Nothing Special   »   [go: up one dir, main page]

US20200282266A1 - Method for forming a golf ball and resulting golf ball - Google Patents

Method for forming a golf ball and resulting golf ball Download PDF

Info

Publication number
US20200282266A1
US20200282266A1 US16/292,556 US201916292556A US2020282266A1 US 20200282266 A1 US20200282266 A1 US 20200282266A1 US 201916292556 A US201916292556 A US 201916292556A US 2020282266 A1 US2020282266 A1 US 2020282266A1
Authority
US
United States
Prior art keywords
inches
golf ball
core
temperature
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/292,556
Inventor
Jason J. Hinton
Michael J. Sullivan
Derek A. Ladd
Antonio U. Desimas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acushnet Co
Original Assignee
Acushnet Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acushnet Co filed Critical Acushnet Co
Priority to US16/292,556 priority Critical patent/US20200282266A1/en
Assigned to ACUSHNET COMPANY reassignment ACUSHNET COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESIMAS, ANTONIO U., HINTON, JASON J., LADD, DEREK A., SULLIVAN, MICHAEL J.
Assigned to WELLS FARGO BANK, N.A., AS ADMINISTRATIVE AGENT reassignment WELLS FARGO BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACUSHNET COMPANY
Publication of US20200282266A1 publication Critical patent/US20200282266A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS SUCCESSOR ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS SUCCESSOR ADMINISTRATIVE AGENT ASSIGNMENT OF SECURITY INTEREST IN PATENTS (ASSIGNS 051618-0777) Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS RESIGNING ADMINISTRATIVE AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0033Thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0004Surface depressions or protrusions
    • A63B37/0006Arrangement or layout of dimples
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0004Surface depressions or protrusions
    • A63B37/0012Dimple profile, i.e. cross-sectional view
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/0039Intermediate layers, e.g. inner cover, outer core, mantle characterised by the material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/006Physical properties
    • A63B37/0064Diameter
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0072Characteristics of the ball as a whole with a specified number of layers
    • A63B37/0075Three piece balls, i.e. cover, intermediate layer and core
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0077Physical properties
    • A63B37/008Diameter
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B45/00Apparatus or methods for manufacturing balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material

Definitions

  • a two-piece solid golf ball includes a solid inner core protected by an outer cover.
  • the inner core is made of a natural or synthetic rubber such as polybutadiene, styrene butadiene, or polyisoprene.
  • the cover surrounds the inner core and may be made of a variety of materials including ethylene acid copolymer ionomers, polyamides, polyesters, polyurethanes, and polyureas.
  • Three-piece, four-piece, and even five-piece balls have become more popular over the years. More golfers are playing with these multi-piece balls for several reasons including new manufacturing technologies, lower material costs, and desirable ball playing performance properties.
  • Many golf balls used today have multi-layered cores comprising an inner core and at least one surrounding outer core layer.
  • the inner core may be made of a relatively soft and resilient material, while the outer core may be made of a harder and more rigid material.
  • the “dual-core” sub-assembly is encapsulated by a single or multi-layered cover to provide a final ball assembly. Different materials are used in these golf ball constructions to impart specific properties and playing features to the ball.
  • polyurethane compositions contain urethane linkages formed by reacting an isocyanate group (—N ⁇ C ⁇ O) with a hydroxyl group (OH).
  • polyurethanes are produced by the reaction of a multi-functional isocyanate with a polyol in the presence of a catalyst and other additives.
  • the chain length of the polyurethane prepolymer is extended by reacting it with hydroxyl-terminated and amine curing agents.
  • the polyurethane composition may be thermoplastic or thermoset in nature.
  • Thermoplastic polyurethanes are desirable because they have good processability, possess good melt-flow properties, and create bonds that can be softened and reversibly broken by increasing temperature during molding or extrusion and then returned to original condition when cooled. Minimal crosslinking results in thermoplastic polyurethane materials primarily from hydrogen bonding or other physical mechanism in the polymer network.
  • Thermoset polyurethanes in contrast, generally have a high level of cross-linking and form bonds that become irreversibly set once the thermoset polyurethane is cured, and are therefore often more rigid than thermoplastic polyurethanes, which in contrast tend to be more flexible.
  • RPIM retractable pin injection molding
  • the TPU cover material is injected into a dimpled cavity mold and formed about inner layers.
  • molding temperatures are typically very high (e.g., above 450° F.), especially for thin-wall covers, which can cause a significant amount of inner layer material to displace, and among other problems, produce a flash line around the equator of the molded golf ball.
  • conventional means of counteracting reduced melt flow or thin wall molding in RPIM such as increased gate size can result in further manufacturing issues such as increased material displacement of a Surlyn® layer behind the gates.
  • RPIM tooling clearances are generally reduced by the presence of dimples in the mold cups, which undesirably necessitates a larger cavity diameter and corresponding cover wall thickness.
  • symmetry and therefore concentricity, must be precisely controlled in any ball molding process.
  • casting methods are typically capable of creating a uniform cover layer thickness, the core/subassembly can become undesirably non-centered within the cast cover layer.
  • a method of the invention creates dimples in the thermoplastic cover of a dimple-free golf ball after the cover has been pre-molded about the subassembly rather than prior to or during the cover molding process.
  • This enables cover molding to occur at a temperature below which current molding problems are occurring in conventional golf ball molding methods/processes and therefore resolve such problems as significant displacement of adjacent inner layer material, appearance of surface defects necessitating costly finishing steps, and/or the cover layer thickness limitations which accompany the tooling restrictions when forming dimples in the cover layer prior to or while molding the cover about a subassembly.
  • a subassembly comprising a core; and a pre-molded dimple-free golf ball is formed by molding a thermoplastic cover about the subassembly using a mold that is configured to form a smooth outer surface on the thermoplastic cover at a molding temperature Tdf.
  • a compression mold press is provided having at least one pair of mold cavities wherein each of a top mold cavity and a bottom mold cavity of the pair is configured to form a predetermined dimple pattern on the outer surface of the pre-molded dimple-free golf ball.
  • the pre-molded dimple free-golf ball is deposited into the bottom mold cavity; said top mold cavity and bottom mold cavity are closed about the pre-molded dimple-free golf ball at a first temperature and pressure; and then a molding cycle is applied sufficient to form a golf ball wherein an outer surface of the thermoplastic cover contains the predetermined dimple pattern; wherein the molding cycle has a temperature Tcm that is lower than Tdf.
  • thermoplastic cover is injection molded about the subassembly using mold sections having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover.
  • thermoplastic cover is compression molded about the subassembly using a pair of mold cavities having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover.
  • thermoplastic cover comprises at least one thermoplastic polyurethane.
  • the subassembly may further comprise an outermost layer that is disposed between the core and the thermoplastic cover; wherein the outermost layer comprises an ionomer composition.
  • the core comprises an inner core surrounded by an outer core layer.
  • the pre-molded dimple-free golf ball may have a diameter of greater than 1.68 inches.
  • the pre-molded dimple-free golf ball has a diameter of greater than 1.70 inches.
  • the thermoplastic cover has a thickness of from about 0.25 ches to about 0.045 inches.
  • Temperature Tcm may be less than temperature Tdf by at least 40° F. In a particular embodiment, temperature Tcm is less than temperature Tdf by from about 90° F. to about 170° F. In another embodiment, temperature Tcm is less than temperature Tdf by from about 120° F. to about 170° F.
  • temperature Tcm may be applied for a duration of from about 1 minute to about 3 minutes.
  • a golf ball made according the method of the invention may have a diameter of less than about 1.70 inches. In an alternative embodiment, the golf ball may have a diameter of from about 1.68 inches to about 1.70 inches.
  • the subassembly may further comprises an outermost layer that is disposed between the core and the thermoplastic cover; wherein the outermost layer comprises an ionomer composition.
  • the core comprises an inner core surrounded by an outer core layer.
  • the golf ball may have a diameter of from about 1.68 inches to 1.70 inches; the core may have a diameter of from about 1.530 inches to 1.560 inches; and the subassembly may have a diameter of from about 1.610 inches to 1.640 inches.
  • FIG. 1A depicts one step of a conventional compression molding process for forming a cover about the subassembly using dimpled mold cups;
  • FIG. 1B depicts one step of conventional injection molding process for forming a cover about the subassembly using dimpled mold cups;
  • FIG. 2A depicts one step of a method for compression molding a cover about a subassembly and forming a pre-molded dimple-free golf ball using dimple-free mold cups;
  • FIG. 2B depicts one step of a method for injection molding a cover about a subassembly and forming a pre-molded dimple-free golf ball using dimple-free mold cups;
  • FIG. 3 depicts one step of a method of the invention for compression molding dimples into an outer surface of a pre-molded dimple-free golf ball using dimpled mold cups.
  • dimples are created in the outer surface of a pre-molded golf ball.
  • the cover material preferably thermoplastic, is pre-molded over a subassembly prior to dimpling the outer surface of the cover, thereby eliminating and/or minimizing drawbacks/problems that could occur in conventional molding processes wherein dimpling is performed before or during molding of the cover about the subassembly which necessitated exposing inner layers to very high temperatures for undesirable durations.
  • Such problems associated with conventional molding processes include, for example, significant displacement of material of an adjacent inner layer; the need for costly finishing steps due to the appearance of flash lines and other surface imperfections; and/or cover thickness limitations associated with the tooling restrictions when forming dimples in the golf ball cover prior to or during the cover molding process.
  • a pre-molded dimple-free golf ball is formed and provided.
  • the pre-molded dimple-free golf ball preferably has a thermoplastic cover, and most preferably, the thermoplastic cover comprises thermoplastic polyurethane.
  • Each pre-molded dimple-free golf ball can be formed via molding processes such as depicted in FIG. 2A or FIG. 2B and described herein further below.
  • a method of the invention can be used to create dimples in the outer surface of a unitary golf ball, preferably the golf ball has a cover that is disposed about a subassembly having one or more layers.
  • the method of the invention is particularly useful when a thermoplastic polyurethane cover is disposed about and adjacent to a subassembly that has an ionomer-based outermost layer or other thermoplastic material that is vulnerable to displacement during cover molding and dimpling in conventional methods/processes due to the sustained exposure to very high molding temperatures.
  • the method of the invention is also advantageous in golf ball constructions wherein two or more inner ionomer layers are encased by the pre-molded dimple-free thermoplastic cover.
  • a subassembly comprising a core; and a pre-molded dimple-free golf ball is formed by molding a thermoplastic cover about the subassembly using a mold that is configured to form a smooth outer surface on the thermoplastic cover at a molding temperature Tdf.
  • the subassembly may comprise a single core/sphere or have multiple layers.
  • the subassembly may comprise a single ionomer-based core or comprise an inner core and an outer layer comprising or consisting of the ionomer-based material.
  • the outer layer may be any known type of intermediate layer such as a film layer, moisture barrier layer and/or outer core layer, as well as a casing layer, and/or inner cover layer.
  • the dimple-free pre-molded golf ball may be deposited or otherwise placed into/within/between a pair of dimple mold cavities housed within a compression molding press.
  • Each pair of mold cavities top mold cavity and a bottom mold cavity
  • each mold cavity of the pair has an inner surface comprised of a predetermined dimple pattern.
  • the inner surface/predetermined dimple pattern contacts the dimple-free outer surface of the pre-molded golf ball deposited there between when the compression molding press is closed under contact pressure at a first temperature and pressure; and then a molding cycle is applied sufficient to form a golf ball wherein an outer surface of the thermoplastic cover contains the predetermined dimple pattern; wherein the molding cycle has a temperature Tcm that is lower than Tdf.
  • the predetermined dimple pattern is thereby formed/created in the outer surface of the dimple-free pre-molded golf ball, without displacing adjacent inner layer material.
  • thermoplastic cover is injection molded about the subassembly using mold sections having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover.
  • thermoplastic cover is compression molded about the subassembly using a pair of mold cavities having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover.
  • the phrase “without displacing adjacent inner layer material” is intended to extend to and include/encompass such insignificant albeit detectable amounts of displaced inner layer material that might possibly soften or displace while a golf ball outer surface is dimpled using the method of the invention.
  • the temperature of the compression molding press is reduced from temperature Tcm, and the golf ball is then demolded or otherwise removed from within the pair of mold cavities.
  • the golf ball can be warm when removed from the compression molding press as long as the dimpled material of the cover has re-solidified sufficiently after dimples are created/formed into the outer surface of the previously dimple-free thermoplastic cover to prevent damage to the dimpled outer surface of the resulting dimpled golf ball.
  • temperature Tcm is applied for a duration of from about 1 minute to less than about 3 minutes, in sharp contrast with conventional compression molding times which can be as long as 6-8 minutes.
  • the dimple-free thermoplastic cover may comprise a thermoplastic polyurethane.
  • the subassembly has an outermost layer that is disposed between the core and the thermoplastic cover and comprises an ionomer composition.
  • the dimple-free thermoplastic cover is pre-molded about the outermost layer by injection-molding.
  • the dimple-free thermoplastic polyurethane cover has a thickness of less than 0.025 inches.
  • the outermost layer of the subassembly is a casing layer having a thickness of 0.035 inches and surrounds a core having a diameter of about 1.550 inches.
  • the dimple-free thermoplastic polyurethane cover is pre-molded about the outermost layer of the subassembly via compression molding. In a specific such embodiment, the dimple-free thermoplastic polyurethane cover has a thickness of 0.045 inches.
  • the outermost layer of the subassembly surrounds a core comprised of at and inner core and an outer core layer.
  • the outermost layer surrounds a single core.
  • the core has a geometric hardness and a surface hardness that differ by greater than 16 Shore C, and the surface hardness is less than a hardness of the inner cover layer.
  • the cover has a diameter of 1.680 inches, wherein the core has a diameter of 1.550 inches and the subassembly has a diameter of 1.640 inches.
  • the pre-molded dimple-free golf ball have a diameter that is greater than a diameter of the dimpled golf ball (following dimpling via compression molding).
  • a dimple-free thermoplastic polyurethane cover is injection molded about a subassembly comprised of an ionomer-cased core producing a pre-molded dimple-free golf ball having a diameter of 1.710 inches, which is then compression molded according to a method of the invention in mold cups sized and shaped to produce a dimpled golf ball having a diameter of 1.682 inches.
  • the dimple-free golf ball has a diameter of 1.7 inches or greater and the dimple-free thermoplastic polyurethane cover is injection molded about the subassembly to form the pre-molded dimple-free golf ball.
  • the pre-molded dimple-free golf ball has a diameter of less than 1.7 inches after being injection molded about the subassembly to form the pre-molded dimple-free golf ball.
  • the dimple-free thermoplastic cover may be pre-molded about the subassembly using compression molding or retractable pin injection molding (“RPIM”) methods/processes wherein the respective mold cavities have smooth inner surfaces (dimple-free) as shown in FIG. 2A and
  • FIG. 2B respectively.
  • thermoplastic cover about the subassembly before dimpling the outer surface of the cover permits a pre-molding temperature to be used to pre-mold the golf ball that is lower than conventional damaging RPIM temperatures. And meanwhile, only the outer surface being dimpled need be heated, which prevents damage to and significant displacement of inner layer material.
  • the pre-molding temperature can be any temperature at which the adjacent inner layer material can sustain cover over-molding at the given molding time without damaging the inner layer material.
  • that temperature may be as high as about 450° F., especially when RPIM is used, wherein molding time can be as short as 35-40 seconds.
  • the dimpling temperature will always be less than the pre-molding temperature. And desirably, in many cases, a dimpling temperature within the range of about 280° F. to 380° F. is favorably suitable.
  • a pre-molding temperature less than 440° F. can be used in a method of the invention to compression pre-molded dimple-free thermoplastic cover half-shells about the subassembly followed by using a dimpling temperature lower than the pre-molding temperature by from about 60° F. to about 160° F. to dimple the pre-molded cover outer surface.
  • a temperature difference between pre-molding temperature and dimpling temperature can be at least 40° F.; or from about 90° F. to less than about 120° F.; or alternatively, can be as high as from about 120° F. to about 170° F.
  • the minimum required temperature differential between pre-molding temperature and dimpling temperature will vary depending on the choice of the particular thermoplastic cover material and/or adjacent inner layer material selected and the temperature at which that material degrades, drools, deforms, etc.
  • the dimpling temperature may be less than the pre-molding temperature by less than 10° F., or by at least 10° F., or by at least 20° F., or by at least 25° F., or by at least 30° F., or by at least 35° F., or by at least 40° F., or by at least 45° F., or by at least 50° F., or by at least 55° F., or by at least 60° F., or by at least 65° F., or by at least 70° F., or by at least 75° F., or by at least 80° F., or from 90° F. to about 120° F., or by at least 100° F., or by from 100° F.
  • the method of the invention permits a pre-molding temperature/dimpling temperature differential.
  • the first temperature will be lower than each of the pre-molding temperature and the dimpling temperature.
  • the first temperature can be any temperature at which the dimple-free outer surface can contact the dimple contour/configuration of the inner surface of the pair of mold cavities under contact pressure without causing displacement of or otherwise damaging the material of the adjacent inner layer prior to exerting the dimpling temperature. Therefore, in some embodiments, the first temperature could be room temperature or possibly lower; while in other embodiments the first temperature could be greater than room temperature as long as the material of the adjacent inner layer isn't displaced or the golf ball isn't otherwise damaged while the pair of mold cavities are closed under contact pressure.
  • the pre-molding temperature may be greater than the first temperature by less than 10° F. or by as much as 400° F. or greater.
  • the pre-molding temperature may be greater than the first temperature by at least 10° F., or by at least 40° F., or by at least 70° F., or by at least 100° F., or by at least 120° F., or by at least 150° F., or by at least 170° F., or by at least 200° F., or by at least 235° F., or by at least 270° F., or by at least 300° F., or by at least 350° F., or by at least 375° F., or by at least 400° F.
  • a temperature of about 480° F. can sometimes be required when using a dimpled mold to form a dimpled thermoplastic cover about a subassembly. Such a temperature can cause displacement of ionomer-based material of an adjacent outermost subassembly layer.
  • using RPIM having a dimple-free mold can first mold a dimple-free thermoplastic cover about the subassembly at pre-molding temperatures as low as for example 380-450° F., followed by subsequent compression molding of dimples in the pre-molded golf ball's thermoplastic outer surface using a lower temperature and for a shorter duration than that needed to conventionally compression mold pre-formed mold cups about a subassembly and fuse the seam and align dimples of the pre-formed mold cups.
  • lonomer of the adjacent subassembly layer doesn't displace because the subsequent temperature applied can be lower than the pre-molding temperature and for a shorter duration than for conventional compression molding.
  • the dimpling temperature can be in the range of from about 280° F.-about 380° F.
  • ionomer of one or more adjacent subassembly layer(s) doesn't significantly displace during dimpling because the subsequent lower temperature used during dimpling can be applied to prevent that.
  • Compression molding dimples into the cover outer surface after a dimple-free golf ball is otherwise molded/formed can desirably displace enough TPU cover material to correct lessen or eliminate the impact of process artifacts defects including pin holes, flow lines, crow's feet, pin flash, gate vestiges, etc.
  • Processing TPU outer cover materials becomes easier by eliminating the RPIM tooling clearance restrictions typically associated with forming dimples in the cover before or during molding of the cover material about the subassembly. Mold cup cavity diameter and therefore possible cover thickness are increased using a method of the invention, especially for low melt flow TPU materials.
  • One or more coating layers may of course always be applied as desired about the resulting dimpled golf ball via methods such as spraying, dipping, brushing, or rolling.
  • FIG. 1A depicts one step of a conventional compression molding process for molding thermoplastic cover 2 about subassembly 4 using dimpled mold cavities 6 .
  • FIG. 1B depicts one step of a conventional injection molding process for molding cover material about subassembly 4 in a dimpled mold 8 with pins 10 that position subassembly 4 within dimpled mold 8 and retract before the cover material cures completely.
  • FIG. 2A depicts one step of one possible system for compression molding a dimple-free thermoplastic cover 12 about subassembly 4 using dimple-free (smooth inner surfaced) mold cavities 14 to pre-mold a dimple-free golf ball.
  • FIG. 2B depicts a step of one possible arrangement for injection molding a cover material about subassembly 4 using dimple-free mold cavities 16 with pins 10 that position subassembly 4 within dimple-free (smooth inner surfaced) mold 16 and retract before the cover material cures completely to pre-mold a dimple-free golf ball.
  • FIG. 3 depicts one step of a method of the invention for compression molding dimples into dimple-free outer surface 18 of pre-molded dimple-free golf ball 20 using dimpled mold cavities 22 .
  • Golf ball 20 is pre-formed without dimples using compression molding or injection molding process steps such as depicted in FIG. 2A or FIG. 2B ).
  • thermoplastic material such as urethane is injected into a dimpled mold and about a subassembly such as an ionomer cased, polybutadiene core—typically at barrel temperatures of from about 450° F. to about 490° F., depending on the casing layer thickness.
  • a molding time of only 30-35 seconds is enough to degrade urethane, causing processing issues, and displace ionomer behind the gates. Material can ooze out of the barrel when preparing for next cycle, pin flash can be produced, and instability can result regarding amount of TPU dispensed cycle to cycle, with smoking sometimes even occurring when the processing temperature is at 490° F.
  • conventional compression molding can take up to 6-8 minutes at temperatures of from about 400° F. to about 450° F. because the entirety of the material of the half-shells is melted, molded and seams fused.
  • compression molding dimples into the outer surface of an otherwise already molded golf ball requires only enough heat to melt the outer surface—a lower temperature of from about 280° F. to 380° F.—and for about only 1 to about 2 minutes, avoiding the aforementioned difficulties associated with conventional compression molding and/or RPIM.
  • a pre-molded dimple-free golf ball comprising a thermoplastic cover and disposed about a subassembly may therefore be provided.
  • a compression mold press having at least one pair of mold cavities wherein each of a top mold cavity and a bottom mold cavity of the pair is defined by a predetermined dimple pattern.
  • the pre-molded dimple free-golf ball is deposited into the bottom mold cavity; and the top mold cavity and bottom mold cavity are closed about the pre-molded dimple-free golf ball at a first temperature and pressure and then a molding cycle is applied sufficient to form a golf ball wherein an outer surface of the thermoplastic cover contains the predetermined dimple pattern.
  • the molding cycle has a molding cycle temperature (Tcm) that is lower than at least one of the first temperature (Tf) and a temperature (Tdf) at which the thermoplastic cover is pre-molded about the subassembly dimple-free.
  • the method of the invention is especially suitable for dimpling a pre-molded cover comprising or consisting of thermoplastic polymers requiring comparatively high temperatures to create dimples in the outer surface prior to or while molding the cover about a subassembly.
  • suitable thermoplastic polymers include thermoplastic polyurethane(s), thermoplastic urea(s), thermoplastic urea-urethane hybrid(s), or combinations/blends thereof.
  • inventive dimpling method may be used to create dimples in a wide range of other thermoplastic cover materials.
  • thermoplastic polyurethanes are particularly desirable as an outer cover layer material for at least the reasons described further above.
  • suitable thermoplastic polyurethanes include TPUs sold under the tradenames of Texin® 250, Texin® 255, Texin® 260, Texin® 270, Texin®950U, Texin® 970U,Texin®1049, Texin®990DP7-1191, Texin® DP7-1202, Texin®990R, Texin®993, Texin®DP7-1049, Texin® 3203, Texin® 4203, Texin® 4206, Texin® 4210, Texin® 4215, and Texin® 3215, each commercially available from Covestro LLC, Pittsburgh Pa.; Estane® 50 DT3, Estane®58212, Estane®55DT3, Estane®58887, Estane®EZ14-23A, Estane®ETE 50DT3, each commercially available from Lubri
  • polyurethanes contain urethane linkages formed by reacting an isocyanate group (—N ⁇ C ⁇ O) with a hydroxyl group (OH).
  • the polyurethanes are produced by the reaction of a multi-functional isocyanate (NCO—R—NCO) with a long-chain polyol having terminal hydroxyl groups (OH—OH) in the presence of a catalyst and other additives.
  • NCO—R—NCO multi-functional isocyanate
  • OH—OH long-chain polyol having terminal hydroxyl groups
  • the chain length of the polyurethane prepolymer is extended by reacting it with short-chain diols (OH—R′—OH).
  • the resulting polyurethane has elastomeric properties because of its “hard” and “soft” segments, which are covalently bonded together.
  • phase separation occurs because the mainly non-polar, low melting soft segments are incompatible with the polar, high melting hard segments.
  • the hard segments which are formed by the reaction of the diisocyanate and low molecular weight chain-extending diol, are relatively stiff and immobile.
  • the soft segments which are formed by the reaction of the diisocyanate and long chain diol, are relatively flexible and mobile. Because the hard segments are covalently coupled to the soft segments, they inhibit plastic flow of the polymer chains, thus creating elastomeric resiliency.
  • isocyanate compound as used herein, it is meant any aliphatic or aromatic isocyanate containing two or more isocyanate functional groups.
  • the isocyanate compounds can be monomers or monomeric units, because they can be polymerized to produce polymeric isocyanates containing two or more monomeric isocyanate repeat units.
  • the isocyanate compound may have any suitable backbone chain structure including saturated or unsaturated, and linear, branched, or cyclic.
  • polyamine as used herein, it is meant any aliphatic or aromatic compound containing two or more primary or secondary amine functional groups.
  • the polyamine compound may have any suitable backbone chain structure including saturated or unsaturated, and linear, branched, or cyclic.
  • polyamine may be used interchangeably with amine-terminated component.
  • polyol as used herein, it is meant any aliphatic or aromatic compound containing two or more hydroxyl functional groups.
  • polyol may be used interchangeably with hydroxy-terminated component.
  • thermoplastic polyurethanes have minimal cross-linking; any bonding in the polymer network is primarily through hydrogen bonding or other physical mechanism. Because of their lower level of cross-linking, thermoplastic polyurethanes are relatively flexible. The cross-linking bonds in thermoplastic polyurethanes can be reversibly broken by increasing temperature such as during molding or extrusion. That is, the thermoplastic material softens when exposed to heat and returns to its original condition when cooled. On the other hand, thermoset polyurethanes become irreversibly set when they are cured. The cross-linking bonds are irreversibly set and are not broken when exposed to heat. Thus, thermoset polyurethanes, which typically have a high level of cross-linking, are relatively rigid.
  • Aromatic polyurethanes can be prepared in accordance with this invention and these materials are preferably formed by reacting an aromatic diisocyanate with a polyol.
  • Suitable aromatic diisocyanates that may be used in accordance with this invention include, for example, toluene 2,4-diisocyanate (TDI), toluene 2,6-diisocyanate (TDI), 4,4′-methylene diphenyl diisocyanate (MDI), 2,4′-methylene diphenyl diisocyanate (MDI), polymeric methylene diphenyl diisocyanate (PMDI), p-phenylene diisocyanate (PPDI), m-phenylene diisocyanate (PDI), naphthalene 1,5-diisocynate (NDI), naphthalene 2,4-diisocyanate (NDI), p-xylene diisocyanate (XDI), and homopolymers and copolymers
  • Aliphatic polyurethanes also can be prepared in accordance with this invention and these materials are preferably formed by reacting an aliphatic diisocyanate with a polyol.
  • Suitable aliphatic diisocyanates that may be used in accordance with this invention include, for example, isophorone diisocyanate (IPDI), 1,6-hexamethylene diisocyanate (HDI), 4,4′-dicyclohexylmethane diisocyanate (“H 12 MDI”), meta-tetramethylxylyene diisocyanate (TMXDI), trans-cyclohexane diisocyanate (CHDI), and homopolymers and copolymers and blends thereof.
  • Particularly suitable multi-functional isocyanates include trimers of HDI or H 12 MDI, oligomers, or other derivatives thereof.
  • the resulting polyurethane generally has good light and thermal stability.
  • any polyol available to one of ordinary skill in the art is suitable for use according to the invention.
  • Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols.
  • the polyol includes polyether polyol. Examples include, but are not limited to, polytetramethylene ether glycol (PTMEG) which is particularly preferred, polyethylene propylene glycol, polyoxypropylene glycol, and mixtures thereof.
  • PTMEG polytetramethylene ether glycol
  • the hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups.
  • polyester polyols are included in the polyurethane material.
  • Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol; polybutylene adipate glycol; polyethylene propylene adipate glycol; o-phthalate-1,6-hexanediol; poly(hexamethylene adipate) glycol; and mixtures thereof.
  • the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • polycaprolactone polyols are included in the materials of the invention.
  • Suitable polycaprolactone polyols include, but are not limited to: 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethylol propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and mixtures thereof.
  • the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • polycarbonate polyols are included in the polyurethane material of the invention. Suitable polycarbonates include, but are not limited to, polyphthalate carbonate and poly(hexamethylene carbonate) glycol.
  • the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • the molecular weight of the polyol is from about 200 to about 4000.
  • the polyurethanes There are two basic techniques that can be used to make the polyurethanes: a) one-shot technique, and b) prepolymer technique.
  • the one-shot technique the diisocyanate, polyol, and hydroxyl-terminated chain-extender (curing agent) are reacted in one step.
  • the prepolymer technique involves a first reaction between the diisocyanate and polyol compounds to produce a polyurethane prepolymer, and a subsequent reaction between the prepolymer and hydroxyl-terminated chain-extender.
  • the isocyanate and polyol compounds there will be some unreacted NCO groups in the polyurethane prepolymer.
  • the prepolymer should have less than 14% unreacted NCO groups.
  • the prepolymer has no greater than 8.5% unreacted NCO groups, more preferably from 2.5% to 8%, and most preferably from 5.0% to 8.0% unreacted NCO groups.
  • the weight percent of unreacted isocyanate groups increases, the hardness of the composition also generally increases.
  • the one-shot method may be employed to produce the polyurethane compositions of the invention.
  • the one-shot method is used, wherein the isocyanate compound is added to a reaction vessel and then a curative mixture comprising the polyol and curing agent is added to the reaction vessel. The components are mixed together so that the molar ratio of isocyanate groups to hydroxyl groups is preferably in the range of about 1.00:1.00 to about 1.10:1.00.
  • the prepolymer method is used.
  • the prepolymer technique is preferred because it provides better control of the chemical reaction.
  • the prepolymer method provides a more homogeneous mixture resulting in a more consistent polymer composition.
  • the one-shot method results in a mixture that is inhomogeneous (more random) and affords the manufacturer less control over the molecular structure of the resultant composition.
  • the polyurethane compositions can be formed by chain-extending the polyurethane prepolymer with a single chain-extender or blend of chain-extenders as described further below.
  • the polyurethane prepolymer can be chain-extended by reacting it with a single chain-extender or blend of chain-extenders.
  • the prepolymer can be reacted with hydroxyl-terminated curing agents, amine-terminated curing agents, and mixtures thereof.
  • the curing agents extend the chain length of the prepolymer and build-up its molecular weight.
  • thermoplastic polyurethane compositions are typically formed by reacting the isocyanate blend and polyols at a 1:1 stoichiometric ratio.
  • Thermoset compositions are cross-linked polymers and are typically produced from the reaction of the isocyanate blend and polyols at normally a 1.05:1 stoichiometric ratio
  • a catalyst may be employed to promote the reaction between the isocyanate and polyol compounds for producing the prepolymer or between prepolymer and chain-extender during the chain-extending step.
  • the catalyst is added to the reactants before producing the prepolymer.
  • Suitable catalysts include, but are not limited to, bismuth catalyst; zinc octoate; stannous octoate; tin catalysts such as bis-butyltin dilaurate, bis-butyltin diacetate, stannous octoate; tin (II) chloride, tin (IV) chloride, bis-butyltin dimethoxide, dimethyl-bis[1-oxonedecyl)oxy]stannane, di-n-octyltin bis-isooctyl mercaptoacetate; amine catalysts such as triethylenediamine, triethylamine, and tributylamine; organic acids such as oleic acid and acetic acid; delayed catalysts; and mixtures thereof.
  • the catalyst is preferably added in an amount sufficient to catalyze the reaction of the components in the reactive mixture. In one embodiment, the catalyst is present in an amount from about 0.001 percent to about 1 percent,
  • the hydroxyl chain-extending (curing) agents are preferably selected from the group consisting of ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; 2-methyl-1,3-propanediol; 2-methyl-1,4-butanediol; monoethanolamine; diethanolamine; triethanolamine; monoisopropanolamine; diisopropanolamine; dipropylene glycol; polypropylene glycol; 1,2-butanediol; 1,3-butanediol; 1,4-butanediol; 2,3-butanediol; 2,3-dimethyl-2,3-butanediol; trimethylolpropane; cyclohexyldimethylol; triisopropanolamine; N,N,N′,N′-tetra-(2-hydroxypropyl)-ethylene diamine; diethylene glycol bis-(aminopropyl) ether; 1,5-pentan
  • Suitable amine chain-extending (curing) agents that can be used in chain-extending the polyurethane prepolymer include, but are not limited to, unsaturated diamines such as 4,4′-diamino-diphenylmethane (i.e., 4,4′-methylene-dianiline or “MDA”), m-phenylenediamine, p-phenylenediamine, 1,2- or 1,4-bis(sec-butylamino)benzene, 3,5-diethyl-(2,4- or 2,6-) toluenediamine or “DETDA”, 3,5-dimethylthio-(2,4- or 2,6-)toluenediamine, 3,5-diethylthio-(2,4- or 2,6-)toluenediamine, 3,3′-dimethyl-4,4′-diamino-diphenylmethane, 3,3′-diethyl-5,5′-dimethyl4,4′-diamino-dip
  • One particularly suitable amine-terminated chain-extending agent is Ethacure 300TM (dimethylthiotoluenediamine or a mixture of 2,6-diamino-3,5-dimethylthiotoluene and 2,4-diamino-3,5-dimethylthiotoluene.)
  • Ethacure 300TM dimethylthiotoluenediamine or a mixture of 2,6-diamino-3,5-dimethylthiotoluene and 2,4-diamino-3,5-dimethylthiotoluene.
  • the amine curing agents used as chain extenders normally have a cyclic structure and a low molecular weight (250 or less).
  • the resulting polyurethane composition contains urethane linkages.
  • any excess isocyanate groups in the prepolymer will react with the amine groups in the curing agent.
  • the resulting polyurethane composition contains urethane and urea linkages and may be referred to as a polyurethane/urea hybrid.
  • the concentration of urethane and urea linkages in the hybrid composition may vary. In general, the hybrid composition may contain a mixture of about 10 to 90% urethane and about 90 to 10% urea linkages.
  • the resulting composition is essentially a pure polyurethane composition containing urethane linkages having the following general structure:
  • x is the chain length, i.e., about 1 or greater, and R and R 1 are straight chain or branched hydrocarbon chain having about 1 to about 20 carbons.
  • any excess isocyanate groups in the prepolymer will react with the amine groups in the curing agent and create urea linkages having the following general structure:
  • x is the chain length, i.e., about 1 or greater, and R and R 1 are straight chain or branched hydrocarbon chain having about 1 to about 20 carbons.
  • the polyurethane compositions used to form the cover layer may contain other polymer materials including, for example: aliphatic or aromatic polyurethanes, aliphatic or aromatic polyureas, aliphatic or aromatic polyurethane/urea hybrids, olefin-based copolymer ionomer compositions, polyethylene, including, for example, low density polyethylene, linear low density polyethylene, and high density polyethylene; polypropylene; rubber-toughened olefin polymers; acid copolymers, for example, poly(meth)acrylic acid, which do not become part of an ionomeric copolymer; plastomers; flexomers; styrene/butadiene/styrene block copolymers; styrene/ethylene-butylene/styrene block copolymers; dynamically vulcanized elastomers; copolymers of ethylene and vinyl acetates; copolymers of ethylene and methyl
  • the polyurethane compositions may contain fillers, additives, and other ingredients that do not detract from the properties of the final composition.
  • additional materials include, but are not limited to, catalysts, wetting agents, coloring agents, optical brighteners, cross-linking agents, whitening agents such as titanium dioxide and zinc oxide, ultraviolet (UV) light absorbers, hindered amine light stabilizers, defoaming agents, processing aids, surfactants, and other conventional additives.
  • suitable additives include antioxidants, stabilizers, softening agents, plasticizers, including internal and external plasticizers, impact modifiers, foaming agents, density-adjusting fillers, reinforcing materials, compatibilizers, and the like.
  • useful fillers include zinc oxide, zinc sulfate, barium carbonate, barium sulfate, calcium oxide, calcium carbonate, clay, tungsten, tungsten carbide, silica, and mixtures thereof. Rubber regrind (recycled core material) and polymeric, ceramic, metal, and glass microspheres also may be used. Generally, the additives will be present in the composition in an amount between about 1 and about 70 weight percent based on total weight of the composition depending upon the desired properties.
  • Thermoplastic polyurea compositions are typically formed by reacting the isocyanate blend and polyamines at a 1:1 stoichiometric ratio.
  • the polyurea prepolymer can be chain-extended by reacting it with a single curing agent or blend of curing agents.
  • the prepolymer can be reacted with hydroxyl-terminated curing agents, amine-terminated curing agents, or mixtures thereof.
  • the curing agents extend the chain length of the prepolymer and build-up its molecular weight. Normally, the prepolymer and curing agent are mixed so the isocyanate groups and hydroxyl or amine groups are mixed at a 1.05:1.00 stoichiometric ratio.
  • a catalyst may be employed to promote the reaction between the isocyanate and polyamine compounds for producing the prepolymer or between prepolymer and curing agent during the chain-extending step.
  • the catalyst is added to the reactants before producing the prepolymer.
  • Suitable catalysts include, but are not limited to, those identified above in connection with promoting the reaction between the isocyanate and polyol compounds for producing the prepolymer or between prepolymer and chain-extender during the chain-extending step.
  • hydroxyl chain-extending (curing) agents are preferably selected from the same group identified above in connection with polyurethane compositions.
  • Suitable amine chain-extending (curing) agents that can be used in chain-extending the polyurea prepolymer of this invention include, but are not limited to those identified above in connection with chain-extending the polyurethane prepolymer, as well as 4,4′-bis(sec-butylamino)-diphenylmethane, N,N′-dialkylamino-diphenylmethane, trimethyleneglycol-di(p-aminobenzoate), polyethyleneglycol-di(p-aminobenzoate), polytetramethyleneglycol-di(p-aminobenzoate); saturated diamines such as ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylene diamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), methylimino-bis(propylamine
  • the resulting composition is essentially a pure polyurea composition.
  • any excess isocyanate groups in the prepolymer will react with the hydroxyl groups in the curing agent and create urethane linkages to form a polyurea-urethane hybrid.
  • urea and polyurea are used interchangeably.
  • This chain-extending step which occurs when the polyurea prepolymer is reacted with hydroxyl curing agents, amine curing agents, or mixtures thereof, builds-up the molecular weight and extends the chain length of the prepolymer.
  • a polyurea composition having urea linkages is produced.
  • a polyurea/urethane hybrid composition containing both urea and urethane linkages is produced.
  • the polyurea/urethane hybrid composition is distinct from the pure polyurea composition.
  • the concentration of urea and urethane linkages in the hybrid composition may vary.
  • the hybrid composition may contain a mixture of about 10 to 90% urea and about 90 to 10% urethane linkages.
  • the resulting polyurea or polyurea/urethane hybrid composition has elastomeric properties based on phase separation of the soft and hard segments.
  • the soft segments, which are formed from the polyamine reactants, are generally flexible and mobile, while the hard segments, which are formed from the isocyanates and chain extenders, are generally stiff and immobile.
  • the method of the invention is ideal for dimpling an outer cover layer being formed about and adjacent to an inner layer such as a casing layer, intermediate layer, and/or an inner cover layer that is comprised of a material which could soften and deform and/or migrate into adjacent layers during over-molding of the thermoplastic outer cover layer thereabout via conventional molding processes.
  • materials include but are not limited to ionomers (e.g. Surlyn®, HNPs, etc.) and blends thereof.
  • the ionomer may include, for example, partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers.
  • HNPs highly-neutralized ionomers
  • Ionomers typically are ethylene/acrylic acid copolymers or ethylene/acrylic acid/acrylate terpolymers in which some or all of the acid groups are neutralized with metal cations such as na, li, mg, and/or zn.
  • metal cations such as na, li, mg, and/or zn.
  • Non-limiting examples of commercially available ionomers suitable for use with the present invention include for example SURLYNs® from DuPont and Loteks® from Exxon.
  • SURLYN® 8940 (Na), SURLYN® 9650 (Zn), and SURLYN® 9910 (Zn) are examples of low acid ionomer resins with the acid groups that have been neutralized to a certain degree with a cation.
  • High acid ionomer resins include SURLYN(® 8140 (Na) and SURLYN® 8546 (Li), which have an methacrylic acid content of about 19 percent. The acid groups of these high acid ionomer resins that have been neutralized to a certain degree with the designated cation.
  • Ionomers may encompass those polymers obtained by copolymerization of an acidic or basic monomer, such as alkyl (meth)acrylate, with at least one other comonomer, such as an olefin, styrene or vinyl acetate, followed by at least partial neutralization.
  • acidic or basic groups may be incorporated into a polymer to form an ionomer by reacting the polymer, such as polystyrene or a polystyrene copolymer including a block copolymer of polystyrene, with a functionality reagent, such as a carboxylic acid or sulfonic acid, followed by at least partial neutralization.
  • Suitable neutralizing sources include cations for negatively charged acidic groups and anions for positively charged basic groups.
  • ionomers may be obtained by providing a cross metallic bond to polymers of monoolefin with at least one member selected from the group consisting of unsaturated mono- or di-carboxylic acids having 3 to 12 carbon atoms and esters thereof (the polymer contains about 1 percent to about 50 percent by weight of the unsaturated mono- or di-carboxylic acid and/or ester thereof).
  • the ionomer is an E/X/Y copolymers where E is ethylene, X is a softening comonomer, such as acrylate or methacrylate, present in 0 percent to about 50 percent by weight of the polymer (preferably 0 weight percent to about 25 weight percent, most preferably 0 weight percent to about 20 weight percent), and Y is acrylic or methacrylic acid present in about 5 to about 35 weight percent of the polymer, wherein the acid moiety is neutralized about 1 percent to about 100 percent (preferably at least about 40 percent, most preferably at least about 60 percent) to form an ionomer by a cation such as lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, or aluminum, or a combination of such cations.
  • a cation such as lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, or aluminum, or a combination of such cations.
  • the ionomer may be a low acid or high acid ionomer.
  • a high acid ionomer may be a copolymer of an olefin, e.g., ethylene, and at least 16 weight percent of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, e.g., acrylic or methacrylic acid, wherein about 10 percent to about 100 percent of the carboxylic acid groups are neutralized with a metal ion.
  • a low acid ionomer contains about 15 weight percent of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid.
  • Suitable commercially available ionomer resins include SURLYNs® (DuPont) and Ioteks® (Exxon).
  • Other suitable ionomers for use in the blends of the present invention include polyolefins, polyesters, polystyrenes, SBS, SEBS, and polyurethanes, in the form of homopolymers, copolymers, or block copolymer ionomers.
  • the ionomers may also be blended with highly neutralized polymers (HNP).
  • HNP highly neutralized polymers
  • a highly neutralized polymer has greater than about 70 percent of the acid groups neutralized. In one embodiment, about 80 percent or greater of the acid groups are neutralized. In another embodiment, about 90 percent or greater of the acid groups are neutralized.
  • the HNP is a fully neutralized polymers, i.e., all of the acid groups (100 percent) in the polymer composition are neutralized.
  • Suitable HNPs include, but are not limited to, polymers containing ⁇ , ⁇ -unsaturated carboxylic acid groups, or the salts thereof, that have been highly neutralized by organic fatty acids. Such HNPs are commercially available from DuPont under the trade name HPF, e.g., HPF 1000 and HPF 2000. The HNP can also be formed using an oxa-containing compound as a reactive processing aid to avoid processing problems, as disclosed in U.S. Patent Publication No. 2003/0225197.
  • an HNP can include a thermoplastic resin component having an acid or ionic group, i.e., an acid polymer or partially neutralized polymer, combined with an oxa acid, an oxa salt, an oxa ester, or combination thereof and an inorganic metal compound or organic amine compound.
  • a partially neutralized polymer should be understood to mean polymers with about 10 to about 70 percent of the acid groups neutralized.
  • the HNP can includes about 10 percent to about 30 percent by weight of at least one oxa acid, about 70 percent to about 90 percent by weight of at least one thermoplastic resin component, and about 2 percent to about 6 percent by weight of an inorganic metal compound, organic amine, or a combination thereof.
  • the HNP can be formed from an acid copolymer that is neutralized by one or more amine-based or an ammonium-based components, or mixtures thereof, as disclosed in co-pending U.S. patent application Ser. No. 10/875,725, filed Jun. 25, 2004, entitled “Golf Ball Compositions Neutralized with Ammonium-Based and Amine-Based Compounds,” which is incorporated in its entirety by reference herein.
  • HNPs may be neutralized using one or more of the above methods.
  • an acid copolymer that is partially or highly neutralized in a manner described above may be subjected to additional neutralization using more traditional processes, e.g., neutralization with salts of organic fatty acids and/or a suitable cation source.
  • the core includes at least one additional thermoplastic intermediate core layer formed from a composition comprising an ionomer selected from DuPont® HPF ESX 367, HPF 1000, HPF 2000, HPF AD1035, HPF AD1035 Soft, HPF AD1040, and AD1172 ionomers, commercially available from E. I. du Pont de Nemours and Company.
  • the coefficient of restitution (“COR”), compression, and surface hardness of each of these materials, as measured on 1.55′′ injection molded spheres aged two weeks at 23° C./50% RH, are given in Table 1 below.
  • an intermediate layer is disposed between the single or multi-layered core and surrounding cover layer.
  • These intermediate layers also can be referred to as casing or inner cover layers.
  • the intermediate layer can be formed from any materials known in the art, including thermoplastic and thermosetting materials, but preferably is formed of an ionomer composition comprising an ethylene acid copolymer containing acid groups that are at least partially neutralized.
  • Suitable ethylene acid copolymers that may be used to form the intermediate layers are generally referred to as copolymers of ethylene; C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid; and optional softening monomer.
  • These ethylene acid copolymer ionomers also can be used to form the inner core and outer core layers as described above.
  • Suitable ionomer compositions include partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers.
  • HNP refers to an acid copolymer after at least 70% of all acid groups present in the composition are neutralized.
  • Preferred ionomers are salts of O/X- and O/X/Y-type acid copolymers, wherein O is an ⁇ -olefin, X is a C 3 -C 8 ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and Y is a softening monomer.
  • O is preferably selected from ethylene and propylene.
  • X is preferably selected from methacrylic acid, acrylic acid, ethacrylic acid, crotonic acid, and itaconic acid. Methacrylic acid and acrylic acid are particularly preferred.
  • Y is preferably selected from (meth) acrylate and alkyl (meth) acrylates wherein the alkyl groups have from 1 to 8 carbon atoms, including, but not limited to, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate.
  • Preferred O/X and O/X/Y-type copolymers include, without limitation, ethylene acid copolymers, such as ethylene/(meth)acrylic acid, ethylene/(meth)acrylic acid/maleic anhydride, ethylene/(meth)acrylic acid/maleic acid mono-ester, ethylene/maleic acid, ethylene/maleic acid mono-ester, ethylene/(meth)acrylic acid/n-butyl (meth)acrylate, ethylene/(meth)acrylic acid/iso-butyl (meth)acrylate, ethylene/(meth)acrylic acid/methyl (meth)acrylate, ethylene/(meth)acrylic acid/ethyl (meth)acrylate terpolymers, and the like.
  • ethylene acid copolymers such as ethylene/(meth)acrylic acid, ethylene/(meth)acrylic acid/maleic anhydride, ethylene/(meth)acrylic acid/maleic acid mono-ester, ethylene
  • copolymer includes polymers having two types of monomers, those having three types of monomers, and those having more than three types of monomers.
  • Preferred ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acids are (meth) acrylic acid, ethacrylic acid, maleic acid, crotonic acid, fumaric acid, itaconic acid. (Meth) acrylic acid is most preferred.
  • (meth) acrylic acid means methacrylic acid and/or acrylic acid.
  • (meth) acrylate” means methacrylate and/or acrylate.
  • E/X- and E/X/Y-type acid copolymers wherein E is ethylene, X is a C 3 -C 8 ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and Y is a softening monomer are used.
  • X is preferably selected from methacrylic acid, acrylic acid, ethacrylic acid, crotonic acid, and itaconic acid. Methacrylic acid and acrylic acid are particularly preferred.
  • Y is preferably an acrylate selected from alkyl acrylates and aryl acrylates and preferably selected from (meth) acrylate and alkyl (meth) acrylates wherein the alkyl groups have from 1 to 8 carbon atoms, including, but not limited to, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate.
  • E/X/Y-type copolymers are those wherein X is (meth) acrylic acid and/or Y is selected from (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate. More preferred E/X/Y-type copolymers are ethylene/(meth) acrylic acid/n-butyl acrylate, ethylene/(meth) acrylic acid/methyl acrylate, and ethylene/(meth) acrylic acid/ethyl acrylate.
  • the amount of ethylene in the acid copolymer is typically at least 15 wt. %, preferably at least 25 wt. %, more preferably least 40 wt. %, and even more preferably at least 60 wt. %, based on total weight of the copolymer.
  • the amount of C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid in the acid copolymer is typically from 1 wt. % to 35 wt. %, preferably from 5 wt. % to 30 wt. %, more preferably from 5 wt. % to 25 wt. %, and even more preferably from 10 wt. % to 20 wt.
  • the amount of optional softening comonomer in the acid copolymer is typically from 0 wt. % to 50 wt. %, preferably from 5 wt. % to 40 wt. %, more preferably from 10 wt. % to 35 wt. %, and even more preferably from 20 wt. % to 30 wt. %, based on total weight of the copolymer.
  • Low acid” and “high acid” ionomeric polymers, as well as blends of such ionomers may be used. In general, low acid ionomers are considered to be those containing 16 wt. % or less of acid moieties, whereas high acid ionomers are considered to be those containing greater than 16 wt. % of acid moieties.
  • the various O/X, E/X, O/X/Y, and E/X/Y-type copolymers are at least partially neutralized with a cation source, optionally in the presence of a high molecular weight organic acid, such as those disclosed in U.S. Pat. No. 6,756,436, the entire disclosure of which is hereby incorporated herein by reference.
  • the acid copolymer can be reacted with the optional high molecular weight organic acid and the cation source simultaneously, or prior to the addition of the cation source.
  • Suitable cation sources include, but are not limited to, metal ion sources, such as compounds of alkali metals, alkaline earth metals, transition metals, and rare earth elements; ammonium salts and monoamine salts; and combinations thereof.
  • Preferred cation sources are compounds of magnesium, sodium, potassium, cesium, calcium, barium, manganese, copper, zinc, lead, tin, aluminum, nickel, chromium, lithium, and rare earth metals.
  • thermoplastic polymers that may be used to form the adjacent casing, intermediate and/or inner cover layer, but are not limited to, the following polymers (including homopolymers, copolymers, and derivatives thereof: (a) polyester, particularly those modified with a compatibilizing group such as sulfonate or phosphonate, including modified poly(ethylene terephthalate), modified poly(butylene terephthalate), modified poly(propylene terephthalate), modified poly(trimethylene terephthalate), modified poly(ethylene naphthenate), and those disclosed in U.S. Pat. Nos.
  • polyester particularly those modified with a compatibilizing group such as sulfonate or phosphonate, including modified poly(ethylene terephthalate), modified poly(butylene terephthalate), modified poly(propylene terephthalate), modified poly(trimethylene terephthalate), modified poly(ethylene naphthenate), and those disclosed in U.S. Pat. Nos.
  • polystyrenes such as poly(styrene-co-maleic anhydride), acrylonitrile-butadiene-styrene, poly(styrene sulfonate), polyethylene styrene, and blends of two or more thereof
  • polyvinyl chlorides and grafted polyvinyl chlorides and blends of two or more thereof
  • polycarbonates blends of polycarbonate/acrylonitrile-butadiene-styrene, blends of polycarbonate/polyurethane, blends of polycarbonate/polyester, and blends of two or more thereof
  • polyethers such as polyarylene ethers, polyphenylene oxides, block copolymers of alkenyl aromatics with vinyl aromatics and polya
  • golf balls having various constructions may be made in accordance with the method of this invention, with the only limitation being that the outermost cover layer being dimpled comprises or consists of a thermoplastic polymer that requires heating at higher temperatures than would be sufficient to prevent the adjacent inner layer being over-molded from softening, degrading, deteriorating, and/or migrating into an adjacent layer during that over-molding or as a result thereof.
  • Golf balls to be dimpled via the method of the invention may therefore have two piece, three piece, four-piece, and five-piece constructions with single or multi-layered cores, and/or single or multi-layered casing layers/intermediate layers, and single or multi-layered covers.
  • layer as used herein means generally any spherical of the golf ball. More particularly, in one version, a two-piece golf ball containing a core surrounded by a cover is made. Three-piece golf balls containing a dual-layered core and single-layered cover also can be made.
  • the dual-core includes an inner core (center) and surrounding outer core layer.
  • a four-piece golf ball containing a dual-core and dual-cover is made.
  • a four-piece or five-piece golf ball containing a dual-core; casing layer(s); and cover layer(s) may be made.
  • casing layer means a layer of the ball disposed between the multi-layered core sub-assembly and cover.
  • the casing layer also may be referred to as a mantle or intermediate layer.
  • the diameter and thickness of the different layers along with properties such as hardness and compression may vary depending upon the construction and desired playing performance properties of the golf ball as discussed further below.
  • golf balls of the invention may have any number of layers, including for example a four piece golf ball wherein the core is a dual core surrounded by an ionomeric inner cover layer wherein an outer cover layer is a thermoplastic polyurethane disposed about the inner cover layer.
  • the inner core may comprise a thermoset composition or a thermoplastic composition while the outer core layer may be formed from either of a thermoset composition or a thermoplastic composition.
  • the outer cover layer may consist of numerous possible variations and combinations of thermoplastic polymer(s) such as those disclosed herein.
  • Outer cover hardnesses may range from 20 shore D to 70 Shore D, although it is envisioned that the dimpled outermost cover layer material can be targeted within any known range by modifying the ingredients of the thermoplastic polymer and relative amounts thereof, as well as by modifying the processing time and temperature.
  • the dimple-free golf ball has a diameter of greater than 1.682 inches and is comprised of a polybutadiene-based core, an ionomer casing layer and a thermoplastic polyurethane outer cover layer that was formed about the casing layer via RPIM in advance of providing dimples on the cover outer surface via the method of the invention.
  • the dimple-free golf ball has a diameter of greater than 1.69 inches, or a diameter of 1.710 inches or greater.
  • At least one of the core layers is formed of a rubber composition comprising polybutadiene rubber material. More particularly, in one version, the ball contains a single inner core formed of the polybutadiene rubber composition. In a second version, the ball contains a dual-core comprising an inner core (center) and surrounding outer core layer.
  • the core is formed of a rubber composition comprising a rubber material such as, for example, polybutadiene, ethylene-propylene rubber, ethylene-propylene-diene rubber, polyisoprene, styrene-butadiene rubber, polyalkenamers, butyl rubber, halobutyl rubber, or polystyrene elastomers.
  • a rubber material such as, for example, polybutadiene, ethylene-propylene rubber, ethylene-propylene-diene rubber, polyisoprene, styrene-butadiene rubber, polyalkenamers, butyl rubber, halobutyl rubber, or polystyrene elastomers.
  • polybutadiene rubber compositions may be used to form the inner core (center) and surrounding outer core layer in a dual-layer construction.
  • the core may be formed from an ionomer composition comprising an ethylene acid copolymer containing acid groups such that greater than
  • HNPs highly neutralized polymers
  • a polybutadiene rubber composition may be used to form the center and a HNP composition may be used to form the outer core.
  • Such rubber and HNP compositions may be as discussed herein.
  • polybutadiene is a homopolymer of 1, 3-butadiene.
  • the double bonds in the 1, 3-butadiene monomer are attacked by catalysts to grow the polymer chain and form a polybutadiene polymer having a desired molecular weight.
  • Any suitable catalyst may be used to synthesize the polybutadiene rubber depending upon the desired properties.
  • a transition metal complex for example, neodymium, nickel, or cobalt
  • an alkyl metal such as alkyllithium
  • Other catalysts include, but are not limited to, aluminum, boron, lithium, titanium, and combinations thereof. The catalysts produce polybutadiene rubbers having different chemical structures.
  • the polybutadiene rubber can have various combinations of cis- and trans-bond structures.
  • a preferred polybutadiene rubber has a 1,4 cis-bond content of at least 40%, preferably greater than 80%, and more preferably greater than 90%.
  • polybutadiene rubbers having a high 1,4 cis-bond content have high tensile strength.
  • the polybutadiene rubber may have a relatively high or low Mooney viscosity.
  • Examples of commercially-available polybutadiene rubbers that can be used in accordance with this invention, include, but are not limited to, BR 01 and BR 1220, available from BST Elastomers of Bangkok, Thailand; SE BR 1220LA and SE BR1203, available from DOW Chemical Co of Midland, Mich.; BUDENE 1207, 1207s, 1208, and 1280 available from Goodyear, Inc of Akron, Ohio; BR 01, 51 and 730, available from Japan Synthetic Rubber (JSR) of Tokyo, Japan; BUNA CB 21, CB 22, CB 23, CB 24, CB 25, CB 29 MES, CB 60, CB Nd 60, CB 55 NF, CB 70 B, CB KA 8967, and CB 1221, available from Lanxess Corp.
  • JSR Japan Synthetic Rubber
  • KBR 01, NdBr 40, NdBR-45, NdBr 60, KBR 710S, KBR 710H, and KBR 750 available from Kumho Petrochemical Co., Ltd. Of Seoul, South Korea; and DIENE 55NF, 70AC, and 320 AC, available from Firestone Polymers of Akron, Ohio.
  • the polybutadiene rubber is used in an amount of at least about 5% by weight based on total weight of composition and is generally present in an amount of about 5% to about 100%, or an amount within a range having a lower limit of 5% or 10% or 20% or 30% or 40% or 50% and an upper limit of 55% or 60% or 70% or 80% or 90% or 95% or 100%.
  • the concentration of polybutadiene rubber is about 45 to about 95 weight percent.
  • the rubber material used to form the core layer comprises at least 50% by weight, and more preferably at least 70% by weight, polybutadiene rubber.
  • the rubber compositions of this invention may be cured, either by pre-blending or post-blending, using conventional curing processes. Suitable curing processes include, for example, peroxide-curing, sulfur-curing, high-energy radiation, and combinations thereof.
  • the rubber composition contains a free-radical initiator selected from organic peroxides, high energy radiation sources capable of generating free-radicals, and combinations thereof.
  • the rubber composition is peroxide-cured.
  • Suitable organic peroxides include, but are not limited to, dicumyl peroxide; n-butyl-4,4-di(t-butylperoxy) valerate; 1,1-di(t-butylperoxy)3,3,5-trimethylcyclohexane; 2,5-dimethyl-2,5-di(t-butylperoxy) hexane; di-t-butyl peroxide; di-t-amyl peroxide; t-butyl peroxide; t-butyl cumyl peroxide; 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3; di(2-t-butyl-peroxyisopropyl)benzene; dilauroyl peroxide; dibenzoyl peroxide; t-butyl hydroperoxide; and combinations thereof.
  • the free radical initiator is dicumyl peroxide, including, but not limited to Perkadox® BC, commercially available from Akzo Nobel.
  • Peroxide free-radical initiators are generally present in the rubber composition in an amount of at least 0.05 parts by weight per 100 parts of the total rubber, or an amount within the range having a lower limit of 0.05 parts or 0.1 parts or 1 part or 1.25 parts or 1.5 parts or 2.5 parts or 5 parts by weight per 100 parts of the total rubbers, and an upper limit of 2.5 parts or 3 parts or 5 parts or 6 parts or 10 parts or 15 parts by weight per 100 parts of the total rubber. Concentrations are in parts per hundred (phr) unless otherwise indicated.
  • the term, “parts per hundred,” also known as “phr” or “pph” is defined as the number of parts by weight of a particular component present in a mixture, relative to 100 parts by weight of the polymer component. Mathematically, this can be expressed as the weight of an ingredient divided by the total weight of the polymer, multiplied by a factor of 100.
  • the rubber compositions preferably include a reactive cross-linking co-agent.
  • Suitable co-agents include, but are not limited to, metal salts of unsaturated carboxylic acids having from 3 to 8 carbon atoms; unsaturated vinyl compounds and polyfunctional monomers (e.g., trimethylolpropane trimethacrylate); phenylene bismaleimide; and combinations thereof.
  • suitable metal salts include, but are not limited to, one or more metal salts of acrylates, diacrylates, methacrylates, and dimethacrylates, wherein the metal is selected from magnesium, calcium, zinc, aluminum, lithium, and nickel.
  • the co-agent is selected from zinc salts of acrylates, diacrylates, methacrylates, and dimethacrylates.
  • the agent is zinc diacrylate (ZDA).
  • ZDA zinc diacrylate
  • the co-agent is typically included in the rubber composition in an amount within the range having a lower limit of 1 or 5 or 10 or 15 or 19 or 20 parts by weight per 100 parts of the total rubber, and an upper limit of 24 or 25 or 30 or 35 or 40 or 45 or 50 or 60 parts by weight per 100 parts of the base rubber.
  • Radical scavengers such as a halogenated organosulfur or metal salt thereof, organic disulfide, or inorganic disulfide compounds may be added to the rubber composition. These compounds also may function as “soft and fast agents.”
  • soft and fast agent means any compound or a blend thereof that is capable of making a core: 1) softer (having a lower compression) at a constant “coefficient of restitution” (COR); and/or 2) faster (having a higher COR at equal compression), when compared to a core equivalently prepared without a soft and fast agent.
  • Preferred halogenated organosulfur compounds include, but are not limited to, pentachlorothiophenol (PCTP) and salts of PCTP such as zinc pentachlorothiophenol (ZnPCTP).
  • PCTP pentachlorothiophenol
  • ZnPCTP zinc pentachlorothiophenol
  • Using PCTP and ZnPCTP in golf ball inner cores helps produce softer and faster inner cores.
  • the PCTP and ZnPCTP compounds help increase the resiliency and the coefficient of restitution of the core.
  • the soft and fast agent is selected from ZnPCTP, PCTP, ditolyl disulfide, diphenyl disulfide, dixylyl disulfide, 2-nitroresorcinol, and combinations thereof.
  • the rubber compositions of the present invention also may include “fillers,” which are added to adjust the density and/or specific gravity of the material.
  • Suitable fillers include, but are not limited to, polymeric or mineral fillers, metal fillers, metal alloy fillers, metal oxide fillers and carbonaceous fillers.
  • the fillers can be in any suitable form including, but not limited to, flakes, fibers, whiskers, fibrils, plates, particles, and powders.
  • Rubber regrind which is ground, recycled rubber material (for example, ground to about 30 mesh particle size) obtained from discarded rubber golf ball cores, also can be used as a filler.
  • the amount and type of fillers utilized are governed by the amount and weight of other ingredients in the golf ball, since a maximum golf ball weight of 45.93 g (1.62 ounces) has been established by the United States Golf Association (USGA).
  • USGA United States Golf Association
  • Suitable polymeric or mineral fillers that may be added to the rubber composition include, for example, precipitated hydrated silica, clay, talc, asbestos, glass fibers, aramid fibers, mica, calcium metasilicate, barium sulfate, zinc sulfide, lithopone, silicates, silicon carbide, tungsten carbide, diatomaceous earth, polyvinyl chloride, carbonates such as calcium carbonate and magnesium carbonate.
  • Suitable metal fillers include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, lead, copper, boron, cobalt, beryllium, zinc, and tin.
  • Suitable metal alloys include steel, brass, bronze, boron carbide whiskers, and tungsten carbide whiskers.
  • Suitable metal oxide fillers include zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, and zirconium oxide.
  • Suitable particulate carbonaceous fillers include graphite, carbon black, cotton flock, natural bitumen, cellulose flock, and leather fiber.
  • Micro balloon fillers such as glass and ceramic, and fly ash fillers can also be used.
  • the rubber composition includes filler(s) selected from carbon black, nanoclays (e.g., Cloisite® and Nanofil® nanoclays, commercially available from Southern Clay Products, Inc., and Nanomax® and Nanomer® nanoclays, commercially available from Nanocor, Inc.), talc (e.g., Luzenac HAR® high aspect ratio talcs, commercially available from Luzenac America, Inc.), glass (e.g., glass flake, milled glass, and microglass), mica and mica-based pigments (e.g., Iriodin® pearl luster pigments, commercially available from The Merck Group), and combinations thereof.
  • the rubber composition is modified with organic fiber micropulp.
  • the rubber compositions may include antioxidants to prevent the breakdown of the elastomers.
  • processing aids such as high molecular weight organic acids and salts thereof, may be added to the composition.
  • the total amount of additive(s) and filler(s) present in the rubber composition is 15 wt % or less, or 12 wt % or less, or 10 wt % or less, or 9 wt % or less, or 6 wt % or less, or 5 wt % or less, or 4 wt % or less, or 3 wt % or less, based on the total weight of the rubber composition.
  • the polybutadiene rubber material may be blended with other elastomers in accordance with this invention.
  • Other elastomers include, but are not limited to, polybutadiene, polyisoprene, ethylene propylene rubber (“EPR”), styrene-butadiene rubber, styrenic block copolymer rubbers (such as “SI”, “SIS”, “SB”, “SBS”, “SIBS”, and the like, where “S” is styrene, “I” is isobutylene, and “B” is butadiene), polyalkenamers such as, for example, polyoctenamer, butyl rubber, halobutyl rubber, polystyrene elastomers, polyethylene elastomers, polyurethane elastomers, polyurea elastomers, metallocene-catalyzed elastomers and plastomers, copolymers of isobutylene and
  • the polymers, free-radical initiators, filler, cross-linking agents, and any other materials used in forming either the golf ball center or any of the core, in accordance with invention may be combined to form a mixture by any type of mixing known to one of ordinary skill in the art. Suitable types of mixing include single pass and multi-pass mixing, and the like.
  • the cross-linking agent, and any other optional additives used to modify the characteristics of the golf ball center or additional layer(s), may similarly be combined by any type of mixing.
  • a single-pass mixing process where ingredients are added sequentially is preferred, as this type of mixing tends to increase efficiency and reduce costs for the process.
  • the preferred mixing cycle is single step wherein the polymer, cis-to-trans catalyst, filler, zinc diacrylate, and peroxide are added in sequence.
  • the entire core or at least one core layer in a multi-layered structure is formed of a rubber composition comprising a material selected from the group of natural and synthetic rubbers including, but not limited to, polybutadiene, polyisoprene, ethylene propylene rubber (“EPR”), ethylene-propylene-diene (“EPDM”) rubber, styrene-butadiene rubber, styrenic block copolymer rubbers (such as “SI”, “SIS”, “SB”, “SBS”, “SIBS”, and the like, where “S” is styrene, “I” is isobutylene, and “B” is butadiene), polyalkenamers such as, for example, polyoctenamer, butyl rubber, halobutyl rubber, polystyrene elastomers, polyethylene elastomers, polyurethane elastomers, polyurea elastomers, metallocene-catalyzed
  • thermoset material such as, for example, thermoset rubber
  • thermoplastic material such as, for example, ethylene acid copolymer containing acid groups that are at least partially or fully neutralized can be used to make the outer core layer.
  • Suitable ionomer compositions include partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers.
  • HNPs highly-neutralized ionomers
  • Suitable ethylene acid copolymer ionomers and other thermoplastics that can be used to form the core layer(s) are the same materials that can be used to make an inner cover layer as discussed further below.
  • multi-layered cores having an inner core, intermediate core layer, and outer core layer, wherein the intermediate core layer is disposed between the intermediate and outer core layers may be prepared in accordance with this invention.
  • the inner core may be constructed from a thermoplastic or thermoset composition, such as thermoset rubber.
  • the intermediate and outer core layers also may be formed from thermoset or thermoplastic materials. Suitable thermoset and thermoplastic compositions that may be used to form the intermediate/outer core layers are discussed above.
  • each of the intermediate and outer core layers may be formed from a thermoset rubber composition.
  • the intermediate core layer may be formed from a first thermoset rubber composition; and the outer core layer may be formed from a second thermoset rubber composition.
  • the intermediate core layer is formed from a thermoset composition; and the outer core layer is formed from a thermoplastic composition.
  • the intermediate core layer is formed from a thermoplastic composition; and the outer core layer is formed from a thermoset composition.
  • the intermediate core layer is formed from a first thermoplastic composition; and the outer core layer is formed from a second thermoplastic compositions.
  • the dimple-free thermoplastic cover and resulting dimpled thermoplastic cover may have a wide range of different hardnesses including any of those currently known in the golf ball art.
  • the dimpled thermoplastic cover may have the same Shore D material hardness as its precursor dimple-free thermoplastic cover.
  • Embodiments are envisioned wherein dimpling the dimple-free thermoplastic cover creates a hardness gradient in the resulting dimpled thermoplastic cover and/or some other property gradient therein between the dimpled surface and an inner portion of the dimpled thermoplastic cover.
  • dimple-free thermoplastic cover and resulting dimpled thermoplastic cover hardnesses include but are not limited to a range of from about 20 Shore D to about 70 Shore D.
  • Covers of the dimple-free thermoplastic golf ball may be formed about the subassembly using any suitable method as described further below.
  • the ball sub-assembly Prior to forming the cover layers, the ball sub-assembly may be surface-treated to increase the adhesion between its outer surface and the overlying cover material using the above-described techniques.
  • the invention also relates to a golf ball made by a method of the invention.
  • the subassembly comprises a core surrounded by an inner cover layer.
  • the core is a single core.
  • the core comprises an inner core surrounded by an outer core layer.
  • compression molding normally involves first making half (hemispherical) shells by injection-molding the composition in an injection mold. This produces semi-cured, semi-rigid half-shells (or cups). Then, the half-shells are positioned in a compression mold around the core or ball sub-assembly. Heat and pressure are applied and the half-shells fuse together to form a cover layer over the core or sub-assembly.
  • Compression molding also can be used to cure the cover composition after injection-molding.
  • a thermally-curable composition can be injection-molded around a core in an unheated mold. After the composition is partially hardened, the ball is removed and placed in a compression mold. Heat and pressure are applied to the ball and this causes thermal-curing of the outer cover layer.
  • Retractable pin injection-molding (RPIM) methods generally involve using upper and lower mold cavities that are mated together.
  • the upper and lower mold cavities form a spherical interior cavity when they are joined together.
  • the mold cavities used to form the outer cover layer would not have the usual interior dimple cavity details.
  • the cover material conforms to the interior geometry of the mold cavities to form a smooth and dimple-free outer surface rather than a dimple pattern on the surface of the ball.
  • the injection-mold includes retractable support pins positioned throughout the mold cavities. The retractable support pins move in and out of the cavity. The support pins help maintain the position of the core or ball sub-assembly while the molten composition flows through the mold gates.
  • the molten composition flows into the cavity between the core and mold cavities to surround the core and form the cover layer.
  • Other methods can be used to make the cover including, for example, reaction injection-molding (RIM), liquid injection-molding, casting, spraying, powder-coating, vacuum-forming, flow-coating, dipping, spin-coating, and the like.
  • an inner cover layer or intermediate layer preferably formed from an ethylene acid copolymer ionomer composition
  • the layer comprising ionomer may be an outermost layer of the subassembly and adjacent the thermoplastic cover.
  • This layer may be formed using conventional technique such as, for example, compression or injection-molding.
  • the ionomer composition may be injection-molded or placed in a compression mold to produce half-shells. These shells are placed around the core in a compression mold, and the shells fuse together to form an intermediate layer.
  • the ionomer composition is injection-molded directly onto the core using retractable pin injection-molding.
  • the golf balls After the golf balls have been removed from the mold, they may be dimpled as described herein followed by being subjected to any necessary finishing steps such as flash-trimming or surface-treatment, each which should be reduced, or marking, and/or providing any desired coating layer which may be applied via methods such as spraying, dipping, brushing, or rolling. Then the golf ball can go through a series of finishing steps as also desired.
  • any necessary finishing steps such as flash-trimming or surface-treatment, each which should be reduced, or marking, and/or providing any desired coating layer which may be applied via methods such as spraying, dipping, brushing, or rolling.
  • the white-pigmented outer cover layer may be surface-treated using a suitable method such as, for example, corona, plasma, or ultraviolet (UV) light-treatment.
  • a suitable method such as, for example, corona, plasma, or ultraviolet (UV) light-treatment.
  • the golf balls are painted with one or more paint coatings.
  • white or clear primer paint may be applied first to the surface of the ball and then indicia may be applied over the primer followed by application of a clear polyurethane top-coat.
  • Indicia such as trademarks, symbols, logos, letters, and the like may be printed on the outer cover or prime-coated layer, or top-coated layer using pad-printing, ink-jet printing, dye-sublimation, or other suitable printing methods.
  • Any of the surface coatings may contain a fluorescent optical brightener.
  • golf balls produced by a method of this invention provide a variety of advantageous mechanical and playing performance properties as discussed further below.
  • the hardness, diameter, and thickness of the different ball layers may vary depending upon the desired ball construction.
  • golf balls produced by a method of the invention may have any known overall diameter and any known number of different layers and layer thicknesses, wherein a thermoplastic material is incorporated in the cover in order to target desired playing characteristics.
  • the core may have a diameter ranging from about 0.09 inches to less than about 1.7 inches.
  • the diameter of the core of the present invention is about 1.2 inches to about 1.630 inches.
  • the core may have a diameter ranging from about 1.5 inches to about 1.62 inches.
  • the diameter of the core is about 1.3 inches to about 1.6 inches, preferably from about 1.39 inches to about 1.6 inches, and more preferably from about 1.5 inches to about 1.6 inches.
  • the core has a diameter of about 1.55 inches to about 1.65 inches, preferably about 1.55 inches to about 1.60 inches.
  • the core may have an overall diameter within a range having a lower limit of 0.500 or 0.700 or 0.750 or 0.800 or 0.850 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 or 1.250 or 1.300 or 1.350 or 1.400 or 1.450 or 1.500 or 1.600 or 1.610 inches and an upper limit of 1.620 or 1.630 or 1.640 inches or less than 1.7 inches.
  • the core is a multi-layer core having an overall diameter within a range having a lower limit of 0.500 or 0.700 or 0.750 or 0.800 or 0.850 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 inches and an upper limit of 1.250 or 1.300 or 1.350 or 1.400 or 1.450 or 1.500 or 1.600 or 1.610 or 1.620 or 1.630 or 1.640 inches.
  • the multi-layer core has an overall diameter within a range having a lower limit of 0.500 or 0.700 or 0.750 inches and an upper limit of 0.800 or 0.850 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 or 1.250 or 1.300 or 1.350 or 1.400 or 1.450 or 1.500 or 1.600 or 1.610 or 1.620 or 1.630 or 1.640 inches or about 1.7 inches.
  • the multi-layer core has an overall diameter of 1.500 inches or 1.510 inches or 1.530 inches or 1.550 inches or 1.570 inches or 1.580 inches or 1.590 inches or 1.600 inches or 1.610 inches or 1.620 inches.
  • the inner core can have an overall diameter of 0.500 inches or greater, or 0.700 inches or greater, or 1.00 inches or greater, or 1.250 inches or greater, or 1.350 inches or greater, or 1.390 inches or greater, or 1.450 inches or greater, or an overall diameter within a range having a lower limit of 0.250 or 0.500 or 0.750 or 1.000 or 1.250 or 1.350 or 1.390 or 1.400 or 1.440 inches and an upper limit of 1.460 or 1.490 or 1.500 or 1.550 or 1.580 or 1.600 inches, or an overall diameter within a range having a lower limit of 0.250 or 0.300 or 0.350 or 0.400 or 0.500 or 0.550 or 0.600 or 0.650 or 0.700 inches and an upper limit of 0.750 or 0.800 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 or 1.250 or 1.300 or 1.350 or 1.400 inches.
  • the outer core layer can have an overall thickness within a range having a lower limit of 0.010 or 0.020 or 0.025 or 0.030 or 0.035 inches and an upper limit of 0.040 or 0.070 or 0.075 or 0.080 or 0.100 or 0.150 inches, or an overall thickness within a range having a lower limit of 0.025 or 0.050 or 0.100 or 0.150 or 0.160 or 0.170 or 0.200 inches and an upper limit of 0.225 or 0.250 or 0.275 or 0.300 or 0.325 or 0.350 or 0.400 or 0.450 or greater than 0.450 inches.
  • the outer core layer may alternatively have a thickness of greater than 0.10 inches, or 0.20 inches or greater, or greater than 0.20 inches, or 0.30 inches or greater, or greater than 0.30 inches, or 0.35 inches or greater, or greater than 0.35 inches, or 0.40 inches or greater, or greater than 0.40 inches, or 0.45 inches or greater, or greater than 0.45 inches, or a thickness within a range having a lower limit of 0.005 or 0.010 or 0.015 or 0.020 or 0.025 or 0.030 or 0.035 or 0.040 or 0.045 or 0.050 or 0.055 or 0.060 or 0.065 or 0.070 or 0.075 or 0.080 or 0.090 or 0.100 or 0.200 or 0.250 inches and an upper limit of 0.300 or 0.350 or 0.400 or 0.450 or 0.500 or 0.750 inches.
  • An intermediate core layer can have any known overall thickness such as within a range having a lower limit of 0.005 or 0.010 or 0.015 or 0.020 or 0.025 or 0.030 or 0.035 or 0.040 or 0.045 inches and an upper limit of 0.050 or 0.055 or 0.060 or 0.065 or 0.070 or 0.075 or 0.080 or 0.090 or 0.100 inches.
  • cores and core layers of golf balls of the invention may have varying hardnesses depending on the particular golf ball construction and playing characteristics being targeted.
  • Core center and/or layer hardness can range, for example, from 35 Shore C to about 98 Shore C, or 50 Shore C to about 90 Shore C, or 60 Shore C to about 85 Shore C, or 45 Shore C to about 75 Shore C, or 40 Shore C to about 85 Shore C.
  • core center and/or layer hardness can range, for example, from about 20 Shore D to about 78 Shore D, or from about 30 Shore D to about 60 Shore D, or from about 40 Shore D to about 50 Shore D, or 50 Shore D or less, or greater than 50 Shore D.
  • the compression of the core is generally overall in the range of about 40 to about 110, although embodiments are envisioned wherein the compression of the core is as low as 5.
  • the overall CoR of cores of the present invention at 125 ft/s is at least 0.750, or at least 0.775 or at least 0.780, or at least 0.785, or at least 0.790, or at least 0.795, or at least 0.800.
  • Cores are also known to comprise rubbers and also may be formed of a variety of other materials that are typically also used for intermediate and cover layers. Intermediate layers may likewise also comprise materials generally used in cores and covers as described herein for example.
  • An intermediate layer is sometimes thought of as including any layer(s) disposed between the inner core (or center) and the outer cover of a golf ball, and thus in some embodiments, the intermediate layer may include an outer core layer, a casing layer, or inner cover layer(s).
  • a golf ball of the invention may include one or more intermediate layers.
  • An intermediate layer may be used, if desired, with a multilayer cover or a multilayer core, or with both a multilayer cover and a multilayer core.
  • an intermediate layer having a thickness of about 0.010 inches to about 0.06 inches is disposed about a core having a diameter ranging from about 1.5 inches to about 1.59 inches.
  • Intermediate layer(s) may be formed, at least in part, from one or more homopolymeric or copolymeric materials, such as ionomers, primarily or fully non-ionomeric thermoplastic materials, vinyl resins, polyolefins, polyurethanes, polyureas, polyamides, acrylic resins and blends thereof, olefinic thermoplastic rubbers, block copolymers of styrene and butadiene, isoprene or ethylene-butylene rubber, copoly(ether-amide), polyphenylene oxide resins or blends thereof, and thermoplastic polyesters.
  • ionomers primarily or fully non-ionomeric thermoplastic materials
  • vinyl resins polyolefins, polyurethanes, polyureas, polyamides, acrylic resins and blends thereof
  • olefinic thermoplastic rubbers block copolymers of styrene and butadiene, isoprene or ethylene-butylene rubber, copoly(
  • the range of thicknesses for an intermediate layer of a golf ball is large because of the vast possibilities when using an intermediate layer, i.e., as an outer core layer, an inner cover layer, a wound layer, a moisture/vapor barrier layer.
  • the intermediate layer, or inner cover layer may have a thickness about 0.3 inches or less.
  • the thickness of the intermediate layer is from about 0.002 inches to about 0.1 inches, and preferably about 0.01 inches or greater.
  • the intermediate layer and/or inner cover layer may have a thickness ranging from about 0.010 inches to about 0.06 inches.
  • the intermediate layer thickness is about 0.05 inches or less, or about 0.01 inches to about 0.045 inches for example.
  • the hardness may for example be about 50 Shore D or greater, more preferably about 55 Shore D or greater, and most preferably about 60 Shore D or greater.
  • the inner cover has a Shore D hardness of about 62 to about 90 Shore D.
  • the inner cover has a hardness of about 68 Shore D or greater.
  • the thickness of the inner cover layer is preferably about 0.015 inches to about 0.100 inches, more preferably about 0.020 inches to about 0.080 inches, and most preferably about 0.030 inches to about 0.050 inches, but once again, may be changed to target playing characteristics.
  • the cover typically has a thickness to provide sufficient strength, good performance characteristics, and durability.
  • the cover thickness may for example be from about 0.02 inches to about 0.12 inches, or about 0.1 inches or less.
  • the cover may be part of a two-piece golf ball and have a thickness ranging from about 0.03 inches to about 0.09 inches.
  • the cover thickness may be about 0.05 inches or less, or from about 0.02 inches to about 0.05 inches, or from about 0.02 inches and about 0.045 inches.
  • the cover may be a single-, dual-, or multi-layer cover and have an overall thickness for example within a range having a lower limit of 0.010 or 0.020 or 0.025 or 0.030 or 0.040 or 0.045 inches and an upper limit of 0.050 or 0.060 or 0.070 or 0.075 or 0.080 or 0.090 or 0.100 or 0.150 or 0.200 or 0.300 or 0.500 inches.
  • the cover may be a single layer having a thickness of from 0.010 or 0.020 or 0.025 inches to 0.035 or 0.040 or 0.050 inches.
  • the cover may consist of an inner cover layer having a thickness of from 0.010 or 0.020 or 0.025 inches to 0.035 or 0.050 inches and an outer cover layer having a thickness of from 0.010 or 0.020 or 0.025 inches to 0.035 or 0.040 inches.
  • the outer cover preferably has a thickness within a range having a lower limit of about 0.004 or 0.010 or 0.020 or 0.030 or 0.040 inches and an upper limit of about 0.050 or 0.055 or 0.065 or 0.070 or 0.080 inches.
  • the thickness of the outer cover is about 0.020 inches or less.
  • the outer cover preferably has a surface hardness of 75 Shore D or less, 65 Shore D or less, or 55 Shore D or less, or 50 Shore D or less, or 50 Shore D or less, or 45 Shore D or less.
  • the outer cover has hardness in the range of about 20 to about 70 Shore D. In one example, the outer cover has hardness in the range of about 25 to about 65 Shore D.
  • the cover may be a single layer having a surface hardness for example of 60 Shore D or greater, or 65 Shore D or greater.
  • the cover is formed from a composition having a material hardness of 60 Shore D or greater, or 65 Shore D or greater.
  • the cover may be a single layer having a thickness of from 0.010 or 0.020 inches to 0.035 or 0.050 inches and formed from a composition having a material hardness of from 60 or 62 or 65 Shore D to 65 or 70 or 72 Shore D.
  • the cover is a single layer having a thickness of from 0.010 or 0.025 inches to 0.035 or 0.040 inches and formed from a composition having a material hardness of 62 Shore D or less, or less than 62 Shore D, or 60 Shore D or less, or less than 60 Shore D, or 55 Shore D or less, or less than 55 Shore D.
  • the cover is a single layer having a thickness of from 0.010 or 0.025 inches to 0.035 or 0.040 inches and formed from a composition having a material hardness of 62 Shore D or less, or less than 62 Shore D, or 60 Shore D or less, or less than 60 Shore D, or 55 Shore D or less, or less than 55 Shore D.
  • the cover may comprise an inner cover layer and an outer cover layer.
  • the inner cover layer composition may have a material hardness of from 60 or 62 or 65 Shore D to 65 or 70 or 72 Shore D.
  • the inner cover layer may have a thickness within a range having a lower limit of 0.010 or 0.020 or 0.030 inches and an upper limit of 0.035 or 0.040 or 0.050 inches.
  • the outer cover layer composition may have a material hardness of 62 Shore D or less, or less than 62 Shore D, or 60 Shore D or less, or less than 60 Shore D, or 55 Shore D or less, or less than 55 Shore D.
  • the outer cover layer may have a thickness within a range having a lower limit of 0.010 or 0.020 or 0.025 inches and an upper limit of 0.035 or 0.040 or 0.050 inches.
  • the cover is a dual- or multi-layer cover including an inner or intermediate cover layer and an outer cover layer.
  • the inner cover layer may have a surface hardness of 70 Shore D or less, or 65 Shore D or less, or less than 65 Shore D, or a Shore D hardness of from 50 to 65, or a Shore D hardness of from 57 to 60, or a Shore D hardness of 58, and a thickness within a range having a lower limit of 0.010 or 0.020 or 0.030 inches and an upper limit of 0.045 or 0.080 or 0.120 inches.
  • the outer cover layer may have a material hardness of 65 Shore D or less, or 55 Shore D or less, or 45 Shore D or less, or 40 Shore D or less, or from 25 Shore D to 40 Shore D, or from 30 Shore D to 40 Shore D.
  • the outer cover layer may have a surface hardness within a range having a lower limit of 20 or 30 or 35 or 40 Shore D and an upper limit of 52 or 58 or 60 or 65 or 70 or 72 or 75 Shore D.
  • the outer cover layer may have a thickness within a range having a lower limit of 0.010 or 0.015 or 0.025 inches and an upper limit of 0.035 or 0.040 or 0.045 or 0.050 or 0.055 or 0.075 or 0.080 or 0.115 inches.
  • one or more of the cover layers is formed from a material typically incorporated in a core or intermediate layer especially one that would present the aforementioned problems when dimpled such as displacing the material of the adjacent inner layer.
  • golf balls of the invention may also incorporate conventional coating layer(s) for the purposes usually incorporated.
  • one or more coating layer may have a combined thickness of from about 0.1 ⁇ m to about 100 ⁇ m, or from about 2 ⁇ m to about 50 ⁇ m, or from about 2 ⁇ m to about 30 ⁇ m.
  • each coating layer may have a thickness of from about 0.1 ⁇ m to about 50 ⁇ m, or from about 0.1 ⁇ m to about 25 ⁇ m, or from about 0.1 ⁇ m to about 14 ⁇ m, or from about 2 ⁇ m to about 9 ⁇ m, for example.
  • the resulting balls of this invention have good impact durability and cut/shear-resistance.
  • the United States Golf Association (“USGA”) has set total weight limits for golf balls. Particularly, the USGA has established a maximum weight of 45.93 g (1.62 ounces) for golf balls. There is no lower weight limit.
  • the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches. There is no upper limit so many golf balls have an overall diameter falling within the range of about 1.68 to about 1.80 inches.
  • the golf ball diameter is preferably about 1.68 to 1.74 inches, more preferably about 1.68 to 1.70 inches.
  • the weight, diameter, and thickness of the core and cover layers may be adjusted, as needed, so the ball meets USGA specifications of a maximum weight of 1.62 ounces and a minimum diameter of at least 1.68 inches.
  • the golf ball has a Coefficient of Restitution (CoR) of at least 0.750 and more preferably at least 0.800 (as measured per the test methods below).
  • the core of the golf ball generally has a compression in the range of about 30 to about 130 and more preferably in the range of about 70 to about 110 (as measured per the test methods below.)
  • test methods may be used to obtain or determine certain properties in connection with materials of golf balls constructed in accordance with a method of the invention.
  • the center hardness of a core is obtained according to the following procedure.
  • the core is gently pressed into a hemispherical holder having an internal diameter approximately slightly smaller than the diameter of the core, such that the core is held in place in the hemispherical of the holder while concurrently leaving the geometric central plane of the core exposed.
  • the core is secured in the holder by friction, such that it will not move during the cutting and grinding steps, but the friction is not so excessive that distortion of the natural shape of the core would result.
  • the core is secured such that the parting line of the core is roughly parallel to the top of the holder.
  • the diameter of the core is measured 90 degrees to this orientation prior to securing.
  • a rough cut is made slightly above the exposed geometric center of the core using a band saw or other appropriate cutting tool, making sure that the core does not move in the holder during this step.
  • the remainder of the core, still in the holder, is secured to the base plate of a surface grinding machine.
  • the exposed ‘rough’ surface is ground to a smooth, flat surface, revealing the geometric center of the core, which can be verified by measuring the height from the bottom of the holder to the exposed surface of the core, making sure that exactly half of the original height of the core, as measured above, has been removed to within 0.004 inches.
  • the center of the core is found with a center square and carefully marked and the hardness is measured at the center mark according to ASTM D-2240. Additional hardness measurements at any distance from the center of the core can then be made by drawing a line radially outward from the center mark, and measuring the hardness at any given distance along the line, typically in 2 mm increments from the center. The hardness at a particular distance from the center should be measured along at least two, preferably four, radial arms located 180° apart, or 90° apart, respectively, and then averaged.
  • All hardness measurements performed on a plane passing through the geometric center are performed while the core is still in the holder and without having disturbed its orientation, such that the test surface is constantly parallel to the bottom of the holder, and thus also parallel to the properly aligned foot of the durometer.
  • the outer surface hardness of a golf ball layer is measured on the actual outer surface of the layer and is obtained from the average of a number of measurements taken from opposing hemispheres, taking care to avoid making measurements on the parting line of the core or on surface defects, such as holes or protrusions.
  • Hardness measurements are made pursuant to ASTM D-2240 “Indentation Hardness of Rubber and Plastic by Means of a Durometer.” Because of the curved surface, care must be taken to ensure that the golf ball or golf ball sub-assembly is centered under the durometer indenter before a surface hardness reading is obtained.
  • a calibrated, digital durometer, capable of reading to 0.1 hardness units is used for the hardness measurements. The digital durometer must be attached to, and its foot made parallel to, the base of an automatic stand. The weight on the durometer and attack rate conforms to ASTM D-2240.
  • a point or plurality of points measured along the “positive” or “negative” gradients may be above or below a line fit through the gradient and its outermost and innermost hardness values.
  • the hardest point along a particular steep “positive” or “negative” gradient may be higher than the value at the innermost of the inner core (the geometric center) or outer core layer (the inner surface)—as long as the outermost point (i.e., the outer surface of the inner core) is greater than (for “positive”) or lower than (for “negative”) the innermost point (i.e., the geometric center of the inner core or the inner surface of the outer core layer), such that the “positive” and “negative” gradients remain intact.
  • the direction of the hardness gradient of a golf ball layer is defined by the difference in hardness measurements taken at the outer and inner surfaces of a particular layer.
  • the center hardness of an inner core and hardness of the outer surface of an inner core in a single-core ball or outer core layer are readily determined according to the test procedures provided above.
  • the outer surface of the inner core layer (or other optional intermediate core layers) in a dual-core ball are also readily determined according to the procedures given herein for measuring the outer surface hardness of a golf ball layer, if the measurement is made prior to surrounding the layer with an additional core layer. Once an additional core layer surrounds a layer of interest, the hardness of the inner and outer surfaces of any inner or intermediate layers can be difficult to determine. Therefore, for purposes of the present invention, when the hardness of the inner or outer surface of a core layer is needed after the inner layer has been surrounded with another core layer, the test procedure described above for measuring a point located 1 mm from an interface is used.
  • material hardness is measured according to ASTM D2240 and generally involves measuring the hardness of a flat “slab” or “button” formed of the material.
  • Surface hardness as measured directly on a golf ball (or other spherical surface) typically results in a different hardness value.
  • the difference in “surface hardness” and “material hardness” values is due to several factors including, but not limited to, ball construction (that is, core type, number of cores and/or cover layers, and the like); ball (or sphere) diameter; and the material composition of adjacent layers. It also should be understood that the two measurement techniques are not linearly related and, therefore, one hardness value cannot easily be correlated to the other.
  • Shore hardness (for example, Shore C or Shore D or Shore A hardness) was measured according to the test method ASTM D-2240.
  • compression refers to Soft Center Deflection Index (“SCDI”).
  • SCDI Soft Center Deflection Index
  • DCM Dynamic Compression Machine
  • a crude load/deflection curve is generated that is fit to the Atti compression scale that results in a number being generated that represents an Atti compression.
  • the DCM does this via a load cell attached to the bottom of a hydraulic cylinder that is triggered pneumatically at a fixed rate (typically about 1.0 ft/s) towards a stationary core. Attached to the cylinder is an LVDT that measures the distance the cylinder travels during the testing timeframe.
  • a software-based logarithmic algorithm ensures that measurements are not taken until at least five successive increases in load are detected during the initial phase of the test.
  • the SCDI is a slight variation of this set up.
  • the hardware is the same, but the software and output has changed.
  • the interest is in the pounds of force required to deflect a core x amount of inches. That amount of deflection is 10% percent of the core diameter.
  • the DCM is triggered, the cylinder deflects the core by 10% of its diameter, and the DCM reports back the pounds of force required (as measured from the attached load cell) to deflect the core by that amount.
  • the value displayed is a single number in units of pounds.
  • Coefficient of Restitution (“CoR”)
  • the CoR is determined according to a known procedure, wherein a golf ball or golf ball sub-assembly (for example, a golf ball core) is fired from an air cannon at two given velocities and a velocity of 125 ft/s is used for the calculations.
  • Ballistic light screens are located between the air cannon and steel plate at a fixed distance to measure ball velocity. As the ball travels toward the steel plate, it activates each light screen and the ball's time period at each light screen is measured. This provides an incoming transit time period which is inversely proportional to the ball's incoming velocity. The ball makes impact with the steel plate and rebounds so it passes again through the light screens.
  • the ball's time period at each screen is measured. This provides an outgoing transit time period which is inversely proportional to the ball's outgoing velocity.
  • Thermoset and thermoplastic layers herein may be treated in such a manner as to create a positive or negative hardness gradient within and between golf ball layers.
  • gradient-producing processes and/or gradient-producing rubber formulation may be employed. Gradient-producing processes and formulations are disclosed more fully, for example, in U.S. patent application Ser. No. 12/048,665, filed on Mar. 14, 2008; Ser. No. 11/829,461, filed on Jul. 27, 2007; Ser. No. 11/772,903, filed Jul. 3, 2007; Ser. No. 11/832,163, filed Aug. 1, 2007; Ser. No. 11/832,197, filed on Aug. 1, 2007; the entire disclosure of each of these references is hereby incorporated herein by reference.
  • a golf ball of the invention may further incorporate indicia, which as used herein, is considered to mean any symbol, letter, group of letters, design, or the like, that can be added to the dimpled surface of a golf ball.
  • Golf balls of the present invention will typically have dimple coverage of 60% or greater, preferably 65% or greater, and more preferably 75% or greater. It will be appreciated that any known dimple pattern may be used with any number of dimples having any shape or size. For example, the number of dimples may be 252 to 456, or 330 to 392 and may comprise any width, depth, and edge angle.
  • the parting line configuration of said pattern may be either a straight line or a staggered wave parting line (SWPL), for example.
  • the single-layer core may be replaced with a two or more layer core wherein at least one core layer has a hardness gradient.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

A pre-molded dimple-free golf ball is formed before dimples are created in a thermoplastic cover of the pre-molded dimple-free golf ball.

Description

    FIELD OF THE INVENTION
  • Improved methods for forming golf balls which overcome the known drawbacks associated with conventional methods/processes for creating dimples in golf balls.
  • BACKGROUND OF THE INVENTION
  • Both professional and amateur golfers use multi-piece, solid golf balls today. Basically, a two-piece solid golf ball includes a solid inner core protected by an outer cover. The inner core is made of a natural or synthetic rubber such as polybutadiene, styrene butadiene, or polyisoprene. The cover surrounds the inner core and may be made of a variety of materials including ethylene acid copolymer ionomers, polyamides, polyesters, polyurethanes, and polyureas.
  • Three-piece, four-piece, and even five-piece balls have become more popular over the years. More golfers are playing with these multi-piece balls for several reasons including new manufacturing technologies, lower material costs, and desirable ball playing performance properties. Many golf balls used today have multi-layered cores comprising an inner core and at least one surrounding outer core layer. For example, the inner core may be made of a relatively soft and resilient material, while the outer core may be made of a harder and more rigid material. The “dual-core” sub-assembly is encapsulated by a single or multi-layered cover to provide a final ball assembly. Different materials are used in these golf ball constructions to impart specific properties and playing features to the ball.
  • In recent years, golf ball manufacturers have selected polyurethane compositions as cover materials because of the relatively soft golf ball feel that can be produced without sacrificing toughness and durability. Generally, polyurethane compositions contain urethane linkages formed by reacting an isocyanate group (—N═C═O) with a hydroxyl group (OH). Polyurethanes are produced by the reaction of a multi-functional isocyanate with a polyol in the presence of a catalyst and other additives. The chain length of the polyurethane prepolymer is extended by reacting it with hydroxyl-terminated and amine curing agents. Depending on the type of curing agent used, the polyurethane composition may be thermoplastic or thermoset in nature.
  • Thermoplastic polyurethanes (TPU) are desirable because they have good processability, possess good melt-flow properties, and create bonds that can be softened and reversibly broken by increasing temperature during molding or extrusion and then returned to original condition when cooled. Minimal crosslinking results in thermoplastic polyurethane materials primarily from hydrogen bonding or other physical mechanism in the polymer network. Thermoset polyurethanes, in contrast, generally have a high level of cross-linking and form bonds that become irreversibly set once the thermoset polyurethane is cured, and are therefore often more rigid than thermoplastic polyurethanes, which in contrast tend to be more flexible. For this reason, multiple conventional molding methods have been used to form a cover layer of TPU material about a core/subassembly. Common conventional methods/processes for molding thermoplastic cover layers about a core or other subassembly include injection-molding, compression molding, and/or casting.
  • When an injection molding process such as retractable pin injection molding (RPIM) is used, the TPU cover material is injected into a dimpled cavity mold and formed about inner layers. Unfortunately, in conventional RPIM molding processes, molding temperatures are typically very high (e.g., above 450° F.), especially for thin-wall covers, which can cause a significant amount of inner layer material to displace, and among other problems, produce a flash line around the equator of the molded golf ball. Additionally, conventional means of counteracting reduced melt flow or thin wall molding in RPIM such as increased gate size can result in further manufacturing issues such as increased material displacement of a Surlyn® layer behind the gates. Moreover, RPIM tooling clearances are generally reduced by the presence of dimples in the mold cups, which undesirably necessitates a larger cavity diameter and corresponding cover wall thickness.
  • With compression molding, dimpled or un-dimpled pre-molded hemispheres of TPU material are placed into dimpled mold cups and fused together about the core/subassembly. Aligning the dimple arrangement at the joint where two half-shells melt and flow together about the core/subassembly can be difficult. Meanwhile, in a conventional compression molding process, the entirety of the material of mold cups is heated because the cups are molded about the core/subassembly and fused together at seams while or after the mold cups are dimpled. This process can take up to 6-8 minutes and result in significant melting and displacing of inner layer materials such as ionomers.
  • It has been difficult to solve/eliminate these problems and still achieve/preserve uniform cover layer thickness for golf ball symmetry. In this regard, in order to provide top performance, a golf ball must perform identically when hit from any direction and therefore must be symmetrical about any axis. Without such symmetry, spin rates, and therefore lift and distance, will vary depending on the particular angular orientation of the ball.
  • Accordingly, symmetry, and therefore concentricity, must be precisely controlled in any ball molding process. And while casting methods are typically capable of creating a uniform cover layer thickness, the core/subassembly can become undesirably non-centered within the cast cover layer.
  • A need therefore remains for new and improved golf ball manufacturing processes for dimpling TPU covers during the golf ball manufacturing process that eliminate the heretofore described processing problems and constructional limitations currently associated with dimpling the golf ball while molding the cover about the core or other subassembly. The method of the invention and resulting golf ball address and solve these needs.
  • SUMMARY OF THE INVENTION
  • Advantageously, a method of the invention creates dimples in the thermoplastic cover of a dimple-free golf ball after the cover has been pre-molded about the subassembly rather than prior to or during the cover molding process. This enables cover molding to occur at a temperature below which current molding problems are occurring in conventional golf ball molding methods/processes and therefore resolve such problems as significant displacement of adjacent inner layer material, appearance of surface defects necessitating costly finishing steps, and/or the cover layer thickness limitations which accompany the tooling restrictions when forming dimples in the cover layer prior to or while molding the cover about a subassembly.
  • In one embodiment of a the method of the invention, a subassembly is formed comprising a core; and a pre-molded dimple-free golf ball is formed by molding a thermoplastic cover about the subassembly using a mold that is configured to form a smooth outer surface on the thermoplastic cover at a molding temperature Tdf. A compression mold press is provided having at least one pair of mold cavities wherein each of a top mold cavity and a bottom mold cavity of the pair is configured to form a predetermined dimple pattern on the outer surface of the pre-molded dimple-free golf ball. The pre-molded dimple free-golf ball is deposited into the bottom mold cavity; said top mold cavity and bottom mold cavity are closed about the pre-molded dimple-free golf ball at a first temperature and pressure; and then a molding cycle is applied sufficient to form a golf ball wherein an outer surface of the thermoplastic cover contains the predetermined dimple pattern; wherein the molding cycle has a temperature Tcm that is lower than Tdf.
  • In one embodiment, the thermoplastic cover is injection molded about the subassembly using mold sections having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover. In another embodiment, the thermoplastic cover is compression molded about the subassembly using a pair of mold cavities having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover.
  • In a particular embodiment, the thermoplastic cover comprises at least one thermoplastic polyurethane.
  • The subassembly may further comprise an outermost layer that is disposed between the core and the thermoplastic cover; wherein the outermost layer comprises an ionomer composition.
  • In one embodiment, the core comprises an inner core surrounded by an outer core layer.
  • The pre-molded dimple-free golf ball may have a diameter of greater than 1.68 inches.
  • In an alternative embodiment, the pre-molded dimple-free golf ball has a diameter of greater than 1.70 inches.
  • In one embodiment, the thermoplastic cover has a thickness of from about 0.25 ches to about 0.045 inches.
  • Temperature Tcm may be less than temperature Tdf by at least 40° F. In a particular embodiment, temperature Tcm is less than temperature Tdf by from about 90° F. to about 170° F. In another embodiment, temperature Tcm is less than temperature Tdf by from about 120° F. to about 170° F.
  • In a specific embodiment, temperature Tcm may be applied for a duration of from about 1 minute to about 3 minutes.
  • A golf ball made according the method of the invention may have a diameter of less than about 1.70 inches. In an alternative embodiment, the golf ball may have a diameter of from about 1.68 inches to about 1.70 inches.
  • Meanwhile, the subassembly may further comprises an outermost layer that is disposed between the core and the thermoplastic cover; wherein the outermost layer comprises an ionomer composition. In a particular embodiment, the core comprises an inner core surrounded by an outer core layer.
  • In a specific embodiment, the golf ball may have a diameter of from about 1.68 inches to 1.70 inches; the core may have a diameter of from about 1.530 inches to 1.560 inches; and the subassembly may have a diameter of from about 1.610 inches to 1.640 inches.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other aspects of the method of the present invention may be more fully understood with reference to, but not limited by, the following drawings which should be read in connection with the detailed description further below, and wherein like numerals appearing in the drawings represent like parts:
  • FIG. 1A depicts one step of a conventional compression molding process for forming a cover about the subassembly using dimpled mold cups;
  • FIG. 1B depicts one step of conventional injection molding process for forming a cover about the subassembly using dimpled mold cups;
  • FIG. 2A depicts one step of a method for compression molding a cover about a subassembly and forming a pre-molded dimple-free golf ball using dimple-free mold cups;
  • FIG. 2B depicts one step of a method for injection molding a cover about a subassembly and forming a pre-molded dimple-free golf ball using dimple-free mold cups; and
  • FIG. 3 depicts one step of a method of the invention for compression molding dimples into an outer surface of a pre-molded dimple-free golf ball using dimpled mold cups.
  • DETAILED DESCRIPTION
  • Advantageously, in a method of the invention, dimples are created in the outer surface of a pre-molded golf ball. The cover material, preferably thermoplastic, is pre-molded over a subassembly prior to dimpling the outer surface of the cover, thereby eliminating and/or minimizing drawbacks/problems that could occur in conventional molding processes wherein dimpling is performed before or during molding of the cover about the subassembly which necessitated exposing inner layers to very high temperatures for undesirable durations. Such problems associated with conventional molding processes include, for example, significant displacement of material of an adjacent inner layer; the need for costly finishing steps due to the appearance of flash lines and other surface imperfections; and/or cover thickness limitations associated with the tooling restrictions when forming dimples in the golf ball cover prior to or during the cover molding process.
  • In one embodiment of a method of the invention, a pre-molded dimple-free golf ball is formed and provided. The pre-molded dimple-free golf ball preferably has a thermoplastic cover, and most preferably, the thermoplastic cover comprises thermoplastic polyurethane. Each pre-molded dimple-free golf ball can be formed via molding processes such as depicted in FIG. 2A or FIG. 2B and described herein further below.
  • While it is envisioned that a method of the invention can be used to create dimples in the outer surface of a unitary golf ball, preferably the golf ball has a cover that is disposed about a subassembly having one or more layers. The method of the invention is particularly useful when a thermoplastic polyurethane cover is disposed about and adjacent to a subassembly that has an ionomer-based outermost layer or other thermoplastic material that is vulnerable to displacement during cover molding and dimpling in conventional methods/processes due to the sustained exposure to very high molding temperatures. In fact, the method of the invention is also advantageous in golf ball constructions wherein two or more inner ionomer layers are encased by the pre-molded dimple-free thermoplastic cover.
  • That being said, a subassembly is formed comprising a core; and a pre-molded dimple-free golf ball is formed by molding a thermoplastic cover about the subassembly using a mold that is configured to form a smooth outer surface on the thermoplastic cover at a molding temperature Tdf.
  • The subassembly may comprise a single core/sphere or have multiple layers. For example, in one non-limiting example, the subassembly may comprise a single ionomer-based core or comprise an inner core and an outer layer comprising or consisting of the ionomer-based material. The outer layer may be any known type of intermediate layer such as a film layer, moisture barrier layer and/or outer core layer, as well as a casing layer, and/or inner cover layer.
  • The dimple-free pre-molded golf ball may be deposited or otherwise placed into/within/between a pair of dimple mold cavities housed within a compression molding press. Each pair of mold cavities (top mold cavity and a bottom mold cavity) is configured (collectively sized and shaped) to receive the dimple-free pre-molded golf ball; and each mold cavity of the pair has an inner surface comprised of a predetermined dimple pattern. The inner surface/predetermined dimple pattern contacts the dimple-free outer surface of the pre-molded golf ball deposited there between when the compression molding press is closed under contact pressure at a first temperature and pressure; and then a molding cycle is applied sufficient to form a golf ball wherein an outer surface of the thermoplastic cover contains the predetermined dimple pattern; wherein the molding cycle has a temperature Tcm that is lower than Tdf. The predetermined dimple pattern is thereby formed/created in the outer surface of the dimple-free pre-molded golf ball, without displacing adjacent inner layer material.
  • In one embodiment, the thermoplastic cover is injection molded about the subassembly using mold sections having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover. In another embodiment, the thermoplastic cover is compression molded about the subassembly using a pair of mold cavities having inner surfaces that are configured to form the smooth outer surface on the thermoplastic cover.
  • In this regard, it is recognized that while the inner layer material generally will not soften or displace at all using the method of the invention, it is possible that in some embodiments an insignificant amount of displaced inner layer material might be detectable but is nevertheless insufficient to change or otherwise impact golf ball durability, targeted golf ball properties and/or visual appearance of the finished dimpled golf ball. Accordingly, the phrase “without displacing adjacent inner layer material” is intended to extend to and include/encompass such insignificant albeit detectable amounts of displaced inner layer material that might possibly soften or displace while a golf ball outer surface is dimpled using the method of the invention.
  • Subsequently, the temperature of the compression molding press is reduced from temperature Tcm, and the golf ball is then demolded or otherwise removed from within the pair of mold cavities. The golf ball can be warm when removed from the compression molding press as long as the dimpled material of the cover has re-solidified sufficiently after dimples are created/formed into the outer surface of the previously dimple-free thermoplastic cover to prevent damage to the dimpled outer surface of the resulting dimpled golf ball.
  • In a particular embodiment, temperature Tcm is applied for a duration of from about 1 minute to less than about 3 minutes, in sharp contrast with conventional compression molding times which can be as long as 6-8 minutes. In a particular embodiment, the dimple-free thermoplastic cover may comprise a thermoplastic polyurethane.
  • In one specific embodiment, the subassembly has an outermost layer that is disposed between the core and the thermoplastic cover and comprises an ionomer composition. In one such embodiment, the dimple-free thermoplastic cover is pre-molded about the outermost layer by injection-molding. In a specific such embodiment, the dimple-free thermoplastic polyurethane cover has a thickness of less than 0.025 inches.
  • In one embodiment, the outermost layer of the subassembly is a casing layer having a thickness of 0.035 inches and surrounds a core having a diameter of about 1.550 inches. In a different embodiment, the dimple-free thermoplastic polyurethane cover is pre-molded about the outermost layer of the subassembly via compression molding. In a specific such embodiment, the dimple-free thermoplastic polyurethane cover has a thickness of 0.045 inches.
  • In one embodiment, the outermost layer of the subassembly surrounds a core comprised of at and inner core and an outer core layer. In a different embodiment, the outermost layer surrounds a single core. In a particular embodiment, the core has a geometric hardness and a surface hardness that differ by greater than 16 Shore C, and the surface hardness is less than a hardness of the inner cover layer. In a specific such embodiment, the cover has a diameter of 1.680 inches, wherein the core has a diameter of 1.550 inches and the subassembly has a diameter of 1.640 inches.
  • In many embodiments, it is preferred that the pre-molded dimple-free golf ball have a diameter that is greater than a diameter of the dimpled golf ball (following dimpling via compression molding). For example, in one embodiment, a dimple-free thermoplastic polyurethane cover is injection molded about a subassembly comprised of an ionomer-cased core producing a pre-molded dimple-free golf ball having a diameter of 1.710 inches, which is then compression molded according to a method of the invention in mold cups sized and shaped to produce a dimpled golf ball having a diameter of 1.682 inches.
  • In yet another specific embodiment, the dimple-free golf ball has a diameter of 1.7 inches or greater and the dimple-free thermoplastic polyurethane cover is injection molded about the subassembly to form the pre-molded dimple-free golf ball. However, embodiments are indeed envisioned wherein the pre-molded dimple-free golf ball has a diameter of less than 1.7 inches after being injection molded about the subassembly to form the pre-molded dimple-free golf ball.
  • The dimple-free thermoplastic cover may be pre-molded about the subassembly using compression molding or retractable pin injection molding (“RPIM”) methods/processes wherein the respective mold cavities have smooth inner surfaces (dimple-free) as shown in FIG. 2A and
  • FIG. 2B, respectively.
  • The inner surface contour of the mold cavities surrounds, fully encases and contacts the dimple-free thermoplastic outer surface of the dimple-free pre-molded golf ball and dimples are created in the outer surface. Advantageously, in a method of the invention, pre-molding the thermoplastic cover about the subassembly before dimpling the outer surface of the cover permits a pre-molding temperature to be used to pre-mold the golf ball that is lower than conventional damaging RPIM temperatures. And meanwhile, only the outer surface being dimpled need be heated, which prevents damage to and significant displacement of inner layer material.
  • Accordingly, in a method of the invention, the pre-molding temperature can be any temperature at which the adjacent inner layer material can sustain cover over-molding at the given molding time without damaging the inner layer material. For example, in many cases such as when the inner layer material is ionomer, that temperature may be as high as about 450° F., especially when RPIM is used, wherein molding time can be as short as 35-40 seconds.
  • However, the dimpling temperature will always be less than the pre-molding temperature. And desirably, in many cases, a dimpling temperature within the range of about 280° F. to 380° F. is favorably suitable.
  • In a different example, if a cover pre-molding temperature greater than 440° F. would displace adjacent inner layer material during a cover pre-molding compression molding process, then a pre-molding temperature less than 440° F. can be used in a method of the invention to compression pre-molded dimple-free thermoplastic cover half-shells about the subassembly followed by using a dimpling temperature lower than the pre-molding temperature by from about 60° F. to about 160° F. to dimple the pre-molded cover outer surface. In alternative embodiments, a temperature difference between pre-molding temperature and dimpling temperature can be at least 40° F.; or from about 90° F. to less than about 120° F.; or alternatively, can be as high as from about 120° F. to about 170° F.
  • However, in a method of the invention, the minimum required temperature differential between pre-molding temperature and dimpling temperature will vary depending on the choice of the particular thermoplastic cover material and/or adjacent inner layer material selected and the temperature at which that material degrades, drools, deforms, etc. For example, embodiments are envisioned wherein the dimpling temperature may be less than the pre-molding temperature by less than 10° F., or by at least 10° F., or by at least 20° F., or by at least 25° F., or by at least 30° F., or by at least 35° F., or by at least 40° F., or by at least 45° F., or by at least 50° F., or by at least 55° F., or by at least 60° F., or by at least 65° F., or by at least 70° F., or by at least 75° F., or by at least 80° F., or from 90° F. to about 120° F., or by at least 100° F., or by from 100° F. to about 170° F., or by at least 120° F., or by from 120° F. to about 170° F., or by at least 130° F., or by from 130° F. to about 170° F., or by at least 140° F., or by from 140° F. to about 170° F., or by at least 150° F., or by from 150° F. to about 170° F., or by at least 160° F. Regardless, advantageously, the method of the invention permits a pre-molding temperature/dimpling temperature differential.
  • Meanwhile, in most embodiments, the first temperature will be lower than each of the pre-molding temperature and the dimpling temperature. However, the first temperature can be any temperature at which the dimple-free outer surface can contact the dimple contour/configuration of the inner surface of the pair of mold cavities under contact pressure without causing displacement of or otherwise damaging the material of the adjacent inner layer prior to exerting the dimpling temperature. Therefore, in some embodiments, the first temperature could be room temperature or possibly lower; while in other embodiments the first temperature could be greater than room temperature as long as the material of the adjacent inner layer isn't displaced or the golf ball isn't otherwise damaged while the pair of mold cavities are closed under contact pressure.
  • Thus, the pre-molding temperature may be greater than the first temperature by less than 10° F. or by as much as 400° F. or greater. In alternative embodiments, the pre-molding temperature may be greater than the first temperature by at least 10° F., or by at least 40° F., or by at least 70° F., or by at least 100° F., or by at least 120° F., or by at least 150° F., or by at least 170° F., or by at least 200° F., or by at least 235° F., or by at least 270° F., or by at least 300° F., or by at least 350° F., or by at least 375° F., or by at least 400° F.
  • In a conventional RPIM system, a temperature of about 480° F. can sometimes be required when using a dimpled mold to form a dimpled thermoplastic cover about a subassembly. Such a temperature can cause displacement of ionomer-based material of an adjacent outermost subassembly layer. In contrast, in a method of the invention, using RPIM having a dimple-free mold can first mold a dimple-free thermoplastic cover about the subassembly at pre-molding temperatures as low as for example 380-450° F., followed by subsequent compression molding of dimples in the pre-molded golf ball's thermoplastic outer surface using a lower temperature and for a shorter duration than that needed to conventionally compression mold pre-formed mold cups about a subassembly and fuse the seam and align dimples of the pre-formed mold cups. lonomer of the adjacent subassembly layer doesn't displace because the subsequent temperature applied can be lower than the pre-molding temperature and for a shorter duration than for conventional compression molding. Often, the dimpling temperature can be in the range of from about 280° F.-about 380° F. Once again, ionomer of one or more adjacent subassembly layer(s) doesn't significantly displace during dimpling because the subsequent lower temperature used during dimpling can be applied to prevent that.
  • The need for finishing steps such as flash-trimming, surface-treatment, and/or marking is/are thereby generally significantly reduced if not eliminated using a method of the invention. Compression molding dimples into the cover outer surface after a dimple-free golf ball is otherwise molded/formed can desirably displace enough TPU cover material to correct lessen or eliminate the impact of process artifacts defects including pin holes, flow lines, crow's feet, pin flash, gate vestiges, etc.
  • Processing TPU outer cover materials becomes easier by eliminating the RPIM tooling clearance restrictions typically associated with forming dimples in the cover before or during molding of the cover material about the subassembly. Mold cup cavity diameter and therefore possible cover thickness are increased using a method of the invention, especially for low melt flow TPU materials.
  • One or more coating layers may of course always be applied as desired about the resulting dimpled golf ball via methods such as spraying, dipping, brushing, or rolling.
  • FIG. 1A depicts one step of a conventional compression molding process for molding thermoplastic cover 2 about subassembly 4 using dimpled mold cavities 6. Meanwhile, FIG. 1B depicts one step of a conventional injection molding process for molding cover material about subassembly 4 in a dimpled mold 8 with pins 10 that position subassembly 4 within dimpled mold 8 and retract before the cover material cures completely.
  • In contrast, FIG. 2A depicts one step of one possible system for compression molding a dimple-free thermoplastic cover 12 about subassembly 4 using dimple-free (smooth inner surfaced) mold cavities 14 to pre-mold a dimple-free golf ball. And in turn, FIG. 2B depicts a step of one possible arrangement for injection molding a cover material about subassembly 4 using dimple-free mold cavities 16 with pins 10 that position subassembly 4 within dimple-free (smooth inner surfaced) mold 16 and retract before the cover material cures completely to pre-mold a dimple-free golf ball.
  • Meanwhile, FIG. 3 depicts one step of a method of the invention for compression molding dimples into dimple-free outer surface 18 of pre-molded dimple-free golf ball 20 using dimpled mold cavities 22. (Golf ball 20 is pre-formed without dimples using compression molding or injection molding process steps such as depicted in FIG. 2A or FIG. 2B).
  • In conventional RPIM, a thermoplastic material such as urethane is injected into a dimpled mold and about a subassembly such as an ionomer cased, polybutadiene core—typically at barrel temperatures of from about 450° F. to about 490° F., depending on the casing layer thickness. Unfortunately, at these temperatures, a molding time of only 30-35 seconds is enough to degrade urethane, causing processing issues, and displace ionomer behind the gates. Material can ooze out of the barrel when preparing for next cycle, pin flash can be produced, and instability can result regarding amount of TPU dispensed cycle to cycle, with smoking sometimes even occurring when the processing temperature is at 490° F.
  • Meanwhile, conventional compression molding can take up to 6-8 minutes at temperatures of from about 400° F. to about 450° F. because the entirety of the material of the half-shells is melted, molded and seams fused.
  • In a method of the invention, compression molding dimples into the outer surface of an otherwise already molded golf ball requires only enough heat to melt the outer surface—a lower temperature of from about 280° F. to 380° F.—and for about only 1 to about 2 minutes, avoiding the aforementioned difficulties associated with conventional compression molding and/or RPIM.
  • A pre-molded dimple-free golf ball comprising a thermoplastic cover and disposed about a subassembly may therefore be provided. Also provided is a compression mold press having at least one pair of mold cavities wherein each of a top mold cavity and a bottom mold cavity of the pair is defined by a predetermined dimple pattern. The pre-molded dimple free-golf ball is deposited into the bottom mold cavity; and the top mold cavity and bottom mold cavity are closed about the pre-molded dimple-free golf ball at a first temperature and pressure and then a molding cycle is applied sufficient to form a golf ball wherein an outer surface of the thermoplastic cover contains the predetermined dimple pattern. Additionally, the molding cycle has a molding cycle temperature (Tcm) that is lower than at least one of the first temperature (Tf) and a temperature (Tdf) at which the thermoplastic cover is pre-molded about the subassembly dimple-free.
  • The method of the invention is especially suitable for dimpling a pre-molded cover comprising or consisting of thermoplastic polymers requiring comparatively high temperatures to create dimples in the outer surface prior to or while molding the cover about a subassembly. Examples of such suitable thermoplastic polymers include thermoplastic polyurethane(s), thermoplastic urea(s), thermoplastic urea-urethane hybrid(s), or combinations/blends thereof. However, it is envisioned that the inventive dimpling method may be used to create dimples in a wide range of other thermoplastic cover materials.
  • Thermoplastic polyurethanes are particularly desirable as an outer cover layer material for at least the reasons described further above. Non-limiting examples of suitable thermoplastic polyurethanes include TPUs sold under the tradenames of Texin® 250, Texin® 255, Texin® 260, Texin® 270, Texin®950U, Texin® 970U,Texin®1049, Texin®990DP7-1191, Texin® DP7-1202, Texin®990R, Texin®993, Texin®DP7-1049, Texin® 3203, Texin® 4203, Texin® 4206, Texin® 4210, Texin® 4215, and Texin® 3215, each commercially available from Covestro LLC, Pittsburgh Pa.; Estane® 50 DT3, Estane®58212, Estane®55DT3, Estane®58887, Estane®EZ14-23A, Estane®ETE 50DT3, each commercially available from Lubrizol Company of Cleveland, Ohio; and Elastollan®WY1149, Elastollan®1154D53, Elastollan®1180A, Elastollan®1190A, Elastollan®1195A, Elastollan®1185AW, Elastollan®1175AW, each commercially available from BASF; Desmopan® 453, commercially available from Bayer of Pittsburgh, Pa., and the E-Series TPUs, such as D 60 E 4024 commercially available from Huntsman Polyurethanes of Germany.
  • In general, polyurethanes contain urethane linkages formed by reacting an isocyanate group (—N═C═O) with a hydroxyl group (OH). The polyurethanes are produced by the reaction of a multi-functional isocyanate (NCO—R—NCO) with a long-chain polyol having terminal hydroxyl groups (OH—OH) in the presence of a catalyst and other additives. The chain length of the polyurethane prepolymer is extended by reacting it with short-chain diols (OH—R′—OH). The resulting polyurethane has elastomeric properties because of its “hard” and “soft” segments, which are covalently bonded together. This phase separation occurs because the mainly non-polar, low melting soft segments are incompatible with the polar, high melting hard segments. The hard segments, which are formed by the reaction of the diisocyanate and low molecular weight chain-extending diol, are relatively stiff and immobile. The soft segments, which are formed by the reaction of the diisocyanate and long chain diol, are relatively flexible and mobile. Because the hard segments are covalently coupled to the soft segments, they inhibit plastic flow of the polymer chains, thus creating elastomeric resiliency.
  • By the term, “isocyanate compound” as used herein, it is meant any aliphatic or aromatic isocyanate containing two or more isocyanate functional groups. The isocyanate compounds can be monomers or monomeric units, because they can be polymerized to produce polymeric isocyanates containing two or more monomeric isocyanate repeat units. The isocyanate compound may have any suitable backbone chain structure including saturated or unsaturated, and linear, branched, or cyclic. By the term, “polyamine” as used herein, it is meant any aliphatic or aromatic compound containing two or more primary or secondary amine functional groups. The polyamine compound may have any suitable backbone chain structure including saturated or unsaturated, and linear, branched, or cyclic. The term “polyamine” may be used interchangeably with amine-terminated component. By the term, “polyol” as used herein, it is meant any aliphatic or aromatic compound containing two or more hydroxyl functional groups. The term “polyol” may be used interchangeably with hydroxy-terminated component.
  • Thermoplastic polyurethanes have minimal cross-linking; any bonding in the polymer network is primarily through hydrogen bonding or other physical mechanism. Because of their lower level of cross-linking, thermoplastic polyurethanes are relatively flexible. The cross-linking bonds in thermoplastic polyurethanes can be reversibly broken by increasing temperature such as during molding or extrusion. That is, the thermoplastic material softens when exposed to heat and returns to its original condition when cooled. On the other hand, thermoset polyurethanes become irreversibly set when they are cured. The cross-linking bonds are irreversibly set and are not broken when exposed to heat. Thus, thermoset polyurethanes, which typically have a high level of cross-linking, are relatively rigid.
  • Aromatic polyurethanes can be prepared in accordance with this invention and these materials are preferably formed by reacting an aromatic diisocyanate with a polyol. Suitable aromatic diisocyanates that may be used in accordance with this invention include, for example, toluene 2,4-diisocyanate (TDI), toluene 2,6-diisocyanate (TDI), 4,4′-methylene diphenyl diisocyanate (MDI), 2,4′-methylene diphenyl diisocyanate (MDI), polymeric methylene diphenyl diisocyanate (PMDI), p-phenylene diisocyanate (PPDI), m-phenylene diisocyanate (PDI), naphthalene 1,5-diisocynate (NDI), naphthalene 2,4-diisocyanate (NDI), p-xylene diisocyanate (XDI), and homopolymers and copolymers and blends thereof. The aromatic isocyanates are able to react with the hydroxyl or amine compounds and form a durable and tough polymer having a high melting point. The resulting polyurethane generally has good mechanical strength and cut/shear-resistance.
  • Aliphatic polyurethanes also can be prepared in accordance with this invention and these materials are preferably formed by reacting an aliphatic diisocyanate with a polyol. Suitable aliphatic diisocyanates that may be used in accordance with this invention include, for example, isophorone diisocyanate (IPDI), 1,6-hexamethylene diisocyanate (HDI), 4,4′-dicyclohexylmethane diisocyanate (“H12 MDI”), meta-tetramethylxylyene diisocyanate (TMXDI), trans-cyclohexane diisocyanate (CHDI), and homopolymers and copolymers and blends thereof. Particularly suitable multi-functional isocyanates include trimers of HDI or H12 MDI, oligomers, or other derivatives thereof. The resulting polyurethane generally has good light and thermal stability.
  • Any polyol available to one of ordinary skill in the art is suitable for use according to the invention. Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols. In one preferred embodiment, the polyol includes polyether polyol. Examples include, but are not limited to, polytetramethylene ether glycol (PTMEG) which is particularly preferred, polyethylene propylene glycol, polyoxypropylene glycol, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups.
  • In another embodiment, polyester polyols are included in the polyurethane material. Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol; polybutylene adipate glycol; polyethylene propylene adipate glycol; o-phthalate-1,6-hexanediol; poly(hexamethylene adipate) glycol; and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In still another embodiment, polycaprolactone polyols are included in the materials of the invention. Suitable polycaprolactone polyols include, but are not limited to: 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethylol propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In yet another embodiment, polycarbonate polyols are included in the polyurethane material of the invention. Suitable polycarbonates include, but are not limited to, polyphthalate carbonate and poly(hexamethylene carbonate) glycol. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In one embodiment, the molecular weight of the polyol is from about 200 to about 4000.
  • There are two basic techniques that can be used to make the polyurethanes: a) one-shot technique, and b) prepolymer technique. In the one-shot technique, the diisocyanate, polyol, and hydroxyl-terminated chain-extender (curing agent) are reacted in one step. On the other hand, the prepolymer technique involves a first reaction between the diisocyanate and polyol compounds to produce a polyurethane prepolymer, and a subsequent reaction between the prepolymer and hydroxyl-terminated chain-extender. As a result of the reaction between the isocyanate and polyol compounds, there will be some unreacted NCO groups in the polyurethane prepolymer. The prepolymer should have less than 14% unreacted NCO groups. Preferably, the prepolymer has no greater than 8.5% unreacted NCO groups, more preferably from 2.5% to 8%, and most preferably from 5.0% to 8.0% unreacted NCO groups. As the weight percent of unreacted isocyanate groups increases, the hardness of the composition also generally increases.
  • Either the one-shot or prepolymer method may be employed to produce the polyurethane compositions of the invention. In one embodiment, the one-shot method is used, wherein the isocyanate compound is added to a reaction vessel and then a curative mixture comprising the polyol and curing agent is added to the reaction vessel. The components are mixed together so that the molar ratio of isocyanate groups to hydroxyl groups is preferably in the range of about 1.00:1.00 to about 1.10:1.00. In a second embodiment, the prepolymer method is used. In general, the prepolymer technique is preferred because it provides better control of the chemical reaction. The prepolymer method provides a more homogeneous mixture resulting in a more consistent polymer composition. The one-shot method results in a mixture that is inhomogeneous (more random) and affords the manufacturer less control over the molecular structure of the resultant composition.
  • The polyurethane compositions can be formed by chain-extending the polyurethane prepolymer with a single chain-extender or blend of chain-extenders as described further below. As discussed above, the polyurethane prepolymer can be chain-extended by reacting it with a single chain-extender or blend of chain-extenders. In general, the prepolymer can be reacted with hydroxyl-terminated curing agents, amine-terminated curing agents, and mixtures thereof. The curing agents extend the chain length of the prepolymer and build-up its molecular weight. In general, thermoplastic polyurethane compositions are typically formed by reacting the isocyanate blend and polyols at a 1:1 stoichiometric ratio. Thermoset compositions, on the other hand, are cross-linked polymers and are typically produced from the reaction of the isocyanate blend and polyols at normally a 1.05:1 stoichiometric ratio
  • A catalyst may be employed to promote the reaction between the isocyanate and polyol compounds for producing the prepolymer or between prepolymer and chain-extender during the chain-extending step. Preferably, the catalyst is added to the reactants before producing the prepolymer. Suitable catalysts include, but are not limited to, bismuth catalyst; zinc octoate; stannous octoate; tin catalysts such as bis-butyltin dilaurate, bis-butyltin diacetate, stannous octoate; tin (II) chloride, tin (IV) chloride, bis-butyltin dimethoxide, dimethyl-bis[1-oxonedecyl)oxy]stannane, di-n-octyltin bis-isooctyl mercaptoacetate; amine catalysts such as triethylenediamine, triethylamine, and tributylamine; organic acids such as oleic acid and acetic acid; delayed catalysts; and mixtures thereof. The catalyst is preferably added in an amount sufficient to catalyze the reaction of the components in the reactive mixture. In one embodiment, the catalyst is present in an amount from about 0.001 percent to about 1 percent, and preferably 0.1 to 0.5 percent, by weight of the composition.
  • The hydroxyl chain-extending (curing) agents are preferably selected from the group consisting of ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; 2-methyl-1,3-propanediol; 2-methyl-1,4-butanediol; monoethanolamine; diethanolamine; triethanolamine; monoisopropanolamine; diisopropanolamine; dipropylene glycol; polypropylene glycol; 1,2-butanediol; 1,3-butanediol; 1,4-butanediol; 2,3-butanediol; 2,3-dimethyl-2,3-butanediol; trimethylolpropane; cyclohexyldimethylol; triisopropanolamine; N,N,N′,N′-tetra-(2-hydroxypropyl)-ethylene diamine; diethylene glycol bis-(aminopropyl) ether; 1,5-pentanediol; 1,6-hexanediol; 1,3-bis-(2-hydroxyethoxy) cyclohexane; 1,4-cyclohexyldimethylol; 1,3-bis-[2-(2-hydroxyethoxy) ethoxy] cyclohexane; 2, 2′-(1,4-phenylenedioxy)diethanol, 1,3-bis-{2-[2-(2-hydroxyethoxy) ethoxy] ethoxy}cyclohexane; trimethylolpropane; polytetramethylene ether glycol (PTMEG), preferably having a molecular weight from about 250 to about 3900; and mixtures thereof.
  • Suitable amine chain-extending (curing) agents that can be used in chain-extending the polyurethane prepolymer include, but are not limited to, unsaturated diamines such as 4,4′-diamino-diphenylmethane (i.e., 4,4′-methylene-dianiline or “MDA”), m-phenylenediamine, p-phenylenediamine, 1,2- or 1,4-bis(sec-butylamino)benzene, 3,5-diethyl-(2,4- or 2,6-) toluenediamine or “DETDA”, 3,5-dimethylthio-(2,4- or 2,6-)toluenediamine, 3,5-diethylthio-(2,4- or 2,6-)toluenediamine, 3,3′-dimethyl-4,4′-diamino-diphenylmethane, 3,3′-diethyl-5,5′-dimethyl4,4′-diamino-diphenylmethane (i.e., 4,4′-methylene-bis(2-ethyl-6-methyl-benezeneamine)), 3,3′-dichloro-4,4′-diamino-diphenylmethane (i.e., 4,4′-methylene-bis(2-chloroaniline) or “MOCA”), 3,3′,5,5′-tetraethyl-4,4′-diamino-diphenylmethane (i.e., 4,4′-methylene-bis(2,6-diethylaniline), 2,2′-dichloro-3,3′,5,5′-tetraethyl-4,4′-diamino-diphenylmethane (i.e., 4,4′-methylene-bis(3-chloro-2,6-diethyleneaniline) or “MCDEA”), 3,3′-diethyl-5,5′-dichloro-4,4′-diamino-diphenylmethane, or “MDEA”), 3,3′-dichloro-2,2′,6,6′-tetraethyl-4,4′-diamino-diphenylmethane, 3,3′-dichloro-4,4′-diamino-diphenylmethane, 4,4′-methylene-bis(2,3-dichloroaniline) (i.e., 2,2′,3,3′-tetrachloro-4,4′-diamino-diphenylmethane or “MDCA”); and mixtures thereof. One particularly suitable amine-terminated chain-extending agent is Ethacure 300™ (dimethylthiotoluenediamine or a mixture of 2,6-diamino-3,5-dimethylthiotoluene and 2,4-diamino-3,5-dimethylthiotoluene.) The amine curing agents used as chain extenders normally have a cyclic structure and a low molecular weight (250 or less).
  • When the polyurethane prepolymer is reacted with hydroxyl-terminated curing agents during the chain-extending step, as described above, the resulting polyurethane composition contains urethane linkages. On the other hand, when the polyurethane prepolymer is reacted with amine-terminated curing agents during the chain-extending step, any excess isocyanate groups in the prepolymer will react with the amine groups in the curing agent. The resulting polyurethane composition contains urethane and urea linkages and may be referred to as a polyurethane/urea hybrid. The concentration of urethane and urea linkages in the hybrid composition may vary. In general, the hybrid composition may contain a mixture of about 10 to 90% urethane and about 90 to 10% urea linkages.
  • More particularly, when the polyurethane prepolymer is reacted with hydroxyl-terminated curing agents during the chain-extending step, as described above, the resulting composition is essentially a pure polyurethane composition containing urethane linkages having the following general structure:
  • Figure US20200282266A1-20200910-C00001
  • where x is the chain length, i.e., about 1 or greater, and R and R1 are straight chain or branched hydrocarbon chain having about 1 to about 20 carbons.
  • However, when the polyurethane prepolymer is reacted with an amine-terminated curing agent during the chain-extending step, any excess isocyanate groups in the prepolymer will react with the amine groups in the curing agent and create urea linkages having the following general structure:
  • Figure US20200282266A1-20200910-C00002
  • where x is the chain length, i.e., about 1 or greater, and R and R1 are straight chain or branched hydrocarbon chain having about 1 to about 20 carbons.
  • The polyurethane compositions used to form the cover layer may contain other polymer materials including, for example: aliphatic or aromatic polyurethanes, aliphatic or aromatic polyureas, aliphatic or aromatic polyurethane/urea hybrids, olefin-based copolymer ionomer compositions, polyethylene, including, for example, low density polyethylene, linear low density polyethylene, and high density polyethylene; polypropylene; rubber-toughened olefin polymers; acid copolymers, for example, poly(meth)acrylic acid, which do not become part of an ionomeric copolymer; plastomers; flexomers; styrene/butadiene/styrene block copolymers; styrene/ethylene-butylene/styrene block copolymers; dynamically vulcanized elastomers; copolymers of ethylene and vinyl acetates; copolymers of ethylene and methyl acrylates; polyvinyl chloride resins; polyamides, poly(amide-ester) elastomers, and graft copolymers of ionomer and polyamide including, for example, Pebax® thermoplastic polyether block amides, available from Arkema Inc; cross-linked trans-polyisoprene and blends thereof; polyester-based thermoplastic elastomers, such as Hytrel®, available from DuPont; polyurethane-based thermoplastic elastomers, such as Elastollan®, available from BASF; polycarbonate/polyester blends such as Xylex®, available from SABIC Innovative Plastics; maleic anhydride-grafted polymers such as Fusabone, available from DuPont; and mixtures of the foregoing materials.
  • In addition, the polyurethane compositions may contain fillers, additives, and other ingredients that do not detract from the properties of the final composition. These additional materials include, but are not limited to, catalysts, wetting agents, coloring agents, optical brighteners, cross-linking agents, whitening agents such as titanium dioxide and zinc oxide, ultraviolet (UV) light absorbers, hindered amine light stabilizers, defoaming agents, processing aids, surfactants, and other conventional additives. Other suitable additives include antioxidants, stabilizers, softening agents, plasticizers, including internal and external plasticizers, impact modifiers, foaming agents, density-adjusting fillers, reinforcing materials, compatibilizers, and the like. Some examples of useful fillers include zinc oxide, zinc sulfate, barium carbonate, barium sulfate, calcium oxide, calcium carbonate, clay, tungsten, tungsten carbide, silica, and mixtures thereof. Rubber regrind (recycled core material) and polymeric, ceramic, metal, and glass microspheres also may be used. Generally, the additives will be present in the composition in an amount between about 1 and about 70 weight percent based on total weight of the composition depending upon the desired properties.
  • Thermoplastic polyurea compositions are typically formed by reacting the isocyanate blend and polyamines at a 1:1 stoichiometric ratio. The polyurea prepolymer can be chain-extended by reacting it with a single curing agent or blend of curing agents. In general, the prepolymer can be reacted with hydroxyl-terminated curing agents, amine-terminated curing agents, or mixtures thereof. The curing agents extend the chain length of the prepolymer and build-up its molecular weight. Normally, the prepolymer and curing agent are mixed so the isocyanate groups and hydroxyl or amine groups are mixed at a 1.05:1.00 stoichiometric ratio.
  • A catalyst may be employed to promote the reaction between the isocyanate and polyamine compounds for producing the prepolymer or between prepolymer and curing agent during the chain-extending step. Preferably, the catalyst is added to the reactants before producing the prepolymer. Suitable catalysts include, but are not limited to, those identified above in connection with promoting the reaction between the isocyanate and polyol compounds for producing the prepolymer or between prepolymer and chain-extender during the chain-extending step.
  • The hydroxyl chain-extending (curing) agents are preferably selected from the same group identified above in connection with polyurethane compositions.
  • Suitable amine chain-extending (curing) agents that can be used in chain-extending the polyurea prepolymer of this invention include, but are not limited to those identified above in connection with chain-extending the polyurethane prepolymer, as well as 4,4′-bis(sec-butylamino)-diphenylmethane, N,N′-dialkylamino-diphenylmethane, trimethyleneglycol-di(p-aminobenzoate), polyethyleneglycol-di(p-aminobenzoate), polytetramethyleneglycol-di(p-aminobenzoate); saturated diamines such as ethylene diamine, 1,3-propylene diamine, 2-methyl-pentamethylene diamine, hexamethylene diamine, 2,2,4- and 2,4,4-trimethyl-1,6-hexane diamine, imino-bis(propylamine), imido-bis(propylamine), methylimino-bis(propylamine) (i.e., N-(3-aminopropyl)-N-methyl-1,3-propanediamine), 1,4-bis(3-aminopropoxy)butane (i.e., 3,3′-[1,4-butanediylbis-(oxy)bis]-1-propanamine), diethyleneglycol-bis(propylamine) (i.e., diethyleneglycol-di(aminopropyl)ether), 4,7,10-trioxatridecane-1,13-diamine, 1-methyl-2,6-diamino-cyclohexane, 1,4-diamino-cyclohexane, poly(oxyethylene-oxypropylene) diamines, 1,3- or 1,4-bis(methylamino)-cyclohexane, isophorone diamine, 1,2- or 1,4-bis(sec-butylamino)-cyclohexane, N,N′-diisopropyl-isophorone diamine, 4,4′-diamino-dicyclohexylmethane, 3,3′-dimethyl-4,4′-diamino-dicyclohexylmethane, 3,3′-dichloro-4,4′-diamino-dicyclohexylmethane, N,N′-dialkylamino-dicyclohexylmethane, polyoxyethylene diamines, 3,3′-diethyl-5,5′-dimethyl-4,4′-diamino-dicyclohexylmethane, polyoxypropylene diamines, 3,3′-diethyl-5,5′-dichloro-4,4′-diamino-dicyclohexylmethane, polytetramethylene ether diamines, 3,3′,5,5 ‘-tetraethyl-4,4’-diamino-dicyclohexylmethane (i.e., 4,4′-methylene-bis(2,6-diethylaminocyclohexane)), 3,3′-dichloro-4,4′-diamino-dicyclohexylmethane, 2,2′-dichloro-3,3′,5,5′-tetraethyl-4,4′-diamino-dicyclohexylmethane, (ethylene oxide)-capped polyoxypropylene ether diamines, 2,2′,3,3′-tetrachloro-4,4′-diamino-dicyclohexylmethane, 4,4′-bis(sec-butylamino)-dicyclohexylmethane; triamines such as diethylene triamine, dipropylene triamine, (propylene oxide)-based triamines (i.e., polyoxypropylene triamines), N-(2-aminoethyl)-1,3-propylenediamine (i.e., N3-amine), glycerin-based triamines, (all saturated); tetramines such as N,N′-bis(3-aminopropyl)ethylene diamine (i.e., N4-amine) (both saturated), triethylene tetramine; and other polyamines such as tetraethylene pentamine (also saturated).
  • When the polyurea prepolymer is reacted with amine-terminated curing agents during the chain-extending step, as described above, the resulting composition is essentially a pure polyurea composition. On the other hand, when the polyurea prepolymer is reacted with a hydroxyl-terminated curing agent during the chain-extending step, any excess isocyanate groups in the prepolymer will react with the hydroxyl groups in the curing agent and create urethane linkages to form a polyurea-urethane hybrid. Herein, the terms urea and polyurea are used interchangeably.
  • This chain-extending step, which occurs when the polyurea prepolymer is reacted with hydroxyl curing agents, amine curing agents, or mixtures thereof, builds-up the molecular weight and extends the chain length of the prepolymer. When the polyurea prepolymer is reacted with amine curing agents, a polyurea composition having urea linkages is produced. When the polyurea prepolymer is reacted with hydroxyl curing agents, a polyurea/urethane hybrid composition containing both urea and urethane linkages is produced. The polyurea/urethane hybrid composition is distinct from the pure polyurea composition. The concentration of urea and urethane linkages in the hybrid composition may vary. In general, the hybrid composition may contain a mixture of about 10 to 90% urea and about 90 to 10% urethane linkages. The resulting polyurea or polyurea/urethane hybrid composition has elastomeric properties based on phase separation of the soft and hard segments. The soft segments, which are formed from the polyamine reactants, are generally flexible and mobile, while the hard segments, which are formed from the isocyanates and chain extenders, are generally stiff and immobile.
  • The method of the invention is ideal for dimpling an outer cover layer being formed about and adjacent to an inner layer such as a casing layer, intermediate layer, and/or an inner cover layer that is comprised of a material which could soften and deform and/or migrate into adjacent layers during over-molding of the thermoplastic outer cover layer thereabout via conventional molding processes. Such materials include but are not limited to ionomers (e.g. Surlyn®, HNPs, etc.) and blends thereof.
  • The ionomer may include, for example, partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers.
  • Ionomers, typically are ethylene/acrylic acid copolymers or ethylene/acrylic acid/acrylate terpolymers in which some or all of the acid groups are neutralized with metal cations such as na, li, mg, and/or zn. Non-limiting examples of commercially available ionomers suitable for use with the present invention include for example SURLYNs® from DuPont and Loteks® from Exxon. SURLYN® 8940 (Na), SURLYN® 9650 (Zn), and SURLYN® 9910 (Zn) are examples of low acid ionomer resins with the acid groups that have been neutralized to a certain degree with a cation. More examples of suitable low acid ionomers, e.g., Escor® 4000/7030 and Escor® 900/8000, are disclosed in U.S. Pat. Nos. 4,911,451 and 4,884,814, the disclosures of which are incorporated by reference herein. High acid ionomer resins include SURLYN(® 8140 (Na) and SURLYN® 8546 (Li), which have an methacrylic acid content of about 19 percent. The acid groups of these high acid ionomer resins that have been neutralized to a certain degree with the designated cation.
  • Ionomers may encompass those polymers obtained by copolymerization of an acidic or basic monomer, such as alkyl (meth)acrylate, with at least one other comonomer, such as an olefin, styrene or vinyl acetate, followed by at least partial neutralization. Alternatively, acidic or basic groups may be incorporated into a polymer to form an ionomer by reacting the polymer, such as polystyrene or a polystyrene copolymer including a block copolymer of polystyrene, with a functionality reagent, such as a carboxylic acid or sulfonic acid, followed by at least partial neutralization. Suitable neutralizing sources include cations for negatively charged acidic groups and anions for positively charged basic groups.
  • For example, ionomers may be obtained by providing a cross metallic bond to polymers of monoolefin with at least one member selected from the group consisting of unsaturated mono- or di-carboxylic acids having 3 to 12 carbon atoms and esters thereof (the polymer contains about 1 percent to about 50 percent by weight of the unsaturated mono- or di-carboxylic acid and/or ester thereof). In one embodiment, the ionomer is an E/X/Y copolymers where E is ethylene, X is a softening comonomer, such as acrylate or methacrylate, present in 0 percent to about 50 percent by weight of the polymer (preferably 0 weight percent to about 25 weight percent, most preferably 0 weight percent to about 20 weight percent), and Y is acrylic or methacrylic acid present in about 5 to about 35 weight percent of the polymer, wherein the acid moiety is neutralized about 1 percent to about 100 percent (preferably at least about 40 percent, most preferably at least about 60 percent) to form an ionomer by a cation such as lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, or aluminum, or a combination of such cations.
  • Any of the acid-containing ethylene copolymers discussed above may be used to form an ionomer according to the present invention. In addition, the ionomer may be a low acid or high acid ionomer. As detailed above, a high acid ionomer may be a copolymer of an olefin, e.g., ethylene, and at least 16 weight percent of an α,β-ethylenically unsaturated carboxylic acid, e.g., acrylic or methacrylic acid, wherein about 10 percent to about 100 percent of the carboxylic acid groups are neutralized with a metal ion. In contrast, a low acid ionomer contains about 15 weight percent of the α,β-ethylenically unsaturated carboxylic acid.
  • Suitable commercially available ionomer resins include SURLYNs® (DuPont) and Ioteks® (Exxon). Other suitable ionomers for use in the blends of the present invention include polyolefins, polyesters, polystyrenes, SBS, SEBS, and polyurethanes, in the form of homopolymers, copolymers, or block copolymer ionomers.
  • The ionomers may also be blended with highly neutralized polymers (HNP). As used herein, a highly neutralized polymer has greater than about 70 percent of the acid groups neutralized. In one embodiment, about 80 percent or greater of the acid groups are neutralized. In another embodiment, about 90 percent or greater of the acid groups are neutralized. In still another embodiment, the HNP is a fully neutralized polymers, i.e., all of the acid groups (100 percent) in the polymer composition are neutralized.
  • Suitable HNPs include, but are not limited to, polymers containing α,β-unsaturated carboxylic acid groups, or the salts thereof, that have been highly neutralized by organic fatty acids. Such HNPs are commercially available from DuPont under the trade name HPF, e.g., HPF 1000 and HPF 2000. The HNP can also be formed using an oxa-containing compound as a reactive processing aid to avoid processing problems, as disclosed in U.S. Patent Publication No. 2003/0225197. In particular, an HNP can include a thermoplastic resin component having an acid or ionic group, i.e., an acid polymer or partially neutralized polymer, combined with an oxa acid, an oxa salt, an oxa ester, or combination thereof and an inorganic metal compound or organic amine compound. As used herein, a partially neutralized polymer should be understood to mean polymers with about 10 to about 70 percent of the acid groups neutralized. For example, the HNP can includes about 10 percent to about 30 percent by weight of at least one oxa acid, about 70 percent to about 90 percent by weight of at least one thermoplastic resin component, and about 2 percent to about 6 percent by weight of an inorganic metal compound, organic amine, or a combination thereof.
  • In addition, the HNP can be formed from an acid copolymer that is neutralized by one or more amine-based or an ammonium-based components, or mixtures thereof, as disclosed in co-pending U.S. patent application Ser. No. 10/875,725, filed Jun. 25, 2004, entitled “Golf Ball Compositions Neutralized with Ammonium-Based and Amine-Based Compounds,” which is incorporated in its entirety by reference herein.
  • Furthermore, those of ordinary skill in the art will appreciate that the HNPs may be neutralized using one or more of the above methods. For example, an acid copolymer that is partially or highly neutralized in a manner described above may be subjected to additional neutralization using more traditional processes, e.g., neutralization with salts of organic fatty acids and/or a suitable cation source.
  • In a particular embodiment, the core includes at least one additional thermoplastic intermediate core layer formed from a composition comprising an ionomer selected from DuPont® HPF ESX 367, HPF 1000, HPF 2000, HPF AD1035, HPF AD1035 Soft, HPF AD1040, and AD1172 ionomers, commercially available from E. I. du Pont de Nemours and Company. The coefficient of restitution (“COR”), compression, and surface hardness of each of these materials, as measured on 1.55″ injection molded spheres aged two weeks at 23° C./50% RH, are given in Table 1 below.
  • TABLE 1
    Solid Sphere Solid Sphere Solid Sphere Shore D
    Example COR Compression Surface Hardness
    HPF 1000 0.830 115 54
    HPF 2000 0.860 90 47
    HPF AD1035 0.820 63 42
    HPF AD1035 Soft 0.780 33 35
    HPF AD 1040 0.855 135 60
    HPF AD1172 0.800 32 37
  • In one embodiment, an intermediate layer is disposed between the single or multi-layered core and surrounding cover layer. These intermediate layers also can be referred to as casing or inner cover layers. The intermediate layer can be formed from any materials known in the art, including thermoplastic and thermosetting materials, but preferably is formed of an ionomer composition comprising an ethylene acid copolymer containing acid groups that are at least partially neutralized. Suitable ethylene acid copolymers that may be used to form the intermediate layers are generally referred to as copolymers of ethylene; C3 to C8 α, β-ethylenically unsaturated mono- or dicarboxylic acid; and optional softening monomer. These ethylene acid copolymer ionomers also can be used to form the inner core and outer core layers as described above.
  • Suitable ionomer compositions include partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers. For purposes of the present disclosure, “HNP” refers to an acid copolymer after at least 70% of all acid groups present in the composition are neutralized. Preferred ionomers are salts of O/X- and O/X/Y-type acid copolymers, wherein O is an α-olefin, X is a C3-C8 α,β-ethylenically unsaturated carboxylic acid, and Y is a softening monomer. O is preferably selected from ethylene and propylene. X is preferably selected from methacrylic acid, acrylic acid, ethacrylic acid, crotonic acid, and itaconic acid. Methacrylic acid and acrylic acid are particularly preferred. Y is preferably selected from (meth) acrylate and alkyl (meth) acrylates wherein the alkyl groups have from 1 to 8 carbon atoms, including, but not limited to, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate.
  • Preferred O/X and O/X/Y-type copolymers include, without limitation, ethylene acid copolymers, such as ethylene/(meth)acrylic acid, ethylene/(meth)acrylic acid/maleic anhydride, ethylene/(meth)acrylic acid/maleic acid mono-ester, ethylene/maleic acid, ethylene/maleic acid mono-ester, ethylene/(meth)acrylic acid/n-butyl (meth)acrylate, ethylene/(meth)acrylic acid/iso-butyl (meth)acrylate, ethylene/(meth)acrylic acid/methyl (meth)acrylate, ethylene/(meth)acrylic acid/ethyl (meth)acrylate terpolymers, and the like. The term, “copolymer,” as used herein, includes polymers having two types of monomers, those having three types of monomers, and those having more than three types of monomers. Preferred α, β-ethylenically unsaturated mono- or dicarboxylic acids are (meth) acrylic acid, ethacrylic acid, maleic acid, crotonic acid, fumaric acid, itaconic acid. (Meth) acrylic acid is most preferred. As used herein, “(meth) acrylic acid” means methacrylic acid and/or acrylic acid. Likewise, “(meth) acrylate” means methacrylate and/or acrylate.
  • In a particularly preferred version, highly neutralized E/X- and E/X/Y-type acid copolymers, wherein E is ethylene, X is a C3-C8 α,β-ethylenically unsaturated carboxylic acid, and Y is a softening monomer are used. X is preferably selected from methacrylic acid, acrylic acid, ethacrylic acid, crotonic acid, and itaconic acid. Methacrylic acid and acrylic acid are particularly preferred. Y is preferably an acrylate selected from alkyl acrylates and aryl acrylates and preferably selected from (meth) acrylate and alkyl (meth) acrylates wherein the alkyl groups have from 1 to 8 carbon atoms, including, but not limited to, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate. Preferred E/X/Y-type copolymers are those wherein X is (meth) acrylic acid and/or Y is selected from (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, methyl (meth) acrylate, and ethyl (meth) acrylate. More preferred E/X/Y-type copolymers are ethylene/(meth) acrylic acid/n-butyl acrylate, ethylene/(meth) acrylic acid/methyl acrylate, and ethylene/(meth) acrylic acid/ethyl acrylate.
  • The amount of ethylene in the acid copolymer is typically at least 15 wt. %, preferably at least 25 wt. %, more preferably least 40 wt. %, and even more preferably at least 60 wt. %, based on total weight of the copolymer. The amount of C3 to C8 α, β-ethylenically unsaturated mono- or dicarboxylic acid in the acid copolymer is typically from 1 wt. % to 35 wt. %, preferably from 5 wt. % to 30 wt. %, more preferably from 5 wt. % to 25 wt. %, and even more preferably from 10 wt. % to 20 wt. %, based on total weight of the copolymer. The amount of optional softening comonomer in the acid copolymer is typically from 0 wt. % to 50 wt. %, preferably from 5 wt. % to 40 wt. %, more preferably from 10 wt. % to 35 wt. %, and even more preferably from 20 wt. % to 30 wt. %, based on total weight of the copolymer. “Low acid” and “high acid” ionomeric polymers, as well as blends of such ionomers, may be used. In general, low acid ionomers are considered to be those containing 16 wt. % or less of acid moieties, whereas high acid ionomers are considered to be those containing greater than 16 wt. % of acid moieties.
  • The various O/X, E/X, O/X/Y, and E/X/Y-type copolymers are at least partially neutralized with a cation source, optionally in the presence of a high molecular weight organic acid, such as those disclosed in U.S. Pat. No. 6,756,436, the entire disclosure of which is hereby incorporated herein by reference. The acid copolymer can be reacted with the optional high molecular weight organic acid and the cation source simultaneously, or prior to the addition of the cation source. Suitable cation sources include, but are not limited to, metal ion sources, such as compounds of alkali metals, alkaline earth metals, transition metals, and rare earth elements; ammonium salts and monoamine salts; and combinations thereof. Preferred cation sources are compounds of magnesium, sodium, potassium, cesium, calcium, barium, manganese, copper, zinc, lead, tin, aluminum, nickel, chromium, lithium, and rare earth metals.
  • Other suitable thermoplastic polymers that may be used to form the adjacent casing, intermediate and/or inner cover layer, but are not limited to, the following polymers (including homopolymers, copolymers, and derivatives thereof: (a) polyester, particularly those modified with a compatibilizing group such as sulfonate or phosphonate, including modified poly(ethylene terephthalate), modified poly(butylene terephthalate), modified poly(propylene terephthalate), modified poly(trimethylene terephthalate), modified poly(ethylene naphthenate), and those disclosed in U.S. Pat. Nos. 6,353,050, 6,274,298, and 6,001,930, the entire disclosures of which are hereby incorporated herein by reference, and blends of two or more thereof; (b) polyamides, polyamide-ethers, and polyamide-esters, and those disclosed in U.S. Pat. Nos. 6,187,864, 6,001,930, and 5,981,654, the entire disclosures of which are hereby incorporated herein by reference, and blends of two or more thereof; (c) polyurethanes, polyureas, polyurethane-polyurea hybrids, and blends of two or more thereof; (d) fluoropolymers, such as those disclosed in U.S. Pat. Nos. 5,691,066, 6,747,110 and 7,009,002, the entire disclosures of which are hereby incorporated herein by reference, and blends of two or more therof; (e) polystyrenes, such as poly(styrene-co-maleic anhydride), acrylonitrile-butadiene-styrene, poly(styrene sulfonate), polyethylene styrene, and blends of two or more thereof; (f) polyvinyl chlorides and grafted polyvinyl chlorides, and blends of two or more thereof; (g) polycarbonates, blends of polycarbonate/acrylonitrile-butadiene-styrene, blends of polycarbonate/polyurethane, blends of polycarbonate/polyester, and blends of two or more thereof; (h) polyethers, such as polyarylene ethers, polyphenylene oxides, block copolymers of alkenyl aromatics with vinyl aromatics and polyamicesters, and blends of two or more thereof; (i) polyimides, polyetherketones, polyamideimides, and blends of two or more thereof; and (j) polycarbonate/polyester copolymers and blends.
  • Golf balls having various constructions may be made in accordance with the method of this invention, with the only limitation being that the outermost cover layer being dimpled comprises or consists of a thermoplastic polymer that requires heating at higher temperatures than would be sufficient to prevent the adjacent inner layer being over-molded from softening, degrading, deteriorating, and/or migrating into an adjacent layer during that over-molding or as a result thereof. Golf balls to be dimpled via the method of the invention may therefore have two piece, three piece, four-piece, and five-piece constructions with single or multi-layered cores, and/or single or multi-layered casing layers/intermediate layers, and single or multi-layered covers.
  • Representative illustrations of such golf ball constructions are provided and discussed further below. The term, “layer” as used herein means generally any spherical of the golf ball. More particularly, in one version, a two-piece golf ball containing a core surrounded by a cover is made. Three-piece golf balls containing a dual-layered core and single-layered cover also can be made. The dual-core includes an inner core (center) and surrounding outer core layer. In another version, a four-piece golf ball containing a dual-core and dual-cover (inner cover and outer cover layers) is made. In yet another construction, a four-piece or five-piece golf ball containing a dual-core; casing layer(s); and cover layer(s) may be made. As used herein, the term, “casing layer” means a layer of the ball disposed between the multi-layered core sub-assembly and cover. The casing layer also may be referred to as a mantle or intermediate layer. The diameter and thickness of the different layers along with properties such as hardness and compression may vary depending upon the construction and desired playing performance properties of the golf ball as discussed further below.
  • Thus, golf balls of the invention may have any number of layers, including for example a four piece golf ball wherein the core is a dual core surrounded by an ionomeric inner cover layer wherein an outer cover layer is a thermoplastic polyurethane disposed about the inner cover layer. In such embodiments, it is envisioned that the inner core may comprise a thermoset composition or a thermoplastic composition while the outer core layer may be formed from either of a thermoset composition or a thermoplastic composition. And the outer cover layer may consist of numerous possible variations and combinations of thermoplastic polymer(s) such as those disclosed herein. Outer cover hardnesses may range from 20 shore D to 70 Shore D, although it is envisioned that the dimpled outermost cover layer material can be targeted within any known range by modifying the ingredients of the thermoplastic polymer and relative amounts thereof, as well as by modifying the processing time and temperature.
  • In a particular embodiment, the dimple-free golf ball has a diameter of greater than 1.682 inches and is comprised of a polybutadiene-based core, an ionomer casing layer and a thermoplastic polyurethane outer cover layer that was formed about the casing layer via RPIM in advance of providing dimples on the cover outer surface via the method of the invention. In still other embodiments, the dimple-free golf ball has a diameter of greater than 1.69 inches, or a diameter of 1.710 inches or greater.
  • In one embodiment, at least one of the core layers is formed of a rubber composition comprising polybutadiene rubber material. More particularly, in one version, the ball contains a single inner core formed of the polybutadiene rubber composition. In a second version, the ball contains a dual-core comprising an inner core (center) and surrounding outer core layer.
  • In one version, the core is formed of a rubber composition comprising a rubber material such as, for example, polybutadiene, ethylene-propylene rubber, ethylene-propylene-diene rubber, polyisoprene, styrene-butadiene rubber, polyalkenamers, butyl rubber, halobutyl rubber, or polystyrene elastomers. For example, polybutadiene rubber compositions may be used to form the inner core (center) and surrounding outer core layer in a dual-layer construction. In another version, the core may be formed from an ionomer composition comprising an ethylene acid copolymer containing acid groups such that greater than 70% of the acid groups are neutralized. These highly neutralized polymers (HNPs) also may be used to form at least one core layer in a multi-layered core construction. For example, a polybutadiene rubber composition may be used to form the center and a HNP composition may be used to form the outer core. Such rubber and HNP compositions may be as discussed herein.
  • In general, polybutadiene is a homopolymer of 1, 3-butadiene. The double bonds in the 1, 3-butadiene monomer are attacked by catalysts to grow the polymer chain and form a polybutadiene polymer having a desired molecular weight. Any suitable catalyst may be used to synthesize the polybutadiene rubber depending upon the desired properties. Normally, a transition metal complex (for example, neodymium, nickel, or cobalt) or an alkyl metal such as alkyllithium is used as a catalyst. Other catalysts include, but are not limited to, aluminum, boron, lithium, titanium, and combinations thereof. The catalysts produce polybutadiene rubbers having different chemical structures. In a cis-bond configuration, the main internal polymer chain of the polybutadiene appears on the same side of the carbon-carbon double bond contained in the polybutadiene. In a trans-bond configuration, the main internal polymer chain is on opposite sides of the internal carbon-carbon double bond in the polybutadiene. The polybutadiene rubber can have various combinations of cis- and trans-bond structures. A preferred polybutadiene rubber has a 1,4 cis-bond content of at least 40%, preferably greater than 80%, and more preferably greater than 90%. In general, polybutadiene rubbers having a high 1,4 cis-bond content have high tensile strength. The polybutadiene rubber may have a relatively high or low Mooney viscosity.
  • Examples of commercially-available polybutadiene rubbers that can be used in accordance with this invention, include, but are not limited to, BR 01 and BR 1220, available from BST Elastomers of Bangkok, Thailand; SE BR 1220LA and SE BR1203, available from DOW Chemical Co of Midland, Mich.; BUDENE 1207, 1207s, 1208, and 1280 available from Goodyear, Inc of Akron, Ohio; BR 01, 51 and 730, available from Japan Synthetic Rubber (JSR) of Tokyo, Japan; BUNA CB 21, CB 22, CB 23, CB 24, CB 25, CB 29 MES, CB 60, CB Nd 60, CB 55 NF, CB 70 B, CB KA 8967, and CB 1221, available from Lanxess Corp. of Pittsburgh. Pa.; BR1208, available from LG Chemical of Seoul, South Korea; UBEPOL BR130B, BR150, BR150B, BR150L, BR230, BR360L, BR710, and VCR617, available from UBE Industries, Ltd. of Tokyo, Japan; EUROPRENE NEOCIS BR 60, INTENE 60 AF and P30AF, and EUROPRENE BR HV80, available from Polimeri Europa of Rome, Italy; AFDENE 50 and NEODENE BR40, BR45, BR50 and BR60, available from Karbochem (PTY) Ltd. of Bruma, South Africa; KBR 01, NdBr 40, NdBR-45, NdBr 60, KBR 710S, KBR 710H, and KBR 750, available from Kumho Petrochemical Co., Ltd. Of Seoul, South Korea; and DIENE 55NF, 70AC, and 320 AC, available from Firestone Polymers of Akron, Ohio.
  • To form the core, the polybutadiene rubber is used in an amount of at least about 5% by weight based on total weight of composition and is generally present in an amount of about 5% to about 100%, or an amount within a range having a lower limit of 5% or 10% or 20% or 30% or 40% or 50% and an upper limit of 55% or 60% or 70% or 80% or 90% or 95% or 100%. In general, the concentration of polybutadiene rubber is about 45 to about 95 weight percent. Preferably, the rubber material used to form the core layer comprises at least 50% by weight, and more preferably at least 70% by weight, polybutadiene rubber.
  • The rubber compositions of this invention may be cured, either by pre-blending or post-blending, using conventional curing processes. Suitable curing processes include, for example, peroxide-curing, sulfur-curing, high-energy radiation, and combinations thereof. Preferably, the rubber composition contains a free-radical initiator selected from organic peroxides, high energy radiation sources capable of generating free-radicals, and combinations thereof. In one preferred version, the rubber composition is peroxide-cured. Suitable organic peroxides include, but are not limited to, dicumyl peroxide; n-butyl-4,4-di(t-butylperoxy) valerate; 1,1-di(t-butylperoxy)3,3,5-trimethylcyclohexane; 2,5-dimethyl-2,5-di(t-butylperoxy) hexane; di-t-butyl peroxide; di-t-amyl peroxide; t-butyl peroxide; t-butyl cumyl peroxide; 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3; di(2-t-butyl-peroxyisopropyl)benzene; dilauroyl peroxide; dibenzoyl peroxide; t-butyl hydroperoxide; and combinations thereof. In a particular embodiment, the free radical initiator is dicumyl peroxide, including, but not limited to Perkadox® BC, commercially available from Akzo Nobel. Peroxide free-radical initiators are generally present in the rubber composition in an amount of at least 0.05 parts by weight per 100 parts of the total rubber, or an amount within the range having a lower limit of 0.05 parts or 0.1 parts or 1 part or 1.25 parts or 1.5 parts or 2.5 parts or 5 parts by weight per 100 parts of the total rubbers, and an upper limit of 2.5 parts or 3 parts or 5 parts or 6 parts or 10 parts or 15 parts by weight per 100 parts of the total rubber. Concentrations are in parts per hundred (phr) unless otherwise indicated. As used herein, the term, “parts per hundred,” also known as “phr” or “pph” is defined as the number of parts by weight of a particular component present in a mixture, relative to 100 parts by weight of the polymer component. Mathematically, this can be expressed as the weight of an ingredient divided by the total weight of the polymer, multiplied by a factor of 100.
  • The rubber compositions preferably include a reactive cross-linking co-agent. Suitable co-agents include, but are not limited to, metal salts of unsaturated carboxylic acids having from 3 to 8 carbon atoms; unsaturated vinyl compounds and polyfunctional monomers (e.g., trimethylolpropane trimethacrylate); phenylene bismaleimide; and combinations thereof. Particular examples of suitable metal salts include, but are not limited to, one or more metal salts of acrylates, diacrylates, methacrylates, and dimethacrylates, wherein the metal is selected from magnesium, calcium, zinc, aluminum, lithium, and nickel. In a particular embodiment, the co-agent is selected from zinc salts of acrylates, diacrylates, methacrylates, and dimethacrylates. In another particular embodiment, the agent is zinc diacrylate (ZDA). When the co-agent is zinc diacrylate and/or zinc dimethacrylate, the co-agent is typically included in the rubber composition in an amount within the range having a lower limit of 1 or 5 or 10 or 15 or 19 or 20 parts by weight per 100 parts of the total rubber, and an upper limit of 24 or 25 or 30 or 35 or 40 or 45 or 50 or 60 parts by weight per 100 parts of the base rubber.
  • Radical scavengers such as a halogenated organosulfur or metal salt thereof, organic disulfide, or inorganic disulfide compounds may be added to the rubber composition. These compounds also may function as “soft and fast agents.” As used herein, “soft and fast agent” means any compound or a blend thereof that is capable of making a core: 1) softer (having a lower compression) at a constant “coefficient of restitution” (COR); and/or 2) faster (having a higher COR at equal compression), when compared to a core equivalently prepared without a soft and fast agent. Preferred halogenated organosulfur compounds include, but are not limited to, pentachlorothiophenol (PCTP) and salts of PCTP such as zinc pentachlorothiophenol (ZnPCTP). Using PCTP and ZnPCTP in golf ball inner cores helps produce softer and faster inner cores. The PCTP and ZnPCTP compounds help increase the resiliency and the coefficient of restitution of the core. In a particular embodiment, the soft and fast agent is selected from ZnPCTP, PCTP, ditolyl disulfide, diphenyl disulfide, dixylyl disulfide, 2-nitroresorcinol, and combinations thereof.
  • The rubber compositions of the present invention also may include “fillers,” which are added to adjust the density and/or specific gravity of the material. Suitable fillers include, but are not limited to, polymeric or mineral fillers, metal fillers, metal alloy fillers, metal oxide fillers and carbonaceous fillers. The fillers can be in any suitable form including, but not limited to, flakes, fibers, whiskers, fibrils, plates, particles, and powders. Rubber regrind, which is ground, recycled rubber material (for example, ground to about 30 mesh particle size) obtained from discarded rubber golf ball cores, also can be used as a filler. The amount and type of fillers utilized are governed by the amount and weight of other ingredients in the golf ball, since a maximum golf ball weight of 45.93 g (1.62 ounces) has been established by the United States Golf Association (USGA).
  • Suitable polymeric or mineral fillers that may be added to the rubber composition include, for example, precipitated hydrated silica, clay, talc, asbestos, glass fibers, aramid fibers, mica, calcium metasilicate, barium sulfate, zinc sulfide, lithopone, silicates, silicon carbide, tungsten carbide, diatomaceous earth, polyvinyl chloride, carbonates such as calcium carbonate and magnesium carbonate. Suitable metal fillers include titanium, tungsten, aluminum, bismuth, nickel, molybdenum, iron, lead, copper, boron, cobalt, beryllium, zinc, and tin. Suitable metal alloys include steel, brass, bronze, boron carbide whiskers, and tungsten carbide whiskers. Suitable metal oxide fillers include zinc oxide, iron oxide, aluminum oxide, titanium oxide, magnesium oxide, and zirconium oxide. Suitable particulate carbonaceous fillers include graphite, carbon black, cotton flock, natural bitumen, cellulose flock, and leather fiber. Micro balloon fillers such as glass and ceramic, and fly ash fillers can also be used. In a particular aspect of this embodiment, the rubber composition includes filler(s) selected from carbon black, nanoclays (e.g., Cloisite® and Nanofil® nanoclays, commercially available from Southern Clay Products, Inc., and Nanomax® and Nanomer® nanoclays, commercially available from Nanocor, Inc.), talc (e.g., Luzenac HAR® high aspect ratio talcs, commercially available from Luzenac America, Inc.), glass (e.g., glass flake, milled glass, and microglass), mica and mica-based pigments (e.g., Iriodin® pearl luster pigments, commercially available from The Merck Group), and combinations thereof. In a particular embodiment, the rubber composition is modified with organic fiber micropulp.
  • In addition, the rubber compositions may include antioxidants to prevent the breakdown of the elastomers. Also, processing aids such as high molecular weight organic acids and salts thereof, may be added to the composition. In a particular embodiment, the total amount of additive(s) and filler(s) present in the rubber composition is 15 wt % or less, or 12 wt % or less, or 10 wt % or less, or 9 wt % or less, or 6 wt % or less, or 5 wt % or less, or 4 wt % or less, or 3 wt % or less, based on the total weight of the rubber composition.
  • The polybutadiene rubber material (base rubber) may be blended with other elastomers in accordance with this invention. Other elastomers include, but are not limited to, polybutadiene, polyisoprene, ethylene propylene rubber (“EPR”), styrene-butadiene rubber, styrenic block copolymer rubbers (such as “SI”, “SIS”, “SB”, “SBS”, “SIBS”, and the like, where “S” is styrene, “I” is isobutylene, and “B” is butadiene), polyalkenamers such as, for example, polyoctenamer, butyl rubber, halobutyl rubber, polystyrene elastomers, polyethylene elastomers, polyurethane elastomers, polyurea elastomers, metallocene-catalyzed elastomers and plastomers, copolymers of isobutylene and p-alkylstyrene, halogenated copolymers of isobutylene and p-alkylstyrene, copolymers of butadiene with acrylonitrile, polychloroprene, alkyl acrylate rubber, chlorinated isoprene rubber, acrylonitrile chlorinated isoprene rubber, and combinations of two or more thereof.
  • The polymers, free-radical initiators, filler, cross-linking agents, and any other materials used in forming either the golf ball center or any of the core, in accordance with invention, may be combined to form a mixture by any type of mixing known to one of ordinary skill in the art. Suitable types of mixing include single pass and multi-pass mixing, and the like. The cross-linking agent, and any other optional additives used to modify the characteristics of the golf ball center or additional layer(s), may similarly be combined by any type of mixing. A single-pass mixing process where ingredients are added sequentially is preferred, as this type of mixing tends to increase efficiency and reduce costs for the process. The preferred mixing cycle is single step wherein the polymer, cis-to-trans catalyst, filler, zinc diacrylate, and peroxide are added in sequence.
  • In one preferred embodiment, the entire core or at least one core layer in a multi-layered structure is formed of a rubber composition comprising a material selected from the group of natural and synthetic rubbers including, but not limited to, polybutadiene, polyisoprene, ethylene propylene rubber (“EPR”), ethylene-propylene-diene (“EPDM”) rubber, styrene-butadiene rubber, styrenic block copolymer rubbers (such as “SI”, “SIS”, “SB”, “SBS”, “SIBS”, and the like, where “S” is styrene, “I” is isobutylene, and “B” is butadiene), polyalkenamers such as, for example, polyoctenamer, butyl rubber, halobutyl rubber, polystyrene elastomers, polyethylene elastomers, polyurethane elastomers, polyurea elastomers, metallocene-catalyzed elastomers and plastomers, copolymers of isobutylene and p-alkylstyrene, halogenated copolymers of isobutylene and p-alkylstyrene, copolymers of butadiene with acrylonitrile, polychloroprene, alkyl acrylate rubber, chlorinated isoprene rubber, acrylonitrile chlorinated isoprene rubber, and combinations of two or more thereof.
  • As discussed above, single and multi-layered cores can be made in accordance with this invention. In two-layered cores, a thermoset material such as, for example, thermoset rubber, can be used to make the outer core layer or a thermoplastic material such as, for example, ethylene acid copolymer containing acid groups that are at least partially or fully neutralized can be used to make the outer core layer. Suitable ionomer compositions include partially-neutralized ionomers and highly-neutralized ionomers (HNPs), including ionomers formed from blends of two or more partially-neutralized ionomers, blends of two or more highly-neutralized ionomers, and blends of one or more partially-neutralized ionomers with one or more highly-neutralized ionomers. Suitable ethylene acid copolymer ionomers and other thermoplastics that can be used to form the core layer(s) are the same materials that can be used to make an inner cover layer as discussed further below.
  • In another example, multi-layered cores having an inner core, intermediate core layer, and outer core layer, wherein the intermediate core layer is disposed between the intermediate and outer core layers may be prepared in accordance with this invention. More particularly, as discussed above, the inner core may be constructed from a thermoplastic or thermoset composition, such as thermoset rubber. Meanwhile, the intermediate and outer core layers also may be formed from thermoset or thermoplastic materials. Suitable thermoset and thermoplastic compositions that may be used to form the intermediate/outer core layers are discussed above. For example, each of the intermediate and outer core layers may be formed from a thermoset rubber composition. Thus, the intermediate core layer may be formed from a first thermoset rubber composition; and the outer core layer may be formed from a second thermoset rubber composition. In another embodiment, the intermediate core layer is formed from a thermoset composition; and the outer core layer is formed from a thermoplastic composition. In a third embodiment, the intermediate core layer is formed from a thermoplastic composition; and the outer core layer is formed from a thermoset composition. Finally, in a fourth embodiment, the intermediate core layer is formed from a first thermoplastic composition; and the outer core layer is formed from a second thermoplastic compositions.
  • The dimple-free thermoplastic cover and resulting dimpled thermoplastic cover may have a wide range of different hardnesses including any of those currently known in the golf ball art. Thus, the dimpled thermoplastic cover may have the same Shore D material hardness as its precursor dimple-free thermoplastic cover. Embodiments are envisioned wherein dimpling the dimple-free thermoplastic cover creates a hardness gradient in the resulting dimpled thermoplastic cover and/or some other property gradient therein between the dimpled surface and an inner portion of the dimpled thermoplastic cover.
  • Examples of dimple-free thermoplastic cover and resulting dimpled thermoplastic cover hardnesses include but are not limited to a range of from about 20 Shore D to about 70 Shore D.
  • Covers of the dimple-free thermoplastic golf ball may be formed about the subassembly using any suitable method as described further below. Prior to forming the cover layers, the ball sub-assembly may be surface-treated to increase the adhesion between its outer surface and the overlying cover material using the above-described techniques.
  • The invention also relates to a golf ball made by a method of the invention. In one embodiment, the subassembly comprises a core surrounded by an inner cover layer. In a specific such embodiment, the core is a single core. In another specific such embodiment, the core comprises an inner core surrounded by an outer core layer.
  • In a golf ball of the invention made by a method of the invention, conventional compression and injection-molding and other methods can be used to pre-mold cover layers over the core or ball sub-assembly with at least one modification being that the molds will have smooth inner surfaces rather than having a dimple pattern contoured inner surface. In general, compression molding normally involves first making half (hemispherical) shells by injection-molding the composition in an injection mold. This produces semi-cured, semi-rigid half-shells (or cups). Then, the half-shells are positioned in a compression mold around the core or ball sub-assembly. Heat and pressure are applied and the half-shells fuse together to form a cover layer over the core or sub-assembly. Compression molding also can be used to cure the cover composition after injection-molding. For example, a thermally-curable composition can be injection-molded around a core in an unheated mold. After the composition is partially hardened, the ball is removed and placed in a compression mold. Heat and pressure are applied to the ball and this causes thermal-curing of the outer cover layer.
  • Retractable pin injection-molding (RPIM) methods generally involve using upper and lower mold cavities that are mated together. The upper and lower mold cavities form a spherical interior cavity when they are joined together. The mold cavities used to form the outer cover layer would not have the usual interior dimple cavity details. The cover material conforms to the interior geometry of the mold cavities to form a smooth and dimple-free outer surface rather than a dimple pattern on the surface of the ball. The injection-mold includes retractable support pins positioned throughout the mold cavities. The retractable support pins move in and out of the cavity. The support pins help maintain the position of the core or ball sub-assembly while the molten composition flows through the mold gates. The molten composition flows into the cavity between the core and mold cavities to surround the core and form the cover layer. Other methods can be used to make the cover including, for example, reaction injection-molding (RIM), liquid injection-molding, casting, spraying, powder-coating, vacuum-forming, flow-coating, dipping, spin-coating, and the like.
  • As discussed above, an inner cover layer or intermediate layer, preferably formed from an ethylene acid copolymer ionomer composition, can be part of the subassembly. The layer comprising ionomer may be an outermost layer of the subassembly and adjacent the thermoplastic cover. This layer may be formed using conventional technique such as, for example, compression or injection-molding. For example, the ionomer composition may be injection-molded or placed in a compression mold to produce half-shells. These shells are placed around the core in a compression mold, and the shells fuse together to form an intermediate layer. Alternatively, the ionomer composition is injection-molded directly onto the core using retractable pin injection-molding.
  • After the golf balls have been removed from the mold, they may be dimpled as described herein followed by being subjected to any necessary finishing steps such as flash-trimming or surface-treatment, each which should be reduced, or marking, and/or providing any desired coating layer which may be applied via methods such as spraying, dipping, brushing, or rolling. Then the golf ball can go through a series of finishing steps as also desired.
  • For example, in traditional white-colored golf balls, the white-pigmented outer cover layer may be surface-treated using a suitable method such as, for example, corona, plasma, or ultraviolet (UV) light-treatment. In another finishing process, the golf balls are painted with one or more paint coatings. For example, white or clear primer paint may be applied first to the surface of the ball and then indicia may be applied over the primer followed by application of a clear polyurethane top-coat. Indicia such as trademarks, symbols, logos, letters, and the like may be printed on the outer cover or prime-coated layer, or top-coated layer using pad-printing, ink-jet printing, dye-sublimation, or other suitable printing methods. Any of the surface coatings may contain a fluorescent optical brightener.
  • The golf balls produced by a method of this invention provide a variety of advantageous mechanical and playing performance properties as discussed further below. In general, the hardness, diameter, and thickness of the different ball layers may vary depending upon the desired ball construction. Thus, golf balls produced by a method of the invention may have any known overall diameter and any known number of different layers and layer thicknesses, wherein a thermoplastic material is incorporated in the cover in order to target desired playing characteristics.
  • For example, the core may have a diameter ranging from about 0.09 inches to less than about 1.7 inches. In one embodiment, the diameter of the core of the present invention is about 1.2 inches to about 1.630 inches. When part of a two-piece ball according to invention, the core may have a diameter ranging from about 1.5 inches to about 1.62 inches. In another embodiment, the diameter of the core is about 1.3 inches to about 1.6 inches, preferably from about 1.39 inches to about 1.6 inches, and more preferably from about 1.5 inches to about 1.6 inches. In yet another embodiment, the core has a diameter of about 1.55 inches to about 1.65 inches, preferably about 1.55 inches to about 1.60 inches.
  • In some embodiments, the core may have an overall diameter within a range having a lower limit of 0.500 or 0.700 or 0.750 or 0.800 or 0.850 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 or 1.250 or 1.300 or 1.350 or 1.400 or 1.450 or 1.500 or 1.600 or 1.610 inches and an upper limit of 1.620 or 1.630 or 1.640 inches or less than 1.7 inches. In a particular embodiment, the core is a multi-layer core having an overall diameter within a range having a lower limit of 0.500 or 0.700 or 0.750 or 0.800 or 0.850 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 inches and an upper limit of 1.250 or 1.300 or 1.350 or 1.400 or 1.450 or 1.500 or 1.600 or 1.610 or 1.620 or 1.630 or 1.640 inches. In another particular embodiment, the multi-layer core has an overall diameter within a range having a lower limit of 0.500 or 0.700 or 0.750 inches and an upper limit of 0.800 or 0.850 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 or 1.250 or 1.300 or 1.350 or 1.400 or 1.450 or 1.500 or 1.600 or 1.610 or 1.620 or 1.630 or 1.640 inches or about 1.7 inches. In another particular embodiment, the multi-layer core has an overall diameter of 1.500 inches or 1.510 inches or 1.530 inches or 1.550 inches or 1.570 inches or 1.580 inches or 1.590 inches or 1.600 inches or 1.610 inches or 1.620 inches.
  • In some embodiments, the inner core can have an overall diameter of 0.500 inches or greater, or 0.700 inches or greater, or 1.00 inches or greater, or 1.250 inches or greater, or 1.350 inches or greater, or 1.390 inches or greater, or 1.450 inches or greater, or an overall diameter within a range having a lower limit of 0.250 or 0.500 or 0.750 or 1.000 or 1.250 or 1.350 or 1.390 or 1.400 or 1.440 inches and an upper limit of 1.460 or 1.490 or 1.500 or 1.550 or 1.580 or 1.600 inches, or an overall diameter within a range having a lower limit of 0.250 or 0.300 or 0.350 or 0.400 or 0.500 or 0.550 or 0.600 or 0.650 or 0.700 inches and an upper limit of 0.750 or 0.800 or 0.900 or 0.950 or 1.000 or 1.100 or 1.150 or 1.200 or 1.250 or 1.300 or 1.350 or 1.400 inches.
  • In some embodiments, the outer core layer can have an overall thickness within a range having a lower limit of 0.010 or 0.020 or 0.025 or 0.030 or 0.035 inches and an upper limit of 0.040 or 0.070 or 0.075 or 0.080 or 0.100 or 0.150 inches, or an overall thickness within a range having a lower limit of 0.025 or 0.050 or 0.100 or 0.150 or 0.160 or 0.170 or 0.200 inches and an upper limit of 0.225 or 0.250 or 0.275 or 0.300 or 0.325 or 0.350 or 0.400 or 0.450 or greater than 0.450 inches. The outer core layer may alternatively have a thickness of greater than 0.10 inches, or 0.20 inches or greater, or greater than 0.20 inches, or 0.30 inches or greater, or greater than 0.30 inches, or 0.35 inches or greater, or greater than 0.35 inches, or 0.40 inches or greater, or greater than 0.40 inches, or 0.45 inches or greater, or greater than 0.45 inches, or a thickness within a range having a lower limit of 0.005 or 0.010 or 0.015 or 0.020 or 0.025 or 0.030 or 0.035 or 0.040 or 0.045 or 0.050 or 0.055 or 0.060 or 0.065 or 0.070 or 0.075 or 0.080 or 0.090 or 0.100 or 0.200 or 0.250 inches and an upper limit of 0.300 or 0.350 or 0.400 or 0.450 or 0.500 or 0.750 inches.
  • An intermediate core layer can have any known overall thickness such as within a range having a lower limit of 0.005 or 0.010 or 0.015 or 0.020 or 0.025 or 0.030 or 0.035 or 0.040 or 0.045 inches and an upper limit of 0.050 or 0.055 or 0.060 or 0.065 or 0.070 or 0.075 or 0.080 or 0.090 or 0.100 inches.
  • The cores and core layers of golf balls of the invention may have varying hardnesses depending on the particular golf ball construction and playing characteristics being targeted. Core center and/or layer hardness can range, for example, from 35 Shore C to about 98 Shore C, or 50 Shore C to about 90 Shore C, or 60 Shore C to about 85 Shore C, or 45 Shore C to about 75 Shore C, or 40 Shore C to about 85 Shore C. In other embodiments, core center and/or layer hardness can range, for example, from about 20 Shore D to about 78 Shore D, or from about 30 Shore D to about 60 Shore D, or from about 40 Shore D to about 50 Shore D, or 50 Shore D or less, or greater than 50 Shore D.
  • The compression of the core is generally overall in the range of about 40 to about 110, although embodiments are envisioned wherein the compression of the core is as low as 5. In other embodiments, the overall CoR of cores of the present invention at 125 ft/s is at least 0.750, or at least 0.775 or at least 0.780, or at least 0.785, or at least 0.790, or at least 0.795, or at least 0.800. Cores are also known to comprise rubbers and also may be formed of a variety of other materials that are typically also used for intermediate and cover layers. Intermediate layers may likewise also comprise materials generally used in cores and covers as described herein for example.
  • An intermediate layer is sometimes thought of as including any layer(s) disposed between the inner core (or center) and the outer cover of a golf ball, and thus in some embodiments, the intermediate layer may include an outer core layer, a casing layer, or inner cover layer(s). In this regard, a golf ball of the invention may include one or more intermediate layers. An intermediate layer may be used, if desired, with a multilayer cover or a multilayer core, or with both a multilayer cover and a multilayer core.
  • In one non-limiting embodiment, an intermediate layer having a thickness of about 0.010 inches to about 0.06 inches, is disposed about a core having a diameter ranging from about 1.5 inches to about 1.59 inches.
  • Intermediate layer(s) may be formed, at least in part, from one or more homopolymeric or copolymeric materials, such as ionomers, primarily or fully non-ionomeric thermoplastic materials, vinyl resins, polyolefins, polyurethanes, polyureas, polyamides, acrylic resins and blends thereof, olefinic thermoplastic rubbers, block copolymers of styrene and butadiene, isoprene or ethylene-butylene rubber, copoly(ether-amide), polyphenylene oxide resins or blends thereof, and thermoplastic polyesters. However, embodiments are envisioned wherein at least one intermediate layer is formed from a different material commonly used in a core and/or cover layer.
  • The range of thicknesses for an intermediate layer of a golf ball is large because of the vast possibilities when using an intermediate layer, i.e., as an outer core layer, an inner cover layer, a wound layer, a moisture/vapor barrier layer. When used in a golf ball of the present invention, the intermediate layer, or inner cover layer, may have a thickness about 0.3 inches or less. In one embodiment, the thickness of the intermediate layer is from about 0.002 inches to about 0.1 inches, and preferably about 0.01 inches or greater. For example, when part of a three-piece ball or multi-layer ball according to the invention, the intermediate layer and/or inner cover layer may have a thickness ranging from about 0.010 inches to about 0.06 inches. In another embodiment, the intermediate layer thickness is about 0.05 inches or less, or about 0.01 inches to about 0.045 inches for example.
  • If the ball includes an intermediate layer or inner cover layer, the hardness (material) may for example be about 50 Shore D or greater, more preferably about 55 Shore D or greater, and most preferably about 60 Shore D or greater. In one embodiment, the inner cover has a Shore D hardness of about 62 to about 90 Shore D. In one example, the inner cover has a hardness of about 68 Shore D or greater. In addition, the thickness of the inner cover layer is preferably about 0.015 inches to about 0.100 inches, more preferably about 0.020 inches to about 0.080 inches, and most preferably about 0.030 inches to about 0.050 inches, but once again, may be changed to target playing characteristics.
  • The cover typically has a thickness to provide sufficient strength, good performance characteristics, and durability. In one embodiment, the cover thickness may for example be from about 0.02 inches to about 0.12 inches, or about 0.1 inches or less. For example, the cover may be part of a two-piece golf ball and have a thickness ranging from about 0.03 inches to about 0.09 inches. In another embodiment, the cover thickness may be about 0.05 inches or less, or from about 0.02 inches to about 0.05 inches, or from about 0.02 inches and about 0.045 inches.
  • The cover may be a single-, dual-, or multi-layer cover and have an overall thickness for example within a range having a lower limit of 0.010 or 0.020 or 0.025 or 0.030 or 0.040 or 0.045 inches and an upper limit of 0.050 or 0.060 or 0.070 or 0.075 or 0.080 or 0.090 or 0.100 or 0.150 or 0.200 or 0.300 or 0.500 inches. In a particular embodiment, the cover may be a single layer having a thickness of from 0.010 or 0.020 or 0.025 inches to 0.035 or 0.040 or 0.050 inches. In another particular embodiment, the cover may consist of an inner cover layer having a thickness of from 0.010 or 0.020 or 0.025 inches to 0.035 or 0.050 inches and an outer cover layer having a thickness of from 0.010 or 0.020 or 0.025 inches to 0.035 or 0.040 inches.
  • The outer cover preferably has a thickness within a range having a lower limit of about 0.004 or 0.010 or 0.020 or 0.030 or 0.040 inches and an upper limit of about 0.050 or 0.055 or 0.065 or 0.070 or 0.080 inches. Preferably, the thickness of the outer cover is about 0.020 inches or less. The outer cover preferably has a surface hardness of 75 Shore D or less, 65 Shore D or less, or 55 Shore D or less, or 50 Shore D or less, or 50 Shore D or less, or 45 Shore D or less. Preferably, the outer cover has hardness in the range of about 20 to about 70 Shore D. In one example, the outer cover has hardness in the range of about 25 to about 65 Shore D.
  • In one embodiment, the cover may be a single layer having a surface hardness for example of 60 Shore D or greater, or 65 Shore D or greater. In a particular aspect of this embodiment, the cover is formed from a composition having a material hardness of 60 Shore D or greater, or 65 Shore D or greater.
  • In another particular embodiment, the cover may be a single layer having a thickness of from 0.010 or 0.020 inches to 0.035 or 0.050 inches and formed from a composition having a material hardness of from 60 or 62 or 65 Shore D to 65 or 70 or 72 Shore D.
  • In yet another particular embodiment, the cover is a single layer having a thickness of from 0.010 or 0.025 inches to 0.035 or 0.040 inches and formed from a composition having a material hardness of 62 Shore D or less, or less than 62 Shore D, or 60 Shore D or less, or less than 60 Shore D, or 55 Shore D or less, or less than 55 Shore D.
  • In still another particular embodiment, the cover is a single layer having a thickness of from 0.010 or 0.025 inches to 0.035 or 0.040 inches and formed from a composition having a material hardness of 62 Shore D or less, or less than 62 Shore D, or 60 Shore D or less, or less than 60 Shore D, or 55 Shore D or less, or less than 55 Shore D.
  • In an alternative embodiment, the cover may comprise an inner cover layer and an outer cover layer. The inner cover layer composition may have a material hardness of from 60 or 62 or 65 Shore D to 65 or 70 or 72 Shore D. The inner cover layer may have a thickness within a range having a lower limit of 0.010 or 0.020 or 0.030 inches and an upper limit of 0.035 or 0.040 or 0.050 inches. The outer cover layer composition may have a material hardness of 62 Shore D or less, or less than 62 Shore D, or 60 Shore D or less, or less than 60 Shore D, or 55 Shore D or less, or less than 55 Shore D. The outer cover layer may have a thickness within a range having a lower limit of 0.010 or 0.020 or 0.025 inches and an upper limit of 0.035 or 0.040 or 0.050 inches.
  • In yet another embodiment, the cover is a dual- or multi-layer cover including an inner or intermediate cover layer and an outer cover layer. The inner cover layer may have a surface hardness of 70 Shore D or less, or 65 Shore D or less, or less than 65 Shore D, or a Shore D hardness of from 50 to 65, or a Shore D hardness of from 57 to 60, or a Shore D hardness of 58, and a thickness within a range having a lower limit of 0.010 or 0.020 or 0.030 inches and an upper limit of 0.045 or 0.080 or 0.120 inches. The outer cover layer may have a material hardness of 65 Shore D or less, or 55 Shore D or less, or 45 Shore D or less, or 40 Shore D or less, or from 25 Shore D to 40 Shore D, or from 30 Shore D to 40 Shore D. The outer cover layer may have a surface hardness within a range having a lower limit of 20 or 30 or 35 or 40 Shore D and an upper limit of 52 or 58 or 60 or 65 or 70 or 72 or 75 Shore D. The outer cover layer may have a thickness within a range having a lower limit of 0.010 or 0.015 or 0.025 inches and an upper limit of 0.035 or 0.040 or 0.045 or 0.050 or 0.055 or 0.075 or 0.080 or 0.115 inches.
  • All this being said, embodiments are also envisioned wherein one or more of the cover layers is formed from a material typically incorporated in a core or intermediate layer especially one that would present the aforementioned problems when dimpled such as displacing the material of the adjacent inner layer.
  • It is envisioned that golf balls of the invention may also incorporate conventional coating layer(s) for the purposes usually incorporated. For example, one or more coating layer may have a combined thickness of from about 0.1 μm to about 100 μm, or from about 2 μm to about 50 μm, or from about 2 μm to about 30 μm. Meanwhile, each coating layer may have a thickness of from about 0.1 μm to about 50 μm, or from about 0.1 μm to about 25 μm, or from about 0.1 μm to about 14 μm, or from about 2 μm to about 9 μm, for example.
  • The resulting balls of this invention have good impact durability and cut/shear-resistance. The United States Golf Association (“USGA”) has set total weight limits for golf balls. Particularly, the USGA has established a maximum weight of 45.93 g (1.62 ounces) for golf balls. There is no lower weight limit. In addition, the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches. There is no upper limit so many golf balls have an overall diameter falling within the range of about 1.68 to about 1.80 inches. The golf ball diameter is preferably about 1.68 to 1.74 inches, more preferably about 1.68 to 1.70 inches. In accordance with the present invention, the weight, diameter, and thickness of the core and cover layers may be adjusted, as needed, so the ball meets USGA specifications of a maximum weight of 1.62 ounces and a minimum diameter of at least 1.68 inches.
  • Preferably, the golf ball has a Coefficient of Restitution (CoR) of at least 0.750 and more preferably at least 0.800 (as measured per the test methods below). The core of the golf ball generally has a compression in the range of about 30 to about 130 and more preferably in the range of about 70 to about 110 (as measured per the test methods below.) These properties allow players to generate greater ball velocity off the tee and achieve greater distance with their drives. At the same time, the relatively thin outer cover layer means that a player will have a more comfortable and natural feeling when striking the ball with a club. The ball is more playable and its flight path can be controlled more easily. This control allows the player to make better approach shots near the green. Furthermore, the outer covers of this invention have good impact durability and mechanical strength.
  • The following test methods may be used to obtain or determine certain properties in connection with materials of golf balls constructed in accordance with a method of the invention.
  • Hardness
  • The center hardness of a core is obtained according to the following procedure. The core is gently pressed into a hemispherical holder having an internal diameter approximately slightly smaller than the diameter of the core, such that the core is held in place in the hemispherical of the holder while concurrently leaving the geometric central plane of the core exposed. The core is secured in the holder by friction, such that it will not move during the cutting and grinding steps, but the friction is not so excessive that distortion of the natural shape of the core would result. The core is secured such that the parting line of the core is roughly parallel to the top of the holder. The diameter of the core is measured 90 degrees to this orientation prior to securing. A measurement is also made from the bottom of the holder to the top of the core to provide a reference point for future calculations. A rough cut is made slightly above the exposed geometric center of the core using a band saw or other appropriate cutting tool, making sure that the core does not move in the holder during this step. The remainder of the core, still in the holder, is secured to the base plate of a surface grinding machine. The exposed ‘rough’ surface is ground to a smooth, flat surface, revealing the geometric center of the core, which can be verified by measuring the height from the bottom of the holder to the exposed surface of the core, making sure that exactly half of the original height of the core, as measured above, has been removed to within 0.004 inches. Leaving the core in the holder, the center of the core is found with a center square and carefully marked and the hardness is measured at the center mark according to ASTM D-2240. Additional hardness measurements at any distance from the center of the core can then be made by drawing a line radially outward from the center mark, and measuring the hardness at any given distance along the line, typically in 2 mm increments from the center. The hardness at a particular distance from the center should be measured along at least two, preferably four, radial arms located 180° apart, or 90° apart, respectively, and then averaged. All hardness measurements performed on a plane passing through the geometric center are performed while the core is still in the holder and without having disturbed its orientation, such that the test surface is constantly parallel to the bottom of the holder, and thus also parallel to the properly aligned foot of the durometer.
  • The outer surface hardness of a golf ball layer is measured on the actual outer surface of the layer and is obtained from the average of a number of measurements taken from opposing hemispheres, taking care to avoid making measurements on the parting line of the core or on surface defects, such as holes or protrusions. Hardness measurements are made pursuant to ASTM D-2240 “Indentation Hardness of Rubber and Plastic by Means of a Durometer.” Because of the curved surface, care must be taken to ensure that the golf ball or golf ball sub-assembly is centered under the durometer indenter before a surface hardness reading is obtained. A calibrated, digital durometer, capable of reading to 0.1 hardness units is used for the hardness measurements. The digital durometer must be attached to, and its foot made parallel to, the base of an automatic stand. The weight on the durometer and attack rate conforms to ASTM D-2240.
  • In certain embodiments, a point or plurality of points measured along the “positive” or “negative” gradients may be above or below a line fit through the gradient and its outermost and innermost hardness values. In an alternative preferred embodiment, the hardest point along a particular steep “positive” or “negative” gradient may be higher than the value at the innermost of the inner core (the geometric center) or outer core layer (the inner surface)—as long as the outermost point (i.e., the outer surface of the inner core) is greater than (for “positive”) or lower than (for “negative”) the innermost point (i.e., the geometric center of the inner core or the inner surface of the outer core layer), such that the “positive” and “negative” gradients remain intact.
  • As discussed above, the direction of the hardness gradient of a golf ball layer is defined by the difference in hardness measurements taken at the outer and inner surfaces of a particular layer. The center hardness of an inner core and hardness of the outer surface of an inner core in a single-core ball or outer core layer are readily determined according to the test procedures provided above. The outer surface of the inner core layer (or other optional intermediate core layers) in a dual-core ball are also readily determined according to the procedures given herein for measuring the outer surface hardness of a golf ball layer, if the measurement is made prior to surrounding the layer with an additional core layer. Once an additional core layer surrounds a layer of interest, the hardness of the inner and outer surfaces of any inner or intermediate layers can be difficult to determine. Therefore, for purposes of the present invention, when the hardness of the inner or outer surface of a core layer is needed after the inner layer has been surrounded with another core layer, the test procedure described above for measuring a point located 1 mm from an interface is used.
  • Also, it should be understood that there is a fundamental difference between “material hardness” and “hardness as measured directly on a golf ball.” For purposes of the present invention, material hardness is measured according to ASTM D2240 and generally involves measuring the hardness of a flat “slab” or “button” formed of the material. Surface hardness as measured directly on a golf ball (or other spherical surface) typically results in a different hardness value. The difference in “surface hardness” and “material hardness” values is due to several factors including, but not limited to, ball construction (that is, core type, number of cores and/or cover layers, and the like); ball (or sphere) diameter; and the material composition of adjacent layers. It also should be understood that the two measurement techniques are not linearly related and, therefore, one hardness value cannot easily be correlated to the other. Shore hardness (for example, Shore C or Shore D or Shore A hardness) was measured according to the test method ASTM D-2240.
  • Compression
  • As disclosed in Jeff Dalton's Compression by Any Other Name, Science and Golf IV, Proceedings of the World Scientific Congress of Golf (Eric Thain ed., Routledge, 2002) (“J. Dalton”), several different methods can be used to measure compression, including Atti compression, Riehle compression, load/deflection measurements at a variety of fixed loads and offsets, and effective modulus. For purposes of the present invention, compression refers to Soft Center Deflection Index (“SCDI”). The SCDI is a program change for the Dynamic Compression Machine (“DCM”) that allows determination of the pounds required to deflect a core 10% of its diameter. The DCM is an apparatus that applies a load to a core or ball and measures the number of inches the core or ball is deflected at measured loads. A crude load/deflection curve is generated that is fit to the Atti compression scale that results in a number being generated that represents an Atti compression. The DCM does this via a load cell attached to the bottom of a hydraulic cylinder that is triggered pneumatically at a fixed rate (typically about 1.0 ft/s) towards a stationary core. Attached to the cylinder is an LVDT that measures the distance the cylinder travels during the testing timeframe. A software-based logarithmic algorithm ensures that measurements are not taken until at least five successive increases in load are detected during the initial phase of the test. The SCDI is a slight variation of this set up. The hardware is the same, but the software and output has changed. With the SCDI, the interest is in the pounds of force required to deflect a core x amount of inches. That amount of deflection is 10% percent of the core diameter. The DCM is triggered, the cylinder deflects the core by 10% of its diameter, and the DCM reports back the pounds of force required (as measured from the attached load cell) to deflect the core by that amount. The value displayed is a single number in units of pounds.
  • Coefficient of Restitution (“CoR”)
  • The CoR is determined according to a known procedure, wherein a golf ball or golf ball sub-assembly (for example, a golf ball core) is fired from an air cannon at two given velocities and a velocity of 125 ft/s is used for the calculations. Ballistic light screens are located between the air cannon and steel plate at a fixed distance to measure ball velocity. As the ball travels toward the steel plate, it activates each light screen and the ball's time period at each light screen is measured. This provides an incoming transit time period which is inversely proportional to the ball's incoming velocity. The ball makes impact with the steel plate and rebounds so it passes again through the light screens. As the rebounding ball activates each light screen, the ball's time period at each screen is measured. This provides an outgoing transit time period which is inversely proportional to the ball's outgoing velocity. The CoR is then calculated as the ratio of the ball's outgoing transit time period to the ball's incoming transit time period (CoR=Vout/Vin=Tin/Tout).
  • Thermoset and thermoplastic layers herein may be treated in such a manner as to create a positive or negative hardness gradient within and between golf ball layers. In golf ball layers of the present invention wherein a thermosetting rubber is used, gradient-producing processes and/or gradient-producing rubber formulation may be employed. Gradient-producing processes and formulations are disclosed more fully, for example, in U.S. patent application Ser. No. 12/048,665, filed on Mar. 14, 2008; Ser. No. 11/829,461, filed on Jul. 27, 2007; Ser. No. 11/772,903, filed Jul. 3, 2007; Ser. No. 11/832,163, filed Aug. 1, 2007; Ser. No. 11/832,197, filed on Aug. 1, 2007; the entire disclosure of each of these references is hereby incorporated herein by reference.
  • It is understood that the golf balls made by a method of the invention wherein a thermoplastic cover is dimpled after a dimple-free golf ball is molded as described and illustrated herein, represent only some of the many embodiments of the invention. It is appreciated by those skilled in the art that various changes and additions can be made to such golf balls without departing from the spirit and scope of this invention. It is intended that all such embodiments be covered by the appended claims.
  • A golf ball of the invention may further incorporate indicia, which as used herein, is considered to mean any symbol, letter, group of letters, design, or the like, that can be added to the dimpled surface of a golf ball.
  • Golf balls of the present invention will typically have dimple coverage of 60% or greater, preferably 65% or greater, and more preferably 75% or greater. It will be appreciated that any known dimple pattern may be used with any number of dimples having any shape or size. For example, the number of dimples may be 252 to 456, or 330 to 392 and may comprise any width, depth, and edge angle. The parting line configuration of said pattern may be either a straight line or a staggered wave parting line (SWPL), for example.
  • In any of these embodiments the single-layer core may be replaced with a two or more layer core wherein at least one core layer has a hardness gradient.
  • Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials and others in the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
  • Although the golf ball of the invention has been described herein with reference to particular means and materials, it is to be understood that the invention is not limited to the particulars disclosed and extends to all equivalents within the scope of the claims.
  • It is understood that the manufacturing methods, compositions, constructions, and products described and illustrated herein represent only some embodiments of the invention. It is appreciated by those skilled in the art that various changes and additions can be made to compositions, constructions, and products without departing from the spirit and scope of this invention. It is intended that all such embodiments be covered by the appended claims.

Claims (22)

1. A method of forming a golf ball comprising the steps of:
forming a subassembly comprising a core;
forming a pre-molded dimple-free golf ball by compression molding a thermoplastic cover comprised of first and second pre-formed thermoplastic half-shells about the subassembly using a pair of mold cavities having inner surfaces that are configured to form a smooth outer surface on the thermoplastic cover at a pre-molding temperature Tdf;
providing a compression mold press having at least one pair of mold cavities wherein each of a top mold cavity and a bottom mold cavity of the pair is configured to form a predetermined dimple pattern on the outer surface of the pre-molded dimple-free golf ball;
depositing the pre-molded dimple free-golf ball into the bottom mold cavity;
closing said top mold cavity and bottom mold cavity about the pre-molded dimple-free golf ball such that an inner surface of each of the top mold cavity and bottom mold cavity having the predetermined dimple pattern therein contacts the dimple-free outer surface of the pre-molded golf ball under contact pressure at a first temperature followed by applying a molding cycle to the closed top mold cavity and bottom mold cavity at a dimpling temperature Tcm sufficient to form a dimpled golf ball wherein an outer surface of the thermoplastic cover is re-solidified and contains the predetermined dimple pattern;
wherein the dimpling temperature Tcm is lower than the pre-molding temperature Tdf; and the first temperature is lower than each of the pre-molding temperature Tdf and the dimpling temperature Tcm.
2. (canceled)
3. (canceled)
4. The method of claim 1, wherein the thermoplastic cover comprises at least one thermoplastic polyurethane.
5. The method of claim 1, wherein the subassembly further comprises an outermost layer that is disposed between the core and the thermoplastic cover; wherein the outermost layer comprises an ionomer composition.
6. The method of claim 1, wherein the core comprises an inner core surrounded by an outer core layer.
7. The method of claim 1, wherein the pre-molded dimple-free golf ball has a diameter of greater than 1.68 inches.
8. The method of claim 7, wherein the pre-molded dimple-free golf ball has a diameter of greater than 1.70 inches.
9. The method of claim 1, wherein the thermoplastic cover has a thickness of from about 0.025 inches to about 0.045 inches.
10. The method of claim 1, wherein Tcm is less than Tdf by at least 40° F.
11. The method of claim 10, wherein Tcm is less than Tdf by from about 90° F. to about 170° F.
12. The method of claim 10, wherein Tcm is less than Tdf by from about 120° F. to about 170° F.
13. The method of claim 1, wherein Tcm is applied for a duration of from about 1 minute to about 3 minutes.
14. (canceled)
15. (canceled)
16. A golf ball made according to the method of claim 1, wherein the subassembly further comprises an outermost layer that is disposed between the core and the thermoplastic cover; wherein the outermost layer comprises an ionomer composition.
17. The golf ball of claim 16, wherein the core comprises an inner core surrounded by an outer core layer.
18. The golf ball of claim 16, wherein the golf ball has a diameter of from about 1.68 inches to 1.70 inches; the core has a diameter of from about 1.530 inches to 1.560 inches; and the subassembly has a diameter of from about 1.610 inches to 1.640 inches.
19. The method of claim 1, wherein the dimpling temperature Tcm is from about 280° F. to 380° F. and less than the pre-molding temperature Tdf by at least 40° F.; and wherein the pre-molding temperature Tdf is greater than the first temperature by at least 70° F.
20. The method of claim 1, wherein pre-molding temperature Tdf is less than 440° F. and the dimpling temperature Tcm is lower than the pre-molding temperature Tdf by from about 60° F. to about 160° F.; and wherein the pre-molding temperature Tdf is greater than the first temperature by at least 70° F.
21. The method of claim 1, wherein the dimpling temperature Tcm is lower than the pre-molding temperature Tdf by from about 120° F. to about 170° F. and the pre-molding temperature Tdf is greater than the first temperature by at least 70° F.
22. The method of claim 1, wherein pre-molding temperature Tdf is 380° F.-450° F. and the dimpling temperature Tcm is lower than the pre-molding temperature Tdf by from about 90° F. to less than about 120° F.; and wherein the pre-molding temperature Tdf is greater than the first temperature by at least 100° F.
US16/292,556 2019-03-05 2019-03-05 Method for forming a golf ball and resulting golf ball Abandoned US20200282266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/292,556 US20200282266A1 (en) 2019-03-05 2019-03-05 Method for forming a golf ball and resulting golf ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/292,556 US20200282266A1 (en) 2019-03-05 2019-03-05 Method for forming a golf ball and resulting golf ball

Publications (1)

Publication Number Publication Date
US20200282266A1 true US20200282266A1 (en) 2020-09-10

Family

ID=72336785

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/292,556 Abandoned US20200282266A1 (en) 2019-03-05 2019-03-05 Method for forming a golf ball and resulting golf ball

Country Status (1)

Country Link
US (1) US20200282266A1 (en)

Similar Documents

Publication Publication Date Title
US20230088331A1 (en) Methods for applying polyurethane coatings to golf balls having a thermoplastic polyurethane cover
US10427334B1 (en) Golf ball incorporating compression molded layer and methods and tooling for making
US20230181974A1 (en) Dual core golf ball incorporating a solid spherical inner core component that is immovably centered within three outer core compression moldable parts and method of making same
US20240017129A1 (en) Golf ball incorporating transition color region and method of making same
US11918861B2 (en) Golf ball incorporating functionalized inorganic aluminosilicate ceramic microspheres in at least one core layer
US10500443B2 (en) Golf balls incorporating thermoplastic blend(s) of ionomer(s), thermoplastic polymer(s), and polymethyl methacrylate-based polymer(s)
US10894348B2 (en) Method of molding outer layers about a subassembly without exposing the subassembly to prolonged heat and pressure
US10124214B1 (en) Golf balls incorporating mixtures of a thermoplastic polymer and polymethyl methacrylate-based polymers
US11602676B2 (en) Method of making dual core golf ball using novel center plate button and resulting improved golf ball
US20210275874A1 (en) Golf ball and method of making same
US10814182B2 (en) Golf balls having at least one polyurethane layer incorporating trans-beta-farnesene diol
US10773132B2 (en) Golf ball incorporating melt processable highly-crosslinked rubber-containing ionomer(s)
US10682553B2 (en) Golf ball incorporating melt processable highly-crosslinked ethylene acid copolymer(s) and/or ionomer(s)
US11904509B2 (en) Method of making dual core golf ball using novel center plate button and resulting improved golf ball
US11679305B2 (en) Golf ball having an air-cured inner core
US20200282266A1 (en) Method for forming a golf ball and resulting golf ball
US11919723B2 (en) System and method for automatedly detecting and rejecting cores having a non-conforming core color prior to covering
US11834548B2 (en) Method of making golf ball incorporating improved polyurethane materials and resulting golf ball
US10493326B2 (en) Golf balls incorporating thermoplastic blend(s) of ionomer(s), thermoplastic polymer(s), and ABS and/or ASA
US20210317332A1 (en) Method of making golf ball and resulting golf ball
US10427004B2 (en) Golf balls incorporating thermoplastic blends(s) of ionomer(s), thermoplastic polymer(s), PGM reactive crosslinker(s), and catalyst(s)
US20240198185A1 (en) Golf ball incorporating inorganic aluminosilicate ceramic microspheres in at least one layer

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACUSHNET COMPANY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HINTON, JASON J.;SULLIVAN, MICHAEL J.;LADD, DEREK A.;AND OTHERS;SIGNING DATES FROM 20190304 TO 20190305;REEL/FRAME:048503/0757

AS Assignment

Owner name: WELLS FARGO BANK, N.A., AS ADMINISTRATIVE AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:051618/0777

Effective date: 20200114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

STCC Information on status: application revival

Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS SUCCESSOR ADMINISTRATIVE AGENT, ILLINOIS

Free format text: ASSIGNMENT OF SECURITY INTEREST IN PATENTS (ASSIGNS 051618-0777);ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS RESIGNING ADMINISTRATIVE AGENT;REEL/FRAME:061069/0731

Effective date: 20220802