06-06 | The Lubrizol Corporation | Hindered amine terminated succinimide dispersants and lubricating compositions containing same |
US10316712B2 (en) | 2015-12-18 | 2019-06-11 | Exxonmobil Research And Engineering Company | Lubricant compositions for surface finishing of materials |
EP3495462A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
WO2019112711A1 (en) | 2017-12-04 | 2019-06-13 | Exxonmobil Research And Enginerring Company | Method for preventing or reducing low speed pre-ignition |
WO2019118115A1 (en) | 2017-12-15 | 2019-06-20 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing microencapsulated additives |
WO2019133409A1 (en) | 2017-12-28 | 2019-07-04 | Exxonmobil Research And Engineering Company | Friction and wear reduction using liquid crystal base stocks |
WO2019133255A1 (en) | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same |
WO2019133218A1 (en) | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with wear and sludge control |
WO2019133191A1 (en) | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Lubrication of oxygenated diamond-like carbon surfaces |
WO2019142059A1 (en) | 2018-01-19 | 2019-07-25 | Chevron Oronite Company Llc | Ultra low ash lubricating oil compositions |
US10364403B2 (en) | 2013-11-06 | 2019-07-30 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US10364404B2 (en) | 2014-12-04 | 2019-07-30 | Infineum International Limited | Marine engine lubrication |
WO2019162744A1 (en) | 2018-02-22 | 2019-08-29 | Chevron Japan Ltd. | Lubricating oils for automatic transmissions |
WO2019166977A1 (en) | 2018-03-02 | 2019-09-06 | Chevron Oronite Technology B.V. | Lubricating oil composition providing wear protection at low viscosity |
US10435491B2 (en) | 2015-08-19 | 2019-10-08 | Chevron Phillips Chemical Company Lp | Method for making polyalphaolefins using ionic liquid catalyzed oligomerization of olefins |
US10450525B2 (en) | 2014-08-27 | 2019-10-22 | Chevron Oronite Company Llc | Process for alaknolamide synthesis |
US10457887B2 (en) | 2015-05-19 | 2019-10-29 | Chevron Oronite Technology B.V. | Trunk piston engine oil composition |
WO2019217058A1 (en) | 2018-05-11 | 2019-11-14 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2019224647A1 (en) | 2018-05-25 | 2019-11-28 | Chevron U.S.A. Inc. | Method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines with manganese-containing lubricant |
US10494579B2 (en) | 2016-04-26 | 2019-12-03 | Exxonmobil Research And Engineering Company | Naphthene-containing distillate stream compositions and uses thereof |
WO2019240965A1 (en) | 2018-06-11 | 2019-12-19 | Exxonmobil Research And Engineering Company | Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same |
WO2019244020A1 (en) | 2018-06-22 | 2019-12-26 | Chevron Oronite Company Llc | Lubricating oil compositions |
US10519394B2 (en) | 2014-05-09 | 2019-12-31 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness |
EP1871861B1 (en) | 2005-04-08 | 2020-01-15 | The Lubrizol Corporation | Additive system for lubricants |
WO2020023437A1 (en) | 2018-07-24 | 2020-01-30 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine corrosion protection |
WO2020023430A1 (en) | 2018-07-23 | 2020-01-30 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel |
US10550341B2 (en) | 2015-12-28 | 2020-02-04 | Exxonmobil Research And Engineering Company | Sequential deasphalting for base stock production |
US10550335B2 (en) | 2015-12-28 | 2020-02-04 | Exxonmobil Research And Engineering Company | Fluxed deasphalter rock fuel oil blend component oils |
EP3604484A1 (en) | 2018-08-03 | 2020-02-05 | Afton Chemical Corporation | Lubricity additives for fuels |
WO2020068439A1 (en) | 2018-09-27 | 2020-04-02 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oils with improved oxidative stability and traction performance |
US10647936B2 (en) | 2016-12-30 | 2020-05-12 | Exxonmobil Research And Engineering Company | Method for improving lubricant antifoaming performance and filterability |
WO2020096804A1 (en) | 2018-11-05 | 2020-05-14 | Exxonmobil Research And Engineering Company | Lubricating oil compositions having improved cleanliness and wear performance |
WO2020100045A1 (en) | 2018-11-16 | 2020-05-22 | Chevron Japan Ltd. | Low viscosity lubricating oil compositions |
US10669506B2 (en) | 2013-11-06 | 2020-06-02 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
WO2020112338A1 (en) | 2018-11-28 | 2020-06-04 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with improved deposit resistance and methods thereof |
WO2020123440A1 (en) | 2018-12-10 | 2020-06-18 | Exxonmobil Research And Engineering Company | Method for improving oxidation and deposit resistance of lubricating oils |
US10689593B2 (en) | 2014-08-15 | 2020-06-23 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oil compositions for turbomachines |
WO2020131439A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers |
WO2020131515A2 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Lubricant compositions with improved wear control |
WO2020131441A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having improved performance |
WO2020132164A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with viscosity control |
WO2020131310A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Method for improving high temperature antifoaming performance of a lubricating oil |
WO2020132166A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with antioxidant formation and dissipation control |
WO2020131440A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having calcium sulfonate and polyurea thickeners |
WO2020139333A1 (en) | 2018-12-26 | 2020-07-02 | Exxonmobil Research And Engineering Company | Formulation approach to extend the high temperature performance of lithium complex greases |
US10712105B1 (en) | 2019-06-19 | 2020-07-14 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
EP3680312A1 (en) | 2019-01-11 | 2020-07-15 | Afton Chemical Corporation | Oxazoline modified dispersants |
WO2020150123A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
WO2020176171A1 (en) | 2019-02-28 | 2020-09-03 | Exxonmobil Research And Engineering Company | Low viscosity gear oil compositions for electric and hybrid vehicles |
US10781394B2 (en) | 2016-10-25 | 2020-09-22 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a Mannich condensation product |
US10781397B2 (en) | 2014-12-30 | 2020-09-22 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US10793801B2 (en) | 2017-02-06 | 2020-10-06 | Exxonmobil Chemical Patents Inc. | Low transition temperature mixtures and lubricating oils containing the same |
US10808196B2 (en) | 2017-03-28 | 2020-10-20 | Exxonmobil Chemical Patents Inc. | Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same |
US10858610B2 (en) | 2017-03-24 | 2020-12-08 | Exxonmobil Chemical Patents Inc. | Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same |
WO2020257377A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257371A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257375A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257373A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257376A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257379A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257374A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257370A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257378A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
US10876062B2 (en) | 2017-03-24 | 2020-12-29 | Exxonmobil Chemical Patents Inc. | Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same |
WO2020264534A2 (en) | 2019-06-27 | 2020-12-30 | Exxonmobil Research And Engineering Company | Method for reducing solubilized copper levels in wind turbine gear oils |
EP3760696A1 (en) | 2018-12-20 | 2021-01-06 | Infineum International Limited | Oil anti-foulant and/or asphaltene agglomeration process |
EP3778841A1 (en) | 2019-08-15 | 2021-02-17 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
US11015137B2 (en) | 2017-03-30 | 2021-05-25 | Innospec Limited | Composition, method and use |
EP3835392A1 (en) | 2018-12-20 | 2021-06-16 | Infineum International Limited | Hydrocarbon marine fuel oil |
WO2021154497A1 (en) | 2020-01-30 | 2021-08-05 | Exxonmobil Research And Engineering Company | Sulfur-free, ashless, low phosphorus lubricant compositions with improved oxidation stability |
WO2021181286A1 (en) | 2020-03-11 | 2021-09-16 | Chevron Oronite Company Llc | Lubricating oil compositions with improved oxidative performance comprising alkylated diphenylamine antioxidant and sulfonate detergents |
WO2021181285A1 (en) | 2020-03-11 | 2021-09-16 | Chevron Oronite Company Llc | Lubricating oil compositions with improved oxidative performance comprising alkylated diphenylamine antioxidant and carboxylate detergents |
WO2021194813A1 (en) | 2020-03-27 | 2021-09-30 | Exxonmobil Research And Engineering Company | Monitoring health of heat transfer fluids for electric systems |
US11174442B2 (en) | 2017-03-30 | 2021-11-16 | Innospec Limited | Fuel compositions, methods and uses relating to quaternary ammonium salt additives for fuel used in spark ignition engines |
WO2021229517A1 (en) | 2020-05-14 | 2021-11-18 | Chevron Japan Ltd. | Lubricating oil composition including comb polymethacrylate and ethylene-based olefin copolymer viscosity modifiers |
US11186791B2 (en) | 2017-03-30 | 2021-11-30 | Innospec Limited | Composition, method and use |
WO2022010606A1 (en) | 2020-07-09 | 2022-01-13 | Exxonmobil Research And Engineering Company | Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection |
WO2022018682A1 (en) | 2020-07-23 | 2022-01-27 | Chevron Oronite Company Llc | Succinimide dispersants post-treated with heteroaromatic glycidyl ethers that exhibit good soot handling performance |
WO2022018681A1 (en) | 2020-07-23 | 2022-01-27 | Chevron Oronite Company Llc | Succinimide dispersants post-treated with aromatic glycidyl ethers that exhibit good soot handling performance |
WO2022054023A1 (en) | 2020-09-14 | 2022-03-17 | Chevron Japan Ltd. | Lubricating oil containing alkyl phosphonic acid |
WO2022072962A1 (en) | 2020-09-30 | 2022-04-07 | Exxonmobil Research And Engineering Company | Low friction and low traction lubricant compositions useful in dry clutch motorcycles |
WO2022074547A1 (en) | 2020-10-05 | 2022-04-14 | Chevron Japan Ltd. | Friction modifier system |
WO2022099291A1 (en) | 2020-11-06 | 2022-05-12 | Exxonmobil Research And Engineering Company | Engine oil lubricant compositions and methods for making same with steel corrosion protection |
WO2022112899A1 (en) | 2020-11-25 | 2022-06-02 | Chevron Japan Ltd. | Lubricating oil compositions |
EP4079828A1 (en) | 2018-03-29 | 2022-10-26 | Innospec Limited | Composition, method and use |
WO2022243947A1 (en) | 2021-05-20 | 2022-11-24 | Chevron Japan Ltd. | Low ash lubricating oil composition |
EP4180505A1 (en) | 2021-11-15 | 2023-05-17 | Infineum International Limited | Improvements in marine fuels |
WO2023111550A1 (en) | 2021-12-14 | 2023-06-22 | Innospec Limited | Methods and uses relating to fuel compositions |
WO2023122405A1 (en) | 2021-12-21 | 2023-06-29 | ExxonMobil Technology and Engineering Company | Engine oil lubricant compostions and methods for making same with superior oil consumption |
WO2023144721A1 (en) | 2022-01-25 | 2023-08-03 | Chevron Japan Ltd. | Lubricating oil composition |
WO2023156989A1 (en) | 2022-02-21 | 2023-08-24 | Chevron Oronite Company Llc | Lubricating oil composition |
US11760952B2 (en) | 2021-01-12 | 2023-09-19 | Ingevity South Carolina, Llc | Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods |
US11795412B1 (en) | 2023-03-03 | 2023-10-24 | Afton Chemical Corporation | Lubricating composition for industrial gear fluids |
US11873461B1 (en) | 2022-09-22 | 2024-01-16 | Afton Chemical Corporation | Extreme pressure additives with improved copper corrosion |
US11884890B1 (en) | 2023-02-07 | 2024-01-30 | Afton Chemical Corporation | Gasoline additive composition for improved engine performance |
WO2024030899A1 (en) | 2022-08-01 | 2024-02-08 | Chevron Oronite Company Llc | Lubricating oil composition for corrosion control |
EP4353804A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Functionalized c4 to c5 olefin polymers and lubricant compositions containing such |
EP4353805A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Lubricant composition containing metal alkanoate |
EP4357443A1 (en) | 2022-10-18 | 2024-04-24 | Infineum International Limited | Lubricating oil compositions |
WO2024126998A1 (en) | 2022-12-12 | 2024-06-20 | Innospec Limited | Composition, method and use |
US12024686B2 (en) | 2022-09-30 | 2024-07-02 | Afton Chemical Corporation | Gasoline additive composition for improved engine performance |
EP4397738A1 (en) | 2023-01-03 | 2024-07-10 | Infineum International Limited | Method for reduction of abnormal combustion events |
EP4428212A1 (en) | 2023-03-10 | 2024-09-11 | Infineum International Limited | Asphaltene deposition control |
WO2024220396A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for wet clutch |
WO2024220394A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for automatic transmission fluid |
US12134742B2 (en) | 2022-09-30 | 2024-11-05 | Afton Chemical Corporation | Fuel composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3018250A (en) * | 1959-08-24 | 1962-01-23 | California Research Corp | Lubricating oil compositions containing nu-dialkylaminoalkyl alkenyl succinimides |
US3024195A (en) * | 1959-08-24 | 1962-03-06 | California Research Corp | Lubricating oil compositions of alkylpiperazine alkenyl succinimides |
US3131150A (en) * | 1961-04-12 | 1964-04-28 | California Research Corp | Lubricating oil compositions containing n-substituted alkenyl succinimides in combination with polyamines |
US3154560A (en) * | 1961-12-04 | 1964-10-27 | Monsanto Co | Nu, nu'-azaalkylene-bis |
US3172892A (en) * | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine |
-
1965
- 1965-11-22 US US509172A patent/US3272746A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172892A (en) * | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3219666A (en) * | 1959-03-30 | 1965-11-23 | Derivatives of succinic acids and nitrogen compounds | |
US3018250A (en) * | 1959-08-24 | 1962-01-23 | California Research Corp | Lubricating oil compositions containing nu-dialkylaminoalkyl alkenyl succinimides |
US3024195A (en) * | 1959-08-24 | 1962-03-06 | California Research Corp | Lubricating oil compositions of alkylpiperazine alkenyl succinimides |
US3131150A (en) * | 1961-04-12 | 1964-04-28 | California Research Corp | Lubricating oil compositions containing n-substituted alkenyl succinimides in combination with polyamines |
US3154560A (en) * | 1961-12-04 | 1964-10-27 | Monsanto Co | Nu, nu'-azaalkylene-bis |
Cited By (771)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3522179A (en) * | 1963-04-23 | 1970-07-28 | Lubrizol Corp | Lubricating composition containing esters of hydrocarbon-substituted succinic acid |
US3415750A (en) * | 1963-10-04 | 1968-12-10 | Monsanto Co | Imidazolines having polyalkenylsuccinimido-containing substituents |
US3340281A (en) * | 1965-06-14 | 1967-09-05 | Standard Oil Co | Method for producing lubricating oil additives |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3359204A (en) * | 1966-12-19 | 1967-12-19 | Ethyl Corp | Lubricating oil dispersant |
US3452002A (en) * | 1966-12-22 | 1969-06-24 | Exxon Research Engineering Co | Adducts of alkylene imines and carboxylic acids |
US3445386A (en) * | 1967-01-13 | 1969-05-20 | Mobil Oil Corp | Detergent compositions |
US3448048A (en) * | 1967-01-23 | 1969-06-03 | Lubrizol Corp | Lubricant containing a high molecular weight acylated amine |
US3519565A (en) * | 1967-09-19 | 1970-07-07 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3438899A (en) * | 1968-02-23 | 1969-04-15 | Chevron Res | Alkenyl succinimide of tris (aminoalkyl) amine |
US3793201A (en) * | 1970-12-28 | 1974-02-19 | Lubrizol Corp | Stabilized basic magnesium sulfonate compositions |
US4151173A (en) * | 1971-05-17 | 1979-04-24 | The Lubrizol Corporation | Acylated polyoxyalkylene polyamines |
US3883320A (en) * | 1972-12-07 | 1975-05-13 | Standard Oil Co | Reducing deposits and smoke from jet fuels with additives incorporating an ammonium salt |
US3960889A (en) * | 1973-07-09 | 1976-06-01 | Texaco Inc. | Dehydrohalogenated polyalkene-maleic anhydride reaction product |
US3879306A (en) * | 1973-11-05 | 1975-04-22 | Texaco Inc | Automatic transmission fluid |
US4194985A (en) * | 1974-01-14 | 1980-03-25 | The Lubrizol Corporation | Polymeric compositions, method for their preparation, and lubricants containing them |
US4005021A (en) * | 1974-06-10 | 1977-01-25 | Standard Oil Company (Indiana) | Oil-soluble reaction products of (a) a high molecular weight olefin polymer, acrylonitrile, chlorine, an amine and maleic anhydride, with (g) an aliphatic amines; and lubricant compositions containing the same |
US4081388A (en) * | 1975-04-18 | 1978-03-28 | Orogil | Compositions based on alkenylsuccinimides as additives for lubricating oils |
US4089794A (en) * | 1975-06-25 | 1978-05-16 | Exxon Research & Engineering Co. | Polymeric additives for fuels and lubricants |
US4138370A (en) * | 1976-04-26 | 1979-02-06 | Exxon Research & Engineering Co. | Multipurpose lubricating oil additive based on electrophilically terminated anion of oxidized ethylene copolymer |
US4029148A (en) * | 1976-09-13 | 1977-06-14 | Atlantic Richfield Company | Well fracturing method |
US4257779A (en) * | 1976-12-23 | 1981-03-24 | Texaco Inc. | Hydrocarbylsuccinic anhydride and aminotriazole reaction product additive for fuel and mineral oils |
US4263015A (en) * | 1976-12-23 | 1981-04-21 | Texaco Inc. | Rust inhibitor and oil composition containing same |
US4171273A (en) * | 1977-03-14 | 1979-10-16 | Texaco Inc. | Fatty alkyl succinate ester and succinimide modified copolymers of ethylene and an alpha olefin |
FR2404668A1 (en) * | 1977-10-03 | 1979-04-27 | Exxon Research Engineering Co | COMPOSITION OF LUBRICATING OIL ADDITIONED TO A POLYOL ESTER AND AN IMIDE |
US4173540A (en) * | 1977-10-03 | 1979-11-06 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound |
US4153567A (en) * | 1977-11-10 | 1979-05-08 | Milliken Research Corporation | Additives for lubricants and fuels |
US4163644A (en) * | 1978-04-25 | 1979-08-07 | The Rolfite Company | Suspension of coal in fuel oils |
US4326972A (en) * | 1978-06-14 | 1982-04-27 | The Lubrizol Corporation | Concentrates, lubricant compositions and methods for improving fuel economy of internal combustion engine |
US4159956A (en) * | 1978-06-30 | 1979-07-03 | Chevron Research Company | Succinimide dispersant combination |
US4240803A (en) * | 1978-09-11 | 1980-12-23 | Mobil Oil Corporation | Fuel containing novel detergent |
US4256595A (en) * | 1978-09-28 | 1981-03-17 | Texaco Inc. | Diesel lubricant composition containing 5-amino-triazole-succinic anhydride reaction product |
US4239633A (en) * | 1979-06-04 | 1980-12-16 | Exxon Research & Engineering Co. | Molybdenum complexes of ashless polyol ester dispersants as friction-reducing antiwear additives for lubricating oils |
US4248719A (en) * | 1979-08-24 | 1981-02-03 | Texaco Inc. | Quaternary ammonium salts and lubricating oil containing said salts as dispersants |
US4237022A (en) * | 1979-10-01 | 1980-12-02 | The Lubrizol Corporation | Tartarimides and lubricants and fuels containing the same |
EP0031236A2 (en) * | 1979-12-20 | 1981-07-01 | The British Petroleum Company p.l.c. | Lubricant additives, their method of preparation and lubricants containing them |
EP0031236A3 (en) * | 1979-12-20 | 1981-09-09 | The British Petroleum Company P.L.C. | Lubricant additives, their method of preparation and lubricants containing them |
US4400282A (en) * | 1980-12-05 | 1983-08-23 | Gulf Research & Development Company | Lubricating oils containing quaternary ammonium thiomolybdates |
US4326973A (en) * | 1981-01-13 | 1982-04-27 | Texaco Inc. | Quaternary ammonium succinimide salt composition and lubricating oil containing same |
US4440658A (en) * | 1981-01-16 | 1984-04-03 | Mobil Oil Corporation | Anti-rust compositions |
US4505718A (en) * | 1981-01-22 | 1985-03-19 | The Lubrizol Corporation | Organo transition metal salt/ashless detergent-dispersant combinations |
US4652273A (en) * | 1981-07-30 | 1987-03-24 | Institut Francais Du Petrole | Hydrocarbon middle distillates composition containing nitrogen-containing additives for decreasing its cloud point |
US4579674A (en) * | 1981-12-28 | 1986-04-01 | Texaco Inc. | Hydrocarbylsuccinimide of a secondary hydroxyl-substituted polyamine and lubricating oil containing same |
US4491455A (en) * | 1982-02-10 | 1985-01-01 | Nippon Oil And Fats Co., Ltd. | Method for improving cold flow of fuel oils |
US4440659A (en) * | 1982-02-19 | 1984-04-03 | Ethyl Corporation | Lubricating oil ashless dispersant and lubricating oils containing same |
US4491527A (en) * | 1982-04-26 | 1985-01-01 | The Lubrizol Corporation | Ester-heterocycle compositions useful as "lead paint" inhibitors in lubricants |
US4623684A (en) | 1982-08-09 | 1986-11-18 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4559155A (en) * | 1982-08-09 | 1985-12-17 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4564460A (en) * | 1982-08-09 | 1986-01-14 | The Lubrizol Corporation | Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4596663A (en) * | 1982-08-09 | 1986-06-24 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4613342A (en) * | 1982-08-09 | 1986-09-23 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4575526A (en) * | 1982-08-09 | 1986-03-11 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same |
US4744798A (en) * | 1982-09-30 | 1988-05-17 | Mobil Oil Corporation | Benzophenone derivatives as fuel additives |
US4637886A (en) * | 1982-12-27 | 1987-01-20 | Exxon Research & Engineering Co. | Macrocyclic polyamine and polycyclic polyamine multifunctional lubricating oil additives |
US4560490A (en) * | 1983-02-04 | 1985-12-24 | Institut Francais Du Petrole | Dispersing additive compositions for lubricating oils and their manufacture |
US4617137A (en) * | 1984-11-21 | 1986-10-14 | Chevron Research Company | Glycidol modified succinimides |
US4631070A (en) * | 1984-11-21 | 1986-12-23 | Chevron Research Company | Glycidol modified succinimides and fuel compositions containing the same |
US4695390A (en) * | 1985-01-04 | 1987-09-22 | The Lubrizol Corporation | Reaction product of polyalrylene-substituted polycarboxylic acid acylating agent, polyamine and sulfolene as a dispersant |
US5053152A (en) * | 1985-03-14 | 1991-10-01 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US5368615A (en) * | 1985-03-14 | 1994-11-29 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US5296154A (en) * | 1985-03-14 | 1994-03-22 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US5230714A (en) * | 1985-03-14 | 1993-07-27 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US5160648A (en) * | 1985-03-14 | 1992-11-03 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US6355074B1 (en) | 1985-07-11 | 2002-03-12 | Exxon Chemical Patents Inc | Oil soluble dispersant additives useful in oleaginous compositions |
US6127321A (en) * | 1985-07-11 | 2000-10-03 | Exxon Chemical Patents Inc | Oil soluble dispersant additives useful in oleaginous compositions |
US6051537A (en) * | 1985-07-11 | 2000-04-18 | Exxon Chemical Patents Inc | Dispersant additive mixtures for oleaginous compositions |
US4804389A (en) * | 1985-08-16 | 1989-02-14 | The Lubrizol Corporation | Fuel products |
US4659338A (en) * | 1985-08-16 | 1987-04-21 | The Lubrizol Corporation | Fuel compositions for lessening valve seat recession |
WO1987003003A1 (en) | 1985-11-08 | 1987-05-21 | The Lubrizol Corporation | Fuel compositions |
US5354484A (en) * | 1986-06-13 | 1994-10-11 | The Lubrizol Corporation | Phosphorus-containing lubricant and functional fluid compositions |
US4755311A (en) * | 1986-08-14 | 1988-07-05 | The Lubrizol Corporation | Phosphorus-, sulfur- and boron-containing compositions, and lubricant and functional fluid compositions containing same |
WO1988001272A2 (en) | 1986-08-14 | 1988-02-25 | The Lubrizol Corporation | Borated amine salts of monothiophosphoric acids |
US4866139A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterified dispersant additives useful in oleaginous compositions |
US4906394A (en) * | 1986-10-07 | 1990-03-06 | Exxon Chemical Patents Inc. | Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions |
US4866141A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US5032320A (en) * | 1986-10-07 | 1991-07-16 | Exxon Chemical Patents Inc. | Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions |
US4954276A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4866140A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4954277A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same |
US5788722A (en) * | 1986-10-16 | 1998-08-04 | Exxon Chemical Patents Inc | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous compositions |
US5756428A (en) * | 1986-10-16 | 1998-05-26 | Exxon Chemical Patents Inc. | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous composition |
US5141658A (en) * | 1986-11-07 | 1992-08-25 | Dibiase Stephen A | Lubricant composition comprising a sulfur additive and a borated dispersant |
US4870197A (en) * | 1986-12-12 | 1989-09-26 | Exxon Chemical Patents Inc. | Method for preparing salts of polyolefinic substituted dicarboxylic acids |
US5451333A (en) * | 1987-05-26 | 1995-09-19 | Exxon Chemical Patents Inc. | Haze resistant dispersant-detergent compositions |
US5312554A (en) * | 1987-05-26 | 1994-05-17 | Exxon Chemical Patents Inc. | Process for preparing stable oleaginous compositions |
US4820432A (en) * | 1987-07-24 | 1989-04-11 | Exxon Chemical Patents Inc. | Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions |
US4971711A (en) * | 1987-07-24 | 1990-11-20 | Exxon Chemical Patents, Inc. | Lactone-modified, mannich base dispersant additives useful in oleaginous compositions |
US4863624A (en) * | 1987-09-09 | 1989-09-05 | Exxon Chemical Patents Inc. | Dispersant additives mixtures for oleaginous compositions |
EP0310365A1 (en) * | 1987-09-30 | 1989-04-05 | Amoco Corporation | Engine seal compatible dispersant for lubricating oils |
EP0310367A1 (en) * | 1987-09-30 | 1989-04-05 | Amoco Corporation | Medium speed diesel engine lubricating oils |
US4908145A (en) * | 1987-09-30 | 1990-03-13 | Amoco Corporation | Engine seal compatible dispersants for lubricating oils |
US5080815A (en) * | 1987-09-30 | 1992-01-14 | Amoco Corporation | Method for preparing engine seal compatible dispersant for lubricating oils comprising reacting hydrocarbyl substituted discarboxylic compound with aminoguanirise or basic salt thereof |
US5174915A (en) * | 1987-09-30 | 1992-12-29 | Ethyl Petroleum Additives, Inc. | Medium speed diesel engine lubricating oils |
US5320765A (en) * | 1987-10-02 | 1994-06-14 | Exxon Chemical Patents Inc. | Low ash lubricant compositions for internal combustion engines |
US5102566A (en) * | 1987-10-02 | 1992-04-07 | Exxon Chemical Patents Inc. | Low ash lubricant compositions for internal combustion engines (pt-727) |
US5141657A (en) * | 1987-10-02 | 1992-08-25 | Exxon Chemical Patents Inc. | Lubricant compositions for internal combustion engines |
US5026495A (en) * | 1987-11-19 | 1991-06-25 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5407591A (en) * | 1987-11-19 | 1995-04-18 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives comprising the reaction product of a mannich base and a polyepoxide |
US5085788A (en) * | 1987-11-19 | 1992-02-04 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5160350A (en) * | 1988-01-27 | 1992-11-03 | The Lubrizol Corporation | Fuel compositions |
US5256325A (en) * | 1988-02-29 | 1993-10-26 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US5053150A (en) * | 1988-02-29 | 1991-10-01 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US5370810A (en) * | 1988-02-29 | 1994-12-06 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same PT-696 |
US5385687A (en) * | 1988-02-29 | 1995-01-31 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US4957645A (en) * | 1988-02-29 | 1990-09-18 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5275748A (en) * | 1988-02-29 | 1994-01-04 | Exxon Chemical Patents Inc. | Polyanhydride modified adducts or reactants and oleaginous compositions containing same |
US5030369A (en) * | 1988-02-29 | 1991-07-09 | Exxon Chemical Patents Inc. | Oil soluble dispersant additives useful in oleaginous compositions |
US5482519A (en) * | 1988-02-29 | 1996-01-09 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US5217634A (en) * | 1988-02-29 | 1993-06-08 | Exxon Chemical Patents Inc. | Polyepoxide modified adducts or reactants and oleaginous compositions containing same |
US5198133A (en) * | 1988-03-14 | 1993-03-30 | Ethyl Petroleum Additives, Inc. | Modified succinimide or sucinamide dispersants and their production |
US5164103A (en) * | 1988-03-14 | 1992-11-17 | Ethyl Petroleum Additives, Inc. | Preconditioned atf fluids and their preparation |
US5439606A (en) * | 1988-03-14 | 1995-08-08 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US4855074A (en) * | 1988-03-14 | 1989-08-08 | Ethyl Petroleum Additives, Inc. | Homogeneous additive concentrates and their formation |
US5389273A (en) * | 1988-03-14 | 1995-02-14 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US4943382A (en) * | 1988-04-06 | 1990-07-24 | Exxon Chemical Patents Inc. | Lactone modified dispersant additives useful in oleaginous compositions |
US5041622A (en) * | 1988-04-22 | 1991-08-20 | The Lubrizol Corporation | Three-step process for making substituted carboxylic acids and derivatives thereof |
US4952328A (en) * | 1988-05-27 | 1990-08-28 | The Lubrizol Corporation | Lubricating oil compositions |
US4981602A (en) * | 1988-06-13 | 1991-01-01 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US4904401A (en) * | 1988-06-13 | 1990-02-27 | The Lubrizol Corporation | Lubricating oil compositions |
EP0351964A1 (en) | 1988-06-24 | 1990-01-24 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
US4957649A (en) * | 1988-08-01 | 1990-09-18 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US4938881A (en) * | 1988-08-01 | 1990-07-03 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US5334329A (en) * | 1988-10-07 | 1994-08-02 | The Lubrizol Corporation | Lubricant and functional fluid compositions exhibiting improved demulsibility |
US5340487A (en) * | 1988-11-07 | 1994-08-23 | Exxon Chemical Patents Inc. | Dispersant adducts comprising alcohol adducts of dicarboxylic acid monoepoxy thiol reaction products |
US5057617A (en) * | 1988-11-07 | 1991-10-15 | Exxon Chemical Patents Inc. | Dispersant additives prepared from monoepoxy thiols |
US4954572A (en) * | 1988-11-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Dispersant additives prepared from monoepoxy alcohols |
US5205947A (en) * | 1988-11-07 | 1993-04-27 | Exxon Chemical Patents Inc. | Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products |
JP2864146B2 (en) | 1989-04-21 | 1999-03-03 | アジップ・ペトローリ・エセ・ピ・ア | Manufacturing method of fuel or lubricating oil |
US5182041A (en) * | 1989-05-01 | 1993-01-26 | Texaco Inc. | Dispersant - anti-oxidant additive and lubricating oil composition containing same |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
US5147414A (en) * | 1989-08-03 | 1992-09-15 | Texaco Inc. | Process for producing ori control additives |
US5312555A (en) * | 1990-02-16 | 1994-05-17 | Ethyl Petroleum Additives, Inc. | Succinimides |
US5411559A (en) * | 1990-02-16 | 1995-05-02 | Ethyl Corporation | Succinimides |
US5024677A (en) * | 1990-06-11 | 1991-06-18 | Nalco Chemical Company | Corrosion inhibitor for alcohol and gasohol fuels |
EP0611818A1 (en) | 1990-07-31 | 1994-08-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same |
US5232616A (en) * | 1990-08-21 | 1993-08-03 | Chevron Research And Technology Company | Lubricating compositions |
US5302304A (en) * | 1990-12-21 | 1994-04-12 | Ethyl Corporation | Silver protective lubricant composition |
US5955404A (en) * | 1991-04-17 | 1999-09-21 | Mobil Oil Corporation | Lubricant and fuel compositions containing an organo-substituted diphenyl sulfide |
US5614480A (en) * | 1991-04-19 | 1997-03-25 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5562864A (en) * | 1991-04-19 | 1996-10-08 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5490945A (en) * | 1991-04-19 | 1996-02-13 | The Lubrizol Corporation | Lubricating compositions and concentrates |
US5221491A (en) * | 1991-08-09 | 1993-06-22 | Exxon Chemical Patents Inc. | Two-cycle oil additive |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5304315A (en) * | 1992-04-15 | 1994-04-19 | Exxon Chemical Patents Inc. | Prevention of gel formation in two-cycle oils |
US5330667A (en) * | 1992-04-15 | 1994-07-19 | Exxon Chemical Patents Inc. | Two-cycle oil additive |
US5292813A (en) * | 1992-10-02 | 1994-03-08 | Exxon Research & Engineering Co. | Fullerene-grafted polymers and processes of making |
US5292444A (en) * | 1992-10-02 | 1994-03-08 | Exxon Research And Engineering Company | Lube oil compositions containing fullerene-grafted polymers |
US5430105A (en) * | 1992-12-17 | 1995-07-04 | Exxon Chemical Patents Inc. | Low sediment process for forming borated dispersant |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US6030930A (en) * | 1992-12-17 | 2000-02-29 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives |
US5554310A (en) * | 1992-12-17 | 1996-09-10 | Exxon Chemical Patents Inc. | Trisubstituted unsaturated polymers |
US5663130A (en) * | 1992-12-17 | 1997-09-02 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5356552A (en) * | 1993-03-09 | 1994-10-18 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Chlorine-free lubricating oils having modified high molecular weight succinimides |
US6294506B1 (en) | 1993-03-09 | 2001-09-25 | Chevron Chemical Company | Lubricating oils having carbonated sulfurized metal alkyl phenates and carbonated metal alkyl aryl sulfonates |
EP0629614A1 (en) * | 1993-05-27 | 1994-12-21 | Hoechst Aktiengesellschaft | Substituted succinimides |
US5554768A (en) * | 1993-05-27 | 1996-09-10 | Hoechst Aktiengesellschaft | Substituted Succinimides |
WO1994029413A1 (en) * | 1993-06-16 | 1994-12-22 | Ethyl Corporation | Ashless dispersants, their preparation, and their use |
WO1995000607A1 (en) * | 1993-06-25 | 1995-01-05 | Ethyl Corporation | Fluoroelastomer-friendly crankcase and drivetrain lubricants and their use |
US5454962A (en) * | 1993-06-25 | 1995-10-03 | Ethyl Petroleum Additives, Inc. | Fluoroelastomer-friendly crankcase and drivetrain lubricants and their use |
US5439607A (en) * | 1993-12-30 | 1995-08-08 | Exxon Chemical Patents Inc. | Multifunctional viscosity index improver-dispersant antioxidant |
EP0683220A2 (en) | 1994-05-18 | 1995-11-22 | Ethyl Corporation | Lubricant additive compositions |
EP0713907A2 (en) | 1994-09-26 | 1996-05-29 | Ethyl Petroleum Additives Limited | Zinc additives of enhanced performance capabilities |
US6306802B1 (en) | 1994-09-30 | 2001-10-23 | Exxon Chemical Patents Inc. | Mixed antioxidant composition |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US5814111A (en) * | 1995-03-14 | 1998-09-29 | Shell Oil Company | Gasoline compositions |
EP0778333A2 (en) | 1995-11-09 | 1997-06-11 | The Lubrizol Corporation | Carboxylic compositions, derivatives, lubricants, fuels and concentrates |
EP0776963A1 (en) | 1995-12-01 | 1997-06-04 | Chevron Chemical Company | Polyalkylene succinimides and post-treated derivatives thereof |
CN1064271C (en) * | 1995-12-28 | 2001-04-11 | 华南理工大学 | Surfactant for emulsified-liquid film and preparation method thereof |
EP0831104A2 (en) | 1996-08-20 | 1998-03-25 | Chevron Chemical Company | Novel dispersant terpolymers |
US6376434B1 (en) * | 1996-10-29 | 2002-04-23 | Idemitsu Kosan Co., Ltd. | Lube oil compositions for diesel engines |
US6624123B2 (en) * | 1997-04-11 | 2003-09-23 | Chevron Chemical S.A. | Use of surfactants with high molecular weight for improving the filterability in hydraulic lubricants |
EP0921136A1 (en) * | 1997-12-03 | 1999-06-09 | The Lubrizol Corporation | Nitrogen containing dispersant-viscosity improvers |
US6265358B1 (en) | 1997-12-03 | 2001-07-24 | The Lubrizol Corporation | Nitrogen containing dispersant-viscosity improvers |
US6486101B2 (en) | 1997-12-03 | 2002-11-26 | The Lubrizol Corporation | Nitrogen containing dispersant-viscosity improvers |
US6860241B2 (en) | 1999-06-16 | 2005-03-01 | Dober Chemical Corp. | Fuel filter including slow release additive |
EP1188813A1 (en) * | 2000-09-19 | 2002-03-20 | Ethyl Corporation | Lubricants comprising friction modifiers |
US6855674B2 (en) | 2000-12-22 | 2005-02-15 | Infineum International Ltd. | Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
US20030173251A1 (en) * | 2000-12-22 | 2003-09-18 | Antonio Gutierrez | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
US6440905B1 (en) * | 2001-04-24 | 2002-08-27 | The Lubrizol Corporation | Surfactants and dispersants by in-line reaction |
US20050045527A1 (en) * | 2001-05-17 | 2005-03-03 | Goze Maria Caridad B. | Low noack volatility poly alpha-olefins |
US6949688B2 (en) | 2001-05-17 | 2005-09-27 | Exxonmobil Chemical Patents Inc. | Low Noack volatility poly α-olefins |
US20020193650A1 (en) * | 2001-05-17 | 2002-12-19 | Goze Maria Caridad B. | Low noack volatility poly alpha-olefins |
US6824671B2 (en) | 2001-05-17 | 2004-11-30 | Exxonmobil Chemical Patents Inc. | Low noack volatility poly α-olefins |
US6827750B2 (en) | 2001-08-24 | 2004-12-07 | Dober Chemical Corp | Controlled release additives in fuel systems |
US7581558B2 (en) | 2001-08-24 | 2009-09-01 | Cummins Filtration Ip Inc. | Controlled release of additives in fluid systems |
US8109287B2 (en) | 2001-08-24 | 2012-02-07 | Cummins Filtration Ip, Inc. | Controlled release of additives in fluid systems |
US7938277B2 (en) | 2001-08-24 | 2011-05-10 | Dober Chemical Corporation | Controlled release of microbiocides |
US6835218B1 (en) | 2001-08-24 | 2004-12-28 | Dober Chemical Corp. | Fuel additive compositions |
US7001531B2 (en) | 2001-08-24 | 2006-02-21 | Dober Chemical Corp. | Sustained release coolant additive composition |
US7591279B2 (en) | 2001-08-24 | 2009-09-22 | Cummins Filtration Ip Inc. | Controlled release of additives in fluid systems |
EP2272940A1 (en) | 2001-09-14 | 2011-01-12 | Afton Chemical Intangibles LLC | Fuels compositions for direct injection gasoline engines |
US6617287B2 (en) | 2001-10-22 | 2003-09-09 | The Lubrizol Corporation | Manual transmission lubricants with improved synchromesh performance |
US6756348B2 (en) | 2001-11-29 | 2004-06-29 | Chevron Oronite Company Llc | Lubricating oil having enhanced resistance to oxidation, nitration and viscosity increase |
US6642191B2 (en) | 2001-11-29 | 2003-11-04 | Chevron Oronite Company Llc | Lubricating oil additive system particularly useful for natural gas fueled engines |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
US20030172584A1 (en) * | 2002-03-13 | 2003-09-18 | Henly Timothy J. | Fuel lubricity additives derived from hydrocarbyl succinic anhydrides and hydroxy amines, and middle distillate fuels containing same |
US7182795B2 (en) | 2002-03-13 | 2007-02-27 | Atton Chemical Intangibles Llc | Fuel lubricity additives derived from hydrocarbyl succinic anhydrides and hydroxy amines, and middle distillate fuels containing same |
US6869917B2 (en) | 2002-08-16 | 2005-03-22 | Exxonmobil Chemical Patents Inc. | Functional fluid lubricant using low Noack volatility base stock fluids |
US20040033908A1 (en) * | 2002-08-16 | 2004-02-19 | Deckman Douglas E. | Functional fluid lubricant using low Noack volatility base stock fluids |
US20040147410A1 (en) * | 2003-01-15 | 2004-07-29 | Milner Jeffrey L | Extended drain, thermally stable, gear oil formulations |
US7888299B2 (en) | 2003-01-15 | 2011-02-15 | Afton Chemical Japan Corp. | Extended drain, thermally stable, gear oil formulations |
US20040235682A1 (en) * | 2003-05-22 | 2004-11-25 | Chevron Oronite Company Llc | Low emission diesel lubricant with improved corrosion protection |
EP1503316A1 (en) | 2003-07-30 | 2005-02-02 | Ethyl Petroleum Additives, Inc. | Fuel consumption economy credits method |
US20050027592A1 (en) * | 2003-07-30 | 2005-02-03 | Pettigrew F. Alexander | Powered platform fuel consumption economy credits method |
EP1512736A1 (en) * | 2003-09-05 | 2005-03-09 | Infineum International Limited | Stabilised diesel fuel additive compositions |
US20050065043A1 (en) * | 2003-09-23 | 2005-03-24 | Henly Timothy J. | Power transmission fluids having extended durability |
US20070054813A1 (en) * | 2003-09-25 | 2007-03-08 | Chip Hewette | Boron free automotive gear oil |
US7884058B2 (en) | 2003-09-30 | 2011-02-08 | Chevron Oronite Company Llc | Stable colloidal suspensions and lubricating oil compositions containing same |
US20050070445A1 (en) * | 2003-09-30 | 2005-03-31 | Nelson Kenneth D. | Stable colloidal suspensions and lubricating oil compositions containing same |
US20100279901A1 (en) * | 2003-11-10 | 2010-11-04 | Iyer Ramnath N | Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids |
EP2230292A1 (en) | 2003-11-10 | 2010-09-22 | Afton Chemical Corporation | Methods of lubricating transmissions |
US9267093B2 (en) | 2003-11-10 | 2016-02-23 | Afton Chemical Corporation | Methods for providing steel-on-steel friction and/or steel-on-paper friction with lubricant compositions for power transmitting fluids |
US20050101494A1 (en) * | 2003-11-10 | 2005-05-12 | Iyer Ramnath N. | Lubricant compositions for power transmitting fluids |
US20080009426A1 (en) * | 2003-11-10 | 2008-01-10 | Iyer Ramnath N | Lubricant Compositions and Methods Comprising Dispersant and Detergent |
US20050101497A1 (en) * | 2003-11-12 | 2005-05-12 | Saathoff Lee D. | Compositions and methods for improved friction durability in power transmission fluids |
US20080090744A1 (en) * | 2003-11-12 | 2008-04-17 | Saathoff Lee D | Compositions and Methods for Improved Friction Durability in Power Transmission Fluids |
US20050181959A1 (en) * | 2004-02-17 | 2005-08-18 | Esche Carl K.Jr. | Lubricant and fuel additives derived from treated amines |
US7645728B2 (en) | 2004-02-17 | 2010-01-12 | Afton Chemical Corporation | Lubricant and fuel additives derived from treated amines |
US7947636B2 (en) | 2004-02-27 | 2011-05-24 | Afton Chemical Corporation | Power transmission fluids |
EP1568759A2 (en) | 2004-02-27 | 2005-08-31 | Afton Chemical Corporation | Power transmission fluids |
US7361629B2 (en) | 2004-03-10 | 2008-04-22 | Afton Chemical Corporation | Additives for lubricants and fuels |
US20050202980A1 (en) * | 2004-03-10 | 2005-09-15 | Loper John T. | Novel additives for lubricants and fuels |
US7863228B2 (en) | 2004-03-10 | 2011-01-04 | Afton Chemical Corporation | Additives for lubricants and fuels |
US7875576B2 (en) | 2004-07-29 | 2011-01-25 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
US20060025313A1 (en) * | 2004-07-29 | 2006-02-02 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
EP1640438A1 (en) | 2004-09-17 | 2006-03-29 | Infineum International Limited | Improvements in Fuel Oils |
US8690969B2 (en) | 2004-09-17 | 2014-04-08 | Infineum International Limited | Fuel oils |
US20060059770A1 (en) * | 2004-09-17 | 2006-03-23 | Sutkowski Andrew C | Fuel oils |
US9481841B2 (en) | 2004-12-09 | 2016-11-01 | The Lubrizol Corporation | Process of preparation of an additive and its use |
US20060135375A1 (en) * | 2004-12-21 | 2006-06-22 | Chevron Oronite Company Llc | Anti-shudder additive composition and lubricating oil composition containing the same |
EP1674557A2 (en) | 2004-12-21 | 2006-06-28 | Chevron Oronite Company LLC | An anti-shudder additive composition and lubricating oil composition containing the same |
EP2116590A1 (en) | 2005-02-18 | 2009-11-11 | Infineum International Limited | Soot dispersants and lubricating oil compositions containing same |
US8557752B2 (en) | 2005-03-23 | 2013-10-15 | Afton Chemical Corporation | Lubricating compositions |
EP1871861B1 (en) | 2005-04-08 | 2020-01-15 | The Lubrizol Corporation | Additive system for lubricants |
US7745542B2 (en) | 2005-04-29 | 2010-06-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070027267A1 (en) * | 2005-04-29 | 2007-02-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20060264339A1 (en) * | 2005-05-19 | 2006-11-23 | Devlin Mark T | Power transmission fluids with enhanced lifetime characteristics |
EP3406692A1 (en) | 2005-06-16 | 2018-11-28 | The Lubrizol Corporation | Fuel composition comprising a quaternary ammonium salt detergent |
EP2998384A1 (en) | 2005-06-16 | 2016-03-23 | The Lubrizol Corporation | Diesel fuel composition comprising a quaternary ammonium salt detergent |
US20070004603A1 (en) * | 2005-06-30 | 2007-01-04 | Iyer Ramnath N | Methods for improved power transmission performance and compositions therefor |
US20070000745A1 (en) * | 2005-06-30 | 2007-01-04 | Cameron Timothy M | Methods for improved power transmission performance |
US20070042916A1 (en) * | 2005-06-30 | 2007-02-22 | Iyer Ramnath N | Methods for improved power transmission performance and compositions therefor |
US7820602B2 (en) | 2005-07-12 | 2010-10-26 | King Industries, Inc. | Amine tungstates and lubricant compositions |
US20070042917A1 (en) * | 2005-07-12 | 2007-02-22 | Ramanathan Ravichandran | Amine Tungstates and Lubricant Compositions |
US8080500B2 (en) | 2005-07-12 | 2011-12-20 | King Industries, Inc. | Amine tungstates and lubricant compositions |
US20080194440A1 (en) * | 2005-07-12 | 2008-08-14 | Ramanathan Ravichandran | Amine tungstates and lubricant compositions |
US20090029888A1 (en) * | 2005-07-12 | 2009-01-29 | Ramanathan Ravichandran | Amine tungstates and lubricant compositions |
EP1757673A1 (en) | 2005-08-23 | 2007-02-28 | Chevron Oronite Company LLC | Lubricating oil composition for internal combustion engines |
US7618928B2 (en) | 2005-08-31 | 2009-11-17 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070049503A1 (en) * | 2005-08-31 | 2007-03-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20070078066A1 (en) * | 2005-10-03 | 2007-04-05 | Milner Jeffrey L | Lubricant formulations containing extreme pressure agents |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US20080319216A1 (en) * | 2005-11-09 | 2008-12-25 | Degonia David J | Salt of a Sulfur-Containing, Phosphorus-Containing Compound, And Methods Thereof |
US7928260B2 (en) | 2005-11-09 | 2011-04-19 | Afton Chemical Corporation | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
US20070123437A1 (en) * | 2005-11-30 | 2007-05-31 | Chevron Oronite Company Llc | Lubricating oil composition with improved emission compatibility |
US7981846B2 (en) | 2005-11-30 | 2011-07-19 | Chevron Oronite Company Llc | Lubricating oil composition with improved emission compatibility |
US9752020B2 (en) | 2005-12-28 | 2017-09-05 | Bridgestone Corporation | Rubber composition having good wet-traction properties and a low aromatic-oil content |
US20070149689A1 (en) * | 2005-12-28 | 2007-06-28 | Xiaorong Wang | Rubber composition having good wet-traction properties and a low aromatic-oil content |
EP2371933A1 (en) | 2006-02-06 | 2011-10-05 | The Lubrizol Corporation | Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof |
US20070270317A1 (en) * | 2006-05-19 | 2007-11-22 | Milner Jeffrey L | Power Transmission Fluids |
EP3205698A1 (en) | 2006-06-15 | 2017-08-16 | Dow Global Technologies LLC | Functionalized olefin interpolymers, compositions and articles prepared therefrom, and methods for making the same |
EP2363444A1 (en) | 2006-06-15 | 2011-09-07 | Dow Global Technologies LLC | Functionalized olefin interpolymers, compositions and articles prepared therefrom, and methods for making the same |
EP2363420A1 (en) | 2006-06-15 | 2011-09-07 | Dow Global Technologies LLC | Functionalized olefin interpolymers, compositions and articles prepared therefrom, and methods for making the same |
EP2363445A1 (en) | 2006-06-15 | 2011-09-07 | Dow Global Technologies LLC | Functionalized propylene interpolymers, compositions and articles prepared therefrom, and methods for making the same |
US7879775B2 (en) | 2006-07-14 | 2011-02-01 | Afton Chemical Corporation | Lubricant compositions |
US7902133B2 (en) | 2006-07-14 | 2011-03-08 | Afton Chemical Corporation | Lubricant composition |
US20080015124A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant composition |
EP3339404A1 (en) | 2006-07-18 | 2018-06-27 | Infineum International Limited | Lubricating oil compositions |
WO2008013698A1 (en) | 2006-07-21 | 2008-01-31 | Exxonmobil Research And Engineering Company | Method for lubricating heavy duty geared apparatus |
US7833953B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant composition |
US20080103236A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7816309B2 (en) | 2006-10-27 | 2010-10-19 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103074A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7928044B2 (en) | 2006-10-27 | 2011-04-19 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP1916292A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
EP1916293A1 (en) | 2006-10-27 | 2008-04-30 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
US20080113888A1 (en) * | 2006-10-27 | 2008-05-15 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP1927650A1 (en) | 2006-10-27 | 2008-06-04 | Chevron Oronite Company LLC | A lubricating oil additive composition and method of making the same |
US7820605B2 (en) | 2006-10-27 | 2010-10-26 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103075A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080103076A1 (en) * | 2006-10-27 | 2008-05-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7820604B2 (en) | 2006-10-27 | 2010-10-26 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20080113889A1 (en) * | 2006-10-27 | 2008-05-15 | Chevron Oronite Company Llc | lubricating oil additive composition and method of making the same |
US7858566B2 (en) | 2006-10-27 | 2010-12-28 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US8067347B2 (en) | 2006-10-27 | 2011-11-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US8425772B2 (en) | 2006-12-12 | 2013-04-23 | Cummins Filtration Ip, Inc. | Filtration device with releasable additive |
EP1947161A1 (en) | 2006-12-13 | 2008-07-23 | Infineum International Limited | Fuel oil compositions |
EP1942177A2 (en) | 2006-12-19 | 2008-07-09 | Chevron Oronite Company LLC | Lubricating oil providing enhanced piston cleanliness |
EP1947164A1 (en) | 2006-12-21 | 2008-07-23 | Chevron Oronite Technology B.V. | Engine lubricant with enhanced thermal stability |
US7700673B2 (en) | 2006-12-22 | 2010-04-20 | Bridgestone Corporation | Reduced oil rubber compositions including N-substituted polyalkylene succinimide derivates and methods for preparing such compositions |
US20080153972A1 (en) * | 2006-12-22 | 2008-06-26 | Xiaorong Wang | Reduced Oil Rubber Compositions Including N-Substituted Polyalkylene Succinimide Derivates and Methods For Preparing Such Compositions |
US20080182768A1 (en) * | 2007-01-31 | 2008-07-31 | Devlin Cathy C | Lubricant composition for bio-diesel fuel engine applications |
DE102008005330A1 (en) | 2007-01-31 | 2008-08-07 | Afton Chemical Corp. | Lubricant composition for biodiesel fuel engine uses |
EP1959003A2 (en) | 2007-02-08 | 2008-08-20 | Infineum International Limited | Soot dispersants and lubricating oil compositions containing same |
EP1970430A2 (en) | 2007-03-09 | 2008-09-17 | Afton Chemical Corporation | Fuel composition containing a hydrocarbyl-substituted succinimide |
US9011556B2 (en) | 2007-03-09 | 2015-04-21 | Afton Chemical Corporation | Fuel composition containing a hydrocarbyl-substituted succinimide |
US20080241095A1 (en) * | 2007-03-26 | 2008-10-02 | Syrinek Allen R | Antifoulant for hydrocarbon processing equipment |
US7682491B2 (en) | 2007-03-26 | 2010-03-23 | Nalco Company | Antifoulant for hydrocarbon processing equipment |
US20080274921A1 (en) * | 2007-05-04 | 2008-11-06 | Ian Macpherson | Environmentally-Friendly Lubricant Compositions |
EP2017329A1 (en) | 2007-05-04 | 2009-01-21 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
US20100152078A1 (en) * | 2007-05-04 | 2010-06-17 | Ian Macpherson | Environmentally-friendly lubricant compositions |
EP2420553A1 (en) | 2007-05-04 | 2012-02-22 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
CN101402889B (en) * | 2007-05-22 | 2013-05-22 | 雅富顿公司 | Fuel additive to control deposit formation |
US20110010985A1 (en) * | 2007-05-22 | 2011-01-20 | Peter Wangqi Hou | Fuel Additive to Control Deposit Formation |
US20080289249A1 (en) * | 2007-05-22 | 2008-11-27 | Peter Wangqi Hou | Fuel additive to control deposit formation |
EP2000523A1 (en) | 2007-05-30 | 2008-12-10 | Chevron Oronite S.A. | Lubricating oil with enhanced protection against wear and corrosion |
WO2008154334A1 (en) | 2007-06-08 | 2008-12-18 | Infineum International Limited | Additives and lubricating oil compositions containing same |
EP2009082A2 (en) | 2007-06-20 | 2008-12-31 | Chevron Oronite Company LLC | Synergistic lubricating oil composition containing a mixture of a nitro-substituted diarylamine and a diarylamine |
EP2302020A1 (en) | 2007-07-28 | 2011-03-30 | Innospec Limited | Use of additives for improving oxidation stability of a fuel oil composition |
EP2025737A1 (en) | 2007-08-01 | 2009-02-18 | Afton Chemical Corporation | Environmentally-friendly fuel compositions |
US20090031614A1 (en) * | 2007-08-01 | 2009-02-05 | Ian Macpherson | Environmentally-Friendly Fuel Compositions |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
EP2042582A2 (en) | 2007-09-24 | 2009-04-01 | Afton Chemical Corporation | Surface passivation and to methods for the reduction of fuel thermal degradation deposits |
KR101766986B1 (en) | 2007-09-27 | 2017-08-09 | 이노스펙 리미티드 | Fuel compositions |
US9157041B2 (en) | 2007-09-27 | 2015-10-13 | Innospec Limited | Fuel compositions |
US9315752B2 (en) | 2007-09-27 | 2016-04-19 | Innospec Limited | Fuel compositions |
US9034060B2 (en) | 2007-09-27 | 2015-05-19 | Innospec Fuel Specialties Llc | Additives for diesel engines |
US20100299992A1 (en) * | 2007-09-27 | 2010-12-02 | Jacqueline Reid | Fuel compositions |
US20100293844A1 (en) * | 2007-09-27 | 2010-11-25 | Macmillan John Alexander | Additives for Diesel Engines |
US9243199B2 (en) | 2007-09-27 | 2016-01-26 | Innospec Limited | Fuel compositions |
US9163190B2 (en) | 2007-09-27 | 2015-10-20 | Innospec Limited | Fuel compositions |
US20100258070A1 (en) * | 2007-09-27 | 2010-10-14 | Innospec Limited | Fuel compositions |
US20090093384A1 (en) * | 2007-10-03 | 2009-04-09 | The Lubrizol Corporation | Lubricants That Decrease Micropitting for Industrial Gears |
US20090156445A1 (en) * | 2007-12-13 | 2009-06-18 | Lam William Y | Lubricant composition suitable for engines fueled by alternate fuels |
EP2072611A1 (en) | 2007-12-13 | 2009-06-24 | Afton Chemical Corporation | Lubricant composition suitable for engines fueled by alternate fuels |
EP2078745A1 (en) | 2007-12-20 | 2009-07-15 | Chevron Oronite Company LLC | Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate |
US20100331224A1 (en) * | 2007-12-20 | 2010-12-30 | Boffa Alexander B | Lubricating Oil Compositions Comprising A Molybdenum Compound And A Zinc Dialkyldithiophosphate |
EP2077315A1 (en) | 2007-12-20 | 2009-07-08 | Chevron Oronite Company LLC | Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant |
EP2075264A1 (en) | 2007-12-26 | 2009-07-01 | Infineum International Limited | Method of forming polyalkene substituted carboxylic acid compositions |
US9637613B2 (en) | 2007-12-31 | 2017-05-02 | Bridgestone Corporation | Metal soaps incorporated in rubber compositions and method for incorporating such soaps in rubber compositions |
US9090127B2 (en) | 2007-12-31 | 2015-07-28 | Bridgestone Corporation | Metal soaps incorporated in rubber compositions and method for incorporating such soaps in rubber compositions |
EP2083063A1 (en) | 2008-01-22 | 2009-07-29 | Infineum International Limited | Lubricating oil composition |
US8420583B2 (en) | 2008-01-24 | 2013-04-16 | Afton Chemical Corporation | Olefin copolymer dispersant VI improver and lubricant compositions and uses thereof |
US20090192061A1 (en) * | 2008-01-24 | 2009-07-30 | Boegner Philip J | Olefin copolymer dispersant vi improver and lubricant compositions and uses thereof |
EP2083024A1 (en) | 2008-01-24 | 2009-07-29 | Afton Chemical Corporation | Olefin copolymer dispersant VI improver and lubricant compositions and uses thereof |
EP2090642A1 (en) | 2008-02-08 | 2009-08-19 | Infineum International Limited | Engine lubrication |
US20090233822A1 (en) * | 2008-03-11 | 2009-09-17 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
DE102009012567A1 (en) | 2008-03-11 | 2009-10-01 | Afton Chemical Corp. | Clutch-only transmission fluid useful for lubrication comprises oil formulated with additive components having metal detergent, phosphorus-based wear preventative, phosphorylated and boronated dispersant, sulfurized extreme pressure agent |
US8546311B2 (en) | 2008-03-11 | 2013-10-01 | Volkswagen Aktiengesellsschaft | Method for lubricating a clutch-only automatic transmission component requiring lubrication |
DE102009001301A1 (en) | 2008-03-11 | 2009-09-24 | Volkswagen Ag | Method for lubricating a component only for the clutch of an automatic transmission, which requires lubrication |
US8703669B2 (en) | 2008-03-11 | 2014-04-22 | Afton Chemical Corporation | Ultra-low sulfur clutch-only transmission fluids |
WO2009119831A1 (en) | 2008-03-28 | 2009-10-01 | 富士フイルム株式会社 | Composition and method for forming coating film |
EP2107102A2 (en) | 2008-04-04 | 2009-10-07 | Afton Chemical Corporation | A succinimide lubricity additive for diesel fuel |
US20090249683A1 (en) * | 2008-04-04 | 2009-10-08 | Schwab Scott D | Succinimide lubricity additive for diesel fuel and a method for reducing wear scarring in an engine |
US8690968B2 (en) * | 2008-04-04 | 2014-04-08 | Afton Chemical Corporation | Succinimide lubricity additive for diesel fuel and a method for reducing wear scarring in an engine |
US8455568B2 (en) | 2008-04-25 | 2013-06-04 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US20090270531A1 (en) * | 2008-04-25 | 2009-10-29 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US7883638B2 (en) | 2008-05-27 | 2011-02-08 | Dober Chemical Corporation | Controlled release cooling additive compositions |
US8591747B2 (en) | 2008-05-27 | 2013-11-26 | Dober Chemical Corp. | Devices and methods for controlled release of additive compositions |
US8702995B2 (en) | 2008-05-27 | 2014-04-22 | Dober Chemical Corp. | Controlled release of microbiocides |
EP2133406A1 (en) * | 2008-06-09 | 2009-12-16 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition for internal combustion engine |
US20110098378A1 (en) * | 2008-06-26 | 2011-04-28 | Xiaorong Wang | Rubber compositions including metal-functionalized polyisobutylene derivatives and methods for preparing such compositions |
US8546464B2 (en) | 2008-06-26 | 2013-10-01 | Bridgestone Corporation | Rubber compositions including metal-functionalized polyisobutylene derivatives and methods for preparing such compositions |
WO2010005947A2 (en) | 2008-07-11 | 2010-01-14 | Innospec Fuel Specialties, LLC | Fuel composition with enhanced low temperature properties |
JP2010047747A (en) * | 2008-07-22 | 2010-03-04 | Sanyo Chem Ind Ltd | Lubricant additive and lubricant composition |
US20100075876A1 (en) * | 2008-09-24 | 2010-03-25 | David John Claydon | Fuel compositions |
US8709108B2 (en) | 2008-09-24 | 2014-04-29 | Afton Chemical Corporation | Fuel compositions |
US20100081588A1 (en) * | 2008-09-30 | 2010-04-01 | Chevron Oronite Company Llc | Lubricating oil compositions |
US9029304B2 (en) | 2008-09-30 | 2015-05-12 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
US8153566B2 (en) | 2008-09-30 | 2012-04-10 | Cherron Oronite Company LLC | Lubricating oil compositions |
US20100081594A1 (en) * | 2008-09-30 | 2010-04-01 | Chevron Oronite Company Llc | Lubricating oil additive composition and method of making the same |
EP3127992A1 (en) | 2008-10-10 | 2017-02-08 | The Lubrizol Corporation | Additives to reduce metal pick-up in fuels |
EP3486300A1 (en) | 2008-10-10 | 2019-05-22 | The Lubrizol Corporation | Additives to reduce metal pick-up in fuels |
US20100160193A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | Additive composition and method of making the same |
US8748359B2 (en) | 2008-12-22 | 2014-06-10 | Chevron Oronite Company Llc | Post-treated additive composition and method of making the same |
EP2199377A1 (en) | 2008-12-22 | 2010-06-23 | Infineum International Limited | Additives for fuel oils |
US8859473B2 (en) | 2008-12-22 | 2014-10-14 | Chevron Oronite Company Llc | Post-treated additive composition and method of making the same |
US20100160194A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | Post-treated additive composition and method of making the same |
WO2010074996A2 (en) | 2008-12-22 | 2010-07-01 | Chevron Oronite Company Llc | A post-treated additive composition and method of making the same |
US20100160192A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | lubricating oil additive composition and method of making the same |
US20100206260A1 (en) * | 2009-02-18 | 2010-08-19 | Chevron Oronite Company Llc | Method for preventing exhaust valve seat recession |
WO2010096472A2 (en) | 2009-02-18 | 2010-08-26 | Chevron Oronite Company Llc | Method for preventing exhaust valve seat recession |
US8969273B2 (en) | 2009-02-18 | 2015-03-03 | Chevron Oronite Company Llc | Lubricating oil compositions |
US9394499B2 (en) | 2009-02-25 | 2016-07-19 | Innospec Limited | Methods relating to fuel compositions |
US9085740B2 (en) | 2009-02-25 | 2015-07-21 | Innospec Limited | Methods relating to fuel compositions |
EP2644684A1 (en) | 2009-02-25 | 2013-10-02 | Innospec Limited | Methods and uses relating to fuel compositions |
US20100234621A1 (en) * | 2009-03-12 | 2010-09-16 | Schertzer Bryan M | Process for reacting an alpha, beta-unsaturated dicarboxylic acid compound with an ethylenically unsaturated hydrocarbon |
US8242287B2 (en) | 2009-03-12 | 2012-08-14 | Nalco Company | Process for reacting an α, β-unsaturated dicarboxylic acid compound with an ethylenically unsaturated hydrocarbon |
WO2010104738A1 (en) | 2009-03-12 | 2010-09-16 | Nalco Company | An improved process for reacting an a, b-unsaturated dicarboxylic acid compound with an ethylenically unsaturated hydrocarbon |
US10308593B2 (en) | 2009-03-18 | 2019-06-04 | Infineum International Limited | Additives for fuel oils |
EP2236590A1 (en) | 2009-04-01 | 2010-10-06 | Infineum International Limited | Lubricating oil composition |
WO2010115594A1 (en) | 2009-04-07 | 2010-10-14 | Infineum International Limited | Marine engine lubrication |
EP3381998A1 (en) | 2009-05-15 | 2018-10-03 | The Lubrizol Corporation | Quaternary ammonium ester salts |
WO2010136822A2 (en) | 2009-05-29 | 2010-12-02 | Innospec Limited | Method and use |
WO2010139994A1 (en) | 2009-06-01 | 2010-12-09 | Innospec Limited | Improvements in efficiency |
US20120260876A1 (en) * | 2009-06-01 | 2012-10-18 | Innospec Limited | Method of increasing fuel efficiency |
EP3587458A1 (en) | 2009-06-16 | 2020-01-01 | Chevron Phillips Chemical Company LP | Compositions comprising polyalphaolefins |
WO2010147993A1 (en) | 2009-06-16 | 2010-12-23 | Chevron Phillips Chemical Company Lp | Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends |
US8389609B2 (en) | 2009-07-01 | 2013-03-05 | Bridgestone Corporation | Multiple-acid-derived metal soaps incorporated in rubber compositions and method for incorporating such soaps in rubber compositions |
US20110039994A1 (en) * | 2009-07-01 | 2011-02-17 | Xiaorong Wang | Multiple-Acid-Derived Metal Soaps Incorporated In Rubber Compositions And Method For Incorporating Such Soaps In Rubber Compositions |
EP2290040A1 (en) | 2009-07-31 | 2011-03-02 | Chevron Japan Ltd. | Friction modifier and transmission oil |
EP3272840A1 (en) | 2009-07-31 | 2018-01-24 | Chevron Japan Ltd. | Friction modifier and transmission oil |
EP2290041A2 (en) | 2009-08-24 | 2011-03-02 | Infineum International Limited | A lubricating oil composition |
EP2913387A1 (en) | 2009-09-02 | 2015-09-02 | Chevron Oronite Company LLC | Natural gas engine lubricating oil compositions |
US20110060062A1 (en) * | 2009-09-10 | 2011-03-10 | Bridgestone Corporation | Compositions and method for making hollow nanoparticles from metal soaps |
US9803060B2 (en) | 2009-09-10 | 2017-10-31 | Bridgestone Corporation | Compositions and method for making hollow nanoparticles from metal soaps |
DE202009013309U1 (en) | 2009-10-05 | 2010-03-04 | Afton Chemical Corp. | Fuel and fuel compositions |
EP2169034A2 (en) | 2009-10-05 | 2010-03-31 | Afton Chemical Corporation | Fuel compositions |
US20110105371A1 (en) * | 2009-11-05 | 2011-05-05 | Afton Chemical Corporation | Olefin copolymer vi improvers and lubricant compositions and uses thereof |
EP2325291A1 (en) | 2009-11-05 | 2011-05-25 | Afton Chemical Corporation | Olefin Copolymer VI improvers and lubricant compositions and uses thereof |
US8415284B2 (en) | 2009-11-05 | 2013-04-09 | Afton Chemical Corporation | Olefin copolymer VI improvers and lubricant compositions and uses thereof |
WO2011059626A1 (en) | 2009-11-10 | 2011-05-19 | The Lubrizol Corporation | Lubricant system clean-up compositions and methods thereof |
US8486877B2 (en) | 2009-11-18 | 2013-07-16 | Chevron Oronite Company Llc | Alkylated hydroxyaromatic compound substantially free of endocrine disruptive chemicals |
US20110118160A1 (en) * | 2009-11-18 | 2011-05-19 | Chevron Oronite Company Llc | Alkylated hydroxyaromatic compound substantially free of endocrine disruptive chemicals |
US8709984B2 (en) | 2009-12-15 | 2014-04-29 | Chevron Oronite Company Llc | Lubricating oil compositions |
US9062273B2 (en) | 2009-12-15 | 2015-06-23 | Chevron Oronite Company Llc | Lubricating oil compositions containing titanium complexes |
US20110143980A1 (en) * | 2009-12-15 | 2011-06-16 | Chevron Oronite Company Llc | Lubricating oil compositions containing titanium complexes |
US20110143979A1 (en) * | 2009-12-15 | 2011-06-16 | Chevron Oronite Company Llc | Lubricating oil compositions |
US8969265B2 (en) | 2009-12-15 | 2015-03-03 | Chevron Oronite Company Llc | Lubricating oil compositions |
EP3447111A1 (en) | 2010-03-10 | 2019-02-27 | Innospec Limited | Fuel composition comprising detergent and quaternary ammonium salt additive |
EP2966151A1 (en) | 2010-03-10 | 2016-01-13 | Innospec Limited | Fuel composition comprising detergent and quaternary ammonium salt additive |
WO2011110860A1 (en) | 2010-03-10 | 2011-09-15 | Innospec Limited | Fuel composition comprising detergent and quaternary ammonium salt additive |
US8933001B2 (en) | 2010-03-31 | 2015-01-13 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
US9150811B2 (en) | 2010-03-31 | 2015-10-06 | Cherron Oronite Company LLC | Method for improving copper corrosion performance |
US8841243B2 (en) | 2010-03-31 | 2014-09-23 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
US8901050B2 (en) | 2010-03-31 | 2014-12-02 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
US8993496B2 (en) | 2010-03-31 | 2015-03-31 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
WO2011126641A2 (en) | 2010-03-31 | 2011-10-13 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
WO2011126642A2 (en) | 2010-03-31 | 2011-10-13 | Chevron Oronite Company Llc | Method for improving copper corrosion performance |
US9932536B2 (en) | 2010-05-10 | 2018-04-03 | Innospec Limited | Gasoline composition, method and use |
US9493720B2 (en) | 2010-05-10 | 2016-11-15 | Innospec Limited | Gasoline composition, method and use |
WO2011141731A1 (en) | 2010-05-10 | 2011-11-17 | Innospec Limited | Composition, method and use |
WO2011143051A1 (en) | 2010-05-12 | 2011-11-17 | The Lubrizol Corporation | Tartaric acid derivatives in hths fluids |
WO2011146289A1 (en) | 2010-05-18 | 2011-11-24 | The Lubrizol Corporation | Methods and compositions that provide detergency |
EP3705555A1 (en) | 2010-05-25 | 2020-09-09 | The Lubrizol Corporation | Method to provide power gain in an engine |
WO2011149799A1 (en) | 2010-05-25 | 2011-12-01 | The Lubrizol Corporation | Method to provide power gain in an engine |
WO2011159742A1 (en) | 2010-06-15 | 2011-12-22 | The Lubrizol Corporation | Methods of removing deposits in oil and gas applications |
US8318643B2 (en) | 2010-06-29 | 2012-11-27 | Cherron Oronite Technology B.V. | Trunk piston engine lubricating oil compositions |
EP2402421A2 (en) | 2010-06-29 | 2012-01-04 | Chevron Oronite Technology B.V. | Trunk Piston Engine Lubricating Oil Compositions |
EP3070153A1 (en) | 2010-09-07 | 2016-09-21 | The Lubrizol Corporation | Hydroxychroman derivatives as antioxidants |
WO2012033668A1 (en) | 2010-09-07 | 2012-03-15 | The Lubrizol Corporation | Hydroxychroman derivatives as engine oil antioxidants |
WO2012051075A2 (en) | 2010-10-12 | 2012-04-19 | Chevron Oronite Company Llc | Lubricating composition containing multifunctional borated hydroxylated amine salt of a hindered phenolic acid |
WO2012051064A2 (en) | 2010-10-12 | 2012-04-19 | Chevron Oronite Company Llc | Lubricating composition containing multifunctional hydroxylated amine salt of a hindered phenolic acid |
US8796192B2 (en) | 2010-10-29 | 2014-08-05 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
US8703680B2 (en) | 2010-11-24 | 2014-04-22 | Chevron Oronite Company Llc | Lubricating composition containing friction modifier blend |
WO2012076896A1 (en) | 2010-12-09 | 2012-06-14 | Innospec Limited | Improvements in or relating to additives for fuels and lubricants |
US8716202B2 (en) | 2010-12-14 | 2014-05-06 | Chevron Oronite Company Llc | Method for improving fluorocarbon elastomer seal compatibility |
WO2012084906A1 (en) | 2010-12-22 | 2012-06-28 | Rhodia Operations | Fuel additive composition containing a dispersion of iron particles and a detergent |
EP3348626A1 (en) | 2010-12-22 | 2018-07-18 | Rhodia Operations | Use of a fuel additive composition based on a dispersion of particles of iron and a detergent |
US8802755B2 (en) | 2011-01-18 | 2014-08-12 | Bridgestone Corporation | Rubber compositions including metal phosphate esters |
EP2479245A1 (en) | 2011-01-19 | 2012-07-25 | Afton Chemical Corporation | Fuel additives and gasoline containing the additives |
WO2012099734A2 (en) | 2011-01-21 | 2012-07-26 | Chevron Oronite Company Llc | Improved process for preparation of low molecular weight molybdenum succinimide complexes |
US8476460B2 (en) | 2011-01-21 | 2013-07-02 | Chevron Oronite Company Llc | Process for preparation of low molecular weight molybdenum succinimide complexes |
US8426608B2 (en) | 2011-01-21 | 2013-04-23 | Chevron Oronite Company Llc | Process for preparation of high molecular weight molybdenum succinimide complexes |
WO2012099736A2 (en) | 2011-01-21 | 2012-07-26 | Chevron Oronite Company Llc | Improved process for preparation of high molecular weight molybdenum succinimide complexes |
US9523057B2 (en) | 2011-02-22 | 2016-12-20 | Afton Chemical Corporation | Fuel additives to maintain optimum injector performance |
US8702968B2 (en) | 2011-04-05 | 2014-04-22 | Chevron Oronite Technology B.V. | Low viscosity marine cylinder lubricating oil compositions |
WO2012162020A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing antioxidants |
WO2012162027A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012162219A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012162282A1 (en) | 2011-05-26 | 2012-11-29 | The Lubrizol Corporation | Stabilized blends containing friction modifiers |
WO2012177529A1 (en) | 2011-06-21 | 2012-12-27 | The Lubrizol Corporation | Lubricating compositions containing salts of hydrocarbyl substituted acylating agents |
WO2013003406A1 (en) | 2011-06-29 | 2013-01-03 | Exxonmobil Research And Engineering Company | Low viscosity engine oil with superior engine wear protection |
WO2013003392A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
US8586520B2 (en) | 2011-06-30 | 2013-11-19 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
WO2013003394A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyetheramines |
WO2013003405A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyalkylene glycol mono ethers |
WO2013043332A1 (en) | 2011-09-23 | 2013-03-28 | The Lubrizol Corporation | Quaternary ammonium salts in heating oils |
WO2013055480A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | Low viscosity engine oil compositions |
WO2013055482A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | Lubricating compositions |
WO2013055481A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | High efficiency engine oil compositions |
WO2013066915A1 (en) | 2011-11-01 | 2013-05-10 | Exxonmobil Research And Engineering Company | Lubricants with improved low-temperature fuel economy |
US8933002B2 (en) | 2011-11-10 | 2015-01-13 | Chevron Oronite Company Llc | Lubricating oil compositions |
WO2013074498A1 (en) | 2011-11-14 | 2013-05-23 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
EP2604676A1 (en) | 2011-12-16 | 2013-06-19 | Chevron Oronite Technology B.V. | Trunk piston engine lubricating oil compositions |
US9206374B2 (en) | 2011-12-16 | 2015-12-08 | Chevron Oronite Sas | Trunk piston engine lubricating oil compositions |
WO2013096532A1 (en) | 2011-12-22 | 2013-06-27 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
US9249091B2 (en) | 2011-12-27 | 2016-02-02 | Chevron Oronite Company Llc | Post-treated sulfurized salt of an alkyl-substituted hydroxyaromatic composition |
WO2013123102A2 (en) | 2012-02-17 | 2013-08-22 | The Lubrizol Corporation | Lubricating composition including esterified copolymer and low dispersant levels suitable for driveline applications |
WO2013123160A1 (en) | 2012-02-17 | 2013-08-22 | The Lubrizol Corporation | Mixtures of olefin-ester copolymer with polyolefin as viscosity modifier |
WO2013181318A1 (en) | 2012-06-01 | 2013-12-05 | Exxonmobil Research And Engineering Company | Lubricant compostions and processes for preparing same |
US8703666B2 (en) | 2012-06-01 | 2014-04-22 | Exxonmobil Research And Engineering Company | Lubricant compositions and processes for preparing same |
WO2014008121A1 (en) | 2012-07-02 | 2014-01-09 | Exxonmobil Research And Engineering Company | Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets |
US9228149B2 (en) | 2012-07-02 | 2016-01-05 | Exxonmobil Research And Engineering Company | Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets |
WO2014047017A1 (en) | 2012-09-24 | 2014-03-27 | The Lubrizol Corporation | Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer |
EP3489332A1 (en) | 2012-10-23 | 2019-05-29 | The Lubrizol Corporation | Diesel detergent without a low molecular weight penalty |
WO2014066344A1 (en) | 2012-10-23 | 2014-05-01 | The Lubrizol Corporation | Diesel detergent without a low molecular weight penalty |
US9487729B2 (en) | 2012-10-24 | 2016-11-08 | Exxonmobil Chemical Patents Inc. | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
WO2014066444A1 (en) | 2012-10-24 | 2014-05-01 | Exxonmobil Research And Engineering Comapny | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
US9670341B2 (en) | 2012-11-02 | 2017-06-06 | Bridgestone Corporation | Rubber compositions comprising metal carboxylates and processes for making the same |
EP2727984A1 (en) | 2012-11-02 | 2014-05-07 | Infineum International Limited | Marine engine lubrication |
EP2735603A1 (en) | 2012-11-21 | 2014-05-28 | Infineum International Limited | Marine engine lubrication |
WO2014107315A1 (en) | 2013-01-04 | 2014-07-10 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
EP2765179A1 (en) | 2013-02-07 | 2014-08-13 | Infineum International Limited | Marine engine lubrication |
WO2014137800A1 (en) | 2013-03-07 | 2014-09-12 | The Lubrizol Corporation | Ion tolerant corrosion inhibitors and inhibitor combinations for fuels |
US9149814B2 (en) | 2013-03-13 | 2015-10-06 | Ecolab Usa Inc. | Composition and method for improvement in froth flotation |
WO2014158533A1 (en) | 2013-03-14 | 2014-10-02 | Exxonmobil Research And Engineering Company | Lubricating composition providing high wear resistance |
US9434906B2 (en) | 2013-03-25 | 2016-09-06 | Chevron Oronite Company, Llc | Marine diesel engine lubricating oil compositions |
WO2014193692A1 (en) | 2013-05-28 | 2014-12-04 | The Lubrizol Corporation | Asphaltene inhibition |
US10669507B2 (en) | 2013-09-23 | 2020-06-02 | Chevron Japan Ltd. | Fuel economy engine oil composition |
EP2851413A1 (en) | 2013-09-23 | 2015-03-25 | Chevron Japan Ltd. | Fuel economy engine oil composition |
EP2851412A1 (en) | 2013-09-24 | 2015-03-25 | Infineum International Limited | Marine engine lubrication |
WO2015050690A1 (en) | 2013-10-03 | 2015-04-09 | Exxonmobil Research And Engineering Company | Compositions with improved varnish control properties |
US9909079B2 (en) | 2013-10-18 | 2018-03-06 | Chevron Oronite Company Llc | Lubricating oil composition for protection of silver bearings in medium speed diesel engines |
US9062271B2 (en) | 2013-10-30 | 2015-06-23 | Chevron Oronite Technology B.V. | Process for preparing an overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition |
US10669506B2 (en) | 2013-11-06 | 2020-06-02 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US10364403B2 (en) | 2013-11-06 | 2019-07-30 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US10457884B2 (en) | 2013-11-18 | 2019-10-29 | Afton Chemical Corporation | Mixed detergent composition for intake valve deposit control |
WO2015073296A2 (en) | 2013-11-18 | 2015-05-21 | Russo Joseph M | Mixed detergent composition for intake valve deposit control |
US9708549B2 (en) | 2013-12-18 | 2017-07-18 | Chevron Phillips Chemical Company Lp | Method for making polyalphaolefins using aluminum halide catalyzed oligomerization of olefins |
WO2015095336A1 (en) | 2013-12-18 | 2015-06-25 | Chevron Phillips Chemical Company Lp | Method for making polyolefins using aluminum halide catalyzed oligomerization of olefins |
WO2015099821A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2015099907A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Low viscosity ester lubricant and method for using |
WO2015099820A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2015099819A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
US9885004B2 (en) | 2013-12-23 | 2018-02-06 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
US10208269B2 (en) | 2013-12-23 | 2019-02-19 | Exxonmobil Research And Engineering Company | Low viscosity ester lubricant and method for using |
US9506008B2 (en) | 2013-12-23 | 2016-11-29 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
US10190072B2 (en) | 2013-12-23 | 2019-01-29 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2015134129A2 (en) | 2014-03-05 | 2015-09-11 | The Lubrizol Corporation | Emulsifier components and methods of using the same |
EP3415589A1 (en) | 2014-04-29 | 2018-12-19 | Infineum International Limited | Lubricating oil compositions |
EP2940110A1 (en) | 2014-04-29 | 2015-11-04 | Infineum International Limited | Lubricating oil compositions |
WO2015171292A1 (en) | 2014-05-08 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing engine knock and pre-ignition |
US9896634B2 (en) | 2014-05-08 | 2018-02-20 | Exxonmobil Research And Engineering Company | Method for preventing or reducing engine knock and pre-ignition |
WO2015171980A1 (en) | 2014-05-09 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition |
WO2015171981A1 (en) | 2014-05-09 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition |
US10519394B2 (en) | 2014-05-09 | 2019-12-31 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness |
WO2015171978A1 (en) | 2014-05-09 | 2015-11-12 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition |
WO2015183455A1 (en) | 2014-05-29 | 2015-12-03 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US9506009B2 (en) | 2014-05-29 | 2016-11-29 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
EP3536766A1 (en) | 2014-05-30 | 2019-09-11 | The Lubrizol Corporation | Epoxide quaternized quaternary ammonium salts |
WO2015184276A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Epoxide quaternized quaternary ammonium salts |
WO2015183908A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
EP3511396A1 (en) | 2014-05-30 | 2019-07-17 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
EP3524663A1 (en) | 2014-05-30 | 2019-08-14 | The Lubrizol Corporation | Imidazole containing quaternary ammonium salts |
WO2015184301A2 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Coupled quaternary ammonium salts |
WO2015184251A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Branched amine containing quaternary ammonium salts |
WO2015184280A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Imidazole containing quaternary ammonium salts |
EP3521404A1 (en) | 2014-05-30 | 2019-08-07 | The Lubrizol Corporation | Low molecular weight imide containing quaternary ammonium salts |
WO2015183916A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
EP3517593A1 (en) | 2014-05-30 | 2019-07-31 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
WO2015184247A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight imide containing quaternary ammonium salts |
WO2015184254A1 (en) | 2014-05-30 | 2015-12-03 | The Lubrizol Corporation | High molecular weight amide/ester containing quaternary ammonium salts |
EP3514220A1 (en) | 2014-05-30 | 2019-07-24 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
WO2016018462A1 (en) | 2014-07-31 | 2016-02-04 | Chevron U.S.A. Inc. | Sae 15w-30 lubricating oil composition having improved oxidative stability |
US10689593B2 (en) | 2014-08-15 | 2020-06-23 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oil compositions for turbomachines |
US10450525B2 (en) | 2014-08-27 | 2019-10-22 | Chevron Oronite Company Llc | Process for alaknolamide synthesis |
US9944877B2 (en) | 2014-09-17 | 2018-04-17 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
WO2016043944A1 (en) | 2014-09-17 | 2016-03-24 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
US9957459B2 (en) | 2014-11-03 | 2018-05-01 | Exxonmobil Research And Engineering Company | Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof |
WO2016073149A1 (en) | 2014-11-03 | 2016-05-12 | Exxonmobil Research And Engineering Company | Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof |
US10920161B2 (en) | 2014-11-03 | 2021-02-16 | Exxonmobil Research And Engineering Company | Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof |
EP4089158A1 (en) | 2014-11-14 | 2022-11-16 | Chevron Oronite Technology B.V. | Low sulfur marine distillate fuel trunk piston engine oil composition |
EP3020790A1 (en) | 2014-11-14 | 2016-05-18 | Chevron Oronite Technology B.V. | Trunk piston engine oil composition for low sulfur marine distillate fueled engines |
US9506007B2 (en) | 2014-11-14 | 2016-11-29 | Chevron Oronite Technology B.V. | Low sulfur marine distillate fuel trunk piston engine oil composition |
US9879202B2 (en) | 2014-12-04 | 2018-01-30 | Infineum International Limited | Marine engine lubrication |
US10364404B2 (en) | 2014-12-04 | 2019-07-30 | Infineum International Limited | Marine engine lubrication |
EP3029133A1 (en) | 2014-12-04 | 2016-06-08 | Infineum International Limited | Marine engine lubrication |
WO2016106211A1 (en) | 2014-12-24 | 2016-06-30 | Exxonmobil Research And Engineering Company | Methods for authentication and identification of petroleum products |
WO2016106214A1 (en) | 2014-12-24 | 2016-06-30 | Exxonmobil Research And Engineering Company | Methods for determining condition and quality of petroleum products |
WO2016109322A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing encapsulated microscale particles |
WO2016109325A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing encapsulated microscale particles |
WO2016109382A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US10781397B2 (en) | 2014-12-30 | 2020-09-22 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US10000717B2 (en) | 2014-12-30 | 2018-06-19 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing encapsulated microscale particles |
US10066184B2 (en) | 2014-12-30 | 2018-09-04 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing encapsulated microscale particles |
US10000721B2 (en) | 2014-12-30 | 2018-06-19 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
WO2016109376A1 (en) | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US9926509B2 (en) | 2015-01-19 | 2018-03-27 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection and solubility |
US9528074B2 (en) | 2015-02-13 | 2016-12-27 | Chevron Oronite Technology B.V. | Lubricating oil compositions with enhanced piston cleanliness |
US9528071B2 (en) | 2015-02-13 | 2016-12-27 | Chevron Oronite Technology B.V. | Lubricating oil compositions with enhanced piston cleanliness |
US10138438B2 (en) | 2015-02-18 | 2018-11-27 | Chevron Oronite Technology B.V. | Low sulfur marine distillate fuel trunk piston engine oil composition |
US10150930B2 (en) | 2015-02-18 | 2018-12-11 | Chevron Oronite Technology B.V. | Low sulfur marine distillate fuel trunk piston engine oil composition |
WO2016140998A1 (en) | 2015-03-04 | 2016-09-09 | Huntsman Petrochemical Llc | Novel organic friction modifiers |
EP3072948A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil compositions for construction machines |
EP3072949A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil composition for construction machines |
US10457887B2 (en) | 2015-05-19 | 2019-10-29 | Chevron Oronite Technology B.V. | Trunk piston engine oil composition |
WO2016191409A1 (en) | 2015-05-28 | 2016-12-01 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
US10119093B2 (en) | 2015-05-28 | 2018-11-06 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
WO2016200606A1 (en) | 2015-06-09 | 2016-12-15 | Exxonmobil Research And Engineering Company | Inverse micellar compositions containing lubricant additives |
WO2017007670A1 (en) | 2015-07-07 | 2017-01-12 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
US10119090B2 (en) | 2015-07-07 | 2018-11-06 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
WO2017013257A1 (en) | 2015-07-22 | 2017-01-26 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US10407640B2 (en) | 2015-07-22 | 2019-09-10 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US9732300B2 (en) | 2015-07-23 | 2017-08-15 | Chevron Phillipa Chemical Company LP | Liquid propylene oligomers and methods of making same |
US10435491B2 (en) | 2015-08-19 | 2019-10-08 | Chevron Phillips Chemical Company Lp | Method for making polyalphaolefins using ionic liquid catalyzed oligomerization of olefins |
EP3135750A1 (en) | 2015-08-26 | 2017-03-01 | Infineum International Limited | Lubricating oil compositions |
WO2017079123A1 (en) | 2015-11-02 | 2017-05-11 | Lubrizol Oilfield Solutions, Inc. | Lubricant for water based drilling fluid |
WO2017083042A1 (en) | 2015-11-09 | 2017-05-18 | The Lubrizol Corporation | Using quaternary amine additives to improve water separation |
WO2017096159A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight amide/ester containing quaternary ammonium salts having short hydrocarbon tails |
WO2017096175A1 (en) | 2015-12-02 | 2017-06-08 | The Lubrizol Corporation | Ultra-low molecular weight imide containing quaternary ammonium salts having short hydrocarbon tails |
US10316712B2 (en) | 2015-12-18 | 2019-06-11 | Exxonmobil Research And Engineering Company | Lubricant compositions for surface finishing of materials |
US10550335B2 (en) | 2015-12-28 | 2020-02-04 | Exxonmobil Research And Engineering Company | Fluxed deasphalter rock fuel oil blend component oils |
US10947464B2 (en) | 2015-12-28 | 2021-03-16 | Exxonmobil Research And Engineering Company | Integrated resid deasphalting and gasification |
US10590360B2 (en) | 2015-12-28 | 2020-03-17 | Exxonmobil Research And Engineering Company | Bright stock production from deasphalted oil |
WO2017117178A1 (en) | 2015-12-28 | 2017-07-06 | Exxonmobil Research And Engineering Company | Bright stock production from deasphalted oil |
US10550341B2 (en) | 2015-12-28 | 2020-02-04 | Exxonmobil Research And Engineering Company | Sequential deasphalting for base stock production |
US10647925B2 (en) | 2015-12-28 | 2020-05-12 | Exxonmobil Research And Engineering Company | Fuel components from hydroprocessed deasphalted oils |
US10808185B2 (en) | 2015-12-28 | 2020-10-20 | Exxonmobil Research And Engineering Company | Bright stock production from low severity resid deasphalting |
US10377962B2 (en) | 2016-02-26 | 2019-08-13 | Exxonmobil Research And Engineering Company | Lubricant compositions containing controlled release additives |
WO2017146896A1 (en) | 2016-02-26 | 2017-08-31 | Exxonmobil Research And Engineering Company | Lubricant compositions containing controlled release additives |
US10377961B2 (en) | 2016-02-26 | 2019-08-13 | Exxonmobil Research And Engineering Company | Lubricant compositions containing controlled release additives |
WO2017146897A1 (en) | 2016-02-26 | 2017-08-31 | Exxonmobil Research And Engineering Company | Lubricant compositions containing controlled release additives |
WO2017172254A1 (en) | 2016-03-31 | 2017-10-05 | Exxonmobil Research And Engineering Company | Lubricant compositions |
US9951290B2 (en) | 2016-03-31 | 2018-04-24 | Exxonmobil Research And Engineering Company | Lubricant compositions |
US10494579B2 (en) | 2016-04-26 | 2019-12-03 | Exxonmobil Research And Engineering Company | Naphthene-containing distillate stream compositions and uses thereof |
WO2017223306A1 (en) | 2016-06-22 | 2017-12-28 | Lubrizol Oilfield Solutions, Inc. | Gas hydrate inhibitors |
WO2018013249A1 (en) | 2016-07-12 | 2018-01-18 | Chevron Phillips Chemical Company Lp | Decene oligomers |
US10647626B2 (en) | 2016-07-12 | 2020-05-12 | Chevron Phillips Chemical Company Lp | Decene oligomers |
WO2018013181A1 (en) | 2016-07-13 | 2018-01-18 | Chevron Oronite Company Llc | Synergistic lubricating oil composition containing mixture of antioxidants |
US10077410B2 (en) | 2016-07-13 | 2018-09-18 | Chevron Oronite Company Llc | Synergistic lubricating oil composition containing mixture of antioxidants |
WO2018026982A1 (en) | 2016-08-03 | 2018-02-08 | Exxonmobil Research And Engineering Company | Lubricating engine oil for improved wear protection and fuel efficiency |
US10640725B2 (en) | 2016-08-05 | 2020-05-05 | Rutgers, The State University Of New Jersey | Thermocleavable friction modifiers and methods thereof |
WO2018027227A1 (en) | 2016-08-05 | 2018-02-08 | Rutgers, The State University Of New Jersey | Thermocleavable friction modifiers and methods thereof |
WO2018039571A1 (en) | 2016-08-25 | 2018-03-01 | Evonik Degussa Gmbh | Amine alkenyl substituted succinimide reaction product fuel additives, compositions, and methods |
US10899985B2 (en) | 2016-08-25 | 2021-01-26 | Evonik Operations Gmbh | Amine alkenyl substituted succinimide reaction product fuel additives, compositions, and methods |
WO2018041732A1 (en) | 2016-08-29 | 2018-03-08 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US11427780B2 (en) | 2016-09-12 | 2022-08-30 | The Lubrizol Corporation | Total base number boosters for marine diesel engine lubricating compositions |
WO2018048781A1 (en) | 2016-09-12 | 2018-03-15 | The Lubrizol Corporation | Total base number boosters for marine diesel engine lubricating compositions |
US10479956B2 (en) | 2016-09-20 | 2019-11-19 | Exxonmobil Research And Engineering Company | Non-newtonian engine oil with superior engine wear protection and fuel economy |
WO2018057377A1 (en) | 2016-09-20 | 2018-03-29 | Exxonmobil Research And Engineering Company | Non-newtonian engine oil with superior engine wear protection and fuel economy |
WO2018067908A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Low conductivity lubricating oils for electric and hybrid vehicles |
WO2018067903A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains |
WO2018067902A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Lubricating oil compositions for electric vehicle powertrains |
WO2018067906A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | High conductivity lubricating oils for electric and hybrid vehicles |
WO2018067905A1 (en) | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains |
WO2018069460A1 (en) | 2016-10-12 | 2018-04-19 | Chevron Oronite Technology B.V. | Marine diesel lubricant oil compositions |
WO2018075147A1 (en) | 2016-10-17 | 2018-04-26 | The Lubrizol Corporation | Acid emulsifier technology for continuous mixed emulsified acid systems |
WO2018073268A1 (en) | 2016-10-18 | 2018-04-26 | Chevron Oronite Technology B.V. | Marine diesel lubricant oil compositions |
WO2018077621A1 (en) | 2016-10-25 | 2018-05-03 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a dispersant |
US10781394B2 (en) | 2016-10-25 | 2020-09-22 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a Mannich condensation product |
US10344245B2 (en) | 2016-10-25 | 2019-07-09 | Chevron Oronite Technology B.V. | Lubricating oil compositions comprising a biodiesel fuel and a dispersant |
WO2018101282A1 (en) | 2016-11-30 | 2018-06-07 | Chevron Japan Ltd. | Lubricating oil compositions for motorcycles |
US10829708B2 (en) | 2016-12-19 | 2020-11-10 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines |
WO2018118477A1 (en) | 2016-12-19 | 2018-06-28 | Exxonmobil Research And Engineering Company | Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines |
US10647936B2 (en) | 2016-12-30 | 2020-05-12 | Exxonmobil Research And Engineering Company | Method for improving lubricant antifoaming performance and filterability |
WO2018125956A1 (en) | 2016-12-30 | 2018-07-05 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oil compositions for turbomachines |
WO2018144166A1 (en) | 2017-02-01 | 2018-08-09 | Exxonmobil Research And Engineering Company | Lubricating engine oil and method for improving engine fuel efficiency |
WO2018144167A1 (en) | 2017-02-01 | 2018-08-09 | Exxonmobil Research And Engineering Company | Lubricating engine oil and method for improving engine fuel efficiency |
US10793801B2 (en) | 2017-02-06 | 2020-10-06 | Exxonmobil Chemical Patents Inc. | Low transition temperature mixtures and lubricating oils containing the same |
US10487289B2 (en) | 2017-02-21 | 2019-11-26 | Exxonmobil Research And Engineering Company | Lubricating oil compositions and methods of use thereof |
WO2018156304A1 (en) | 2017-02-21 | 2018-08-30 | Exxonmobil Research And Engineering Company | Lubricating oil compositions and methods of use thereof |
EP3369802A1 (en) | 2017-03-01 | 2018-09-05 | Infineum International Limited | Improvements in and relating to lubricating compositions |
US10273425B2 (en) | 2017-03-13 | 2019-04-30 | Afton Chemical Corporation | Polyol carrier fluids and fuel compositions including polyol carrier fluids |
EP3375848A1 (en) | 2017-03-13 | 2018-09-19 | Afton Chemical Corporation | Polyol carrier fluids and fuel compositions including polyol carrier fluids |
US10240102B2 (en) | 2017-03-16 | 2019-03-26 | Chevron Phillips Chemical Company, Lp | Lubricant compositions containing hexene-based oligomers |
WO2018170110A1 (en) | 2017-03-16 | 2018-09-20 | Chevron Phillips Chemical Company Lp | Lubricant compositions containing hexene-based oligomers |
US10876062B2 (en) | 2017-03-24 | 2020-12-29 | Exxonmobil Chemical Patents Inc. | Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same |
US10738258B2 (en) | 2017-03-24 | 2020-08-11 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency and energy efficiency |
WO2018175830A1 (en) | 2017-03-24 | 2018-09-27 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency and energy efficiency |
US10858610B2 (en) | 2017-03-24 | 2020-12-08 | Exxonmobil Chemical Patents Inc. | Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same |
US10808196B2 (en) | 2017-03-28 | 2020-10-20 | Exxonmobil Chemical Patents Inc. | Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same |
US11186791B2 (en) | 2017-03-30 | 2021-11-30 | Innospec Limited | Composition, method and use |
US11174442B2 (en) | 2017-03-30 | 2021-11-16 | Innospec Limited | Fuel compositions, methods and uses relating to quaternary ammonium salt additives for fuel used in spark ignition engines |
US11015137B2 (en) | 2017-03-30 | 2021-05-25 | Innospec Limited | Composition, method and use |
WO2018197312A1 (en) | 2017-04-27 | 2018-11-01 | Shell Internationale Research Maatschappij B.V. | Lubricating composition |
WO2018211466A1 (en) | 2017-05-19 | 2018-11-22 | Chevron Oronite Company Llc | Dispersants, method of making, and using same |
WO2019003176A1 (en) | 2017-06-30 | 2019-01-03 | Chevron Oronite Company Llc | Lubricating oil magnesium detergents and method of making and using same |
WO2019003177A1 (en) | 2017-06-30 | 2019-01-03 | Chevron Oronite Company Llc | Lubricating engine oil compositions containing detergent compounds |
EP3421576A1 (en) | 2017-06-30 | 2019-01-02 | Infineum International Limited | Refinery antifoulant process |
WO2019014092A1 (en) | 2017-07-13 | 2019-01-17 | Exxonmobil Research And Engineering Company | Continuous process for the manufacture of grease |
WO2019012450A1 (en) | 2017-07-14 | 2019-01-17 | Chevron Oronite Company Llc | Lubricating oil compositions containing non-sulfur-phosphorus containing zinc compounds and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
WO2019012447A1 (en) | 2017-07-14 | 2019-01-17 | Chevron Oronite Company Llc | Lubricating oil compositions containing zirconium and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
WO2019018145A1 (en) | 2017-07-21 | 2019-01-24 | Exxonmobil Research And Engineering Company | Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil |
WO2019028310A1 (en) | 2017-08-04 | 2019-02-07 | Exxonmobil Research And Engineering Company | Novel formulation for lubrication of hyper compressors providing improved pumpability under high-pressure conditions |
WO2019053635A1 (en) | 2017-09-13 | 2019-03-21 | Chevron U.S.A. Inc. | Method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines with cobalt-containing lubricant |
US11401482B2 (en) | 2017-09-13 | 2022-08-02 | Chevron Oronite Company Llc | Method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines with cobalt-containing lubricant |
WO2019055291A1 (en) | 2017-09-18 | 2019-03-21 | Exxonmobil Research And Engineering Company | Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability |
WO2019060144A1 (en) | 2017-09-22 | 2019-03-28 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with viscosity and deposit control |
EP3461877A1 (en) | 2017-09-27 | 2019-04-03 | Infineum International Limited | Improvements in and relating to lubricating compositions |
WO2019069197A1 (en) | 2017-10-06 | 2019-04-11 | Chevron Japan Ltd. | Passenger car lubricating oil compositions for fuel economy |
WO2019077462A1 (en) | 2017-10-20 | 2019-04-25 | Chevron Japan Ltd. | Low viscosity lubricating oil composition |
US11214754B2 (en) | 2017-10-20 | 2022-01-04 | Chevron Japan Ltd. | Low viscosity lubricating oil composition |
WO2019089181A1 (en) | 2017-10-30 | 2019-05-09 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
WO2019089180A1 (en) | 2017-10-30 | 2019-05-09 | Exxonmobil Research And Engineering Company | Lubricating oil compositions having improved cleanliness and wear performance |
WO2019089177A1 (en) | 2017-10-30 | 2019-05-09 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
US10738262B2 (en) | 2017-10-30 | 2020-08-11 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine wear protection |
WO2019090038A1 (en) | 2017-11-03 | 2019-05-09 | Exxonmobil Research And Engineering Company | Lubricant compositions with improved performance and methods of preparing and using the same |
WO2019094019A1 (en) | 2017-11-09 | 2019-05-16 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness |
WO2019103808A1 (en) | 2017-11-22 | 2019-05-31 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with oxidative stability in diesel engines |
WO2019108723A1 (en) | 2017-11-30 | 2019-06-06 | The Lubrizol Corporation | Hindered amine terminated succinimide dispersants and lubricating compositions containing same |
WO2019112711A1 (en) | 2017-12-04 | 2019-06-13 | Exxonmobil Research And Enginerring Company | Method for preventing or reducing low speed pre-ignition |
EP3495462A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
US10731103B2 (en) | 2017-12-11 | 2020-08-04 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
WO2019118115A1 (en) | 2017-12-15 | 2019-06-20 | Exxonmobil Research And Engineering Company | Lubricating oil compositions containing microencapsulated additives |
WO2019133411A1 (en) | 2017-12-28 | 2019-07-04 | Exxonmobil Research And Engineering Company | Flat viscosity fluids and lubricating oils based on liquid crystal base stocks |
WO2019133407A1 (en) | 2017-12-28 | 2019-07-04 | Exxonmobil Research And Engineering Company | Low traction/energy efficient liquid crystal base stocks |
WO2019133409A1 (en) | 2017-12-28 | 2019-07-04 | Exxonmobil Research And Engineering Company | Friction and wear reduction using liquid crystal base stocks |
US10774286B2 (en) | 2017-12-29 | 2020-09-15 | Exxonmobil Research And Engineering Company | Grease compositions with improved performance and methods of preparing and using the same |
WO2019133191A1 (en) | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Lubrication of oxygenated diamond-like carbon surfaces |
WO2019133218A1 (en) | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with wear and sludge control |
WO2019133255A1 (en) | 2017-12-29 | 2019-07-04 | Exxonmobil Research And Engineering Company | Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same |
WO2019142059A1 (en) | 2018-01-19 | 2019-07-25 | Chevron Oronite Company Llc | Ultra low ash lubricating oil compositions |
US10704009B2 (en) | 2018-01-19 | 2020-07-07 | Chevron Oronite Company Llc | Ultra low ash lubricating oil compositions |
WO2019162744A1 (en) | 2018-02-22 | 2019-08-29 | Chevron Japan Ltd. | Lubricating oils for automatic transmissions |
US10604719B2 (en) | 2018-02-22 | 2020-03-31 | Chevron Japan Ltd. | Lubricating oils for automatic transmissions |
WO2019166977A1 (en) | 2018-03-02 | 2019-09-06 | Chevron Oronite Technology B.V. | Lubricating oil composition providing wear protection at low viscosity |
EP4079828A1 (en) | 2018-03-29 | 2022-10-26 | Innospec Limited | Composition, method and use |
WO2019217058A1 (en) | 2018-05-11 | 2019-11-14 | Exxonmobil Research And Engineering Company | Method for improving engine fuel efficiency |
WO2019224647A1 (en) | 2018-05-25 | 2019-11-28 | Chevron U.S.A. Inc. | Method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines with manganese-containing lubricant |
US10844307B2 (en) | 2018-05-25 | 2020-11-24 | Chevron Oronite Company Llc | Method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines with manganesemanganese-containing lubricant |
WO2019240965A1 (en) | 2018-06-11 | 2019-12-19 | Exxonmobil Research And Engineering Company | Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same |
WO2019244020A1 (en) | 2018-06-22 | 2019-12-26 | Chevron Oronite Company Llc | Lubricating oil compositions |
US11773341B2 (en) | 2018-06-22 | 2023-10-03 | Chevron Oronite Company Llc | Lubricating oil compositions |
WO2020023430A1 (en) | 2018-07-23 | 2020-01-30 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel |
WO2020023437A1 (en) | 2018-07-24 | 2020-01-30 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with engine corrosion protection |
EP3604484A1 (en) | 2018-08-03 | 2020-02-05 | Afton Chemical Corporation | Lubricity additives for fuels |
WO2020068439A1 (en) | 2018-09-27 | 2020-04-02 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oils with improved oxidative stability and traction performance |
WO2020096804A1 (en) | 2018-11-05 | 2020-05-14 | Exxonmobil Research And Engineering Company | Lubricating oil compositions having improved cleanliness and wear performance |
WO2020100045A1 (en) | 2018-11-16 | 2020-05-22 | Chevron Japan Ltd. | Low viscosity lubricating oil compositions |
US11193084B2 (en) | 2018-11-16 | 2021-12-07 | Chevron Japan Ltd. | Low viscosity lubricating oil compositions |
WO2020112338A1 (en) | 2018-11-28 | 2020-06-04 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with improved deposit resistance and methods thereof |
WO2020123440A1 (en) | 2018-12-10 | 2020-06-18 | Exxonmobil Research And Engineering Company | Method for improving oxidation and deposit resistance of lubricating oils |
WO2020131441A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having improved performance |
WO2020132164A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with viscosity control |
WO2020131310A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Method for improving high temperature antifoaming performance of a lubricating oil |
WO2020131440A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having calcium sulfonate and polyurea thickeners |
WO2020132166A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Lubricating oil compositions with antioxidant formation and dissipation control |
WO2020131439A1 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers |
WO2020131515A2 (en) | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Lubricant compositions with improved wear control |
EP3760696A1 (en) | 2018-12-20 | 2021-01-06 | Infineum International Limited | Oil anti-foulant and/or asphaltene agglomeration process |
EP3835392A1 (en) | 2018-12-20 | 2021-06-16 | Infineum International Limited | Hydrocarbon marine fuel oil |
WO2020139333A1 (en) | 2018-12-26 | 2020-07-02 | Exxonmobil Research And Engineering Company | Formulation approach to extend the high temperature performance of lithium complex greases |
EP3680312A1 (en) | 2019-01-11 | 2020-07-15 | Afton Chemical Corporation | Oxazoline modified dispersants |
WO2020150123A1 (en) | 2019-01-17 | 2020-07-23 | The Lubrizol Corporation | Traction fluids |
WO2020176171A1 (en) | 2019-02-28 | 2020-09-03 | Exxonmobil Research And Engineering Company | Low viscosity gear oil compositions for electric and hybrid vehicles |
WO2020257375A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257374A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257373A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257379A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257377A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
US11092393B1 (en) | 2019-06-19 | 2021-08-17 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257368A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257376A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257370A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
US10712105B1 (en) | 2019-06-19 | 2020-07-14 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257378A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020257371A1 (en) | 2019-06-19 | 2020-12-24 | Exxonmobil Research And Engineering Company | Heat transfer fluids and methods of use |
WO2020264534A2 (en) | 2019-06-27 | 2020-12-30 | Exxonmobil Research And Engineering Company | Method for reducing solubilized copper levels in wind turbine gear oils |
EP3778841A1 (en) | 2019-08-15 | 2021-02-17 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
WO2021154497A1 (en) | 2020-01-30 | 2021-08-05 | Exxonmobil Research And Engineering Company | Sulfur-free, ashless, low phosphorus lubricant compositions with improved oxidation stability |
WO2021181285A1 (en) | 2020-03-11 | 2021-09-16 | Chevron Oronite Company Llc | Lubricating oil compositions with improved oxidative performance comprising alkylated diphenylamine antioxidant and carboxylate detergents |
WO2021181286A1 (en) | 2020-03-11 | 2021-09-16 | Chevron Oronite Company Llc | Lubricating oil compositions with improved oxidative performance comprising alkylated diphenylamine antioxidant and sulfonate detergents |
WO2021194813A1 (en) | 2020-03-27 | 2021-09-30 | Exxonmobil Research And Engineering Company | Monitoring health of heat transfer fluids for electric systems |
WO2021229517A1 (en) | 2020-05-14 | 2021-11-18 | Chevron Japan Ltd. | Lubricating oil composition including comb polymethacrylate and ethylene-based olefin copolymer viscosity modifiers |
WO2022010606A1 (en) | 2020-07-09 | 2022-01-13 | Exxonmobil Research And Engineering Company | Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection |
WO2022018681A1 (en) | 2020-07-23 | 2022-01-27 | Chevron Oronite Company Llc | Succinimide dispersants post-treated with aromatic glycidyl ethers that exhibit good soot handling performance |
WO2022018682A1 (en) | 2020-07-23 | 2022-01-27 | Chevron Oronite Company Llc | Succinimide dispersants post-treated with heteroaromatic glycidyl ethers that exhibit good soot handling performance |
WO2022054023A1 (en) | 2020-09-14 | 2022-03-17 | Chevron Japan Ltd. | Lubricating oil containing alkyl phosphonic acid |
WO2022072962A1 (en) | 2020-09-30 | 2022-04-07 | Exxonmobil Research And Engineering Company | Low friction and low traction lubricant compositions useful in dry clutch motorcycles |
WO2022074547A1 (en) | 2020-10-05 | 2022-04-14 | Chevron Japan Ltd. | Friction modifier system |
WO2022099291A1 (en) | 2020-11-06 | 2022-05-12 | Exxonmobil Research And Engineering Company | Engine oil lubricant compositions and methods for making same with steel corrosion protection |
WO2022112899A1 (en) | 2020-11-25 | 2022-06-02 | Chevron Japan Ltd. | Lubricating oil compositions |
US11760952B2 (en) | 2021-01-12 | 2023-09-19 | Ingevity South Carolina, Llc | Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods |
WO2022243947A1 (en) | 2021-05-20 | 2022-11-24 | Chevron Japan Ltd. | Low ash lubricating oil composition |
EP4180505A1 (en) | 2021-11-15 | 2023-05-17 | Infineum International Limited | Improvements in marine fuels |
US12031099B2 (en) | 2021-11-15 | 2024-07-09 | Infineum International Limited | Marine fuels |
WO2023111550A1 (en) | 2021-12-14 | 2023-06-22 | Innospec Limited | Methods and uses relating to fuel compositions |
WO2023122405A1 (en) | 2021-12-21 | 2023-06-29 | ExxonMobil Technology and Engineering Company | Engine oil lubricant compostions and methods for making same with superior oil consumption |
WO2023144721A1 (en) | 2022-01-25 | 2023-08-03 | Chevron Japan Ltd. | Lubricating oil composition |
WO2023156989A1 (en) | 2022-02-21 | 2023-08-24 | Chevron Oronite Company Llc | Lubricating oil composition |
WO2024030899A1 (en) | 2022-08-01 | 2024-02-08 | Chevron Oronite Company Llc | Lubricating oil composition for corrosion control |
US11873461B1 (en) | 2022-09-22 | 2024-01-16 | Afton Chemical Corporation | Extreme pressure additives with improved copper corrosion |
US12134742B2 (en) | 2022-09-30 | 2024-11-05 | Afton Chemical Corporation | Fuel composition |
US12024686B2 (en) | 2022-09-30 | 2024-07-02 | Afton Chemical Corporation | Gasoline additive composition for improved engine performance |
EP4353804A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Functionalized c4 to c5 olefin polymers and lubricant compositions containing such |
EP4353805A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Lubricant composition containing metal alkanoate |
EP4357443A1 (en) | 2022-10-18 | 2024-04-24 | Infineum International Limited | Lubricating oil compositions |
WO2024126998A1 (en) | 2022-12-12 | 2024-06-20 | Innospec Limited | Composition, method and use |
EP4397738A1 (en) | 2023-01-03 | 2024-07-10 | Infineum International Limited | Method for reduction of abnormal combustion events |
US11884890B1 (en) | 2023-02-07 | 2024-01-30 | Afton Chemical Corporation | Gasoline additive composition for improved engine performance |
US11795412B1 (en) | 2023-03-03 | 2023-10-24 | Afton Chemical Corporation | Lubricating composition for industrial gear fluids |
EP4428212A1 (en) | 2023-03-10 | 2024-09-11 | Infineum International Limited | Asphaltene deposition control |
WO2024220396A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for wet clutch |
WO2024220394A1 (en) | 2023-04-17 | 2024-10-24 | Chevron Oronite Company Llc | Friction modifier for automatic transmission fluid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3272746A (en) | Lubricating composition containing an acylated nitrogen compound | |
US3219666A (en) | Derivatives of succinic acids and nitrogen compounds | |
US3087936A (en) | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound | |
US3444170A (en) | Process which comprises reacting a carboxylic intermediate with an amine | |
US3366569A (en) | Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide | |
US3454607A (en) | High molecular weight carboxylic compositions | |
US3374174A (en) | Composition | |
US3390082A (en) | Lubricants containing metal-free dispersants and inhibitors | |
US3448048A (en) | Lubricant containing a high molecular weight acylated amine | |
US3787374A (en) | Process for preparing high molecular weight carboxylic compositions | |
US3306908A (en) | Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds | |
US4151173A (en) | Acylated polyoxyalkylene polyamines | |
US3630904A (en) | Lubricating oils and fuels containing acylated nitrogen additives | |
US3433744A (en) | Reaction product of phosphosulfurized hydrocarbon and alkylene polycarboxylic acid or acid derivatives and lubricating oil containing the same | |
US3346493A (en) | Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product | |
US3519564A (en) | Heterocyclic nitrogen-sulfur compositions and lubricants containing them | |
US3509052A (en) | Lubricating compositions | |
US3338832A (en) | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
USRE26433E (en) | Amide and imide derivatives of metal salts of substituted succinic acids | |
US3980569A (en) | Dispersants and process for their preparation | |
US3804763A (en) | Dispersant compositions | |
US3879308A (en) | Lubricants and fuels containing ester-containing compositions | |
US4454059A (en) | Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants | |
US3281428A (en) | Reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3957854A (en) | Ester-containing compositions |