US20220333302A1 - Pulping Liquors and Uses Thereof - Google Patents
Pulping Liquors and Uses Thereof Download PDFInfo
- Publication number
- US20220333302A1 US20220333302A1 US17/839,861 US202217839861A US2022333302A1 US 20220333302 A1 US20220333302 A1 US 20220333302A1 US 202217839861 A US202217839861 A US 202217839861A US 2022333302 A1 US2022333302 A1 US 2022333302A1
- Authority
- US
- United States
- Prior art keywords
- oil
- bio
- feedstock
- sodium
- liquor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003265 pulping liquor Substances 0.000 title claims abstract description 64
- 239000005416 organic matter Substances 0.000 claims abstract description 128
- 238000006243 chemical reaction Methods 0.000 claims abstract description 92
- 239000012075 bio-oil Substances 0.000 claims abstract description 61
- 239000007787 solid Substances 0.000 claims description 213
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 197
- 238000000034 method Methods 0.000 claims description 193
- 239000003921 oil Substances 0.000 claims description 147
- 239000002002 slurry Substances 0.000 claims description 144
- 239000000047 product Substances 0.000 claims description 143
- 239000002904 solvent Substances 0.000 claims description 110
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 109
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 99
- 239000011541 reaction mixture Substances 0.000 claims description 96
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 95
- 239000000758 substrate Substances 0.000 claims description 77
- 239000000203 mixture Substances 0.000 claims description 76
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims description 65
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 47
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 46
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 46
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 44
- 239000003077 lignite Substances 0.000 claims description 38
- 239000000654 additive Substances 0.000 claims description 37
- 230000000996 additive effect Effects 0.000 claims description 33
- 229920002488 Hemicellulose Polymers 0.000 claims description 25
- 239000010779 crude oil Substances 0.000 claims description 25
- 239000007832 Na2SO4 Substances 0.000 claims description 24
- 229920005610 lignin Polymers 0.000 claims description 22
- 235000011152 sodium sulphate Nutrition 0.000 claims description 22
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 claims description 21
- 235000010265 sodium sulphite Nutrition 0.000 claims description 21
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 21
- 239000001913 cellulose Substances 0.000 claims description 19
- 229920002678 cellulose Polymers 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 19
- 239000003125 aqueous solvent Substances 0.000 claims description 16
- 239000003784 tall oil Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 6
- 239000003079 shale oil Substances 0.000 claims description 6
- 239000010692 aromatic oil Substances 0.000 claims description 5
- 239000010742 number 1 fuel oil Substances 0.000 claims description 5
- 239000002480 mineral oil Substances 0.000 claims description 4
- 235000010446 mineral oil Nutrition 0.000 claims description 4
- 239000011343 solid material Substances 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 3
- 239000010775 animal oil Substances 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 239000003925 fat Substances 0.000 claims description 2
- 239000010773 plant oil Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 49
- 239000002551 biofuel Substances 0.000 abstract description 25
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 118
- 239000003054 catalyst Substances 0.000 description 111
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 93
- 239000000446 fuel Substances 0.000 description 89
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 81
- 239000002023 wood Substances 0.000 description 80
- 239000002956 ash Substances 0.000 description 64
- 238000004458 analytical method Methods 0.000 description 59
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 53
- 235000011121 sodium hydroxide Nutrition 0.000 description 53
- 239000012632 extractable Substances 0.000 description 52
- 230000008569 process Effects 0.000 description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 44
- 235000008577 Pinus radiata Nutrition 0.000 description 44
- 241000218621 Pinus radiata Species 0.000 description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 43
- 229910052760 oxygen Inorganic materials 0.000 description 43
- 239000001301 oxygen Substances 0.000 description 43
- 239000000571 coke Substances 0.000 description 40
- -1 fatty acid esters Chemical class 0.000 description 40
- 229910052799 carbon Inorganic materials 0.000 description 39
- 239000001257 hydrogen Substances 0.000 description 36
- 229910052739 hydrogen Inorganic materials 0.000 description 36
- 238000010438 heat treatment Methods 0.000 description 33
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 32
- 239000007789 gas Substances 0.000 description 32
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 31
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- 239000002655 kraft paper Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 29
- 239000002245 particle Substances 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 235000013312 flour Nutrition 0.000 description 27
- 239000000377 silicon dioxide Substances 0.000 description 25
- 239000003245 coal Substances 0.000 description 24
- 150000002431 hydrogen Chemical class 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 239000010802 sludge Substances 0.000 description 24
- 239000002253 acid Substances 0.000 description 23
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 22
- 239000011575 calcium Substances 0.000 description 22
- 229910052791 calcium Inorganic materials 0.000 description 22
- 229910052681 coesite Inorganic materials 0.000 description 22
- 229910052593 corundum Inorganic materials 0.000 description 22
- 229910052906 cristobalite Inorganic materials 0.000 description 22
- 230000000670 limiting effect Effects 0.000 description 22
- 230000014759 maintenance of location Effects 0.000 description 22
- 229910052682 stishovite Inorganic materials 0.000 description 22
- 229910052905 tridymite Inorganic materials 0.000 description 22
- 229910001845 yogo sapphire Inorganic materials 0.000 description 22
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 21
- 239000000292 calcium oxide Substances 0.000 description 20
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 20
- 239000012071 phase Substances 0.000 description 20
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 19
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 19
- 238000012545 processing Methods 0.000 description 19
- 239000011347 resin Chemical class 0.000 description 19
- 229920005989 resin Chemical class 0.000 description 19
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 18
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 18
- 239000005864 Sulphur Substances 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 18
- 229910052749 magnesium Inorganic materials 0.000 description 18
- 239000011368 organic material Substances 0.000 description 18
- 241000196324 Embryophyta Species 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 16
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 16
- 150000001298 alcohols Chemical class 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 16
- 150000007513 acids Chemical class 0.000 description 15
- 235000014113 dietary fatty acids Nutrition 0.000 description 15
- 239000000194 fatty acid Substances 0.000 description 15
- 229930195729 fatty acid Natural products 0.000 description 15
- 150000002576 ketones Chemical class 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 150000002739 metals Chemical class 0.000 description 14
- 238000002156 mixing Methods 0.000 description 14
- 150000002989 phenols Chemical class 0.000 description 14
- 238000002203 pretreatment Methods 0.000 description 14
- 239000002028 Biomass Substances 0.000 description 13
- 235000012239 silicon dioxide Nutrition 0.000 description 13
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 229930182558 Sterol Natural products 0.000 description 12
- 150000001735 carboxylic acids Chemical class 0.000 description 12
- 238000004868 gas analysis Methods 0.000 description 12
- 150000002790 naphthalenes Chemical class 0.000 description 12
- 235000003702 sterols Nutrition 0.000 description 12
- 150000003432 sterols Chemical class 0.000 description 12
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 12
- ZUYKJZQOPXDNOK-UHFFFAOYSA-N 2-(ethylamino)-2-thiophen-2-ylcyclohexan-1-one;hydrochloride Chemical class Cl.C=1C=CSC=1C1(NCC)CCCCC1=O ZUYKJZQOPXDNOK-UHFFFAOYSA-N 0.000 description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 11
- 229910052801 chlorine Inorganic materials 0.000 description 11
- 239000000470 constituent Substances 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 11
- 238000000638 solvent extraction Methods 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 150000001299 aldehydes Chemical class 0.000 description 10
- 150000001720 carbohydrates Chemical class 0.000 description 10
- 235000014633 carbohydrates Nutrition 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 10
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 10
- 238000004821 distillation Methods 0.000 description 10
- 238000000197 pyrolysis Methods 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 9
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 9
- 229910010272 inorganic material Inorganic materials 0.000 description 9
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- 239000003039 volatile agent Substances 0.000 description 9
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 8
- CFXQEHVMCRXUSD-UHFFFAOYSA-N 1,2,3-Trichloropropane Chemical compound ClCC(Cl)CCl CFXQEHVMCRXUSD-UHFFFAOYSA-N 0.000 description 8
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 8
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-trimethylbenzene Chemical compound CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 8
- NPDACUSDTOMAMK-UHFFFAOYSA-N 4-Chlorotoluene Chemical compound CC1=CC=C(Cl)C=C1 NPDACUSDTOMAMK-UHFFFAOYSA-N 0.000 description 8
- GATVIKZLVQHOMN-UHFFFAOYSA-N Chlorodibromomethane Chemical compound ClC(Br)Br GATVIKZLVQHOMN-UHFFFAOYSA-N 0.000 description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 8
- 150000001335 aliphatic alkanes Chemical class 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 8
- 239000003830 anthracite Substances 0.000 description 8
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 8
- JPOXNPPZZKNXOV-UHFFFAOYSA-N bromochloromethane Chemical compound ClCBr JPOXNPPZZKNXOV-UHFFFAOYSA-N 0.000 description 8
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 8
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 8
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 8
- 239000011280 coal tar Substances 0.000 description 8
- 239000011147 inorganic material Substances 0.000 description 8
- 229940078552 o-xylene Drugs 0.000 description 8
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 8
- 239000000123 paper Substances 0.000 description 8
- 229910052700 potassium Inorganic materials 0.000 description 8
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 8
- 238000004537 pulping Methods 0.000 description 8
- UOORRWUZONOOLO-UHFFFAOYSA-N telone II Natural products ClCC=CCl UOORRWUZONOOLO-UHFFFAOYSA-N 0.000 description 8
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 8
- YXFVVABEGXRONW-JGUCLWPXSA-N toluene-d8 Chemical compound [2H]C1=C([2H])C([2H])=C(C([2H])([2H])[2H])C([2H])=C1[2H] YXFVVABEGXRONW-JGUCLWPXSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 7
- 235000011613 Pinus brutia Nutrition 0.000 description 7
- 241000018646 Pinus brutia Species 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 7
- LTUTVFXOEGMHMP-UHFFFAOYSA-N dibromofluoromethane Chemical compound FC(Br)Br LTUTVFXOEGMHMP-UHFFFAOYSA-N 0.000 description 7
- ZYBWTEQKHIADDQ-UHFFFAOYSA-N ethanol;methanol Chemical compound OC.CCO ZYBWTEQKHIADDQ-UHFFFAOYSA-N 0.000 description 7
- 150000004679 hydroxides Chemical class 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 235000010755 mineral Nutrition 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000010561 standard procedure Methods 0.000 description 7
- 239000012855 volatile organic compound Substances 0.000 description 7
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 229910021532 Calcite Inorganic materials 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- BZKFMUIJRXWWQK-UHFFFAOYSA-N Cyclopentenone Chemical class O=C1CCC=C1 BZKFMUIJRXWWQK-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- RWNKSTSCBHKHTB-UHFFFAOYSA-N Hexachloro-1,3-butadiene Chemical compound ClC(Cl)=C(Cl)C(Cl)=C(Cl)Cl RWNKSTSCBHKHTB-UHFFFAOYSA-N 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 150000001491 aromatic compounds Chemical class 0.000 description 6
- 239000002134 carbon nanofiber Substances 0.000 description 6
- 150000001896 cresols Chemical class 0.000 description 6
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 6
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical class O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- QTQDVIQNEXNOBU-UHFFFAOYSA-N ethane ethene propane prop-1-ene Chemical compound CC.C=C.CCC.CC=C QTQDVIQNEXNOBU-UHFFFAOYSA-N 0.000 description 6
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 6
- 150000002469 indenes Chemical class 0.000 description 6
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 5
- 241001550224 Apha Species 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 240000008042 Zea mays Species 0.000 description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 5
- 239000003377 acid catalyst Substances 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 235000005822 corn Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 239000005519 non-carbonaceous material Substances 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 239000010690 paraffinic oil Substances 0.000 description 5
- 239000003415 peat Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- 239000003643 water by type Substances 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- UOORRWUZONOOLO-OWOJBTEDSA-N (E)-1,3-dichloropropene Chemical compound ClC\C=C\Cl UOORRWUZONOOLO-OWOJBTEDSA-N 0.000 description 4
- UOORRWUZONOOLO-UPHRSURJSA-N (Z)-1,3-dichloropropene Chemical compound ClC\C=C/Cl UOORRWUZONOOLO-UPHRSURJSA-N 0.000 description 4
- QVLAWKAXOMEXPM-UHFFFAOYSA-N 1,1,1,2-tetrachloroethane Chemical compound ClCC(Cl)(Cl)Cl QVLAWKAXOMEXPM-UHFFFAOYSA-N 0.000 description 4
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 4
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical compound ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 4
- ZAIDIVBQUMFXEC-UHFFFAOYSA-N 1,1-dichloroprop-1-ene Chemical compound CC=C(Cl)Cl ZAIDIVBQUMFXEC-UHFFFAOYSA-N 0.000 description 4
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 4
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 4
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 4
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 4
- OIAQMFOKAXHPNH-UHFFFAOYSA-N 1,2-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 OIAQMFOKAXHPNH-UHFFFAOYSA-N 0.000 description 4
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 4
- YHRUOJUYPBUZOS-UHFFFAOYSA-N 1,3-dichloropropane Chemical compound ClCCCCl YHRUOJUYPBUZOS-UHFFFAOYSA-N 0.000 description 4
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 4
- IBSQPLPBRSHTTG-UHFFFAOYSA-N 1-chloro-2-methylbenzene Chemical compound CC1=CC=CC=C1Cl IBSQPLPBRSHTTG-UHFFFAOYSA-N 0.000 description 4
- ZEOVXNVKXIPWMS-UHFFFAOYSA-N 2,2-dichloropropane Chemical compound CC(C)(Cl)Cl ZEOVXNVKXIPWMS-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 241001474728 Satyrodes eurydice Species 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 150000004645 aluminates Chemical class 0.000 description 4
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- FMWLUWPQPKEARP-UHFFFAOYSA-N bromodichloromethane Chemical compound ClC(Cl)Br FMWLUWPQPKEARP-UHFFFAOYSA-N 0.000 description 4
- 229950005228 bromoform Drugs 0.000 description 4
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229950005499 carbon tetrachloride Drugs 0.000 description 4
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 4
- 238000004939 coking Methods 0.000 description 4
- 238000006114 decarboxylation reaction Methods 0.000 description 4
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 4
- 238000009837 dry grinding Methods 0.000 description 4
- 229960003750 ethyl chloride Drugs 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 150000002240 furans Chemical class 0.000 description 4
- 238000002309 gasification Methods 0.000 description 4
- 239000012978 lignocellulosic material Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 239000004058 oil shale Substances 0.000 description 4
- 239000002006 petroleum coke Substances 0.000 description 4
- 239000006253 pitch coke Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 4
- 239000002678 semianthracite Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 4
- 229940029284 trichlorofluoromethane Drugs 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- KZCALHMVEQRPSZ-UHFFFAOYSA-N ClC1=C(C=C(C=C1)Cl)Cl.ClCCC Chemical compound ClC1=C(C=C(C=C1)Cl)Cl.ClCCC KZCALHMVEQRPSZ-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 241001520808 Panicum virgatum Species 0.000 description 3
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 3
- 241000124033 Salix Species 0.000 description 3
- 241001062472 Stokellia anisodon Species 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- KFUSEUYYWQURPO-UPHRSURJSA-N cis-1,2-dichloroethene Chemical compound Cl\C=C/Cl KFUSEUYYWQURPO-UPHRSURJSA-N 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 238000002482 cold vapour atomic absorption spectrometry Methods 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 3
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 238000000642 dynamic headspace extraction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 description 3
- 229910052900 illite Inorganic materials 0.000 description 3
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 3
- 229910052622 kaolinite Inorganic materials 0.000 description 3
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229910052615 phyllosilicate Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 description 3
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 3
- 239000011877 solvent mixture Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 239000010902 straw Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 229950011008 tetrachloroethylene Drugs 0.000 description 3
- KFUSEUYYWQURPO-OWOJBTEDSA-N trans-1,2-dichloroethene Chemical compound Cl\C=C\Cl KFUSEUYYWQURPO-OWOJBTEDSA-N 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 229960002415 trichloroethylene Drugs 0.000 description 3
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 3
- 238000004457 water analysis Methods 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 244000082204 Phyllostachys viridis Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 241000218657 Picea Species 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 241000183024 Populus tremula Species 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 2
- 239000010905 bagasse Substances 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 239000002802 bituminous coal Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 150000004675 formic acid derivatives Chemical class 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000010871 livestock manure Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- RECVMTHOQWMYFX-UHFFFAOYSA-N oxygen(1+) dihydride Chemical compound [OH2+] RECVMTHOQWMYFX-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 235000002378 plant sterols Nutrition 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010907 stover Substances 0.000 description 2
- 239000003476 subbituminous coal Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000001238 wet grinding Methods 0.000 description 2
- 229920001221 xylan Polymers 0.000 description 2
- 150000004823 xylans Chemical class 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- PCWGTDULNUVNBN-UHFFFAOYSA-N 4-methylpentan-1-ol Chemical compound CC(C)CCCO PCWGTDULNUVNBN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000209134 Arundinaria Species 0.000 description 1
- 241000931889 Astrochelys radiata Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 240000002024 Gossypium herbaceum Species 0.000 description 1
- 235000004341 Gossypium herbaceum Nutrition 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 229920001079 Thiokol (polymer) Polymers 0.000 description 1
- 240000000359 Triticum dicoccon Species 0.000 description 1
- QHKMFBOMGWRWHN-UHFFFAOYSA-N [N+](=O)(O)[O-].P(O)(O)O Chemical compound [N+](=O)(O)[O-].P(O)(O)O QHKMFBOMGWRWHN-UHFFFAOYSA-N 0.000 description 1
- SAQYEMHECIKGJT-UHFFFAOYSA-N [N].[O].[S].[Cl] Chemical compound [N].[O].[S].[Cl] SAQYEMHECIKGJT-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- AOWQMLHKOHRXAD-UHFFFAOYSA-N butane ethane methane pentane propane Chemical compound C.CC.CCC.CCCC.CCCCC AOWQMLHKOHRXAD-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- KIZFHUJKFSNWKO-UHFFFAOYSA-M calcium monohydroxide Chemical compound [Ca]O KIZFHUJKFSNWKO-UHFFFAOYSA-M 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005112 continuous flow technique Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000006324 decarbonylation Effects 0.000 description 1
- 238000006606 decarbonylation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000004442 gravimetric analysis Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- QJPWUUJVYOJNMH-UHFFFAOYSA-N homoserine lactone Chemical compound NC1CCOC1=O QJPWUUJVYOJNMH-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000002029 lignocellulosic biomass Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052960 marcasite Inorganic materials 0.000 description 1
- 240000004308 marijuana Species 0.000 description 1
- KJLLKLRVCJAFRY-UHFFFAOYSA-N mebutizide Chemical compound ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)NC(C(C)C(C)CC)NC2=C1 KJLLKLRVCJAFRY-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000010512 thermal transition Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B49/00—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C11/00—Regeneration of pulp liquors or effluent waste waters
- D21C11/0007—Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/88—Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/34—Separation; Purification; Stabilisation; Use of additives
- C07C41/44—Separation; Purification; Stabilisation; Use of additives by treatments giving rise to a chemical modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/85—Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/02—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/04—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/08—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
- C10G1/086—Characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
- C10L5/442—Wood or forestry waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/48—Solid fuels essentially based on materials of non-mineral origin on industrial residues and waste materials
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/02—Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/20—Pulping cellulose-containing materials with organic solvents or in solvent environment
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C3/00—Pulping cellulose-containing materials
- D21C3/22—Other features of pulping processes
- D21C3/24—Continuous processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1003—Waste materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
- C10G2300/1014—Biomass of vegetal origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/06—Heat exchange, direct or indirect
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/544—Extraction for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/547—Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates generally to the generation of bio-products from organic matter feedstocks. More specifically, the present invention relates to the use of pulping liquors in the hydrothermal/thermochemical conversion of lignocellulosic and/or fossilised organic feedstocks into biofuels (e.g. bio-oils) and/or chemical products (e.g. platform chemicals).
- biofuels e.g. bio-oils
- chemical products e.g. platform chemicals
- thermochemical conversion of biomass and other complex organic matter into biofuels and chemicals based on hydrothermal reactions has shown significant promise.
- Gasification processes are generally conducted at higher temperatures (e.g. 400° C.-700° C.) and can produce methane or hydrogen gases in high yields.
- Liquefaction processes are generally conducted at lower temperatures (e.g. 200° C-400° C.) and produce liquid products referred to in the field as “bio-oil” or “bio-crude”.
- bio-oils generated from these and related technologies need characteristics (e.g. high energy/yield, low oxygen/water content, reduced viscosity) approximating those of crude oils. Additionally, it is highly important for processes of this nature to be cost-efficient for economic feasibility.
- thermochemical processes for bio-oil production Numerous modifications to improve thermochemical processes for bio-oil production have been developed. For example, the prior removal of hemicellulose under mild conditions from plant materials can improve the production of bio-oils from lignocellulosic feedstocks (see PCT publication No. WO 2010/037178). It has also been demonstrated that rather than gradually heating feedstock slurry to reaction temperature, contacting the slurry with an already supercritical solvent can provide advantageous effects in bio-oil production (see PCT publication No. WO 2012/000033). Incorporating oil into a feedstock slurry, which may also be a recycled bio-oil product, has been shown to improve process efficiency and product characteristics (see PCT publication No. WO 2012/092644).
- thermochemical conversion processes have been shown to reduce scaling and/or reduce the development of pressure differentials during treatment (see PCT application No. PCT/AU2014/00601). Despite these advances, new modifications to thermochemical processes capable of increasing process efficiency, lowering costs and/or improving product characteristics are still desirable.
- pulping liquors such as black liquor can be used as an effective source of catalysts to facilitate the efficient thermochemical conversion of biomass into biofuels.
- organic content e.g. cellulosic matter
- pulping liquors also provide a source of additional feedstock material capable of conversion into bio-products, which can in turn provide a cost benefit by reducing the amount of feedstock material required.
- the present invention provides a method for producing a bio-product from organic matter feedstock, the method comprising:
- reaction mixture comprising the organic matter feedstock, a solvent, and pulping liquor
- reaction mixture and product mixture move in continuous flow through reactor vessel during said treating.
- the organic matter feedstock is lignocellulosic feedstock.
- the organic matter feedstock is coal feedstock (e.g. lignite feedstock).
- the organic matter feedstock and the pulping liquor are both black liquor.
- the pulping liquor is black liquor and the organic matter feedstock is not a pulping liquor.
- the organic matter feedstock and the pulping liquor both comprise or consist of black pulping liquor (black liquor).
- the pulping liquor comprises or consists of black liquor and the organic matter feedstock does not comprise or consist of pulping liquor.
- the pulping liquor is black liquor.
- the black liquor may have been separated from pulp following a chemical pulping process in which a wood feedstock has been digested with pulping chemicals under heat and pressure.
- the black liquor may comprise between about 2.5 and 7.0 weight % sodium hydroxide (NaOH) on dry black liquor solids (DBLS), between about 0.06 and 3.0 wt % sodium sulfide (Na 2 S), between about 4.5 and about 16.0 wt. % sodium carbonate (Na 2 CO 3 ), between about 0.5 g/l and about 5 g/l sodium sulfite (Na 2 SO 3 ), between about 1.9 and about 16.6 wt. % sodium sulfate (Na 2 SO 4 ), between about 2.4 and about 7.5 wt. % sodium thiosulfate (Na 2 S 2 O 3 ), and between about 50 and about 70 wt. % organic solids on dry black liquor solids.
- NaOH sodium hydroxide
- DBLS dry black liquor solids
- the black liquor may comprise between about 0.5 g/l and 2.5 g/l sodium hydroxide (NaOH), between about 2.5 g/l and 6.0 g/l sodium sulfide (Na 2 S), between about 5 g/l and about 10 g/l sodium carbonate (Na 2 CO 3 ), between about 0.5 g/l and about 5 g/l sodium sulfite (Na 2 SO 3 ), between about 0.5 g/l and about 5 g/l sodium sulfate (Na 2 SO 4 ), between about 1.0 g/l and about 6 g/l sodium thiosulfate (Na 2 S 2 O 3 ), and between about 10 g/l and about 100 g/l organic solids.
- NaOH sodium hydroxide
- Na 2 S sodium sulfide
- Na 2 CO 3 sodium carbonate
- Na 2 SO 3 sodium sulfite
- Na 2 SO 4 between about 1.0 g/l and about 6 g/l sodium thio
- the black liquor may comprise between about 1.0 g/l and 2.0 g/l sodium hydroxide (NaOH), between about 3.5 g/l and 5.5 g/l sodium sulfide (Na 2 S), between about 6.5 g/l and about 9.0 g/l sodium carbonate (Na 2 CO 3 ), between about 1.0 g/l and about 3.0 g/l sodium sulfite (Na 2 SO 3 ), between about 2.0 g/l and about 4 g/l sodium sulfate (Na 2 SO 4 ), between about 2.0 g/l and about 4.5 g/l sodium thiosulfate (Na 2 S 2 O 3 ), and between about 20 g/l and about 50 g/l organic solids.
- NaOH sodium hydroxide
- Na 2 S sodium sulfide
- Na 2 CO 3 sodium carbonate
- Na 2 SO 3 between about 2.0 g/l and about 4 g/l sodium sulfate (Na 2 SO 4 )
- the black liquor may comprise between about 4 wt % and 10 wt % sodium hydroxide (NaOH), between about 10 wt % and 30 wt % sodium sulfide (Na 2 S), between about 25 wt % and about 50 wt % sodium carbonate (Na 2 CO 3 ), between about 5 wt % and about 15 wt % sodium sulfite (Na 2 SO 3 ), between about 8 wt % and about 20 wt % sodium sulfate (Na 2 SO 4 ), between about 10 wt % and about 25 wt % sodium thiosulfate (Na 2 S 2 O 3 ), and between about 10 wt % and about 90 wt % organic solids or between about 30% and about 70% organic solids.
- the black liquor may comprise between about 5 wt % and 9wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na 2 S), between about 25 wt % and about 45 wt % sodium carbonate (Na 2 CO 3 ), between about 5 wt % and about 15 wt % sodium sulfite (Na 2 SO 3 ), between about 10 wt % and about 15 wt % sodium sulfate (Na 2 SO 4 ), between about 13 wt % and about 20 wt % sodium thiosulfate (Na 2 S 2 O 3 ), and between about 40 wt % and about 90 wt % organic solids or between about 50% and about 80% organic solids, or between about 60% and about 75% organic solids.
- NaOH sodium hydroxide
- Na 2 S sodium sulfide
- Na 2 SO 3 between about 25 wt % and
- the black liquor may comprise any one or more of inorganic elements, dissolved wood substances, acetic acid, formic acid, sugars, caboxylic acids, xylans, and methanol.
- the pulping liquor is a green pulping liquor (green liquor).
- the green liquor may comprise between about 9 g/l and 20 g/l sodium hydroxide (NaOH), between about 25 g/l and 55 g/l sodium sulfide (Na 2 S), between about 80 g/l and about 145 g/l sodium carbonate (Na 2 CO 3 ), between about 4.0 g/l and about 8.0 g/l sodium sulfite (Na 2 SO 3 ), between about 6.0 g/l and about 15.0 g/l sodium sulfate (Na 2 SO 4 ), and between about 3.0 g/l and about 9.0 g/l sodium thiosulfate (Na 2 S 2 O 3 ).
- NaOH sodium hydroxide
- Na 2 S sodium sulfide
- Na 2 CO 3 sodium carbonate
- Na 2 SO 3 between about 4.0 g/l and about 8.0 g/l sodium sulfite
- Na 2 SO 4 between about 3.0 g/l and about 9.0 g/l sodium thi
- the green liquor may be obtained by processing the black liquor.
- the green liquor may be obtained by burning the black liquor in an oxygen deficient environment and dissolving the resultant material in a solvent (e.g. water).
- a solvent e.g. water
- the concentration of organic solids in the black liquor may be increased prior to burning the black liquor in the oxygen deficient environment to obtain the green liquor. Concentration of the organic solids in the black liquor may be achieved by evaporation.
- the green liquor may comprise between about 11 g/l and 20 g/l sodium hydroxide (NaOH), between about 25 g/l and 50 g/l sodium sulfide (Na 2 S), between about 80 g/l and about 130 g/l sodium carbonate (Na 2 CO 3 ), between about 4.0 g/l and about 8.0 g/l sodium sulfite (Na 2 SO 3 ), between about 8.0 g/l and about 15.0 g/l sodium sulfate (Na 2 SO 4 ), and between about 3.0 g/l and about 9.0 g/l sodium thiosulfate (Na 2 S 2 O 3 ).
- the green liquor may comprise between about 13 g/l and 18 g/l sodium hydroxide (NaOH), between about 30 g/l and 45 g/l sodium sulfide (Na 2 S), between about 95 g/l and about 120 g/l sodium carbonate (Na 2 CO 3 ), between about 5.0 g/l and about 7.0 g/l sodium sulfite (Na 2 SO 3 ), between about 9.0 g/l and about 13.0 g/l sodium sulfate (Na 2 SO 4 ), and between about 4.0 g/l and about 7.0 g/l sodium thiosulfate (Na 2 S 2 O 3 ).
- the green liquor may comprise between about 4 wt % and 12 wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na 2 S), between about 50 wt % and about 70 wt % sodium carbonate (Na 2 CO 3 ), between about 1 wt % and about 7 wt % sodium sulfite (Na 2 SO 3 ), between about 2 wt % and about 10 wt % sodium sulfate (Na 2 SO 4 ), and between about 1 wt % and about 5 wt % sodium thiosulfate (Na 2 S 2 O 3 ).
- the green liquor may comprise between about 5 wt % and 10 wt % sodium hydroxide (NaOH), between about 17 wt % and 23 wt % sodium sulfide (Na 2 S), between about 55 wt % and about 65 wt % sodium carbonate (Na 2 CO 3 ), between about 1 wt % and about 4 wt % sodium sulfite (Na 2 SO 3 ), between about 3 wt % and about 9 wt % sodium sulfate (Na 2 SO 4 ), and between about 1 wt % and about 5 wt % sodium thiosulfate (Na 2 S 2 O 3 ).
- NaOH sodium hydroxide
- Na 2 S sodium sulfide
- Na 2 CO 3 sodium carbonate
- Na 2 SO 3 between about 1 wt % and about 4 wt % sodium sulfite
- Na 2 SO 4 between about 3 wt % and about 9 wt
- the pulping liquor is a white pulping liquor (white liquor).
- the white liquor may be obtained by processing the green liquor.
- the white liquor may be obtained by reacting the green liquor with lime or a derivative thereof (e.g. calcium oxide (CO), calcium hydroxide (CaOH)).
- lime or a derivative thereof e.g. calcium oxide (CO), calcium hydroxide (CaOH)
- the white liquor may comprise between about 80 g/l and 110 g/l sodium hydroxide (NaOH), between about 30 g/l and 45 g/l sodium sulfide (Na 2 S), between about 18 g/l and about 35 g/l sodium carbonate (Na 2 CO 3 ), between about 3.0 g/l and about 6.0 g/l sodium sulfite (Na 2 SO 3 ), between about 7.0 g/l and about 12.0 g/l sodium sulfate (Na 2 SO 4 ), and between about 3.0 g/l and about 9.0 g/l sodium thiosulfate (Na 2 S 2 O 3 ).
- the white liquor may comprise between about 85 g/l and 105 g/l sodium hydroxide (NaOH), between about 32 g/l and 43 g/l sodium sulfide (Na 2 S), between about 20 g/l and about 30 g/l sodium carbonate (Na 2 CO 3 ), between about 3.5 g/l and about 5.5 g/l sodium sulfite (Na 2 SO 3 ), between about 8.0 g/l and about 10.0 g/l sodium sulfate (Na 2 SO 4 ), and between about 4.5 g/l and about 7.5 g/l sodium thiosulfate (Na 2 S 2 O 3 ).
- NaOH sodium hydroxide
- Na 2 S sodium carbonate
- Na 2 SO 3 sodium carbonate
- Na 2 SO 3 between about 3.5 g/l and about 5.5 g/l sodium sulfite
- Na 2 SO 4 between about 8.0 g/l and about 10.0 g/l sodium sulfate
- the white liquor may comprise between about 40 wt % and 65 wt % sodium hydroxide (NaOH), between about 10 wt % and 30 wt % sodium sulfide (Na 2 S), between about 8 wt % and about 22 wt % sodium carbonate (Na 2 CO 3 ), between about 1 wt % and about 6 wt % sodium sulfite (Na 2 SO 3 ), between about 2 wt % and about 10 wt % sodium sulfate (Na 2 SO 4 ), and between about 1 wt % and about 5 wt % sodium thiosulfate (Na 2 S 2 O 3 ).
- NaOH sodium hydroxide
- Na 2 S sodium sulfide
- Na 2 CO 3 sodium carbonate
- Na 2 SO 3 between about 1 wt % and about 6 wt % sodium sulfite
- Na 2 SO 4 between about 2 wt % and about 10 wt
- the white liquor may comprise between about 45 wt % and 60 wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na 2 S), between about 10 wt % and about 20 wt % sodium carbonate (Na 2 CO 3 ), between about 2 wt % and about 5 wt % sodium sulfite (Na 2 SO 3 ), between about 2 wt % and about 7 wt % sodium sulfate (Na 2 SO 4 ), and between about 1.5 wt % and about 4 wt % sodium thiosulfate (Na 2 S 2 O 3 ).
- NaOH sodium hydroxide
- Na 2 S sodium carbonate
- Na 2 SO 3 sodium carbonate
- Na 2 SO 3 between about 2 wt % and about 5 wt % sodium sulfite
- Na 2 SO 4 between about 1.5 wt % and about 4 wt % sodium
- the treating comprises treating the reaction mixture at a temperature of between 250° C. and 450° C., and a pressure of between 100 bar and 300 bar.
- the treating may comprise heating the slurry to a temperature selected from the group consisting of at least about 250° C., at least about 300° C., at least about 350° C., at least about 370° C., at least about 390° C., at least about 400° C., between about 200° C. and about 400° C., between about 200° C. and about 400° C., between about 300° C. and about 400° C., between about 350° C. and about 400° C., and between about 370° C. and about 450° C.
- the treating may comprise pressurising the reaction mixture at a pressure of between about 100 bar and about 400 bar, between about 150 bar and about 400 bar, between about 200 bar and about 400 bar, between about 150 bar and about 350 bar, between about 180 bar and about 350 bar, between about 150 bar and about 300 bar, between about 150 bar and about 280 bar, between about 150 bar and about 270 bar, or between about 200 bar and about 300 bar.
- the treating may comprise treating the reaction mixture at a temperature of between 310° C. and 360° C., and a pressure of between 160 bar and 250 bar.
- the treating may comprise treating the reaction mixture at a temperature of between 320° C. and 360° C., and a pressure of between 220 bar and 250 bar.
- the treating may comprise treating the reaction mixture at:
- the method comprises preparing a slurry comprising the organic matter and the pulping liquor, generating subcritical or supercritical steam independently of the slurry, and contacting the slurry with the subcritical or supercritical steam in at least one vessel or chamber of said reactor vessel.
- the slurry may comprise lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- the slurry may be at ambient or near ambient temperature and pressure prior to the contacting with the subcritical or supercritical steam.
- the treating may comprise heating the slurry to a temperature selected from the group consisting of at least about 100° C., at least about 150° C., at least about 200° C., at least about 250° C., at least about 300° C., at least about 350° C., between about 200° C. and about 250° C., between about 200° C. and about 400° C., between about 250° C. and about 400° C., between about 250° C. and about 350° C., and between about 250° C. and about 350° C.; generating subcritical or supercritical steam independently of the slurry; and contacting the slurry with the subcritical or supercritical steam in at least one vessel or chamber of the reactor vessel.
- the slurry may be pressurised prior to and/or after said contacting.
- the method comprises preparing a slurry comprising the organic matter, heating the slurry to a temperature of between at least about 100° C., at least about 150° C., at least about 200° C., at least about 250° C., at least about 300° C., at least about 350° C., between about 200° C. and about 250° C., between about 200° C. and about 400° C., between about 250° C. and about 400° C., between about 250° C. and about 350° C., and between about 250° C.
- the slurry may comprise lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- the method comprises a first preheating stage in which the reaction mixture is heated to a temperature that is below the reaction temperature, and a second heating stage in which the reaction mixture is heated to the reaction temperature.
- the second heating stage may comprise contacting the reaction mixture with subcritical or supercritical steam.
- the pulping liquor is mixed with the feedstock and/or solvent prior to the treating.
- the pulping liquor is added to the reaction mixture after the reaction mixture reaches said reaction temperature and pressure.
- the reaction mixture comprises between 1% and 30%, between 5% and 30%, between 10% and 30%, between 5% and 30%, between 5% and 20%, between 5% and 15%, between 10% and 30%, between 10% and 30%, between 10% and 15%, less than 20%, less than 30%, less than 25%, less than 15%, less than 10%, or less than 5%, of the pulping liquor by weight.
- the reaction mixture comprises between 1% and 100%, between 90% and 100%, between 95% and 100%, between 50% and 100%, between 50% and 90%, between 50% and 95%, between 50% and 95%, between 50% and 80%, between 50% and 70%, between 50% and 60%, between 30% and 90%, between 40% and 90%, or between 20% and 75%, of the pulping liquor by weight.
- the reaction mixture comprises less than 20%, less than 30%, less than 35%, less than 40%, less than 40%, less than 70%, less than 80%, less than 90%, less than 95%, between 10% and 95%, between 30% and 95%, between 50% to 70%, or between 60% to 80%, of the solvent by weight.
- the solvent is an aqueous solvent, an oil solvent, or a mixture of an aqueous solvent and an oil solvent.
- the oil solvent or the mixture of the aqueous solvent and the oil solvent may comprise crude tall oil, distilled tall oil, or a combination thereof
- the aqueous solvent may comprise water, water only, or water and an alcohol.
- the aqueous solvent may comprise water and an alcohol, and the alcohol may be selected from ethanol, methanol, or a combination of methanol and ethanol.
- the reaction mixture may comprise a percentage by weight of the alcohol of more than 3%, more than 5%, more than 10%, more than 15%, more than 20%, more than 25%, more than 30%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, or less than 3%.
- the lignocellulosic feedstock may be lignocellulosic matter comprising at least 10% lignin, at least 35% cellulose, and at least 20% hemicellulose.
- the lignocellulosic feedstock may comprise more than about 10% of each of lignin, cellulose, and hemicellulose.
- the reaction mixture comprises more than 10%, more than 15%, more than 20%, more than 30%, more than 35%, or more than 40%, of the organic matter by weight.
- the organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- the reaction mixture comprises less than 10%, less than 15%, less than 20%, less than 30%, less than 35%, less than 40%, less than 50%, between 5% and 40%, between 10% to 35%, or between 15% and 30%, of the organic matter by weight.
- the organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- the organic matter is provided in the form of a slurry comprising some or all of the solvent.
- the organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- the organic matter may be provided in the form of a slurry comprising some or all of the solvent and/or some or all of the pulping liquor.
- the treating may comprise treating the organic matter, the solvent, and the pulping liquor in the form of a slurry with a flow velocity of above 0.01 cm/s, above 0.05 cm/s, above 0.5 cm/s, above 0.1 cm/s, above 1.5 cm/s, or above 2.0 cm/s.
- reaction mixture is subjected to:
- the treating is for a time period of between about 20 minutes and about 30 minutes.
- the method comprises the step of heating the organic matter feedstock (e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof) and solvent to the temperature in a time period of less than about 2 minutes, prior to the treating.
- organic matter feedstock e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof
- the method comprises the step of heating and pressurising the organic matter feedstock (e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof) and solvent to the temperature and pressure in a time period of less than about 2 minutes, prior to the treating.
- organic matter feedstock e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof
- solvent e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof
- the method comprises the steps of:
- the pressure let down device may be enveloped in ambient temperature water.
- the depressurising and cooling of the product mixture may occur simultaneously.
- the depressurising and cooling of the product mixture may occur separately.
- the lignocellulosic feedstock is wood (e.g. radiata pine).
- the reaction mixture further comprises a solid substrate, wherein the solid substrate is solid or substantially solid at the reaction temperature and pressure, sequesters organic and/or inorganic matter that de-solubilises within the reaction mixture or the product mixture; and/or alters one or more flow characteristics of the reaction mixture and/or the product mixture in the reactor vessel.
- the organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- the solid substrate may inhibit scaling in the reactor vessel.
- the solid substrate may inhibit development of a pressure gradient in the reactor vessel during the conversion of the organic matter feedstock into the bio-product.
- the depressurising may be facilitated by a pressure let down device in the reactor vessel.
- the reaction mixture may be pressurised to a maximum pressure prior to or during the treating.
- the product mixture Prior to the depressurising facilitated by the pressure let down device, the product mixture may be pressurised at less than 98%, less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, or less than 50%, of the maximum pressure.
- the solid substrate may generate additional metal surface area within the reactor vessel by an abrasive action, to thereby provide additional metal surface area for provision of additional heterogeneous catalysts to the reaction mixture.
- the solid substrate may be inert or substantially inert at the reaction temperature and pressure.
- the solid substrate may be chemically inert or substantially chemically inert at the reaction temperature and pressure.
- the solid substrate may be a carbonaceous material comprising at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% by weight carbon.
- the solid substrate may be selected from the group consisting of: coals, anthracitic coal, meta-anthracite, anthracite semianthracite, bituminous coal, subbituminous coal, lignite (i.e.
- brown coal coking coal, coal tar, coal tar derivatives, coal char, coke, high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke, charcoal, pyrolysis char, hydrothermal char, carbon black, graphite fine particles, amorphous carbon, carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers, and any combination thereof.
- the solid substrate may be a non-carbonaceous material comprising no more than 10%, no more than 5%, no more than 1%, or no carbon.
- the solid substrate may be selected from the group consisting of fly ash, a mineral, calcium carbonate, calcite, a silicate, silica, quartz, an oxide, a metal oxide, an insoluble or substantially insoluble metal salt, iron ore, a clay mineral, talc, gypsum, and any combination thereof.
- the solid substrate may be selected from the group consisting of carbonates of calcium, carbonates of magnesium, carbonates of calcium and magnesium, calcite, limestone, dolomite, hydroxides of calcium, hydroxides of magnesium, oxides of calcium, oxides of magnesium, hydrogen carbonates of calcium, hydrogen carbonates of magnesium, kaolinite, bentonite, illite, zeolites, calcium phosphate, hydroxyapataite, phyllosilicates, and any combination thereof.
- the solid substrate may be provided in the form of a powder, or a slurry comprising the powder.
- the solid substrate may be present in the reaction mixture at a concentration of more than 0.5%, more than 1%, more than 3%, more than 5%, more than 10%, more than 25%, or more than 30% by weight.
- the solid substrate is may be present in the reaction mixture at a concentration of less than 0.5%, less than 1%, less than 3%, less than 5%, less than 10%, less than 25%, or less than 50% by weight.
- Organic and/or inorganic matter may be sequestered by the solid substrate by adsorbing the organic matter and/or inorganic matter onto a surface of the solid substrate or into the solid substrate.
- the reaction mixture comprises the organic matter feedstock (e.g. lignocellulosic matter) and the solid substrate at a ratio of about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1 about 8:1, about 10:1, about 20:1, or about 30:1.
- organic matter feedstock e.g. lignocellulosic matter
- solid substrate at a ratio of about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1 about 8:1, about 10:1, about 20:1, or about 30:1.
- the solid substrate constitutes: at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, between 1 wt % and 20%, between 1% and 10%, between 1% and 5%, between 5% and 10%, between 5% and 15%, between 5% and 20%, between 20% and 40%, between 20% and 50%, between 20% and 30%, between 30% and 40%, or between 40% and 50% of the total combined mass of the solid substrate and organic matter feedstock (e.g. lignocellulosic matter) in the reaction mixture.
- organic matter feedstock e.g. lignocellulosic matter
- the method further comprises separating the solid substrate from the product mixture after the depressurising and cooling, and recycling the solid substrate into a second slurry or second reaction mixture comprising organic matter feedstock.
- the solid substrate is made from residue obtained by distillation or pyrolysis of the bio-product.
- reaction mixture further comprises an oil additive.
- the oil additive may be mixed with the feedstock and/or solvent prior to the treating.
- the reaction mixture may comprise between 5% and 60%, between 5% and 50%, between 5% and 40%, between 5% and 30%, between 5% and between 20%, more the 5% , more than 10%, more than 15%, more than 20%, more than 30%, less than 20%, less than 15% or less than 10% of the oil additive by weight.
- the oil additive may be selected from the group consisting of paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil, kerogen oil, mineral oil, white mineral oil, aromatic oil, tall oil, distilled tall oil, plant or animal oils, fats and their acidic forms and esterified forms, and any combination thereof.
- the solvent is a mixed solvent comprising an aqueous solvent component and an oil solvent component, wherein the two components are substantially immiscible or partly miscible at ambient temperature.
- the oil component may be crude tall oil, distilled tall oil or a combination thereof
- the solvent comprises water and oil in a ratio of about 1:1 by mass, of about 1:2 by mass, of about 2:1 by mass, of about 3:1 by mass, of about 1:3 by mass, of about 1:4 by mass, of about 4:1 by mass, of about 1:5 by mass, of about 5:1 by mass, of about 1:6 by mass, of about 6:1 by mass, of about 1:7 by mass, of about 7:1 by mass, of about 1:8 by mass, of about 8:1 by mass, of about 1:9 by mass, of about 9:1 by mass, of about 1:10 by mass, or of about 10:1 by mass.
- the method further comprises separating oil from the product and recycling the oil into a second slurry or second reaction mixture comprising organic matter feedstock.
- the method further comprises separating the solid substrate and oil from the product, and recycling the solid substrate and the oil into a second slurry or second reaction mixture comprising organic matter feedstock.
- the oil solvent is recycled from a bio-product produced according to the method.
- the solid substrate is recycled from a bio-product produced according to the method.
- the oil solvent and solid substrate are recycled in a mixture from a bio-product produced according to the method, and the mixture of recycled oil and recycled substrate is solid at ambient temperature.
- the bio-product comprises a compound selected from the group consisting of: waxes; aldehydes; carboxylic acids; carbohydrates; phenols; furfurals; alcohols; ketones; resins; resin acids; compounds structurally related to resin acids; alkanes; alkenes; fatty acids; fatty acid esters; sterols; sterol-related compounds; furanic oligomers; cyclopentanones; cyclohexanones; alkyl- and alkoxy-cyclopentanones; alkyl- and alkoxy-cyclohexanones; cyclopenteneones; alkyl- and alkoxy-cyclopentenones; aromatic compounds; naphthalenes; alkyl- and alkoxy-substituted naphthalenes; cresols; alkyl- and alkoxy-phenols; alkyl- and alkoxy-catechols; alkyl- and alkoxy-dihydroxybezen
- the bio-product comprises an oil component having a gross calorific value of at least 30 MJ/kg, at least 32 MJ/kg, at least 35 MJ/kg, or at least 36 MJ/kg.
- the bio-product comprises an oil component having a gross calorific value of at least 30 MJ/kg, at least 32 MJ/kg, at least 35 MJ/kg, or at least 36 MJ/kg, and a mixed substrate and oil component having a gross calorific value of at least 26 MJ/kg, at least 28 MJ/kg, at least 30 MJ/kg, at least 32 MJ/kg, or at least 33 MJ/kg.
- the method comprises dissolving bio-oil from the bio-product in a purifying solvent and filtering the dissolved bio-oil to remove particulates and solid material.
- the purifying solvent comprises any one or more of: acetone, ethyl acetate, ethanol, benzene, toluene, xylene, tetralin, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform, ketones, alcohol, furans, light cycle oil, naphtha, and/or a distilled fraction of bio-oil from a bio-product produced in accordance with the methods of the present invention.
- the distilled fraction is obtained by boiling said bio-oil from a bio-product produced in accordance with the methods of the present invention, at a temperature of between about 60° C. and about 150° C.
- the purifying solvent is recovered by distillation following said filtration.
- the present invention provides a bio-product obtained or obtainable by the method of the first aspect.
- the bio-product may be a bio-oil.
- FIG. 1 shows gross calorific value (GCV) vs oxygen content in biocrudes generated from Radiata Pine plus sodium hydroxide (circles), and from hog fuel and black liquor feeds (triangles—as labelled), in accordance with methods of the present invention
- FIG. 2 is a schematic representation of a pilot plant reactor for performing feedstock conversion under continuous flow according to the methods of present invention.
- a catalyst also includes a plurality of catalysts.
- a bio-product “comprising” a bio-oil may consist exclusively of bio-oil or may include other additional substances.
- organic matter and “organic materials” have the same meaning and encompass any material comprising carbon including both fossilised and non-fossilised materials.
- organic matter include renewable sources of biomass (e.g. lignocellulosic matter), as well as hydrocarbon-containing materials (e.g. lignite, oil shale and peat) which may be non-renewable.
- bio-product encompasses any product that can be obtained by the treatment of organic matter feedstock as defined above in accordance with the methods of the present invention.
- bio-products include biofuels (e.g. bio-oils, char products, gaseous products) and chemical products (e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde).
- biofuel refers to an energy-containing material derived from the treatment of organic matter feedstock as defined above in accordance with the methods of the present invention.
- biofuels include bio-oils, char products (e.g. is upgraded pulvarised coal injection (PCI) equivalent products and fuels for direct injection carbon engines (DICE)), and gaseous products (a gaseous product comprising methane, hydrogen, carbon monoxide and/or carbon dioxide).
- PCI upgraded pulvarised coal injection
- DICE direct injection carbon engines
- bio-oil refers to a complex mixture of compounds derived from the treatment of organic matter feedstock as defined above in accordance with the methods of the present invention.
- the bio-oil may comprise compounds including, but not limited to, any one or more of alkanes, alkenes, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones.
- the bio-oil may comprise multiple phases including, but not limited to, a water-soluble aqueous phase which may comprise, compounds including, but not limited to, any one or more of carbohydrates, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy-substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-
- lignocellulosic encompasses any substance comprising lignin, cellulose, and hemicellulose.
- lignocellulosic matter may comprise at least 10% lignin, at least 10% cellulose and at least 10% hemicellulose.
- fossilised organic matter encompasses any organic material that has been subjected to geothermal pressure and temperature for a period of time sufficient to remove water and concentrate carbon to significant levels.
- fossilised organic material may comprise more than about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90% or 95 wt % carbon.
- Non-limiting examples of fossilised organic matter include coals (e.g. anthracitic coals such as meta-anthracite, anthracite and semianthracite; bituminous coals; subbituminous coals; lignite (i.e.
- brown coal coking coal, coal tar, coal tar derivatives, coal char), cokes (e.g. high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke), peat (e.g. milled peat, sod peat), kerogen, tar sands, oil shale, shale tar, asphalts, asphaltines, natural bitumen, bituminous sands, or any combination thereof.
- cokes e.g. high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke
- peat e.g. milled peat, sod peat
- kerogen e.g. milled peat, sod peat
- kerogen e.g. milled peat, so
- pulping liquor will be understood to encompass “black liquor”, “green liquor”, “white liquor”, and any combination thereof.
- black liquor will be understood to mean an alkaline aqueous solution arising from the treatment of lignocellulosic matter (e.g. pulpwood) into paper pulp using pulping chemicals (e.g. alkaline solution of soda and/or sulfate) which act to free the cellulose fibers from the wood.
- Black liquor comprises a mixture of dissolved organics (e.g. lignin residues, hemicellulose), inorganic chemicals, and water. It can be separated from the generated pulp using conventional techniques and may optionally be concentrated by removal of water.
- “Strong” black liquor may, for example, comprise 46-57% solids by weight.
- “Heavy” black liquor may, for example, comprise 63%-80% solids by weight.
- black liquor may comprise 12%-20% solids (50%-70% organics, 20%-40% inorganics), 5-10% NaOH, 15%-30% Na 2 S, 30%-40% Na 2 CO 3 , 5%-15% Na 2 SO 3 , 8%-18% Na 2 SO 4 , and/or 10%-20% Na 2 S 2 O 3 .
- green liquor will be understood to mean an aqueous solution of black liquor smelt dissolved in a solvent (e.g. water), and comprising sodium carbonate.
- a solvent e.g. water
- the black liquor smelt may arise from the incineration of black liquor that has been concentrated by the evaporation of water (for example, to over 60% solids content).
- the precise mechanical make-up of green liquor will depend on factors such as the chemical make-up and degree of solids content of the black liquor material from which it is derived, specifics of the incineration process to produce black liquor smelt, and so on.
- green liquor may comprise NaOH (5%-10%), Na 2 S (15%-25%%), Na 2 CO 3 (55%-65%), Na 2 SO 3 (1%-6%), Na 2 SO 4 (3%-9%), and Na 2 S 2 O 3 (1%-6%).
- white liquor will be understood to mean an alkaline aqueous solution comprising sodium hydroxide and sodium sulfide, and other sodium salts, such as sodium sulfate (Na 2 SO 4 ) and sodium carbonate (Na 2 CO 3 ) and small amounts of sulfites and chlorides.
- White liquor may arise from treatment of green liquor with lime (CaO/Ca(OH) 2 ).
- the green liquor may optionally be clarified to remove insoluble materials (e.g. calcium compounds, unburned carbon, metals) prior to treatment with the lime.
- insoluble materials e.g. calcium compounds, unburned carbon, metals
- the precise chemical makeup of white liquor will depend on factors such as the specific reaction conditions used to prepare it from green liquor, and the nature of the green liquor from which it is derived.
- white liquor may comprise between about 48 wt % and 58 wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na 2 S), between about 10 wt % and about 20 wt % sodium carbonate (Na 2 CO 3 ), between about 1 wt % and about 5 wt % sodium sulfite (Na 2 SO 3 ), between about 2 wt % and about 7 wt % sodium sulfate (Na 2 SO 4 ), and between about 1.5 wt % and about 4 wt % sodium thiosulfate (Na 2 S 2 O 3 ).
- solvent includes within its scope an “aqueous solvent”, an “oil solvent”, and combinations thereof.
- aqueous solvent refers to a solvent comprising at least one percent water based on total weight of solvent.
- An “aqueous solvent” may therefore comprise between one percent water and one hundred percent water based on total weight of solvent.
- An “aqueous solvent” will also be understood to include within its scope “aqueous alcohol”, “aqueous ethanol”, and “aqueous methanol”.
- aqueous alcohol refers to a solvent comprising at least one percent alcohol based on total weight of solvent.
- aqueous ethanol refers to a solvent comprising at least one percent ethanol based on total weight of solvent.
- aqueous ethanol refers to a solvent comprising at least one percent methanol based on total weight of solvent.
- oil solvent refers to a solvent comprising any suitable oil, non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables, and any mixture of any of the previous components, and in which the oil constitutes at least one percent of the solvent based on total solvent weight.
- suitable oil non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables, and any mixture of any of the previous components, and in which the oil constitutes at least
- oil additive refers to any suitable oil component for inclusion in a feedstock, solvent and/or reaction mixture according to the present invention, non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables, and any mixture of any of the previous components.
- the oil additive may constitute at least one percent portion of the feedstock, solvent and/or reaction mixture to which it is added, based on total weight of the feedstock, solvent and/or reaction mixture.
- a “supercritical” substance refers to a substance that is heated above its critical temperature and pressurised above its critical pressure (i.e. a substance at a temperature and pressure above its critical point).
- a “subcritical” substance refers to a substance at a temperature and/or pressure below the critical point of the substance. Accordingly, a substance may be “subcritical” at a temperature below its critical point and a pressure above its critical point, at a temperature above its critical point and a pressure below its critical point, or at a temperature and pressure below its critical point.
- a “solid substrate” is a component that is solid or substantially solid at a reaction temperature and pressure used in accordance with the methods of the present invention.
- the solid substrate may be capable of sequestering organic and/or inorganic matter that de-solubilises within the reaction mixture and/or a product mixture produced from the reaction mixture. Additionally or alternatively, the solid substrate may be capable of altering the flow characteristics of the reaction mixture or the product mixture in a reactor vessel.
- Solid substrates encompass both carbonaceous and non-carbonaceous materials, non-limiting examples of which include coals, anthracitic coal, meta-anthracite, anthracite semianthracite, bituminous coal, subbituminous coal, lignite (i.e.
- continuous flow refers to a process wherein a slurry comprising lignocellulosic feedstock and any one or more of: a solvent, solid substrate, pulping liquor, and/or oil additive, is subjected to:
- continuous flow conditions as contemplated herein are defined by a starting point of heating and pressurisation (i.e. (a) above) and by an end point of cooling and de-pressurisation (i.e. (c) above). Continuous flow conditions as contemplated herein imply no particular limitation regarding flow velocity of the slurry provided that it is maintained in a stream of continuous movement.
- reactor As used herein, the terms “reactor”, “reactor apparatus”, and “reactor vessel” are used interchangeably and have the same meaning. Each term encompasses any apparatus suitable for performing the methods of the present invention including, for example, continuous flow reactors and batch reactors.
- substantially solid substrate refers to a substrate that is predominantly solid at a specified reaction temperature and/or pressure in that at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, preferably at least 95%, and more preferably at least 98% of the substrate is in a solid form.
- a “substantially insoluble” substance is one that is predominantly insoluble at a specified reaction temperature and/or pressure in that at least 90%, preferably at least 95%, and more preferably at least 98% of the substrate is not solubilised.
- an “inert” or “chemically inert” solid substrate is one that does not chemically react with other components in a reaction mixture or catalyse reactions between components in a reaction mixture, at a specified reaction temperature and pressure or at a range of reaction temperatures and pressures.
- a “substantially inert” or “substantially chemically inert” solid substrate one that does not to any significant degree chemically react with other components in a reaction mixture or catalyse reactions between components in a reaction mixture, at a specified reaction temperature and pressure or at a range of reaction temperatures and pressures.
- a “substantially inert” or “substantially chemically inert” solid substrate will be understood to react with any other component in a given reaction mixture, or catalyse a reaction between any given components in a reaction mixture, on less than 5%, less than 4%, less than 3%, less than 2%, or less than 1%, of interaction events with the component(s),It will be understood that use of the term “about” herein in reference to a recited numerical value (e.g. a temperature or pressure) includes the recited numerical value and numerical values within plus or minus ten percent of the recited value.
- the present invention relates to the determination that pulping liquors, an abundant by-product of kraft pulping mill processes, can be used as a source of catalysts for the thermochemical conversion of organic matter feedstocks (e.g. lignocellulosic matter, coals such as lignite) into bio-products. Moreover, in view of their significant cellulosic content, the pulping liquors can also provide a source of feedstock material for conversion into bio-products, thus reducing the amount of feedstock material required.
- organic matter feedstocks e.g. lignocellulosic matter, coals such as lignite
- Black liquor is a waste product of the kraft pulping process in which lignocellulosic matter (e.g. pulpwood) is dissolved under heat and pressure using pulp chemicals.
- lignocellulosic matter e.g. pulpwood
- the treatment of the wood in this manner results in a mixture containing pulp and black liquor, a diverse mixture of reacted pulping chemicals/inorganic elements, and dissolved wood substances including acetic acid, formic acid, carboxylic acids, sugars, xylans, and/or methanol.
- black liquor contains a significant amount of cellulosic fibers capable of conversion into bio-products via thermochemical processes. Accordingly, the present invention provides a means of increasing the cost-efficiency of thermochemical processes for producing bio-products from organic matter feedstocks.
- the present invention thus related to methods for producing bio-products by treating organic matter feedstock with various solvents and in the presence of pulping liquor at increased temperature and pressure. Additional aspects of the present invention relate to bio-products generated by the methods described herein.
- organic matter feedstock e.g. biofuels including bio-oils; chemical products etc.
- organic matter also referred to herein as “organic material” encompasses any matter comprising carbon, including both fossilised and non-fossilised forms of carbon-comprising matter.
- Organic matter utilised in the methods of the invention may comprise naturally occurring organic matter (e.g. lignocellulosic biomass and the like) and/or synthetic organic materials (e.g. synthetic rubbers, plastics, nylons and the like).
- organic matter utilised in the methods of the invention comprises a mixture of fossilised organic matter and non-fossilised organic matter (e.g. lignocellulosic matter).
- the fossilised organic matter may remain solid at reaction temperature and pressure in which case it may act as a solid substrate as described herein.
- more than one type (i.e. a mixture) of organic matter is utilised, no limitation exists regarding the particular proportion of the different components of organic matter.
- organic matter utilised in the methods of the invention is or comprises lignocellulosic matter.
- Lignocellulosic matter as contemplated herein refers to any substance comprising lignin, cellulose and hemicellulose.
- the lignocellulosic matter may be a woody plant or component thereof.
- suitable woody plants include, but are not limited to, pine (e.g. Pinus radiata ), birch, eucalyptus, bamboo, beech, spruce, fir, cedar, poplar, willow and aspen.
- the woody plants may be coppiced woody plants (e.g. coppiced willow, coppiced aspen).
- the lignocellulosic matter may be a fibrous plant or a component thereof.
- fibrous plants include grasses (e.g. switchgrass), grass clippings, flax, corn cobs, corn stover, reed, bamboo, bagasse, hemp, sisal, jute, cannabis, hemp, straw, wheat straw, abaca, cotton plant, kenaf, rice hulls, and coconut hair.
- the lignocellulosic matter may be derived from an agricultural source.
- lignocellulosic matter from agricultural sources include agricultural crops, agricultural crop residues, and grain processing facility wastes (e.g. wheat/oat hulls, corn fines etc.).
- lignocellulosic matter from agricultural sources may include hard woods, soft woods, hardwood stems, softwood stems, nut shells, branches, bushes, canes, corn, corn stover, cornhusks, energy crops, forests, fruits, flowers, grains, grasses, herbaceous crops, wheat straw, switchgrass, salix, sugarcane bagasse, cotton seed hairs, leaves, bark, needles, logs, roots, saplings, short rotation woody crops, shrubs, switch grasses, trees, vines, cattle manure, and swine waste.
- the lignocellulosic matter may be derived from commercial or virgin forests (e.g. trees, saplings, forestry or timber processing residue, scrap wood such as branches, leaves, bark, logs, roots, leaves and products derived from the processing of such materials, waste or byproduct streams from wood products, sawmill and paper mill discards and off-cuts, sawdust, and particle board).
- commercial or virgin forests e.g. trees, saplings, forestry or timber processing residue, scrap wood such as branches, leaves, bark, logs, roots, leaves and products derived from the processing of such materials, waste or byproduct streams from wood products, sawmill and paper mill discards and off-cuts, sawdust, and particle board.
- the lignocellulosic matter may be derived from industrial products and by-products.
- Non-limiting examples include wood-related materials and woody wastes and industrial products (e.g. pulp, paper (e.g. newspaper) papermaking sludge, cardboard, textiles and cloths, dextran, and rayon).
- organic material used in the methods of the invention may comprise a mixture of two or more different types of lignocellulosic matter, including any combination of the specific examples provided above.
- lignin, hemicellulose and cellulose in a given sample will depend on the specific nature of the lignocellulosic matter.
- the proportion of hemicellulose in a woody or fibrous plant used in the methods of the invention may be between about 15% and about 40%, the proportion of cellulose may be between about 30% and about 60%, and the proportion of lignin may be between about 5% and about 40%.
- the proportion of hemicellulose in the woody or fibrous plant may be between about 23% and about 32%, the proportion of cellulose may be between about 38% and about 50%, and the proportion of lignin may be between about 15% and about 25%.
- lignocellulosic matter used in the methods of the invention may comprise between about 2% and about 35% lignin, between about 15% and about 45% cellulose, and between about 10% and about 35% hemicellulose.
- lignocellulosic matter used in the methods of the invention may comprise between about 20% and about 35% lignin, between about 20% and about 45% cellulose, and between about 20% and about 35% hemicellulose.
- the lignocellulosic matter may comprise more than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% lignin.
- the lignocellulosic matter may comprise more than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% cellulose.
- the lignocellulosic matter may comprise more than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% hemicellulose.
- a mixture of organic material comprising lignite (brown coal) and lignocellulosic matter may be utilised as organic matter feedstock in the methods of the invention.
- the lignocellulosic matter of the mixture may, for example, comprise woody plant material and/or fibrous plant material.
- the proportion of lignite in the mixture may be greater than about 20%, 40%, 60% or 80%.
- the proportion of lignocellulosic matter in the mixture may be greater than about 20%, 40%, 60% or 80%.
- organic matter utilised in the methods of the invention comprises carbon-containing polymeric materials, non-limiting examples of which include rubbers (e.g. tyres), plastics and polyamides (e.g. nylons).
- Non-limiting examples of suitable rubbers include natural and synthetic rubbers such as polyurethanes, styrene rubbers, neoprenes, polybutadiene, fluororubbers, butyl rubbers, silicone rubbers, plantation rubber, acrylate rubbers, thiokols, and nitrile rubbers.
- Non-limiting examples of suitable plastics include PVC, polyethylene, polystyrene, terphtalate, polyethylene and polypropylene.
- Organic matter feedstocks utilised in the methods of the invention may comprise carbon-containing wastes such as sewage, manure, or household or industrial waste materials.
- Organic matter utilised in the methods of the present invention may optionally be pre-treated prior converting it into bio-product(s).
- pre-treatment of the organic matter may not be required if it is obtained in the form of a liquid or in a particulate form.
- pre-treatment of the organic matter may be advantageous in enhancing the outcome of the methods described herein.
- pre-treatment may be used to break down the physical and/or chemical structure of the organic matter making it more accessible to various reagents utilised in the methods of the invention (e.g. oil-based solvent, catalysts and the like) and/or other reaction parameters (e.g. heat and pressure).
- pre-treatment of organic matter may be performed for the purpose of increasing solubility, increasing porosity and/or reducing the crystallinity of sugar components (e.g. cellulose).
- Pre-treatment of the organic matter may be performed using an apparatus such as, for example, an extruder, a pressurized vessel, or batch reactor.
- Pre-treatment of the organic matter may comprise physical methods, non-limiting examples of which include grinding, chipping, shredding, milling (e.g. vibratory ball milling), compression/expansion, agitation, and/or pulse-electric field (PEF) treatment.
- physical methods non-limiting examples of which include grinding, chipping, shredding, milling (e.g. vibratory ball milling), compression/expansion, agitation, and/or pulse-electric field (PEF) treatment.
- pre-treatment of the organic matter may comprise physio-chemical methods, non-limiting examples of which include pyrolysis, steam explosion, ammonia fiber explosion (AFEX), ammonia recycle percolation (ARP), and/or carbon-dioxide explosion.
- Pre-treatment with steam explosion may additionally involve agitation of the organic matter.
- pre-treatment of the organic matter may comprise chemical methods, non-limiting examples of which include ozonolysis, acid hydrolysis (e.g. dilute acid hydrolysis using H 2 SO 4 and/or HCl), alkaline hydrolysis (e.g. dilute alkaline hydrolysis using sodium, potassium, calcium and/or ammonium hydroxides), oxidative delignification (i.e. lignin biodegradation catalysed by the peroxidase enzyme in the presence of H 2 O 2 ), and/or the organosolvation method (i.e. use of an organic solvent mixture with inorganic acid catalysts such as H 2 SO 4 and/or HCl to break lignin-hemicellulose bonds).
- acid hydrolysis e.g. dilute acid hydrolysis using H 2 SO 4 and/or HCl
- alkaline hydrolysis e.g. dilute alkaline hydrolysis using sodium, potassium, calcium and/or ammonium hydroxides
- oxidative delignification i.e. lignin
- pre-treatment of the organic matter may comprise biological methods, non-limiting examples of which include the addition of microorganisms (e.g. rot fungi) capable of degrading/decomposing various component(s) of the organic matter.
- microorganisms e.g. rot fungi
- organic matter used in the methods of the present invention is lignocellulosic matter which may be subjected to an optional pre-treatment step in which hemicellulose is extracted. Accordingly, the majority of the hemicellulose (or indeed all of the hemicellulose) may be extracted from the lignocellulosic matter and the remaining material (containing predominantly cellulose and lignin) used to produce a biofuel by the methods of the invention. However, it will be understood that this pre-treatment is optional and no requirement exists to separate hemicellulose from lignocellulosic matter when performing the methods of the present invention. Suitable methods for the separation of hemicellulose from lignocellulosic matter are described, for example, in PCT publication number WO/2010/034055, the entire contents of which are incorporated herein by reference.
- the hemicellulose may be extracted from lignocellulosic matter by subjecting a slurry comprising the lignocellulosic matter (e.g. 5%-15% w/v solid concentration) to treatment with a mild aqueous acid (e.g. pH 6.5-6.9) at a temperature of between about 100° C. and about 250° C., a reaction pressure of between about 2 and about 50 atmospheres, for between about 5 and about 20 minutes.
- the solubilised hemicellulose component may be separated from the remaining solid matter (containing predominantly cellulose and lignin) using any suitable means (e.g. by use of an appropriately sized filter).
- the remaining solid matter may be used directly in the methods of the invention, or alternatively mixed with one or more other forms of organic matter (e.g. lignite) for use in the methods of the invention.
- Organic matter feedstock utilised in accordance with the methods of the present invention is preferably treated in the form of a slurry. Accordingly, the reaction mixture may be in the form of a slurry.
- the slurry may comprise the organic matter in combination with a solvent (e.g. an aqueous solvent, an aqueous alcohol solvent, an aqueous ethanol solvent, an aqueous methanol solvent) optionally in combination with pulping liquor, solid substrate, a catalyst additive, and/or an oil additive.
- a solvent e.g. an aqueous solvent, an aqueous alcohol solvent, an aqueous ethanol solvent, an aqueous methanol solvent
- the slurry may be generated, for example, by generating a particulate form of the organic matter (e.g. by physical methods such as those referred to above and/or by other means) and mixing with the solvent.
- a slurry for use in accordance with the methods of the present invention will generally comprise organic matter feedstock.
- the concentration of organic matter in the slurry may be less than about 85 wt %, less than about 75 wt %, or less than about 50 wt %.
- the concentration of organic matter may be more than about 10 wt %, more than about 20 wt %, more than about 30 wt %, more than about 40 wt %, more than about 50 wt %, or more than about 60 wt %.
- the slurry may comprise between about 35 wt % and about 45 wt % of an oil additive. In other embodiments, the slurry may comprise about 40 wt % oil or 39.5 wt % of an oil additive.
- the optimal particle size of solid components of the organic matter feedstock and the optimal concentration of those solids in the slurry may depend upon factors such as, for example, the heat transfer capacity of the organic matter utilised (i.e. the rate at which heat can be transferred into and through individual particles), the desired rheological properties of the slurry and/or the compatibility of the slurry with component/s of a given apparatus within which the methods of the invention may be performed (e.g. reactor tubing).
- the optimal particle size and/or concentration of solid components of the organic matter components in a slurry used for the methods of the present invention can readily be determined by a person skilled in the art using standard techniques.
- a series of slurries may be generated, each sample in the series comprising different particle sizes and/or different concentrations of the solid organic matter components compared to the other samples.
- Each slurry can then be treated in accordance with the methods of the invention under a conserved set of reaction conditions.
- the optimal particle size and/or concentration of solid organic matter components can then be determined upon analysis and comparison of the products generated from each slurry using standard techniques in the art.
- the particle size of solid organic matter components in the slurry may be between about 10 microns and about 10,000 microns.
- the particle size may be more than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns.
- the particle size may less than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns.
- the particle size is between about 10 microns and about 50 microns, between about 10 microns and about 100 microns, between about 10 microns and about 200 microns, between about 10 microns and about 500 microns, between about 10 microns and about 750 microns, or between about 10 microns and about 1000 microns. In other embodiments, the particle size is between about between about 100 microns and about 1000 microns, between about 100 microns and about 750 microns, between about 100 microns and about 500 microns, or between about 100 microns and about 250 microns.
- One non-limiting advantage of the present invention is that the methods can be used to process feedstock with a high content of ash or inorganic material.
- a slurry for use in accordance with the methods of the present invention will generally comprise a pulping liquor component.
- the pulping liquor may be included in the slurry prior to heating and/or pressurising the slurry to target reaction conditions. Additionally or alternatively, the pulping liquor may be included in the slurry while the slurry is undergoing heating and/or pressurising to target reaction conditions. Additionally or alternatively, the pulping liquor may be included in the slurry after it has undergone heating and/or pressurising to target reaction conditions.
- the slurry may comprise pulping liquor (black liquor, green liquor, white liquor, or any combination thereof).
- the slurry may comprise between about 1% and about 100%, between about 90% and about 100%, between about 95% and about 100%, between about 50% and about 100%, between about 50% and about 90%, between about 50% and about 95%, between about 50% and about 95%, between about 50% and about 80%, between about 50% and about 70%, between about 50% and about 60%, between about 30% and about 90%, between about 40% and about 90%, or between about 20% and about 75%, of the pulping liquor by weight.
- the slurry may comprise between about 60 wt % and about 100 wt % of the pulping liquor, between about 5 wt % and about 60 wt %, between about 1 wt % and about 50 wt %, between about 1 wt % and about 40 wt %, between about 1 wt % and about 30 wt %, between about 1 wt % and about 20 wt %, between about 1 wt % and about 15 wt %, between about 1 wt % and about 10 wt %, between about 1 wt % and about 5 wt %, between about 2 wt % and about 20 wt %, between about 2 wt % and about 10 wt %, between about 3% and about 20 wt %, between about 3 wt % and about 10 wt %, between about 0.5 wt % and about 5 wt %, between about 2 wt %
- the pulping liquor (black liquor, green liquor, white liquor, or any combination thereof) may be used in an amount of between about 0.1% and about 10% w/v pulping liquor, between about 0.1% and about 7.5% w/v pulping liquor, between about 0.1% and about 5% w/v pulping liquor, between about 0.1% and about 2.5% w/v pulping liquor, between about 0.1% and about 1% w/v pulping liquor, or between about 0.1% and about 0.5% w/v pulping liquor (in relation to the solvent).
- a slurry for use in accordance with the methods of the present invention will generally comprise a solvent component.
- the solvent may be an aqueous solvent, an oil solvent, or a combination thereof.
- the solvent may comprise or consist of water.
- the concentration of water in the slurry may be above about 80 wt %, above about 85 wt %, or above about 90 wt %. Accordingly, the concentration of water may be above about 75 wt %, above about 70 wt %, above about 60 wt %, above about 50 wt %, above about 40 wt %, or above about 30 wt %. In some embodiments, the concentration of water is between about 90 wt % and about 95 wt %.
- the slurry comprises between about 10 wt % and about 30 wt % water. In other preferred embodiments, the slurry comprises about 20 wt % oil or about 15 wt % water.
- the water is recycled from the product of the process.
- a portion water present following completion of the reaction may be taken off as a side stream and recycled into the slurry.
- the solvent may comprise or consist of one or more aqueous alcohol/s.
- an aqueous alcohol as the solvent when the lignocellulosic feedstock used in the methods consists of or comprises a significant amount of lignocellulosic material and/or other materials such rubber and plastics due to the stronger chemical bonds in these types of lignocellulosic feedstock.
- Suitable alcohols may comprise between one and about ten carbon atoms.
- suitable alcohols include methanol, ethanol, isopropyl alcohol, isobutyl alcohol, pentyl alcohol, hexanol and iso-hexanol.
- the slurry may comprise more than about 5 wt %, 10 wt %, 15 wt %, 20 wt %, 25 wt %, 30 wt %, 35 wt %, 40 wt %, 45 wt % or 50 wt % alcohol aqueous alcohol.
- the solvent comprises a mixture of two or more aqueous alcohols.
- the alcohol is ethanol, methanol or a mixture thereof.
- a slurry for use in accordance with the methods of the present invention may comprise a solid substrate component as described herein.
- Favourable characteristics of the solid substrate may include any one or more of the following: it remains inert or substantially inert at the reaction temperature and pressure used; it remains unaltered or substantially unaltered upon completion of the process; it remains as a solid or substantially solid at the reaction temperatures and pressures used; it is of low or moderate hardness so that it does not induce substantial abrasion or erosive corrosion in reactors (e.g. continuous flow reactors); it has a high internal or external specific surface area so that it can adsorb and/or absorb large quantities of bio-products and/or other precipitates during the conversion process.
- the solid substrate may be a carbonaceous material.
- the solid substrate may be a carbonaceous material comprising at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% by weight carbon.
- Non-limiting examples of suitable carbonaceous materials for use as the solid substrate include coals (e.g. anthracitic coals such as meta-anthracite, anthracite and semianthracite; bituminous coals, subbituminous coals, lignite (i.e. brown coal), coking coal, coal tar, coal tar derivatives, coal char); cokes (e.g.
- high temperature coke foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke); charcoal; pyrolysis char; hydrothermal char; carbon black; graphite fine particles; amorphous carbon; carbon nanotubes; carbon nanofibers; vapor-grown carbon fibers; and any combination thereof.
- the solid substrate may be a carbon rich char made from the previous processing of organic matter according to the present invention followed by a thermal treatment in the substantial absence of oxygen to remove volatile materials (e.g. by pyrolysis or vacuum distillation at temperatures in the range of 200° C. to 800° C.).
- the solid substrate may be a non-carbonaceous material.
- the solid substrate may be a non-carbonaceous material comprising less than 20%, less than 10%, less than 5%, less than 3%, less than 2%, or less than 1%, by weight carbon, or comprise no carbon.
- Non-limiting examples of suitable non-carbonaceous materials for use as the solid substrate include ash (e.g. fly ash); minerals (e.g. calcium carbonate, calcite, silicates, silica, quartz, oxides including iron ore, clay minerals, talc, gypsum); an insoluble or substantially insoluble metal salt; and any combination thereof.
- ash e.g. fly ash
- minerals e.g. calcium carbonate, calcite, silicates, silica, quartz, oxides including iron ore, clay minerals, talc, gypsum
- an insoluble or substantially insoluble metal salt e.g. fly ash
- minerals e.g. calcium carbonate, calcite, silicates, silica, quartz, oxides including iron ore, clay minerals, talc, gypsum
- suitable materials for use as the solid substrate include carbonates of calcium, carbonates of magnesium, carbonates of calcium and magnesium, calcite, limestone, dolomite, hydroxides of calcium, hydroxides of magnesium, oxides of calcium, oxides of magnesium, hydrogen carbonates of calcium, hydrogen carbonates of magnesium, kaolinite, bentonite, illite, zeolites, calcium phosphate, hydroxyapataite, phyllosilicates, and any combination thereof.
- the concentration of solid substrate in the slurry may be less than about 20 wt %, less than about 15 wt %, or less than about 10 wt %.
- the concentration of solid substrate may be more than about 0.5 wt %, more than about 1 wt %, more than about 3 wt %, more than about 5 wt %, more than about 50 8 wt %, or more than about 10 wt %.
- the optimal particle size and optimal concentration of the solid substrate may depend upon factors such as, for example, the heat transfer capacity of the organic matter utilised (i.e. the rate at which heat can be transferred into and through individual particles), the desired rheological properties of the slurry and/or the compatibility of the slurry with component/s of a given apparatus within which the methods of the invention may be performed (e.g. reactor tubing).
- the optimal particle size and/or concentration of the solid substrate component in a slurry used for the methods of the invention can readily be determined by a person skilled in the art using standard techniques. For example, a series of slurries may be generated, each sample in the series comprising a specific solid substrate of different size and/or different concentration to those of other samples. Each slurry can then be treated in accordance with the methods of the invention under a conserved set of reaction conditions.
- the optimal solid substrate size and/or concentration can then be determined upon analysis and comparison of the products generated from each slurry using standard techniques in the art.
- the size of a solid substrate component in the slurry may be between about 10 microns and about 10,000 microns.
- the size may be more than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns.
- the size may less than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns.
- the size is between about 10 microns and about 50 microns, between about 10 microns and about 100 microns, between about 10 microns and about 200 microns, between about 10 microns and about 500 microns, between about 10 microns and about 750 microns, or between about 10 microns and about 1000 microns. In other embodiments, the size is between about between about 100 microns and about 1000 microns, between about 100 microns and about 750 microns, between about 100 microns and about 500 microns, or between about 100 microns and about 250 microns.
- the particle size distributions and particle surface charge characteristics of the organic matter component of the slurry and/or the solid substrate component of the slurry may be optimized in order to provide desirable slurry characteristics when mixed, for example, to obtain minimum viscosity for a given solids content.
- the optimal particle size and/or particle surface charge of solid components in a given slurry used can readily be determined by a person skilled in the art using standard techniques. For example, a series of slurries may be generated, each sample in the series comprising different particle sizes and/or different concentrations of solid components compared to the other samples. Each slurry can then be treated in accordance with the methods of the invention under a conserved set of reaction conditions. The optimal particle size and/or particle surface charge of solid organic matter components can then be determined upon analysis and comparison of the products generated from each slurry using standard techniques known in the art.
- An “intrinsic catalyst” is catalyst that is innately present in a given reaction component such as, for example, any one or more of organic matter feedstock, an aqueous solvent, and/or vessel walls of a reactor apparatus, or, a catalyst that form in situ during the treatment process.
- a “additional catalysts” is a catalyst incorporated into a feedstock slurry and/or reaction mixture that is supplementary to catalytic compounds present in pulping liquor included in the feedstock slurry, and supplementary to catalytic compounds intrinsically present in organic matter feedstock treated in accordance with the methods of the invention, catalytic compounds intrinsically present in any solvent used in accordance with the methods of the invention, catalytic compounds intrinsically present in a solid substrate used to perform the methods of the invention, and/or catalytic compounds intrinsically present in the walls of a reactor apparatus used to perform the methods of the invention.
- a catalyst additive as contemplated herein may be any catalyst that enhances the formation of biofuel from organic matter (e.g. lignocellulosic feedstock and/or coals such as lignite) using the methods of the invention, non-limiting examples of which include base catalysts, acid catalysts, alkali metal hydroxide catalysts, transition metal hydroxide catalysts, alkali metal formate catalysts, transition metal formate catalysts, reactive carboxylic acid catalysts, transition metal catalysts, sulphide catalysts, noble metal catalysts, water-gas-shift catalysts, and combinations thereof.
- Suitable catalysts are described, for example, in United States of America patent publication number 2012-0311658 A1 entitled “Methods for biofuel production”, the entire contents of which are incorporated herein by reference.
- an additional catalysts or combination of additional catalysts may be used in an amount of between about 0.1% and about 10% w/v catalysts, between about 0.1% and about 7.5% w/v catalysts, between about 0.1% and about 5% w/v catalysts, between about 0.1% and about 2.5% w/v catalysts, between about 0.1% and about 1% w/v catalysts, or between about 0.1% and about 0.5% w/v catalysts (in relation to the solvent).
- Table 1 below provides a summary of various exemplary additional catalysts that may be employed in the methods of the invention and the corresponding reactions that they may catalyse.
- aluminate, methoxide Include all sulfate, sulfite, ethoxide common sulfide carbonate inorganic phosphate, sulphate anions phosphite sulphide nitrate, nitrite disulphide (FeS 2 ) silicate oxide hydroxide alkoxide carbonate oxide Any organic ammonia, base pyridine, etc.
- Additional catalysts for use in the methods of the invention may be produced using chemical methods known in the art and/or purchased from commercial sources.
- the catalyst additive(s) may be added to the organic matter, solvent, pulping liquor, solid substrate, oil additive, or a mixture of one or more of these components (e.g. a slurry) before heating/pressurisation to target reaction temperature and pressure, during heating/pressurisation to target reaction temperature and pressure, and/or after reaction temperature and pressure are reached.
- the timing at which the additional catalyst is applied may depend on the reactivity of the feedstock utilised. For example, highly reactive feedstocks may benefit from applying the additional catalyst close to or at the target reaction temperature and pressure, whereas less reactive feedstocks may have a broader process window for applying the additional catalyst (i.e. the catalysts may be added prior to reaching target reaction temperature and pressure).
- the additional catalysts may be included in a reaction mixture used for treatment according to the present invention prior to heating and/or pressurising the reaction mixture, during heating and/or pressurising of the reaction mixture, and/or after the reaction mixture reaches a desired reaction temperature and/or reaction pressure.
- the slurry, the reaction mixture, or both comprises organic matter mixed with an oil additive.
- the oil additive may act as an oil-solvent in the reaction.
- the oil may be any suitable oil, non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables and any mixture of any of the previous components.
- the oil may be incorporated into the slurry mixture at any point before target reaction temperature and/or pressure are reached.
- the oil may be added to the slurry in a slurry mixing tank. Additionally or alternatively, the oil may be added to the slurry en route to a reactor and/or during heating/pressurisation of the slurry.
- the oil is a bio-oil product recycled from the process.
- a portion of the bio-oil produced may be taken off as a side stream and recycled into the slurry, reaction mixture, or both.
- the bio-oil is recycled in combination with solid substrate, each being a component of the bio-product.
- a portion of the bio-oil produced mixed with solid substrate may be taken off as a side stream and recycled into the slurry, reaction mixture, or both.
- the slurry may comprise more than about 2 wt % oil, more than about 5 wt % oil, more than about 10 wt % oil, or more than about 20, 30, 40, 50, 60 or 70 wt % oil.
- the slurry may comprise less than about 98 wt % oil, less than about 95 wt % oil, less than about 90 wt % oil, or less than about 80, 70, 60, 50, 40 or 30 wt % oil.
- the slurry comprises between about 10 wt % and about 30 wt % organic matter, between about 2 wt % and about 15 wt % solid substrate, and between about 50 wt % and about 90 wt % solvent where the solvent is a mixture of oil and aqueous phase in any proportion.
- the slurry comprises between about 40 wt % and about 50 wt % oil. In other preferred embodiments, the slurry comprises about 45 wt % oil.
- the slurry comprises a feedstock to oil ratio of 0.5-1.2:1.
- the oil may be paraffinic oil.
- organic matter feedstock e.g. lignocellulosic matter and/or coal such as lignite
- a solvent in the presence of pulping liquor as described herein, and optionally in the presence of an oil additive, solid substrate, and/or additive catalysts, under conditions of increased temperature and pressure to produce bio-products.
- the specific conditions of temperature and pressure used when practicing the methods of the invention may depend on a number different factors including, for example, the type of solvent used, the type of organic matter feedstock under treatment, the physical form of the organic matter feedstock under treatment, the relative proportions of components in the reaction mixture (e.g. the proportion of solvent, pulping liquor, organic matter feedstock, and optionally additive oil, catalyst additives, and/or any other additional component/s), the types of additive catalyst(s) utilised (if present), the retention time, and/or the type of apparatus in which the methods are performed. These and other factors may be varied in order to optimise a given set of conditions so as to maximise the yield and/or reduce the processing time. In preferred embodiments, all or substantially all of the organic material used as a feedstock is converted into bio-product(s).
- Desired reaction conditions may be achieved, for example, by conducting the reaction in a suitable apparatus (e.g. a sub/supercritical reactor apparatus) capable of maintaining increased temperature and increased pressure.
- a suitable apparatus e.g. a sub/supercritical reactor apparatus
- a reaction mixture is provided and treated at a target temperature and pressure for a fixed time period (“retention time”) facilitating the conversion of organic matter feedstock (e.g. lignocellulosic matter and/or coal such as lignite) into bio-product(s).
- organic matter feedstock e.g. lignocellulosic matter and/or coal such as lignite
- the temperature and/or pressure required to drive conversion of organic feedstock into biofuel using the methods of the invention will depend on a number of factors including the type of organic matter under treatment and the relative proportions of components in the reaction (e.g. the proportion of solvent, pulping liquor, organic matter feedstock, and optionally additive oil, catalyst additives, and/or any other additional component/s), the type and amount of pulping liquor used, the retention time, and/or the type of apparatus in which the methods are performed.
- reaction temperature and pressure for a given reaction mixture.
- the optimal reaction temperature and/or pressure for a given feedstock slurry may be readily determined by the skilled addressee by preparing and running a series of reactions that differ only by temperature and/or pressure utilised and analysing the yield and/or quality of the target bio-product(s) produced. Proportions of relative components in the reaction mixture can be varied and the same tests conducted again at the same of different temperatures and/or pressures.
- the pressure utilised is a function of the slurry components and pressure drop, induced by the slurry, and strongly dependent on any particular reactor design (e.g. pipe diameter and/or length etc.).
- treatment of organic matter feedstock to produce a bio-product using the methods of the invention may be conducted at temperature(s) of between about 150° C. and about 550° C. and pressure(s) of between about 10 bar and about 400 bar.
- the reaction mixture is maintained at temperature(s) of between about 150° C. and about 500° C. and pressure(s) of between about 80 bar and about 350 bar.
- the reaction mixture is maintained at temperature(s) of between about 180° C. and about 400° C. and pressure(s) of between about 100 bar and about 330 bar.
- the reaction mixture is maintained at temperature(s) of between about 200° C. and about 380° C. and pressure(s) of between about 120 bar and about 250 bar.
- the reaction mixture is maintained at temperature(s) of between about 200° C. and about 400° C., and pressure(s) of between about 100 bar and about 300 bar.
- the reaction mixture is maintained at temperature(s) of between about 250° C. and about 380° C., and pressure(s) of between about 50 bar and about 300 bar.
- the reaction mixture is maintained at temperature(s) of between about 320° C. and about 360° C. and pressure(s) of between about 150 bar and about 250 bar. In other preferred embodiments, the reaction mixture is maintained at temperature(s) of between about 330° C. and about 350° C. and pressure(s) of between about 230 bar and about 250 bar. In another particularly preferred embodiment, the reaction mixture is maintained at temperature(s) of about 340° C. and pressure(s) of between about 240 bar.
- the reaction mixture is maintained at temperature(s) of between about 320° C. and about 360° C., and pressure(s) of between about 220 bar and about 250 bar.
- the reaction mixture is maintained at temperature(s) of above about 180° C. and pressure(s) above about 150 bar. In other embodiments, the reaction mixture is maintained at temperature(s) of above about 200° C. and pressure(s) above about 180 bar. In additional embodiments, reaction mixture is maintained at temperature(s) of above about 250° C. and pressure(s) above about 200 bar. In other embodiments, reaction mixture is maintained at temperature(s) of above about 300° C. and pressure(s) above about 250 bar. In other embodiments, reaction mixture is maintained at temperature(s) of above about 350° C. and pressure(s) above about 300 bar.
- a solvent used in the methods of the present invention may be heated and pressurised beyond its critical temperature and/or beyond its critical pressure (i.e. beyond the ‘critical point’ of the solvent). Accordingly, the solvent may be a ‘supercritical’ solvent if heated and pressurised beyond the ‘critical point’ of the solvent.
- a solvent used in the methods of the present invention may be heated and pressurised to level(s) below its critical temperature and pressure (i.e. below the ‘critical point’ of the solvent).
- the solvent may be a ‘subcritical’ solvent if its maximum temperature and/or maximum pressure is below that of its ‘critical point’.
- the ‘subcritical’ solvent is heated and/or pressurised to level(s) approaching the ‘critical point’ of the solvent (e.g. between about 10° C. to about 50° C. below the critical temperature and/or between about 10 atmospheres to about 50 atmospheres below its critical pressure).
- a solvent used in the methods of the present invention may be heated and pressurised to levels both above and below its critical temperature and pressure (i.e. heated and/or pressurised both above and below the ‘critical point’ of the solvent at different times). Accordingly, the solvent may oscillate between ‘subcritical’ and ‘supercritical’ states when performing the methods.
- the specific time period over which the conversion of organic matter feedstock (e.g. lignocellulosic matter and/or coals such as lignite) may be achieved upon reaching a target temperature and pressure (i.e. the “retention time”) may depend on a number different factors including, for example, the type of organic matter under treatment and the relative proportions of components in the reaction (e.g. the proportion of solvent, pulping liquor, organic matter feedstock, and optionally additive oil, catalyst additives, and/or any other additional component/s), and/or the type of apparatus in which the methods are performed. These and other factors may be varied in order to optimise a given method so as to maximise the yield and/or reduce the processing time.
- the retention time is sufficient to convert all or substantially all of the organic material used as a feedstock into bio-product(s).
- the retention time is less than about 60 minutes, 45 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes or less than about 5 minutes. In certain embodiments, the retention time is more than about 60 minutes, 45 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes or more than about 5 minutes. In other embodiments, the retention time is between about 1 minute and about 60 minutes. In additional embodiments, the retention time is between about 5 minutes and about 45 minutes, between about 5 minutes and about 35 minutes, between about 10 minutes and about 35 minutes, or between about 15 minutes and about 30 minutes. In further embodiments, the retention time is between about 20 minutes and about 30 minutes.
- the optimal retention time for a given set of reaction conditions as described herein may be readily determined by the skilled addressee by preparing and running a series of reactions that differ only by the retention time, and analysing the yield and/or quality of bio-product(s) produced.
- a reaction mixture (e.g. in the form of a slurry) comprising organic matter feedstock (e.g. lignocellulosic matter and/or coals such as lignite), solvent, pulping liquor, and optionally one or more catalyst additives as defined herein may be brought to a target temperature and pressure (i.e. the temperature/pressure maintained for the “retention time”) over a given time period.
- organic matter feedstock e.g. lignocellulosic matter and/or coals such as lignite
- solvent e.g. lignocellulosic matter and/or coals such as lignite
- pulping liquor e.g. the temperature/pressure maintained for the “retention time”
- Reaction mixes that do not contain a significant proportion of oil additive may require a very fast initial conversion to generate some solvent in-situ.
- the incorporation of oil into the reaction mixture as described herein allows the oil to act as an additional solvent thus alleviating the requirement for rapid heating/pressurisation.
- the reaction mix undergoes a separate pre-heating stage prior to reaching reaction temperature.
- the pre-heating stage may be performed on a feedstock slurry prior to the full reaction mix being formed. Alternatively the pre-heating stage may be performed on a slurry comprising all components of the reaction mixture. In some embodiments, the pre-heating stage raises the temperature of the feedstock slurry or reaction mixture to a maximum temperature of about: 120° C., 130° C., 140° C., 150° C., 160° C., 170° C., 180° C., 190° C., or 200° C.
- the temperature is raised to less than about: 120° C., 130° C., 140° C., 150° C., 160° C., 170° C., 180° C., 190° C., or 200° C. In still other embodiments the temperature is raised to between about 100° C. and about 200° C., between about 100° C. and about 180° C., between about 100° C. and about 160° C., between about 120° C. and about 180° C., or between about 120° C. and about 160° C.
- pressure will generally change from atmospheric to target pressure during the time it takes to cross the pump (i.e. close to instantaneous) whereas in a batch system it may mirror the time that it takes to heat the mixture up.
- the reaction mixture may be brought to a target temperature and/or pressure in a time period of between about 30 seconds and about 30 minutes.
- the reaction mixture may be brought to a target temperature and/or pressure in a time period less than about 15 minutes, less than about 10 minutes, less than about 5 minutes, or less than about 2 minutes.
- the reaction mixture may be brought to a target pressure substantially instantaneously and brought to a target temperature in less than about 20 minutes, less than about 10 minutes, or less than about 5 minutes. In other embodiments, the reaction mixture may be brought to a target pressure substantially instantaneously and brought to a target temperature in less than about two minutes. In other embodiments, the reaction mixture may be brought to a target pressure substantially instantaneously and brought to a target temperature in between about 1 and about 2 minutes.
- the product mixture generated may be cooled to between about 150° C. and about 200° C., between about 160° C. and about 200° C., preferably between about 170° C. and about 190° C., and more preferably about 180° C., in a time period of less than about 10 minutes, preferably less than about 7 minutes, more preferably less than about 6 minutes, preferably between about 4 and about 6 minutes, and more preferably about 5 minutes.
- the temperature may further reduced to ambient temperature with concurrent de-pressurisation by fast release into a cool aqueous medium (e.g. cooled water).
- a cool aqueous medium e.g. cooled water
- Bio-product generation from organic matter feedstocks e.g. lignocellulosic matter and/o coals such as lignite
- Bio-product generation from organic matter feedstocks e.g. lignocellulosic matter and/o coals such as lignite
- Bio-product generation from organic matter feedstocks e.g. lignocellulosic matter and/o coals such as lignite
- continuous flow may facilitate the accelerated implementation and/or removal of heat and/or pressure applied to the slurry. This may assist in achieving the desired rates of mass and heat transfer, heating/cooling and/or pressurisation/de-pressurisation.
- Continuous flow may also allow the retention time to be tightly controlled. Without limitation to a particular mode of action, it is postulated that the increased speed of heating/cooling and/or pressurisation/de-pressurisation facilitated by continuous flow conditions along with the capacity to tightly regulate retention time assists in preventing the occurrence of undesirable side-reactions (e.g.
- continuous flow refers to a process wherein organic matter feedstock mixed with a solvent and pulping liquor in the form of a slurry (which may further comprise any one or more of a solid substrate, an oil additive and/or a catalyst additive) is subjected to:
- continuous flow conditions as contemplated herein are defined by a starting point of heating and pressurisation (i.e. (a) above) and by an end point of cooling and de-pressurisation (i.e. (c) above).
- Continuous flow conditions as contemplated herein imply no particular limitation regarding flow velocity of the slurry provided that it is maintained in a stream of continuous movement.
- the minimum (volume-independent) flow velocity of the slurry along a given surface exceeds the settling velocity of solid matter within the slurry (i.e. the terminal velocity at which a suspended particle having a density greater than the surrounding solution moves (by gravity) towards the bottom of the stream of slurry).
- the minimum flow velocity of the slurry may be above about 0.01 cm/s, above about 0.05 cm/s, preferably above about 0.5 cm/s and more preferably above about 1.5 cm/s.
- the upper flow velocity may be influenced by factors such as the volumetric flow rate and/or retention time. This in turn may be influenced by the components of a particular reactor apparatus utilised to maintain conditions of continuous flow.
- a suitable reactor apparatus will generally comprise heating/cooling, pressurising/de-pressuring and reaction components in which a continuous stream of slurry is maintained.
- a suitable flow velocity (under conditions of continuous flow) may be advantageous in preventing scale-formation along the length of a particular surface that the slurry moves along (e.g. vessel walls of a reactor apparatus) and/or generating an effective mixing regime for efficient heat transfer into and within the slurry.
- the methods of the present invention may be used to produce bio-product(s) from organic matter feedstocks (e.g. lignocellulosic matter and/or coals such as lignite).
- organic matter feedstocks e.g. lignocellulosic matter and/or coals such as lignite.
- the nature of the bio-product(s) may depend on a variety of different factors including, for example, the organic matter feedstock treated, and/or the reaction conditions/reagents utilised in the methods.
- the bio-product(s) may comprise one or more biofuels (e.g. bio-oils, char products, gaseous products) and chemical products (e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde).
- biofuels e.g. bio-oils, char products, gaseous products
- chemical products e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde.
- bio-product(s) produced in accordance with the methods of the present invention comprise or consist of a bio-oil.
- the bio-oil may comprise compounds including, but not limited to, any one or more of alkanes, alkenes, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones.
- the bio-oil may comprise compounds including but not limited to aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related.
- the bio-oil may comprise multiple phases, including but not limited to a water-soluble aqueous phase which may comprise, compounds including, but not limited to, any one or more of carbohydrates, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy—substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-cate
- bio-products include oil char (e.g. carbon char with bound oils), char, and gaseous product (e.g. methane, hydrogen, carbon monoxide and/or carbon dioxide, ethane, ethene, propene, propane).
- oil char e.g. carbon char with bound oils
- gaseous product e.g. methane, hydrogen, carbon monoxide and/or carbon dioxide, ethane, ethene, propene, propane.
- a biofuel may be produced from organic matter comprising lignocellulosic matter.
- the biofuel may comprise a liquid phase comprising bio-oil.
- Biofuels e.g. bio-oils
- Bio-oils produced in accordance with the methods of the invention may comprise a number of advantageous features, non-limiting examples of which include reduced oxygen content, increased hydrogen content, increased energy content and increased stability.
- bio-oils produced by the methods of the invention may comprise a single oil phase containing the liquefaction product. The product may be separated from the oil phase using, for example, centrifugation eliminating the need to evaporate large amounts of water.
- a bio-oil product made in accordance with the methods of the present invention may be purified by dissolving the bio-oil in a purifying solvent followed by filtration of the resulting solution to remove particulates and insoluble material. Dissolving the bio-oil in the purifying solvent may have the effect of reducing the viscosity of the bio-oil which may assist the filtration process.
- the purifying solvent may be wholly or partly recovered by distillation following filtration, for example, by distillation under reduced pressure, thereby causing residual water in the oil to separate as a discrete phase, after which the water may be recovered by physical means such as decantation from the oil. If the purifying solvent used forms an azeotrope with water, this property may also be used to remove water from the bio-oil during the distillation processes.
- any purifying solvent in which the bio-oil dissolves may be used.
- suitable purifying solvents include acetone, ethyl acetate, ethanol, benzene, toluene, xylene, tetralin, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform, ketones, alcohols, furans, and any combination thereof
- Complex multicomponent purifying solvents may be used including, by way of non-limiting example only, light cycle oil, naphtha, and distilled fractions of bio-oil produced according to the methods of the present invention (i.e. a recycled bio-oil product) such as, for example, a fraction of the bio-oil with a boiling point between about 60° C. and about 150° C.).
- a bio-oil bio-product produced in accordance with the methods of the invention may comprise an energy content of greater than about 25 MJ/kg, greater than about 30 MJ/kg, more preferably greater than about 32 MJ/kg, more preferably greater than about 35 MJ/kg, still more preferably greater than about 37 MJ/kg, 38 MJ/kg or 39 MJ/kg, and most preferably above about 41 MJ/kg.
- the bio-oil product may comprise less than about 20% oxygen, preferably less than about 15% wt db oxygen, more preferably less than about 10% wt db oxygen, still more preferably less than about 8% wt db oxygen, still more preferably less than about 7% wt db oxygen, and most preferably less than about 5% wt db oxygen.
- the bio-oil product may comprise greater than about 6% wt db hydrogen, preferably greater than about 7% wt db hydrogen, more preferably greater than about 8% wt db hydrogen, and still more preferably greater than about 9% wt db hydrogen.
- the molar hydrogen:carbon ratio of a bio-oil of the invention may be less than about 1.5, less than about 1.4, less than about 1.3, less than about 1.2, or about 1.0.
- a bio-oil produced in accordance with the methods of the invention may comprise, for example, any one or more of the following classes of compounds: phenols, aromatic and aliphatic acids, ketones, aldehydes, hydrocarbons, alcohols, esters, ethers, furans, furfurals, terpenes, polycyclics, oligo- and polymers of each of the aforementioned classes, plant sterols, modified plant sterols, asphaltenes, pre-asphaltenes, and waxes.
- a char or oil char bio-product produced in accordance with the methods of the invention may comprise an energy content of greater than about 20 MJ/kg, preferably greater than about 25 MJ/kg, more preferably greater than about 30 MJ/kg, and still more preferably greater than about 31 MJ/kg, 32 MJ/kg, 33 MJ/kg or 34 MJ/kg.
- the char or oil char product may comprise less than about 20% wt db oxygen, preferably less than about 15% wt db oxygen, more preferably less than about 10% wt db oxygen and still more preferably less than about 9% wt db oxygen.
- the char or oil char product may comprise greater than about 2% wt db hydrogen, preferably greater than about 3% wt db hydrogen, more preferably greater than about 4% wt db hydrogen, and still more preferably greater than about 5% wt db hydrogen.
- the molar hydrogen:carbon ratio of a char or oil char product of the invention may be less than about 1.0, less than about 0.9, less than about 0.8, less than about 0.7, or less than about 0.6.
- An oil char bio-product produced in accordance with the methods of the invention may comprise, for example, any one or more of the following classes of compounds: phenols, aromatic and aliphatic acids, ketones, aldehydes, hydrocarbons, alcohols, esters, ethers, furans, furfurals, terpenes, polycyclics, oligo- and polymers of each of the aforementioned classes, asphaltenes, pre-asphaltenes, and waxes.
- a char bio-product (upgraded PCI equivalent coal) produced in accordance with the methods of the invention may comprise, for example, a mixture of amorphous and graphitic carbon with end groups partially oxygenated, giving rise to surface carboxy- and alkoxy groups as well as carbonyl and esters.
- Bio-products produced in accordance with the methods of the present invention may comprise one or more biofuels (e.g. bio-oils, char products, gaseous products) and chemical products (e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde).
- biofuels e.g. bio-oils, char products, gaseous products
- chemical products e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde.
- Bio-products produced in accordance with the methods of the present invention may be cleaned and/or separated into individual components using standard techniques known in the art.
- solid and liquid phases of biofuel products may be filtered through a pressure filter press, or rotary vacuum drum filter in a first stage of solid and liquid separation.
- the solid product obtained may include a high carbon char with bound oils.
- the oil may be separated from the char, for example, by thermal distillation or by solvent extraction.
- the liquid product obtained may contain a low percentage of light oils, which may be concentrated and recovered though an evaporator.
- Bio-products produced in accordance with the methods of the present invention may be used in any number of applications.
- biofuels may be blended with other fuels, including for example, ethanol, diesel and the like.
- the biofuels may be upgraded into higher fuel products.
- the biofuels may be used directly, for example, as petroleum products and the like.
- thermochemical conversion process utilised is also referred to as “Cat-HTR”.
- Pre-processing trials were conducted on the feedstocks to prepare them to specifications of the small pilot plant (SPP). Dry-milling of the feedstocks followed by Cat-HTR processing in the small pilot plant led to successful production of bio-crude (bio-oil) from the feedstocks, in particular from a mixture of hog fuel, SPF wood chip, sludge and black liquor.
- bio-crude bio-oil
- the resulting bio-crudes had gross calorific values (GCV) on a dry ash free basis in the range of 33-36 MJ/kg.
- GCV gross calorific values
- diesel fuel has a GCV (or energy content) of about 45 MJ/kg and unprocessed dry wood about 18-21 MJ/kg.
- Licella has demonstrated that distilled bio-crudes from Radiata pine wood flour with initial energy contents in this range can be successfully hydroprocessed to give hydrocarbons compatible with refinery streams at an advanced stage of processing to finished fuels. It was confirmed in the trials that the alkaline inorganic components of black liquor are capable of substituting for the alkaline catalysts typically used by Licella in order to produce high energy density bio-crudes.
- the black liquor can obviate the need to add additional alkaline catalysts in the Cat-HTR process.
- the highest proportion of black liquor used in testing was approximately 1 part of dry wood feedstock to 0.65 parts of black liquor (analysis as per table 4).
- the highest level of black liquor used was determined in this instance by the level of sulphur compatible with the materials of construction of the SPP and the expected levels of hydrogen sulphide in the producer gas, consistent with safe operation of the plant.
- Feedstocks utilised were:
- black liquor As received black liquor (per Table 4) was diluted 100% with water by volume. The diluted mixture was filtered through a 250 micron sieve to remove oversize particles and contaminants such as plastic and wood chips etc. to be compliant with pump specifications on the small pilot plant. The amount of material removed was a negligible fraction of the overall sample. The filtered, diluted black liquor was then used as a stock liquor for addition at various levels to other feedstocks for Cat-HTR. This stock liquor is referred to as ‘stock black liquor’.
- Example 2 A detailed description of individual runs is provided in Example 2. Table 3 below gives a summary of all experiments conducted during the course of this study, irrespective of outcome.
- Solid feedstock and oil product ash yield is performed according to HRL method 1.6.
- the sample is held at 815° C. in an open crucible until the weight is stable.
- results of a proximate analysis are ash content, volatile mater and fixed carbon which are determined as percentages of the sample mass, on dry basis. Results allow for an estimate of the “reactivity” of feedstocks, and amount of “solids” expected.
- Ultimate analysis is performed by HRL method 1.4 sample in a CHN analyser. Ultimate analysis is a breakdown of the sample in its most important elements—carbon, hydrogen, nitrogen, sulphur and oxygen. The oxygen content is a key indicator as it is inversely correlated to the energy content of the sample.
- the Cat-HTR process can be operated in a way to retain or to remove oxygen according to the operating conditions. Depending on the target chemical fractions or purpose of the bio-crude, the remaining oxygen may be reduced at the refinery stage by hydrogenation to obtain the highest energy density; or the oxygen is maintained within the bio-crude as an oxygenated chemical feedstock containing phenols (for resins and plasticisers and chemical precursors of pharmaceuticals).
- the hydrogen and the carbon are the main contributors to the energy content of the bio-crude.
- Sulphur is of interest for materials selection on the Cat-HTR plant, it is a factor that influences capital cost of Cat-HTR plant.
- Sulphur in the bio-crude can be removed, along with oxygen and nitrogen in a hydroprocessing unit of a refinery or a dedicated hydrotreater.
- Sulphur is measured by HRL method 1.14 in an ICP or sulphur analyser mounted within a furnace.
- Sulphur levels in the oil product are measured by USEPA method 5050.
- the gross calorific value is a direct result of the composition. It represents the energy available from combustion of the sample.
- Chlorine is measured as high levels of chlorine or chloride have potential to corrode plant steels.
- Ash composition is a measure of inorganic components present in the samples, for general feedstock and product quality assessment.
- Lignocellulosic materials including black liquor contain inorganic compounds, and some of the insoluble inorganics are expected to be carried over to the bio-crude product.
- the ash Prior to further refining, e.g. by hydroprocessing, the ash should be removed, as some ash components are likely to adversely affect the catalysts used in hydroprocessing. Distillation is the most common way to do this, and a key difference between bio-crudes from Cat-HTR and pyrolysis bio-oils from e.g. fast pyrolysis is that the bio-crudes can be distilled but the pyrolysis oils cannot.
- Ash content of bio-crude may be removed by a distillation process at the front end of a refinery. Ash content is reported as a percentage on dry basis, the ash composition as reported in this document assumes that the inorganics are in their oxide forms. This assumption may mean that the sum of ash composition may exceed 100% and some other inorganics might not be accounted for.
- Solvent extraction is performed on a measured amount of the water phase product using diethyl ether to dissolve and separate recoverable oils from the water phase. Ether extraction produces results quantifying both the ether extractable chemicals and the residues of ether extraction.
- Ether extractable chemicals are oils that are lighter fractions including alcohols, ketones, phenols and short chain hydrocarbons. Many of the phenols are used in the flavouring and essence industries. Solvent extraction is used as a rapid method of quantifying these organic components, that are potentially recoverable in a commercial plant, thereby adding to the overall oil yield and possibly representing an additional product stream of interest to the fine chemicals industry.
- Residue from the extraction includes soluble ash from the feedstock, catalyst and water soluble (non-ether soluble) organics.
- the latter group includes glycolic and lactic acids, used respectively in the cosmetics and biopolymers industries.
- the catalyst can be regenerated, however, as it is inexpensive the choice between regenerating the catalyst and treating and disposing of the brine generated is influenced by site-specific factors. Potassium-based catalysts can also be used, in which case the catalyst residues plus additional potassium from the biomass may find application as fertilizer products.
- Residues are extracted from the water by drying at 110° C. in air and collecting (weighing) the solids.
- Radiata Pine wood flour was used as a benchmark feedstock for biomass Cat-HTR.
- the SPF woodchip is unsurprisingly quite similar to the Radiata Pine in terms of proximate and ultimate analyses.
- the Hog Fuel has a higher ash content than either of the foregoing feedstocks, this is likely attributable to higher levels of bark, needles and other contaminants.
- the ash is dominated by calcium, which is basic under most conditions, and may have a catalytic effect in Cat-HTR.
- the sludge has a high ash content and the composition of the ash is dominated by calcium, which again may have a catalytic effect in Cat-HTR.
- the mixed feedstock used in the last two runs listed in table 3 can be expected to be dominated by the hog fuel and black liquor properties that comprise most of the feed.
- Tables 5 and 6 display a summary of mass balance data and non-condensable gas compositions.
- the mass balances are closed to the extent that 79-107% of the mass of feedstock entering the Cat-HTR reactor during a certain steady state period of operation has been identified in the products collected from the tank in which it was captured (known as T4) or the gas stream venting from it. The exception is the run of 24/07/14 (hog fuel plus black liquor) which was very poorly closed. Typically with radiata pine wood flour runs we expect the mass balance to close in the vicinity of 85-100%. It should be noted that the mass balances are approximate only and are based on a number of simplifications and approximations, for the reason that it is not possible to quantify every component in the complex.
- Typical bio-crude yields from a Radiata pine wood flour feedstock in the Small Pilot Plant are mid-to-low twenties percent on a dry wood feed basis. Those yields are lower than obtained in Licella's Larger Pilot Plants which are typically around mid-thirties percent or more.
- the main reason for the difference is the lower maximum slurry concentrations that can be pumped in the SPP, and the amount of steam used for heating the slurry to reaction temperature, which is much larger for the SPP than for the LPP.
- higher concentrations of biomass in the Cat-HTR reactor (and lower concentrations of water) favour higher yields of bio-crude at the expense of the proportion of the organic material that dissolves in the water phase.
- the bio-crude yields from the feedstocks are generally in line with those expected from the SPP, with the exception of 14/08/14 run where the amount of bio-crude recovered was low. The reason for this is unknown, but it is likely that some bio-crude was trapped in the apparatus and not recovered.
- NCG non-condensable gas
- the H 2 S make for sodium hydroxide catalysed systems with radiata pine feed is essentially negligible.
- the proportion of H 2 S in the gas is not a simple function of black liquor concentration, as can be seen from the first two entries in tables 5 and 6. This is possibly a function of the pH of the aqueous phase.
- a typical wood+sodium hydroxide catalyst product by Licella produces approximately 20% H 2 by volume in the non-condensable gas product.
- the hog fuel+sodium hydroxide run produced a greater fraction of H 2 than this, possibly indicating that the ash components in the hog fuel have some catalytic activity in gasification.
- the water-soluble components have the greatest uncertainty associated with them, particularly in the case of those runs utilizing black liquor.
- the dominant water soluble components are acetates, hydrogen carbonates, phenols, ketones, catechols, ethanol and methanol, and humic materials (brown water soluble compounds, insoluble in diethyl ether).
- the black liquor as catalyst the water soluble chemistry is likely to be more complex still.
- Table 8 below shows the operating conditions of the mass balance run on Radiata Pine Wood Flour. This run produced the samples of Bio-Crude Oil, syngas and water, that are presented in the next section.
- Table 12 below shows the operating conditions of the mass balance run using wood flour w/-black liquor.
- the Cat-HTR processing temperatures (355° C. to 335° C.) were again within the normal Biomass processing temperatures
- the ash content of the Bio-Crude Oil was about 0.4%.
- the Bio-Crude Oil has a gross calorific value of 34.3 MJ/kg.
- Table 16 below shows the operating conditions of the mass balance run on 16 Jul. 2014, on Hog Fuel and sodium hydroxide. This run produced the samples of Bio-Crude Oil, syngas and water, that are presented in the next section.
- Cat-HTR processing temperatures for the Hog Fuel Sodium Hydroxide were steady for the most part at 335° C. reactor inlet temperature (variable between 326° C. and 337° C.), pressure was steady for the most part at 271 bar, variable at its lowest to 230 bar.
- the ash content of the Bio-Crude Oil was about 6.6%.
- the Bio-Crude Oil has a gross calorific value of 36.3 MJ/kg, for comparison purposes diesel is around 45 MJ/kg.
- Table 20 below shows the operating conditions of a mass balance run using Hog Fuel Black Liquor.
- the processing temperatures for the Hog Fuel w/-black liquor was essentially steady around 330° C. reactor inlet temperature. Pressure was variable between 226 and 244 bar.
- the ash content of the Bio-Crude Oil was about 2.8%.
- the Bio-Crude Oil has a gross calorific value of 32.6 MJ/kg, for comparison purposes diesel is around 45 MJ/kg.
- Table 24 below shows the operating conditions of the mass balance run using Mixed Kraft Feedstock. This trial was at moderate temperature of 321° C.
- the Mixed Kraft Feedstock mixture is composed from solids:
- the mixed kraft feedstock is composed from solids: kg to feed tank % of dry feed Hog Fuel 8.0 55.3% Pine 1.8 12.4% Sludge 0.2 1.4% Black liquor solids 4.5 30.9% Black liquor water 8.5 Water 123.5 Slurry tank contents Total solids 14.5 Total water 132.0 Total to feed tank 146.5 % Solids 9.88%
- the Bio-Crude Oil has a gross calorific value of 33 MJ/kg, for comparison purposes diesel is around 45 MJ/kg.
- Table 29 below shows the operating conditions of the mass balance run on Mixed Kraft II) Feedstocks.
- the Mixed Kraft Feedstock mixture is composed from solids:
- the ash content of the Bio-Crude Oil was about 2%.
- the Bio-Crude Oil has a gross calorific value of 33.7 MJ/kg dry basis
- Bio-crude quality is most readily assessed in the first instance by means of its Gross Calorific Value (GCV). This is the gross energy contained in the material and is closely related to the oxygen and hydrogen content of the bio-crude.
- GCV Gross Calorific Value
- the Radiata pine wood flour bio-crude has a low ash content, and therefore dry basis values are similar to dry ash free basis (daf) values.
- the bio-crudes from hog fuel and black liquor feedstocks have significantly higher ash values, and it is more appropriate to compare these on a daf basis.
- the calorific values of the bio-crudes from this study lie in the range within, or very close to, the target band of 334-36 MJ/kg.
- the bio-crude distillates can be expected to have an oxygen content close to 11%.
- the significance of the target is that commercial hydrotreating technologies exist for hydrodeoxygenation (HDO) of oils at around 11% oxygen.
- HDO hydrodeoxygenation
- Licella's assessment is that the remaining oxygen in the bio-crudes is more efficiently removed by hydrotreating in conventional refinery processes than by other processes.
- Licella bio-crudes from Radiata pine wood flour have about 50% of their carbon atoms in an aromatic environment by 13C NMR spectroscopy. While this does not mean that hydrodeoxygenated bio-crudes will contain 50% aromatics, it is indicative of a high potential produce aromatic chemicals, for example by catalytic reforming. Bio-crudes based on high proportions of black liquor may be expected to have still higher aromatic contents, however this should be confirmed by testing.
- Bio-crude yields are generally consistent with other feedstocks processed using the SPP, as discussed in Section 9.0.
- the SPP uses a relatively large amount of supercritical steam to heat the biomass slurry to reaction temperature, and the consequent dilution favours dissolution of bio-crude into the water phase. This is a phenomenon that has been reported by other investigators, for example.
- F1 (C6-C10)- BTEX as per NEPM B1. Guideline on Investigation Levels for Soil and Groundwater. Org-003 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FD.
- F2 (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
- Metals-022 ICP-MS Determination of various metals by ICP-MS. Metals-021 CV-AAS Determination of mercury by Cold Vapour AAS.
- ICP-AES Metals-020ICP-AES Determination of various metals by ICP-AES.
- Inorg-067 Samples are digested in acid with a known excess of potassium dichromate then titrated against ammonium ferrous sulphate in accordance with APHA 22nd ED 5310 B.
- Inorg-079 TOC determined using a TOC analyser using the combustion method.
- DOC is filtered prior to determination.
- Duplicate results Base Duplicate Duplicate ⁇ Spike Spike % QUALITY CONTROL UNITS POL METHOD Blank SnW % RPD SnW Recovery VOCs in water Date extracted — 19 Aug. 2014 LCS-W1 19 Aug. 2014 Date analysed — 22 Aug. 2014 LCS-W1 22 Aug.
- the hog fuel feedstock was ground using modified compressed air jet mills to a particle size of less than about 150 microns to suit the pump valve orifices of the pilot plant pump.
- the pilot plant pump requires a greater degree of comminution of the feedstock than would a commercial facility.
- Black liquor samples were homogenized as necessary before use to remove agglomerates that could potentially cause pumping difficulties in use.
- the feedstock analysis in Table 41 for the hog fuel is after grinding. The grinding process reduces the moisture content of the hog fuel.
- Feedstock conversion according to the invention was carried out using a continuous flow process in a pilot plant reactor.
- the reactor is schematically represented in FIG. 2 .
- Catalyst injection additional to the catalysts in the black liquor was not used in example runs 9-14.
- biocrude oil Due to the high ash content of the hog fuel feedstock, the biocrude oil was further separated for the purpose of analysis into acetone-soluble and acetone-insoluble components.
- Table 44 shows the properties of the biocrude oil phase.
- Table 45 shows the properties of the gas/vapour phase.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Materials Engineering (AREA)
- Forests & Forestry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Combustion & Propulsion (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Processing Of Solid Wastes (AREA)
- Paper (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 16/558,934, filed Sep. 3, 2019, which is a continuation of U.S. application Ser. No. 15/486,785, filed Apr. 13, 2017, which is a continuation of International Patent Application No. PCT /AU2015/000617, filed on Oct. 15, 2015, designating the United States of America, which derives priority from Australian provisional patent application number 2014904129, filed on Oct. 15, 2014. Each of the above-referenced applications is incorporated by reference herein in its entirety.
- The present invention relates generally to the generation of bio-products from organic matter feedstocks. More specifically, the present invention relates to the use of pulping liquors in the hydrothermal/thermochemical conversion of lignocellulosic and/or fossilised organic feedstocks into biofuels (e.g. bio-oils) and/or chemical products (e.g. platform chemicals).
- The global demand for energy continues to rise while reserves of conventional petroleum (e.g. oil, gas, and natural gas liquids) are in decline. This has led to increased focus and research into unconventional fuel resources (e.g. heavy oil, oil sands, oil shale) and other non-fossil sources of energy (e.g. lignocellulosic materials).
- A significant amount of research in the field of “alternative” energy production has focussed on the generation of biofuels from lignocellulosic matter. This technology raises the prospect of a shift to an abundant and renewable feedstock for energy production as an alternative to the depleting reserves of hydrocarbon-based raw materials. The enrichment of low energy density fossil fuels (e.g. lignite, peat and oil shale) into high energy fuel products also represents an attractive alternative given the relative abundance of those resources.
- In particular, the thermochemical conversion of biomass and other complex organic matter into biofuels and chemicals based on hydrothermal reactions has shown significant promise. Gasification processes are generally conducted at higher temperatures (e.g. 400° C.-700° C.) and can produce methane or hydrogen gases in high yields. Liquefaction processes are generally conducted at lower temperatures (e.g. 200° C-400° C.) and produce liquid products referred to in the field as “bio-oil” or “bio-crude”. To provide a viable replacement or supplement to existing fossil fuels, bio-oils generated from these and related technologies need characteristics (e.g. high energy/yield, low oxygen/water content, reduced viscosity) approximating those of crude oils. Additionally, it is highly important for processes of this nature to be cost-efficient for economic feasibility.
- Numerous modifications to improve thermochemical processes for bio-oil production have been developed. For example, the prior removal of hemicellulose under mild conditions from plant materials can improve the production of bio-oils from lignocellulosic feedstocks (see PCT publication No. WO 2010/037178). It has also been demonstrated that rather than gradually heating feedstock slurry to reaction temperature, contacting the slurry with an already supercritical solvent can provide advantageous effects in bio-oil production (see PCT publication No. WO 2012/000033). Incorporating oil into a feedstock slurry, which may also be a recycled bio-oil product, has been shown to improve process efficiency and product characteristics (see PCT publication No. WO 2012/092644). The inclusion of a solid substrate in organic matter feedstock used in thermochemical conversion processes has been shown to reduce scaling and/or reduce the development of pressure differentials during treatment (see PCT application No. PCT/AU2014/00601). Despite these advances, new modifications to thermochemical processes capable of increasing process efficiency, lowering costs and/or improving product characteristics are still desirable.
- Many if not most processes for the thermochemical conversion of biomass into biofuels utilise catalysts to increase process efficiency and/or improve product characteristics. A wide range of catalysts have been used in these processes (see, for example, PCT publication No. WO 2011/123897) and the identification of appropriate catalyst combinations and/or alternative sources of catalysts provides an opportunity to improve existing bio-oil production methods.
- The present inventors have unexpectedly identified that pulping liquors such as black liquor can be used as an effective source of catalysts to facilitate the efficient thermochemical conversion of biomass into biofuels. In view of its organic content (e.g. cellulosic matter) pulping liquors also provide a source of additional feedstock material capable of conversion into bio-products, which can in turn provide a cost benefit by reducing the amount of feedstock material required.
- In a first aspect, the present invention provides a method for producing a bio-product from organic matter feedstock, the method comprising:
- providing a reaction mixture comprising the organic matter feedstock, a solvent, and pulping liquor;
- treating the reaction mixture in a reactor vessel at a reaction temperature and pressure suitable for conversion of all or a portion of the organic matter feedstock into a product mixture comprising the bio-product; and
- depressurising and cooling the product mixture;
- wherein the reaction mixture and product mixture move in continuous flow through reactor vessel during said treating.
- In one embodiment, the organic matter feedstock is lignocellulosic feedstock.
- In one embodiment, the organic matter feedstock is coal feedstock (e.g. lignite feedstock).
- In one embodiment, the organic matter feedstock and the pulping liquor are both black liquor.
- In one embodiment, the pulping liquor is black liquor and the organic matter feedstock is not a pulping liquor.
- In one embodiment, the organic matter feedstock and the pulping liquor both comprise or consist of black pulping liquor (black liquor).
- In one embodiment, the pulping liquor comprises or consists of black liquor and the organic matter feedstock does not comprise or consist of pulping liquor.
- In one embodiment, the pulping liquor is black liquor.
- The black liquor may have been separated from pulp following a chemical pulping process in which a wood feedstock has been digested with pulping chemicals under heat and pressure.
- The black liquor may comprise between about 2.5 and 7.0 weight % sodium hydroxide (NaOH) on dry black liquor solids (DBLS), between about 0.06 and 3.0 wt % sodium sulfide (Na2S), between about 4.5 and about 16.0 wt. % sodium carbonate (Na2CO3), between about 0.5 g/l and about 5 g/l sodium sulfite (Na2SO3), between about 1.9 and about 16.6 wt. % sodium sulfate (Na2SO4), between about 2.4 and about 7.5 wt. % sodium thiosulfate (Na2S2O3), and between about 50 and about 70 wt. % organic solids on dry black liquor solids.
- The black liquor may comprise between about 0.5 g/l and 2.5 g/l sodium hydroxide (NaOH), between about 2.5 g/l and 6.0 g/l sodium sulfide (Na2S), between about 5 g/l and about 10 g/l sodium carbonate (Na2CO3), between about 0.5 g/l and about 5 g/l sodium sulfite (Na2SO3), between about 0.5 g/l and about 5 g/l sodium sulfate (Na2SO4), between about 1.0 g/l and about 6 g/l sodium thiosulfate (Na2S2O3), and between about 10 g/l and about 100 g/l organic solids.
- The black liquor may comprise between about 1.0 g/l and 2.0 g/l sodium hydroxide (NaOH), between about 3.5 g/l and 5.5 g/l sodium sulfide (Na2S), between about 6.5 g/l and about 9.0 g/l sodium carbonate (Na2CO3), between about 1.0 g/l and about 3.0 g/l sodium sulfite (Na2SO3), between about 2.0 g/l and about 4 g/l sodium sulfate (Na2SO4), between about 2.0 g/l and about 4.5 g/l sodium thiosulfate (Na2S2O3), and between about 20 g/l and about 50 g/l organic solids.
- The black liquor may comprise between about 4 wt % and 10 wt % sodium hydroxide (NaOH), between about 10 wt % and 30 wt % sodium sulfide (Na2S), between about 25 wt % and about 50 wt % sodium carbonate (Na2CO3), between about 5 wt % and about 15 wt % sodium sulfite (Na2SO3), between about 8 wt % and about 20 wt % sodium sulfate (Na2SO4), between about 10 wt % and about 25 wt % sodium thiosulfate (Na2S2O3), and between about 10 wt % and about 90 wt % organic solids or between about 30% and about 70% organic solids.
- The black liquor may comprise between about 5 wt % and 9wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na2S), between about 25 wt % and about 45 wt % sodium carbonate (Na2CO3), between about 5 wt % and about 15 wt % sodium sulfite (Na2SO3), between about 10 wt % and about 15 wt % sodium sulfate (Na2SO4), between about 13 wt % and about 20 wt % sodium thiosulfate (Na2S2O3), and between about 40 wt % and about 90 wt % organic solids or between about 50% and about 80% organic solids, or between about 60% and about 75% organic solids.
- The black liquor may comprise any one or more of inorganic elements, dissolved wood substances, acetic acid, formic acid, sugars, caboxylic acids, xylans, and methanol.
- In one embodiment, the pulping liquor is a green pulping liquor (green liquor).
- The green liquor may comprise between about 9 g/l and 20 g/l sodium hydroxide (NaOH), between about 25 g/l and 55 g/l sodium sulfide (Na2S), between about 80 g/l and about 145 g/l sodium carbonate (Na2CO3), between about 4.0 g/l and about 8.0 g/l sodium sulfite (Na2SO3), between about 6.0 g/l and about 15.0 g/l sodium sulfate (Na2SO4), and between about 3.0 g/l and about 9.0 g/l sodium thiosulfate (Na2S2O3).
- The green liquor may be obtained by processing the black liquor. The green liquor may be obtained by burning the black liquor in an oxygen deficient environment and dissolving the resultant material in a solvent (e.g. water). The concentration of organic solids in the black liquor may be increased prior to burning the black liquor in the oxygen deficient environment to obtain the green liquor. Concentration of the organic solids in the black liquor may be achieved by evaporation.
- The green liquor may comprise between about 11 g/l and 20 g/l sodium hydroxide (NaOH), between about 25 g/l and 50 g/l sodium sulfide (Na2S), between about 80 g/l and about 130 g/l sodium carbonate (Na2CO3), between about 4.0 g/l and about 8.0 g/l sodium sulfite (Na2SO3), between about 8.0 g/l and about 15.0 g/l sodium sulfate (Na2SO4), and between about 3.0 g/l and about 9.0 g/l sodium thiosulfate (Na2S2O3).
- The green liquor may comprise between about 13 g/l and 18 g/l sodium hydroxide (NaOH), between about 30 g/l and 45 g/l sodium sulfide (Na2S), between about 95 g/l and about 120 g/l sodium carbonate (Na2CO3), between about 5.0 g/l and about 7.0 g/l sodium sulfite (Na2SO3), between about 9.0 g/l and about 13.0 g/l sodium sulfate (Na2SO4), and between about 4.0 g/l and about 7.0 g/l sodium thiosulfate (Na2S2O3).
- The green liquor may comprise between about 4 wt % and 12 wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na2S), between about 50 wt % and about 70 wt % sodium carbonate (Na2CO3), between about 1 wt % and about 7 wt % sodium sulfite (Na2SO3), between about 2 wt % and about 10 wt % sodium sulfate (Na2SO4), and between about 1 wt % and about 5 wt % sodium thiosulfate (Na2S2O3).
- The green liquor may comprise between about 5 wt % and 10 wt % sodium hydroxide (NaOH), between about 17 wt % and 23 wt % sodium sulfide (Na2S), between about 55 wt % and about 65 wt % sodium carbonate (Na2CO3), between about 1 wt % and about 4 wt % sodium sulfite (Na2SO3), between about 3 wt % and about 9 wt % sodium sulfate (Na2SO4), and between about 1 wt % and about 5 wt % sodium thiosulfate (Na2S2O3).
- In one embodiment, the pulping liquor is a white pulping liquor (white liquor).
- The white liquor may be obtained by processing the green liquor. The white liquor may be obtained by reacting the green liquor with lime or a derivative thereof (e.g. calcium oxide (CO), calcium hydroxide (CaOH)).
- The white liquor may comprise between about 80 g/l and 110 g/l sodium hydroxide (NaOH), between about 30 g/l and 45 g/l sodium sulfide (Na2S), between about 18 g/l and about 35 g/l sodium carbonate (Na2CO3), between about 3.0 g/l and about 6.0 g/l sodium sulfite (Na2SO3), between about 7.0 g/l and about 12.0 g/l sodium sulfate (Na2SO4), and between about 3.0 g/l and about 9.0 g/l sodium thiosulfate (Na2S2O3).
- The white liquor may comprise between about 85 g/l and 105 g/l sodium hydroxide (NaOH), between about 32 g/l and 43 g/l sodium sulfide (Na2S), between about 20 g/l and about 30 g/l sodium carbonate (Na2CO3), between about 3.5 g/l and about 5.5 g/l sodium sulfite (Na2SO3), between about 8.0 g/l and about 10.0 g/l sodium sulfate (Na2SO4), and between about 4.5 g/l and about 7.5 g/l sodium thiosulfate (Na2S2O3).
- The white liquor may comprise between about 40 wt % and 65 wt % sodium hydroxide (NaOH), between about 10 wt % and 30 wt % sodium sulfide (Na2S), between about 8 wt % and about 22 wt % sodium carbonate (Na2CO3), between about 1 wt % and about 6 wt % sodium sulfite (Na2SO3), between about 2 wt % and about 10 wt % sodium sulfate (Na2SO4), and between about 1 wt % and about 5 wt % sodium thiosulfate (Na2S2O3).
- The white liquor may comprise between about 45 wt % and 60 wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na2S), between about 10 wt % and about 20 wt % sodium carbonate (Na2CO3), between about 2 wt % and about 5 wt % sodium sulfite (Na2SO3), between about 2 wt % and about 7 wt % sodium sulfate (Na2SO4), and between about 1.5 wt % and about 4 wt % sodium thiosulfate (Na2S2O3).
- In one embodiment, the treating comprises treating the reaction mixture at a temperature of between 250° C. and 450° C., and a pressure of between 100 bar and 300 bar.
- The treating may comprise heating the slurry to a temperature selected from the group consisting of at least about 250° C., at least about 300° C., at least about 350° C., at least about 370° C., at least about 390° C., at least about 400° C., between about 200° C. and about 400° C., between about 200° C. and about 400° C., between about 300° C. and about 400° C., between about 350° C. and about 400° C., and between about 370° C. and about 450° C.
- The treating may comprise pressurising the reaction mixture at a pressure of between about 100 bar and about 400 bar, between about 150 bar and about 400 bar, between about 200 bar and about 400 bar, between about 150 bar and about 350 bar, between about 180 bar and about 350 bar, between about 150 bar and about 300 bar, between about 150 bar and about 280 bar, between about 150 bar and about 270 bar, or between about 200 bar and about 300 bar.
- The treating may comprise treating the reaction mixture at a temperature of between 310° C. and 360° C., and a pressure of between 160 bar and 250 bar.
- The treating may comprise treating the reaction mixture at a temperature of between 320° C. and 360° C., and a pressure of between 220 bar and 250 bar.
- The treating may comprise treating the reaction mixture at:
- (i) a temperature of between 200° C. and 450° C., and a pressure of between 100 bar and 300 bar;
- (ii) a temperature of between 250° C. and 350° C., and a pressure of between 140 bar and 240 bar.
- In one embodiment, the method comprises preparing a slurry comprising the organic matter and the pulping liquor, generating subcritical or supercritical steam independently of the slurry, and contacting the slurry with the subcritical or supercritical steam in at least one vessel or chamber of said reactor vessel.
- The slurry may comprise lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- The slurry may be at ambient or near ambient temperature and pressure prior to the contacting with the subcritical or supercritical steam.
- The treating may comprise heating the slurry to a temperature selected from the group consisting of at least about 100° C., at least about 150° C., at least about 200° C., at least about 250° C., at least about 300° C., at least about 350° C., between about 200° C. and about 250° C., between about 200° C. and about 400° C., between about 250° C. and about 400° C., between about 250° C. and about 350° C., and between about 250° C. and about 350° C.; generating subcritical or supercritical steam independently of the slurry; and contacting the slurry with the subcritical or supercritical steam in at least one vessel or chamber of the reactor vessel.
- The slurry may be pressurised prior to and/or after said contacting.
- In one embodiment, the method comprises preparing a slurry comprising the organic matter, heating the slurry to a temperature of between at least about 100° C., at least about 150° C., at least about 200° C., at least about 250° C., at least about 300° C., at least about 350° C., between about 200° C. and about 250° C., between about 200° C. and about 400° C., between about 250° C. and about 400° C., between about 250° C. and about 350° C., and between about 250° C. and about 350° C.; mixing the pulping liquor with the slurry after heating the slurry to said temperature; and contacting the slurry comprising the lignocellulosic feedstock and black liquor with subcritical or supercritical steam in at least one vessel or chamber of the reactor vessel, wherein the subcritical or supercritical steam is generated independently of the slurry.
- The slurry may comprise lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- In one embodiment, the method comprises a first preheating stage in which the reaction mixture is heated to a temperature that is below the reaction temperature, and a second heating stage in which the reaction mixture is heated to the reaction temperature.
- The second heating stage may comprise contacting the reaction mixture with subcritical or supercritical steam.
- In one embodiment, the pulping liquor is mixed with the feedstock and/or solvent prior to the treating.
- In one embodiment the pulping liquor is added to the reaction mixture after the reaction mixture reaches said reaction temperature and pressure.
- In one embodiment the reaction mixture comprises between 1% and 30%, between 5% and 30%, between 10% and 30%, between 5% and 30%, between 5% and 20%, between 5% and 15%, between 10% and 30%, between 10% and 30%, between 10% and 15%, less than 20%, less than 30%, less than 25%, less than 15%, less than 10%, or less than 5%, of the pulping liquor by weight.
- In one embodiment the reaction mixture comprises between 1% and 100%, between 90% and 100%, between 95% and 100%, between 50% and 100%, between 50% and 90%, between 50% and 95%, between 50% and 95%, between 50% and 80%, between 50% and 70%, between 50% and 60%, between 30% and 90%, between 40% and 90%, or between 20% and 75%, of the pulping liquor by weight.
- In one embodiment, the reaction mixture comprises less than 20%, less than 30%, less than 35%, less than 40%, less than 40%, less than 70%, less than 80%, less than 90%, less than 95%, between 10% and 95%, between 30% and 95%, between 50% to 70%, or between 60% to 80%, of the solvent by weight.
- In one embodiment, the solvent is an aqueous solvent, an oil solvent, or a mixture of an aqueous solvent and an oil solvent.
- The oil solvent or the mixture of the aqueous solvent and the oil solvent may comprise crude tall oil, distilled tall oil, or a combination thereof
- The aqueous solvent may comprise water, water only, or water and an alcohol.
- The aqueous solvent may comprise water and an alcohol, and the alcohol may be selected from ethanol, methanol, or a combination of methanol and ethanol.
- The reaction mixture may comprise a percentage by weight of the alcohol of more than 3%, more than 5%, more than 10%, more than 15%, more than 20%, more than 25%, more than 30%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, or less than 3%.
- In one embodiment, the lignocellulosic feedstock may be lignocellulosic matter comprising at least 10% lignin, at least 35% cellulose, and at least 20% hemicellulose.
- The lignocellulosic feedstock may comprise more than about 10% of each of lignin, cellulose, and hemicellulose.
- In one embodiment, the reaction mixture comprises more than 10%, more than 15%, more than 20%, more than 30%, more than 35%, or more than 40%, of the organic matter by weight.
- The organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- In one embodiment, the reaction mixture comprises less than 10%, less than 15%, less than 20%, less than 30%, less than 35%, less than 40%, less than 50%, between 5% and 40%, between 10% to 35%, or between 15% and 30%, of the organic matter by weight.
- The organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- In one embodiment, the organic matter is provided in the form of a slurry comprising some or all of the solvent.
- The organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- The organic matter may be provided in the form of a slurry comprising some or all of the solvent and/or some or all of the pulping liquor.
- The treating may comprise treating the organic matter, the solvent, and the pulping liquor in the form of a slurry with a flow velocity of above 0.01 cm/s, above 0.05 cm/s, above 0.5 cm/s, above 0.1 cm/s, above 1.5 cm/s, or above 2.0 cm/s.
- In one embodiment, the reaction mixture is subjected to:
- (a) heating and pressurisation to a target temperature and pressure,
- (b) treatment at target temperature(s) and pressure(s) for a defined time period (i.e. the “retention time”), and
- (c) cooling and de-pressurisation, under continuous flow conditions.
- In one embodiment, the treating is for a time period of between about 20 minutes and about 30 minutes.
- In one embodiment, the method comprises the step of heating the organic matter feedstock (e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof) and solvent to the temperature in a time period of less than about 2 minutes, prior to the treating.
- In one embodiment, the method comprises the step of heating and pressurising the organic matter feedstock (e.g. lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof) and solvent to the temperature and pressure in a time period of less than about 2 minutes, prior to the treating.
- In one embodiment, the method comprises the steps of:
- (i) cooling the product mixture to a temperature of between about 160° C. and about 200° C. in a time period of less than about 30 seconds after said treating; and
- (ii) depressurisation and cooling the product mixture to ambient temperature by release through a pressure let down device.
- The pressure let down device may be enveloped in ambient temperature water.
- The depressurising and cooling of the product mixture may occur simultaneously.
- The depressurising and cooling of the product mixture may occur separately.
- In one embodiment the lignocellulosic feedstock is wood (e.g. radiata pine).
- In one embodiment, the reaction mixture further comprises a solid substrate, wherein the solid substrate is solid or substantially solid at the reaction temperature and pressure, sequesters organic and/or inorganic matter that de-solubilises within the reaction mixture or the product mixture; and/or alters one or more flow characteristics of the reaction mixture and/or the product mixture in the reactor vessel.
- The organic matter may be lignocellulosic feedstock, coal (e.g. lignite), or a combination thereof.
- The solid substrate may inhibit scaling in the reactor vessel.
- The solid substrate may inhibit development of a pressure gradient in the reactor vessel during the conversion of the organic matter feedstock into the bio-product.
- The depressurising may be facilitated by a pressure let down device in the reactor vessel.
- The reaction mixture may be pressurised to a maximum pressure prior to or during the treating.
- Prior to the depressurising facilitated by the pressure let down device, the product mixture may be pressurised at less than 98%, less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, or less than 50%, of the maximum pressure.
- The solid substrate may generate additional metal surface area within the reactor vessel by an abrasive action, to thereby provide additional metal surface area for provision of additional heterogeneous catalysts to the reaction mixture.
- The solid substrate may be inert or substantially inert at the reaction temperature and pressure.
- The solid substrate may be chemically inert or substantially chemically inert at the reaction temperature and pressure.
- The solid substrate may be a carbonaceous material comprising at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% by weight carbon.
- In one embodiment of the first, second or third aspects, the solid substrate may be selected from the group consisting of: coals, anthracitic coal, meta-anthracite, anthracite semianthracite, bituminous coal, subbituminous coal, lignite (i.e. brown coal), coking coal, coal tar, coal tar derivatives, coal char, coke, high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke, charcoal, pyrolysis char, hydrothermal char, carbon black, graphite fine particles, amorphous carbon, carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers, and any combination thereof.
- In one embodiment of the first, second or third aspects, the solid substrate may be a non-carbonaceous material comprising no more than 10%, no more than 5%, no more than 1%, or no carbon.
- The solid substrate may be selected from the group consisting of fly ash, a mineral, calcium carbonate, calcite, a silicate, silica, quartz, an oxide, a metal oxide, an insoluble or substantially insoluble metal salt, iron ore, a clay mineral, talc, gypsum, and any combination thereof.
- The solid substrate may be selected from the group consisting of carbonates of calcium, carbonates of magnesium, carbonates of calcium and magnesium, calcite, limestone, dolomite, hydroxides of calcium, hydroxides of magnesium, oxides of calcium, oxides of magnesium, hydrogen carbonates of calcium, hydrogen carbonates of magnesium, kaolinite, bentonite, illite, zeolites, calcium phosphate, hydroxyapataite, phyllosilicates, and any combination thereof.
- The solid substrate may be provided in the form of a powder, or a slurry comprising the powder.
- The solid substrate may be present in the reaction mixture at a concentration of more than 0.5%, more than 1%, more than 3%, more than 5%, more than 10%, more than 25%, or more than 30% by weight.
- The solid substrate is may be present in the reaction mixture at a concentration of less than 0.5%, less than 1%, less than 3%, less than 5%, less than 10%, less than 25%, or less than 50% by weight.
- Organic and/or inorganic matter may be sequestered by the solid substrate by adsorbing the organic matter and/or inorganic matter onto a surface of the solid substrate or into the solid substrate.
- In one embodiment of the first, second or third aspects, the reaction mixture comprises the organic matter feedstock (e.g. lignocellulosic matter) and the solid substrate at a ratio of about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1 about 8:1, about 10:1, about 20:1, or about 30:1.
- In one embodiment of the first, second or third aspects, the solid substrate constitutes: at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, between 1 wt % and 20%, between 1% and 10%, between 1% and 5%, between 5% and 10%, between 5% and 15%, between 5% and 20%, between 20% and 40%, between 20% and 50%, between 20% and 30%, between 30% and 40%, or between 40% and 50% of the total combined mass of the solid substrate and organic matter feedstock (e.g. lignocellulosic matter) in the reaction mixture.
- In one embodiment, the method further comprises separating the solid substrate from the product mixture after the depressurising and cooling, and recycling the solid substrate into a second slurry or second reaction mixture comprising organic matter feedstock.
- In one embodiment, the solid substrate is made from residue obtained by distillation or pyrolysis of the bio-product.
- In one embodiment, the reaction mixture further comprises an oil additive.
- The oil additive may be mixed with the feedstock and/or solvent prior to the treating.
- The reaction mixture may comprise between 5% and 60%, between 5% and 50%, between 5% and 40%, between 5% and 30%, between 5% and between 20%, more the 5% , more than 10%, more than 15%, more than 20%, more than 30%, less than 20%, less than 15% or less than 10% of the oil additive by weight.
- The oil additive may be selected from the group consisting of paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil, kerogen oil, mineral oil, white mineral oil, aromatic oil, tall oil, distilled tall oil, plant or animal oils, fats and their acidic forms and esterified forms, and any combination thereof.
- In one embodiment the solvent is a mixed solvent comprising an aqueous solvent component and an oil solvent component, wherein the two components are substantially immiscible or partly miscible at ambient temperature.
- The oil component may be crude tall oil, distilled tall oil or a combination thereof
- In one embodiment, the solvent comprises water and oil in a ratio of about 1:1 by mass, of about 1:2 by mass, of about 2:1 by mass, of about 3:1 by mass, of about 1:3 by mass, of about 1:4 by mass, of about 4:1 by mass, of about 1:5 by mass, of about 5:1 by mass, of about 1:6 by mass, of about 6:1 by mass, of about 1:7 by mass, of about 7:1 by mass, of about 1:8 by mass, of about 8:1 by mass, of about 1:9 by mass, of about 9:1 by mass, of about 1:10 by mass, or of about 10:1 by mass.
- In one embodiment, the method further comprises separating oil from the product and recycling the oil into a second slurry or second reaction mixture comprising organic matter feedstock.
- In one embodiment, the method further comprises separating the solid substrate and oil from the product, and recycling the solid substrate and the oil into a second slurry or second reaction mixture comprising organic matter feedstock.
- In one embodiment, the oil solvent is recycled from a bio-product produced according to the method.
- In one embodiment, the solid substrate is recycled from a bio-product produced according to the method.
- In one embodiment, the oil solvent and solid substrate are recycled in a mixture from a bio-product produced according to the method, and the mixture of recycled oil and recycled substrate is solid at ambient temperature.
- In one embodiment, the bio-product comprises a compound selected from the group consisting of: waxes; aldehydes; carboxylic acids; carbohydrates; phenols; furfurals; alcohols; ketones; resins; resin acids; compounds structurally related to resin acids; alkanes; alkenes; fatty acids; fatty acid esters; sterols; sterol-related compounds; furanic oligomers; cyclopentanones; cyclohexanones; alkyl- and alkoxy-cyclopentanones; alkyl- and alkoxy-cyclohexanones; cyclopenteneones; alkyl- and alkoxy-cyclopentenones; aromatic compounds; naphthalenes; alkyl- and alkoxy-substituted naphthalenes; cresols; alkyl- and alkoxy-phenols; alkyl- and alkoxy-catechols; alkyl- and alkoxy-dihydroxybezenes; alkyl- and alkoxy-hydroquinones; indenes; indene-derivatives, and any combination thereof.
- In one embodiment, the bio-product comprises an oil component having a gross calorific value of at least 30 MJ/kg, at least 32 MJ/kg, at least 35 MJ/kg, or at least 36 MJ/kg.
- In one embodiment, the bio-product comprises an oil component having a gross calorific value of at least 30 MJ/kg, at least 32 MJ/kg, at least 35 MJ/kg, or at least 36 MJ/kg, and a mixed substrate and oil component having a gross calorific value of at least 26 MJ/kg, at least 28 MJ/kg, at least 30 MJ/kg, at least 32 MJ/kg, or at least 33 MJ/kg.
- In one embodiment, the method comprises dissolving bio-oil from the bio-product in a purifying solvent and filtering the dissolved bio-oil to remove particulates and solid material.
- In one embodiment, the purifying solvent comprises any one or more of: acetone, ethyl acetate, ethanol, benzene, toluene, xylene, tetralin, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform, ketones, alcohol, furans, light cycle oil, naphtha, and/or a distilled fraction of bio-oil from a bio-product produced in accordance with the methods of the present invention.
- In one embodiment, the distilled fraction is obtained by boiling said bio-oil from a bio-product produced in accordance with the methods of the present invention, at a temperature of between about 60° C. and about 150° C.
- In one embodiment, the purifying solvent is recovered by distillation following said filtration.
- In a second aspect, the present invention provides a bio-product obtained or obtainable by the method of the first aspect.
- The bio-product may be a bio-oil.
- Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying Figures wherein:
-
FIG. 1 shows gross calorific value (GCV) vs oxygen content in biocrudes generated from Radiata Pine plus sodium hydroxide (circles), and from hog fuel and black liquor feeds (triangles—as labelled), in accordance with methods of the present invention; and -
FIG. 2 is a schematic representation of a pilot plant reactor for performing feedstock conversion under continuous flow according to the methods of present invention. - As used in this application, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a catalyst” also includes a plurality of catalysts.
- As used herein, the term “comprising” means “including.” Variations of the word “comprising”, such as “comprise” and “comprises,” have correspondingly varied meanings. Thus, for example, a bio-product “comprising” a bio-oil may consist exclusively of bio-oil or may include other additional substances.
- As used herein, the terms “organic matter” and “organic materials” have the same meaning and encompass any material comprising carbon including both fossilised and non-fossilised materials. Non-limiting examples of organic matter include renewable sources of biomass (e.g. lignocellulosic matter), as well as hydrocarbon-containing materials (e.g. lignite, oil shale and peat) which may be non-renewable.
- As used herein the term “bio-product” encompasses any product that can be obtained by the treatment of organic matter feedstock as defined above in accordance with the methods of the present invention. Non-limiting examples of bio-products include biofuels (e.g. bio-oils, char products, gaseous products) and chemical products (e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde).
- As used herein, the term “biofuel” refers to an energy-containing material derived from the treatment of organic matter feedstock as defined above in accordance with the methods of the present invention. Non-limiting examples of biofuels include bio-oils, char products (e.g. is upgraded pulvarised coal injection (PCI) equivalent products and fuels for direct injection carbon engines (DICE)), and gaseous products (a gaseous product comprising methane, hydrogen, carbon monoxide and/or carbon dioxide).
- As used herein the term “bio-oil” refers to a complex mixture of compounds derived from the treatment of organic matter feedstock as defined above in accordance with the methods of the present invention. The bio-oil may comprise compounds including, but not limited to, any one or more of alkanes, alkenes, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones. The bio-oil may comprise multiple phases including, but not limited to, a water-soluble aqueous phase which may comprise, compounds including, but not limited to, any one or more of carbohydrates, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy-substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-catechols, alkyl- and alkoxy-dihydroxybezenes, alkyl- and alkoxy-hydroquinones, indenes and indene-derivatives; and a water-insoluble phase which may comprise, compounds including, but not limited to, any one or more of waxes, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy-substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-catechols, alkyl- and alkoxy-dihydroxybezenes, alkyl- and alkoxy-hydroquinones, indenes and indene-derivatives.
- As used herein, the term “lignocellulosic” encompasses any substance comprising lignin, cellulose, and hemicellulose. By way of non-limiting example, lignocellulosic matter may comprise at least 10% lignin, at least 10% cellulose and at least 10% hemicellulose.
- As used herein, the term “fossilised organic matter” encompasses any organic material that has been subjected to geothermal pressure and temperature for a period of time sufficient to remove water and concentrate carbon to significant levels. For example, fossilised organic material may comprise more than about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90% or 95 wt % carbon. Non-limiting examples of fossilised organic matter include coals (e.g. anthracitic coals such as meta-anthracite, anthracite and semianthracite; bituminous coals; subbituminous coals; lignite (i.e. brown coal), coking coal, coal tar, coal tar derivatives, coal char), cokes (e.g. high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke), peat (e.g. milled peat, sod peat), kerogen, tar sands, oil shale, shale tar, asphalts, asphaltines, natural bitumen, bituminous sands, or any combination thereof.
- As used herein, the term “pulping liquor” will be understood to encompass “black liquor”, “green liquor”, “white liquor”, and any combination thereof.
- As used herein, the term “black liquor” will be understood to mean an alkaline aqueous solution arising from the treatment of lignocellulosic matter (e.g. pulpwood) into paper pulp using pulping chemicals (e.g. alkaline solution of soda and/or sulfate) which act to free the cellulose fibers from the wood. Black liquor comprises a mixture of dissolved organics (e.g. lignin residues, hemicellulose), inorganic chemicals, and water. It can be separated from the generated pulp using conventional techniques and may optionally be concentrated by removal of water. “Strong” black liquor may, for example, comprise 46-57% solids by weight. “Heavy” black liquor may, for example, comprise 63%-80% solids by weight. The precise chemical makeup of black liquor will depend on the type of lignocellulosic material subjected to the pulping process, concentration/make-up of pulping chemicals and so on. By way of non-limiting example, black liquor may comprise 12%-20% solids (50%-70% organics, 20%-40% inorganics), 5-10% NaOH, 15%-30% Na2S, 30%-40% Na2CO3, 5%-15% Na2SO3, 8%-18% Na2SO4, and/or 10%-20% Na2S2O3.
- As used herein, the term “green liquor” will be understood to mean an aqueous solution of black liquor smelt dissolved in a solvent (e.g. water), and comprising sodium carbonate. The black liquor smelt may arise from the incineration of black liquor that has been concentrated by the evaporation of water (for example, to over 60% solids content). The precise mechanical make-up of green liquor will depend on factors such as the chemical make-up and degree of solids content of the black liquor material from which it is derived, specifics of the incineration process to produce black liquor smelt, and so on. way of non-limiting example, green liquor may comprise NaOH (5%-10%), Na2S (15%-25%%), Na2CO3 (55%-65%), Na2SO3 (1%-6%), Na2SO4 (3%-9%), and Na2S2O3 (1%-6%).
- As used herein, the term “white liquor” will be understood to mean an alkaline aqueous solution comprising sodium hydroxide and sodium sulfide, and other sodium salts, such as sodium sulfate (Na2SO4) and sodium carbonate (Na2CO3) and small amounts of sulfites and chlorides. White liquor may arise from treatment of green liquor with lime (CaO/Ca(OH)2).
- The green liquor may optionally be clarified to remove insoluble materials (e.g. calcium compounds, unburned carbon, metals) prior to treatment with the lime. The precise chemical makeup of white liquor will depend on factors such as the specific reaction conditions used to prepare it from green liquor, and the nature of the green liquor from which it is derived. By way of non-limiting example, white liquor may comprise between about 48 wt % and 58 wt % sodium hydroxide (NaOH), between about 15 wt % and 25 wt % sodium sulfide (Na2S), between about 10 wt % and about 20 wt % sodium carbonate (Na2CO3), between about 1 wt % and about 5 wt % sodium sulfite (Na2SO3), between about 2 wt % and about 7 wt % sodium sulfate (Na2SO4), and between about 1.5 wt % and about 4 wt % sodium thiosulfate (Na2S2O3). As used herein, the term “solvent” includes within its scope an “aqueous solvent”, an “oil solvent”, and combinations thereof.
- As used herein, the term “aqueous solvent” refers to a solvent comprising at least one percent water based on total weight of solvent. An “aqueous solvent” may therefore comprise between one percent water and one hundred percent water based on total weight of solvent. An “aqueous solvent” will also be understood to include within its scope “aqueous alcohol”, “aqueous ethanol”, and “aqueous methanol”.
- As used herein, the term “aqueous alcohol” refers to a solvent comprising at least one percent alcohol based on total weight of solvent.
- As used herein, the term “aqueous ethanol” refers to a solvent comprising at least one percent ethanol based on total weight of solvent.
- As used herein, the term “aqueous ethanol” refers to a solvent comprising at least one percent methanol based on total weight of solvent.
- As used herein, the term “oil solvent” refers to a solvent comprising any suitable oil, non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables, and any mixture of any of the previous components, and in which the oil constitutes at least one percent of the solvent based on total solvent weight.
- As used herein the term “oil additive” refers to any suitable oil component for inclusion in a feedstock, solvent and/or reaction mixture according to the present invention, non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables, and any mixture of any of the previous components. The oil additive may constitute at least one percent portion of the feedstock, solvent and/or reaction mixture to which it is added, based on total weight of the feedstock, solvent and/or reaction mixture.
- As used herein, a “supercritical” substance (e.g. a supercritical solvent) refers to a substance that is heated above its critical temperature and pressurised above its critical pressure (i.e. a substance at a temperature and pressure above its critical point).
- As used herein, a “subcritical” substance (e.g. a subcritical solvent) refers to a substance at a temperature and/or pressure below the critical point of the substance. Accordingly, a substance may be “subcritical” at a temperature below its critical point and a pressure above its critical point, at a temperature above its critical point and a pressure below its critical point, or at a temperature and pressure below its critical point.
- As used herein, a “solid substrate” is a component that is solid or substantially solid at a reaction temperature and pressure used in accordance with the methods of the present invention. The solid substrate may be capable of sequestering organic and/or inorganic matter that de-solubilises within the reaction mixture and/or a product mixture produced from the reaction mixture. Additionally or alternatively, the solid substrate may be capable of altering the flow characteristics of the reaction mixture or the product mixture in a reactor vessel. Solid substrates encompass both carbonaceous and non-carbonaceous materials, non-limiting examples of which include coals, anthracitic coal, meta-anthracite, anthracite semianthracite, bituminous coal, subbituminous coal, lignite (i.e. brown coal), coking coal, coal tar, coal tar derivatives, coal char, coke, high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke, charcoal, pyrolysis char, hydrothermal char, carbon black, graphite fine particles, amorphous carbon, carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers, fly ash, a mineral, calcium carbonate, calcite, a silicate, silica, quartz, an oxide, a metal oxide, an insoluble or substantially insoluble metal salt, iron ore, a clay mineral, talc, gypsum, carbonates of calcium, carbonates of magnesium, carbonates of calcium and magnesium, calcite, limestone, dolomite, hydroxides of calcium, hydroxides of magnesium, oxides of calcium, oxides of magnesium, hydrogen carbonates of calcium, hydrogen carbonates of magnesium, kaolinite, bentonite, illite, zeolites, calcium phosphate, hydroxyapataite, phyllosilicates, and any combination thereof.
- As used herein, the term “continuous flow” refers to a process wherein a slurry comprising lignocellulosic feedstock and any one or more of: a solvent, solid substrate, pulping liquor, and/or oil additive, is subjected to:
-
- (a) heating and pressurisation to a target temperature and pressure,
- (b) treatment at target temperature(s) and pressure(s) for a defined time period (a “retention time”), and
- (c) cooling and de-pressurisation;
- during which the slurry is maintained in a stream of continuous movement along the length (or partial length) of a given surface of a reactor vessel. It will be understood that “continuous flow” conditions as contemplated herein are defined by a starting point of heating and pressurisation (i.e. (a) above) and by an end point of cooling and de-pressurisation (i.e. (c) above). Continuous flow conditions as contemplated herein imply no particular limitation regarding flow velocity of the slurry provided that it is maintained in a stream of continuous movement.
- As used herein, the terms “reactor”, “reactor apparatus”, and “reactor vessel” are used interchangeably and have the same meaning. Each term encompasses any apparatus suitable for performing the methods of the present invention including, for example, continuous flow reactors and batch reactors.
- As used herein a “substantially solid” substrate refers to a substrate that is predominantly solid at a specified reaction temperature and/or pressure in that at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, preferably at least 95%, and more preferably at least 98% of the substrate is in a solid form.
- As used herein, a “substantially insoluble” substance is one that is predominantly insoluble at a specified reaction temperature and/or pressure in that at least 90%, preferably at least 95%, and more preferably at least 98% of the substrate is not solubilised.
- As used herein, an “inert” or “chemically inert” solid substrate is one that does not chemically react with other components in a reaction mixture or catalyse reactions between components in a reaction mixture, at a specified reaction temperature and pressure or at a range of reaction temperatures and pressures.
- As used herein, a “substantially inert” or “substantially chemically inert” solid substrate one that does not to any significant degree chemically react with other components in a reaction mixture or catalyse reactions between components in a reaction mixture, at a specified reaction temperature and pressure or at a range of reaction temperatures and pressures. A “substantially inert” or “substantially chemically inert” solid substrate will be understood to react with any other component in a given reaction mixture, or catalyse a reaction between any given components in a reaction mixture, on less than 5%, less than 4%, less than 3%, less than 2%, or less than 1%, of interaction events with the component(s),It will be understood that use of the term “about” herein in reference to a recited numerical value (e.g. a temperature or pressure) includes the recited numerical value and numerical values within plus or minus ten percent of the recited value.
- It will be understood that use of the term “between” herein when referring to a range of numerical values encompasses the numerical values at each endpoint of the range. For example, a temperature range of between 10° C. and 15° C. is inclusive of the temperatures 10° C. and 15° C.
- Any description of a prior art document herein, or a statement herein derived from or based on that document, is not an admission that the document or derived statement is a part of the common general knowledge of the relevant art.
- For the purposes of description all documents referred to herein are incorporated by reference in their entirety unless otherwise stated.
- Modifications to processes for the thermochemical conversion of biomass into biofuels that are capable of increasing process efficiency, lowering costs and/or improving product characteristics are still highly sought after.
- The present invention relates to the determination that pulping liquors, an abundant by-product of kraft pulping mill processes, can be used as a source of catalysts for the thermochemical conversion of organic matter feedstocks (e.g. lignocellulosic matter, coals such as lignite) into bio-products. Moreover, in view of their significant cellulosic content, the pulping liquors can also provide a source of feedstock material for conversion into bio-products, thus reducing the amount of feedstock material required.
- Black liquor is a waste product of the kraft pulping process in which lignocellulosic matter (e.g. pulpwood) is dissolved under heat and pressure using pulp chemicals. The treatment of the wood in this manner results in a mixture containing pulp and black liquor, a diverse mixture of reacted pulping chemicals/inorganic elements, and dissolved wood substances including acetic acid, formic acid, carboxylic acids, sugars, xylans, and/or methanol. Despite the complex chemical makeup of black liquor and its derivatives, the present inventors have identified that it is a suitable substitute for conventional catalysts used for the thermochemical processing of lignocellulosic matter into bio-oils and related bio-products. Moreover, black liquor contains a significant amount of cellulosic fibers capable of conversion into bio-products via thermochemical processes. Accordingly, the present invention provides a means of increasing the cost-efficiency of thermochemical processes for producing bio-products from organic matter feedstocks.
- The present invention thus related to methods for producing bio-products by treating organic matter feedstock with various solvents and in the presence of pulping liquor at increased temperature and pressure. Additional aspects of the present invention relate to bio-products generated by the methods described herein.
- The present invention provides methods for the conversion of organic matter feedstock into bio-products (e.g. biofuels including bio-oils; chemical products etc.). As used herein, “organic matter” (also referred to herein as “organic material”) encompasses any matter comprising carbon, including both fossilised and non-fossilised forms of carbon-comprising matter.
- No limitation exists regarding the particular type of organic matter feedstocks utilised in the methods of the invention, although it is contemplated that the use of a solid substrate in accordance with the methods of the present invention may be more beneficial during the conversion of non-fossilised forms of organic matter (e.g. lignocellulosic matter) compared to fossilised forms of organic matter.
- Organic matter utilised in the methods of the invention may comprise naturally occurring organic matter (e.g. lignocellulosic biomass and the like) and/or synthetic organic materials (e.g. synthetic rubbers, plastics, nylons and the like). In some embodiments, organic matter utilised in the methods of the invention comprises a mixture of fossilised organic matter and non-fossilised organic matter (e.g. lignocellulosic matter). In such cases, the fossilised organic matter may remain solid at reaction temperature and pressure in which case it may act as a solid substrate as described herein. In the case where more than one type (i.e. a mixture) of organic matter is utilised, no limitation exists regarding the particular proportion of the different components of organic matter.
- In preferred embodiments, organic matter utilised in the methods of the invention is or comprises lignocellulosic matter. Lignocellulosic matter as contemplated herein refers to any substance comprising lignin, cellulose and hemicellulose.
- For example, the lignocellulosic matter may be a woody plant or component thereof. Examples of suitable woody plants include, but are not limited to, pine (e.g. Pinus radiata), birch, eucalyptus, bamboo, beech, spruce, fir, cedar, poplar, willow and aspen. The woody plants may be coppiced woody plants (e.g. coppiced willow, coppiced aspen).
- Additionally or alternatively, the lignocellulosic matter may be a fibrous plant or a component thereof. Non-limiting examples of fibrous plants (or components thereof) include grasses (e.g. switchgrass), grass clippings, flax, corn cobs, corn stover, reed, bamboo, bagasse, hemp, sisal, jute, cannabis, hemp, straw, wheat straw, abaca, cotton plant, kenaf, rice hulls, and coconut hair.
- Additionally or alternatively, the lignocellulosic matter may be derived from an agricultural source. Non-limiting examples of lignocellulosic matter from agricultural sources include agricultural crops, agricultural crop residues, and grain processing facility wastes (e.g. wheat/oat hulls, corn fines etc.). In general, lignocellulosic matter from agricultural sources may include hard woods, soft woods, hardwood stems, softwood stems, nut shells, branches, bushes, canes, corn, corn stover, cornhusks, energy crops, forests, fruits, flowers, grains, grasses, herbaceous crops, wheat straw, switchgrass, salix, sugarcane bagasse, cotton seed hairs, leaves, bark, needles, logs, roots, saplings, short rotation woody crops, shrubs, switch grasses, trees, vines, cattle manure, and swine waste.
- Additionally or alternatively, the lignocellulosic matter may be derived from commercial or virgin forests (e.g. trees, saplings, forestry or timber processing residue, scrap wood such as branches, leaves, bark, logs, roots, leaves and products derived from the processing of such materials, waste or byproduct streams from wood products, sawmill and paper mill discards and off-cuts, sawdust, and particle board).
- Additionally or alternatively, the lignocellulosic matter may be derived from industrial products and by-products. Non-limiting examples include wood-related materials and woody wastes and industrial products (e.g. pulp, paper (e.g. newspaper) papermaking sludge, cardboard, textiles and cloths, dextran, and rayon).
- It will be understood that organic material used in the methods of the invention may comprise a mixture of two or more different types of lignocellulosic matter, including any combination of the specific examples provided above.
- The relative proportion of lignin, hemicellulose and cellulose in a given sample will depend on the specific nature of the lignocellulosic matter.
- By way of example only, the proportion of hemicellulose in a woody or fibrous plant used in the methods of the invention may be between about 15% and about 40%, the proportion of cellulose may be between about 30% and about 60%, and the proportion of lignin may be between about 5% and about 40%. Preferably, the proportion of hemicellulose in the woody or fibrous plant may be between about 23% and about 32%, the proportion of cellulose may be between about 38% and about 50%, and the proportion of lignin may be between about 15% and about 25%.
- In some embodiments, lignocellulosic matter used in the methods of the invention may comprise between about 2% and about 35% lignin, between about 15% and about 45% cellulose, and between about 10% and about 35% hemicellulose.
- In other embodiments, lignocellulosic matter used in the methods of the invention may comprise between about 20% and about 35% lignin, between about 20% and about 45% cellulose, and between about 20% and about 35% hemicellulose.
- In some embodiments, the lignocellulosic matter may comprise more than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% lignin.
- In some embodiments, the lignocellulosic matter may comprise more than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% cellulose.
- In some embodiments, the lignocellulosic matter may comprise more than about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% hemicellulose.
- The skilled addressee will recognize that the methods described herein are not constrained by the relative proportions of lignin, hemicellulose and cellulose in a given source of lignocellulosic matter.
- In certain embodiments of the invention, a mixture of organic material comprising lignite (brown coal) and lignocellulosic matter may be utilised as organic matter feedstock in the methods of the invention. The lignocellulosic matter of the mixture may, for example, comprise woody plant material and/or fibrous plant material. The proportion of lignite in the mixture may be greater than about 20%, 40%, 60% or 80%. Alternatively, the proportion of lignocellulosic matter in the mixture may be greater than about 20%, 40%, 60% or 80%.
- In some preferred embodiments, organic matter utilised in the methods of the invention comprises carbon-containing polymeric materials, non-limiting examples of which include rubbers (e.g. tyres), plastics and polyamides (e.g. nylons).
- Non-limiting examples of suitable rubbers include natural and synthetic rubbers such as polyurethanes, styrene rubbers, neoprenes, polybutadiene, fluororubbers, butyl rubbers, silicone rubbers, plantation rubber, acrylate rubbers, thiokols, and nitrile rubbers.
- Non-limiting examples of suitable plastics include PVC, polyethylene, polystyrene, terphtalate, polyethylene and polypropylene.
- Organic matter feedstocks utilised in the methods of the invention may comprise carbon-containing wastes such as sewage, manure, or household or industrial waste materials.
- Organic matter utilised in the methods of the present invention may optionally be pre-treated prior converting it into bio-product(s).
- It will be recognised that no strict requirement exists to perform a pre-treatment step when using the methods described herein. For example, pre-treatment of the organic matter may not be required if it is obtained in the form of a liquid or in a particulate form. However, it is contemplated that in many cases pre-treatment of the organic matter may be advantageous in enhancing the outcome of the methods described herein.
- In general, pre-treatment may be used to break down the physical and/or chemical structure of the organic matter making it more accessible to various reagents utilised in the methods of the invention (e.g. oil-based solvent, catalysts and the like) and/or other reaction parameters (e.g. heat and pressure). In certain embodiments, pre-treatment of organic matter may be performed for the purpose of increasing solubility, increasing porosity and/or reducing the crystallinity of sugar components (e.g. cellulose). Pre-treatment of the organic matter may be performed using an apparatus such as, for example, an extruder, a pressurized vessel, or batch reactor.
- Pre-treatment of the organic matter may comprise physical methods, non-limiting examples of which include grinding, chipping, shredding, milling (e.g. vibratory ball milling), compression/expansion, agitation, and/or pulse-electric field (PEF) treatment.
- Additionally or alternatively, pre-treatment of the organic matter may comprise physio-chemical methods, non-limiting examples of which include pyrolysis, steam explosion, ammonia fiber explosion (AFEX), ammonia recycle percolation (ARP), and/or carbon-dioxide explosion. Pre-treatment with steam explosion may additionally involve agitation of the organic matter.
- Additionally or alternatively, pre-treatment of the organic matter may comprise chemical methods, non-limiting examples of which include ozonolysis, acid hydrolysis (e.g. dilute acid hydrolysis using H2SO4 and/or HCl), alkaline hydrolysis (e.g. dilute alkaline hydrolysis using sodium, potassium, calcium and/or ammonium hydroxides), oxidative delignification (i.e. lignin biodegradation catalysed by the peroxidase enzyme in the presence of H2O2), and/or the organosolvation method (i.e. use of an organic solvent mixture with inorganic acid catalysts such as H2SO4 and/or HCl to break lignin-hemicellulose bonds).
- Additionally or alternatively, pre-treatment of the organic matter may comprise biological methods, non-limiting examples of which include the addition of microorganisms (e.g. rot fungi) capable of degrading/decomposing various component(s) of the organic matter.
- In some embodiments, organic matter used in the methods of the present invention is lignocellulosic matter which may be subjected to an optional pre-treatment step in which hemicellulose is extracted. Accordingly, the majority of the hemicellulose (or indeed all of the hemicellulose) may be extracted from the lignocellulosic matter and the remaining material (containing predominantly cellulose and lignin) used to produce a biofuel by the methods of the invention. However, it will be understood that this pre-treatment is optional and no requirement exists to separate hemicellulose from lignocellulosic matter when performing the methods of the present invention. Suitable methods for the separation of hemicellulose from lignocellulosic matter are described, for example, in PCT publication number WO/2010/034055, the entire contents of which are incorporated herein by reference.
- For example, the hemicellulose may be extracted from lignocellulosic matter by subjecting a slurry comprising the lignocellulosic matter (e.g. 5%-15% w/v solid concentration) to treatment with a mild aqueous acid (e.g. pH 6.5-6.9) at a temperature of between about 100° C. and about 250° C., a reaction pressure of between about 2 and about 50 atmospheres, for between about 5 and about 20 minutes. The solubilised hemicellulose component may be separated from the remaining solid matter (containing predominantly cellulose and lignin) using any suitable means (e.g. by use of an appropriately sized filter). The remaining solid matter may be used directly in the methods of the invention, or alternatively mixed with one or more other forms of organic matter (e.g. lignite) for use in the methods of the invention.
- Organic matter feedstock utilised in accordance with the methods of the present invention is preferably treated in the form of a slurry. Accordingly, the reaction mixture may be in the form of a slurry.
- The slurry may comprise the organic matter in combination with a solvent (e.g. an aqueous solvent, an aqueous alcohol solvent, an aqueous ethanol solvent, an aqueous methanol solvent) optionally in combination with pulping liquor, solid substrate, a catalyst additive, and/or an oil additive. The slurry may be generated, for example, by generating a particulate form of the organic matter (e.g. by physical methods such as those referred to above and/or by other means) and mixing with the solvent.
- No particular limitation exists regarding the relative proportions of solvent, feedstock, oil additive and/or solid substrate in the slurry. Non-limiting examples of potential quantities of these various components are described in the sections below.
- A slurry for use in accordance with the methods of the present invention will generally comprise organic matter feedstock.
- In certain embodiments of the invention, the concentration of organic matter in the slurry may be less than about 85 wt %, less than about 75 wt %, or less than about 50 wt %. Alternatively, the concentration of organic matter may be more than about 10 wt %, more than about 20 wt %, more than about 30 wt %, more than about 40 wt %, more than about 50 wt %, or more than about 60 wt %.
- In some embodiments the slurry may comprise between about 35 wt % and about 45 wt % of an oil additive. In other embodiments, the slurry may comprise about 40 wt % oil or 39.5 wt % of an oil additive.
- The optimal particle size of solid components of the organic matter feedstock and the optimal concentration of those solids in the slurry may depend upon factors such as, for example, the heat transfer capacity of the organic matter utilised (i.e. the rate at which heat can be transferred into and through individual particles), the desired rheological properties of the slurry and/or the compatibility of the slurry with component/s of a given apparatus within which the methods of the invention may be performed (e.g. reactor tubing). The optimal particle size and/or concentration of solid components of the organic matter components in a slurry used for the methods of the present invention can readily be determined by a person skilled in the art using standard techniques. For example, a series of slurries may be generated, each sample in the series comprising different particle sizes and/or different concentrations of the solid organic matter components compared to the other samples. Each slurry can then be treated in accordance with the methods of the invention under a conserved set of reaction conditions. The optimal particle size and/or concentration of solid organic matter components can then be determined upon analysis and comparison of the products generated from each slurry using standard techniques in the art.
- In certain embodiments of the invention, the particle size of solid organic matter components in the slurry may be between about 10 microns and about 10,000 microns. For example, the particle size may be more than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns. Alternatively, the particle size may less than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns. In some embodiments, the particle size is between about 10 microns and about 50 microns, between about 10 microns and about 100 microns, between about 10 microns and about 200 microns, between about 10 microns and about 500 microns, between about 10 microns and about 750 microns, or between about 10 microns and about 1000 microns. In other embodiments, the particle size is between about between about 100 microns and about 1000 microns, between about 100 microns and about 750 microns, between about 100 microns and about 500 microns, or between about 100 microns and about 250 microns.
- One non-limiting advantage of the present invention is that the methods can be used to process feedstock with a high content of ash or inorganic material.
- A slurry for use in accordance with the methods of the present invention will generally comprise a pulping liquor component. The pulping liquor may be included in the slurry prior to heating and/or pressurising the slurry to target reaction conditions. Additionally or alternatively, the pulping liquor may be included in the slurry while the slurry is undergoing heating and/or pressurising to target reaction conditions. Additionally or alternatively, the pulping liquor may be included in the slurry after it has undergone heating and/or pressurising to target reaction conditions.
- In some embodiments the slurry may comprise pulping liquor (black liquor, green liquor, white liquor, or any combination thereof).
- For example, the slurry may comprise between about 1% and about 100%, between about 90% and about 100%, between about 95% and about 100%, between about 50% and about 100%, between about 50% and about 90%, between about 50% and about 95%, between about 50% and about 95%, between about 50% and about 80%, between about 50% and about 70%, between about 50% and about 60%, between about 30% and about 90%, between about 40% and about 90%, or between about 20% and about 75%, of the pulping liquor by weight.
- For example, the slurry may comprise between about 60 wt % and about 100 wt % of the pulping liquor, between about 5 wt % and about 60 wt %, between about 1 wt % and about 50 wt %, between about 1 wt % and about 40 wt %, between about 1 wt % and about 30 wt %, between about 1 wt % and about 20 wt %, between about 1 wt % and about 15 wt %, between about 1 wt % and about 10 wt %, between about 1 wt % and about 5 wt %, between about 2 wt % and about 20 wt %, between about 2 wt % and about 10 wt %, between about 3% and about 20 wt %, between about 3 wt % and about 10 wt %, between about 0.5 wt % and about 5 wt %, between about 2 wt % and about 8 wt %, between about 3 wt % and about 5 wt %, or between about 5 wt % and about 15 wt % of the pulping liquor.
- In some embodiments, the pulping liquor (black liquor, green liquor, white liquor, or any combination thereof) may be used in an amount of between about 0.1% and about 10% w/v pulping liquor, between about 0.1% and about 7.5% w/v pulping liquor, between about 0.1% and about 5% w/v pulping liquor, between about 0.1% and about 2.5% w/v pulping liquor, between about 0.1% and about 1% w/v pulping liquor, or between about 0.1% and about 0.5% w/v pulping liquor (in relation to the solvent).
- A slurry for use in accordance with the methods of the present invention will generally comprise a solvent component. The solvent may be an aqueous solvent, an oil solvent, or a combination thereof.
- The solvent may comprise or consist of water.
- In certain embodiments of the invention, the concentration of water in the slurry may be above about 80 wt %, above about 85 wt %, or above about 90 wt %. Accordingly, the concentration of water may be above about 75 wt %, above about 70 wt %, above about 60 wt %, above about 50 wt %, above about 40 wt %, or above about 30 wt %. In some embodiments, the concentration of water is between about 90 wt % and about 95 wt %.
- In some embodiments the slurry comprises between about 10 wt % and about 30 wt % water. In other preferred embodiments, the slurry comprises about 20 wt % oil or about 15 wt % water.
- In some embodiments, the water is recycled from the product of the process. For example, a portion water present following completion of the reaction may be taken off as a side stream and recycled into the slurry.
- The solvent may comprise or consist of one or more aqueous alcohol/s.
- For example, it may be suitable or preferable to use an aqueous alcohol as the solvent when the lignocellulosic feedstock used in the methods consists of or comprises a significant amount of lignocellulosic material and/or other materials such rubber and plastics due to the stronger chemical bonds in these types of lignocellulosic feedstock.
- Suitable alcohols may comprise between one and about ten carbon atoms. Non-limiting examples of suitable alcohols include methanol, ethanol, isopropyl alcohol, isobutyl alcohol, pentyl alcohol, hexanol and iso-hexanol.
- The slurry may comprise more than about 5 wt %, 10 wt %, 15 wt %, 20 wt %, 25 wt %, 30 wt %, 35 wt %, 40 wt %, 45 wt % or 50 wt % alcohol aqueous alcohol.
- In certain embodiments, the solvent comprises a mixture of two or more aqueous alcohols. Preferably, the alcohol is ethanol, methanol or a mixture thereof.
- A slurry for use in accordance with the methods of the present invention may comprise a solid substrate component as described herein.
- Favourable characteristics of the solid substrate may include any one or more of the following: it remains inert or substantially inert at the reaction temperature and pressure used; it remains unaltered or substantially unaltered upon completion of the process; it remains as a solid or substantially solid at the reaction temperatures and pressures used; it is of low or moderate hardness so that it does not induce substantial abrasion or erosive corrosion in reactors (e.g. continuous flow reactors); it has a high internal or external specific surface area so that it can adsorb and/or absorb large quantities of bio-products and/or other precipitates during the conversion process.
- The solid substrate may be a carbonaceous material. By way of non-limiting example only, the solid substrate may be a carbonaceous material comprising at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% by weight carbon.
- Non-limiting examples of suitable carbonaceous materials for use as the solid substrate include coals (e.g. anthracitic coals such as meta-anthracite, anthracite and semianthracite; bituminous coals, subbituminous coals, lignite (i.e. brown coal), coking coal, coal tar, coal tar derivatives, coal char); cokes (e.g. high temperature coke, foundry coke, low and medium temperature coke, pitch coke, petroleum coke, coke oven coke, coke breeze, gas coke, brown coal coke, semi coke); charcoal; pyrolysis char; hydrothermal char; carbon black; graphite fine particles; amorphous carbon; carbon nanotubes; carbon nanofibers; vapor-grown carbon fibers; and any combination thereof.
- In some preferred embodiments of the present invention the solid substrate may be a carbon rich char made from the previous processing of organic matter according to the present invention followed by a thermal treatment in the substantial absence of oxygen to remove volatile materials (e.g. by pyrolysis or vacuum distillation at temperatures in the range of 200° C. to 800° C.).
- The solid substrate may be a non-carbonaceous material. By way of non-limiting is example only, the solid substrate may be a non-carbonaceous material comprising less than 20%, less than 10%, less than 5%, less than 3%, less than 2%, or less than 1%, by weight carbon, or comprise no carbon.
- Non-limiting examples of suitable non-carbonaceous materials for use as the solid substrate include ash (e.g. fly ash); minerals (e.g. calcium carbonate, calcite, silicates, silica, quartz, oxides including iron ore, clay minerals, talc, gypsum); an insoluble or substantially insoluble metal salt; and any combination thereof.
- Further non-limiting examples of suitable materials for use as the solid substrate include carbonates of calcium, carbonates of magnesium, carbonates of calcium and magnesium, calcite, limestone, dolomite, hydroxides of calcium, hydroxides of magnesium, oxides of calcium, oxides of magnesium, hydrogen carbonates of calcium, hydrogen carbonates of magnesium, kaolinite, bentonite, illite, zeolites, calcium phosphate, hydroxyapataite, phyllosilicates, and any combination thereof.
- In certain embodiments of the present invention, the concentration of solid substrate in the slurry may be less than about 20 wt %, less than about 15 wt %, or less than about 10 wt %. Alternatively, the concentration of solid substrate may be more than about 0.5 wt %, more than about 1 wt %, more than about 3 wt %, more than about 5 wt %, more than about 50 8 wt %, or more than about 10 wt %.
- The optimal particle size and optimal concentration of the solid substrate may depend upon factors such as, for example, the heat transfer capacity of the organic matter utilised (i.e. the rate at which heat can be transferred into and through individual particles), the desired rheological properties of the slurry and/or the compatibility of the slurry with component/s of a given apparatus within which the methods of the invention may be performed (e.g. reactor tubing). The optimal particle size and/or concentration of the solid substrate component in a slurry used for the methods of the invention can readily be determined by a person skilled in the art using standard techniques. For example, a series of slurries may be generated, each sample in the series comprising a specific solid substrate of different size and/or different concentration to those of other samples. Each slurry can then be treated in accordance with the methods of the invention under a conserved set of reaction conditions. The optimal solid substrate size and/or concentration can then be determined upon analysis and comparison of the products generated from each slurry using standard techniques in the art.
- In certain embodiments of the invention, the size of a solid substrate component in the slurry may be between about 10 microns and about 10,000 microns. For example, the size may be more than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns. Alternatively, the size may less than about 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000 or 9000 microns. In some embodiments, the size is between about 10 microns and about 50 microns, between about 10 microns and about 100 microns, between about 10 microns and about 200 microns, between about 10 microns and about 500 microns, between about 10 microns and about 750 microns, or between about 10 microns and about 1000 microns. In other embodiments, the size is between about between about 100 microns and about 1000 microns, between about 100 microns and about 750 microns, between about 100 microns and about 500 microns, or between about 100 microns and about 250 microns.
- In some embodiments of the invention, the particle size distributions and particle surface charge characteristics of the organic matter component of the slurry and/or the solid substrate component of the slurry may be optimized in order to provide desirable slurry characteristics when mixed, for example, to obtain minimum viscosity for a given solids content. The optimal particle size and/or particle surface charge of solid components in a given slurry used can readily be determined by a person skilled in the art using standard techniques. For example, a series of slurries may be generated, each sample in the series comprising different particle sizes and/or different concentrations of solid components compared to the other samples. Each slurry can then be treated in accordance with the methods of the invention under a conserved set of reaction conditions. The optimal particle size and/or particle surface charge of solid organic matter components can then be determined upon analysis and comparison of the products generated from each slurry using standard techniques known in the art.
- Although the present invention contemplates the use of pulping liquors as an adequate source of catalysts for converting organic matter into bio-products using the methods described herein, intrinsic catalysts and/or additional catalysts may be employed if so desired.
- An “intrinsic catalyst” is catalyst that is innately present in a given reaction component such as, for example, any one or more of organic matter feedstock, an aqueous solvent, and/or vessel walls of a reactor apparatus, or, a catalyst that form in situ during the treatment process.
- As used herein, a “additional catalysts” is a catalyst incorporated into a feedstock slurry and/or reaction mixture that is supplementary to catalytic compounds present in pulping liquor included in the feedstock slurry, and supplementary to catalytic compounds intrinsically present in organic matter feedstock treated in accordance with the methods of the invention, catalytic compounds intrinsically present in any solvent used in accordance with the methods of the invention, catalytic compounds intrinsically present in a solid substrate used to perform the methods of the invention, and/or catalytic compounds intrinsically present in the walls of a reactor apparatus used to perform the methods of the invention.
- Although the use of additional catalyst additive/s (i.e. beyond those in intrisic catalysts) may be advantageous in certain circumstances, the skilled addressee will recognise that the methods of the invention may be performed without using them.
- A catalyst additive as contemplated herein may be any catalyst that enhances the formation of biofuel from organic matter (e.g. lignocellulosic feedstock and/or coals such as lignite) using the methods of the invention, non-limiting examples of which include base catalysts, acid catalysts, alkali metal hydroxide catalysts, transition metal hydroxide catalysts, alkali metal formate catalysts, transition metal formate catalysts, reactive carboxylic acid catalysts, transition metal catalysts, sulphide catalysts, noble metal catalysts, water-gas-shift catalysts, and combinations thereof. Suitable catalysts are described, for example, in United States of America patent publication number 2012-0311658 A1 entitled “Methods for biofuel production”, the entire contents of which are incorporated herein by reference.
- In certain embodiments, an additional catalysts or combination of additional catalysts may be used in an amount of between about 0.1% and about 10% w/v catalysts, between about 0.1% and about 7.5% w/v catalysts, between about 0.1% and about 5% w/v catalysts, between about 0.1% and about 2.5% w/v catalysts, between about 0.1% and about 1% w/v catalysts, or between about 0.1% and about 0.5% w/v catalysts (in relation to the solvent).
- Table 1 below provides a summary of various exemplary additional catalysts that may be employed in the methods of the invention and the corresponding reactions that they may catalyse.
-
TABLE 1 Summary catalysts and corresponding reactions Catalyst Preferred Catalyst Family Specific catalysts/ Reaction Type Family Member example(s) comments Hydrolysis Base catalysts Sub/super- Hydroxide ion critical water in sub/super- critical water All alkali and M = any alkali M = Na, K, Fe, transition metal or transition Ca, Ba salts, both metal A = aluminate, cations and A = anions, phosphate, silicate, anions can including: hydroxide, contribute. aluminate, methoxide, Include all sulfate, sulfite, ethoxide common sulfide carbonate inorganic phosphate, sulphate anions phosphite sulphide nitrate, nitrite disulphide (FeS2) silicate oxide hydroxide alkoxide carbonate oxide Any organic ammonia, base pyridine, etc. Hydrolysis Acid catalysts Sub/super- Hydronium (slower) critical water ion in sub/super- critical water Any liquid HA, where Acids may form mineral or A = anions, from the in-situ organic acid including: formation of aluminate, carboxylic acids, sulfate, sulfite, phenolics and the sulfide presence of phosphate, minerals phosphite nitrate, nitrite silicate hydroxide alkoxide carbonate carboxy group Dehydration Acid catalysts Sub/super- Hydronium (elimination) critical water ion in sub/super- critical water Any liquid HA, where Acids may form mineral or A = anions, from the in-situ organic acid including: formation of aluminate, carboxylic acids, sulfate, sulfite, phenolics and the sulfide presence of phosphate, minerals. phosphite zeolites or nitrate, nitrite alumino-silicates silicate in general may be hydroxide added alkoxide carbonate carboxy group Transfer Transfer All alkali and M = any alkali M = Na, K Hydrogenation or hydrogenation transition metal or transition in-situ H2 catalysts hydroxides and metal generation formates All reactive A = A = hydroxide, carboxylic hydroxide, formate acids formate formic, acetic All transition All transition M = Fe, Pd, Pd, and noble and noble Ni metals metals Ru Rh Decarboxylation Largely Acid and All transition Pt/Al2O3/SiO2 thermal transition and noble Pd/Al2O3/SiO2 (noble) metal metals Ni/Al2O3/SiO2 cats have been supported on reported to aid solid acids the process Decarbonylation Largely As for As for As for thermal decarboxylation decarboxylation decarboxylation In-situ gasification Largely Transition supported Pt/Al2O3/SiO2 thermal metals transition Pd/Al2O3/SiO2 metals Ni/Al2O3/SiO2 sulfides Fe FexSy FeS/Al2O3 FeS/SiO2 FeS/Al2O3/SiO2 Water-Gas Shift WGS Standard WGS As per As per literature catalysts catalysts literature Direct Transition Zero valent Fe, Pt, P, Ni as Hydrogenation metals metals zero valent with H2 Sulfides FeS, FexSy Hydrode- Combined Transition M = transition Pt/Al2O3/SiO2 oxygenation acid and metal and solid metal Pd/Al2O3/SiO2 hydrogenation acid A = acidic Ni/Al2O3/SiO2 catalyst solid NiO/MoO3 CoO/MoO3 NiO/WO2 zeolites loaded with noble metals, e.g. ZSM-5, Beta, ITQ-2 - Additional catalysts for use in the methods of the invention may be produced using chemical methods known in the art and/or purchased from commercial sources.
- It will be understood that no particular limitation exists regarding the timing at which the additional catalysts may be applied when performing the methods of the invention. For example, the catalyst additive(s) may be added to the organic matter, solvent, pulping liquor, solid substrate, oil additive, or a mixture of one or more of these components (e.g. a slurry) before heating/pressurisation to target reaction temperature and pressure, during heating/pressurisation to target reaction temperature and pressure, and/or after reaction temperature and pressure are reached. The timing at which the additional catalyst is applied may depend on the reactivity of the feedstock utilised. For example, highly reactive feedstocks may benefit from applying the additional catalyst close to or at the target reaction temperature and pressure, whereas less reactive feedstocks may have a broader process window for applying the additional catalyst (i.e. the catalysts may be added prior to reaching target reaction temperature and pressure).
- The additional catalysts may be included in a reaction mixture used for treatment according to the present invention prior to heating and/or pressurising the reaction mixture, during heating and/or pressurising of the reaction mixture, and/or after the reaction mixture reaches a desired reaction temperature and/or reaction pressure.
- In some preferred embodiments of the invention, the slurry, the reaction mixture, or both comprises organic matter mixed with an oil additive. The oil additive may act as an oil-solvent in the reaction. The oil may be any suitable oil, non-limiting examples of which include paraffinic oil, gas-oil, crude oil, synthetic oil, coal-oil, bio-oil, shale oil/kerogen oil, aromatic oils (i.e. single or multi-ringed components or mixtures thereof), tall oils, triglyceride oils, fatty acids, ether extractables, hexane extractables and any mixture of any of the previous components. The oil may be incorporated into the slurry mixture at any point before target reaction temperature and/or pressure are reached. For example, the oil may be added to the slurry in a slurry mixing tank. Additionally or alternatively, the oil may be added to the slurry en route to a reactor and/or during heating/pressurisation of the slurry.
- In particularly preferred embodiments, the oil is a bio-oil product recycled from the process. For example, a portion of the bio-oil produced may be taken off as a side stream and recycled into the slurry, reaction mixture, or both.
- In some preferred embodiments, the bio-oil is recycled in combination with solid substrate, each being a component of the bio-product. For example, a portion of the bio-oil produced mixed with solid substrate may be taken off as a side stream and recycled into the slurry, reaction mixture, or both.
- No particular limitation exists regarding the proportion of oil additive in a slurry comprising organic matter treated in accordance with the methods of the present invention. For example, the slurry may comprise more than about 2 wt % oil, more than about 5 wt % oil, more than about 10 wt % oil, or more than about 20, 30, 40, 50, 60 or 70 wt % oil. Alternatively, the slurry may comprise less than about 98 wt % oil, less than about 95 wt % oil, less than about 90 wt % oil, or less than about 80, 70, 60, 50, 40 or 30 wt % oil.
- In some preferred embodiments the slurry comprises between about 10 wt % and about 30 wt % organic matter, between about 2 wt % and about 15 wt % solid substrate, and between about 50 wt % and about 90 wt % solvent where the solvent is a mixture of oil and aqueous phase in any proportion.
- In some preferred embodiments, the slurry comprises between about 40 wt % and about 50 wt % oil. In other preferred embodiments, the slurry comprises about 45 wt % oil.
- In other preferred embodiments the slurry comprises a feedstock to oil ratio of 0.5-1.2:1. The oil may be paraffinic oil.
- In accordance with the methods of the present invention, organic matter feedstock (e.g. lignocellulosic matter and/or coal such as lignite) may be treated with a solvent in the presence of pulping liquor as described herein, and optionally in the presence of an oil additive, solid substrate, and/or additive catalysts, under conditions of increased temperature and pressure to produce bio-products.
- The specific conditions of temperature and pressure used when practicing the methods of the invention may depend on a number different factors including, for example, the type of solvent used, the type of organic matter feedstock under treatment, the physical form of the organic matter feedstock under treatment, the relative proportions of components in the reaction mixture (e.g. the proportion of solvent, pulping liquor, organic matter feedstock, and optionally additive oil, catalyst additives, and/or any other additional component/s), the types of additive catalyst(s) utilised (if present), the retention time, and/or the type of apparatus in which the methods are performed. These and other factors may be varied in order to optimise a given set of conditions so as to maximise the yield and/or reduce the processing time. In preferred embodiments, all or substantially all of the organic material used as a feedstock is converted into bio-product(s).
- Desired reaction conditions may be achieved, for example, by conducting the reaction in a suitable apparatus (e.g. a sub/supercritical reactor apparatus) capable of maintaining increased temperature and increased pressure.
- According to the methods of the present invention a reaction mixture is provided and treated at a target temperature and pressure for a fixed time period (“retention time”) facilitating the conversion of organic matter feedstock (e.g. lignocellulosic matter and/or coal such as lignite) into bio-product(s). The temperature and/or pressure required to drive conversion of organic feedstock into biofuel using the methods of the invention will depend on a number of factors including the type of organic matter under treatment and the relative proportions of components in the reaction (e.g. the proportion of solvent, pulping liquor, organic matter feedstock, and optionally additive oil, catalyst additives, and/or any other additional component/s), the type and amount of pulping liquor used, the retention time, and/or the type of apparatus in which the methods are performed. Based on the description of the invention provided herein the skilled addressee could readily determine appropriate reaction temperature and pressure for a given reaction mixture. For example, the optimal reaction temperature and/or pressure for a given feedstock slurry may be readily determined by the skilled addressee by preparing and running a series of reactions that differ only by temperature and/or pressure utilised and analysing the yield and/or quality of the target bio-product(s) produced. Proportions of relative components in the reaction mixture can be varied and the same tests conducted again at the same of different temperatures and/or pressures.
- The skilled addressee will also recognise that the pressure utilised is a function of the slurry components and pressure drop, induced by the slurry, and strongly dependent on any particular reactor design (e.g. pipe diameter and/or length etc.).
- In certain embodiments, treatment of organic matter feedstock to produce a bio-product using the methods of the invention may be conducted at temperature(s) of between about 150° C. and about 550° C. and pressure(s) of between about 10 bar and about 400 bar. Preferably, the reaction mixture is maintained at temperature(s) of between about 150° C. and about 500° C. and pressure(s) of between about 80 bar and about 350 bar. More preferably the reaction mixture is maintained at temperature(s) of between about 180° C. and about 400° C. and pressure(s) of between about 100 bar and about 330 bar. Still more preferably the reaction mixture is maintained at temperature(s) of between about 200° C. and about 380° C. and pressure(s) of between about 120 bar and about 250 bar.
- In preferred embodiments, the reaction mixture is maintained at temperature(s) of between about 200° C. and about 400° C., and pressure(s) of between about 100 bar and about 300 bar.
- In other preferred embodiments, the reaction mixture is maintained at temperature(s) of between about 250° C. and about 380° C., and pressure(s) of between about 50 bar and about 300 bar.
- In other preferred embodiments, the reaction mixture is maintained at temperature(s) of between about 320° C. and about 360° C. and pressure(s) of between about 150 bar and about 250 bar. In other preferred embodiments, the reaction mixture is maintained at temperature(s) of between about 330° C. and about 350° C. and pressure(s) of between about 230 bar and about 250 bar. In another particularly preferred embodiment, the reaction mixture is maintained at temperature(s) of about 340° C. and pressure(s) of between about 240 bar.
- In other preferred embodiments, the reaction mixture is maintained at temperature(s) of between about 320° C. and about 360° C., and pressure(s) of between about 220 bar and about 250 bar.
- In certain embodiments, the reaction mixture is maintained at temperature(s) of above about 180° C. and pressure(s) above about 150 bar. In other embodiments, the reaction mixture is maintained at temperature(s) of above about 200° C. and pressure(s) above about 180 bar. In additional embodiments, reaction mixture is maintained at temperature(s) of above about 250° C. and pressure(s) above about 200 bar. In other embodiments, reaction mixture is maintained at temperature(s) of above about 300° C. and pressure(s) above about 250 bar. In other embodiments, reaction mixture is maintained at temperature(s) of above about 350° C. and pressure(s) above about 300 bar.
- It will be understood that in certain embodiments a solvent used in the methods of the present invention may be heated and pressurised beyond its critical temperature and/or beyond its critical pressure (i.e. beyond the ‘critical point’ of the solvent). Accordingly, the solvent may be a ‘supercritical’ solvent if heated and pressurised beyond the ‘critical point’ of the solvent.
- In certain embodiments a solvent used in the methods of the present invention may be heated and pressurised to level(s) below its critical temperature and pressure (i.e. below the ‘critical point’ of the solvent). Accordingly, the solvent may be a ‘subcritical’ solvent if its maximum temperature and/or maximum pressure is below that of its ‘critical point’. Preferably, the ‘subcritical’ solvent is heated and/or pressurised to level(s) approaching the ‘critical point’ of the solvent (e.g. between about 10° C. to about 50° C. below the critical temperature and/or between about 10 atmospheres to about 50 atmospheres below its critical pressure).
- In some embodiments, a solvent used in the methods of the present invention may be heated and pressurised to levels both above and below its critical temperature and pressure (i.e. heated and/or pressurised both above and below the ‘critical point’ of the solvent at different times). Accordingly, the solvent may oscillate between ‘subcritical’ and ‘supercritical’ states when performing the methods.
- The specific time period over which the conversion of organic matter feedstock (e.g. lignocellulosic matter and/or coals such as lignite) may be achieved upon reaching a target temperature and pressure (i.e. the “retention time”) may depend on a number different factors including, for example, the type of organic matter under treatment and the relative proportions of components in the reaction (e.g. the proportion of solvent, pulping liquor, organic matter feedstock, and optionally additive oil, catalyst additives, and/or any other additional component/s), and/or the type of apparatus in which the methods are performed. These and other factors may be varied in order to optimise a given method so as to maximise the yield and/or reduce the processing time. Preferably, the retention time is sufficient to convert all or substantially all of the organic material used as a feedstock into bio-product(s).
- In certain embodiments, the retention time is less than about 60 minutes, 45 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes or less than about 5 minutes. In certain embodiments, the retention time is more than about 60 minutes, 45 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes or more than about 5 minutes. In other embodiments, the retention time is between about 1 minute and about 60 minutes. In additional embodiments, the retention time is between about 5 minutes and about 45 minutes, between about 5 minutes and about 35 minutes, between about 10 minutes and about 35 minutes, or between about 15 minutes and about 30 minutes. In further embodiments, the retention time is between about 20 minutes and about 30 minutes.
- The optimal retention time for a given set of reaction conditions as described herein may be readily determined by the skilled addressee by preparing and running a series of reactions that differ only by the retention time, and analysing the yield and/or quality of bio-product(s) produced.
- A reaction mixture (e.g. in the form of a slurry) comprising organic matter feedstock (e.g. lignocellulosic matter and/or coals such as lignite), solvent, pulping liquor, and optionally one or more catalyst additives as defined herein may be brought to a target temperature and pressure (i.e. the temperature/pressure maintained for the “retention time”) over a given time period.
- Reaction mixes that do not contain a significant proportion of oil additive may require a very fast initial conversion to generate some solvent in-situ. However, the incorporation of oil into the reaction mixture as described herein allows the oil to act as an additional solvent thus alleviating the requirement for rapid heating/pressurisation.
- In some embodiments, the reaction mix undergoes a separate pre-heating stage prior to reaching reaction temperature. The pre-heating stage may be performed on a feedstock slurry prior to the full reaction mix being formed. Alternatively the pre-heating stage may be performed on a slurry comprising all components of the reaction mixture. In some embodiments, the pre-heating stage raises the temperature of the feedstock slurry or reaction mixture to a maximum temperature of about: 120° C., 130° C., 140° C., 150° C., 160° C., 170° C., 180° C., 190° C., or 200° C. In other embodiments, the temperature is raised to less than about: 120° C., 130° C., 140° C., 150° C., 160° C., 170° C., 180° C., 190° C., or 200° C. In still other embodiments the temperature is raised to between about 100° C. and about 200° C., between about 100° C. and about 180° C., between about 100° C. and about 160° C., between about 120° C. and about 180° C., or between about 120° C. and about 160° C.
- In continuous flow systems, pressure will generally change from atmospheric to target pressure during the time it takes to cross the pump (i.e. close to instantaneous) whereas in a batch system it may mirror the time that it takes to heat the mixture up.
- In some embodiments, the reaction mixture may be brought to a target temperature and/or pressure in a time period of between about 30 seconds and about 30 minutes.
- In some embodiments, the reaction mixture may be brought to a target temperature and/or pressure in a time period less than about 15 minutes, less than about 10 minutes, less than about 5 minutes, or less than about 2 minutes.
- In certain embodiments, the reaction mixture may be brought to a target pressure substantially instantaneously and brought to a target temperature in less than about 20 minutes, less than about 10 minutes, or less than about 5 minutes. In other embodiments, the reaction mixture may be brought to a target pressure substantially instantaneously and brought to a target temperature in less than about two minutes. In other embodiments, the reaction mixture may be brought to a target pressure substantially instantaneously and brought to a target temperature in between about 1 and about 2 minutes.
- Additionally or alternatively, following completion of the retention time period the product mixture generated may be cooled to between about 150° C. and about 200° C., between about 160° C. and about 200° C., preferably between about 170° C. and about 190° C., and more preferably about 180° C., in a time period of less than about 10 minutes, preferably less than about 7 minutes, more preferably less than about 6 minutes, preferably between about 4 and about 6 minutes, and more preferably about 5 minutes. Following the initial cooling period, the temperature may further reduced to ambient temperature with concurrent de-pressurisation by fast release into a cool aqueous medium (e.g. cooled water).
- The processes of heating/pressurisation and cooling/de-pressurisation may be facilitated by performing the methods of the present invention in a continuous flow system (see section below entitled “Continuous flow”).
- Bio-product generation from organic matter feedstocks (e.g. lignocellulosic matter and/o coals such as lignite) using the methods of the present invention may be assisted by performing the methods under conditions of continuous flow.
- Although the methods need not be performed under conditions of continuous flow, doing so may provide a number of advantageous effects. For example, continuous flow may facilitate the accelerated implementation and/or removal of heat and/or pressure applied to the slurry. This may assist in achieving the desired rates of mass and heat transfer, heating/cooling and/or pressurisation/de-pressurisation. Continuous flow may also allow the retention time to be tightly controlled. Without limitation to a particular mode of action, it is postulated that the increased speed of heating/cooling and/or pressurisation/de-pressurisation facilitated by continuous flow conditions along with the capacity to tightly regulate retention time assists in preventing the occurrence of undesirable side-reactions (e.g. polymerisation) as the slurry heats/pressurises and/or cools/de-pressurises. Continuous flow is also believed to enhance reactions responsible for conversion of organic matter to biofuel by virtue of generating mixing and shear forces believed to aid in emulsification which may be an important mechanism involved in the transport and “storage” of the oils generated away from the reactive surfaces of the feedstock as well as providing interface surface area for so-called ‘on-water catalysis’.
- Accordingly, in preferred embodiments the methods of the present invention are performed under conditions of continuous flow. As used herein, the term “continuous flow” refers to a process wherein organic matter feedstock mixed with a solvent and pulping liquor in the form of a slurry (which may further comprise any one or more of a solid substrate, an oil additive and/or a catalyst additive) is subjected to:
-
- (a) heating and pressurisation to a target temperature and pressure,
- (b) treatment at target temperature(s) and pressure(s) for a defined time period (i.e. the “retention time”), and
- (c) cooling and de-pressurisation,
- while the slurry is maintained in a stream of continuous movement along the length (or partial length) of a given surface. It will be understood that “continuous flow” conditions as contemplated herein are defined by a starting point of heating and pressurisation (i.e. (a) above) and by an end point of cooling and de-pressurisation (i.e. (c) above).
- Continuous flow conditions as contemplated herein imply no particular limitation regarding flow velocity of the slurry provided that it is maintained in a stream of continuous movement.
- Preferably, the minimum (volume-independent) flow velocity of the slurry along a given surface exceeds the settling velocity of solid matter within the slurry (i.e. the terminal velocity at which a suspended particle having a density greater than the surrounding solution moves (by gravity) towards the bottom of the stream of slurry).
- For example, the minimum flow velocity of the slurry may be above about 0.01 cm/s, above about 0.05 cm/s, preferably above about 0.5 cm/s and more preferably above about 1.5 cm/s. The upper flow velocity may be influenced by factors such as the volumetric flow rate and/or retention time. This in turn may be influenced by the components of a particular reactor apparatus utilised to maintain conditions of continuous flow.
- Continuous flow conditions may be facilitated, for example, by performing the methods of the invention in a suitable reactor apparatus. A suitable reactor apparatus will generally comprise heating/cooling, pressurising/de-pressuring and reaction components in which a continuous stream of slurry is maintained.
- The use of a suitable flow velocity (under conditions of continuous flow) may be advantageous in preventing scale-formation along the length of a particular surface that the slurry moves along (e.g. vessel walls of a reactor apparatus) and/or generating an effective mixing regime for efficient heat transfer into and within the slurry.
- The methods of the present invention may be used to produce bio-product(s) from organic matter feedstocks (e.g. lignocellulosic matter and/or coals such as lignite). The nature of the bio-product(s) may depend on a variety of different factors including, for example, the organic matter feedstock treated, and/or the reaction conditions/reagents utilised in the methods.
- In certain embodiments, the bio-product(s) may comprise one or more biofuels (e.g. bio-oils, char products, gaseous products) and chemical products (e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde).
- In general, bio-product(s) produced in accordance with the methods of the present invention comprise or consist of a bio-oil. The bio-oil may comprise compounds including, but not limited to, any one or more of alkanes, alkenes, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones. The bio-oil may comprise compounds including but not limited to aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related. to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy—substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-catechols, alkyl- and alkoxy-dihydroxybezenes, alkyl- and alkoxy-hydroquinones, indenes and indene-derivatives.
- The bio-oil may comprise multiple phases, including but not limited to a water-soluble aqueous phase which may comprise, compounds including, but not limited to, any one or more of carbohydrates, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy—substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-catechols, alkyl- and alkoxy-dihydroxybezenes, alkyl- and alkoxy-hydroquinones, indenes and indene-derivatives; and a water-insoluble phase whiCh may comprise, compounds including, but not limited to, any one or more of waxes, aldehydes, carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones, resins and resin acids, and compounds structurally related. to resin acids, alkanes and alkenes, fatty acids and fatty acid esters, sterols and sterol-related compounds, furanic oligomers, cyclopentanones, and cyclohexanones, alkyl- and alkoxy-cyclopentanones, and cyclohexanones, cyclopenteneones, alkyl- and alkoxy-cyclopentenones, aromatic compounds including naphthalenes and alkyl- and alkoxy—substituted naphthalenes, cresols, alkyl- and alkoxy-phenols, alkyl- and alkoxy-catechols, alkyl- and alkoxy-dihydroxybezenes, alkyl- and alkoxy-hydroquinones, indenes and indene-derivatives.
- Other non-limiting examples of the bio-products include oil char (e.g. carbon char with bound oils), char, and gaseous product (e.g. methane, hydrogen, carbon monoxide and/or carbon dioxide, ethane, ethene, propene, propane).
- In some embodiments, a biofuel may be produced from organic matter comprising lignocellulosic matter. The biofuel may comprise a liquid phase comprising bio-oil.
- Biofuels (e.g. bio-oils) produced in accordance with the methods of the invention may comprise a number of advantageous features, non-limiting examples of which include reduced oxygen content, increased hydrogen content, increased energy content and increased stability. In addition, bio-oils produced by the methods of the invention may comprise a single oil phase containing the liquefaction product. The product may be separated from the oil phase using, for example, centrifugation eliminating the need to evaporate large amounts of water.
- In some embodiments, a bio-oil product made in accordance with the methods of the present invention may be purified by dissolving the bio-oil in a purifying solvent followed by filtration of the resulting solution to remove particulates and insoluble material. Dissolving the bio-oil in the purifying solvent may have the effect of reducing the viscosity of the bio-oil which may assist the filtration process.
- Optionally, the purifying solvent may be wholly or partly recovered by distillation following filtration, for example, by distillation under reduced pressure, thereby causing residual water in the oil to separate as a discrete phase, after which the water may be recovered by physical means such as decantation from the oil. If the purifying solvent used forms an azeotrope with water, this property may also be used to remove water from the bio-oil during the distillation processes.
- Any purifying solvent in which the bio-oil dissolves may be used. Non-limiting examples of suitable purifying solvents include acetone, ethyl acetate, ethanol, benzene, toluene, xylene, tetralin, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform, ketones, alcohols, furans, and any combination thereof Complex multicomponent purifying solvents may be used including, by way of non-limiting example only, light cycle oil, naphtha, and distilled fractions of bio-oil produced according to the methods of the present invention (i.e. a recycled bio-oil product) such as, for example, a fraction of the bio-oil with a boiling point between about 60° C. and about 150° C.).
- A bio-oil bio-product produced in accordance with the methods of the invention may comprise an energy content of greater than about 25 MJ/kg, greater than about 30 MJ/kg, more preferably greater than about 32 MJ/kg, more preferably greater than about 35 MJ/kg, still more preferably greater than about 37 MJ/kg, 38 MJ/kg or 39 MJ/kg, and most preferably above about 41 MJ/kg. The bio-oil product may comprise less than about 20% oxygen, preferably less than about 15% wt db oxygen, more preferably less than about 10% wt db oxygen, still more preferably less than about 8% wt db oxygen, still more preferably less than about 7% wt db oxygen, and most preferably less than about 5% wt db oxygen. The bio-oil product may comprise greater than about 6% wt db hydrogen, preferably greater than about 7% wt db hydrogen, more preferably greater than about 8% wt db hydrogen, and still more preferably greater than about 9% wt db hydrogen. The molar hydrogen:carbon ratio of a bio-oil of the invention may be less than about 1.5, less than about 1.4, less than about 1.3, less than about 1.2, or about 1.0.
- A bio-oil produced in accordance with the methods of the invention may comprise, for example, any one or more of the following classes of compounds: phenols, aromatic and aliphatic acids, ketones, aldehydes, hydrocarbons, alcohols, esters, ethers, furans, furfurals, terpenes, polycyclics, oligo- and polymers of each of the aforementioned classes, plant sterols, modified plant sterols, asphaltenes, pre-asphaltenes, and waxes.
- A char or oil char bio-product produced in accordance with the methods of the invention may comprise an energy content of greater than about 20 MJ/kg, preferably greater than about 25 MJ/kg, more preferably greater than about 30 MJ/kg, and still more preferably greater than about 31 MJ/kg, 32 MJ/kg, 33 MJ/kg or 34 MJ/kg. The char or oil char product may comprise less than about 20% wt db oxygen, preferably less than about 15% wt db oxygen, more preferably less than about 10% wt db oxygen and still more preferably less than about 9% wt db oxygen. The char or oil char product may comprise greater than about 2% wt db hydrogen, preferably greater than about 3% wt db hydrogen, more preferably greater than about 4% wt db hydrogen, and still more preferably greater than about 5% wt db hydrogen. The molar hydrogen:carbon ratio of a char or oil char product of the invention may be less than about 1.0, less than about 0.9, less than about 0.8, less than about 0.7, or less than about 0.6.
- An oil char bio-product produced in accordance with the methods of the invention may comprise, for example, any one or more of the following classes of compounds: phenols, aromatic and aliphatic acids, ketones, aldehydes, hydrocarbons, alcohols, esters, ethers, furans, furfurals, terpenes, polycyclics, oligo- and polymers of each of the aforementioned classes, asphaltenes, pre-asphaltenes, and waxes.
- A char bio-product (upgraded PCI equivalent coal) produced in accordance with the methods of the invention may comprise, for example, a mixture of amorphous and graphitic carbon with end groups partially oxygenated, giving rise to surface carboxy- and alkoxy groups as well as carbonyl and esters.
- Bio-products produced in accordance with the methods of the present invention may comprise one or more biofuels (e.g. bio-oils, char products, gaseous products) and chemical products (e.g. platform chemicals, organic acids, furanics, furfural, hydroxymethylfurfural, levoglucosan, sorbitol, cylitol, arabinitol, formaldehyde, acetaldehyde).
- Bio-products produced in accordance with the methods of the present invention may be cleaned and/or separated into individual components using standard techniques known in the art.
- For example, solid and liquid phases of biofuel products (e.g. from the conversion of coal) may be filtered through a pressure filter press, or rotary vacuum drum filter in a first stage of solid and liquid separation. The solid product obtained may include a high carbon char with bound oils. In certain embodiments, the oil may be separated from the char, for example, by thermal distillation or by solvent extraction. The liquid product obtained may contain a low percentage of light oils, which may be concentrated and recovered though an evaporator.
- Bio-products produced in accordance with the methods of the present invention may be used in any number of applications. For example, biofuels may be blended with other fuels, including for example, ethanol, diesel and the like. Additionally or alternatively, the biofuels may be upgraded into higher fuel products. Additionally or alternatively, the biofuels may be used directly, for example, as petroleum products and the like.
- It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
- The invention will now be described with reference to specific examples, which should not be construed as in any way limiting.
- In the following Examples, the thermochemical conversion process utilised is also referred to as “Cat-HTR”.
- Australian Radiata pine was run with black liquor to establish the catalytic action of black liquor and suitable operating temperatures. In the same manner, hog fuel trials were run alternately using sodium hydroxide and then with black liquor. Finally, mixed feedstocks containing hog fuel, SPF wood chip, and paper sludge were processed with black liquor.
- Pre-processing trials were conducted on the feedstocks to prepare them to specifications of the small pilot plant (SPP). Dry-milling of the feedstocks followed by Cat-HTR processing in the small pilot plant led to successful production of bio-crude (bio-oil) from the feedstocks, in particular from a mixture of hog fuel, SPF wood chip, sludge and black liquor.
- The resulting bio-crudes had gross calorific values (GCV) on a dry ash free basis in the range of 33-36 MJ/kg. For comparison, diesel fuel has a GCV (or energy content) of about 45 MJ/kg and unprocessed dry wood about 18-21 MJ/kg. Licella has demonstrated that distilled bio-crudes from Radiata pine wood flour with initial energy contents in this range can be successfully hydroprocessed to give hydrocarbons compatible with refinery streams at an advanced stage of processing to finished fuels. It was confirmed in the trials that the alkaline inorganic components of black liquor are capable of substituting for the alkaline catalysts typically used by Licella in order to produce high energy density bio-crudes. That is, as well as supplying liquid phase biomass to the reactors, the black liquor can obviate the need to add additional alkaline catalysts in the Cat-HTR process. The highest proportion of black liquor used in testing was approximately 1 part of dry wood feedstock to 0.65 parts of black liquor (analysis as per table 4). The highest level of black liquor used was determined in this instance by the level of sulphur compatible with the materials of construction of the SPP and the expected levels of hydrogen sulphide in the producer gas, consistent with safe operation of the plant.
- Feedstocks utilised were:
- SPF wood chip (spruce-fir-pine wood chip)
- Hog fuel (wood residue including wood chips, bark, and the like)
- Paper sludge
- Black liquor
- Approximately 100 kg on a dry basis of each solid feedstock was obtained. Most types of feedstock required some degree of preparation before processing. Solid materials are processed as slurries in water or other solvents, and the particle size of the solid materials is of a size suitable for producing a slurry that can be pumped at high pressure. The small pilot plant (SPP), due to its small pump valve orifices, requires a greater degree of comminution of the feedstock than would a commercial facility. For the SPP, specifically, it is preferred to reduce to the maximum particle size to about 150 microns diameter. Both wet and dry grinding have been utilized, and dry grinding has usually been employed for the smaller particle sized required for the SPP.
- Subsequent to the wet-grinding activities, dry grinding of the wood chip, hog fuel and sludge feedstocks was carried out by a contracted firm Aximill, using modified compressed air jet mills, reference http://www.aximill.com. The feedstock is supplied at approximately 10% moisture (however all feedstock mass within this report is quoted on a dry basis). The particle size is reduced to sub 130 micron, typical particle size distribution data is available upon request (however this feedstock is peculiar to the requirements of the SPP and unlikely to be of interests in subsequent large scale testing). The tested feedstock analysis is presented below, including proximate, ultimate, and ash constituent analyses in the feedstock analysis section of this document.
- As received black liquor (per Table 4) was diluted 100% with water by volume. The diluted mixture was filtered through a 250 micron sieve to remove oversize particles and contaminants such as plastic and wood chips etc. to be compliant with pump specifications on the small pilot plant. The amount of material removed was a negligible fraction of the overall sample. The filtered, diluted black liquor was then used as a stock liquor for addition at various levels to other feedstocks for Cat-HTR. This stock liquor is referred to as ‘stock black liquor’.
-
TABLE 2 Properties of Stock Black Liquor The properties of this stock 1.14 SG of stock black liquor black liquor are (diluted mixture) kg/L 1 kg Stock Black Liquor Contains: 0.439 L of black liquor (per Table 4) 1 kg Stock Black Liquor Contains: 0.561 kg of black liquor (per Table 4) - A detailed description of individual runs is provided in Example 2. Table 3 below gives a summary of all experiments conducted during the course of this study, irrespective of outcome.
-
TABLE 3 Summary of run conditions Run ID No. Feedstock Liquid Catalyst Summary Outcome 20140521 8% Licella radiata 1 kg stock black liquor Successful trial on dry ground Successful pine *note1 per dry kg wood radiata pine and black liquor 20140523 8% Licella radiata 1.3 kg stock black liquor Successful trial on dry ground Successful pine *note1 per dry kg wood radiata pine and a higher concentration of black liquor 20140716 7.8% hog fuel 12% sodium hydroxide Successful trial on dry ground Successful hog fuel slurry. 20140724 8% hog fuel 1.3 kg stock black liquor Successful trial on dry ground Successful per dry kg wood hog fuel slurry. 20140731 6.4% hog fuel, 1.44% 1.3 kg stock black liquor Successful trial on dry ground Successful wood, 0.16% sludge per dry kg mix mixed component slurry. 20140814 6.4% hog fuel, 1.44% 1.3 kg stock black liquor Successful trial on dry ground Successful wood, 0.16% sludge per dry kg mix mixed component slurry. - Proximate Analysis methods for Bio-Crude and feedstocks.
- Weigh and heat a sample in a crucible at 900° C., volatile matter and fixed carbon are determined according to AS2434.2. Volatile matter and fixed carbon are stated for feedstocks only.
- Solid feedstock and oil product ash yield is performed according to HRL method 1.6. The sample is held at 815° C. in an open crucible until the weight is stable.
- The results of a proximate analysis are ash content, volatile mater and fixed carbon which are determined as percentages of the sample mass, on dry basis. Results allow for an estimate of the “reactivity” of feedstocks, and amount of “solids” expected.
- Ultimate analysis is performed by HRL method 1.4 sample in a CHN analyser. Ultimate analysis is a breakdown of the sample in its most important elements—carbon, hydrogen, nitrogen, sulphur and oxygen. The oxygen content is a key indicator as it is inversely correlated to the energy content of the sample. The Cat-HTR process can be operated in a way to retain or to remove oxygen according to the operating conditions. Depending on the target chemical fractions or purpose of the bio-crude, the remaining oxygen may be reduced at the refinery stage by hydrogenation to obtain the highest energy density; or the oxygen is maintained within the bio-crude as an oxygenated chemical feedstock containing phenols (for resins and plasticisers and chemical precursors of pharmaceuticals). The hydrogen and the carbon are the main contributors to the energy content of the bio-crude. Sulphur is of interest for materials selection on the Cat-HTR plant, it is a factor that influences capital cost of Cat-HTR plant. Sulphur in the bio-crude can be removed, along with oxygen and nitrogen in a hydroprocessing unit of a refinery or a dedicated hydrotreater. Sulphur is measured by HRL method 1.14 in an ICP or sulphur analyser mounted within a furnace. Sulphur levels in the oil product are measured by USEPA method 5050. The gross calorific value is a direct result of the composition. It represents the energy available from combustion of the sample. Chlorine is measured as high levels of chlorine or chloride have potential to corrode plant steels.
- Ash composition is a measure of inorganic components present in the samples, for general feedstock and product quality assessment. Lignocellulosic materials including black liquor contain inorganic compounds, and some of the insoluble inorganics are expected to be carried over to the bio-crude product. Prior to further refining, e.g. by hydroprocessing, the ash should be removed, as some ash components are likely to adversely affect the catalysts used in hydroprocessing. Distillation is the most common way to do this, and a key difference between bio-crudes from Cat-HTR and pyrolysis bio-oils from e.g. fast pyrolysis is that the bio-crudes can be distilled but the pyrolysis oils cannot. This is because pyrolysis oils have high oxygen contents and low stability. Ash content of bio-crude may be removed by a distillation process at the front end of a refinery. Ash content is reported as a percentage on dry basis, the ash composition as reported in this document assumes that the inorganics are in their oxide forms. This assumption may mean that the sum of ash composition may exceed 100% and some other inorganics might not be accounted for.
- Solvent extraction is performed on a measured amount of the water phase product using diethyl ether to dissolve and separate recoverable oils from the water phase. Ether extraction produces results quantifying both the ether extractable chemicals and the residues of ether extraction.
- Ether extractable chemicals are oils that are lighter fractions including alcohols, ketones, phenols and short chain hydrocarbons. Many of the phenols are used in the flavouring and essence industries. Solvent extraction is used as a rapid method of quantifying these organic components, that are potentially recoverable in a commercial plant, thereby adding to the overall oil yield and possibly representing an additional product stream of interest to the fine chemicals industry.
- Residue from the extraction includes soluble ash from the feedstock, catalyst and water soluble (non-ether soluble) organics. The latter group includes glycolic and lactic acids, used respectively in the cosmetics and biopolymers industries. The catalyst can be regenerated, however, as it is inexpensive the choice between regenerating the catalyst and treating and disposing of the brine generated is influenced by site-specific factors. Potassium-based catalysts can also be used, in which case the catalyst residues plus additional potassium from the biomass may find application as fertilizer products.
-
- Weigh 100 g of sample.
- Acidify to pH around 5, using sulphuric acid.
- Add 100 to 150 ml ether.
- Shake not stir.
- Settle for 10 minutes, watching for separation by density.
- Drain water off the bottom.
- Pour ether into an evaporator flask, weighed before and after collection of ether extractables.
- The ether extraction cycle is performed 3 times, on the same water, using fresh ether each time.
- Residues are extracted from the water by drying at 110° C. in air and collecting (weighing) the solids.
- There are some water soluble compounds derived from the wood that are not assessed by these methods, e.g. low molecular weight alcohols and ketones such as methanol, ethanol, and acetone. These compounds are known from 1H NMR and GC analysis to be present in significant quantity Cat-HTR liquors when Radiata pine is processed. Based on quantitation from previous studies on Radiata pine, a contribution to the mass balance of 6% of the organic material present in the feedstock has been included in the mass balances in this report.
- In addition to the gravimetric analysis by solvent extraction described above, water samples were analysed by Envirolab Services for a range of water quality parameters.
-
-
TABLE 4 Feedstock Analysis Results Spruce Radiata Pine Black Pine Fir Hogfuel Liquor Proximate Analysis Moisture 5.7 43.8 60.0 53.9 (% wt ar) Ash 0.6 0.6 2.2 47.1 (% wt db) Volatiles 79.8 79.5 79.4 (% wt db) Fixed C. 19.7 19.9 23.5 (% wt db) Ultimate Analysis GCV 20.8 18.6 (MJ/kg db) GCV 21.0 18.7 (MJ/kg daf) Carbon 52.3 52.1 52.9 37.5 (% wt db) Hydrogen 6.2 6.3 6.0 1.7 (% wt db) Nitrogen 0.06 0.21 0.25 <0.01 (% wt db) Sulphur 0.01 0.01 0.02 4.77 (% wt db) Oxygen 40.8 40.8 38.7 3.2 (% wt db) Chlorine 0.21 (%) Molar 1.4 0.04 H/C Ratio Ash Constituents SiO2 2.3 1.1 (% oxide in ash) (% wt db) Al2O3 1.1 0.62 (% wt db) Fe2O3 0.69 0.28 (% wt db) TiO2 0.04 0.02 (% wt db) K2O 16.3 7.6 (% wt db) MgO 7.9 3.2 (% wt db) Na2O 0.42 0.3 (% wt db) CaO 33.9 46.7 (% wt db) SO3 1.2 1 (% wt db) P2O5 2.2 2.5 (% wt db) Mn3O4 2.3 1.5 (% wt db) SrO 0.12 0.24 (% wt db) BaO 0.3 0.6 (% wt db) ZnO 0.28 0.42 (% wt db) CuO 0.2 0.06 (% wt db) Cr2O3 0.04 0 (% wt db) Co3O4 0 0 (% wt db) NiO 0.02 0 (% wt db) V2O5 0 0 (% wt db) - Radiata Pine wood flour was used as a benchmark feedstock for biomass Cat-HTR. The SPF woodchip is unsurprisingly quite similar to the Radiata Pine in terms of proximate and ultimate analyses. The Hog Fuel has a higher ash content than either of the foregoing feedstocks, this is likely attributable to higher levels of bark, needles and other contaminants. The ash is dominated by calcium, which is basic under most conditions, and may have a catalytic effect in Cat-HTR. The sludge has a high ash content and the composition of the ash is dominated by calcium, which again may have a catalytic effect in Cat-HTR. The mixed feedstock used in the last two runs listed in table 3 can be expected to be dominated by the hog fuel and black liquor properties that comprise most of the feed.
- One subtle but potentially significant difference between runs with sodium hydroxide as catalyst and with black liquor as catalyst is the point at which the catalyst is added into the process. In the SPP sodium hydroxide catalyst is normally injected at high pressure, after preheating of the feedstock slurry and mixing with the steam to heat the slurry to reaction temperature have occurred. In contrast, the black liquor trials have black liquor premixed into the slurry in the atmospheric pressure slurry mixing tank. The slurry and black liquor mixture passes through the main slurry high pressure pump, through the preheaters and through to the steam injection point. There it gains its final temperature for entry into the reactors. A consequence of the different processing approach is that the slurries containing the black liquor can be expected to start reacting earlier in the Cat-HTR process than those where the catalyst is added at a later point.
- Tables 5 and 6 display a summary of mass balance data and non-condensable gas compositions.
-
TABLE 5 Summary of experimental trials liquids mass balance Run ID No. 20140521 20140523 20140716 20140724 20140731 20140814 Feedstock 8% Licella 8% Licella 7.8% hog fuel 8% hog fuel 6.4% hog fuel, 6.4% hog fuel, radiata pine radiata pine 1.44% wood, 1.44% wood, 0.16% sludge 0.16% sludge Liquid Catalyst 1 kg diluted 1.3 kg diluted 12% sodium 1.3 kg diluted 1.3 kg diluted 1.3 kg diluted black liquor per black liquor per hydroxide black liquor per black liquor per black liquor per dry kg wood dry kg wood dry kg wood dry kg mix dry kg mix T4 Injection time (mins) 67 71 68 92 83 61 Percent solids in feed 9.96% 10.49% 7.8% 10.5% 9.9% 9.7% Percent solids in reactors 4.0% 4.2% 2.9% 4.3% 4.0% 3.5% Solids in feed (kg) 4.1 4.5 2.8 6.2 5.0 3.0 Product recovered (wet kg) 1.085 1.118 0.763 1.258 1.134 0.521 Moisture content of oil (%) 12.4% 18.5% 14.7% 16.7% 12.9% 20.1% Bio crude recovered (dry kg) 0.951 0.912 0.651 1.048 0.988 0.416 Bio crude yield (dry) 23.0% 20.4% 23.3% 17.0% 19.6% 13.7% NCG gas measured (m3/hr) 0.43 0.43 0.34 0.43 0.47 0.42 NCG density (kg/m3) 1.59 1.55 1.23 1.60 1.60 1.52 NCG (kg/hr) 0.830 0.809 0.515 0.835 0.914 0.784 Solids in feed (kg/hr) 3.709 3.767 2.434 4.018 3.635 2.990 NCG Yield 22.4% 21.5% 21.2% 20.8% 25.1% 26.2% Total feed to T4 - NCG (kg) 103.7 104.4 93.6 141.5 124.4 85.5 Ether extractable in liquor (%) 0.48% 0.56% 0.394% 0.402% 1.440% 0.574% Ether extractable in liquor (kg) 0.49 0.59 0.37 0.57 1.79 0.49 Ether extractable yield 11.9% 13.2% 13.2% 9.2% 35.6% 16.1% Solid residue in liquor (%) 0.64% 1.05% 1.40% 0.81% 0.88% 0.66% Solid residue in liquor (kg) 0.66 1.09 1.31 1.15 1.10 0.56 Solid residue from catalyst (kg) 0 0 0.34 0.00 0.00 0.00 Solid residue in liquor yield 16.0% 24.5% 34.9% 18.7% 21.8% 18.4% % black liquor solids in feed 25.6% 30.9% 0.0% 31.0% 30.9% 30.9% % Inorganic material in feed 12.1% 14.5% 0.0% 14.6% 15.9% 15.9% Organic material in feed (kg) 3.64 3.81 2.79 5.26 4.23 4.23 Methanol ethanol & acetone yield (kg) 0.22 0.23 0.17 0.32 0.25 0.25 Methanol, ethanol & acetone yield (%) 5.28% 5.13% 6.00% 5.13% 5.04% 5.04% Yield Summary Oil Yield (dry) 23.0% 20.4% 23.3% 17.0% 19.6% 13.7% NCG Yield 22.4% 21.5% 21.2% 20.8% 25.1% 26.2% Ether extractable yield 11.9% 13.2% 13.2% 9.2% 35.6% 16.1% Solid residue in liquor yield 16.0% 24.5% 34.9% 18.7% 21.8% 18.4% Methanol, ethanol & acetone yield (%) 5.3% 5.1% 6.0% 5.1% 5.0% 5.0% Total 78.54% 84.76% 98.58% 70.87% 107.24% 79.54% Cooler inlet temp 335 335 315 315 310 335 Estimated mixing(Reactor inlet) temp 355 355 335 335 330 355 Liquor pH 5.59 7.17 8.18 7.15 7.09 7.07 -
TABLE 6 Summary of Cat-HTR trials non-condensable gases Run ID Meth- Carbon Ethyl- Propyl- Carbon H2S HHV NCG No. ane Monoxide Hydrogen ene Ethane ene Propane Dioxide (ppm) (MJ/kg) Yield R pine + 1:1 black liquor 20140521 4.51% 0.11% 10.11% 0.43% 0.69% 1.84% 0.37% 81.68% 2537 3.50 22.37% R pine + 1:1.3 black liquor 20140523 5.34% 0.05% 12.00% 0.37% 0.83% 1.60% 0.38% 79.21% 2173 3.84 21.48% Hogfuel + catalyst 20140716 3.69% 0.01% 31.24% 0.36% 0.58% 1.04% 0.38% 62.71% <150 5.61 21.16% Hogfuel + BL 20140724 5.00% 0.05% 9.56% 0.29% 0.71% 1.59% 0.38% 82.23% 1779 3.40 20.79% Full mix 20140731 4.79% 0.04% 9.74% 0.28% 0.77% 1.46% 0.41% 82.32% 1749 3.33 25.15% Full mix higher temp 20140814 5.12% 0.04% 13.75% 0.36% 0.86% 1.36% 0.38% 77.93% 2582 3.88 26.24% - The mass balances are closed to the extent that 79-107% of the mass of feedstock entering the Cat-HTR reactor during a certain steady state period of operation has been identified in the products collected from the tank in which it was captured (known as T4) or the gas stream venting from it. The exception is the run of 24/07/14 (hog fuel plus black liquor) which was very poorly closed. Typically with radiata pine wood flour runs we expect the mass balance to close in the vicinity of 85-100%. It should be noted that the mass balances are approximate only and are based on a number of simplifications and approximations, for the reason that it is not possible to quantify every component in the complex.
- The wider variation in the extent of closure of the mass balance in with the feedstocks is most probably related to the greater complexity of the black liquor's inorganic components and the resulting uncertainty in the water phase composition.
- Typical bio-crude yields from a Radiata pine wood flour feedstock in the Small Pilot Plant are mid-to-low twenties percent on a dry wood feed basis. Those yields are lower than obtained in Licella's Larger Pilot Plants which are typically around mid-thirties percent or more.
- The main reason for the difference is the lower maximum slurry concentrations that can be pumped in the SPP, and the amount of steam used for heating the slurry to reaction temperature, which is much larger for the SPP than for the LPP. Generally, higher concentrations of biomass in the Cat-HTR reactor (and lower concentrations of water) favour higher yields of bio-crude at the expense of the proportion of the organic material that dissolves in the water phase.
- Superficially, conversion of around ⅓ of the feed biomass to bio-crude may like quite a low yield, however, considerable energy densification has occurred in that step by removal of oxygen. More than half of mass of the sugar polymers comprising hemicellulose and cellulose is oxygen. The oxygen is removed mainly as carbon dioxide gas but also as salts of small carboxylic acids such as sodium acetate which dissolve in the water phase. A rule of thumb for the fate of woody biomass in Cat-HTR is that one third of the mass is converted to biocrude, one third to gas, mainly CO2, and one third to water soluble chemicals. The bio-crude yields from the feedstocks are generally in line with those expected from the SPP, with the exception of 14/08/14 run where the amount of bio-crude recovered was low. The reason for this is unknown, but it is likely that some bio-crude was trapped in the apparatus and not recovered.
- Generally, non-condensable gas (NCG) yields are slightly lower for all experiments than typical (30%) for Radiata Pine wood flour under conditions of 12% catalyst loading, 240 bar pressure and 340 degrees. In the case of the radiata pine plus black liquor runs this is likely due to slightly lower gasification activity of the black liquor derived catalysts and to the reduced proportion of cellulose (black liquor contains mostly lignin and hemicellulose as organic components) compared to radiata pine wood flour. In the case of the hog fuel dominated runs the lower NCG make is probably also related to the lower temperature reaction temperatures chosen. The main difference in gas composition between sodium hydroxide catalysed runs and black liquor catalysed runs is that the hydrogen make is lower and the hydrogen sulphide make is higher for the latter systems. The H2S make for sodium hydroxide catalysed systems with radiata pine feed is essentially negligible. The proportion of H2S in the gas is not a simple function of black liquor concentration, as can be seen from the first two entries in tables 5 and 6. This is possibly a function of the pH of the aqueous phase. A typical wood+sodium hydroxide catalyst product by Licella produces approximately 20% H2 by volume in the non-condensable gas product. The hog fuel+sodium hydroxide run produced a greater fraction of H2 than this, possibly indicating that the ash components in the hog fuel have some catalytic activity in gasification.
- The water-soluble components have the greatest uncertainty associated with them, particularly in the case of those runs utilizing black liquor. In the case of radiata pine plus sodium hydroxide catalyst, the dominant water soluble components are acetates, hydrogen carbonates, phenols, ketones, catechols, ethanol and methanol, and humic materials (brown water soluble compounds, insoluble in diethyl ether). In the case of the black liquor as catalyst, the water soluble chemistry is likely to be more complex still.
- The Ultimate and Proximate analysis of bio-crude product is tabulated below, providing direct comparison of all successful Cat-HTR trials. Individual runs are described in Table 7.
-
TABLE 7 Summary of Experimental Trials Bio-Crude Product Radiata Radiata Hog Fuel + Hog Mixed Mixed Radiata Pine BL Pine BL Catalyst Fuel + BL Feed + BL Feed + BL Pine Description 20140521 20140523 20140716 20140724 20140731 20140814 Typical Proximate Moisture 8 1.6 6 7.5 4 Analysis (% wt ar) Ash 0.5 0.4 6.6 2.8 2.6 2.0 (% wt db) Volatiles 0.79 (% wt db) Fixed C. (% wt db) Ultimate GCV 34.8 34.2 33.9 32.6 33.0 33.0 Analysis (MJ/kg db) GCV 34.97 34.34 36.29 33.50 33.89 33.66 33.50 (MJ/kg daf) Carbon 73.4 80.3 76.7 75.1 79.2 77.6 33.8 (% wt db) Hydrogen 6.5 7.2 7.2 6.6 6.4 6.9 (% wt db) Nitrogen 0.1 0.2 0.3 0.3 0.4 0.3 (% wt db) Sulphur 0.6 0.7 0.1 1.1 0.6 0.6 (% wt db) Oxygen 18.9 13.0 9.6 12.7 10.2 12.4 (% wt db) Chlorine (%) Molar H/C Ratio Ash SiO2 3.6 5.4 0.8 3 3.3 3.3 Constituents (% wt db) (% oxide Al2O3 4.4 3.9 1.7 3.7 4.9 5 in ash) (% wt db) Fe2O3 5.6 2.5 1.4 9.9 6.6 5.1 (% wt db) TiO2 0.08 0.07 0.05 0.13 0.15 0.21 (% wt db) K2O 1.4 3.7 0.34 0.44 0.72 0.81 (% wt db) MgO 1.7 2 3.7 3.7 4.8 4.8 (% wt db) Na2O 13.1 27.9 7.2 3.6 5.5 6.7 (% wt db) CaO 3.2 3.7 46.6 36.2 42.1 42.4 (% wt db) SO3 19.1 38 1.1 24.3 20.6 19.9 (% wt db) P2O5 0.6 0.51 2.5 3.6 3.5 3.5 (% wt db) Mn3O4 0.24 0.32 1.17 1.39 0.3 0.3 (% wt db) SrO <0.01 <0.01 0.17 0.17 0.6 0.5 (% wt db) BaO 0.04 0.04 0.4 0.5 <0.1 0.1 (% wt db) ZnO 0.2 0.16 0.31 0.56 <0.1 <0.1 (% wt db) CuO 0.36 0.32 0.11 0.17 0.2 0.2 (% wt db) Cr2O3 0.16 0.07 0.02 0.02 1.7 2.3 (% wt db) Co3O4 0 0 <0.1 <0.1 <0.1 <0.1 (% wt db) NiO 0.04 0.05 0.02 0.02 <0.1 <0.1 (% wt db) V2O5 0.52 0.09 0 0 0.5 0.6 (% wt db)
Radiata Pine Wood Flour with Black Liquor 20140521
Operating Conditions (wood flour w/-black liquor 20140521) - Table 8 below shows the operating conditions of the mass balance run on Radiata Pine Wood Flour. This run produced the samples of Bio-Crude Oil, syngas and water, that are presented in the next section.
-
TABLE 8 Cat-HTR Operating Conditions, Radiata Wood Flour 2014 May 21 Reactor Temperature 355° C. Reactor Pressure 220 to 249 bar Reactor Residence Time 25 minutes - A product mass balance summary of the trial is provided in Table 9 below. 4.1 kg of Stock Black liquor was used in this feedstock slurry (1:1 by mass db).
-
TABLE 9 Wood Flour Black Liquor Mass Balance 2014 May 21 Date 2014 May 21 Feedstock 8% Licella radiata pine Liquid Catalyst 1 kg stock black liquor per dry kg wood T4 Injection time (mins) 67 Percent Solids in Feed 9.96% Percent solids in reactors 4.0% Solids in feed (kg) 4.1 product recovered (wet kg) 1.085 Moisture content of oil (%) 12.4% Bio crude recovered (dry kg) 0.951 Bio crude yield (dry) 23.0% NCG gas measured (m3/hr) 0.43 NCG density (kg/m3) 1.59 NCG (kg/hr) 0.830 Solids in feed (kg/hr) 3.709 NCG yield 22.4% Total feed to T4 - NCG (kg) 103.7 Ether extractable in liquor (%) 0.48% Ether extractable in liquor (kg) 0.49 Ether extractable yield 11.9% Solid residue in liquor (%) 0.64% Solid residue in liquor (kg) 0.66 Solid residue from catalyst (kg) 0 Solid residue in liquor yield 16.0% % black liquor solids in feed 25.6% % Inorganic material in feed 12.1% Organic material in feed (kg) 3.64 Methanol ethanol & acetone yield (kg) 0.22 Methanol, ethanol & acetone yield (%) 5.28% Yield Summary Bio crude yield (dry) 23.0% NCG yield 22.4% Ether extractable yield 11.9% Solid residue in liquor yield 16.0% Methanol, ethanol & acetone yield (%) 5.3% Total 78.54% Cooler inlet temp 335 Estimated mixing (Reactor inlet) temp 355 Notes: All mass balance data is referenced to the feedstock mass on a dry basis. -
-
TABLE 10 Non Condensable Gas Analysis from Radiata Wood Flour 20140521 Methane CO Hydrogen Ethylene Ethane Propylene Propane CO2 H2S 4.51 0.11% 10.11% 0.43% 0.43% 1.84% 0.37% 81.7% 0.25% -
-
TABLE 11 Analysis of Bio-Crude Oil (wood flour w/- black liquor 2014 May 21) Pine BL Description 2014 May 21 Proximate Analysis Moisture 8 (% wt ar) Ash 0.5 (% wt db) Volatiles (% wt db) Fixed C. (% wt db) Ultimate Analysis GCV 34.8 (MJ/kg Carbon 73.4 (% wt db) Hydrogen 6.5 (% wt db) Nitrogen 0.11 (% wt db) Sulphur 0.56 (% wt db) Oxygen (% wt db) Chlorine (%) Molar H/C Ratio Ash Constituents SiO2 3.6 (% oxide in ash) (% wt db) Al2O3 4.4 (% wt db) Fe2O3 5.6 (% wt db) TiO2 0.08 (% wt db) K2O 1.4 (% wt db) MgO 1.7 (% wt db) Na2O 13.1 (% wt db) CaO 3.2 (% wt db) SO3 19.1 (% wt db) P2O5 0.6 (% wt db) Mn3O4 0.24 (% wt db) SrO <0.01 (% wt db) BaO 0.04 (% wt db) ZnO 0.2 (% wt db) CuO 0.36 (% wt db) Cr2O3 0.16 (% wt db) Co3O4 0 (% wt db) NiO 0.04 (% wt db) V2O5 0.52 (% wt db)
The Bio-Crude Oil has a gross calorific value of 35 MJ/kg. - Extraction of the oil from wood chip process water with the solvent diethyl ether gave 11.9% extractables as a fraction of the feedstock (dry basis). Total oils recoverable (bio-crude plus ether extractables were 34.9% of the feed mass.
- Radiata Pine Wood Flour with Black Liquor 20140523
Operating Conditions (wood flour w/-black liquor 20140523) - Table 12 below shows the operating conditions of the mass balance run using wood flour w/-black liquor.
-
TABLE 12 Operating Conditions for Radiata Pine Wood Flour with Black Liquor 2014 May 23 Reactor Temperature 355° C. Reactor Pressure 224 to 241 bar Reactor Residence Time 25 minutes
Mass Balance (wood flour w/-black liquor 20140523) - This trial was performed using black liquor at a ratio of 7.75 kg of stock black liquor to 150 L of slurry. Slurry contained 8% Radiata pine wood flour db. Stock black liquor to wood ratio is 1:1.3 db.
-
TABLE 13 Mass Balance wood flour w/- black liquor 2014 May 23 Date 2014 May 23 Feedstock 8% Licella radiata pine Liquid Catalyst 1.3 kg stock black liquor per dry kg wood T4 Injection time (mins) 71 Percent Solids in Feed 10.49% Percent solids in reactors 4.2% Solids in feed (kg) 4.5 product recovered (wet kg) 1.118 Moisture content of oil (%) 18.5% Bio crude recovered (dry kg) 0.912 Bio crude yield (dry) 20.4% NCG gas measured (m3/hr) 0.43 NCG density (kg/m3) 1.55 NCG (kg/hr) 0.809 Solids in feed (kg/hr) 3.767 NCG yield 21.5% Total feed to T4 - NCG (kg) 104.4 Ether extractable in liquor (%) 0.56% Ether extractable in liquor (kg) 0.59 Ether extractable yield 13.2% Solid residue in liquor (%) 1.05% Solid residue in liquor (kg) 1.09 Solid residue from catalyst (kg) 0 Solid residue in liquor yield 24.5% % black liquor solids in feed 30.9% % Inorganic material in feed 14.5% Organic material in feed (kg) 3.81 Methanol ethanol & acetone yield (kg) 0.23 Methanol, ethanol & acetone yield (%) 5.13% Yield Summary Bio crude yield (dry) 20.4% NCG yield 21.5% Ether extractable yield 13% Solid residue in liquor yield 25% Methanol, ethanol & acetone yield (%) 5% Total 84.76% Cooler inlet temp 335 Estimated mixing (Reactor inlet) temp 355 -
-
TABLE 14 Non Condensable Gas Analysis for Radiata Pine Wood Flour with Black Liquor 20140523 Methane CO Hydrogen Ethylene Ethane Propylene Propane CO2 H2S 5.34% 0.05% 12.00% 0.37% 0.83% 1.60% 0.38% 79.2% 0.22%
Bio-Crude Analysis (Wood flour W/-Black Liquor 20140523) -
TABLE 15 Analysis of Bio-Crude Oil Pine BL Description 2014 May 23 Proximate Analysis Moisture 1.6 (% wt ar) Ash 0.4 (% wt db) Volatiles (% wt db) Fixed C. (% wt db) Ultimate Analysis GCV 34.2 (MJ/kg Carbon 80.3 (% wt db) Hydrogen 7.2 (% wt db) Nitrogen 0.18 (% wt db) Sulphur 0.68 (% wt db) Oxygen 13.0 (% wt db) Chlorine (%) Molar H/C Ratio Ash Constituents SiO2 5.4 (% oxide in ash) (% wt db) Al2O3 3.9 (% wt db) Fe2O3 2.5 (% wt db) TiO2 0.07 (% wt db) K2O 3.7 (% wt db) MgO 2 (% wt db) Na2O 27.9 (% wt db) CaO 3.7 (% wt db) SO3 38 (% wt db) P2O5 0.51 (% wt db) Mn3O4 0.32 (% wt db) SrO <0.01 (% wt db) BaO 0.04 (% wt db) ZnO 0.16 (% wt db) CuO 0.32 (% wt db) Cr2O3 0.07 (% wt db) Co3O4 0 (% wt db) NiO 0.05 (% wt db) V2O5 0.09 (% wt db) - The Cat-HTR processing temperatures (355° C. to 335° C.) were again within the normal Biomass processing temperatures The ash content of the Bio-Crude Oil was about 0.4%. The Bio-Crude Oil has a gross calorific value of 34.3 MJ/kg.
- Extraction of the oil from wood chip process water with the solvent diethyl ether gave 13.2% extractables as a fraction of the feedstock (dry basis). Total oils recoverable (bio-crude plus ether extractables) were 33.6% of the feed mass.
- Hog Fuel w/-
Sodium Hydroxide 20140716
Operating Conditions (Hog Fuel w/-Sodium Hydroxide 20140716) - Table 16 below shows the operating conditions of the mass balance run on 16 Jul. 2014, on Hog Fuel and sodium hydroxide. This run produced the samples of Bio-Crude Oil, syngas and water, that are presented in the next section.
-
TABLE 16 Operating Conditions (Hog Fuel w/- Sodium Hydroxide 2014 Jul. 16) Reactor Temperature 335 to 315° C. Reactor Pressure 227 bar Reactor Residence Time 25 minutes
Mass Balance (Hog Fuel w/-Sodium Hydroxide 20140716) - This trial was performed using sodium hydroxide at a ratio of 11.2% by weight to feedstock db (target ratio was 12%, catalyst injection VSD was at 100% and pump stroke length was not adjustable during the run). Slurry contained 7.8% hog fuel db.
-
TABLE 17 Mass Balance (Hog Fuel w/- Sodium Hydroxide 2014 Jul. 16) Date 2014 Jul. 16 Feedstock 7.8% hog fuel Liquid Catalyst 12% sodium hydroxide T4 Injection time (mins) 68 Percent Solids in Feed 7.8% Percent solids in reactors 2.9% Solids in feed (kg) 2.8 product recovered (wet kg) 0.763 Moisture content of oil (%) 14.7% Bio crude recovered (dry kg) 0.651 Bio crude yield (dry) 23.3% NCG gas measured (m3/hr) 0.34 NCG density (kg/m3) 1.23 NCG (kg/hr) 0.515 Solids in feed (kg/hr) 2.434 NCG yield 21.2% Total feed to T4 - NCG (kg) 93.6 Ether extractable in liquor (%) 0.394% Ether extractable in liquor (kg) 0.37 Ether extractable yield 13.2% Solid residue in liquor (%) 1.40% Solid residue in liquor (kg) 1.31 Solid residue from catalyst (kg) 0.34 Solid residue in liquor yield 34.9% % black liquor solids in feed 0.0% % Inorganic material in feed 0.0% Organic material in feed (kg) 2.79 Methanol ethanol & acetone yield (kg) 16.8% Methanol, ethanol & acetone yield (%) 6.00% Yield Summary Bio crude yield (dry) 23.3% NCG yield 21.2% Ether extractable yield 13.2% Solid residue in liquor yield 34.9% Methanol, ethanol & acetone yield (%) 6.0% Total 98.58% Cooler inlet temp 315 Estimated mixing (Reactor inlet) temp 335
Gas Analysis (Hog Fuel w/-Sodium Hydroxide 20140716) -
TABLE 18 Non Condensable Gas Analysis (Hog Fuel w/-Sodium Hydroxide 20140716) Methane CO Hydrogen Ethylene Ethane Propylene Propane CO2 H2S 3.69% 0.01% 31.24% 0.36% 0.58% 1.04% 0.38% 62.7% 0.00%
Bio-Crude Analysis (Hog Fuel w/-Sodium Hydroxide 20140716) - Data presented in Table 19 below is from the mass balance run.
-
TABLE 19 Analysis of Bio-Crude Oil (Hog Fuel w/- Sodium Hydroxide 2014 Jul. 16) Hog Fuel + Catalyst Description 2014 Jul. 16 Proximate Analysis Moisture (% wt ar) Ash 6.6 (% wt db) Volatiles (% wt db) Fixed C. (% wt db) Ultimate Analysis GCV 33.9 (MJ/kg Carbon 76.7 (% wt db) Hydrogen 7.2 (% wt db) Nitrogen 0.3 (% wt db) Sulphur 0.1 (% wt db) Oxygen 9.6 (% wt db) Chlorine (%) Molar H/C Ratio Ash Constituents SiO2 0.8 (% oxide in ash) (% wt db) Al2O3 1.7 (% wt db) Fe2O3 1.4 (% wt db) TiO2 0.05 (% wt db) K2O 0.34 (% wt db) MgO 3.7 (% wt db) Na2O 7.2 (% wt db) CaO 46.6 (% wt db) SO3 1.1 (% wt db) P2O5 2.46 (% wt db) Mn3O4 1.17 (% wt db) SrO 0.17 (% wt db) BaO 0.4 (% wt db) ZnO 0.31 (% wt db) CuO 0.11 (% wt db) Cr2O3 0.02 (% wt db) Co3O4 (% wt db) NiO 0.02 (% wt db) V2O5 (% wt db) - The Cat-HTR processing temperatures for the Hog Fuel Sodium Hydroxide were steady for the most part at 335° C. reactor inlet temperature (variable between 326° C. and 337° C.), pressure was steady for the most part at 271 bar, variable at its lowest to 230 bar.
- The ash content of the Bio-Crude Oil was about 6.6%.
- The Bio-Crude Oil has a gross calorific value of 36.3 MJ/kg, for comparison purposes diesel is around 45 MJ/kg.
- Solvent Extraction of Bio-Crude (Hog Fuel w/-Sodium Hydroxide 20140716)
- Extraction of the oil from Hog Fuel Cat-HTR water with the solvent diethyl ether gave 13.2% extractables as a fraction of the feedstock (dry basis). Total oils recoverable (bio-crude plus ether extractables) were 36.5% of the feed mass.
- Hog Fuel w/-Black Liquor (20140724)
Operating Conditions (Hog Fuel w/-Black Liquor 20140724) - Table 20 below shows the operating conditions of a mass balance run using Hog Fuel Black Liquor.
-
TABLE 20 Operating Conditions (Hog Fuel w/-Black Liquor 2014 Jul. 24) Reactor Temperature 335 to 315° C. Reactor Pressure 226 to 244 bar Reactor Residence Time 25 minutes
Mass Balance (Hog Fuel w/-Black Liquor 20140724) - This trial was performed using black liquor at a ratio of 9.7 kg of stock black liquor to 7.44 kg of hog fuel db. Slurry contained 8.6% Hog Fuel db. Stock black liquor to Hog fuel ratio is 1:1.3 db.
-
TABLE 21 Mass Balance (Hog Fuel w/-Black Liquor 2014 Jul. 24) Date 2014 Jul. 24 Feedstock 8% hog fuel Liquid Catalyst 1.3 kg stock black liquor per dry kg wood T4 Injection time (mins) 92 Percent Solids in Feed 10.5% Percent solids in reactors 4.3% Solids in feed (kg) 6.2 product recovered (wet kg) 1.258 Moisture content of oil (%) 16.7% Bio crude recovered (dry kg) 1.048 Bio crude yield (dry) 17.0% NCG gas measured (m3/hr) 0.43 NCG density (kg/m3) 1.60 NCG (kg/hr) 0.835 Solids in feed (kg/hr) 4.018 NCG yield 20.8% Total feed to T4 - NCG (kg) 141.5 Ether extractable in liquor (%) 0.402% Ether extractable in liquor (kg) 0.57 Ether extractable yield 9.2% Solid residue in liquor (%) 0.81% Solid residue in liquor (kg) 1.15 Solid residue from catalyst (kg) 0.00 Solid residue in liquor yield 18.7% % black liquor solids in feed 31.0% % Inorganic material in feed 14.6% Organic material in feed (kg) 526.2% Methanol ethanol & acetone yield (kg) 31.6% Methanol, ethanol & acetone yield (%) 5.13% Yield Summary Bio crude yield (dry) 17.0% NCG yield 20.8% Ether extractable yield 9.2% Solid residue in liquor yield 18.7% Methanol, ethanol & acetone yield (%) 5.1% Total 70.87% Cooler inlet temp 315 Estimated mixing (Reactor inlet) temp 335
Gas Analysis (Hog Fuel w/-Black Liquor 20140724) -
TABLE 22 Non Condensable Gas Analysis (Hog Fuel w/-Black Liquor 20140724) Methane CO Hydrogen Ethylene Ethane Propylene Propane CO2 H2S 5.00% 0.05% 9.56% 0.29% 0.71% 1.59% 0.38% 82.2% 0.18%
Bio-Crude Analysis (Hog Fuel w/-Black Liquor 20140724) - Data presented in the Table 23 below is from the mass balance run.
-
TABLE 23 Analysis of Bio-Crude Oil (Hog Fuel w/-Black Liquor 2014 Jul. 24) Hog Fuel + BL Description 2014 Jul. 24 Proximate Analysis Moisture 6 (% wt ar) Ash 2.8 (% wt db) Volatiles (% wt db) Fixed C. (% wt db) Ultimate Analysis GCV 32.6 (MJ/kg Carbon 75.1 (% wt db) Hydrogen 6.6 (% wt db) Nitrogen 0.3 (% wt db) Sulphur 1.1 (% wt db) Oxygen 12.7 (% wt db) Chlorine (%) Molar H/C Ratio Ash Constituents SiO2 3 (% oxide in ash) (% wt db) Al2O3 3.7 (% wt db) Fe2O3 9.9 (% wt db) TiO2 0.13 (% wt db) K2O 0.44 (% wt db) MgO 3.7 (% wt db) Na2O 3.6 (% wt db) CaO 36.2 (% wt db) SO3 24.3 (% wt db) P2O5 3.55 (% wt db) Mn3O4 1.39 (% wt db) SrO 0.17 (% wt db) BaO 0.5 (% wt db) ZnO 0.56 (% wt db) CuO 0.17 (% wt db) Cr2O3 0.02 (% wt db) Co3O4 <0.1 (% wt db) NiO 0.02 (% wt db) V2O5 0 (% wt db) - The processing temperatures for the Hog Fuel w/-black liquor was essentially steady around 330° C. reactor inlet temperature. Pressure was variable between 226 and 244 bar. The ash content of the Bio-Crude Oil was about 2.8%. The Bio-Crude Oil has a gross calorific value of 32.6 MJ/kg, for comparison purposes diesel is around 45 MJ/kg.
- Solvent Extraction of Bio-Crude (Hog Fuel w/-Black Liquor 20140724)
- Extraction of the oil from Hog Fuel w/-black liquor process water with the solvent diethyl ether gave 9.2% extractables as a fraction of the feedstock (dry basis). Taking the oil yield as 26.3%.
- Table 24 below shows the operating conditions of the mass balance run using Mixed Kraft Feedstock. This trial was at moderate temperature of 321° C.
-
TABLE 24 Operating Conditions (Mixed Kraft Feedstocks 2014 Jul. 31) Reactor Temperature 335 to 315° C. Reactor Pressure 250 bar Reactor Residence Time 25 minutes - The Mixed Kraft Feedstock mixture is composed from solids:
-
TABLE 25 Mass Balance (Mixed Kraft Feedstocks 2014 Jul. 31) The mixed kraft feedstock is composed from solids: kg to feed tank % of dry feed Hog Fuel 8.0 55.3% Pine 1.8 12.4% Sludge 0.2 1.4% Black liquor solids 4.5 30.9% Black liquor water 8.5 Water 123.5 Slurry tank contents Total solids 14.5 Total water 132.0 Total to feed tank 146.5 % Solids 9.88% - This trial was performed using black liquor at a ratio of 13 kg of stock black liquor to 10 kg of mixed woody feedstocks db. Slurry contained mixed feedstocks to water at 8.1% db. Stock black liquor to mixed dry feedstocks ratio is 1.3:1 db.
-
TABLE 26 Mass Balance (Mixed Kraft Feedstocks 2014 Jul. 31) Date 2014 Jul. 31 Feedstock 6.4% hog fuel, 1.44% wood, 0.16% sludge Liquid Catalyst 1.3 kg stock black liquor per dry kg mix T4 Injection time (mins) 83 Percent Solids in Feed 9.9% Percent solids in reactors 4.0% Solids in feed (kg) 5.0 product recovered (wet kg) 1.134 Moisture content of oil (%) 12.9% Bio crude recovered (dry kg) 0.988 Bio crude yield (dry) 19.6% NCG gas measured (m3/hr) 0.47 NCG density (kg/m3) 1.60 NCG (kg/hr) 0.914 Solids in feed (kg/hr) 3.635 NCG yield 25.1% Total feed to T4 - NCG (kg) 124.4 Ether extractable in liquor (%) 1.440% Ether extractable in liquor (kg) 1.79 Ether extractable yield 35.6% Solid residue in liquor (%) 0.88% Solid residue in liquor (kg) 1.10 Solid residue from catalyst (kg) 0.00 Solid residue in liquor yield 21.8% % black liquor solids in feed 30.9% % Inorganic material in feed 15.9% Organic material in feed (kg) 422.8% Methanol ethanol & acetone yield (kg) 25.4% Methanol, ethanol & acetone yield (%) 5.04% Yield Summary Bio crude yield (dry) 19.6% NCG yield 25.1% Ether extractable yield 35.6% Solid residue in liquor yield 21.8% Methanol, ethanol & acetone yield (%) 5.0% Total 107.24% Cooler inlet temp 310 Estimated mixing (Reactor inlet) temp 330 -
-
TABLE 27 Non Condensable Gas Analysis (Mixed Kraft Feedstocks 20140731) Methane CO Hydrogen Ethylene Ethane Propylene Propane CO2 H2S 4.79% 0.04% 9.74% 0.28% 0.77% 1.46% 0.41% 82.3% 0.17% - Data presented in Table 28 below is from the mass balance run.
-
TABLE 28 Analysis of Bio-Crude Oil (Mixed Kraft Feedstocks 2014 Jul. 31) Mixed Feed + BL Description 2014 Jul. 31 Proximate Analysis Moisture 7.5 (% wt ar) Ash 2.6 (% wt db) Volatiles 0.0 (% wt db) Fixed C. 0.0 (% wt db) Ultimate Analysis GCV 33.0 (MJ/kg Carbon 79.2 (% wt db) Hydrogen 6.36 (% wt db) Nitrogen 0.38 (% wt db) Sulphur 0.58 (% wt db) Oxygen 10.18 (% wt db) Chlorine (%) Molar H/C Ratio Ash Constituents SiO2 3.3 (% oxide in ash) (% wt db) Al2O3 4.9 (% wt db) Fe2O3 6.6 (% wt db) TiO2 0.15 (% wt db) K2O 0.72 (% wt db) MgO 4.8 (% wt db) Na2O 5.5 (% wt db) CaO 42.1 (% wt db) SO3 20.6 (% wt db) P2O5 3.5 (% wt db) Mn3O4 0.3 (% wt db) SrO 0.6 (% wt db) BaO <0.1 (% wt db) ZnO <0.1 (% wt db) CuO 0.2 (% wt db) Cr2O3 1.7 (% wt db) Co3O4 <0.1 (% wt db) NiO <0.1 (% wt db) V2O5 0.5 (% wt db) - The processing temperatures for the Mixed Kraft Feedstocks were held steady within (331-336° C.) were again steady and stabilised at 331° C.The ash content of the Bio-Crude Oil was about 2.6%,
- The Bio-Crude Oil has a gross calorific value of 33 MJ/kg, for comparison purposes diesel is around 45 MJ/kg.
- Extraction of the oil from Mixed Feedstocks process water with the solvent diethyl ether gave 35.6% extractables as a fraction of the feedstock (dry basis). Total oils recoverable (biocrude plus ether extractables) were 54.2% of the feed mass.
- Table 29 below shows the operating conditions of the mass balance run on Mixed Kraft II) Feedstocks.
-
TABLE 29 Operating Conditions (Mixed Kraft Feedstocks 2014 Aug. 14) Reactor Temperature 355 to 335° C. Reactor Pressure 238 to 250 bar Reactor Residence Time 25 minutes - Mass Balance (Mixed Kraft Feedstocks 20140814)
- The Mixed Kraft Feedstock mixture is composed from solids:
-
TABLE 30 Content (Mixed Kraft Feedstocks 2014 Aug. 14) kg to feed tank % of dry feed Hog Fuel 8.0 55.3% Pine 1.8 12.4% Sludge 0.2 1.4% Black liquor solids 4.5 30.9% Black liquor water 8.5 Water 127 Total solids 14.5 Total water 135.5 Total to feed tank 150.0 % Solids 9.65% -
TABLE 31 Mass Balance (Mixed Kraft Feedstocks 2014 Aug. 14) Date 2014 Aug. 14 Feedstock 6.4% hog fuel, 1.44% wood, 0.16% sludge Liquid Catalyst 1.3 kg stock black liquor per dry kg mix T4 Injection time (mins) 61 Percent Solids in Feed 9.7% Percent solids in reactors 3.5% Solids in feed (kg) 3.0 product recovered (wet kg) 0.521 Moisture content of oil (%) 20.1% Bio crude recovered (dry kg) 0.416 Bio crude yield (dry) 13.7% NCG gas measured (m3/hr) 0.42 NCG density (kg/m3) 1.52 NCG (kg/hr) 0.784 Solids in feed (kg/hr) 2.990 NCG yield 26.2% Total feed to T4 - NCG (kg) 85.5 Ether extractable in liquor (%) 0.574% Ether extractable in liquor (kg) 0.49 Ether extractable yield 16.1% Solid residue in liquor (%) 0.66% Solid residue in liquor (kg) 0.56 Solid residue from catalyst (kg) 0.00 Solid residue in liquor yield 18.4% % black liquor solids in feed 30.9% % Inorganic material in feed 15.9% Organic material in feed (kg) 422.8% Methanol ethanol & acetone yield (kg) 25.4% Methanol, ethanol & acetone yield (%) 5.04% Yield Summary Bio crude yield (dry) 13.7% NCG yield 26.2% Ether extractable yield 16.1% Solid residue in liquor yield 18.4% Methanol, ethanol & acetone yield (%) 5.0% Total 79.54% Cooler inlet temp 335 Estimated mixing (Reactor inlet) temp 355 - The mass balance across the Cat-HTR reactor for the Mixed Kraft Feedstocks trial has significant mass missing. This behaviour might be explained by material retained within the internal pipes on the reactor and cooler.
-
-
TABLE 32 Non Condensable Gas Analysis (Mixed Kraft Feedstocks 20140814) Methane CO Hydrogen Ethylene Ethane Propylene Propane CO2 H2S 5.12% 0.04% 13.75% 0.36% 0.86% 1.36% 0.38% 77.9% 0.26% - Data presented in Table 33 below is from a mass balance run.
-
TABLE 33 Analysis of Bio-Crude Oil (Mixed Kraft Feedstocks 2014 Aug. 14) Mixed Feed + BL Description 2014 Aug. 14 Proximate Analysis Moisture 4 (% wt ar) Ash 2.04 (% wt db) Volatiles (% wt db) Fixed C. (% wt db) Ultimate Analysis GCV 33.0 (MJ/kg Carbon 77.6 (% wt db) Hydrogen 6.85 (% wt db) Nitrogen 0.32 (% wt db) Sulphur 0.57 (% wt db) Oxygen 12.4 (% wt db) Chlorine (%) Molar H/C Ratio Ash Constituents SiO2 3.3 (% oxide in ash) (% wt db) Al2O3 5 (% wt db) Fe2O3 5.1 (% wt db) TiO2 0.21 (% wt db) K2O 0.81 (% wt db) MgO 4.8 (% wt db) Na2O 6.7 (% wt db) CaO 42.4 (% wt db) SO3 19.9 (% wt db) P2O5 3.5 (% wt db) Mn3O4 0.3 (% wt db) SrO 0.5 (% wt db) BaO 0.1 (% wt db) ZnO <0.1 (% wt db) CuO 0.2 (% wt db) Cr2O3 2.3 (% wt db) Co3O4 <0.1 (% wt db) NiO <0.1 (% wt db) V2O5 0.6 (% wt db) - The ash content of the Bio-Crude Oil was about 2%.
- The Bio-Crude Oil has a gross calorific value of 33.7 MJ/kg dry basis
- Extraction of the oil from Mixed Feedstocks process water with the solvent diethyl ether gave 16.1% extractables as a fraction of the feedstock (dry basis). Taking the oil yield (bio-crude plus ether extractables) as 29.8%
- Bio-crude quality is most readily assessed in the first instance by means of its Gross Calorific Value (GCV). This is the gross energy contained in the material and is closely related to the oxygen and hydrogen content of the bio-crude. For Radiata pine wood flour with sodium hydroxide catalyst on the SPP, typical GCV of bio-crude is in the range 34-36 MJ/kg dry basis.
- The Radiata pine wood flour bio-crude has a low ash content, and therefore dry basis values are similar to dry ash free basis (daf) values. The bio-crudes from hog fuel and black liquor feedstocks have significantly higher ash values, and it is more appropriate to compare these on a daf basis.
- In Figure One the GCV on a daf basis is plotted against oxygen content for Bio-crudes prepared in this project and for a historical series of Licella bio-crudes (dry basis) from Radiata Pine. The oxygen content is determined by difference from the ultimate analysis as [100-% C-% H-% S-% N]. As such it is subject to accumulation of systematic and random errors and consequently the error associated with these values is estimated as +/−1-2 percentage points.
- The calorific values of the bio-crudes from this study lie in the range within, or very close to, the target band of 334-36 MJ/kg. Upon distillation, the bio-crude distillates can be expected to have an oxygen content close to 11%. The significance of the target is that commercial hydrotreating technologies exist for hydrodeoxygenation (HDO) of oils at around 11% oxygen. Licella's assessment is that the remaining oxygen in the bio-crudes is more efficiently removed by hydrotreating in conventional refinery processes than by other processes. These values demonstrate that the catalytic components in black liquor can effectively substitute for the basic catalyst sodium hydroxide in Cat-HTR applications. The other main heteroatoms present in the bio-crudes are Nitrogen and Sulphur. Both of these elements are higher in the bio-crudes derived from hog-fuel and black liquor than those derived from Radiata pine wood flour. Sulphur is unlikely to present an issue for further upgrading as oil refining processes are designed to accomplish desulphurization. The distribution and nature of the nitrogen content in the bio-crudes will need to be examined post-distillation to assess possible impact on downstream processing. Denitrification steps are well established in oil refining processes.
- Licella bio-crudes from Radiata pine wood flour have about 50% of their carbon atoms in an aromatic environment by 13C NMR spectroscopy. While this does not mean that hydrodeoxygenated bio-crudes will contain 50% aromatics, it is indicative of a high potential produce aromatic chemicals, for example by catalytic reforming. Bio-crudes based on high proportions of black liquor may be expected to have still higher aromatic contents, however this should be confirmed by testing.
- This scenario is commercially interesting because of the increasing influence of shale oils in the US which are relatively low in fractions used to make aromatic chemicals.
- Bio-crude yields are generally consistent with other feedstocks processed using the SPP, as discussed in Section 9.0. The SPP uses a relatively large amount of supercritical steam to heat the biomass slurry to reaction temperature, and the consequent dilution favours dissolution of bio-crude into the water phase. This is a phenomenon that has been reported by other investigators, for example.
-
-
TABLE 34 Mixed kraft feedstocks trial (20140814) water sample analysis UNITS VOCs in water Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date extracted — 19 Aug. 2014 Date analysed — 22 Aug. 2014 Dichlorodifluoromethane μg/L <1,000 Chloromethane μg/L <1,000 Vinyl Chloride μg/L <1,000 Bromomethane μg/L <1,000 Chloroethane μg/L <1,000 Trichlorofluoromethane μg/L <1,000 1,1-Dichloroethene μg/L <100 Trans-1,2-dichloroethene μg/L <100 1,1-dichloroethene μg/L <100 Cis-1,2-dichloroethene μg/L <100 Bromochloromethane μg/L <100 Chloroform μg/L <100 2,2-dichloropropane μg/L <100 1,2-dichloroethane μg/L <100 1,1,1-trichloroethane μg/L <100 1,1-dichloropropene μg/L <100 Cyclohexane μg/L <100 Carbontetrachloride μg/L <100 Benzene μg/L 180 Dibromomethane μg/L <100 1,2-dichloropropane μg/L <100 Trichloroethene μg/L <100 Bromodichloromethane μg/L <100 trans-1,3-dichloropropene μg/L <100 cis-1,3-dichloropropene μg/L <100 1,1,2-trichloroethane μg/L <100 Toluene μg/L 370 1,3-dichloropropane μg/L <100 Dibromochloromethane μg/L <100 1,2-dibromoethane μg/L <100 Tetrachloroethene μg/L <100 1,1,1,2-tetrachloroethane μg/L <100 Chlorobenzene μg/L <100 Ethylbenzene μg/L <100 Bromoform μg/L <100 m + p-xylene μg/L <200 Styrene μg/L <100 1,1,2,2-tetracholorethane μg/L <100 o-xylene μg/L <100 1,2,3-trichloropropane μg/L <100 Isopropybenzene μg/L <100 Bromobenzene μg/L <100 n-propyl benzene μg/L <100 2-chlorotoluene μg/L <100 4-chlorotoluene μg/L <100 1,3,5-trimethylbenzene μg/L <100 Tert-butyl benzene μg/L <100 1,2,4-trimethylbenzene μg/L <100 1,3-dichlorobenzene μg/L <100 Sec-butyl benzene μg/L <100 1,4-dichlorobenzene μg/L <100 4-isopropyl toluene μg/L <100 1,2-dichlorobenzene μg/L <100 n-butyl benzene μg/L <100 1,2-dibromo-3- μg/L <100 chloropropane 1,2,4-trichlorobenzene μg/L <100 Hexachlorobutadiene μg/L <100 1,2,3-trichlorobenzene μg/L <100 Surrogate Dibromofluoromethane % 100 Surrogate toluene-d8 % 101 Surrogate 4-BFB % 106 vTRH(C6-C10)/BTEXN in Water Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date extracted — 19 Aug. 2014 Date analysed — 22 Aug. 2014 TRHC6-C9 μg/L 31,000 TRHC6-C10 μg/L 34,000 TRHC6-C10 less BTEX (F1) μg/L 33,000 Benzene μg/L 180 Toluene μg/L 370 Ethylbenzene μg/L <100 m + p-xylene μg/L <200 o-xylene μg/L <100 Naphthalene μg/L <100 Surrogate Dibromofluoromethane % 100 Surrogate toluene-d8 % 101 Surrogate 4-BFB % 106 HM in water - total Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date prepared — 18 Aug. 2014 Date analysed — 18 Aug. 2014 Arsenic-Total μg/L 45 Cadmium-Total μg/L <0.1 Chromium-Total μg/L 1 Copper-Total μg/L <1 Lead-Total μg/L <1 Mercury-Total μg/L 0.3 Nickel-Total μg/L <1 Zinc-Total μg/L 44 Metals in Waters - Acid extractable Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date prepared — 18 Aug. 2014 Date analysed — 18 Aug. 2014 Sulfur - Total mg/L 840 Miscellaneous Inorganics Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date prepared — 15 Aug. 2014 Date analysed — 15 Aug. 2014 pH pH Units 7.0 Total Dissolved Solids (grav) mg/L 15,000 BOD mg/L 600 COD mgO2/L 19,000 Total Organic Carbon mg/L 5,900 Cations in water - Total Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date digested — 18 Aug. 2014 Date analysed — 18 Aug. 2015 Sodium - Total mg/L 2,300 Potassium - Total mg/L 190 Calcium - Total mg/L 16 Magnesium - Total mg/L 3.4 svTRH (C10-C40) in Water Our Reference: 114714-1 Your Reference — 1 Type of sample — Water Date extracted — 18 Aug. 2014 Date analysed — 18 Aug. 2014 TRHC10-C14 μg/L 650,000 TRHC15-C26 μg/L 490,000 TRHC29-C36 μg/L 14,000 TRHC10-C16 μg/L 800,000 TRH>C10-C16 less μg/L 800,000 Naphthalene (F2) TRH>C16-C34 μg/L 180,000 TRH>C34-C40 μg/L 1,800 Surrogate o-Terphenyl % # Method ID Methodology Summary Org-013 Water samples are analysed directly by purge and trap GC-MS. Org-016 Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)- BTEX as per NEPM B1. Guideline on Investigation Levels for Soil and Groundwater. Org-003 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FD. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Metals-022 ICP-MS Determination of various metals by ICP-MS. Metals-021 CV-AAS Determination of mercury by Cold Vapour AAS. Metals-020ICP-AES Determination of various metals by ICP-AES. Inorg-001 pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times. Inorg-018 Total Dissolved Solids - determined gravimetrically. The solids are dried at 180 +/− 50° C. Inorg-091 BOD - Analysed in accordance with APHA 22nd ED 5210 D and in house INORG-091. Inorg-067 Samples are digested in acid with a known excess of potassium dichromate then titrated against ammonium ferrous sulphate in accordance with APHA 22nd ED 5310 B. Inorg-079 TOC determined using a TOC analyser using the combustion method. DOC is filtered prior to determination. Analysis using APHA 22nd ED 5310 B. Duplicate results Base ∥ Duplicate Duplicate ∥ Spike Spike % QUALITY CONTROL UNITS POL METHOD Blank SnW % RPD SnW Recovery VOCs in water Date extracted — 19 Aug. 2014 LCS-W1 19 Aug. 2014 Date analysed — 22 Aug. 2014 LCS-W1 22 Aug. 2014 Dichlorofluoromethane μg/L 10 Org-013 <10 [NT] [NT] [NR] [NR] Chloromethane μg/L 10 Org-013 <10 [NT] [NT] [NR] [NR] Vinyl Chloride μg/L 10 Org-013 <10 [NT] [NT] [NR] [NR] Bromomethane μg/L 10 Org-013 <10 [NT] [NT] [NR] [NR] Chloroethane μg/L 10 Org-013 <10 [NT] [NT] [NR] [NR] Trichlorofluoromethane μg/L 10 Org-013 <10 [NT] [NT] [NR] [NR] 1,1-Dichloroethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Trans-1,2-dichloroethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,1-dichloroethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 99% Cis-1,2-dichloroethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Bromochloromethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Chloroform μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 95% 2,2-dichloropropane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2-dichloroethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 94% 1,1,1-trichloroethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 96% 1,1-dichloropropene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Cyclohexane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Carbon tetrachloride μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Benzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Dibromomethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2-dichloropropane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Trichloroethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 92% Bromodichloromethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 96% trans-1,3-dichloropropene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] cis-1,3-dichloropropene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,1,2-trichloroethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Toluene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,3-dichloropropane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Dibromochloromethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 95% 1,2-dibromoethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Tetrachloroethane μg/L 1 Org-013 <1 [NT] [NT] LCS-W1 101% 1,1,1,2-tetrachloroethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Chlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Ethylbenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Bromoform μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] m + p-xylene μg/L 2 Org-013 <2 [NT] [NT] [NR] [NR] Styrene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,1,2,2-tetrachloroethane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] o-xylene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2,3-trichloropropane μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Isopropylbenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Bromobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] n-propyl benzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 2-chlorotoluene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 4-chlorotoluene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,3,5-trimethylbenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Tert-butyl benzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2,4-trimethyl benzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,3-dichlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Sec-butyl benzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,4-dichlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 4-isopropyl toluene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2-dichlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] n-butyl benzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2-dibromo-3- μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] chloropropane 1,2,4-trichlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Hexachlorobutadene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] 1,2,3-trichlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Surrogate % Org-013 100 [NT] [NT] LCS-W1 99% Dibromofluoromethane Surrogate toluene-d8 % Org-013 99 [NT] [NT] LCS-W1 98% Surrogate 4-BFB % Org-013 104 [NT] [NT] LCS-W1 101% vTRH(C6-C10)BTEXN in water Date extracted — 19 Aug. 2014 [NT] [NT] LCS-W1 18 Aug. 2014 Date analysed — 22 Aug. 2014 [NT] [NT] LCS-W1 22 Aug. 2014 TRHC6-C9 μg/L 10 Org-016 <10 [NT] [NT] LCS-W1 107% TRHC6-C10 μg/L 10 Org-016 <10 [NT] [NT] LCS-W1 107% Benzene μg/L 1 Org-016 <1 [NT] [NT] LCS-W1 104% Toluene μg/L 1 Org-016 <1 [NT] [NT] LCS-W1 107% Ethylbenzene μg/L 1 Org-016 <1 [NT] [NT] LCS-W1 107% m + p-xylene μg/L 2 Org-016 <2 [NT] [NT] LCS-W1 109% o-xylene μg/L 1 Org-016 <1 [NT] [NT] LCS-W1 110% Naphthalene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Surrogate % Org-016 100 [NT] [NT] LCS-W1 99% Dibromofluoromethane Surrogate toluene-d8 % Org-016 99 [NT] [NT] LCS-W1 99% Surrogate 4-BFB % Org-016 104 [NT] [NT] LCS-W1 100% svTRH(C6-C10/BTEXN in water Date extracted — 18 Aug. 2014 [NT] [NT] LCS-W2 18 Aug. 2014 Date analysed — 18 Aug. 2014 [NT] [NT] LCS-W2 18 Aug. 2014 TRHC10-C14 μg/L 50 Org-003 <50 [NT] [NT] LCS-W2 88% TRHC15-C28 μg/L 100 Org-003 <100 [NT] [NT] LCS-W2 85% TRHC29-C36 μg/L 100 Org-003 <100 [NT] [NT] LCS-W2 84% TRH >C10-C16 μg/L 50 Org-003 <50 [NT] [NT] LCS-W2 83% TRH >C16-C34 μg/L 100 Org-003 <100 [NT] [NT] LCS-W2 86% TRH >C34-C40 μg/L 100 Org-003 <100 [NT] [NT] LCS-W2 84% Surrogate o-Terphenyl % Org-003 90 [NT] [NT] LCS-W2 71% HM in water - total Date prepared — 18 Aug. 2014 [NT] [NT] LCS-W2 18 Aug. 2014 Date analysed — 18 Aug. 2014 [NT] [NT] LCS-W2 18 Aug. 2014 Arsenic-Total μg/L 1 Metals-022 <1 [NT] [NT] LCS-W2 106% ICP-MS Cadmium-Total μg/L 0.1 Metals-022 <0.1 [NT] [NT] LCS-W2 119% ICP-MS Chromium-Total μg/L 1 Metals-022 <1 [NT] [NT] LCS-W2 110% ICP-MS Copper-Total μg/L 1 Metals-022 <1 [NT] [NT] LCS-W2 91% ICP-MS Lead-Total μg/L 1 Metals-022 <1 [NT] [NT] LCS-W2 117% ICP-MS Mercury-Total μg/L 0.05 Metals-021 <0.05 [NT] [NT] LCS-W2 96% CV-AAS Nickel-Total μg/L 1 Metals-022 <1 [NT] [NT] LCS-W2 103% ICP-MS Zinc-Total μg/L 1 Metals-022 <1 [NT] [NT] LCS-W2 109% ICP-MS Metals in Waters - Acid extractable Date prepared — 18 Aug. 2014 [NT] [NT] LCS-W1 18 Aug. 2014 Date analysed — 18 Aug. 2014 [NT] [NT] LCS-W1 19 Aug. 2014 Sulphur-Total mg/L 0.5 Metals-020 93 [NT] [NT] LCS-W1 93% ICP-AES Miscellaneous Inorganics Date prepared — 15 Aug. 2014 114714-1 15 Aug. 2014 ∥ LCS-W1 15 Aug. 2014 15 Aug. 2014 Date analysed — 15 Aug. 2014 114714-1 15 Aug. 2014 ∥ LCS-W1 15 Aug. 2014 15 Aug. 2014 pH pH Units Inorg-001 [NT] 114714-1 7.0 ∥ [NT] LCS-W1 101% Total Dissolved Solids (grav) mg/L 5 Inorg-018 <5 114714-1 15000 ∥ [NT] LCS-W1 95% BOD mg/L 5 Inorg-091 <5 114714-1 600 ∥ [NT] LCS-W1 84% COD mg O2/L 50 Inorg-067 <50 114714-1 19000 ∥ 19000 LCS-W1 84% ∥ RPD: 0 Total Organic Carbon mg/L 1 Inorg-079 <1 114714-1 5900 ∥ 5800 LCS-W1 104% ∥ RPD: 2 Cations in water - Total Date digested — 18 Aug. 2014 [NT] [NT] LCS-W1 18 Aug. 2014 Date analysed — 18 Aug. 2014 [NT] [NT] LCS-W1 18 Aug. 2014 Sodium-Total mg/L 0.5 Metals-020 <0.5 [NT] [NT] LCS-W1 102% ICP-AES Potassium-Total mg/L 0.5 Metals-020 <0.5 [NT] [NT] LCS-W1 97% ICP-AES Calcium-Total mg/L 0.5 Metals-020 <0.5 [NT] [NT] LCS-W1 104% ICP-AES Magnesium-Total mg/L 0.5 Metals-020 <0.5 [NT] [NT] LCS-W1 108% ICP-AES -
TABLE 35 Water Analysis (Radiata Pine Wood Flour w/- Black Liquor 20140523) Water sample Cat-HTR Trials, data from separate Envirolab Services reports Hog Fuel Pyrolysed Paper Mixed Sodium Sludge Black Radiata Feedstocks Hydroxide Liquor Black Liquor Units 20140814 20140716 20140528 20140523 VOCs in water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20140814 20140716 20140528 20140523 Type of sample Water Water Water Water Date extracted 19 Aug. 2014 23 Jul. 2014 29 May 2014 28 May 2014 Date analysed 22 Aug. 2014 23 Jul. 2014 30 May 2014 29 May 2014 Dichlorodifluoromethane μg/L <1,000 <1,000 <5,000 <1,000 Chloromethane μg/L <1,000 <1,000 <5,000 <1,000 Vinyl Chloride μg/L <1,000 <1,000 <5,000 <1,000 Bromomethane μg/L <1,000 <1,000 <5,000 <1,000 Chloroethane μg/L <1,000 <1,000 <5,000 <1,000 Trichlorofluoromethane μg/L <1,000 <1,000 <5,000 <1,000 1,1-Dichloroethene μg/L <100 <100 <500 <100 Trans-1,2-dichloroethene μg/L <100 <100 <500 <100 1,1-dichloroethene μg/L <100 <100 <500 <100 Cis-1,2-dichloroethene μg/L <100 <100 <500 <100 Bromochloromethane μg/L <100 <100 <500 <100 Chloroform μg/L <100 <100 <500 <100 2,2-dichloropropane μg/L <100 <100 <500 <100 1,2-dichloroethane μg/L <100 <100 <500 <100 1,1,1-trichloroethane μg/L <100 <100 <500 <100 1,1-dichloropropene μg/L <100 <100 <500 <100 Cyclohexane μg/L <100 <100 <500 <100 Carbon tetrachloride μg/L <100 <100 <500 <100 Benzene μg/L <180 340 <500 340 Dibromomethane μg/L <100 <100 <500 <100 1,2-dichloropropane μg/L <100 <100 <500 <100 Trichloroethene μg/L <100 <100 <500 <100 Bromodichloromethane μg/L <100 <100 <500 <100 trans-1,3-dichloropropene μg/L <100 <100 <500 <100 cis-1,3-dichloropropene μg/L <100 <100 <500 <100 1,1,2-trichloroethane μg/L <100 <100 <500 <100 Toluene μg/L 370 890 810 680 1,3-dichloropropane μg/L <100 <100 <500 <100 Dibromochloromethane μg/L <100 <100 <500 <100 1,2-dibromoethane μg/L <100 <100 <500 <100 Tetrachloroethene μg/L <100 <100 <500 <100 1,1,1,2-tetrachloroethane μg/L <100 <100 <500 <100 Chlorobenzene μg/L <100 <100 <500 <100 Ethylbenzene μg/L <100 120 <500 <130 Bromoform μg/L <100 <100 <500 <100 m + p-xylene μg/L 200 <200 <1000 <200 Styrene μg/L <100 <100 <500 <100 1,1,2,2-tetracholorethane μg/L <100 <100 <500 <100 o-xylene μg/L <100 <120 <500 <100 1,2,3-trichloropropane μg/L <100 <100 <500 <100 Isopropylbenzene μg/L <100 <100 <500 <100 VOCs in water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20148014 20140716 20140528 20140523 Type of sample Water Water Water Water Bromobenzene μg/L <100 <100 <500 <100 n-propyl benzene μg/L <100 <100 <500 <100 2-chlorotoluene μg/L <100 <100 <500 <100 4-chlorotoluene μg/L <100 <100 <500 <100 1,3,5-trimethyl benzene μg/L <100 <100 <500 <100 Tert-butyl benzene μg/L <100 <100 <500 <100 1,2,4-trimethyl benzene μg/L <100 <100 <500 <100 1,3-dichlorobenzene μg/L <100 <100 <500 <100 Sec-butyl benzene μg/L <100 <100 <500 <100 1,4-dichlorobenzene μg/L <100 <100 <500 <100 4-isopropyl toluene μg/L <100 <100 <500 <100 1,2-dichlorobenzene μg/L <100 <100 <500 <100 n-butyl benzene μg/L <100 <100 <500 <100 1,2-dibromo-3- μg/L <100 <100 <500 <100 chloropropane 1,2,4-trichlorobenzene μg/L <100 <100 <500 <100 Hexachlorobutadiene μg/L <100 <100 <500 <100 1,2,3-trichlorobenzene μg/L <100 <100 <500 <100 Surrogate μg/L 100% 106% 112% 105% Dibromofluoromethane Surrogate toluene-d8 μg/L 101% 105% 100% 100% Surrogate 4-BFB μg/L 106% 95% 100% 99% vTRH(C6-C10)/BTEXN in Water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20140814 20140716 20140528 20140523 Type of sample Water Water Water Water Date extracted 19 Aug. 2014 23 Jul. 2014 29 May 2014 28 May 2014 Date analysed 22 Aug. 2014 23 Jul. 2014 30 May 2014 29 May 2014 TRH C6-C9 μg/L 31,000 42,000 26,000 33,000 TRH C6-C10 μg/L 34,000 50,000 27,000 36,000 TRH C6-C10 less BTEX [F1] μg/L 33,000 49,000 26,000 35,000 Benzene μg/L 180 430 <500 340 Toluene μg/L 370 890 810 680 Ethylbenzene μg/L <100 120 <500 130 m + p-xylene μg/L <200 <200 <1000 <200 o-xylene μg/L <100 120 <500 <100 Naphthalene μg/L <100 <100 <501 <100 Surrogate μg/L 100% 106% 112% 105% Dibromofluoromethane Surrogate toluene-d8 μg/L 101% 105% 100% 100% Surrogate 4-BFB μg/L 106% 95% 100% 99% svTRH (C10-C40) in Water Water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20140814 20140716 20140528 20140523 Type of sample Water Water Water Water Date extracted 18 Aug. 2014 24 Jul. 2014 30 May 2014 28 May 2014 Date analysed 19 Aug. 2014 24 Jul. 2014 31 May 2014 29 May 2014 TRH C10-C14 μg/L 650,000 430,000 25,000 860,000 TRH C15-C26 μg/L 490,000 190,000 160,000 510,000 TRH C29-C36 μg/L 14,000 6,600 16,000 18,000 TRH >C10-C16 μg/L 800,000 450,000 260,000 860,000 TRH >C10-C16 less 800,000 450,000 260,000 860,000 Naphthalene (F2) TRH >C16-C34 μg/L 180,000 91,000 120,000 260,000 TRH >C34-C40 μg/L 1,800 <1,000 4,800 5,300 Surrogate o-Terphenyl % # # # # HM in water - total Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20140814 20140716 20140528 20140523 Type of sample Water Water Water Water Date prepared 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Date analysed 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Arsenic-Total μg/L 45 2 29 27 Cadmium-Total μg/L 0.1 <01 5.7 <0.1 Chromium-Total μg/L 1 1 110 <1 Copper-Total μg/L 1 <1 180 1 Lead-Total μg/L 1 <1 40 <1 Mercury-Total μg/L 0.3 0.06 1 0.58 Nickel-Total μg/L 1 <1 97 <1 Zinc-Total μg/L 44 8 1,100 14 Metals in Waters - Acid extractable Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20140814 20140715 20140528 20140523 Type of sample Water Water Water Water Date prepared 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Date analysed 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Sulfur-Total mg/L 840 6.3 26 150 Miscellaneous Inorganics Our Reference: 114114-1 113424-1 110678-1 110463-1 Your Reference 20140214 20140716 20140522 20140523 Type of sample Water Water Water Water Date prepared 15 Mar. 2014 22 Jul. 2014 29 May 2014 26 May 2014 Date analysed 15 Mar. 2014 22 Jul. 2014 29 May 2014 26 May 2014 pH pH Units 7 7.8 9.7 6.3 BOD 15,00 630 26,000 9,800 Total Dissolved mg/L 600 7,200 6,900 11,000 Solids (by calc) m COD mg O2/L 19,000 18,000 50,000 24,000 Total Organic Carbon mg/L 5,900 6,500 17,000 6,600 Cations in water - Total Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 20140814 20140716 20140528 20140523 Type of sample 18 Aug. 2014 Water Water Water Date digested 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Date analysed 18 Aug. 2015 23 Jul. 2014 30 May 2014 27 May 2014 Sodium - Total mg/L 2,300 5,200 5,500 2,100 Potassium - Total mg/L 190 54 16 150 Calcium - Total mg/L 16 <0.5 680 3.8 Magnesium - Total mg/L 3.4 1.6 270 2.5 indicates data missing or illegible when filed -
TABLE 36 Water Analysis (Radiata Pine Wood Flour w/- Black Liquor 2014 May 23) Water sample Cat-HTR Trials, data from separate Envirolab Services reports Hog Fuel Pyrolysed Paper Mixed Sodium Sludge Black Radiata Feedstocks Hydroxide Liquor Black Liquor Units 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 VOCs in water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Date extracted 19 Aug. 2014 23 Jul. 2014 29 May 2014 28 May 2014 Date analysed 22 Aug. 2014 23 Jul. 2014 30 May 2014 29 May 2014 Dichlorodifluoromethane μg/L <1,000 <1,000 <5,000 <1,000 Chloromethane μg/L <1,000 <1,000 <5,000 <1,000 Vinyl Chloride μg/L <1,000 <1,000 <5,000 <1,000 Bromomethane μg/L <1,000 <1,000 <5,000 <1,000 Chloroethane μg/L <1,000 <1,000 <5,000 <1,000 Trichlorofluoromethane μg/L <1,000 <1,000 <5,000 <1,000 1,1-Dichloroethane μg/L <100 <100 <500 <100 Trans-1,2-dichloroethene μg/L <100 <100 <500 <100 1,1-dichloroethane μg/L <100 <100 <500 <100 Cis-1,2-dichloroethene μg/L <100 <100 <500 <100 Bromochloromethane μg/L <100 <100 <500 <100 Chloroform μg/L <100 <100 <500 <100 2,2-dichloropropane μg/L <100 <100 <500 <100 1,2-dichloroethane μg/L <100 <100 <500 <100 1,1,1-trichloroethane μg/L <100 <100 <500 <100 1,1-dichloropropene μg/L <100 <100 <500 <100 Cyclohexane μg/L <100 <100 <500 <100 Carbon tetrachloride μg/L <100 <100 <500 <100 Benzene μg/L <180 340 <500 340 Dibromomethane μg/L <100 <100 <500 <100 1,2-dichloropropane μg/L <100 <100 <500 <100 trichloroethene μg/L <100 <100 <500 <100 Bromodichloromethane μg/L <100 <100 <500 <100 Trans-1,3-dichloropropene μg/L <100 <100 <500 <100 cis-1,3-dichloropropene μg/L <100 <100 <500 <100 1,1,2-trichloroethane μg/L <100 <100 <500 <100 Toluene μg/L 370 890 810 680 1,3-dichloropropane μg/L <100 <100 <500 <100 Dibromochloromethane μg/L <100 <100 <500 <100 1,2-dibromoethane μg/L <100 <100 <500 <100 Tetrachloroethene μg/L <100 <100 <500 <100 1,1,1,2-tetrachloroethane μg/L <100 <100 <500 <100 Chlorobenzene μg/L <100 <100 <500 <100 Ethylbenzene μg/L <100 120 <500 <130 Bromoform μg/L <100 <100 <500 <100 m + p-xylene μg/L 200 <200 <1000 <200 Styrene μg/L <100 <100 <500 <100 1,1,2,2-tetrachloroethane μg/L <100 <100 <500 <100 o-xylene μg/L <100 <120 <500 <100 1,2,3-trichloropropane μg/L <100 <100 <500 <100 Isopropylbenzene μg/L <100 <100 <500 <100 VOCs in water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Bromobenzene μg/L <100 <100 <500 <100 n-propyl benzene μg/L <100 <100 <500 <100 2-chlorotoluene μg/L <100 <100 <500 <100 4-chlorotoluene μg/L <100 <100 <500 <100 1,3,5-trimethyl benzene μg/L <100 <100 <500 <100 Tert-butyl benzene μg/L <100 <100 <500 <100 1,2,4-trimethyl benzene μg/L <100 <100 <500 <100 1,3-dichlorobenzene μg/L <100 <100 <500 <100 Sec-butyl benzene μg/L <100 <100 <500 <100 1,4-dichlorobenzene μg/L <100 <100 <500 <100 4-isopropyl toluene μg/L <100 <100 <500 <100 1,2-dichlorobenzene μg/L <100 <100 <500 <100 n-butyl benzene μg/L <100 <100 <500 <100 1,2-dibromo-3- μg/L <100 <100 <500 <100 chloropropan 1,2,4-trichlorobenzene μg/L <100 <100 <500 <100 Hexachlorobutadiene μg/L <100 <100 <500 <100 1,2,3-trichlorobenzene μg/L <100 <100 <500 <100 Surrogate μg/L 100% 106% 112% 105% Dibromofluorome Surrogate toluene-d8 μg/L 101% 105% 100% 100% Surrogate 4-BFB μg/L 106% 95% 100% 99% vTRH(C6-C10)/BTEXN in Water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Date extracted 19 Aug. 2014 23 Jul. 2014 29 May 2014 28 May 2014 Date analysed 22 Aug. 2014 23 Jul. 2014 30 May 2014 29 May 2014 TRH C6-C9 μg/L 31,000 42,000 26,000 33,000 TRH C6-C10 μg/L 34,000 50,000 27,000 36,000 TRH C6-C10 less BTEX (F1) μg/L 33,000 49,000 26,000 35,000 Benzene μg/L 180 430 <500 340 Toluene μg/L 370 890 810 680 Ethylbenzene μg/L <100 120 <500 130 m + p-xylene μg/L <200 <200 <1000 <200 o-xylene μg/L <100 120 <500 <100 Naphthalene μg/L <100 <100 <501 <100 Surrogate μg/L 100% 106% 112% 105% Dibromofluoromethane Surrogate toluene-d8 μg/L 101% 105% 100% 100% Surrogate 4-BFB μg/L 106% 95% 100% 99% svTRH (C10-C40) in Water Water Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Date extracted 18 Aug. 2014 24 Jul. 2014 30 May 2014 28 May 2014 Date analysed 19 Aug. 2014 24 Jul. 2014 31 May 2014 29 May 2014 TRH C10-C14 μg/L 650,000 430,000 25,000 860,000 TRH C15-C28 μg/L 490,000 190,000 160,000 510,000 TRH C29-C36 μg/L 14,000 6,600 16,000 18,000 TRH > C10-C16 μg/L 800,000 450,000 260,000 860,000 TRH > C10-C16 less 800,000 450,000 260,000 860,000 Naphthalene (F2) TRH > C16-C34 μg/L 180,000 91,000 120,000 260,000 TRH > C34-C40 μg/L 1,800 <1,000 4,800 5,300 Surrogate o-Terphenyl % # # # # HM in water - total Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Date prepared 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Date analysed 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Arsenic-Total μg/L 45 2 29 27 Cadmium-Total μg/L 0.1 <01 5.7 <0.1 Chromium-Total μg/L 1 1 110 <1 Copper-Total μg/L 1 <1 180 1 Lead-Total μg/L 1 <1 40 <1 Mercury-Total μg/L 0.3 0.06 1 0.58 Nickel-Total μg/L 1 <1 97 <1 Zinc-Total μg/L 44 8 1,100 14 Metals in Waters - Acid extractable Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Date prepared 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Date analysed 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Sulfur-Total mg/L 840 6.3 26 150 Miscellaneous Inorganics Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample Water Water Water Water Date prepared 15 Aug. 2014 22 Jul. 2014 29 May 2014 26 May 2014 Date analysed 15 Aug. 2014 22 Jul. 2014 29 May 2014 26 May 2014 pH pH Units 7 7.8 9.7 6.3 BOD 15,00 630 26,000 9,800 Total Dissolved Solids mg/L 600 7,200 6,900 11,000 (by calc) mg COD mg O2/L 19,000 18,000 50,000 24,000 Total Organic Carbon mg/L 5,900 6,500 17,000 6,600 Cations in water - Total Our Reference: 114714-1 113424-1 110678-1 110463-1 Your Reference 2014 Aug. 14 2014 Jul. 16 2014 May 28 2014 May 23 Type of sample 18 Aug. 2014 Water Water Water Date digested 18 Aug. 2014 23 Jul. 2014 30 May 2014 27 May 2014 Date analysed 18 Aug. 2015 23 Jul. 2014 30 May 2014 27 May 2014 Sodium - Total mg/L 2,300 5,200 5,500 2,100 Potassium - Total mg/L 190 54 16 150 Calcium - Total mg/L 16 <0.5 680 3.8 Magnesium - Total mg/L 3.4 1.6 270 2.5 indicates data missing or illegible when filed -
TABLE 37 Feedstock Comparison Proximate Analysis Ultimate Analysis Moisture Ash Volatiles Fixed C. GCV Carbon Hydrogen Run # Description (% wt ar) (% wt db) (% wt db) (% wt db) (MJ/kg db) (% wt db) (% wt db) radiata pine 9 0.50 79.30 20.20 21.30 52.50 6.10 150 um 1 SPF wood 43.8 0.6 79.5 19.9 18.6 52.1 6.3 Hog Fuel 60.0 2.2 74.4 23.5 22.8 52.9 6.0 2, 3 Black Liquor 53.9 47.07 37.53 1.67 Sludge, 6.4 9.7 80.4 10.0 13.82 42.8 5.7 as received Ultimate Analysis Nitrogen Sulphur Oxygen Chlorine Molar Run # Description (% wt db) (% wt db) (% wt db) (%) H/C Ratio radiata pine <0.01 0.02 40.88 n/a 1.38 150 um 1 SPF wood 0.21 40.8 1.45 Hog Fuel 0.25 38.7 1.36 2, 3 Black Liquor <0.01 4.77 3.23 0.21 0.53 Sludge, 0.23 41.57 1.60 as received -
TABLE 38 Additional information on Radiata pine wood Biochemical Composition Cellulose Hemicell. Lignin Extractives (% wt db) (% wt db) (% wt db) (% wt db) 47.03 10.39 35.96 6.47 -
TABLE 39 Feedstock Comparison Ash Constituents SiO2 Al2O3 Fe2O3 TiO2 K2O MgO Na2O CaO Run # Description (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) radiata pine 150 um 16.10 3.10 1.60 0.14 13.30 9.80 1.60 25.70 1 SPF wood 2.3 1.1 0.69 0.04 16.3 7.9 0.42 33.9 Hog Fuel 1.1 0.62 0.28 0.02 7.6 3.2 0.30 46.7 Sludge, as received 9.8 1.1 1.2 0.08 0.30 11.8 2.8 40.4 4 Pyrolysed sludge Ash Constituents SO3 P2O5 Mn3O4 SrO BaO ZnO V2O5 Run # Description (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) (% wt db) radiata pine 150 um 13.10 6.60 1.40 0.11 0.07 0.20 <0.01 1 SPF wood 1.2 2.2 2.3 0.12 0.30 0.28 0.00 Hog Fuel 1.0 2.5 1.5 0.24 0.60 0.42 0.00 Sludge, as received 2.4 0.41 0.38 0.05 0.06 0.05 0.00 4 Pyrolysed sludge mg/kg as received basis Na K Fe Ca Mg V Si P S 3 Black Liquor 61900 5310 8 35 35 <1 100 15 22400 mg/kg as received basis Ni Mn Cr Cu Se Zn Ba As Al 3 Black Liquor <1 26 1 <1 <1 2 1 <1 8 -
TABLE 40 Biocrude Comparison GCV dry GCV daf Wt %, dry basis basis Wt %, dry ash free basis basis Description Ash C H N S O MJ/kg C H N S O MJ/kg Hog fuel + catalyst 6.2 76.7 7.2 0.3 0.1 9.5 33.9 81.8 7.7 0.3 0.1 10.2 36.1 Hog fuel + Black liquor 2.8 70.6 7.3 0.3 0.7 18.3 32.6 72.6 7.5 0.3 0.7 18.9 33.5 Mixed feed + Black liquor 1 2.4 73.3 7.2 0.4 0.7 16.1 33.0 75.1 7.4 0.4 0.7 16.5 33.8 Mixed feed + Black liquor 2 2.0 74.5 7.3 0.3 0.7 15.3 33.0 76.0 7.4 0.3 0.7 15.6 33.7 Radiata pine biocrude - typical 0.8 78.3 7.0 0.1 0.02 13.8 34.0 78.9 7.1 0.1 0.02 13.9 34.3 Radiata Pine + Black liquor biocrude 0.4 79.0 7.3 0.2 0.7 13.0 34.3 79.3 7.3 0.2 0.7 12.5 34.4 -
TABLE 41 Biocrude Comparison - Ash % oxide in ash Run # Sample Description SiO2 Al2O3 Fe2O3 TiO2 K2O MgO Na2O CaO SO3 P2O5 1 SPF wood biocrude — — — — — — — — — — 2 Black liquor biocrude #1 3.6 4.4 5.6 0.08 1.4 1.7 13.1 3.2 19.1 0.60 3 Black liquor biocrude #2 5.4 3.9 2.5 0.07 3.7 2.0 27.9 3.7 38.0 0.51 4 Paper sludge oily product 10.4 0.82 1.8 0.14 0.06 8.6 3.0 73.5 0.48 0.34 5 Hog fuel + catalyst 0.8 1.7 1.4 0.05 0.34 3.7 7.2 46.6 1.1 2.459 6 Hog fuel + Black liquor 3 3.7 9.9 0.13 0.44 3.7 3.6 36.2 24.3 3.55 7 Mixed feed + Black liquor 1 8 Mixed feed + Black liquor 2 Radiata pine biocrude 36.10 13.10 11.60 0.80 1.30 3.60 7.90 11.70 1.60 1.70 % oxide in ash Run # Sample Description BaO SrO CuO MnO Cr2O3 ZnO V2O5 Co3O4 NiO 1 SPF wood biocrude — — — — — — — — — 2 Black liquor biocrude #1 0.04 <0.01 0.36 0.24 0.16 0.20 0.52 0.00 0.04 3 Black liquor biocrude #2 0.04 0.00 0.32 0.32 0.07 0.16 0.09 0.00 0.05 4 Paper sludge oily product 0.07 0.07 0.03 0.38 0.03 0.04 <0.01 <0.01 0.01 5 Hog fuel + catalyst 1.17 0.17 0.4 0.31 0.11 0.02 0 0.02 0 6 Hog fuel + Black liquor 1.39 0.17 0.5 0.56 0.17 0.02 0 0.02 0 7 Mixed feed + Black liquor 1 8 Mixed feed + Black liquor 2 Radiata pine biocrude 0.21 0.05 0.42 0.18 0.07 - Properties of the feedstock and the ash composition of the feedstock are shown in Table 41 and Table 42, respectively.
-
TABLE 41 Proximate and ultimate analysis of feedstock Black Tall Oil Feedstock Hog fuel Lignin Liquor Soap Moisture % ar 8.1 41 80.2 37.2 Ash Yield % db at 13.5 3.8 67.5 15 550° C. Volatile Matter % 68.9 69.3 53.9 90.8 db Fixed carbon % db 17.6 26.9 <0.1 <0.1 Carbon % db 46.5 65.2 10.3 47.9 Hydrogen % db 5.5 5.7 7.6 9.7 Nitrogen % db 0.32 0.06 <0.01 <0.01 Sulphur % db 0.03 2.3 0.7 0.2 Chlorine % db 0.03 0.03 0.06 <0.01 Oxygen (by 34.2 22.9 14.6 27.4 difference) % db Calorific Value MJ/kg Gross Dry 18.6 26.5 Gross Wet 17.1 15.7 Net Wet 15.8 14 Notes to table: ar—as received, db—dry basis -
TABLE 42 Ash composition of the feedstock Feedstock Hog fuel Lignin Black Liquor Tall Oil Soap % ash analysis SiO2 72.5 0.5 1 0.6 Al2O3 6.7 0.9 0.1 <0.1 Fe2O3 5.6 0.5 0.2 0.1 TiO2 0.38 0.02 <0.01 <0.01 K2O 2.8 3.1 3.3 3.2 MgO 1.3 0.3 <0.1 0.1 Na2O 1.3 42.8 44.2 49.3 CaO 8.4 0.5 0.1 1.7 SO3 0.1 50.3 2 1.6 P2O5 0.61 0.01 0.02 0.4 NiO 0.01 <0.01 <0.01 <0.01 BaO 0.17 0.01 <0.01 0.01 SrO 0.03 <0.01 <0.01 <0.01 CuO 0.01 <0.01 <0.01 <0.01 MnO 0.26 0.12 0.01 0.14 Cr2O3 0.04 <0.01 <0.01 <0.01 ZnO 0.06 0.06 <0.01 0.05 V2O5 0.01 <0.01 <0.01 <0.01 Co3O4 0.01 <0.01 <0.01 <0.01 LOI @ 550 to 35.7 12 650° C. Total 100.3 99.3 - The hog fuel feedstock was ground using modified compressed air jet mills to a particle size of less than about 150 microns to suit the pump valve orifices of the pilot plant pump. The pilot plant pump requires a greater degree of comminution of the feedstock than would a commercial facility. Black liquor samples were homogenized as necessary before use to remove agglomerates that could potentially cause pumping difficulties in use. The feedstock analysis in Table 41 for the hog fuel is after grinding. The grinding process reduces the moisture content of the hog fuel.
- Feedstock conversion according to the invention was carried out using a continuous flow process in a pilot plant reactor. The reactor is schematically represented in
FIG. 2 . Catalyst injection additional to the catalysts in the black liquor was not used in example runs 9-14. - The conditions for the runs in the pilot plant are summarized in Table 43.
-
TABLE 43 Feedstock and run conditions Feed in Slurry tank Black Tall oil Residence Hog Fuel Lignin Liquor soap Methanol Pressure Temperature time Run No. % db % db % db % db % Bar ° C. Minutes 9 5.2 5.2 240 347 25 10 5.2 5.2 240 360 25 11 7.4 2.9 0.7 0.2 240 370 25 12 8.1 3.2 0.8 0.2 240 355 25 13 6.6 2.6 0.6 0.2 240 320 25 14 6.4 2.5 0.6 0.2 240 360 25 - After depressurization and cooling of products to ambient temperature the products were separated into the following phases: gas and vapour phase; biocrude oil phase, aqueous phase.
- Due to the high ash content of the hog fuel feedstock, the biocrude oil was further separated for the purpose of analysis into acetone-soluble and acetone-insoluble components. Table 44 shows the properties of the biocrude oil phase. Table 45 shows the properties of the gas/vapour phase.
-
TABLE 44 properties of the biocrude oil phase GCV mass % db Run no. Fraction Fraction (MJ/kg) C H N S O ash 9 Acetone soluble 0.82 32.157 73.9 7 0.18 0.0835 16.5 2.4 9 Acet. Insoluble 0.18 17.266 21.4 2.1 0.11 0.0193 4.7 71.7 10 Acetone soluble 0.83 32.677 10 Acet. Insoluble 0.17 8.833 11 Acetone soluble 0.78 34.198 75.6 7.8 0.29 0.0564 15.6 0.7 11 Acet. Insoluble 0.22 9.430 33.2 2.5 0.07 0.0518 11.3 52.9 12 Acetone soluble 12 Acet. Insoluble 13 Acetone soluble 0.80 33.437 13 Acet. Insoluble 0.20 9.915 14 Acetone soluble 14 Acet. Insoluble Note: % Oxygen by difference -
TABLE 45 gas and vapour composition, volume %, corrected for dilution by nitrogen and oxygen Carbon Carbon Hydrogen Carbonyl Methyl Run No Hydrogen Dioxide Monoxide Methane Ethane Propane Butane Pentane Sulfide Sulfide Mercaptan 9 27.37 43.80 7.30 1.42 0.69 0.51 0.25 0.76 0.047 11.132 10 31.21 45.99 8.21 1.74 0.76 0.46 0.26 0.47 0.021 5.650 11 8.73 84.91 3.54 0.64 0.41 0.32 0.17 0.15 0.005 0.671 12 4.92 90.28 2.13 0.38 0.28 0.26 0.15 0.19 0.881 13 2.52 94.61 0.88 0.12 0.10 0.15 0.08 0.19 1.143 14 Ethyl Dimethyl n-Propyl Ethylmethyl Dimethyl Carbon Dimethyl Run No Mercaptan Sulfide mercaptan sulfide Disulphide Disulphide Trisulphide Thiophene 9 0.128 5.511 0.034 0.029 0.818 0.142 0.019 0.037 10 0.090 3.942 0.039 0.043 1.022 0.049 0.019 0.037 11 0.054 0.145 0.007 0.009 0.239 0.010 0.000 0.000 12 0.052 0.149 0.009 0.307 0.010 0.000 0.000 13 0.022 0.060 0.108 0.007 0.000 0.000 14 -
-
TABLE 46 Gas yields from run examples as percentage of total dry mass of feed Gas Yield mass % of Run # total dry feed* 9 8.5% 10 10.9% 11 13.0% 12 9.7% 13 7.8% 14 8.7% Note: *Gas density of 1.5 kg/m3 assumed for mass fraction calculations
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/839,861 US20220333302A1 (en) | 2014-10-15 | 2022-06-14 | Pulping Liquors and Uses Thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014904129A AU2014904129A0 (en) | 2014-10-15 | Pulping liquors and uses thereof | |
AU2014904129 | 2014-10-15 | ||
PCT/AU2015/000617 WO2016058031A1 (en) | 2014-10-15 | 2015-10-15 | Pulping liquors and uses thereof |
US15/486,785 US10450701B2 (en) | 2014-10-15 | 2017-04-13 | Pulping liquors and uses thereof |
US16/558,934 US20200002888A1 (en) | 2014-10-15 | 2019-09-03 | Pulping Liquors and Uses Thereof |
US17/839,861 US20220333302A1 (en) | 2014-10-15 | 2022-06-14 | Pulping Liquors and Uses Thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/558,934 Continuation US20200002888A1 (en) | 2014-10-15 | 2019-09-03 | Pulping Liquors and Uses Thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220333302A1 true US20220333302A1 (en) | 2022-10-20 |
Family
ID=55745866
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/519,171 Active US11306435B2 (en) | 2014-10-15 | 2015-10-14 | Integrated Kraft pulp mill and thermochemical conversion system |
US15/486,785 Active US10450701B2 (en) | 2014-10-15 | 2017-04-13 | Pulping liquors and uses thereof |
US16/558,934 Abandoned US20200002888A1 (en) | 2014-10-15 | 2019-09-03 | Pulping Liquors and Uses Thereof |
US17/710,543 Active US11834783B2 (en) | 2014-10-15 | 2022-03-31 | Integrated kraft pulp mill and thermochemical conversion system |
US17/839,861 Abandoned US20220333302A1 (en) | 2014-10-15 | 2022-06-14 | Pulping Liquors and Uses Thereof |
US18/500,758 Pending US20240102241A1 (en) | 2014-10-15 | 2023-11-02 | Integrated kraft pulp mill and thermochemical conversion system |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/519,171 Active US11306435B2 (en) | 2014-10-15 | 2015-10-14 | Integrated Kraft pulp mill and thermochemical conversion system |
US15/486,785 Active US10450701B2 (en) | 2014-10-15 | 2017-04-13 | Pulping liquors and uses thereof |
US16/558,934 Abandoned US20200002888A1 (en) | 2014-10-15 | 2019-09-03 | Pulping Liquors and Uses Thereof |
US17/710,543 Active US11834783B2 (en) | 2014-10-15 | 2022-03-31 | Integrated kraft pulp mill and thermochemical conversion system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/500,758 Pending US20240102241A1 (en) | 2014-10-15 | 2023-11-02 | Integrated kraft pulp mill and thermochemical conversion system |
Country Status (12)
Country | Link |
---|---|
US (6) | US11306435B2 (en) |
EP (2) | EP3207176A4 (en) |
JP (2) | JP6773658B2 (en) |
CN (2) | CN107002358B (en) |
AU (2) | AU2015333547B2 (en) |
BR (2) | BR112017007616B1 (en) |
CA (2) | CA2964210C (en) |
CL (2) | CL2017000929A1 (en) |
MX (2) | MX2017004833A (en) |
MY (2) | MY191386A (en) |
RU (2) | RU2696962C2 (en) |
WO (2) | WO2016058098A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015333547B2 (en) | 2014-10-15 | 2020-03-05 | Canfor Pulp Ltd | Integrated kraft pulp mill and thermochemical conversion system |
EP3252083B1 (en) * | 2015-01-26 | 2019-09-25 | Nippon Paper Industries Co., Ltd. | Method for producing xylan-containing material |
DE102015108552A1 (en) * | 2015-02-27 | 2016-09-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Pyrolysis oil and process for its preparation |
WO2017208268A1 (en) * | 2016-05-30 | 2017-12-07 | Inser Energia S.P.A. | Process and related system for removing ashes from biomasses |
PL3293268T3 (en) * | 2016-09-13 | 2020-09-07 | Innventia Ab | Process for the production of an organic acid from a lignocellulosic feedstock |
DK179687B1 (en) * | 2017-03-30 | 2019-03-25 | Steeper Energy Aps | High pressure treatment system separation system |
US10645950B2 (en) | 2017-05-01 | 2020-05-12 | Usarium Inc. | Methods of manufacturing products from material comprising oilcake, compositions produced from materials comprising processed oilcake, and systems for processing oilcake |
CA3000248A1 (en) * | 2018-04-04 | 2019-10-04 | Cascades Canada Ulc | Combustion of streams derived from hot water extraction of wood material |
US10890574B2 (en) * | 2018-11-05 | 2021-01-12 | Hach Company | Digestion of lead(0) and subsequent colorimetric detection of lead(II) |
SE1950068A1 (en) * | 2019-01-22 | 2020-07-14 | Valmet Oy | Process and system for treating vapours released from lignocellulose biomass during acid treatment |
EP3693441A1 (en) * | 2019-02-08 | 2020-08-12 | SCA Forest Products AB | Process for the production of a bio-oil |
JP2022523829A (en) | 2019-03-12 | 2022-04-26 | ユニバーシティ オブ ワイオミング | Thermochemical treatment of coal by solvent extraction |
CN110467956A (en) * | 2019-07-03 | 2019-11-19 | 南通汉森农业科技有限公司 | Stalk semi-coke fuel combination and preparation method thereof |
CN111484877B (en) * | 2020-05-08 | 2021-09-28 | 成都理工大学 | Microwave hydrothermal carbon decoupling chemical chain gasification method for regulating and controlling quality of synthesis gas |
CN112170459A (en) * | 2020-09-25 | 2021-01-05 | 苏州寰宇新博环保设备工程有限公司 | Organic material processing method and organic material processing device |
NL2027380B1 (en) * | 2021-01-25 | 2022-08-12 | Bintell B V | Method for treating an organic starting material under high pressure and temperature in an aqueous environment. |
CN112830976A (en) * | 2021-03-16 | 2021-05-25 | 长春工业大学 | Method for preparing cellulose acetate from rice hulls |
US11839225B2 (en) | 2021-07-14 | 2023-12-12 | Usarium Inc. | Method for manufacturing alternative meat from liquid spent brewers' yeast |
CN113481023B (en) * | 2021-07-14 | 2022-09-16 | 大连理工大学 | Method for preparing low-ash biomass semi-coke |
SE545888C2 (en) * | 2021-07-15 | 2024-03-05 | Suncarbon Ab | Treating black liquor with bio-oil acids for lignin recovery |
US11788016B2 (en) * | 2022-02-25 | 2023-10-17 | ExxonMobil Technology and Engineering Company | Methods and systems for hydrodeoxygenating bio-derived feedstocks and generating renewable power |
EP4253505A1 (en) * | 2022-03-30 | 2023-10-04 | Graphene Synthetic Feedstock SL | Method for transforming solid plastic waste into hydrocarbons |
CN115449416B (en) * | 2022-08-10 | 2024-07-12 | 中南大学 | Biomass fuel for calcium carbonate calcination and preparation method thereof |
CN116837655A (en) * | 2023-08-01 | 2023-10-03 | 广西大学 | Method for efficiently extracting biological oil, lignin and recovering alkali from papermaking weak black liquor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100263813A1 (en) * | 2009-04-21 | 2010-10-21 | Andritz Inc. | Green liquor pretreatment of lignocellulosic material |
WO2014197928A1 (en) * | 2013-06-11 | 2014-12-18 | Licella Pty Ltd. | Biorefining method |
US9212317B2 (en) * | 2009-12-11 | 2015-12-15 | Altaca Insaat Ve Dis Ticaret A.S. | Conversion of organic matter into oil |
CA3063821A1 (en) * | 2017-06-05 | 2018-12-13 | Suncarbon Ab | Catalytic conversion of lignin |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3607619A (en) * | 1968-11-29 | 1971-09-21 | Texaco Inc | Coking of black liquor in the absence of added free oxygen |
US3880704A (en) * | 1973-07-16 | 1975-04-29 | Betz Laboratories | Methods and compositions to enhance tall oil soap separation from waste pulping liquor |
US4381035A (en) | 1980-02-25 | 1983-04-26 | Hradel Joseph R | Simultaneous recovery of thermal values and organic materials from solid carbonaceous fuels and waste disposal process |
US4347220A (en) * | 1980-06-27 | 1982-08-31 | Combustion Engineering, Inc. | System for drying and burning viscous aqueous liquors which contain organics |
SE448007B (en) * | 1983-04-21 | 1987-01-12 | Skf Steel Eng Ab | PROCEDURE AND DEVICE FOR RECOVERY OF CHEMICALS |
US5019135A (en) | 1987-10-13 | 1991-05-28 | Battelle Memorial Institute | Method for the catalytic conversion of lignocellulosic materials |
US5958181A (en) * | 1997-08-07 | 1999-09-28 | Ahlstrom Machinery, Inc. | Continuous cooking with a two-stage cool impregnation |
US6306248B1 (en) | 1997-11-20 | 2001-10-23 | The University Of Alabama In Huntsville | Method for transforming diverse pulp and paper products into a homogenous cellulosic feedstock |
CA2363158A1 (en) | 1999-03-02 | 2000-09-08 | Marc J. Sabourin | Feed preconditioning for chemical pulping |
EP1184443A1 (en) | 2000-09-04 | 2002-03-06 | Biofuel B.V. | Process for the production of liquid fuels from biomass |
FI115640B (en) | 2000-11-03 | 2005-06-15 | Metso Paper Inc | Hot black liquor using cooking process |
CA2517440C (en) * | 2003-03-28 | 2012-09-18 | Ab-Cwt, Llc | Process and apparatus for conversion of organic, waste, or low-value materials into useful products |
US7476296B2 (en) * | 2003-03-28 | 2009-01-13 | Ab-Cwt, Llc | Apparatus and process for converting a mixture of organic materials into hydrocarbons and carbon solids |
JP2006076979A (en) * | 2004-09-13 | 2006-03-23 | Yusaku Sakata | Method for producing phenol derivative from wood chip as raw material |
CN101056968B (en) * | 2004-11-10 | 2015-05-20 | Sgc顾问责任有限公司 | Method of slurry dewatering and conversion of biosolids to a renewable fuel |
US7909895B2 (en) * | 2004-11-10 | 2011-03-22 | Enertech Environmental, Inc. | Slurry dewatering and conversion of biosolids to a renewable fuel |
JP4919253B2 (en) * | 2005-08-03 | 2012-04-18 | 独立行政法人産業技術総合研究所 | Biological organic resource processing method and system |
US9434615B2 (en) * | 2007-07-20 | 2016-09-06 | Upm-Kymmene Oyj | Method and apparatus for producing liquid biofuel from solid biomass |
JP5175072B2 (en) * | 2007-08-10 | 2013-04-03 | 株式会社ミゾタ | Extraction device for useful substances |
EP2193138A4 (en) | 2007-08-31 | 2010-11-17 | Biojoule Ltd | Lignin and other products isolated from plant material, and methods and compositions therefor |
FI20085416L (en) * | 2008-05-06 | 2009-11-07 | Metso Power Oy | Method and equipment for treating pulp mill black liquor |
AU2009299117B2 (en) | 2008-10-01 | 2013-06-06 | Licella Pty Ltd | Bio-oil production method |
SG10201403520SA (en) | 2009-07-01 | 2014-10-30 | Circa Group Pty Ltd | Method for converting lignocellulosic materials into useful chemicals |
FI20096152A (en) * | 2009-11-06 | 2011-05-23 | Metso Power Oy | Method and equipment for treating black liquor in a pulp mill |
US8502003B2 (en) | 2010-03-25 | 2013-08-06 | Exxonmobil Research And Engineering Company | Biomass conversion using carbon monoxide and water |
NZ603011A (en) * | 2010-04-07 | 2015-07-31 | Licella Pty Ltd | Methods for biofuel production |
JP5808795B2 (en) * | 2010-05-04 | 2015-11-10 | バイーア スペシャルティ セルロース ソシエダッド アノニマ | Method and system for the production of high alpha dissolving pulp |
US20110275869A1 (en) | 2010-05-07 | 2011-11-10 | Basf Se | Process for producing synthesis gas and at least one organic liquid or liquefiable material of value |
US8400874B2 (en) | 2010-06-29 | 2013-03-19 | Acoustic Zoom, Inc. | Method for combined active source and passive seismic imaging for subsurface fluid movement mapping and formation characterization |
EP2588566B1 (en) | 2010-07-01 | 2022-04-20 | Ignite Resources Pty Ltd | Ballistic heating process |
US8889384B2 (en) | 2010-10-07 | 2014-11-18 | Shell Oil Company | Process for the production of alcohols from biomass |
CN103347984B (en) | 2010-12-20 | 2016-01-20 | 国际壳牌研究有限公司 | Intermediate oxygenatedchemicals platinum catalysis hydrogenation deoxidation is then fuel by cellulosic aqueous hydrolysis |
CN103384713B (en) * | 2011-01-05 | 2015-08-19 | 莱斯拉有限公司 | Organic processing |
MX360476B (en) * | 2011-06-10 | 2018-11-05 | Steeper Energy Aps | Process for producing liquid hydrocarbon. |
WO2012175796A1 (en) * | 2011-06-23 | 2012-12-27 | Upm-Kymmene Corporation | Integrated biorefinery plant for the production of biofuel |
CN102352572B (en) * | 2011-09-30 | 2013-07-24 | 重庆理文造纸有限公司 | Preparation method for bamboo wood dissolving pulp |
AU2015333547B2 (en) | 2014-10-15 | 2020-03-05 | Canfor Pulp Ltd | Integrated kraft pulp mill and thermochemical conversion system |
-
2015
- 2015-10-14 AU AU2015333547A patent/AU2015333547B2/en active Active
- 2015-10-14 JP JP2017539478A patent/JP6773658B2/en active Active
- 2015-10-14 MY MYPI2017000552A patent/MY191386A/en unknown
- 2015-10-14 BR BR112017007616-0A patent/BR112017007616B1/en active IP Right Grant
- 2015-10-14 CN CN201580064300.9A patent/CN107002358B/en active Active
- 2015-10-14 MX MX2017004833A patent/MX2017004833A/en unknown
- 2015-10-14 CA CA2964210A patent/CA2964210C/en active Active
- 2015-10-14 EP EP15850418.3A patent/EP3207176A4/en active Pending
- 2015-10-14 WO PCT/CA2015/051037 patent/WO2016058098A1/en active Application Filing
- 2015-10-14 RU RU2017115811A patent/RU2696962C2/en active
- 2015-10-14 US US15/519,171 patent/US11306435B2/en active Active
- 2015-10-15 AU AU2015333572A patent/AU2015333572B2/en active Active
- 2015-10-15 RU RU2017115810A patent/RU2715243C2/en active
- 2015-10-15 JP JP2017539475A patent/JP6882176B2/en active Active
- 2015-10-15 CA CA2964181A patent/CA2964181A1/en active Pending
- 2015-10-15 CN CN201580064338.6A patent/CN107109263B/en active Active
- 2015-10-15 BR BR112017007500-8A patent/BR112017007500B1/en active IP Right Grant
- 2015-10-15 WO PCT/AU2015/000617 patent/WO2016058031A1/en active Application Filing
- 2015-10-15 EP EP15851552.8A patent/EP3207108A4/en active Pending
- 2015-10-15 MY MYPI2017000551A patent/MY180994A/en unknown
- 2015-10-15 MX MX2017004841A patent/MX2017004841A/en unknown
-
2017
- 2017-04-13 US US15/486,785 patent/US10450701B2/en active Active
- 2017-04-13 CL CL2017000929A patent/CL2017000929A1/en unknown
- 2017-04-13 CL CL2017000928A patent/CL2017000928A1/en unknown
-
2019
- 2019-09-03 US US16/558,934 patent/US20200002888A1/en not_active Abandoned
-
2022
- 2022-03-31 US US17/710,543 patent/US11834783B2/en active Active
- 2022-06-14 US US17/839,861 patent/US20220333302A1/en not_active Abandoned
-
2023
- 2023-11-02 US US18/500,758 patent/US20240102241A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100263813A1 (en) * | 2009-04-21 | 2010-10-21 | Andritz Inc. | Green liquor pretreatment of lignocellulosic material |
US9212317B2 (en) * | 2009-12-11 | 2015-12-15 | Altaca Insaat Ve Dis Ticaret A.S. | Conversion of organic matter into oil |
WO2014197928A1 (en) * | 2013-06-11 | 2014-12-18 | Licella Pty Ltd. | Biorefining method |
CA3063821A1 (en) * | 2017-06-05 | 2018-12-13 | Suncarbon Ab | Catalytic conversion of lignin |
Non-Patent Citations (1)
Title |
---|
Robert Northey ,Pulping and Bleaching PSE 476: Lecture 6, 2005, online, pp 5 (Year: 2005) * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220333302A1 (en) | Pulping Liquors and Uses Thereof | |
US11826722B2 (en) | Biorefining method | |
CA2822875C (en) | Processing of organic matter | |
NZ730947B2 (en) | Integrated kraft pulp mill and thermochemical conversion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANFOR PULP LTD, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROWLANDS, WILLIAM;HUMPHREYS, LEONARD JAMES;DOWNIE, ROBERT;AND OTHERS;SIGNING DATES FROM 20170522 TO 20170615;REEL/FRAME:060289/0624 Owner name: LICELLA PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROWLANDS, WILLIAM;HUMPHREYS, LEONARD JAMES;DOWNIE, ROBERT;AND OTHERS;SIGNING DATES FROM 20170522 TO 20170615;REEL/FRAME:060289/0624 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |