US20230183334A1 - Therapeutic antibody formulation - Google Patents
Therapeutic antibody formulation Download PDFInfo
- Publication number
- US20230183334A1 US20230183334A1 US18/176,844 US202318176844A US2023183334A1 US 20230183334 A1 US20230183334 A1 US 20230183334A1 US 202318176844 A US202318176844 A US 202318176844A US 2023183334 A1 US2023183334 A1 US 2023183334A1
- Authority
- US
- United States
- Prior art keywords
- pharmaceutical formulation
- amino acid
- seq
- acid sequence
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39591—Stabilisation, fragmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
- A61K47/183—Amino acids, e.g. glycine, EDTA or aspartame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0021—Intradermal administration, e.g. through microneedle arrays, needleless injectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
Definitions
- the present invention is in the field of medicine. More particularly, the present invention relates to aqueous pharmaceutical formulations comprising therapeutic antibodies that are suitable for subcutaneous (“SQ”), intramuscular (“IM”), and/or intraperitoneal (“IP”) administration.
- SQL subcutaneous
- IM intramuscular
- IP intraperitoneal
- Administration of therapeutic antibodies via SQ, IP and/or IM administration is both common and advantageous.
- Such routes of administration allow the therapeutic antibody to be delivered in a short period of time and allow patients to self-administer therapeutic antibodies without visiting a medical practitioner.
- formulating therapeutic antibodies into aqueous pharmaceutical formulations suitable for SQ, IM and/or IP administration is both challenging and unpredictable. Additionally, undesirable injection-associated pain, even after a syringe needle is removed, has been reported with such routes of administration and can impair patient compliance with therapy.
- Aqueous pharmaceutical formulations must provide stability to the therapeutic antibody in solution while, at the same time, maintaining the therapeutic antibody's functional characteristics essential for therapeutic efficacy such as target affinity, selectivity and potency.
- the aqueous pharmaceutical formulation must also be safe for administration to, and well tolerated by, patients as well as being suitable for manufacturing and storage.
- Formulating high concentrations of therapeutic antibodies is even more complex. For example, increased rates of antibody degradation, cleavage, clipping, high molecular weight aggregation, dimerization, trimerization, precipitation pH shift, turbidity, solution color change, changes in charge, isomerization, oxidation and/or deamination (all of which affect the therapeutic antibody concentration, functionality and efficacy) have been reported for aqueous formulations of highly concentrated therapeutic antibodies.
- Another known challenge when formulating high concentrations of therapeutic antibodies is an increase in viscosity which can negatively affect SQ, IM and/or IP administration of an aqueous pharmaceutical formulation. Additionally, injection-associated pain has been reported with formulations having increased viscosity.
- some therapeutic antibodies such as ixekizumab possess charge distributions leading to high levels of intermolecular interactions (e.g., as may be shown by Dynamic Light Scattering), phase separation, gelation and precipitation, making solubility of the molecule in aqueous solution, especially at high concentrations, very challenging to balance.
- Charge distribution of such antibodies may also manifest in an isoelectric point preventing formulation at neutral pH.
- some therapeutic antibodies have a polarity, or dipole moment, such that they are only stable in aqueous formulations within narrow, non-neutral, pH windows. Injection-associated pain has been reported, however, for acidic (e.g., ⁇ pH 6.5) pharmaceutical formulations of therapeutic antibodies.
- Such therapeutic antibodies such as ixekizumab which possesses an isoelectric point of 8.1 (requiring acidic pH formulation)
- Ixekizumab is a highly specific anti-IL17A antagonistic antibody, as described, for example, in U.S. Pat. No. 7,838,638.
- Commercially marketed under the tradename TALTZ® ixekizumab is administered subcutaneously to patients in a highly concentrated (about 80 mg/mL) pharmaceutical formulation having an acidic pH (about 5.7).
- the commercial pharmaceutical formulation of ixekizumab as described in U.S. Pat. No. 9,376,491, also includes high concentrations of citrate buffer (about 20 mM) and NaCl (about 200 mM).
- citrate buffer about 20 mM
- NaCl about 200 mM
- pharmaceutical formulations having acidic pH and high concentrations of NaCl and/or citrate buffer have been associated with injection-associated pain and patients have reported injection-associated pain after injecting the commercial pharmaceutical formulation of ixekizumab.
- Injection-associated pain of aqueous pharmaceutical formulations comprising therapeutic antibodies is a complex, multifactorial issue.
- each individual component, and/or concentration, ratio and characteristic thereof, of an aqueous pharmaceutical formulation can impact injection-associated pain associated with a therapeutic.
- individual components (and/or concentrations, ratios and characteristics thereof) can impact the stability, functional characteristics, manufacturability and/or tolerability of a formulated therapeutic antibody in an aqueous pharmaceutical formulation.
- a specific formulation adjustment may provide a beneficial impact to a given aspect of the formulation, the same adjustment may also negatively impact other aspects of the formulation.
- an aqueous pharmaceutical formulation of therapeutic antibodies suitable for SQ, IM and/or IP administration and which is well tolerated by patients, exhibiting a therapeutically beneficial level of injection-associated pain More particularly, there is a need for such aqueous pharmaceutical formulation for highly concentrated therapeutic antibodies possessing an isoelectric point not compatible with neutral pH in solution, requiring aqueous formulation at an acidic pH. Even more particularly, there is a need for an aqueous pharmaceutical formulation of ixekizumab suitable for SQ, IM and/or IP administration and which is well tolerated by patients, exhibiting an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab (as described in U.S. Pat. No. 9,376,491). Such aqueous pharmaceutical formulation must also provide stability for the therapeutic antibody and preserve the properties of the therapeutic antibody essential for therapeutic efficacy. Such aqueous pharmaceutical formulations must also be amendable to manufacturing, preferably having an extended shelf life.
- aqueous pharmaceutical formulations provided herein satisfy the aforementioned needs in a surprising and unexpected way. More particularly, the aqueous pharmaceutical formulations provided herein are bufferless aqueous pharmaceutical formulations, suitable for SQ, IM and/or IP administration of high concentrations of ixekizumab, while also preserving the functional characteristics of ixekizumab essential for therapeutic efficacy. Additionally, the aqueous pharmaceutical formulations provided herein are well tolerated by patients, exhibiting an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and providing a therapeutically favorable level of injection-associated pain.
- the present disclosure provides a bufferless, aqueous pharmaceutical formulation for administering SQ, IM or IP a high concentration of a therapeutic antibody to a patient with a therapeutically favorable level of injection-associated pain
- the aqueous pharmaceutical formulation comprising a therapeutic antibody at a concentration of greater than 50 mg/mL, 60 mg/mL, 70 mg/mL, 80 mg/mL, 90 mg/mL, 100 mg/mL, 110 mg/mL or 120 mg/mL; sucrose in a concentration of 234 mM+/ ⁇ 10%; and a surfactant in a concentration between 0.005% w/v+/ ⁇ 10% to 0.05% w/v+/ ⁇ 10%, wherein, the pharmaceutical formulation is an aqueous solution at a pH between 5.2 to 6.5.
- the surfactant is polysorbate 20 or polysorbate 80. In further specific embodiments, the surfactant is polysorbate 80.
- the bufferless aqueous pharmaceutical formulation is substantially free of an ionic tonicity excipient. In some embodiments, the pharmaceutical formulation is substantially free of L-amino acid excipients.
- the antibody possesses an isoelectric point not compatible with neutral pH in solution. In some such embodiments, the antibody possesses an isoelectric point of ⁇ 7.5 and in even further embodiments, the antibody possesses an isoelectric point of ⁇ 8.0.
- the therapeutic antibody is an anti-IL-17A antibody comprising a LCVR having the amino acid sequence of SEQ ID NO.7 and a HCVR having the amino acid sequence of SEQ ID NO.8.
- the anti-IL17A antibody comprises a light chain (LC) having the amino acid sequence of SEQ ID NO.9 and a heavy chain (HC) having the amino acid sequence of SEQ ID NO.10.
- an aqueous pharmaceutical formulation of the present disclosure wherein the aqueous pharmaceutical formulation upon SQ, IP and/or IM administration to a patient exhibits a reduced risk of, and/or a, therapeutically favorable level of injection-associated pain.
- the anti-ILIA antibody comprises a light chain variable region (LCVR) comprising complementarity determining regions (CDRs) LCDR1, LCDR2, and LCDR3 and a heavy chain variable region (HCVR) comprising CDRs HCDR1, HCDR2, and HCDR3, wherein LCDR1 has the amino acid sequence of SEQ ID NO.1, LCDR2 has the amino acid sequence of SEQ ID NO.2, LCDR3 has the amino acid sequence of SEQ ID NO.3, HCDR1 has the amino acid sequence of SEQ ID NO.4, HCDR2 has the amino acid sequence of SEQ ID NO.5, and HCDR3 has the amino acid sequence of SEQ ID NO.6.
- LCVR light chain variable region
- CDRs complementarity determining regions
- HCVR heavy chain variable region
- the aqueous pharmaceutical formulation is an aqueous solution at a pH of between 5.2 to 6.5, and comprises the anti-IL17A antibody in a concentration of greater than 60 mg/mL+/ ⁇ 10%,70 mg/mL+/ ⁇ 10%, 80 mg/mL+/ ⁇ 10%, 88 mg/mL+/ ⁇ 10%, 100 mg/mL+/ ⁇ 10%, 120 mg/mL+/ ⁇ 10% or 160 mg/mL+/ ⁇ 10%; sucrose in a concentration of 234 mM+/ ⁇ 10%; and a surfactant in a concentration of 0.005+/ ⁇ 10% to 0.05+/ ⁇ 10% % w/v.
- the bufferless aqueous pharmaceutical formulation is substantially free of an ionic tonicity excipient. In some embodiments, the pharmaceutical formulation is substantially free of L-amino acid excipients.
- the surfactant is one of polysorbate 20 or 80. In more specific embodiments, the surfactant is polysorbate 80. In even more specific embodiments, the polysorbate 80 is at a concentration of 0.03% w/v+/ ⁇ 10%. According to such embodiments, the bufferless aqueous pharmaceutical formulation is suitable for SQ, IP and/or IM administration to a patient and exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- the aqueous pharmaceutical formulations provided herein comprise an antibody in a concentration of about 80 mg/mL (e.g., +/ ⁇ 10%); sucrose in a concentration of about 234 mM (e.g., +/ ⁇ 10%); and polysorbate 80 in a concentration of about 0.03% w/v (e.g., +/ ⁇ 10%), and the pharmaceutical formulation is substantially free of an ionic tonicity excipient, substantially free of L-amino acid excipients, and is at a pH of about 5.7 (e.g., +/ ⁇ 10%), and the antibody is an anti-IL17A antibody comprising a LCVR having the amino acid sequence of SEQ ID NO.7 and a HCVR having the amino acid sequence of SEQ ID NO.8.
- the anti-IL17A antibody comprising a heavy chain having the amino acid sequence of SEQ ID NO. 10 and a light chain having the amino acid sequence of SEQ ID NO. 9.
- the aqueous pharmaceutical formulation is suitable for SQ, IP and/or IM administration to a patient and exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- a system for subcutaneously delivering an aqueous pharmaceutical formulation to a patient in need of treatment includes a device having a chamber, a drive mechanism operatively coupled to the chamber, and a needle, the chamber being capable of storing a liquid, the needle having a bore in fluid communication with an outlet of the chamber to receive a liquid from the chamber, and the drive mechanism being operative to force the transfer of a liquid from the chamber into the bore of the needle.
- a pharmaceutical formulation of the present disclosure disposed within the chamber and the inner wall of the chamber having a silicone oil coating at an amount of less than about 0.4 mg.
- the inner wall of the chamber has a silicone oil coating at an amount of about 0.2 mg or an amount of less than about 0.2 mg.
- the patient is in need of treatment of RA, Ps, GenPs, Pruritus, AS, PA, PPP, HS or MM.
- the present disclosure provides a method for reducing injection-associated pain and/or providing a therapeutically favorable level of injection-associated pain experienced by a patient at the time of, or shortly after, SQ, IM and/or IP injection of an aqueous pharmaceutical formulation comprising a therapeutic antibody, the method comprising administering to a patient an aqueous pharmaceutical formulation of the present disclosure.
- the present disclosure provides a method of delivering a therapeutic antibody to a patient with a therapeutically favorable level of injection-associated pain, wherein the method comprises administering to a patient a pharmaceutical formulation of the present disclosure, wherein the method provides a therapeutically favorable level of injection-associated pain.
- the present disclosure provides an improved method of delivering a therapeutic antibody to a patient, wherein the improvement comprises a reduction in, and/or providing a therapeutically favorable level of, injection-associated pain with SQ, IM or IP administration of an aqueous pharmaceutical formulation, the method comprising administering to a patient an aqueous pharmaceutical formulation of the present disclosure.
- the reduction in injection-associated pain comprises a reduction from commercially available formulations and/or providing a therapeutically favorable level of injection-associated pain.
- a therapeutically favorable level of injection-associated pain may comprise a VAS score of less than 30 mm or a VAS score of less than 20 mm.
- the present disclosure provides an improved method for administering an anti-IL17A antibody to a patient in need thereof, wherein the improvement comprises a reduction in the level of injection-associated pain upon the administration of a SQ, IM or IP injection of an aqueous pharmaceutical formulation, the method comprising administering to the patient an aqueous pharmaceutical formulation of the present disclosure, wherein said step of administering provides an improved level of injection-associated pain and/or provides a therapeutically favorable level of injection-associated pain.
- the aqueous pharmaceutical formulation consists essentially of an aqueous pharmaceutical formulation of the present disclosure.
- the reduction in the level of injection-associated pain comprises providing an improved level of injection-associated pain (for example, a reduction in VAS score compared to the commercial formulation of ixekizumab, i.e., the citrate and NaCl formulation exemplified by the control formulation of Table 2).
- the method provides a therapeutically favorable level of injection-associated pain comprising a VAS score of less than 30 mm or less than 20 mm.
- the anti-IL17A antibody is ixekizumab and, according to some such embodiments, the improved level of injection-associated pain comprises a reduction in VAS score compared to the commercial formulation of ixekizumab (the citrate and NaCl formulation exemplified by the control formulation of Table 2).
- the aqueous pharmaceutical formulation is administered by SQ injection.
- an improved method of treating at least one of PsO, PsA and AxSpa comprising a reduction in injection-associated pain upon the SQ administration of an aqueous pharmaceutical formulation comprising an anti-IL17A antibody, the method comprising administering an aqueous pharmaceutical formulation of the present disclosure, wherein said step of administering provides an improved level of injection-associated pain and/or provides a therapeutically favorable level of injection-associated pain.
- a therapeutically favorable level of injection-associated pain is provided comprising a VAS score of less than 30 mm or less than 20 mm.
- the anti-IL17A antibody is ixekizumab and, according to some such embodiments, the improved level of injection-associated pain comprises a reduction in VAS score compared to the commercial formulation of ixekizumab (the citrate and NaCl formulation exemplified by the control formulation of Table 2).
- the present disclosure also provides an aqueous pharmaceutical formulation of the present disclosure for use in therapy.
- the present disclosure provides an aqueous pharmaceutical formulation of the present disclosure for use in the treatment of rheumatoid arthritis (RA), psoriasis (Ps), genital psoriasis (GenPs), pruritus, ankylosing spondylitis (AS), psoriatic arthritis (PA), palmoplantar pustulosis (PPP), Hidradenitis suppurativa (HS) or multiple myeloma (MM).
- RA rheumatoid arthritis
- Ps psoriasis
- GenPs genital psoriasis
- AS ankylosing spondylitis
- PA palmoplantar pustulosis
- HS Hidradenitis suppurativa
- MM multiple myeloma
- a use of an aqueous pharmaceutical formulation of the present disclosure for the manufacturer of a medicament for the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM is provided.
- use of such aqueous pharmaceutical formulations is suitable for SQ, IP and/or IM administration to a patient and exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- the present disclosure provides a method of treating RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM comprising administering to a patient in need thereof an effective amount of an aqueous pharmaceutical formulation of the present disclosure, wherein the aqueous pharmaceutical formulation comprises an anti-IL17A antibody.
- such method of treating includes administering subcutaneously, to the patient, an initial dose of the aqueous pharmaceutical formulation, on day 0, followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient at every four week interval thereafter, wherein the aqueous pharmaceutical formulation administered to the patient at every four week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
- such method of treating includes administering subcutaneously, to the patient, an initial dose of the aqueous pharmaceutical formulation, on day 0, followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient at every two week interval thereafter, wherein the aqueous pharmaceutical formulation administered to the patient at every two week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
- such method of treating includes administering subcutaneously, to the patient, an initial dose of the aqueous pharmaceutical formulation, on day 0, followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient on each of days 14, 28, 42, 56, 70 and 84, and followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient at every four week interval thereafter, wherein the aqueous pharmaceutical formulation, administered to the patient at each of days 14, 28, 42, 56, 70 and 84, and every four week interval thereafter, comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
- the initial dose of the aqueous pharmaceutical formulation comprises about 160 mg of the anti-IL17A antibody.
- the about 160 mg initial dose of the aqueous pharmaceutical formulation comprises two doses of the aqueous pharmaceutical formulation, each dose comprising about 80 mg of the anti-IL17A antibody.
- the aqueous pharmaceutical formulation exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- an aqueous pharmaceutical formulation comprising an anti-IL17A antibody for use in the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM wherein the pharmaceutical formulation is to be administered subcutaneously with an initial dose on day 0, followed by a dose every four weeks interval thereafter, wherein the pharmaceutical formulation to be administered at every four week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
- compositions disclosed herein comprising an anti-IL17A antibody for use in the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM wherein the pharmaceutical formulation is to be administered subcutaneously with an initial dose on day 0, followed by a dose every two weeks interval thereafter, wherein the pharmaceutical formulation to be administered at every two week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
- compositions disclosed herein comprising an anti-IL17A antibody for use in the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM wherein the pharmaceutical formulation is to be administered subcutaneously with an initial dose on day 0, followed by a dose on each of days 14, 28, 42, 56, 70 and 84, wherein the pharmaceutical formulation to be administered on each of days 14, 28, 42, 56, 70 and 84 after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
- the initial dose of the aqueous pharmaceutical formulation comprises about 160 mg of the anti-IL17A antibody.
- the about 160 mg initial dose of the aqueous pharmaceutical formulation comprises two doses of the aqueous pharmaceutical formulation, each dose comprising about 80 mg of the anti-IL17A antibody.
- the aqueous pharmaceutical formulations provided herein exhibit an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provide a therapeutically favorable level of injection-associated pain.
- aqueous pharmaceutical formulation or “pharmaceutical formulation” mean an aqueous solution having at least one therapeutic antibody capable of exerting a biological effect in a human, at least one inactive ingredient (e.g., excipient, surfactant, etc.) which, when combined with the therapeutic antibody, is suitable for therapeutic administration to a human.
- inactive ingredient e.g., excipient, surfactant, etc.
- the pharmaceutical formulations provided by the present disclosure are bufferless (i.e., do not comprise agents such as citrate buffer, histidine buffer, acetate buffer, or the like, or combinations thereof, which have acid-base conjugate components, for resisting pH change), aqueous, stable formulations wherein the degree of degradation, modification, aggregation, loss of biological activity and the like, of therapeutic antibodies therein, is acceptably controlled and does not increase unacceptably with time.
- antibody refers to an immunoglobulin G (IgG) molecule comprising two heavy chains (“HC”) and two light chains (“LC”) inter-connected by disulfide bonds.
- Each heavy chain is comprised of a heavy chain variable region (“HCVR”) and a heavy chain constant region (“CH”).
- Each light chain is comprised of a light chain variable region (“LCVR”) and a light chain constant region (“CL”).
- CDR complementarity determining regions
- FR framework regions
- Each HCVR and LCVR is composed of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the variable regions of each HC and LC contain a binding domain that interacts with an antigen.
- the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
- the antibodies are anti-IL17A antibodies.
- Interleukin 17A, or IL17A refers to cytokines of the IL17 cytokine family (also known as cytotoxic T-lymphocyte-associated antigen 8 (“CTLA8”)).
- IL17A cytokines exist as homodimeric complexes (e.g., IL17A/A) or as heterodimeric complexes in complex with another IL17 cytokine family member such as IL17F (e.g., IL17A/F).
- IL17A cytokines are believed to be produced primarily by effector T helper (Th17) cells and have been shown to induce secretion of pro-inflammatory cytokines such as IL-6, IL-8, IL-1 and TNF.
- Th17 effector T helper
- the homodimeric complex form of IL17A, IL17A/A has been shown to play a role in diseases such as psoriasis and psoriatic arthritis, both immune-related diseases associated with T cell dysregulation.
- anti-IL17A antibodies are antibodies that specifically bind and antagonize human IL17A by way of specificity for the A subunit (e.g., the A subunit of IL17A/F or one or both of the A subunits of IL17A/A).
- LCDR1 comprises the amino acid sequence of SEQ ID NO.1
- LCDR2 comprises the amino acid sequence of SEQ ID NO.2
- LCDR3 comprises the amino acid sequence of SEQ ID NO.3
- HCDR1 comprises the amino acid sequence of SEQ ID NO.4
- HCDR2 comprises the amino acid sequence of SEQ ID NO.5
- HCDR3 comprises the amino acid sequence of SEQ ID NO.6.
- the LCVR comprises the amino acid sequence of SEQ ID NO.7 and the HCVR comprises the amino acid sequence of SEQ ID NO.8.
- the LC comprises the amino acid sequence of SEQ ID NO.9 and the HC comprises the amino acid sequence of SEQ ID NO.10.
- An exemplary embodiment of an anti-IL17A antibody is ixekizumab, as described, for example, in U.S. Pat. No. 7,838,638.
- An additional example of an anti-IL17A antibody is secukinumab (marketed under the tradename)COSENTYX®), as described, for example, in U.S. Pat. No. 7,807,155.
- the terms “about” or “approximately”, when used in reference to a particular recited numerical value or range of values, means that the value may vary from the recited value by no more than 10% (e.g., +/ ⁇ 10%).
- the expression “about 100” includes 90 and 110 and all values in between (e.g., 91, 92, 93, 94, etc.).
- the terms “substantially free of” or “substantially devoid of” mean the presence of a given substance (e.g., ionic tonicity excipient) is below a limitation of detection for an assay used for detecting the presence of such substance.
- ionic tonicity excipient means an excipient that comprises an ionic compound (e.g., an electrolyte such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, arginine hydrochloride, or the like), which is distinct from the antibody and surfactant comprising an aqueous pharmaceutical formulation.
- an ionic tonicity excipient as is known in the field, may be used to adjust the osmotic pressure of a pharmaceutical formulation.
- L-amino acid excipients refers to L-amino acids which are added as either a part of a buffer (e.g., L-histidine in a histidine buffer; L-arginine in an arginine buffer, etc.) or as an excipient component of an aqueous pharmaceutical formulation (but does not refer to components of the therapeutic antibody).
- a buffer e.g., L-histidine in a histidine buffer; L-arginine in an arginine buffer, etc.
- an excipient component of an aqueous pharmaceutical formulation but does not refer to components of the therapeutic antibody.
- VAS visual analog scale
- VAS refers to an evaluation tool for assessing injection-associated pain experienced by a patient.
- VAS consists of a 100 mm contiguous scale, upon which a patient identifies their level of pain following injection.
- the VAS scoring extremes are “no pain at all” (e.g., 0) and “worst pain imaginable” (e.g., 100).
- Severity of pain may be categorized, according to the VAS tool, as mild pain ( ⁇ 30 mm); moderate pain (>30 mm- ⁇ 70 mm) and severe pain (>70 mm).
- injection-associated pain is in reference to acute pain experienced by a patient at the time of, or shortly after, injection of an aqueous pharmaceutical formulation.
- a desired property of a stable pharmaceutical formulation is being well tolerated by patients, for example, providing a therapeutically favorable level of injection-associated pain (e.g., a VAS score of ⁇ 30 mm and/or ⁇ 20 mm).
- a therapeutically favorable level of injection-associated pain e.g., a VAS score of ⁇ 30 mm and/or ⁇ 20 mm.
- the components, and concentrations and/or ratios thereof, of a pharmaceutical formulation may impact injection-associated pain experienced by the patient.
- treatment and/or “treating” and/or “treat” are intended to refer to all processes wherein there may be a total elimination, slowing or delaying, reduction in severity or frequency (e.g., of flares or episodes), interruption or stopping of the progression of disease and/or symptoms thereof, but does not require a total elimination of all disease symptoms.
- Treatment includes administration of an aqueous pharmaceutical formulation of the present disclosure for treatment of a disease in a human that would benefit from at least one of the above-listed processes, including: (a) inhibiting further progression of disease symptoms and effects, i.e., arresting its development; (b) relieving the disease, i.e., causing an elimination or regression of disease, disease symptoms or complications thereof; and (c) preventing or reducing the frequency of disease episodes or flares.
- the pharmaceutical formulations provided herein may be used in the treatment of at least one of RA, Ps, GenPs, AS, PA, PPP, HS or MM.
- the term “patient,” “subject” and “individual,” refers to a human. Unless otherwise noted, the subject is further characterized as having, being at risk of developing, or experiencing symptoms of a disease that would benefit from administration of a pharmaceutical formulation disclosed herein.
- an “effective amount” or “therapeutically effective amount” of a pharmaceutical formulation of the instant disclosure refers to an amount necessary (at dosages, frequency of administration and for periods of time for a particular means of administration) to achieve the desired therapeutic result.
- An effective amount of pharmaceutical formulation of the present disclosure may vary according to factors such as the disease state, age, sex, and weight of the subject and the ability of the pharmaceutical formulation of the present disclosure to elicit a desired response in the subject.
- An effective amount is also one in which any toxic or detrimental effects of the pharmaceutical formulation of the present disclosure are outweighed by the therapeutically beneficial effects.
- dose regimens for the treatment of a disease with a pharmaceutical formulation of the present disclosure.
- dose refers to an amount of a pharmaceutical formulation that is administered to a subject.
- dose regimen or “dosage regimen”, as generally known in the field and as may be referred to interchangeably herein, includes a treatment schedule for administering a set (i.e., series or sequence) of doses to be administered to a patient over a period of time.
- a dose regimen of the present disclosure may include an initial dose of an aqueous pharmaceutical formulation (for example, comprising an anti-IL17A antibody) of the present disclosure administered to a patient on the first day of treatment (e.g., Day 0).
- An initial dose may be referred to herein as a “loading dose”.
- a dose regimen of the present disclosure may include an initial period of treatment, sometimes referred to herein as an “induction period”, which follows the loading dose.
- a patient may be administered a dose (or doses) comprising a specific concentration of a therapeutic antibody (e.g., anti-IL17A antibody), at a given frequency of administration (e.g., every day, every 2 weeks, every 4 weeks, etc.), for a given duration of time (e.g., 4, 12 or 16 weeks).
- dose regimens of the present disclosure may include a period following the induction period, sometimes referred to herein as the “maintenance period”, in which a patient is administered a dose comprising a specific concentration of the therapeutic antibody, at a given frequency of administration (e.g., every 2 or 4 weeks, etc.).
- aqueous pharmaceutical formulations of the present disclosure may be administered to a patient via parenteral administration.
- Parenteral administration refers to the injection of a dose into the body by a sterile syringe or some other drug delivery system including an autoinjector or an infusion pump.
- Exemplary drug delivery systems for use with the aqueous pharmaceutical formulations of the present disclosure are described in the following references, the disclosures of which are expressly incorporated herein by reference in their entirety: U.S. Patent Publication No. 2014/0054883 to Lanigan et al., filed Mar. 7, 2013 and entitled “Infusion Pump Assembly”; U.S. Pat. No. 7,291,132 to DeRuntz et al., filed Feb.
- anti-IL17A antibody 80 mg/mL PS-80 0.03% w/v (0.3 mg/mL) Sucrose 234 mM (8% w/v) pH 5.7 *The anti-IL17A antibody comprises an HCVR of SEQ ID NO: 8 and an LCVR of SEQ ID NO: 7.
- the manufacturing process for the anti-IL17A antibody pharmaceutical formulation presented in Table 1 may be accomplished by weighing an appropriate quantity of water (e.g., at a temperature of 20+/ ⁇ 5° C.) into a tared empty vessel of appropriate size. The appropriate quantity of sucrose is added and mixed. Polysorbate 80 is accurately weighed out in a glass container and an appropriate quantity of water at a temperature of 20+/ ⁇ 5° C. is added into the glass container to give the desired concentration and the solution is mixed. The entire content of the polysorbate 80 solution is added to the other excipients. The polysorbate 80 solution container is rinsed with water to ensure the entire contents are transferred. After addition of the polysorbate 80 solution, the solution is mixed.
- an appropriate quantity of water e.g., at a temperature of 20+/ ⁇ 5° C.
- Polysorbate 80 is accurately weighed out in a glass container and an appropriate quantity of water at a temperature of 20+/ ⁇ 5° C. is added into the glass container to give the desired concentration and the solution is mixed
- the pH of the solution is checked to be within 5.7+/ ⁇ 0.3; adjustment with HCl or NaOH solution is done if necessary.
- the excipient composition is passed through a filter (polyvinylidene fluoride [PVDF]) for bioburden reduction.
- PVDF polyvinylidene fluoride
- the anti-1L17A antibody previously expressed in cells, purified, and concentrated, is mixed with an appropriate amount of the formulation excipient solution.
- the pH of the solution is re-checked to be within 5.7+/ ⁇ 0.3.
- the pharmaceutical formulation is passed through a PVDF filter for bioburden reduction and may then be stored at 5° C.
- Both physical and chemical stability is essential for a pharmaceutical formulation of a therapeutic antibody to allow storage and transportation (e.g., 1 year, 18 months, or 2 years) and preserve safety and efficacy.
- Exemplary evaluations to gauge the physical stability of a pharmaceutical formulation include solubility (phase-separation, gelation) assessments, molecular interactions (e.g., as measured by DLS), visual clarity (i.e., opalescence) characterization by turbidity assessment, and viscosity measurement.
- chemical stability may be assessed using various analytical methods including size exclusion chromatography (SEC), cation exchange chromatography (CEX) HPLC, reduced and non-reduced capillary electrophoresis (CE-SDS R/NR) and particulate analysis.
- SEC size exclusion chromatography
- CEX cation exchange chromatography
- CE-SDS R/NR reduced and non-reduced capillary electrophoresis
- the exemplified anti-IL17A antibody pharmaceutical formulation of Table 1 demonstrates chemical and physical stability as well as solubility for the highly concentrated therapeutic antibody, ixekizumab, which possesses an isoelectric point of ⁇ 7.5, not compatible with formulation at neutral pH in solution.
- aqueous pharmaceutical formulation Sufficiently high solubility is essential for an aqueous pharmaceutical formulation.
- the aqueous pharmaceutical formulation must maintain the antibody in monomeric state, without high molecular weight (HMW) aggregation, at high concentration.
- Solubility of an anti-IL17A antibody, having an isoelectric point ⁇ 8.0 (in solution), at high concentrations is analyzed under varying conditions.
- Samples of each aqueous formulation provided in Table 2 are incubated at each of 5, 0 and ⁇ 5 degrees Celsius (e.g., samples of each formulation may be incubated, in parallel, at 5, 0 and ⁇ 5° C.) for one week. Following incubation samples are assessed for phase separation, gelation, turbidity and viscosity.
- the exemplified anti-IL17A antibody (comprising two LCVRs having the amino acid sequence of SEQ ID NO: 7 and two HCVRs having the amino acid sequences of SEQ ID NO: 8) has a propensity to phase separate in solution below 0 degrees Celsius (° C.).
- storage of drug product is at 5° C. and requires stability for periodic refrigeration temperature excursions below 0° C.
- increasing citrate buffer and NaCl concentrations sufficiently lowers the temperature at which phase separation occurs.
- Injection-associated pain has been reported to be associated with formulations comprising increased citrate buffer and NaCl concentrations and patients have reported injection-associated pain after injecting the commercial pharmaceutical formulation of ixekizumab.
- Phase separation of formulations provided in Table 2 is assessed, following incubation at ⁇ 5° C. for one week, by visual monitoring for signs of phase separation (e.g., the formation of a dense, protein rich layer at the bottom of the vial). Results are provided in Table 3.
- thermodynamic solid phase change e.g., gelation
- gelation has been observed with the exemplified anti-IL17A antibody at high concentrations at temperatures of 5° C. and below.
- U.S. Pat. No. 9,376,491 also shows that increasing citrate buffer and NaCl concentration sufficiently avoids gelation at lower temperatures.
- injection-associated pain has been reported to be associated with formulations comprising increased citrate buffer and NaCl concentrations and patients have reported injection-associated pain after injecting the commercial pharmaceutical formulation of ixekizumab.
- Turbidity i.e., loss of transparency due to particulate matter suspension
- Turbidity is an inherent challenge for aqueous pharmaceutical formulations of therapeutic antibodies.
- the challenge is exasperated at high concentrations of antibodies and at lower temperatures, which can lead to the formulation failing visual inspection.
- turbidity is assessed (measurements taken at ambient temperature) both visually (e.g., light-based method using purified water as a comparator) and by a nephlometer (HACH Turbidimeter, according to manufacturer instructions) yielding quantitative measurements (NTUs). Lower NTUs are desired; more specifically NTUs values of less than 50 are desired with a failure cut-off at 80 NTUs. Results are provided in Table 3.
- aqueous pharmaceutical formulation to be acceptable for manufacturing, administration to and tolerability by patients must possess appropriate viscosity. Less viscous (at least ⁇ 20 cP) aqueous solution is required in order to be subcutaneously delivered. Increased concentrations of therapeutic antibody present the challenge of increasing viscosity. It is known that pharmaceutical formulations with NaCl have decreased viscosity, but as noted, increasing NaCl concentration in a pharmaceutical formulation has been associated with injection-associated pain. Viscosity of formulation 1 and the control formulation of Table 2 is assessed following incubation at 20° C., by viscometer (Anton Paar AMVn Viscometer, according to manufacturer instructions) yielding centipoise (cP) measurements. Lower cP being desired, especially for example, ⁇ 20 cP. Results are provided in Table 3.
- Chemical stability is essential for the development of an aqueous pharmaceutical formulation both for allowing storage (i.e., sufficient shelf-life) and preserving safety and efficacy.
- Chemical stability comparing the control and formulation 1 (provided in Table 2) is assessed following an incubation period of four weeks at 25° C. or 40° C. in accelerated degradation studies. Change in % HMW aggregate is compared against % HMW aggregate at time 0.
- HMW high molecular weight
- SEC size-exclusion chromatography
- formulation 1 of Table 2 provides unexpected stability comparable to (or improved over) the control formulation of Table 2.
- a multivariate assessment of physical and chemical stability of formulation 1 of Table 2 is performed as set forth below.
- formulation 1 of Table 2 is modified to assess physical and chemical stability response of each variable and/or interactions between the variables.
- Formulation 1 of Table 2 is set as the center point formulation for such experiment.
- Variant formulations are provided in Table 6.
- Each variant formulation is assessed for phase separation, gelation and turbidity according to procedures described above. This multivariate assessment provides identification of tolerance limitations for the assessed variables. No phase separation or gelation was observed and acceptable turbidity values were observed.
- Long-term stability of an aqueous pharmaceutical formulation is required to demonstrate storage capability and sufficient shelf life (e.g., 1 year, 2 years or greater).
- Long-term stability of the center point formulation of Table 6 (which corresponds to the formulation provided in Table 1 and Formulation 1 of Table 2) is assessed following incubation of samples at: 5° C. for 1, 3 and 6 months; 25° C. for 1 and 3 months; and 35° C. for 1 and 3 months (assessment of sample prior to incubation is also performed).
- the center point formulation of Table 6 demonstrates long-term stability for the therapeutic antibody, even under stressed conditions of extended periods at high temperatures.
- a single-dose, subject blinded, randomized, cross-over study is performed in which subjects are randomized into one of two treatment groups.
- Each treatment group receives subcutaneous injections of the pharmaceutical formulations comprising 80 mg/ml of ixekizumab, as set forth in Table 8, according to the following injection regimens.
- Treatment group 1 receives a single dose of Formulation B, followed by a single dose of Formulation A seven days later.
- Treatment group 2 receives a single dose, by SQ injection, of Formulation A followed by a single dose, by SQ injection, of Formulation B fourteen days later.
- Injections are administered by medical personnel in the abdomen of the subject while the subject is in a sitting or reclining position. Subsequent injections may be alternated between abdominal quadrants.
- Assessment for injection-associated pain based on VAS scale scoring is performed immediately after each injection (e.g., within 1 min.) and at 10 minutes post injection. Results are provided in Tables 9 and 10 below.
- Formulation A provides a substantial decrease in VAS score over Formulation B (the commercially available formulation of Taltz®) both immediately after injection and at 10 minutes post-injection.
- Formulation A provides a substantial improvement in patients experiencing no injection-associated pain immediately post-injection as well as a substantial benefit in the reduction of patients experiencing moderate-to-severe injection-associated pain immediately post-injection over Formulation B (the commercially available formulation of Taltz®).
- Pharmacokinetic analysis of an aqueous pharmaceutical formulation of ixekizumab may be performed according to a study in which subjects receive a SQ injection of one of Formulation A or B (as provided in Table 8). Subjects are then assessed for pharmacokinetic analysis at various time points (e.g., prior to SQ injection and then post-SQ injection such as 1-24 hrs., 1-90 days post-injection).
- a single-dose, subject blinded, randomized, parallel design study is performed in which, on day 1, subjects are randomized into one of two treatment groups. Prior to receiving a treatment (e.g., day 1, pre-dose) a pre-dose sample from patients of both treatment groups is taken for pharmacokinetic property assessment. On Day 1, treatment group 1 receives a single, SQ injection of Formulation A and treatment group 2 receives a single, subcutaneous injection of Formulation B (as described in Table 8). Injections may be administered by medical personnel in the abdomen of the subjects.
- Formulation A demonstrates comparable PK parameters to Formulation B (the commercially available formulation of Taltz®). Also, no severe adverse events were reported for either formulation and overall safety is consistent and comparable to Formulation B.
- Formulation A demonstrates levels of target neutralization comparable to Formulation B (the commercially available formulation of Taltz®) after extended periods of storage and under stressed conditions.
- SEQ ID NO: 1 (LCD1 of Exemplary anti-IL17A antibody) RSSRSLVHSRGNTYLH (LCDR2 of Exemplary anti-IL17A antibody) SEQ ID NO: 2 KVSNRFI (LCDR3 of Exemplary anti-IL17A antibody) SEQ ID NO: 3 SQSTHLPFT (HCDR1 of Exemplary anti-IL17A antibody) SEQ ID NO: 4 GYSFTDYHIH (HCDR2 of Exemplary anti-IL17A antibody) SEQ ID NO: 5 VINPMYGTTDYNQRFKG (HCDR3 of Exemplary anti-IL17A antibody) SEQ ID NO: 6 YDYFTGTGVY (LCVR of Exemplary anti-IL17A antibody) SEQ ID NO: 7 DIVMTQTPLSLSVTPGQPASISCRSSRSLVHSRGN TYLHWYLQKPGQSPQLLIYKVSNRFIGVPDRFSGS GSGTDFTLKISRVEAEDVGVYYCSQSTHLPFTFGQ GTKLEI
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Dermatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Inorganic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Stable aqueous pharmaceutical formulations for therapeutic antibodies and methods of using such stable aqueous pharmaceutical formulations.
Description
- The instant application contains a Sequence Listing which has been submitted electronically in ST.26 XML format and is hereby incorporated by reference in its entirety. Said ST.26 XML copy, created on Feb. 28, 2023, is named X22251_REPLACEMENTSEQUENCELISTING and is 14,222 bytes in size.
- The present invention is in the field of medicine. More particularly, the present invention relates to aqueous pharmaceutical formulations comprising therapeutic antibodies that are suitable for subcutaneous (“SQ”), intramuscular (“IM”), and/or intraperitoneal (“IP”) administration.
- Administration of therapeutic antibodies via SQ, IP and/or IM administration is both common and advantageous. Such routes of administration allow the therapeutic antibody to be delivered in a short period of time and allow patients to self-administer therapeutic antibodies without visiting a medical practitioner. However, formulating therapeutic antibodies into aqueous pharmaceutical formulations suitable for SQ, IM and/or IP administration is both challenging and unpredictable. Additionally, undesirable injection-associated pain, even after a syringe needle is removed, has been reported with such routes of administration and can impair patient compliance with therapy.
- The challenge and unpredictability associated with formulating therapeutic antibodies into aqueous pharmaceutical formulations suitable for SQ, IM and/or IP administration is due, in part, to the numerous properties a pharmaceutical formulation must possess to be therapeutically viable. Aqueous pharmaceutical formulations must provide stability to the therapeutic antibody in solution while, at the same time, maintaining the therapeutic antibody's functional characteristics essential for therapeutic efficacy such as target affinity, selectivity and potency. In addition, the aqueous pharmaceutical formulation must also be safe for administration to, and well tolerated by, patients as well as being suitable for manufacturing and storage.
- Formulating high concentrations of therapeutic antibodies is even more complex. For example, increased rates of antibody degradation, cleavage, clipping, high molecular weight aggregation, dimerization, trimerization, precipitation pH shift, turbidity, solution color change, changes in charge, isomerization, oxidation and/or deamination (all of which affect the therapeutic antibody concentration, functionality and efficacy) have been reported for aqueous formulations of highly concentrated therapeutic antibodies. Another known challenge when formulating high concentrations of therapeutic antibodies is an increase in viscosity which can negatively affect SQ, IM and/or IP administration of an aqueous pharmaceutical formulation. Additionally, injection-associated pain has been reported with formulations having increased viscosity.
- Furthermore, some therapeutic antibodies such as ixekizumab possess charge distributions leading to high levels of intermolecular interactions (e.g., as may be shown by Dynamic Light Scattering), phase separation, gelation and precipitation, making solubility of the molecule in aqueous solution, especially at high concentrations, very challenging to balance. Charge distribution of such antibodies may also manifest in an isoelectric point preventing formulation at neutral pH. For example, some therapeutic antibodies have a polarity, or dipole moment, such that they are only stable in aqueous formulations within narrow, non-neutral, pH windows. Injection-associated pain has been reported, however, for acidic (e.g., ≤pH 6.5) pharmaceutical formulations of therapeutic antibodies. Thus, such therapeutic antibodies, such as ixekizumab which possesses an isoelectric point of 8.1 (requiring acidic pH formulation), pose additional, unpredictable challenges for formulating in a way that balances stability of the therapeutic antibody with functional properties required for efficacy, as well as tolerability by patients.
- Ixekizumab is a highly specific anti-IL17A antagonistic antibody, as described, for example, in U.S. Pat. No. 7,838,638. Commercially marketed under the tradename TALTZ®, ixekizumab is administered subcutaneously to patients in a highly concentrated (about 80 mg/mL) pharmaceutical formulation having an acidic pH (about 5.7). The commercial pharmaceutical formulation of ixekizumab, as described in U.S. Pat. No. 9,376,491, also includes high concentrations of citrate buffer (about 20 mM) and NaCl (about 200 mM). However, pharmaceutical formulations having acidic pH and high concentrations of NaCl and/or citrate buffer have been associated with injection-associated pain and patients have reported injection-associated pain after injecting the commercial pharmaceutical formulation of ixekizumab.
- Injection-associated pain of aqueous pharmaceutical formulations comprising therapeutic antibodies is a complex, multifactorial issue. For example, each individual component, and/or concentration, ratio and characteristic thereof, of an aqueous pharmaceutical formulation can impact injection-associated pain associated with a therapeutic. Likewise, individual components (and/or concentrations, ratios and characteristics thereof) can impact the stability, functional characteristics, manufacturability and/or tolerability of a formulated therapeutic antibody in an aqueous pharmaceutical formulation. Thus, while a specific formulation adjustment may provide a beneficial impact to a given aspect of the formulation, the same adjustment may also negatively impact other aspects of the formulation. Even further adding to the complexity, a nearly limitless number of different formulation components (e.g., buffers and excipients), as well as concentrations and ratios thereof, have been reported. However, there remains little-to-no correlation for predicting the impact of a specific formulation on the various properties and characteristics of a given therapeutic antibody.
- Accordingly, there is a need for an aqueous pharmaceutical formulation of therapeutic antibodies suitable for SQ, IM and/or IP administration and which is well tolerated by patients, exhibiting a therapeutically beneficial level of injection-associated pain. More particularly, there is a need for such aqueous pharmaceutical formulation for highly concentrated therapeutic antibodies possessing an isoelectric point not compatible with neutral pH in solution, requiring aqueous formulation at an acidic pH. Even more particularly, there is a need for an aqueous pharmaceutical formulation of ixekizumab suitable for SQ, IM and/or IP administration and which is well tolerated by patients, exhibiting an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab (as described in U.S. Pat. No. 9,376,491). Such aqueous pharmaceutical formulation must also provide stability for the therapeutic antibody and preserve the properties of the therapeutic antibody essential for therapeutic efficacy. Such aqueous pharmaceutical formulations must also be amendable to manufacturing, preferably having an extended shelf life.
- The aqueous pharmaceutical formulations provided herein satisfy the aforementioned needs in a surprising and unexpected way. More particularly, the aqueous pharmaceutical formulations provided herein are bufferless aqueous pharmaceutical formulations, suitable for SQ, IM and/or IP administration of high concentrations of ixekizumab, while also preserving the functional characteristics of ixekizumab essential for therapeutic efficacy. Additionally, the aqueous pharmaceutical formulations provided herein are well tolerated by patients, exhibiting an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and providing a therapeutically favorable level of injection-associated pain. Accordingly, the present disclosure provides a bufferless, aqueous pharmaceutical formulation for administering SQ, IM or IP a high concentration of a therapeutic antibody to a patient with a therapeutically favorable level of injection-associated pain, the aqueous pharmaceutical formulation comprising a therapeutic antibody at a concentration of greater than 50 mg/mL, 60 mg/mL, 70 mg/mL, 80 mg/mL, 90 mg/mL, 100 mg/mL, 110 mg/mL or 120 mg/mL; sucrose in a concentration of 234 mM+/−10%; and a surfactant in a concentration between 0.005% w/v+/−10% to 0.05% w/v+/−10%, wherein, the pharmaceutical formulation is an aqueous solution at a pH between 5.2 to 6.5. According to specific embodiments, the surfactant is polysorbate 20 or polysorbate 80. In further specific embodiments, the surfactant is polysorbate 80. According to some embodiments, the bufferless aqueous pharmaceutical formulation is substantially free of an ionic tonicity excipient. In some embodiments, the pharmaceutical formulation is substantially free of L-amino acid excipients. In further embodiments, the antibody possesses an isoelectric point not compatible with neutral pH in solution. In some such embodiments, the antibody possesses an isoelectric point of ≥7.5 and in even further embodiments, the antibody possesses an isoelectric point of ≥8.0. In further, specific embodiments of the aqueous pharmaceutical formulations provided herein, the therapeutic antibody is an anti-IL-17A antibody comprising a LCVR having the amino acid sequence of SEQ ID NO.7 and a HCVR having the amino acid sequence of SEQ ID NO.8. In even further specific embodiments, the anti-IL17A antibody comprises a light chain (LC) having the amino acid sequence of SEQ ID NO.9 and a heavy chain (HC) having the amino acid sequence of SEQ ID NO.10. According to embodiments of the present disclosure, an aqueous pharmaceutical formulation of the present disclosure is provided, wherein the aqueous pharmaceutical formulation upon SQ, IP and/or IM administration to a patient exhibits a reduced risk of, and/or a, therapeutically favorable level of injection-associated pain.
- According to particular embodiments of the present disclosure, a bufferless aqueous pharmaceutical formulation for an anti-IL7A antibody is provided. In embodiments, the anti-ILIA antibody comprises a light chain variable region (LCVR) comprising complementarity determining regions (CDRs) LCDR1, LCDR2, and LCDR3 and a heavy chain variable region (HCVR) comprising CDRs HCDR1, HCDR2, and HCDR3, wherein LCDR1 has the amino acid sequence of SEQ ID NO.1, LCDR2 has the amino acid sequence of SEQ ID NO.2, LCDR3 has the amino acid sequence of SEQ ID NO.3, HCDR1 has the amino acid sequence of SEQ ID NO.4, HCDR2 has the amino acid sequence of SEQ ID NO.5, and HCDR3 has the amino acid sequence of SEQ ID NO.6. According to such embodiments, the aqueous pharmaceutical formulation is an aqueous solution at a pH of between 5.2 to 6.5, and comprises the anti-IL17A antibody in a concentration of greater than 60 mg/mL+/−10%,70 mg/mL+/−10%, 80 mg/mL+/−10%, 88 mg/mL+/−10%, 100 mg/mL+/−10%, 120 mg/mL+/−10% or 160 mg/mL+/−10%; sucrose in a concentration of 234 mM+/−10%; and a surfactant in a concentration of 0.005+/−10% to 0.05+/−10% % w/v. According to some embodiments, the bufferless aqueous pharmaceutical formulation is substantially free of an ionic tonicity excipient. In some embodiments, the pharmaceutical formulation is substantially free of L-amino acid excipients. In some embodiments, the surfactant is one of polysorbate 20 or 80. In more specific embodiments, the surfactant is polysorbate 80. In even more specific embodiments, the polysorbate 80 is at a concentration of 0.03% w/v+/−10%. According to such embodiments, the bufferless aqueous pharmaceutical formulation is suitable for SQ, IP and/or IM administration to a patient and exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- In particular embodiments, the aqueous pharmaceutical formulations provided herein comprise an antibody in a concentration of about 80 mg/mL (e.g., +/−10%); sucrose in a concentration of about 234 mM (e.g., +/−10%); and polysorbate 80 in a concentration of about 0.03% w/v (e.g., +/−10%), and the pharmaceutical formulation is substantially free of an ionic tonicity excipient, substantially free of L-amino acid excipients, and is at a pH of about 5.7 (e.g., +/−10%), and the antibody is an anti-IL17A antibody comprising a LCVR having the amino acid sequence of SEQ ID NO.7 and a HCVR having the amino acid sequence of SEQ ID NO.8. In further such embodiments, the anti-IL17A antibody comprising a heavy chain having the amino acid sequence of SEQ ID NO. 10 and a light chain having the amino acid sequence of SEQ ID NO. 9. According to such embodiments, the aqueous pharmaceutical formulation is suitable for SQ, IP and/or IM administration to a patient and exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- In further embodiments, a system for subcutaneously delivering an aqueous pharmaceutical formulation to a patient in need of treatment is provided. Such system includes a device having a chamber, a drive mechanism operatively coupled to the chamber, and a needle, the chamber being capable of storing a liquid, the needle having a bore in fluid communication with an outlet of the chamber to receive a liquid from the chamber, and the drive mechanism being operative to force the transfer of a liquid from the chamber into the bore of the needle. Such system also includes a pharmaceutical formulation of the present disclosure disposed within the chamber and the inner wall of the chamber having a silicone oil coating at an amount of less than about 0.4 mg. According to some more specific embodiments, the inner wall of the chamber has a silicone oil coating at an amount of about 0.2 mg or an amount of less than about 0.2 mg. According to some embodiments of the system, the patient is in need of treatment of RA, Ps, GenPs, Pruritus, AS, PA, PPP, HS or MM.
- In further embodiments, the present disclosure provides a method for reducing injection-associated pain and/or providing a therapeutically favorable level of injection-associated pain experienced by a patient at the time of, or shortly after, SQ, IM and/or IP injection of an aqueous pharmaceutical formulation comprising a therapeutic antibody, the method comprising administering to a patient an aqueous pharmaceutical formulation of the present disclosure. According to embodiments, the present disclosure provides a method of delivering a therapeutic antibody to a patient with a therapeutically favorable level of injection-associated pain, wherein the method comprises administering to a patient a pharmaceutical formulation of the present disclosure, wherein the method provides a therapeutically favorable level of injection-associated pain. According to further embodiments, the present disclosure provides an improved method of delivering a therapeutic antibody to a patient, wherein the improvement comprises a reduction in, and/or providing a therapeutically favorable level of, injection-associated pain with SQ, IM or IP administration of an aqueous pharmaceutical formulation, the method comprising administering to a patient an aqueous pharmaceutical formulation of the present disclosure. According to embodiments, the reduction in injection-associated pain comprises a reduction from commercially available formulations and/or providing a therapeutically favorable level of injection-associated pain. According to embodiments, a therapeutically favorable level of injection-associated pain may comprise a VAS score of less than 30 mm or a VAS score of less than 20 mm.
- According to embodiments, the present disclosure provides an improved method for administering an anti-IL17A antibody to a patient in need thereof, wherein the improvement comprises a reduction in the level of injection-associated pain upon the administration of a SQ, IM or IP injection of an aqueous pharmaceutical formulation, the method comprising administering to the patient an aqueous pharmaceutical formulation of the present disclosure, wherein said step of administering provides an improved level of injection-associated pain and/or provides a therapeutically favorable level of injection-associated pain. According to some embodiments, the aqueous pharmaceutical formulation consists essentially of an aqueous pharmaceutical formulation of the present disclosure. According to embodiments, the reduction in the level of injection-associated pain comprises providing an improved level of injection-associated pain (for example, a reduction in VAS score compared to the commercial formulation of ixekizumab, i.e., the citrate and NaCl formulation exemplified by the control formulation of Table 2). According to some embodiments, the method provides a therapeutically favorable level of injection-associated pain comprising a VAS score of less than 30 mm or less than 20 mm. According to embodiments, the anti-IL17A antibody is ixekizumab and, according to some such embodiments, the improved level of injection-associated pain comprises a reduction in VAS score compared to the commercial formulation of ixekizumab (the citrate and NaCl formulation exemplified by the control formulation of Table 2). According to some embodiments, the aqueous pharmaceutical formulation is administered by SQ injection.
- According to further embodiments of the present disclosure, an improved method of treating at least one of PsO, PsA and AxSpa is provided, wherein the improvement comprises a reduction in injection-associated pain upon the SQ administration of an aqueous pharmaceutical formulation comprising an anti-IL17A antibody, the method comprising administering an aqueous pharmaceutical formulation of the present disclosure, wherein said step of administering provides an improved level of injection-associated pain and/or provides a therapeutically favorable level of injection-associated pain. According to some embodiments, a therapeutically favorable level of injection-associated pain is provided comprising a VAS score of less than 30 mm or less than 20 mm. In some more specific embodiments, the anti-IL17A antibody is ixekizumab and, according to some such embodiments, the improved level of injection-associated pain comprises a reduction in VAS score compared to the commercial formulation of ixekizumab (the citrate and NaCl formulation exemplified by the control formulation of Table 2).
- The present disclosure also provides an aqueous pharmaceutical formulation of the present disclosure for use in therapy. In particular embodiments, the present disclosure provides an aqueous pharmaceutical formulation of the present disclosure for use in the treatment of rheumatoid arthritis (RA), psoriasis (Ps), genital psoriasis (GenPs), pruritus, ankylosing spondylitis (AS), psoriatic arthritis (PA), palmoplantar pustulosis (PPP), Hidradenitis suppurativa (HS) or multiple myeloma (MM). According to further embodiments of the present disclosure, a use of an aqueous pharmaceutical formulation of the present disclosure for the manufacturer of a medicament for the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM is provided. According to such embodiments, use of such aqueous pharmaceutical formulations is suitable for SQ, IP and/or IM administration to a patient and exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- According to particular embodiments, the present disclosure provides a method of treating RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM comprising administering to a patient in need thereof an effective amount of an aqueous pharmaceutical formulation of the present disclosure, wherein the aqueous pharmaceutical formulation comprises an anti-IL17A antibody. In a more particular embodiment, such method of treating includes administering subcutaneously, to the patient, an initial dose of the aqueous pharmaceutical formulation, on day 0, followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient at every four week interval thereafter, wherein the aqueous pharmaceutical formulation administered to the patient at every four week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL. In another particular embodiment, such method of treating includes administering subcutaneously, to the patient, an initial dose of the aqueous pharmaceutical formulation, on day 0, followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient at every two week interval thereafter, wherein the aqueous pharmaceutical formulation administered to the patient at every two week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL. In yet another particular embodiment, such method of treating includes administering subcutaneously, to the patient, an initial dose of the aqueous pharmaceutical formulation, on day 0, followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient on each of days 14, 28, 42, 56, 70 and 84, and followed by administering subcutaneously the aqueous pharmaceutical formulation to the patient at every four week interval thereafter, wherein the aqueous pharmaceutical formulation, administered to the patient at each of days 14, 28, 42, 56, 70 and 84, and every four week interval thereafter, comprises the anti-IL17A antibody at a concentration of about 80 mg/mL. According to some of the methods of treating provided by the instant disclosure, the initial dose of the aqueous pharmaceutical formulation comprises about 160 mg of the anti-IL17A antibody. In some such embodiments, the about 160 mg initial dose of the aqueous pharmaceutical formulation comprises two doses of the aqueous pharmaceutical formulation, each dose comprising about 80 mg of the anti-IL17A antibody. According to such methods, the aqueous pharmaceutical formulation exhibits an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provides a therapeutically favorable level of injection-associated pain.
- According to particular embodiments, there is provided herein an aqueous pharmaceutical formulation comprising an anti-IL17A antibody for use in the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM wherein the pharmaceutical formulation is to be administered subcutaneously with an initial dose on day 0, followed by a dose every four weeks interval thereafter, wherein the pharmaceutical formulation to be administered at every four week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL. In another particular embodiment, there is provided pharmaceutical formulations disclosed herein comprising an anti-IL17A antibody for use in the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM wherein the pharmaceutical formulation is to be administered subcutaneously with an initial dose on day 0, followed by a dose every two weeks interval thereafter, wherein the pharmaceutical formulation to be administered at every two week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL. In yet another particular embodiment, there is provided pharmaceutical formulations disclosed herein comprising an anti-IL17A antibody for use in the treatment of RA, Ps, GenPs, pruritus, AS, PA, PPP, HS or MM wherein the pharmaceutical formulation is to be administered subcutaneously with an initial dose on day 0, followed by a dose on each of days 14, 28, 42, 56, 70 and 84, wherein the pharmaceutical formulation to be administered on each of days 14, 28, 42, 56, 70 and 84 after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL. According to some embodiments, the initial dose of the aqueous pharmaceutical formulation comprises about 160 mg of the anti-IL17A antibody. In some such embodiments, the about 160 mg initial dose of the aqueous pharmaceutical formulation comprises two doses of the aqueous pharmaceutical formulation, each dose comprising about 80 mg of the anti-IL17A antibody. According to such embodiments, the aqueous pharmaceutical formulations provided herein exhibit an improved level of injection-associated pain over the commercial pharmaceutical formulation of ixekizumab and/or provide a therapeutically favorable level of injection-associated pain.
- As used interchangeably herein, the expressions “aqueous pharmaceutical formulation” or “pharmaceutical formulation” mean an aqueous solution having at least one therapeutic antibody capable of exerting a biological effect in a human, at least one inactive ingredient (e.g., excipient, surfactant, etc.) which, when combined with the therapeutic antibody, is suitable for therapeutic administration to a human. The pharmaceutical formulations provided by the present disclosure are bufferless (i.e., do not comprise agents such as citrate buffer, histidine buffer, acetate buffer, or the like, or combinations thereof, which have acid-base conjugate components, for resisting pH change), aqueous, stable formulations wherein the degree of degradation, modification, aggregation, loss of biological activity and the like, of therapeutic antibodies therein, is acceptably controlled and does not increase unacceptably with time.
- As used herein, the term “antibody” refers to an immunoglobulin G (IgG) molecule comprising two heavy chains (“HC”) and two light chains (“LC”) inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (“HCVR”) and a heavy chain constant region (“CH”). Each light chain is comprised of a light chain variable region (“LCVR”) and a light chain constant region (“CL”). Each HCVR and LCVR are further sub-dividable into regions of hypervariability, termed complementarity determining regions (“CDR”), interspersed with regions that are more conserved, termed framework regions (“FR”). Each HCVR and LCVR is composed of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of each HC and LC contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
- According to particular embodiments of aqueous pharmaceutical formulations provided herein, the antibodies are anti-IL17A antibodies. Interleukin 17A, or IL17A, as used herein refers to cytokines of the IL17 cytokine family (also known as cytotoxic T-lymphocyte-associated antigen 8 (“CTLA8”)). IL17A cytokines exist as homodimeric complexes (e.g., IL17A/A) or as heterodimeric complexes in complex with another IL17 cytokine family member such as IL17F (e.g., IL17A/F). IL17A cytokines are believed to be produced primarily by effector T helper (Th17) cells and have been shown to induce secretion of pro-inflammatory cytokines such as IL-6, IL-8, IL-1 and TNF. The homodimeric complex form of IL17A, IL17A/A, has been shown to play a role in diseases such as psoriasis and psoriatic arthritis, both immune-related diseases associated with T cell dysregulation.
- When referred to herein, such anti-IL17A antibodies are antibodies that specifically bind and antagonize human IL17A by way of specificity for the A subunit (e.g., the A subunit of IL17A/F or one or both of the A subunits of IL17A/A). According to specific embodiments of anti-IL17A antibodies, LCDR1 comprises the amino acid sequence of SEQ ID NO.1, LCDR2 comprises the amino acid sequence of SEQ ID NO.2, LCDR3 comprises the amino acid sequence of SEQ ID NO.3, HCDR1 comprises the amino acid sequence of SEQ ID NO.4, HCDR2 comprises the amino acid sequence of SEQ ID NO.5, and HCDR3 comprises the amino acid sequence of SEQ ID NO.6.
- According to some such embodiments, the LCVR comprises the amino acid sequence of SEQ ID NO.7 and the HCVR comprises the amino acid sequence of SEQ ID NO.8. In even more specific embodiments of such anti-IL17 antibodies, the LC comprises the amino acid sequence of SEQ ID NO.9 and the HC comprises the amino acid sequence of SEQ ID NO.10. An exemplary embodiment of an anti-IL17A antibody is ixekizumab, as described, for example, in U.S. Pat. No. 7,838,638. An additional example of an anti-IL17A antibody is secukinumab (marketed under the tradename)COSENTYX®), as described, for example, in U.S. Pat. No. 7,807,155.
- As may be used herein, the terms “about” or “approximately”, when used in reference to a particular recited numerical value or range of values, means that the value may vary from the recited value by no more than 10% (e.g., +/−10%). For example, as used herein, the expression “about 100” includes 90 and 110 and all values in between (e.g., 91, 92, 93, 94, etc.).
- As referred to herein, the terms “substantially free of” or “substantially devoid of” mean the presence of a given substance (e.g., ionic tonicity excipient) is below a limitation of detection for an assay used for detecting the presence of such substance.
- The term “ionic tonicity excipient”, as referred to herein, means an excipient that comprises an ionic compound (e.g., an electrolyte such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, arginine hydrochloride, or the like), which is distinct from the antibody and surfactant comprising an aqueous pharmaceutical formulation. An ionic tonicity excipient, as is known in the field, may be used to adjust the osmotic pressure of a pharmaceutical formulation. However (and as provided in the examples provided herein), adjustment of pH with HCl or NaOH, as necessary, following dissolution and mixing of the aqueous pharmaceutical formulation is not within the meaning of the term ionic tonicity excipient as used herein (as HCl or NaOH, added for pH adjustment are not acting in the formulation as an ionic tonicity excipient).
- As referred to herein, the term L-amino acid excipients refers to L-amino acids which are added as either a part of a buffer (e.g., L-histidine in a histidine buffer; L-arginine in an arginine buffer, etc.) or as an excipient component of an aqueous pharmaceutical formulation (but does not refer to components of the therapeutic antibody).
- As referred to interchangeably herein, the “visual analog scale” or “VAS”, refers to an evaluation tool for assessing injection-associated pain experienced by a patient. VAS consists of a 100 mm contiguous scale, upon which a patient identifies their level of pain following injection. The VAS scoring extremes are “no pain at all” (e.g., 0) and “worst pain imaginable” (e.g., 100). Severity of pain may be categorized, according to the VAS tool, as mild pain (≤30 mm); moderate pain (>30 mm-≤70 mm) and severe pain (>70 mm). When referred to herein, “injection-associated pain” is in reference to acute pain experienced by a patient at the time of, or shortly after, injection of an aqueous pharmaceutical formulation. A desired property of a stable pharmaceutical formulation is being well tolerated by patients, for example, providing a therapeutically favorable level of injection-associated pain (e.g., a VAS score of <30 mm and/or <20 mm). As is known, the components, and concentrations and/or ratios thereof, of a pharmaceutical formulation may impact injection-associated pain experienced by the patient.
- As used interchangeably herein, “treatment” and/or “treating” and/or “treat” are intended to refer to all processes wherein there may be a total elimination, slowing or delaying, reduction in severity or frequency (e.g., of flares or episodes), interruption or stopping of the progression of disease and/or symptoms thereof, but does not require a total elimination of all disease symptoms. Treatment includes administration of an aqueous pharmaceutical formulation of the present disclosure for treatment of a disease in a human that would benefit from at least one of the above-listed processes, including: (a) inhibiting further progression of disease symptoms and effects, i.e., arresting its development; (b) relieving the disease, i.e., causing an elimination or regression of disease, disease symptoms or complications thereof; and (c) preventing or reducing the frequency of disease episodes or flares. According to specific embodiments, the pharmaceutical formulations provided herein may be used in the treatment of at least one of RA, Ps, GenPs, AS, PA, PPP, HS or MM.
- As used interchangeably herein, the term “patient,” “subject” and “individual,” refers to a human. Unless otherwise noted, the subject is further characterized as having, being at risk of developing, or experiencing symptoms of a disease that would benefit from administration of a pharmaceutical formulation disclosed herein.
- As used interchangeably herein, an “effective amount” or “therapeutically effective amount” of a pharmaceutical formulation of the instant disclosure refers to an amount necessary (at dosages, frequency of administration and for periods of time for a particular means of administration) to achieve the desired therapeutic result. An effective amount of pharmaceutical formulation of the present disclosure may vary according to factors such as the disease state, age, sex, and weight of the subject and the ability of the pharmaceutical formulation of the present disclosure to elicit a desired response in the subject. An effective amount is also one in which any toxic or detrimental effects of the pharmaceutical formulation of the present disclosure are outweighed by the therapeutically beneficial effects.
- The instant disclosure also relates to dose regimens for the treatment of a disease with a pharmaceutical formulation of the present disclosure. As referred to herein and as generally known in the art, the term “dose” refers to an amount of a pharmaceutical formulation that is administered to a subject. A “dose regimen” or “dosage regimen”, as generally known in the field and as may be referred to interchangeably herein, includes a treatment schedule for administering a set (i.e., series or sequence) of doses to be administered to a patient over a period of time.
- By way of example, a dose regimen of the present disclosure may include an initial dose of an aqueous pharmaceutical formulation (for example, comprising an anti-IL17A antibody) of the present disclosure administered to a patient on the first day of treatment (e.g., Day 0). An initial dose may be referred to herein as a “loading dose”. Additionally, a dose regimen of the present disclosure may include an initial period of treatment, sometimes referred to herein as an “induction period”, which follows the loading dose. During an induction period, for example, a patient may be administered a dose (or doses) comprising a specific concentration of a therapeutic antibody (e.g., anti-IL17A antibody), at a given frequency of administration (e.g., every day, every 2 weeks, every 4 weeks, etc.), for a given duration of time (e.g., 4, 12 or 16 weeks). Additionally, dose regimens of the present disclosure may include a period following the induction period, sometimes referred to herein as the “maintenance period”, in which a patient is administered a dose comprising a specific concentration of the therapeutic antibody, at a given frequency of administration (e.g., every 2 or 4 weeks, etc.).
- The aqueous pharmaceutical formulations of the present disclosure may be administered to a patient via parenteral administration. Parenteral administration, as understood in the medical field, refers to the injection of a dose into the body by a sterile syringe or some other drug delivery system including an autoinjector or an infusion pump. Exemplary drug delivery systems for use with the aqueous pharmaceutical formulations of the present disclosure are described in the following references, the disclosures of which are expressly incorporated herein by reference in their entirety: U.S. Patent Publication No. 2014/0054883 to Lanigan et al., filed Mar. 7, 2013 and entitled “Infusion Pump Assembly”; U.S. Pat. No. 7,291,132 to DeRuntz et al., filed Feb. 3, 2006 and entitled “Medication Dispensing Apparatus with Triple Screw Threads for Mechanical Advantage”; U.S. Pat. No. 7,517,334 to Jacobs et al., filed Sep. 18, 2006 and entitled “Medication Dispensing Apparatus with Spring-Driven Locking Feature Enabled by Administration of Final Dose”; and U.S. Pat. No. 8,734,394 to Adams et al., filed Aug. 24, 2012 and entitled “Automatic Injection Device with Delay Mechanism Including Dual Functioning Biasing Member.” Parenteral routes include IM, SQ and IP routes of administration.
-
-
TABLE 1 Exemplary Aqueous Pharmaceutical Formulation Concentration anti-IL17A antibody* 80 mg/mL PS-80 0.03% w/v (0.3 mg/mL) Sucrose 234 mM (8% w/v) pH 5.7 *The anti-IL17A antibody comprises an HCVR of SEQ ID NO: 8 and an LCVR of SEQ ID NO: 7. - The manufacturing process for the anti-IL17A antibody pharmaceutical formulation presented in Table 1 may be accomplished by weighing an appropriate quantity of water (e.g., at a temperature of 20+/−5° C.) into a tared empty vessel of appropriate size. The appropriate quantity of sucrose is added and mixed. Polysorbate 80 is accurately weighed out in a glass container and an appropriate quantity of water at a temperature of 20+/−5° C. is added into the glass container to give the desired concentration and the solution is mixed. The entire content of the polysorbate 80 solution is added to the other excipients. The polysorbate 80 solution container is rinsed with water to ensure the entire contents are transferred. After addition of the polysorbate 80 solution, the solution is mixed. After dissolution and mixing has been completed, the pH of the solution is checked to be within 5.7+/−0.3; adjustment with HCl or NaOH solution is done if necessary. The excipient composition is passed through a filter (polyvinylidene fluoride [PVDF]) for bioburden reduction.
- The anti-1L17A antibody, previously expressed in cells, purified, and concentrated, is mixed with an appropriate amount of the formulation excipient solution. The pH of the solution is re-checked to be within 5.7+/−0.3. The pharmaceutical formulation is passed through a PVDF filter for bioburden reduction and may then be stored at 5° C.
- Both physical and chemical stability is essential for a pharmaceutical formulation of a therapeutic antibody to allow storage and transportation (e.g., 1 year, 18 months, or 2 years) and preserve safety and efficacy. Exemplary evaluations to gauge the physical stability of a pharmaceutical formulation include solubility (phase-separation, gelation) assessments, molecular interactions (e.g., as measured by DLS), visual clarity (i.e., opalescence) characterization by turbidity assessment, and viscosity measurement. Additionally, chemical stability may be assessed using various analytical methods including size exclusion chromatography (SEC), cation exchange chromatography (CEX) HPLC, reduced and non-reduced capillary electrophoresis (CE-SDS R/NR) and particulate analysis. As demonstrated herein, the exemplified anti-IL17A antibody pharmaceutical formulation of Table 1 demonstrates chemical and physical stability as well as solubility for the highly concentrated therapeutic antibody, ixekizumab, which possesses an isoelectric point of ≥7.5, not compatible with formulation at neutral pH in solution.
- Solubility Assessments:
- Sufficiently high solubility is essential for an aqueous pharmaceutical formulation. The aqueous pharmaceutical formulation must maintain the antibody in monomeric state, without high molecular weight (HMW) aggregation, at high concentration. Solubility of an anti-IL17A antibody, having an isoelectric point ≥8.0 (in solution), at high concentrations is analyzed under varying conditions.
- Samples of each aqueous formulation provided in Table 2 are incubated at each of 5, 0 and −5 degrees Celsius (e.g., samples of each formulation may be incubated, in parallel, at 5, 0 and −5° C.) for one week. Following incubation samples are assessed for phase separation, gelation, turbidity and viscosity.
-
TABLE 2 Formulations Anti-IL17A Non-Buffer Antibody* Sample ID Buffer Excipients Concentration pH Control 20 mM Citrate 200 mM NaCl 80 mg/mL 5.7 (commercial 0.03% PS-80 formulation as described in U.S. Patent No. 9,376,491) 1 None 234 mM sucrose 80 mg/mL 5.7 (formulation of 0.03% PS-80 Table 1) 2 10 mM Citrate 274 mM mannitol 80 mg/mL 5.7 3 10 mM Citrate 274 mM mannitol 80 mg/mL 5.7 0.03% PS80 4 10 mM Citrate 234 mM sucrose 80 mg/mL 5.7 0.03% PS-80 5 5 mM Citrate 175 mM NaCl 80 mg/mL 5.7 0.03% PS80 6 2.69 mM L-histidine 150 mM NaCl 80 mg/mL 6.5 6.28 mM L-histidine hydrochloride monohydrate 7 2.69 mM L-histidine 150 mM NaCl 80 mg/mL 6.5 6.28 mM L-histidine 0.03% PS80 hydrochloride monohydrate 8 2.69 mM L-histidine 150 mM NaCl 80 mg/mL 5.7 6.28 mM L-histidine 0.03% PS80 hydrochloride monohydrate 9 None 130 mM NaCl 80 mg/mL 5.7 10 None 100 mM NaCl 80 mg/mL 5.7 11 None 65 mM NaCl 50 mg/mL 5.7 12 10 mM Citrate None 80 mg/mL 5.7 *The anti-IL17A antibody comprises two HCVRs having the amino acid sequence of SEQ ID NO: 8 and two LCVRs having the amino acid sequence of SEQ ID NO: 7. **In addition to the tested aqueous pharmaceutical formulations set forth in Table 2, an aqueous pharmaceutical formulation comprising 10 mM acetate buffer, 150 mM NaCl and 80 mg/mL of the anti-IL17A antibody, at pH 5.0, was assessed following incubation, wherein unacceptable levels of antibody clipping were observed by non-reduced CD-SDS. ***Additionally, as set forth in U.S. Patent No. 9,376,491, unacceptable cloud point was observed for the anti-IL17A antibody with concentrations below either of 20 mM citrate buffer and 150 mM NaCl. - Phase Separation:
- As detailed in U.S. Pat. No. 9,376,491, the exemplified anti-IL17A antibody (comprising two LCVRs having the amino acid sequence of SEQ ID NO: 7 and two HCVRs having the amino acid sequences of SEQ ID NO: 8) has a propensity to phase separate in solution below 0 degrees Celsius (° C.). However, storage of drug product is at 5° C. and requires stability for periodic refrigeration temperature excursions below 0° C. As provided in U.S. Pat. No. 9,376,491, increasing citrate buffer and NaCl concentrations sufficiently lowers the temperature at which phase separation occurs. Injection-associated pain, however, has been reported to be associated with formulations comprising increased citrate buffer and NaCl concentrations and patients have reported injection-associated pain after injecting the commercial pharmaceutical formulation of ixekizumab.
- Phase separation of formulations provided in Table 2 is assessed, following incubation at −5° C. for one week, by visual monitoring for signs of phase separation (e.g., the formation of a dense, protein rich layer at the bottom of the vial). Results are provided in Table 3.
- Gelation:
- Events such as thermodynamic solid phase change (e.g., gelation) can occur at lower temperatures (5° C. or lower), negatively impacting stability. As detailed in U.S. Pat. No. 9,376,491, gelation has been observed with the exemplified anti-IL17A antibody at high concentrations at temperatures of 5° C. and below. U.S. Pat. No. 9,376,491 also shows that increasing citrate buffer and NaCl concentration sufficiently avoids gelation at lower temperatures. However, as noted, injection-associated pain has been reported to be associated with formulations comprising increased citrate buffer and NaCl concentrations and patients have reported injection-associated pain after injecting the commercial pharmaceutical formulation of ixekizumab.
- Gelation assessment of formulations provided in Table 2 are provided in Table 3. Briefly, following incubation as described above, each vial is agitated (e.g., inverted and then returned upright) and then visually inspected for solidification or lack of liquid flow.
- Turbidity:
- Turbidity (i.e., loss of transparency due to particulate matter suspension) is an inherent challenge for aqueous pharmaceutical formulations of therapeutic antibodies. The challenge is exasperated at high concentrations of antibodies and at lower temperatures, which can lead to the formulation failing visual inspection.
- Briefly, following incubation as described above, turbidity is assessed (measurements taken at ambient temperature) both visually (e.g., light-based method using purified water as a comparator) and by a nephlometer (HACH Turbidimeter, according to manufacturer instructions) yielding quantitative measurements (NTUs). Lower NTUs are desired; more specifically NTUs values of less than 50 are desired with a failure cut-off at 80 NTUs. Results are provided in Table 3.
- Viscosity:
- An aqueous pharmaceutical formulation, to be acceptable for manufacturing, administration to and tolerability by patients must possess appropriate viscosity. Less viscous (at least <20 cP) aqueous solution is required in order to be subcutaneously delivered. Increased concentrations of therapeutic antibody present the challenge of increasing viscosity. It is known that pharmaceutical formulations with NaCl have decreased viscosity, but as noted, increasing NaCl concentration in a pharmaceutical formulation has been associated with injection-associated pain. Viscosity of formulation 1 and the control formulation of Table 2 is assessed following incubation at 20° C., by viscometer (Anton Paar AMVn Viscometer, according to manufacturer instructions) yielding centipoise (cP) measurements. Lower cP being desired, especially for example, <20 cP. Results are provided in Table 3.
-
TABLE 3 Solubility Assessment of the Formulations of Table 2 Phase Separation Gelation Turbidity Viscosity Sample ID Assessment Assessment (NTUs) (cPs) Control No No 63 3 1 No No 10 5 2 Yes ND ND ND 3 Yes ND ND ND 4 Yes ND ND ND 5 No No 85 ND 6 No Yes ND ND 7 No Yes ND ND 8 No No 95 ND 9 Yes ND ND ND 10 Yes ND ND ND 11 Yes ND ND ND 12 Yes ND ND ND - As shown in Table 3, unacceptable phase separation or gelation was observed for all formulations lacking at least 150 mM NaCl (as well as the NaCl bufferless formulations), with the exception of formulation 1 which did not demonstrate phase separation. Phase separation results for formulation 1 are comparable to the control formulation (high citrate, high NaCl formulation). Also, unacceptable gelation was observed for formulations comprising histidine buffer and NaCl at pH 6.5. Formulation 1 did not demonstrate gelation and was comparable to the control formulation (high citrate, high NaCl formulation). Additionally, unacceptable turbidity was observed for both formulation 5 (citrate (5 mM), NaCl (175 mM)) and formulation 8 (histidine (9 mM) and NaCl (150 mM)). Formulation 1 demonstrated acceptable levels of turbidity and provided unexpected improved levels of turbidity compared to the control formulation (high citrate, high NaCl formulation). Further, as shown, both formulation 1 and the control formulation exhibit acceptable and comparable viscosity.
- Chemical stability is essential for the development of an aqueous pharmaceutical formulation both for allowing storage (i.e., sufficient shelf-life) and preserving safety and efficacy. Chemical stability comparing the control and formulation 1 (provided in Table 2) is assessed following an incubation period of four weeks at 25° C. or 40° C. in accelerated degradation studies. Change in % HMW aggregate is compared against % HMW aggregate at time 0.
- In one assessment, the change in high molecular weight (HMW) aggregate in the formulations is assessed using size-exclusion chromatography (SEC) according to standard procedures. Results are provided in Table 4.
-
TABLE 4 Summary of change in % HMW aggregates measured by SEC Change in Change in % HMW % HMW Formulation # aggregates aggregates (of Table 2) 25° C. 40° C. Control 0.25 0.05 1 0.49 0.43 - As shown, both the control formulation and formulation 1 of Table 2 demonstrate acceptable and comparable chemical stability in accelerated degradation studies.
- Additional accelerated chemical stability of the control and formulation 1 of Table 2 is studied using Cation Exchange (CEX) HPLC. Briefly, samples are incubated at 25° C. for four weeks. Following incubation, samples are analyzed for increase in total % acid variants (% AV) using CEX HPLC. Increase in total % acid variants (% AV) provides an indicator of degradation of the therapeutic antibody in the aqueous formulation. Results are provided in Table 5.
-
TABLE 5 Increase in % AV over 4 Weeks at 25° C. Formulation # (of Table 2) Increase in % AV Control 2.0 1 2.3 - As shown, both the control and formulation 1 of Table 2 demonstrate acceptable, and comparable, levels of chemical stability in the further accelerated degradation studies.
- As demonstrated herein, formulation 1 of Table 2 provides unexpected stability comparable to (or improved over) the control formulation of Table 2. A multivariate assessment of physical and chemical stability of formulation 1 of Table 2 is performed as set forth below.
- Briefly, four variables (antibody concentration; pH; sucrose concentration; and PS-80 concentration) of formulation 1 of Table 2 are modified to assess physical and chemical stability response of each variable and/or interactions between the variables. Formulation 1 of Table 2 is set as the center point formulation for such experiment. Variant formulations are provided in Table 6.
-
TABLE 6 Variant Formulations Anti-IL17A* Sample ID Sucrose PS-80** Antibody pH Center Point 234 mM 0.03% 80 mg/mL 5.7 (formulation 1 of Table 2) 13 205 mM 0.05% 72 mg/mL 5.2 14 205 mM 0.005% 72 mg/mL 6.2 15 205 mM 0.005% 88 mg/mL 5.2 16 205 mM 0.05% 88 mg/mL 6.2 17 263 mM 0.005% 72 mg/mL 5.2 18 263 mM 0.05% 72 mg/mL 6.2 19 263 mM 0.05% 88 mg/mL 5.2 20 263 mM 0.005% 88 mg/mL 6.2 *The anti-IL17A antibody comprises two HCVRs having the amino acid sequence of SEQ ID NO: 8 and two LCVRs having the amino acid sequence of SEQ ID NO: 7. **Polysorbate tolerance for the ranges set forth in Table 6 are confirmed by accelerated freeze-thaw studies. - Each variant formulation is assessed for phase separation, gelation and turbidity according to procedures described above. This multivariate assessment provides identification of tolerance limitations for the assessed variables. No phase separation or gelation was observed and acceptable turbidity values were observed.
- Long-term stability of an aqueous pharmaceutical formulation is required to demonstrate storage capability and sufficient shelf life (e.g., 1 year, 2 years or greater). Long-term stability of the center point formulation of Table 6 (which corresponds to the formulation provided in Table 1 and Formulation 1 of Table 2) is assessed following incubation of samples at: 5° C. for 1, 3 and 6 months; 25° C. for 1 and 3 months; and 35° C. for 1 and 3 months (assessment of sample prior to incubation is also performed).
- Following incubation, samples are analyzed for percent monomer and percent high molecular weight (HMW) aggregate using size-exclusion chromatography (SEC) according to standard procedures. Results are provided in Table 7.
-
TABLE 7 Long Term Stability Assessment of Center Point Formulation Incubation Temp Incubation Period Monomer HMW Aggregate (° C.) (months) (%) (%) Control NA 98.61 1.27 (pre-incubation) 5 1 98.83 1.10 5 3 98.57 1.39 5 6 98.61 1.27 5 12 98.67 1.28 25 1 98.59 1.32 25 3 98.01 1.85 35 1 97.93 1.70 35 3 95.54 3.30 - As provided, the center point formulation of Table 6 demonstrates long-term stability for the therapeutic antibody, even under stressed conditions of extended periods at high temperatures.
- Assessment of injection-associated pain from subcutaneous injection of an aqueous pharmaceutical formulation of ixekizumab, at a high concentration (80 mg/mL), is performed according to a study in which subjects receive a SQ injection of one of Formulation A or B (as provided in Table 8), followed by a SQ injection of the other of Formulation A or B some period of time (e.g., 1, 5, 7, 10, 14, etc., days) later. Subjects are then assessed for injection-associated pain based on the VAS scale scoring at specified time points (e.g., within 1 minute (i.e., immediately after injection), within 10 minutes, within 1 hour, within 4 hours within 1 day) after each injection.
-
TABLE 8 Ixekizumab Pharmaceutical Formulation Formulation A (corresponds to center point Formulation B formulation of Table 6) (commercial formulation of Taltz ®) ixekizumab 80 mg/mL ixekizumab 80 mg/mL pH 5.7 pH 5.7 PS-80 0.3 mM PS-80 0.03% w/v sucrose 80 mM NaCl 200 mM / / / citrate buffer 20 mM - Accordingly, a single-dose, subject blinded, randomized, cross-over study is performed in which subjects are randomized into one of two treatment groups. Each treatment group receives subcutaneous injections of the pharmaceutical formulations comprising 80 mg/ml of ixekizumab, as set forth in Table 8, according to the following injection regimens.
- Treatment group 1 receives a single dose of Formulation B, followed by a single dose of Formulation A seven days later. Treatment group 2 receives a single dose, by SQ injection, of Formulation A followed by a single dose, by SQ injection, of Formulation B fourteen days later. Injections are administered by medical personnel in the abdomen of the subject while the subject is in a sitting or reclining position. Subsequent injections may be alternated between abdominal quadrants. Assessment for injection-associated pain based on VAS scale scoring is performed immediately after each injection (e.g., within 1 min.) and at 10 minutes post injection. Results are provided in Tables 9 and 10 below.
-
TABLE 9 Injection-Associated Pain Comparability Data VAS Score VAS Score Formulation time post-injection (w/in 1 min.) time post-injection (10 mins.) A (N = 63) 3.52 0.68 B (N = 61) 25.21 5.15 - As shown in Table 9, Formulation A provides a substantial decrease in VAS score over Formulation B (the commercially available formulation of Taltz®) both immediately after injection and at 10 minutes post-injection.
-
TABLE 10 Patient Tolerability Analysis Formulation A Formulation B time post-injection time post-injection VAS Score (w/in 1 min.) (w/in 1 min.) No pain 26 (of 63 patients): 41.3% 5 (of 61 patients): 8.2% (VAS = 0) Mild Pain 36 (of 63 patients): 57.1% 36 (of 61 patients): 59.0% (VAS ≤ 30) Moderate-to- 1 (of 63 patients): 1.6% 20 (of 61 patients): 32.8% Severe Pain (VAS > 30) - As shown in Table 10, Formulation A provides a substantial improvement in patients experiencing no injection-associated pain immediately post-injection as well as a substantial benefit in the reduction of patients experiencing moderate-to-severe injection-associated pain immediately post-injection over Formulation B (the commercially available formulation of Taltz®).
- Pharmacokinetic analysis of an aqueous pharmaceutical formulation of ixekizumab may be performed according to a study in which subjects receive a SQ injection of one of Formulation A or B (as provided in Table 8). Subjects are then assessed for pharmacokinetic analysis at various time points (e.g., prior to SQ injection and then post-SQ injection such as 1-24 hrs., 1-90 days post-injection).
- Accordingly, a single-dose, subject blinded, randomized, parallel design study is performed in which, on day 1, subjects are randomized into one of two treatment groups. Prior to receiving a treatment (e.g., day 1, pre-dose) a pre-dose sample from patients of both treatment groups is taken for pharmacokinetic property assessment. On Day 1, treatment group 1 receives a single, SQ injection of Formulation A and treatment group 2 receives a single, subcutaneous injection of Formulation B (as described in Table 8). Injections may be administered by medical personnel in the abdomen of the subjects. Post-dosing, samples are taken on study days 3, 5 (±1 day), 8 (±1 day), 11 (±1 day), 15 (±2 days), 22 (±2 days), 29 (±2 days), 43 (±2 days), 57 (±3 days), 71 (±3 days) and 85 (±3 days) to assess pharmacokinetic parameters including Cmax (maximum observed drug concentration), AUC[0-∞] (area under the concentrations versus time curve from time zero to infinity), AUC[0 tlast] (area under the concentrations versus time curve from time zero on study Day 1 to time of last measurable concentration), and Tmax (time of the maximum observed drug concentration). Results are provided in Table 11.
-
TABLE 11 In Vivo Pharmacokinetic Analysis Value (geometric least Ratio Formulation PK Parameter squares mean) (Form. A / Form B) Formulation A (N = 33) AUC[0-∞] 159 1.05 Formulation B (N = 32) (ug*day/mL) 152 Formulation A (N = 33) AUC[0-tlast] 153 1.04 Formulation B (N = 32) (ug*day/mL) 146 Formulation A (N = 33) Cmax 6.29 1.00 Formulation B (N = 33) (ug/mL) 6.31 Formulation A (N = 33) Tmax 4.09 (median of Formulation B (N = 33) (days) 3.95 differences) 0 - As shown in Table 11, Formulation A demonstrates comparable PK parameters to Formulation B (the commercially available formulation of Taltz®). Also, no severe adverse events were reported for either formulation and overall safety is consistent and comparable to Formulation B.
- Following incubation of samples of Formulation A at 5° C. for 1, 6 and 12 months; 25° C. for 1 month; and 35° C. for 1 month, potency of Formulation A is assessed in comparison to Formulation B (of Table 8) by way of a cell-based bioassay. Briefly, murine osteoblast cell line MC3T3-E1, which endogenously expresses IL-17A receptor and stably expresses firefly luciferase gene, is cultured such that when IL-17A is present transcription of luciferase is induced at levels proportional to IL-17A activity. Previously incubated samples of Formulation A and B are introduced to culture wells of the cell-based bioassay, respectively, and following measurement of luciferase expression, inhibition dose curves are generated. Data is analyzed using a four parameter logistic curve fit. Relative potency is determined by calculating the ratio of the EC50 for Formulation A in comparison to the EC50 of Formulation B (e.g., the reference standard). Results are provided in Table 12.
-
TABLE 12 Relative Potency Assessment of Formulation A (% relative to Formulation B) Incubation Incubation Temp. Period (° C.) (Months) 5° C. 25° C. 35° C. 1 101% 98% 101% 6 103% ND ND 12 98% ND ND - As shown in Table 12, Formulation A demonstrates levels of target neutralization comparable to Formulation B (the commercially available formulation of Taltz®) after extended periods of storage and under stressed conditions.
-
Sequences SEQ ID NO: 1 (LCD1 of Exemplary anti-IL17A antibody) RSSRSLVHSRGNTYLH (LCDR2 of Exemplary anti-IL17A antibody) SEQ ID NO: 2 KVSNRFI (LCDR3 of Exemplary anti-IL17A antibody) SEQ ID NO: 3 SQSTHLPFT (HCDR1 of Exemplary anti-IL17A antibody) SEQ ID NO: 4 GYSFTDYHIH (HCDR2 of Exemplary anti-IL17A antibody) SEQ ID NO: 5 VINPMYGTTDYNQRFKG (HCDR3 of Exemplary anti-IL17A antibody) SEQ ID NO: 6 YDYFTGTGVY (LCVR of Exemplary anti-IL17A antibody) SEQ ID NO: 7 DIVMTQTPLSLSVTPGQPASISCRSSRSLVHSRGN TYLHWYLQKPGQSPQLLIYKVSNRFIGVPDRFSGS GSGTDFTLKISRVEAEDVGVYYCSQSTHLPFTFGQ GTKLEIK (HCVR of Exemplary anti-IL17A antibody) SEQ ID NO: 8 QVQLVQSGAEVKKPGSSVKVSCKASGYSFTDYHIH WVRQAPGQGLEWMGVINPMYGTTDYNQRFKGRVTI TADESTSTAYMELSSLRSEDTAVYYCARYDYFTGT GVYWGQGTLVTVSS (light chain of Exemplary anti-IL17A antibody) SEQ ID NO: 9 DIVMTQTPLSLSVTPGQPASISCRSSRSLVHSRGN TYLHWYLQKPGQSPQLLIYKVSNRFIGVPDRFSGS GSGTDFTLKISRVEAEDVGVYYCSQSTHLPFTFGQ GTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKD STYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV TKSFNRGEC (heavy chain of Exemplary anti-IL17A antibody) SEQ ID NO: 10 QVQLVQSGAEVKKPGSSVKVSCKASGYSFTDYHIH WVRQAPGQGLEWMGVINPMYGTTDYNQRFKGRVTI TADESTSTAYMELSSLRSEDTAVYYCARYDYFTGT GVYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSES TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV LQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSN TKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNG KEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTL PPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGN VFSCSVMHEALHNHYTQKSLSLSLG
Claims (20)
1-9. (canceled)
10. A method of treating RA, Ps, GenPs, Pruritus, AS, PA, PPP, HS or MM comprising administering to a patient in need thereof an effective amount of a bufferless aqueous pharmaceutical formulation comprising:
(i) an anti-IL-17A antibody at a concentration of 80 mg/mL+/−10%;
(ii) sucrose in a concentration of 234 mM+/−10%; and
(iii) a surfactant in a concentration of between 0.005% w/v+/−10% to 0.05% w/v+/−10%,
wherein, the pharmaceutical formulation is an aqueous solution at a pH between 5.2 to 6.5 and the anti-IL17A antibody comprises a light chain variable region (LCVR) and a heavy chain variable region (HCVR), wherein the LCVR comprises complementarity determining regions (CDRs) LCDR1, LCDR2, and LCDR3 and the HCVR comprises CDRs HCDR1, HCDR2, and HCDR3, wherein:
LCDR1 comprises the amino acid sequence of SEQ ID NO. 1,
LCDR2 comprises the amino acid sequence of SEQ ID NO. 2,
LCDR3 comprises the amino acid sequence of SEQ ID NO. 3,
HCDR1 comprises the amino acid sequence of SEQ ID NO. 4,
HCDR2 comprises the amino acid sequence of SEQ ID NO. 5, and
HCDR3 comprises the amino acid sequence of SEQ ID NO. 6.
11. (canceled)
12. The method of claim 10 , comprising:
administering subcutaneously, to the patient, an initial dose of the pharmaceutical formulation, on day 0, followed by administering subcutaneously the pharmaceutical formulation to the patient at every four week interval thereafter,
wherein the initial dose of the pharmaceutical formulation comprises the anti-IL17A antibody at a concentration of about 160 mg, and the pharmaceutical formulation administered to the patient at every four week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
13. The method of claim 12 , wherein the initial dose of the pharmaceutical formulation, comprising the anti-IL-17A antibody at a concentration of about 160 mg, comprises two doses of the pharmaceutical formulation wherein each of the two doses comprises about 80 mg of the anti-IL17A antibody.
14. The method of claim 10 , comprising:
administering subcutaneously, to the patient, an initial dose of the pharmaceutical formulation, on day 0, followed by administering subcutaneously the pharmaceutical formulation to the patient at every two week interval thereafter,
wherein the initial dose of the pharmaceutical formulation comprises the anti-IL17A antibody at a concentration of about 160 mg, and the pharmaceutical formulation administered to the patient at every two week interval after the initial dose comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
15. The method of claim 14 , wherein the initial dose of the pharmaceutical formulation, comprising the anti-IL-17A antibody at a concentration of about 160 mg, comprises two doses of the pharmaceutical formulation wherein each of the two doses comprises about 80 mg of the anti-IL17A antibody.
16. The method of claim 10 , comprising:
administering subcutaneously, to the patient, an initial dose of the pharmaceutical formulation, on day 0, followed by administering subcutaneously the pharmaceutical formulation to the patient on each of days 14, 28, 42, 56, 70 and 84, and followed by administering subcutaneously the pharmaceutical formulation to the patient at every four week interval thereafter,
wherein the initial dose of the pharmaceutical formulation comprises the anti-IL17A antibody at a concentration of about 160 mg and,
wherein the pharmaceutical formulation, administered to the patient at each of days 14, 28, 42, 56, 70 and 84, and every four week interval thereafter, comprises the anti-IL17A antibody at a concentration of about 80 mg/mL.
17. The method of claim 16 , wherein the initial dose of the pharmaceutical formulation, comprising the anti-IL-17A antibody at a concentration of about 160 mg, comprises two doses of the pharmaceutical formulation wherein each of the two doses comprises about 80 mg of the anti-IL17A antibody.
18. A method of reducing injection-associated pain experienced by a patient at the time of, or shortly after, SQ, IP and/or IM administration of an aqueous pharmaceutical formulation comprising an anti-IL17A antibody, the method comprising administering to a patient a bufferless aqueous pharmaceutical formulation comprising:
(i) an anti-IL-17A antibody at a concentration of 80 mg/mL+/−10%;
(ii) sucrose in a concentration of 234 mM+/−10%; and
(iii) a surfactant in a concentration of between 0.005% w/v+/−10% to 0.05% w/v+/−10%,
wherein, the pharmaceutical formulation is an aqueous solution at a pH between 5.2 to 6.5 and the anti-IL17A antibody comprises a light chain variable region (LCVR) and a heavy chain variable region (HCVR), wherein the LCVR comprises complementarity determining regions (CDRs) LCDR1, LCDR2, and LCDR3 and the HCVR comprises CDRs HCDR1, HCDR2, and HCDR3, wherein:
LCDR1 comprises the amino acid sequence of SEQ ID NO. 1,
LCDR2 comprises the amino acid sequence of SEQ ID NO. 2,
LCDR3 comprises the amino acid sequence of SEQ ID NO. 3,
HCDR1 comprises the amino acid sequence of SEQ ID NO. 4,
HCDR2 comprises the amino acid sequence of SEQ ID NO. 5, and
HCDR3 comprises the amino acid sequence of SEQ ID NO. 6,
wherein, said step of administering provides a therapeutically favorable level of injection-associated pain.
19. The method of claim 18 , wherein the therapeutically favorable level of injection-associated pain comprises a VAS score of less than 30 mm or less than 20 mm.
20. The method of claim 18 , wherein the pharmaceutical formulation of claim 1 is substantially free of an ionic tonicity excipient and is substantially free of L-amino acid excipients and the surfactant of the pharmaceutical formulation is polysorbate 80, and wherein the LCVR comprises the amino acid sequence of SEQ ID NO. 7 and the HCVR comprises the amino acid sequence of SEQ ID NO. 8.
21. The method of claim 10 , wherein the surfactant is polysorbate 20 or polysorbate 80.
22. The method of claim 21 , wherein the surfactant is polysorbate 80.
23. The method of claim 10 , wherein the pharmaceutical formulation is substantially free of ionic tonicity excipient.
24. The method of claim 10 , wherein the pharmaceutical formulation is substantially free of L-amino acid excipients.
25. The method of claim 10 , wherein the LCVR comprises the amino acid sequence of SEQ ID NO. 7 and the HCVR comprises the amino acid sequence of SEQ ID NO. 8.
26. The method of claim 10 , wherein anti-IL17A antibody comprises a light chain (LC) and a heavy chain (HC), wherein the LC comprises the amino acid sequence of SEQ ID NO. 9 and the HC comprises the amino acid sequence of SEQ ID NO. 10.
27. The method of claim 26 , wherein the anti-IL17A antibody is ixekizumab.
28. The method of claim 10 , wherein the surfactant is polysorbate 80, the pharmaceutical formulation is substantially free of ionic tonicity excipient and is substantially free of L-amino acid excipients, and wherein the LCVR comprises the amino acid sequence of SEQ ID NO. 7 and the HCVR comprises the amino acid sequence of SEQ ID NO. 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/176,844 US20230183334A1 (en) | 2019-02-18 | 2023-03-01 | Therapeutic antibody formulation |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962807006P | 2019-02-18 | 2019-02-18 | |
US201962880846P | 2019-07-31 | 2019-07-31 | |
US201962947198P | 2019-12-12 | 2019-12-12 | |
US16/787,254 US11634485B2 (en) | 2019-02-18 | 2020-02-11 | Therapeutic antibody formulation |
US18/176,844 US20230183334A1 (en) | 2019-02-18 | 2023-03-01 | Therapeutic antibody formulation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/787,254 Division US11634485B2 (en) | 2019-02-18 | 2020-02-11 | Therapeutic antibody formulation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230183334A1 true US20230183334A1 (en) | 2023-06-15 |
Family
ID=72040829
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/787,254 Active 2040-12-14 US11634485B2 (en) | 2019-02-18 | 2020-02-11 | Therapeutic antibody formulation |
US18/176,844 Pending US20230183334A1 (en) | 2019-02-18 | 2023-03-01 | Therapeutic antibody formulation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/787,254 Active 2040-12-14 US11634485B2 (en) | 2019-02-18 | 2020-02-11 | Therapeutic antibody formulation |
Country Status (21)
Country | Link |
---|---|
US (2) | US11634485B2 (en) |
EP (1) | EP3927729A4 (en) |
JP (2) | JP7266108B2 (en) |
KR (1) | KR20210114989A (en) |
CN (1) | CN113474360A (en) |
AU (2) | AU2020225202B2 (en) |
BR (1) | BR112021015034A2 (en) |
CA (1) | CA3129901A1 (en) |
CL (1) | CL2021002182A1 (en) |
CO (1) | CO2021010697A2 (en) |
CR (1) | CR20210435A (en) |
DO (1) | DOP2021000170A (en) |
EC (1) | ECSP21060917A (en) |
IL (1) | IL285134A (en) |
JO (1) | JOP20210229A1 (en) |
MA (1) | MA55033A (en) |
MX (1) | MX2021009851A (en) |
PE (1) | PE20212185A1 (en) |
SG (1) | SG11202108627SA (en) |
UA (1) | UA128098C2 (en) |
WO (1) | WO2020172002A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210114989A (en) | 2019-02-18 | 2021-09-24 | 일라이 릴리 앤드 캄파니 | therapeutic antibody formulation |
CN117083295A (en) * | 2021-01-08 | 2023-11-17 | 拉尼尔生物治疗公司 | Neutralizing antibodies to IL-17A, fusion proteins thereof and uses thereof |
CN118184793A (en) * | 2022-12-12 | 2024-06-14 | 江苏康缘瑞翱生物医药科技有限公司 | Bispecific fusion protein targeting TNF-alpha and IL-17A and application thereof |
CN116874596B (en) * | 2023-09-06 | 2023-11-24 | 南京佰抗生物科技有限公司 | Monoclonal antibody of anti S100 beta protein, preparation method and application thereof |
Family Cites Families (360)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6884879B1 (en) | 1997-04-07 | 2005-04-26 | Genentech, Inc. | Anti-VEGF antibodies |
US6541606B2 (en) | 1997-12-31 | 2003-04-01 | Altus Biologics Inc. | Stabilized protein crystals formulations containing them and methods of making them |
GB0113179D0 (en) | 2001-05-31 | 2001-07-25 | Novartis Ag | Organic compounds |
EP1409018B1 (en) | 2001-07-25 | 2010-01-06 | Facet Biotech Corporation | Stable lyophilized pharmaceutical formulation the igg antibody daclizumab |
WO2003068260A1 (en) | 2002-02-14 | 2003-08-21 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing solution pharmaceuticals |
KR20100112206A (en) | 2002-04-11 | 2010-10-18 | 메디뮨 엘엘씨 | Preservation of bioactive materials by spray drying |
EP2591771A1 (en) | 2002-04-11 | 2013-05-15 | MedImmune, LLC | Preservation of bioactive materials by freeze dried foam |
AU2003230908A1 (en) | 2002-04-11 | 2003-10-27 | Medimmune Vaccines, Inc. | Spray freeze dry of compositions for intranasal administration |
US7425618B2 (en) | 2002-06-14 | 2008-09-16 | Medimmune, Inc. | Stabilized anti-respiratory syncytial virus (RSV) antibody formulations |
AU2011226771B2 (en) | 2002-06-14 | 2012-10-04 | Medimmune, Llc | Stabilized anti-respiratory syncytial virus (RSV) antibody formulations |
US20060246060A1 (en) | 2002-07-02 | 2006-11-02 | Nesta Douglas P | Novel stable formulation |
US20040033228A1 (en) | 2002-08-16 | 2004-02-19 | Hans-Juergen Krause | Formulation of human antibodies for treating TNF-alpha associated disorders |
US7055598B2 (en) | 2002-08-26 | 2006-06-06 | Halliburton Energy Services, Inc. | Fluid flow control device and method for use of same |
WO2004019860A2 (en) | 2002-08-28 | 2004-03-11 | Pharmacia Corporation | Formulations of modified antibodies and methods of making the same |
WO2004039337A2 (en) | 2002-10-31 | 2004-05-13 | Protein Design Labs, Inc. | Stable liquid pharmaceutical formulation of antibodies that are prone to isomerization |
US20040191243A1 (en) | 2002-12-13 | 2004-09-30 | Bei Chen | System and method for stabilizing antibodies with histidine |
JP2006514954A (en) | 2002-12-31 | 2006-05-18 | ネクター セラピューティクス | Antibody-containing particles and compositions |
US20040208869A1 (en) | 2003-01-30 | 2004-10-21 | Medimmune, Inc. | Uses of anti-integrin alphanubeta3 antibody formulations |
DK2335725T3 (en) | 2003-04-04 | 2017-01-23 | Genentech Inc | Highly concentrated antibody and protein formulations |
EP2281577B1 (en) | 2003-05-14 | 2016-11-16 | ImmunoGen, Inc. | Drug conjugate composition |
PL1631313T3 (en) | 2003-06-05 | 2015-08-31 | Genentech Inc | Combination therapy for b cell disorders |
EP1656170B1 (en) | 2003-08-12 | 2019-03-13 | Eli Lilly And Company | Medication dispensing apparatus with triple screw threads for mechanical advantage |
JP4219932B2 (en) | 2003-10-01 | 2009-02-04 | 協和発酵キリン株式会社 | Antibody stabilization method and stabilized solution antibody preparation |
AR046639A1 (en) | 2003-11-21 | 2005-12-14 | Schering Corp | ANTI-IGFR1 ANTIBODY THERAPEUTIC COMBINATIONS |
AR046774A1 (en) | 2003-12-24 | 2005-12-21 | Boehringer Ingelheim Pharma | LIOFILIZED FORMULATION OF ANTIBODY CONJUGATES |
WO2005063291A1 (en) | 2003-12-25 | 2005-07-14 | Kirin Beer Kabushiki Kaisha | Stable water-based medicinal preparation containing antibody |
TW200539855A (en) | 2004-03-15 | 2005-12-16 | Wyeth Corp | Calicheamicin conjugates |
PL1732629T3 (en) | 2004-03-30 | 2019-10-31 | Lilly Co Eli | Medication dispensing apparatus with spring-driven locking feature enabled by administration of final dose |
WO2005117967A2 (en) | 2004-04-12 | 2005-12-15 | Medimmune, Inc. | Anti-il-9 antibody formulations and uses thereof |
US8658203B2 (en) | 2004-05-03 | 2014-02-25 | Merrimack Pharmaceuticals, Inc. | Liposomes useful for drug delivery to the brain |
US20070196364A1 (en) | 2004-07-27 | 2007-08-23 | Human Genome Sciences, Inc. | Pharmaceutical Formulation and Process |
GB0417487D0 (en) | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
JO3000B1 (en) | 2004-10-20 | 2016-09-05 | Genentech Inc | Antibody Formulations. |
ATE476994T1 (en) | 2004-11-30 | 2010-08-15 | Curagen Corp | ANTIBODIES TO GPNMB AND THEIR USES |
GT200600031A (en) | 2005-01-28 | 2006-08-29 | ANTI-BETA ANTIBODY FORMULATION | |
SI2567976T1 (en) | 2005-03-23 | 2017-11-30 | Genmab A/S | Antibodies against CD38 for treatment of multiple myeloma |
US7785595B2 (en) | 2005-04-18 | 2010-08-31 | Yeda Research And Development Company Limited | Stabilized anti-hepatitis B (HBV) antibody formulations |
EP2390267B1 (en) | 2005-06-07 | 2013-06-05 | ESBATech - a Novartis Company LLC | Stable and soluble antibodies inhibiting TNF(alpha) |
BRPI0611901A2 (en) * | 2005-06-14 | 2012-08-28 | Amgen, Inc | composition, lyophilized kit and process for preparing a composition |
MX2007016306A (en) | 2005-06-15 | 2008-03-07 | Schering Corp | Anti-igf1r antibody formulations. |
CA2613512A1 (en) | 2005-06-23 | 2007-01-04 | Medimmune, Inc. | Antibody formulations having optimized aggregation and fragmentation profiles |
EA014513B1 (en) | 2005-08-03 | 2010-12-30 | Иммьюноджен, Инк. | Immunoconjugate formulations |
AU2006295340B2 (en) | 2005-08-05 | 2010-11-11 | Amgen Inc. | Stable aqueous protein or antibody pharmaceutical formulations and their preparation |
EP1933873A4 (en) | 2005-10-13 | 2009-12-02 | Human Genome Sciences Inc | Methods and compositions for use in treatment of patients with autoantibody positive diseases |
DOP2005000210A (en) | 2005-10-19 | 2006-04-30 | Genentech Inc | ANTIBONY FORMULATIONS |
US20070172520A1 (en) | 2005-11-18 | 2007-07-26 | University Of South Florida | Immunotargeting of Nonionic Surfactant Vesicles |
US20070237758A1 (en) | 2005-11-22 | 2007-10-11 | Anthony Barry | Immunoglobulin fusion protein formulations |
EP3808769A1 (en) * | 2005-12-13 | 2021-04-21 | Eli Lilly And Company | Anti-il-17 antibodies |
BRPI0620316A2 (en) | 2005-12-21 | 2011-11-08 | Wyeth Corp | Low viscosity protein formulations and their uses |
WO2007074880A1 (en) | 2005-12-28 | 2007-07-05 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing stabilizing preparation |
RS55963B1 (en) | 2005-12-29 | 2017-09-29 | Janssen Biotech Inc | Human anti-il-23 antibodies, compositions, methods and uses |
JP2009525986A (en) | 2006-02-03 | 2009-07-16 | メディミューン,エルエルシー | Protein preparation |
CA2642270A1 (en) | 2006-02-15 | 2007-08-23 | Imclone Systems Incorporated | Antibody formulation |
US9283260B2 (en) | 2006-04-21 | 2016-03-15 | Amgen Inc. | Lyophilized therapeutic peptibody formulations |
MX2008013535A (en) | 2006-04-21 | 2008-10-29 | Amgen Inc | Buffering agents for biopharmaceutical formulations. |
BRPI0713421A2 (en) | 2006-06-14 | 2012-03-13 | Imclone Systems Incorporated | LIOFOLIZED FORMULATION, WATER FORMULATION SUITABLE FOR LIOPHILIZATION, AND, METHODS TO STABILIZE AM ANTIBODY AND TO TREAT A MAMMALIAN |
TW200826974A (en) | 2006-09-07 | 2008-07-01 | Kirin Pharma Kk | Stable lyophilized pharmaceutical preparation comprising antibody |
KR20090060453A (en) | 2006-09-25 | 2009-06-12 | 메디뮨 엘엘씨 | Stabilized antibody formulations and uses thereof |
CL2007002880A1 (en) | 2006-10-06 | 2008-05-09 | Amgen Inc | STABLE FORMULATION THAT INCLUDES AN ACETIC ACID STAMP, A GLUTAMIC ACID STAMP OR A SUCCINIC ACID STAMP WITH A PH OF 4.5 TO 7, AT LEAST A EXCIPIENT THAT INCLUDES A SUGAR OR A POLYOL, AND AN ANTI-RECEPTOR ANTIBODY OF FACTOR D |
ES2925992T3 (en) | 2006-10-20 | 2022-10-20 | Amgen Inc | Stable formulations of polypeptides |
DE102006053375A1 (en) | 2006-11-10 | 2008-05-15 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for mixing powders |
US20110070225A1 (en) | 2006-11-12 | 2011-03-24 | Pierre Goldbach | Beta antibody parenteral formulation |
WO2008079290A2 (en) | 2006-12-21 | 2008-07-03 | Amgen Inc | Stable buffered formulations containing polypeptides |
AU2008204901A1 (en) | 2007-01-09 | 2008-07-17 | Wyeth | Anti-IL-13 antibody formulations and uses thereof |
CN105037549B (en) | 2007-01-11 | 2018-09-28 | 诺和诺德公司 | Anti-KIR antibodies, preparation and its application |
EA200970880A1 (en) | 2007-03-22 | 2010-02-26 | Имклоун Элэлси | STABLE COMPOSITIONS BASED ON ANTIBODIES |
CN101678103A (en) | 2007-03-30 | 2010-03-24 | 米迪缪尼股份有限公司 | Antibody preparation |
US20090208492A1 (en) | 2007-06-14 | 2009-08-20 | Elan Pharmaceuticals, Inc. | Lyophilized Immunoglobulin Formulations and Methods of Preparation |
TW200909005A (en) * | 2007-06-14 | 2009-03-01 | Elan Pharm Inc | Lyophilized immunoglobulin formulations and methods of preparation |
WO2009006301A2 (en) | 2007-06-29 | 2009-01-08 | Battelle Memorial Institute | Protein stabilization |
WO2009015345A1 (en) | 2007-07-25 | 2009-01-29 | Amgen Inc. | Pharmaceutical compositions comprising fc fusion proteins |
EP3381445B1 (en) | 2007-11-15 | 2023-10-25 | Amgen Inc. | Aqueous formulation of antibody stablised by antioxidants for parenteral administration |
JP5490714B2 (en) | 2007-11-28 | 2014-05-14 | メディミューン,エルエルシー | Protein preparation |
CN104645329A (en) | 2007-11-30 | 2015-05-27 | Abbvie公司 | Protein formulations and methods of making same |
WO2009120684A1 (en) | 2008-03-25 | 2009-10-01 | Medimmune, Llc | Antibody formulation |
WO2009141239A1 (en) | 2008-05-20 | 2009-11-26 | F. Hoffmann-La Roche Ag | A pharmaceutical formulation comprising an antibody against ox40l, uses thereof |
EP2324315A2 (en) | 2008-06-26 | 2011-05-25 | Wyeth LLC | Lyophilization cycle robustness strategy |
JP5785077B2 (en) | 2008-08-05 | 2015-09-24 | ワイス・エルエルシー | Freeze-drying above the collapse temperature |
CN102202655B (en) | 2008-08-27 | 2013-06-19 | 默沙东公司 | Lyophilized formulatons of engineered anti-il-23p19 antibodies |
RU2518278C2 (en) | 2008-09-19 | 2014-06-10 | Пфайзер Инк. | Stable liquid preparation of antibody |
KR20140019035A (en) | 2008-09-19 | 2014-02-13 | 에프. 호프만-라 로슈 아게 | Novel antibody formulation |
WO2010042705A1 (en) | 2008-10-09 | 2010-04-15 | Medimmune, Llc | Antibody formulation |
US20110293605A1 (en) | 2008-11-12 | 2011-12-01 | Hasige Sathish | Antibody formulation |
CN102281902B (en) | 2008-11-17 | 2013-11-13 | 弗·哈夫曼-拉罗切有限公司 | Method and formulation for reducing aggregation of a macromolecule under physiological conditions |
PE20120169A1 (en) | 2008-11-17 | 2012-02-29 | Genentech Inc | METHOD AND FORMULATION TO REDUCE THE AGGREGATION OF A MACROMOLECLE UNDER PHYSIOLOGICAL CONDITIONS |
EP2358393A1 (en) | 2008-11-20 | 2011-08-24 | F.Hoffmann-La Roche Ag | Therapeutic protein formulations |
US8992920B2 (en) | 2008-11-25 | 2015-03-31 | Alderbio Holdings Llc | Anti-IL-6 antibodies for the treatment of arthritis |
NZ606283A (en) | 2008-11-28 | 2014-08-29 | Abbvie Inc | Stable antibody compositions and methods for stabilizing same |
US20110236391A1 (en) * | 2008-12-09 | 2011-09-29 | Hanns-Christian Mahler | Method for obtaining an excipient-free antibody solution |
EP2196476A1 (en) | 2008-12-10 | 2010-06-16 | Novartis Ag | Antibody formulation |
WO2010069858A1 (en) | 2008-12-19 | 2010-06-24 | F. Hoffmann-La Roche Ag | Pharmaceutical composition |
FR2944448B1 (en) | 2008-12-23 | 2012-01-13 | Adocia | STABLE PHARMACEUTICAL COMPOSITION COMPRISING AT LEAST ONE MONODONAL ANTIBODY AND AT LEAST ONE AMPHIPHILIC POLYSACHARIDE COMPRISING SUBSTITUENTS DERIVED FROM HYDROFOB ALCOHOLS OR HYDROPHOBIC AMINES. |
CN102781470B (en) | 2009-03-05 | 2016-01-20 | Abbvie公司 | IL-17 associated proteins |
AR075715A1 (en) | 2009-03-05 | 2011-04-20 | Novartis Ag | FORMULATION OF LIOFILIZED ANTIBODY |
EP2403873A1 (en) | 2009-03-05 | 2012-01-11 | Ablynx N.V. | Novel antigen binding dimer-complexes, methods of making/avoiding and uses thereof |
AU2010221099A1 (en) | 2009-03-06 | 2011-09-22 | Medimmune, Llc | Humanized anti-CD19 antibody formulations |
WO2010113943A1 (en) | 2009-03-31 | 2010-10-07 | デンカ生研株式会社 | Immunoassay method and reagent therefor |
JP2010241718A (en) | 2009-04-03 | 2010-10-28 | Kyowa Hakko Kirin Co Ltd | Stable aqueous solution preparation of antibody |
US20100322943A1 (en) | 2009-06-17 | 2010-12-23 | Thomas Cantor | Therapeutic and diagnostic affinity purified specific polyclonal antibodies |
MX2011013722A (en) | 2009-06-18 | 2012-05-08 | Wyeth Llc | Lyophilized formulations for small modular immunopharmaceuticals. |
WO2010148321A1 (en) | 2009-06-18 | 2010-12-23 | Wyeth Llc | Slow dissolution method for reconstitution of lyophilized material |
CA2765220A1 (en) | 2009-07-14 | 2011-01-20 | Biogen Idec Ma Inc. | Methods for inhibiting yellow color and peroxide formation in a composition |
US20120121580A1 (en) | 2009-07-28 | 2012-05-17 | Merck Sharp & Dohme Corp. | Methods for producing high concentration lyophilized pharmaceutical formulations |
US9345661B2 (en) | 2009-07-31 | 2016-05-24 | Genentech, Inc. | Subcutaneous anti-HER2 antibody formulations and uses thereof |
EP2473191B1 (en) | 2009-09-04 | 2017-08-23 | XOMA Technology Ltd. | Antibody coformulations |
AR078161A1 (en) | 2009-09-11 | 2011-10-19 | Hoffmann La Roche | VERY CONCENTRATED PHARMACEUTICAL FORMULATIONS OF AN ANTIBODY ANTI CD20. USE OF THE FORMULATION. TREATMENT METHOD |
MX2012005863A (en) | 2009-11-20 | 2013-01-18 | Centro Inmunologia Molecular | Formulations of antibody. |
SG182304A1 (en) | 2009-12-29 | 2012-08-30 | Hoffmann La Roche | Antibody formulation |
JO3417B1 (en) | 2010-01-08 | 2019-10-20 | Regeneron Pharma | Stabilized formulations containing anti-interleukin-6 receptor (il-6r) antibodies |
UA112288C2 (en) | 2010-01-15 | 2016-08-25 | Кірін-Емджен, Інк. | Antibody forvulation and therapeutic regimens |
WO2011109205A2 (en) | 2010-03-01 | 2011-09-09 | Eli Lilly And Company | Automatic injection device with delay mechanism including dual functioning biasing member |
SG184355A1 (en) | 2010-03-01 | 2012-11-29 | Progenics Pharm Inc | Concentrated protein formulations and uses thereof |
US20110223208A1 (en) | 2010-03-09 | 2011-09-15 | Beth Hill | Non-Aqueous High Concentration Reduced Viscosity Suspension Formulations |
WO2011116090A1 (en) | 2010-03-17 | 2011-09-22 | Abbott Research B.V. | Anti-nerve growth factor (ngf) antibody compositions |
EP2568960B1 (en) | 2010-05-10 | 2018-06-06 | Intas Pharmaceuticals Ltd. | Liquid formulation of polypeptides containing an fc domain of an immunoglobulin |
SI2569010T1 (en) | 2010-05-14 | 2017-09-29 | Amgen, Inc | High concentration antibody formulations |
EP2399604A1 (en) | 2010-06-25 | 2011-12-28 | F. Hoffmann-La Roche AG | Novel antibody formulation |
AU2011274363A1 (en) | 2010-07-02 | 2013-01-24 | Medimmune, Llc | Antibody formulations |
JOP20190250A1 (en) | 2010-07-14 | 2017-06-16 | Regeneron Pharma | Stabilized formulations containing anti-ngf antibodies |
FR2962650B1 (en) | 2010-07-19 | 2013-04-05 | Lab Francais Du Fractionnement | COMPOSITION OF HUMAN CONCENTRATED IMMUNOGLOBULINS |
WO2012028683A1 (en) | 2010-09-02 | 2012-03-08 | Novartis Ag | Antibody gel system for sustained drug delivery |
EP2616814A1 (en) | 2010-09-17 | 2013-07-24 | AbbVie Inc. | Raman spectroscopy for bioprocess operations |
MY158130A (en) | 2010-10-06 | 2016-08-30 | Regeneron Pharma | Stabilized formulations containing anti-interleukin-4 receptor )il-4r) antibodies |
HUE044038T2 (en) | 2010-11-05 | 2019-09-30 | Novartis Ag | Methods of treating ankylosing spondylitis using anti-il-17 antibodies |
JP5919606B2 (en) * | 2010-11-11 | 2016-05-18 | アッヴィ バイオテクノロジー リミテッド | Improved high concentration anti-TNF alpha antibody liquid formulation |
WO2012068549A2 (en) | 2010-11-19 | 2012-05-24 | Forsight Vision4, Inc. | Therapeutic agent formulations for implanted devices |
US9458240B2 (en) | 2010-12-10 | 2016-10-04 | Novartis Pharma Ag | Anti-BAFFR antibody formulations |
EP2471554A1 (en) | 2010-12-28 | 2012-07-04 | Hexal AG | Pharmaceutical formulation comprising a biopharmaceutical drug |
EP2500035A1 (en) | 2011-03-15 | 2012-09-19 | Icon Genetics GmbH | Pharmaceutical formulation containing immunglobulin |
US20130344074A1 (en) | 2011-03-16 | 2013-12-26 | Sanofi | Uses of a dual v region antibody-like protein |
RU2563346C2 (en) | 2011-03-31 | 2015-09-20 | Мерк Шарп И Доум Корп. | Stable formulations of antibodies to human programmed death receptor pd-1 and related treatment methods |
UA116189C2 (en) | 2011-05-02 | 2018-02-26 | Мілленніум Фармасьютікалз, Інк. | FORMULATION FOR ANTI-α4β7 ANTIBODY |
PT2704742T (en) | 2011-05-02 | 2017-11-15 | Millennium Pharm Inc | Formulation for anti- 4 7 antibody |
JOP20200043A1 (en) | 2011-05-10 | 2017-06-16 | Amgen Inc | Methods of treating or preventing cholesterol related disorders |
RU2013155695A (en) | 2011-06-30 | 2015-08-10 | Дженентек, Инк. | ANTIBODIES AGAINST C-MET |
AR087305A1 (en) | 2011-07-28 | 2014-03-12 | Regeneron Pharma | STABILIZED FORMULATIONS CONTAINING ANTI-PCSK9 ANTIBODIES, PREPARATION METHOD AND KIT |
AU2012328739B2 (en) | 2011-10-25 | 2017-11-30 | Prothena Biosciences Limited | Antibody formulations and methods |
LT3091029T (en) | 2011-10-31 | 2023-02-27 | F. Hoffmann-La Roche Ag | Anti-il13 antibody formulations |
US20140335084A1 (en) | 2011-12-06 | 2014-11-13 | Hoffmann-La Roche Inc. | Antibody formulation |
WO2013096901A1 (en) | 2011-12-23 | 2013-06-27 | Mersana Therapeutics, Inc. | Pharmaceutical formulations for fumagillin derivative-phf conjugates |
JO3533B1 (en) | 2012-01-23 | 2020-07-05 | Regeneron Pharma | Stabilized formulations containing anti-ang2 antibodies |
EP3662967B1 (en) | 2012-03-07 | 2021-11-10 | DEKA Products Limited Partnership | Infusion pump assembly |
NZ627648A (en) * | 2012-03-07 | 2016-10-28 | Lilly Co Eli | Il-17 antibody formulation |
BR112014021325A2 (en) | 2012-03-07 | 2017-08-22 | Cadila Healthcare Ltd | LIQUID PHARMACEUTICAL FORMULATION AND LYOPHILIZED FORMULATION |
US9592289B2 (en) | 2012-03-26 | 2017-03-14 | Sanofi | Stable IgG4 based binding agent formulations |
US20140004131A1 (en) | 2012-05-04 | 2014-01-02 | Novartis Ag | Antibody formulation |
SI2849723T1 (en) | 2012-05-18 | 2018-09-28 | Genentech, Inc. | High-concentration monoclonal antibody formulations |
AR092325A1 (en) | 2012-05-31 | 2015-04-15 | Regeneron Pharma | STABILIZED FORMULATIONS CONTAINING ANTI-DLL4 ANTIBODIES AND KIT |
WO2013186230A1 (en) | 2012-06-12 | 2013-12-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical formulation for a therapeutic antibody |
US9216219B2 (en) | 2012-06-12 | 2015-12-22 | Novartis Ag | Anti-BAFFR antibody formulation |
US9803010B2 (en) | 2012-06-27 | 2017-10-31 | Merck Sharp & Dohme Corp. | Crystalline anti-human IL-23p19 antibodies |
US20140227250A1 (en) | 2012-08-23 | 2014-08-14 | Merck Sharp & Dohme Corp. | Stable formulations of antibodies to tslp |
US8883979B2 (en) | 2012-08-31 | 2014-11-11 | Bayer Healthcare Llc | Anti-prolactin receptor antibody formulations |
US9592297B2 (en) * | 2012-08-31 | 2017-03-14 | Bayer Healthcare Llc | Antibody and protein formulations |
US8613919B1 (en) | 2012-08-31 | 2013-12-24 | Bayer Healthcare, Llc | High concentration antibody and protein formulations |
UA115789C2 (en) | 2012-09-05 | 2017-12-26 | Трейкон Фармасутікалз, Інк. | Antibody formulations and uses thereof |
PE20191815A1 (en) * | 2012-09-07 | 2019-12-27 | Coherus Biosciences Inc | STABLE AQUEOUS FORMULATIONS OF ADALIMUMAB |
BR112015008186A2 (en) | 2012-10-25 | 2017-09-19 | Medimmune Llc | formulation of a stable, low viscosity antibody |
EP2727602A1 (en) | 2012-10-31 | 2014-05-07 | Takeda GmbH | Method for preparation of a high concentration liquid formulation of an antibody |
EP2914289B1 (en) | 2012-10-31 | 2019-05-22 | Takeda GmbH | Lyophilized formulation comprising gm-csf neutralizing compound |
EP3466973A1 (en) | 2012-11-01 | 2019-04-10 | AbbVie Inc. | Stable dual variable domain immunoglobulin protein formulations |
US20150307606A1 (en) | 2012-12-13 | 2015-10-29 | Ashwin Basarkar | Lyophilized spherical pellets of anti-il-23 antibodies |
UA117466C2 (en) | 2012-12-13 | 2018-08-10 | Мерк Шарп Енд Доме Корп. | SOLUTION FORMULATIONS OF ENGINEERED ANTI-IL-23p19 ANTIBODIES |
WO2014099636A1 (en) | 2012-12-18 | 2014-06-26 | Merck Sharp & Dohme Corp. | Liquid formulations for an anti-tnf alpha antibody |
EP2934582B1 (en) | 2012-12-21 | 2019-11-27 | Glenmark Pharmaceuticals S.A. | Anti her2 antibody formulation |
CA2895284A1 (en) | 2013-02-07 | 2014-08-14 | Immunomedics, Inc. | Pro-drug form (p2pdox) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
WO2014164301A2 (en) | 2013-03-11 | 2014-10-09 | Amgen Inc. | Protein formulations |
SG10202009046SA (en) | 2013-03-13 | 2020-10-29 | Seattle Genetics Inc | Cyclodextrin and antibody-drug conjugate formulations |
RU2694055C2 (en) | 2013-03-13 | 2019-07-09 | Дженентек, Инк. | Compositions of antibodies |
JP6407174B2 (en) | 2013-03-15 | 2018-10-17 | タケダ ゲー・エム・ベー・ハーTakeda GmbH | Antibody formulations and uses of the formulations |
KR20150132332A (en) | 2013-03-15 | 2015-11-25 | 글락소스미스클라인 인털렉츄얼 프로퍼티 (넘버 2) 리미티드 | Low concentration antibody formulations |
JP2016515515A (en) | 2013-03-15 | 2016-05-30 | バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC | Anti-prolactin receptor antibody preparation |
SI2968588T1 (en) | 2013-03-15 | 2019-05-31 | AbbVie Deutschland GmbH & Co. KG | Anti-egfr antibody drug conjugate formulations |
US9700485B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
TWI679019B (en) | 2013-04-29 | 2019-12-11 | 法商賽諾菲公司 | Anti-il-4/anti-il-13 bispecific antibody formulations |
WO2014195872A1 (en) | 2013-06-04 | 2014-12-11 | Vyome Biosciences Pvt. Ltd. | Coated particles and compositions comprising same |
JP6744212B2 (en) | 2013-06-21 | 2020-08-19 | イナート・ファルマ・ソシエテ・アノニムInnate Pharma Pharma S.A. | Enzymatic binding of polypeptides |
US10513555B2 (en) | 2013-07-04 | 2019-12-24 | Prothena Biosciences Limited | Antibody formulations and methods |
SG10201913952TA (en) | 2013-09-11 | 2020-03-30 | Eagle Biologics Inc | Liquid protein formulations containing viscosity-lowering agents |
NZ719036A (en) | 2013-09-27 | 2022-02-25 | Genentech Inc | Anti-pdl1 antibody formulations |
CN105611938A (en) | 2013-10-24 | 2016-05-25 | 免疫医疗有限责任公司 | Stable, aqueous antibody formulations |
WO2015075201A1 (en) | 2013-11-21 | 2015-05-28 | Genmab A/S | Antibody-drug conjugate lyophilised formulation |
WO2015110930A1 (en) | 2014-01-24 | 2015-07-30 | Pfizer Inc. | Modified interleukin 21 receptor proteins |
WO2015121318A1 (en) | 2014-02-12 | 2015-08-20 | Sanofi | Anti-il-4/anti-il-13 bispecific antibody/polyglutamate formulations |
US20150274819A1 (en) | 2014-03-03 | 2015-10-01 | La Jolla Biologics, Inc. | Stable aqueous recombinant protein formulations |
WO2015138337A1 (en) | 2014-03-09 | 2015-09-17 | Abbvie, Inc. | Compositions and methods for treating rheumatoid arthritis |
KR101917197B1 (en) | 2014-03-11 | 2018-11-09 | 주식회사 녹십자홀딩스 | Method for purifying immunoglobulin |
WO2015137530A1 (en) | 2014-03-11 | 2015-09-17 | 주식회사 녹십자홀딩스 | Method for purifying immunoglobulin |
TW201623331A (en) | 2014-03-12 | 2016-07-01 | 普羅帝納生物科學公司 | Anti-MCAM antibodies and associated methods of use |
KR102530900B1 (en) | 2014-03-31 | 2023-05-12 | 암젠 케이-에이, 인크. | Methods of treating nail and scalp psoriasis |
US9975957B2 (en) | 2014-03-31 | 2018-05-22 | Genentech, Inc. | Anti-OX40 antibodies and methods of use |
IN2014MU01248A (en) | 2014-04-02 | 2015-10-09 | Intas Pharmaceuticals Ltd | |
SG11201607306PA (en) | 2014-04-07 | 2016-09-29 | Seattle Genetics Inc | Stable formulations for anti-cd19 antibodies and antibody-drug conjugates |
JP2015209384A (en) | 2014-04-24 | 2015-11-24 | ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. | Pharmaceutical formulation |
WO2015200027A1 (en) | 2014-06-26 | 2015-12-30 | Amgen Inc. | Protein formulations |
AU2015301399B2 (en) | 2014-08-14 | 2018-11-08 | Brown University | Compositions for stabilizing and delivering proteins |
WO2016036678A1 (en) | 2014-09-02 | 2016-03-10 | Medimmune, Llc | Formulations of bispecific antibodies |
WO2016034648A1 (en) | 2014-09-03 | 2016-03-10 | Medimmune Limited | Stable anti-il-4r-alpha antibody formulation |
SG11201701821QA (en) | 2014-09-15 | 2017-04-27 | Genentech Inc | Antibody formulations |
GB201416960D0 (en) | 2014-09-25 | 2014-11-12 | Antikor Biopharma Ltd | Biological materials and uses thereof |
JP2017532342A (en) | 2014-10-17 | 2017-11-02 | アムジエン・インコーポレーテツド | Antibodies directed to angiopoietin-1 and angiopoietin-2 for ocular therapy |
US20170247460A1 (en) | 2014-10-18 | 2017-08-31 | Pfizer Inc. | Anti-il-7r antibody compositions |
TWI761959B (en) | 2014-11-07 | 2022-04-21 | 瑞士商諾華公司 | Methods for treating ocular diseases |
US20160144025A1 (en) | 2014-11-25 | 2016-05-26 | Regeneron Pharmaceuticals, Inc. | Methods and formulations for treating vascular eye diseases |
AR103173A1 (en) | 2014-12-22 | 2017-04-19 | Novarits Ag | PHARMACEUTICAL PRODUCTS AND STABLE LIQUID COMPOSITIONS OF ANTIBODIES IL-17 |
EP3237000A1 (en) | 2014-12-23 | 2017-11-01 | Pfizer Inc | Stable aqueous antibody formulation for anti tnf alpha antibodies |
EP3240571A4 (en) | 2014-12-31 | 2018-06-13 | NovelMed Therapeutics, Inc. | Formulation of aglycosylated therapeutic antibodies |
BR112017014376A2 (en) | 2015-01-28 | 2018-05-02 | Pfizer | stable aqueous formulation of vascular endothelial growth antifactor (vegf) antibodies and use |
EA035719B1 (en) | 2015-02-09 | 2020-07-30 | Юсб Биофарма Спрл | Pharmaceutical formulation |
MX2017010400A (en) | 2015-02-13 | 2017-11-28 | Sanofi Sa | Stable liquid formulation for monoclonal antibodies. |
ES2813580T3 (en) | 2015-04-17 | 2021-03-24 | Bristol Myers Squibb Co | Compositions comprising a combination of ipilimumab and nivolumab |
KR101808234B1 (en) | 2015-06-23 | 2017-12-12 | (주)알테오젠 | A stable liquid formulation of fusion protein with IgG Fc domain |
JP2018521047A (en) | 2015-07-16 | 2018-08-02 | イーライ リリー アンド カンパニー | Itching treatment |
PL3337502T3 (en) | 2015-08-19 | 2021-01-11 | Astrazeneca Ab | Stable anti-ifnar1 formulation |
CN106474470B (en) | 2015-08-28 | 2020-05-22 | 江苏恒瑞医药股份有限公司 | Composition of anti-IL-17A antibody |
TN2018000076A1 (en) | 2015-09-09 | 2019-07-08 | Novartis Ag | Thymic stromal lymphopoietin (tslp)-binding molecules and methods of using the molecules |
US9862760B2 (en) | 2015-09-16 | 2018-01-09 | Novartis Ag | Polyomavirus neutralizing antibodies |
KR20200035496A (en) | 2015-09-22 | 2020-04-03 | 화이자 인코포레이티드 | Method of preparing a therapeutic protein formulation and antibody formulation produced by such a method |
RU2731418C2 (en) | 2015-09-28 | 2020-09-02 | Сучжоу Санкадия Биофармасьютикалз Ко., Лтд. | Stable pharmaceutical preparation based on the pd-1 antibody and its use in medicine |
WO2017055966A1 (en) | 2015-10-01 | 2017-04-06 | Pfizer Inc. | Low viscosity antibody compositions |
CN106620690A (en) | 2015-10-30 | 2017-05-10 | 上海抗体药物国家工程研究中心有限公司 | Stable antibody preparation |
EP3368565A1 (en) | 2015-10-30 | 2018-09-05 | H. Hoffnabb-La Roche Ag | Anti-factor d antibody formulations |
KR20180105123A (en) | 2015-11-18 | 2018-09-27 | 에스아이오2 메디컬 프로덕츠, 인크. | Pharmaceutical package for ophthalmic preparations |
WO2017095848A1 (en) | 2015-11-30 | 2017-06-08 | Medimmune, Llc | Optimized ratios of amino acids and sugars as amorphous stabilizing compounds in pharmaceutical compositions containing high concentrations of protein-based therapeutic agents |
ES2823279T3 (en) | 2015-12-07 | 2021-05-06 | Merck Patent Gmbh | Aqueous pharmaceutical formulation comprising Avelumab anti-PD-1 antibody |
EP3397281B1 (en) | 2015-12-29 | 2020-09-09 | Outlook Therapeutics, Inc. | Buffered formulations of bevacizumab |
EP3402470A4 (en) | 2016-01-12 | 2019-11-13 | Dr. Reddy's Laboratories Limited | Stable pharmaceutical composition |
US12115227B2 (en) | 2016-01-13 | 2024-10-15 | Genmab A/S | Formulation for antibody and drug conjugate thereof |
JP6953433B2 (en) | 2016-01-26 | 2021-10-27 | フォーマイコン アーゲーFormycon Ag | A liquid pharmaceutical composition containing a VEGF antagonist and a prefilled syringe containing the pharmaceutical composition. |
EP3408293A4 (en) | 2016-01-28 | 2019-09-11 | Janssen Biotech, Inc. | Bispecific anti-tnf-alpha/il-17a antibodies and anti-tnf-alpha antibodies and methods of their use |
AR103622A1 (en) | 2016-02-05 | 2017-05-24 | Ucb Biopharma Sprl | PHARMACEUTICAL FORMULATION |
AU2017222564A1 (en) | 2016-02-24 | 2018-09-06 | Visterra, Inc. | Formulations of antibody molecules to influenza virus |
WO2017149513A1 (en) | 2016-03-03 | 2017-09-08 | Prothena Biosciences Limited | Anti-mcam antibodies and associated methods of use |
GB201604124D0 (en) | 2016-03-10 | 2016-04-27 | Ucb Biopharma Sprl | Pharmaceutical formulation |
EP3433274A1 (en) | 2016-03-25 | 2019-01-30 | Visterra, Inc. | Formulation of antibody molecules to dengue virus |
JP6992262B2 (en) | 2016-03-31 | 2022-02-15 | 東ソー株式会社 | Manufacturing method of denaturing antibody measurement reagent |
CN118203542A (en) | 2016-04-12 | 2024-06-18 | 斯威本科技大学 | Injectable compositions for delivery of bioactive agents |
WO2017180594A1 (en) | 2016-04-13 | 2017-10-19 | Medimmune, Llc | Use of amino acids as stabilizing compounds in pharmaceutical compositions containing high concentrations of protein-based therapeutic agents |
GB201608323D0 (en) | 2016-05-12 | 2016-06-29 | Ucb Biopharma Sprl | Pharmaceutical compositions |
TWI826351B (en) | 2016-05-31 | 2023-12-21 | 大陸商鴻運華寧(杭州)生物醫藥有限公司 | R antibodies, their pharmaceutical compositions and uses |
WO2017208210A1 (en) | 2016-06-03 | 2017-12-07 | Prothena Biosciences Limited | Anti-mcam antibodies and associated methods of use |
CN109475508A (en) | 2016-06-07 | 2019-03-15 | 阿瑞迪思医药品股份有限责任公司 | The preparation method of the instant film containing bioactive materials of thermal stability with enhancing |
CA3029137A1 (en) | 2016-06-27 | 2018-01-04 | Morphosys Ag | Anti-cd19 antibody formulations |
TN2018000443A1 (en) | 2016-06-30 | 2020-06-15 | Celltrion Inc | Stable liquid pharmaceutical preparation |
US11207407B2 (en) | 2016-07-05 | 2021-12-28 | Sanofi | Antibody formulations |
JP2019521156A (en) | 2016-07-19 | 2019-07-25 | ノバルティス アーゲー | Method of treating initial plaque-type psoriasis using an IL-17 antagonist |
JOP20170170B1 (en) | 2016-08-31 | 2022-09-15 | Omeros Corp | Highly concentrated low viscosity masp-2 inhibitory antibody formulations, kits, and methods |
FR3056912B1 (en) | 2016-09-30 | 2019-12-27 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | METHOD OF VIRAL INACTIVATION OF A PREPARATION OF MONOCLONAL ANTIBODIES |
JP7275027B2 (en) | 2016-10-06 | 2023-05-17 | アムジェン インコーポレイテッド | Viscosity-lowering protein pharmaceutical formulations |
BR112019006907A2 (en) | 2016-10-07 | 2019-07-02 | Regeneron Pharma | room temperature stable freeze-dried protein |
KR102595080B1 (en) | 2016-12-23 | 2023-10-30 | 세럼 인스티튜트 오브 인디아 프라이비트 리미티드 | Improved methods for enhancing antibody productivity in mammalian cell culture and minimizing aggregation during downstream formulation processes, and stable antibody preparations obtained therefrom |
CN110114078B (en) | 2016-12-28 | 2024-01-30 | Jcr制药股份有限公司 | Freeze-dried preparation |
WO2018122053A1 (en) | 2016-12-29 | 2018-07-05 | F. Hoffmann-La Roche Ag | Anti-angiopoietin-2 antibody formulation |
CN108261544B (en) | 2016-12-30 | 2023-05-05 | 江苏太平洋美诺克生物药业股份有限公司 | Stable pharmaceutical formulation comprising CD147 monoclonal antibody |
CN108261391B (en) | 2016-12-30 | 2022-03-01 | 江苏太平洋美诺克生物药业有限公司 | Stable pharmaceutical formulation comprising CD147 monoclonal antibody |
US10980881B2 (en) | 2017-01-11 | 2021-04-20 | Celltrion Inc. | Stable liquid formula having an anti-TNFalpha antibody, acetate buffer and glycine |
CN117752782A (en) | 2017-01-17 | 2024-03-26 | 豪夫迈·罗氏有限公司 | Subcutaneous HER2 antibody formulations |
PT3570882T (en) | 2017-01-19 | 2022-01-11 | Bayer Pharma AG | Novel stable formulation for fxia antibodies |
GB201703063D0 (en) | 2017-02-24 | 2017-04-12 | Arecor Ltd | Stabilized antibody protein solutions |
GB201703062D0 (en) | 2017-02-24 | 2017-04-12 | Arecor Ltd | Stabilized antibody protein solutions |
EP3797792A1 (en) | 2017-03-01 | 2021-03-31 | MedImmune Limited | Formulations of anti-gm-csfralpha monoclonal antibody |
TW202228779A (en) | 2017-03-01 | 2022-08-01 | 英商梅迪繆思有限公司 | Anti-rsv monoclonal antibody formulation |
EP3372242A1 (en) | 2017-03-06 | 2018-09-12 | Ares Trading S.A. | Liquid pharmaceutical composition |
EP3592382A1 (en) | 2017-03-06 | 2020-01-15 | Merck Patent GmbH | Aqueous anti-pd-l1 antibody formulation |
RU2756619C2 (en) | 2017-03-16 | 2021-10-04 | ЭлДжи КЕМ, ЛТД. | Liquid composition of an antibody against tnf alpha |
WO2018179138A1 (en) | 2017-03-29 | 2018-10-04 | 持田製薬株式会社 | Antibody-containing liquid preparation |
KR20190141658A (en) | 2017-03-29 | 2019-12-24 | 셀진 코포레이션 | Formulations Comprising PD-1 Binding Proteins and Methods for Making the Same |
TW201836637A (en) | 2017-03-29 | 2018-10-16 | 持田製藥股份有限公司 | Liquid pharmaceutical agent comprising antibody characterized by realizing the stability of dimer formation inhibition and deamidation inhibition during long-term storage and being suitable for a wide range of antibody concentration |
JP7179717B2 (en) | 2017-03-31 | 2022-11-29 | Meiji Seikaファルマ株式会社 | Aqueous formulation, aqueous formulation containing syringe, antibody protein disaggregation agent, and antibody protein disaggregation method |
US11603407B2 (en) | 2017-04-06 | 2023-03-14 | Regeneron Pharmaceuticals, Inc. | Stable antibody formulation |
JOP20190255A1 (en) | 2017-04-28 | 2019-10-27 | Amgen Inc | Formulations of human anti-rankl antibodies, and methods of using the same |
SG11201909955XA (en) | 2017-05-02 | 2019-11-28 | Merck Sharp & Dohme | Formulations of anti-lag3 antibodies and co-formulations of anti-lag3 antibodies and anti-pd-1 antibodies |
JOP20190260A1 (en) | 2017-05-02 | 2019-10-31 | Merck Sharp & Dohme | Stable formulations of programmed death receptor 1 (pd-1) antibodies and methods of use thereof |
SG11202003754YA (en) | 2017-05-16 | 2020-05-28 | Bhamis Research Laboratory Pvt Ltd | High concentration protein formulations with reduced viscosity |
JP2020527552A (en) | 2017-07-10 | 2020-09-10 | バイエル・ファルマ・アクティエンゲゼルシャフト | Prolactin receptor antibody for androgenetic alopecia and female pattern baldness |
CN107400164A (en) | 2017-07-18 | 2017-11-28 | 中山和芯生物技术有限公司 | A kind of biological products stabilizer containing sucrose and its preparation method and application |
WO2019018640A1 (en) | 2017-07-21 | 2019-01-24 | Novartis Ag | Dosage regimens for anti-gitr antibodies and uses thereof |
US11077059B2 (en) | 2017-07-25 | 2021-08-03 | Elektrofi, Inc. | Electrospraying formation of particles including agents |
TW201909913A (en) | 2017-07-27 | 2019-03-16 | 大陸商江蘇恆瑞醫藥股份有限公司 | SOST antibody pharmaceutical composition and use thereof |
JP7407699B2 (en) | 2017-07-28 | 2024-01-04 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Bispecific antibody preparation |
CA3073185A1 (en) | 2017-08-15 | 2019-02-21 | Progenity, Inc. | Treatment of inflammatory disease using ingestible device to release immune modulator |
US20210128741A1 (en) | 2017-08-23 | 2021-05-06 | Daiichi Sankyo Company, Limited | Antibody-drug conjugate preparation and lyophilization for same |
BR112020004325A2 (en) | 2017-09-05 | 2020-10-06 | Merck Sharp & Dohme Corp. | compounds to reduce the viscosity of biological formulations |
ES2938608T3 (en) | 2017-09-20 | 2023-04-13 | Tillotts Pharma Ag | Method for preparing a solid dosage form comprising antibodies by wet granulation, extrusion and spheronization |
JP2020535181A (en) | 2017-09-29 | 2020-12-03 | ヤンセン バイオテツク,インコーポレーテツド | A novel formulation that stabilizes low-dose antibody compositions |
JP7170983B2 (en) | 2017-10-13 | 2022-11-15 | 国立大学法人大阪大学 | Protein-containing liquid formulation with improved storage stability and method for producing the same |
CN109745559A (en) | 2017-11-01 | 2019-05-14 | 三生国健药业(上海)股份有限公司 | The liquid preparation of the monoclonal antibody of anti-human IL-17A |
GB201718888D0 (en) | 2017-11-15 | 2017-12-27 | Ucb Biopharma Sprl | Method |
GB201719447D0 (en) | 2017-11-23 | 2018-01-10 | Ucb Biopharma Sprl | Pharmaceutical composition |
PE20211453A1 (en) | 2017-11-29 | 2021-08-05 | Prothena Biosciences Ltd | LYOPHILIZED FORMULATION OF A MONOCLONAL ANTIBODY AGAINST TRANSTIRETIN |
EP3718531A4 (en) | 2017-11-30 | 2023-08-16 | Bio-Thera Solutions, Ltd. | Liquid preparation of humanized antibody for treating il-6-related disease |
KR20200104314A (en) | 2017-12-22 | 2020-09-03 | 지앙수 헨그루이 메디슨 컴퍼니 리미티드 | LAG-3 antibody pharmaceutical composition and use thereof |
EP3749363A1 (en) | 2018-02-08 | 2020-12-16 | Amgen Inc. | Low ph pharmaceutical antibody formulation |
CA3093036A1 (en) | 2018-03-07 | 2019-09-12 | Pfizer Inc. | Anti-pd-1 antibody compositions |
US11427639B2 (en) | 2018-04-02 | 2022-08-30 | Richter Gedeon Nyrt. | Antibody-containing aqueous formulation and use thereof |
EP3773475A1 (en) | 2018-04-06 | 2021-02-17 | Cyprumed GmbH | Pharmaceutical compositions for the transmucosal delivery of therapeutic peptides and proteins |
AU2019250443A1 (en) | 2018-04-10 | 2020-10-22 | Genmab A/S | AXL-specific antibodies for cancer treatment |
EP3552631A1 (en) | 2018-04-10 | 2019-10-16 | Inatherys | Antibody-drug conjugates and their uses for the treatment of cancer |
JP2021522180A (en) | 2018-04-17 | 2021-08-30 | アウトルック セラピューティクス,インコーポレイティド | Treatment of diseases using bevacizumab buffer |
JP2021522209A (en) | 2018-04-25 | 2021-08-30 | メディミューン リミテッド | Formulation of human anti-PD-L1 antibody |
JOP20200275A1 (en) | 2018-05-10 | 2020-11-02 | Regeneron Pharma | High concentration vegf receptor fusion protein containing formulations |
SG11202011170YA (en) | 2018-05-14 | 2020-12-30 | Medimmune Ltd | Antibodies against lif and dosage forms thereof |
CN110538321B (en) | 2018-05-29 | 2023-03-10 | 江苏恒瑞医药股份有限公司 | CD47 antibody pharmaceutical composition and application thereof |
TW202003042A (en) | 2018-06-01 | 2020-01-16 | 美商樂天醫藥生技股份有限公司 | Phthalocyanine dye conjugate compositions |
EP3801469A4 (en) | 2018-06-07 | 2022-03-09 | Merck Sharp & Dohme Corp. | Lyosphere critical reagent kit |
US20230033021A1 (en) | 2018-06-20 | 2023-02-02 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an integrin inhibitor |
US20210363233A1 (en) | 2018-06-20 | 2021-11-25 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an il-12/il-23 inhibitor |
US20230009902A1 (en) | 2018-06-20 | 2023-01-12 | Progenity, Inc. | Treatment of a disease or condition in a tissue orginating from the endoderm |
US20230041197A1 (en) | 2018-06-20 | 2023-02-09 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an immunomodulator |
EP3810095A1 (en) | 2018-06-20 | 2021-04-28 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with a tnf inhibitor |
JP7549575B2 (en) | 2018-06-22 | 2024-09-11 | ビオラリクス ベー.フェー. | Formulation of biological polymers for oral administration |
US11738068B2 (en) | 2018-06-25 | 2023-08-29 | Jcr Pharmaceuticals Co., Ltd. | Protein-containing aqueous liquid formulation |
TW202011995A (en) | 2018-07-03 | 2020-04-01 | 比利時商葛萊伯格有限公司 | High concentration liquid antibody formulations |
EP3818062A4 (en) | 2018-07-05 | 2022-03-16 | Hangzhou Dac Biotech Co., Ltd | Cross-linked pyrrolobenzodiazepine dimer (pbd) derivative and its conjugates |
KR20200010103A (en) | 2018-07-19 | 2020-01-30 | (주)셀트리온 | Stable Liquid Pharmaceutical Formulation |
WO2020016417A1 (en) | 2018-07-19 | 2020-01-23 | Ichnos Sciences S.A. | Liquid antibody formulation |
US11396542B2 (en) | 2018-08-21 | 2022-07-26 | Synkrino Biotherapeutics, Inc. | Astrotactin1-based compositions and pharmaceutical formulations |
WO2020053301A1 (en) | 2018-09-11 | 2020-03-19 | Ichnos Sciences S.A. | Compositions comprising a bispecific antibody, bufffer and one or more stabilizing agents |
CA3111858A1 (en) | 2018-09-13 | 2020-03-19 | F. Hoffmann-La Roche Ag | Csf-1r antibody formulation |
PE20211213A1 (en) | 2018-10-05 | 2021-07-05 | Five Prime Therapeutics Inc | ANTI-FGFR2 ANTIBODY FORMULATIONS |
EP3865154A4 (en) | 2018-10-10 | 2022-11-09 | Astellas Pharma Inc. | Pharmaceutical composition containing tagged site-antihuman antibody fab fragment complex |
JP2022504745A (en) | 2018-10-12 | 2022-01-13 | ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ. | Conjugated conjugate containing 2,3-diaminosuccinyl group |
SG11202103907PA (en) | 2018-10-18 | 2021-05-28 | Merck Sharp & Dohme | Formulations of anti-rsv antibodies and methods of use thereof |
US20210353713A1 (en) | 2018-10-26 | 2021-11-18 | Amgen Inc. | Formulations comprising a tris buffer and a protein |
AU2019370601B2 (en) | 2018-10-29 | 2024-05-23 | F. Hoffmann-La Roche Ag | Antibody formulation |
KR20210094552A (en) | 2018-10-31 | 2021-07-29 | 리히터 게데온 닐트. | aqueous pharmaceutical formulations |
US20210369842A1 (en) | 2018-11-06 | 2021-12-02 | Genmab A/S | Antibody formulation |
WO2020097141A1 (en) | 2018-11-07 | 2020-05-14 | Merck Sharp & Dohme Corp. | Stable formulations of programmed death receptor 1 (pd-1) antibodies and methods of use thereof |
US12036280B2 (en) | 2018-11-21 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | High concentration protein formulation |
WO2020117373A1 (en) | 2018-12-03 | 2020-06-11 | Agensys, Inc. | Pharmaceutical compositions comprising anti-191p4d12 antibody drug conjugates and methods of use thereof |
CA3122902A1 (en) | 2018-12-14 | 2020-06-18 | Morphosys Ag | Antibody formulations |
CN113227140A (en) | 2019-01-08 | 2021-08-06 | H.隆德贝克有限公司 | Acute and rapid treatment of headache using anti-CGRP antibodies |
EP3914689A2 (en) | 2019-01-25 | 2021-12-01 | SiO2 Medical Products, Inc. | Common contact surfaces for use in the manufacture, packaging, delivery, and assessment of biopharmaceutical products |
BR112021014471A2 (en) | 2019-01-31 | 2021-09-21 | Hangzhou Dac Biotech Co., Ltd | CONJUGATED COMPOUND CONNECTED TO THE SIDE CHAIN. SIDE CHAIN CONNECTION COMPOUND, SIDE CHAINS Q1 AND Q2, D (AMANITA TOXIN STRUCTURE), W, L1, L2, V1 AND V2, COMPOUND, CELL BINDING AGENT/MOLECULE, T CELL BINDING MOLECULE, CELL OF TUMOR, PHARMACEUTICAL COMPOSITION, AND, CHEMOTHERAPEUTIC AND SYNERGISTIC AGENTS |
WO2020160323A2 (en) | 2019-01-31 | 2020-08-06 | Elektrofi, Inc. | Particle formation and morphology |
KR20210114989A (en) | 2019-02-18 | 2021-09-24 | 일라이 릴리 앤드 캄파니 | therapeutic antibody formulation |
US11596690B2 (en) | 2019-03-21 | 2023-03-07 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-IL-33 antibodies |
DK3811979T5 (en) | 2019-03-26 | 2024-08-19 | Remegen Co Ltd | Pharmaceutical composition with anti-HER2 antibody drug conjugate |
MX2021012032A (en) | 2019-04-01 | 2021-11-03 | Genentech Inc | Compositions and methods for stabilizing protein-containing formulations. |
EP3947448A4 (en) | 2019-04-04 | 2023-02-01 | Janssen Biotech, Inc. | Method of administration of an anti-ifn-alpha/-omega antibody |
AU2020259492A1 (en) | 2019-04-18 | 2021-11-11 | Momenta Pharmaceuticals, Inc. | Sialylated glycoproteins |
WO2020223565A1 (en) | 2019-05-01 | 2020-11-05 | Corvidia Therapeutics, Inc. | Anti-il-6 antibody formulation |
CN110179746A (en) | 2019-05-17 | 2019-08-30 | 通化东宝生物科技有限公司 | A kind of stable Su Jin monoclonal antibody injection and preparation method thereof |
WO2020233534A1 (en) | 2019-05-17 | 2020-11-26 | 百奥泰生物制药股份有限公司 | Antibody-drug conjugate preparation, preparation method therefor and use thereof |
JP2022532928A (en) | 2019-05-24 | 2022-07-20 | サノフイ | Methods for treating systemic scleroderma |
WO2020243346A1 (en) | 2019-05-28 | 2020-12-03 | The General Hospital Corporation | Apoe antibodies, fusion proteins and uses thereof |
WO2020247572A1 (en) | 2019-06-05 | 2020-12-10 | Seattle Genetics, Inc. | Masked antibody formulations |
CN110124030A (en) | 2019-06-10 | 2019-08-16 | 通化东宝生物科技有限公司 | A kind of Su Jin monoclonal antibody injection and preparation method thereof |
US11655302B2 (en) | 2019-06-10 | 2023-05-23 | Sanofi | Anti-CD38 antibodies and formulations |
EP3982930A1 (en) | 2019-06-11 | 2022-04-20 | SIFI S.p.A. | Microemulsion compositions |
WO2020257998A1 (en) | 2019-06-24 | 2020-12-30 | Hangzhou Dac Biotech Co., Ltd | A conjugate of a cytotoxic agent to a cell binding molecule with branched linkers |
US20220273796A1 (en) | 2019-07-19 | 2022-09-01 | Ichnos Sciences SA | Lyophilized antibody formulation |
EP3766481A1 (en) | 2019-07-19 | 2021-01-20 | Ichnos Sciences SA | Liquid antibody formulation |
WO2021021924A1 (en) | 2019-07-29 | 2021-02-04 | Huang Cai Gu | Formulation of antibody based drugs for treating lung cancer by inhalation |
WO2021050953A1 (en) | 2019-09-13 | 2021-03-18 | Elektrofi, Inc. | Compositions and methods for the delivery of therapeutic biologics for treatment of disease |
CN114981302A (en) | 2019-09-20 | 2022-08-30 | 诺华股份有限公司 | Methods of treating autoimmune diseases using interleukin-17 (IL-17) antagonists |
CN110585430B (en) | 2019-09-29 | 2023-09-08 | 华博生物医药技术(上海)有限公司 | Pharmaceutical composition of humanized anti-human IL-17A monoclonal antibody |
CA3156812A1 (en) | 2019-10-02 | 2021-04-08 | Alamab Therapeutics, Inc. | Anti-connexin antibody formulations |
WO2021067820A1 (en) | 2019-10-04 | 2021-04-08 | Seagen Inc. | Formulation of antibody-drug conjugate |
CN112891531B (en) | 2020-06-19 | 2021-10-08 | 北京东方百泰生物科技股份有限公司 | Injection preparation of anti-IL-17 RA monoclonal antibody |
-
2020
- 2020-02-11 KR KR1020217025595A patent/KR20210114989A/en active IP Right Grant
- 2020-02-11 CA CA3129901A patent/CA3129901A1/en active Pending
- 2020-02-11 CN CN202080015310.4A patent/CN113474360A/en active Pending
- 2020-02-11 JO JOP/2021/0229A patent/JOP20210229A1/en unknown
- 2020-02-11 MX MX2021009851A patent/MX2021009851A/en unknown
- 2020-02-11 JP JP2021548156A patent/JP7266108B2/en active Active
- 2020-02-11 BR BR112021015034-0A patent/BR112021015034A2/en unknown
- 2020-02-11 CR CR20210435A patent/CR20210435A/en unknown
- 2020-02-11 US US16/787,254 patent/US11634485B2/en active Active
- 2020-02-11 MA MA055033A patent/MA55033A/en unknown
- 2020-02-11 PE PE2021001350A patent/PE20212185A1/en unknown
- 2020-02-11 WO PCT/US2020/017594 patent/WO2020172002A1/en active Application Filing
- 2020-02-11 UA UAA202104496A patent/UA128098C2/en unknown
- 2020-02-11 AU AU2020225202A patent/AU2020225202B2/en active Active
- 2020-02-11 EP EP20758503.5A patent/EP3927729A4/en active Pending
- 2020-02-11 SG SG11202108627SA patent/SG11202108627SA/en unknown
-
2021
- 2021-07-26 IL IL285134A patent/IL285134A/en unknown
- 2021-08-13 CO CONC2021/0010697A patent/CO2021010697A2/en unknown
- 2021-08-17 EC ECSENADI202160917A patent/ECSP21060917A/en unknown
- 2021-08-17 DO DO2021000170A patent/DOP2021000170A/en unknown
- 2021-08-17 CL CL2021002182A patent/CL2021002182A1/en unknown
-
2023
- 2023-03-01 US US18/176,844 patent/US20230183334A1/en active Pending
- 2023-04-17 JP JP2023067075A patent/JP7551822B2/en active Active
- 2023-10-20 AU AU2023251529A patent/AU2023251529A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
MX2021009851A (en) | 2021-09-10 |
JP7551822B2 (en) | 2024-09-17 |
AU2020225202B2 (en) | 2023-10-26 |
EP3927729A1 (en) | 2021-12-29 |
MA55033A (en) | 2021-12-29 |
CO2021010697A2 (en) | 2021-10-29 |
US20200262911A1 (en) | 2020-08-20 |
UA128098C2 (en) | 2024-04-03 |
JP2022520857A (en) | 2022-04-01 |
BR112021015034A2 (en) | 2021-10-05 |
JP7266108B2 (en) | 2023-04-27 |
JP2023089190A (en) | 2023-06-27 |
CL2021002182A1 (en) | 2022-03-18 |
US11634485B2 (en) | 2023-04-25 |
SG11202108627SA (en) | 2021-09-29 |
EP3927729A4 (en) | 2023-10-11 |
DOP2021000170A (en) | 2021-09-30 |
KR20210114989A (en) | 2021-09-24 |
AU2023251529A1 (en) | 2024-01-18 |
IL285134A (en) | 2021-09-30 |
WO2020172002A1 (en) | 2020-08-27 |
CN113474360A (en) | 2021-10-01 |
CA3129901A1 (en) | 2020-08-27 |
AU2020225202A1 (en) | 2021-08-12 |
JOP20210229A1 (en) | 2023-01-30 |
CR20210435A (en) | 2021-09-20 |
ECSP21060917A (en) | 2021-09-30 |
PE20212185A1 (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11926670B2 (en) | Stabilized formulations containing anti-interleukin-4 receptor (IL-4R) antibodies | |
US11634485B2 (en) | Therapeutic antibody formulation | |
US20240150479A1 (en) | Liquid Pharmaceutical Composition Comprising an Anti-IL-6 Receptor Antibody | |
TWI690329B (en) | Stabilized formulations containing anti-interleukin-4 receptor (il-4r) antibodies | |
US20210252146A1 (en) | Stable antibody formulation | |
EA045866B1 (en) | COMPOSITION OF THERAPEUTIC ANTIBODY | |
US20210393779A1 (en) | Activin a antibody formulations and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ELI LILLY AND COMPANY, INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CORVARI, VINCENT JOHN;PISUPATI, KARTHIK;SIGNING DATES FROM 20200102 TO 20200103;REEL/FRAME:062867/0607 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |