Nothing Special   »   [go: up one dir, main page]

US20170059159A1 - Cmc combustor shell with integral chutes - Google Patents

Cmc combustor shell with integral chutes Download PDF

Info

Publication number
US20170059159A1
US20170059159A1 US14/834,605 US201514834605A US2017059159A1 US 20170059159 A1 US20170059159 A1 US 20170059159A1 US 201514834605 A US201514834605 A US 201514834605A US 2017059159 A1 US2017059159 A1 US 2017059159A1
Authority
US
United States
Prior art keywords
matrix composite
ceramic
ceramic matrix
chute
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/834,605
Inventor
Bruce Edward Varney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Corp
Original Assignee
Rolls Royce Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Corp filed Critical Rolls Royce Corp
Priority to US14/834,605 priority Critical patent/US20170059159A1/en
Assigned to ROLLS-ROYCE CORPORATION reassignment ROLLS-ROYCE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VARNEY, BRUCE EDWARD
Priority to EP16185097.9A priority patent/EP3135999A1/en
Publication of US20170059159A1 publication Critical patent/US20170059159A1/en
Priority to US16/518,575 priority patent/US11796174B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/70Methods or machines specially adapted for the production of tubular articles by building-up from preformed elements
    • B28B21/72Producing multilayer tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/92Methods or apparatus for treating or reshaping
    • B28B21/98Methods or apparatus for treating or reshaping for reshaping, e.g. by means of reshape moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4523Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the molten state ; Thermal spraying, e.g. plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4539Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/045Air inlet arrangements using pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts

Definitions

  • This disclosure relates to ceramic matrix composite (CMC) components and, in particular, to CMC combustor shells.
  • CMC ceramic matrix composite
  • a combustion assembly for a gas turbine engine may be provided.
  • the combustion assembly for the gas turbine engine may include a ceramic matrix composite combustor shell.
  • the ceramic matrix composite combustor shell may include a chamber defined by a wall of the ceramic matrix composite combustor shell and a ceramic matrix composite chute integral with the ceramic matrix composite combustor shell.
  • the ceramic matrix composite chute may extend towards a midline of the chamber of the ceramic matrix composite combustor shell.
  • a method for fabricating a ceramic matrix composite chute may be provided.
  • a porous ceramic preform comprising a plurality of ceramic fibers may be formed.
  • An aperture in the porous ceramic preform may be formed.
  • the aperture may be enlarged into a chute shape by inserting a layup tool into the aperture.
  • the porous ceramic preform may be formed into a ceramic matrix composite body, which includes a combustor shell and a chute.
  • a ceramic preform may be formed into a frame for a combustor shell and a chute.
  • the ceramic preform may be formed into a ceramic matrix composite body including the combustor shell and the chute.
  • An aperture in the ceramic preform may be enlarged with a layup tool.
  • FIG. 1 illustrates a cross-sectional view of a combustion assembly for a gas turbine engine
  • FIG. 2 illustrates a plan view of an example of a ceramic preform comprising a plurality of ceramic fibers
  • FIG. 3 illustrates a plan view of another example of a ceramic preform comprising a plurality of ceramic fibers
  • FIG. 4 illustrates a cross-sectional view of an example of a ceramic matrix composite body
  • FIG. 5 illustrates a cross-sectional view of a ceramic preform and chute and a layup tool.
  • FIG. 6 illustrates another cross-sectional view of a combustion assembly for a gas turbine engine
  • FIG. 7 illustrates a flow chart of a method for fabricating a ceramic matrix composite chute.
  • FIG. 8 illustrates a flow chart of another method for fabricating a ceramic matrix composite chute.
  • a combustion assembly for a gas turbine engine may be provided.
  • the combustion assembly may include a ceramic matrix composite combustion liner that attaches to a combustor and is located in a chamber of the combustor.
  • the ceramic matrix composite combustion liner may alternatively be referred to herein as a ceramic matrix composite liner or liner.
  • the chamber may be defined by a wall of the combustor and the ceramic matrix composite liner may include a ceramic matrix composite chute integral with the ceramic matrix composite liner.
  • the ceramic matrix composite chute may extend towards a midline of the chamber of the combustor.
  • the ceramic matrix composite chute may direct mixing air so that the mixing performance of the combustor is enhanced.
  • the ceramic matrix composite chute integral with the ceramic matrix composite liner By fabricating the ceramic matrix composite chute integral with the ceramic matrix composite liner, any difficulties in attaching chutes to ceramic matrix composite liners may be avoided. Fabricating the ceramic matrix composite chute integral with the ceramic matrix composite liner may allow a variety of chute shapes to be used.
  • FIG. 1 is a cross-sectional view of a combustion assembly 2 for a gas turbine engine.
  • the gas turbine engine may be an internal combustion engine that has an upstream rotating compressor coupled to a downstream turbine, and a combustor 10 in between.
  • the combustion assembly 2 may be a component capable of withstanding high temperatures, for example temperatures above 1000 degrees Celsius.
  • the combustion assembly 2 may include, for example, the combustor 10 , a ceramic matrix composite liner 20 , and a ceramic matrix composite chute 30 .
  • the combustion assembly 2 may include a ceramic matrix composite coating, an environmental barrier coating, or a combination thereof.
  • the combustor 10 may comprise a wall 12 that defines a chamber 14 .
  • the combustor 10 may be a portion of the gas turbine engine where combustion takes place.
  • the combustor 10 may be a component in which fuel is ignited in the gas turbine engine.
  • the combustor 10 may be a component in which air and fuel are combined and ignited. Examples of the combustor 10 may include a can, cannular, annular, or double annular combustor.
  • the ceramic matrix composite liner 20 may be a component made of a ceramic matrix composite material that covers an inner surface of the combustor 10 .
  • the ceramic matrix composite liner 20 may cover the wall 12 of the combustor 10 .
  • the ceramic matrix composite liner 20 may at least partially cover the wall 12 of the combustor 10 .
  • the ceramic matric composite liner 20 may or may not be in contact with the wall 12 of the combustor 10 .
  • the ceramic matrix composite liner 20 may include ceramic fibers 22 , as shown in FIGS. 2-3 . Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • the ceramic matrix composite chute 30 may be a passage through which fluid, such as air, may pass.
  • the ceramic matrix composite chute 30 may be in a form of a tube that is open at both ends of the tube. Alternatively, the ceramic matrix composite chute 30 may be in any other shape through which the passage may channel fluid.
  • the ceramic matrix composite chute 30 may extend towards a midline 16 of the chamber 14 of the combustor 10 .
  • the ceramic matrix composite chute 30 may extend up to one inch towards the midline 16 of the chamber 14 of the combustor 10 .
  • the midline 16 may be a line that passes through the center of the combustor 10 in an axial direction and spans the combustor.
  • the ceramic matrix composite chute 30 may define a chute opening 31 into the chamber 14 that is in a plane substantially parallel with a plane that is tangent to the ceramic matrix composite liner 20 where the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 intersect.
  • the chute opening 31 may be scarfed, as shown in FIG. 4 .
  • the scarfed chute opening 31 may be an opening defined by a tapered end of the chute 30 .
  • the scarfed chute opening 31 may be formed by, for example, cutting a tapered end on the chute 30 .
  • the opening 31 of the ceramic matrix composite chute 30 may include a cross-sectional profile of a circle, oval, square, rectangle, trapezoid, or other shape.
  • the ceramic matrix composite chute 30 may comprise ceramic fibers 22 , as shown in FIGS. 2-3 .
  • the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • the ceramic matrix composite chute 30 may be integral with the ceramic matrix composite liner 20 .
  • the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 may be one continuous piece.
  • the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 may be formed from a single ceramic preform 34 , as shown in FIG. 2 , resulting in one continuous piece without any seams between the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 . Methods of forming the ceramic matrix composite chute 30 integral to the ceramic matrix composite liner 20 are described further below.
  • the ceramic matrix composite chute 30 directs mixing air into the chamber 14 of the combustor 10 .
  • the flow of mixing air is shown by arrow A in FIG. 1 .
  • the ceramic matrix composite chute 30 extending towards the midline 16 of the chamber 14 of the combustor 10 , the flow of mixing air may avoid an axial flow of air passing through the chamber 14 of the combustor 10 and approach the midline 16 of the chamber 14 of the combustor 10 .
  • the chute 30 channels the mixing air toward the midline 16 allowing the mixing air to mix with fuel near the midline 16 , resulting in more efficient combustion. Without the chute 30 extending towards the midline 16 of the chamber 14 of the combustor 10 , the mixing air may not reach the fuel near the midline 16 .
  • FIGS. 2 and 3 are plan views of examples of the ceramic preform 34 comprising a plurality of ceramic fibers 22 .
  • the ceramic preform 34 may be an arrangement of the ceramic fibers 22 . The arrangement may be fixed in a desired shape. The arrangement of the ceramic fibers 22 may be a frame.
  • the ceramic preform 34 is porous. Examples of the ceramic preform 34 may include a three-dimensional weave of the ceramic fibers 22 . Alternatively or in addition, the ceramic preform 34 may include a two-dimensional weave of the ceramic fibers 22 . The ceramic preform 34 may include multiple stacked layers of two-dimensional weaves of the ceramic fibers 22 . Alternatively or in addition, the ceramic preform 34 may include a fiber layup, such as a unidirectional layup. The ceramic preform 34 may include multiple stacked layers of unidirectional layups of the ceramic fibers 22 .
  • each of the ceramic fibers 22 may be a bundle and/or a tow of ceramic fibers.
  • the fibers in each bundle or tow may be braided or otherwise arranged.
  • the ceramic fibers 22 may comprise a material that is stable at temperatures above 1000 degrees Celsius. Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia or carbon. The ceramic fibers 22 may not be organic, metallic or glass fibers.
  • FIG. 4 is a cross-sectional view of an example of a ceramic matrix composite body 50 .
  • the ceramic matrix composite body 50 may comprise the combustion liner 20 and the chute 30 as one continuous piece.
  • the ceramic matrix composite chute 30 may define the chute opening 31 , which may be scarfed.
  • FIG. 5 is a cross-sectional view of the ceramic preform 34 and chute 30 and a layup tool 40 .
  • the ceramic preform 34 may be formed into a frame 36 for the combustion liner 20 and the chute 30 .
  • the frame 36 may be an underlying structure that gives shape or strength.
  • FIG. 6 is a cross-sectional view of another embodiment of a combustion assembly 602 for a gas turbine engine.
  • the combustion assembly 602 may be a component capable of withstanding high temperatures, for example temperatures above 1000 degrees Celsius.
  • the combustion assembly 602 may include, for example, a ceramic matrix composite combustor shell 690 and a ceramic matrix composite chute 630 .
  • the combustion assembly 602 may include a ceramic matrix composite coating, an environmental barrier coating, or a combination thereof.
  • the ceramic matrix composite combustor shell 690 may comprise a wall 612 that defines a chamber 614 .
  • the ceramic matrix composite combustor shell 690 may be a ceramic matrix composite combustor with no metal backbone, a full annular ceramic matrix composite heat shield, or a ceramic matrix composite combustor tile.
  • the full annular ceramic matrix composite heat shield may be a one piece ceramic matrix composite heat shield attached to a metal support structure and/or combustor.
  • the ceramic matrix composite combustor tile may be one or more ceramic matrix composite pieces attached to a metal support structure and/or combustor.
  • the ceramic matrix composite combustor shell 690 may include ceramic fibers 22 , as shown in FIGS. 2-3 .
  • the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • the ceramic matrix composite chute 630 may be a passage through which fluid, such as air, may pass.
  • the ceramic matrix composite chute 30 may be in a form of a tube that is open at both ends of the tube. Alternatively, the ceramic matrix composite chute 630 may be in any other shape through which the passage may channel fluid.
  • the ceramic matrix composite chute 630 may extend towards a midline 616 of the chamber 614 .
  • the ceramic matrix composite chute 630 may extend up to one inch towards the midline 616 of the chamber 614 .
  • the midline 616 may be a line that passes through the center of the ceramic matrix composite combustor shell 690 in an axial direction and spans the combustor.
  • the ceramic matrix composite chute 630 may define a chute opening 631 into the chamber 614 that is in a plane substantially parallel with a plane that is tangent to the ceramic matrix composite combustor shell 690 where the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 intersect.
  • the chute opening 631 may be scarfed.
  • the scarfed chute opening 631 may be an opening defined by a tapered end of the chute 630 .
  • the scarfed chute opening 631 may be formed by, for example, cutting a tapered end on the chute 630 .
  • the opening 631 of the ceramic matrix composite chute 630 may include a cross-sectional profile of a circle, oval, square, rectangle, trapezoid, or other shape.
  • the ceramic matrix composite chute 630 may comprise ceramic fibers 22 , as shown in FIGS. 2-3 .
  • the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • the ceramic matrix composite chute 630 may be integral with the ceramic matrix composite combustor shell 690 .
  • the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 may be one continuous piece.
  • the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 may be formed from a single ceramic preform 34 , as shown in FIG. 2 , resulting in one continuous piece without any seams between the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 .
  • Methods of forming the ceramic matrix composite chute 630 integral to the ceramic matrix composite combustor shell 690 are described further below.
  • the methods of forming the ceramic matrix composite chute 630 integral to the ceramic matrix composite combustor shell 690 are the same whether the ceramic matrix composite chute 630 is integral to the ceramic matrix composite combustor with no metal backbone, the full annular ceramic matrix composite heat shield, or the ceramic matrix composite combustor tile.
  • the ceramic matrix composite chute 630 directs mixing air into the chamber 614 .
  • the flow of mixing air is shown by arrow B in FIG. 6 .
  • the flow of mixing air may avoid an axial flow of air passing through the chamber 614 and approach the midline 616 of the chamber 614 .
  • the chute 630 channels the mixing air toward the midline 616 allowing the mixing air to mix with fuel near the midline 616 , resulting in more efficient combustion. Without the chute 630 extending towards the midline 616 of the chamber 614 , the mixing air may not reach the fuel near the midline 616 .
  • FIG. 7 illustrates a flow chart of an example method for fabricating the ceramic matrix composite chute 30 .
  • the method may include additional, fewer, or different steps than illustrated in FIG. 7 .
  • the ceramic preform 34 may be formed ( 710 ) into the ceramic preform 34 .
  • the aperture 32 may be formed ( 720 ) in the ceramic preform 34 .
  • the aperture 32 may be enlarged ( 730 ) into the chute shape by inserting the layup tool 40 into the aperture 32 .
  • the ceramic preform 34 may be formed ( 740 ) into the ceramic matrix composite body 50 that comprises the combustion liner 20 and the chute 30 . More generally, the ceramic preform 34 may be formed into the ceramic matrix composite body 50 that comprises the ceramic matrix composite combustor shell 690 and the chute 30 .
  • forming the porous ceramic preform 34 comprising the ceramic fibers 22 may include shaping the ceramic fibers 22 into a desired shape. Forming the porous ceramic preform 34 may include configuring the ceramic fibers 22 into one or more shapes. Alternatively or in addition, forming the porous ceramic preform 34 may include stacking two-dimensional weaves or unidirectional tape layups, or weaving the ceramic fibers 22 in three dimensions.
  • forming the aperture 32 in the porous ceramic preform 34 may include leaving a gap in the porous ceramic preform 34 .
  • Forming the aperture 32 in the porous ceramic preform 34 may include cutting a hole in the porous ceramic preform 34 .
  • Forming the aperture 32 in the porous ceramic preform 34 may include forming an opening in each two-dimensional weave or unidirectional tape layup and aligning the openings in the stacked plurality of two-dimensional weaves or unidirectional tape layups.
  • Forming the aperture 32 in the porous ceramic preform 34 may include weaving the aperture 32 into the porous ceramic preform 34 .
  • enlarging the aperture 32 into the chute shape by inserting the layup tool 40 into the aperture 32 may include shaping the aperture 32 into the larger chute shape with the layup tool 40 .
  • Enlarging the aperture 32 into the chute shape by inserting the layup tool 40 into the aperture 32 may include pressing the layup tool 40 into the aperture 32 until the larger chute shape remains.
  • the layup tool 40 may be a material that shapes the porous ceramic preform 34 .
  • the layup tool 40 may be the inverse of the desired chute shape.
  • the layup tool 40 may create a chute shape with the chute opening 31 that is substantially parallel with the combustion liner 20 or with the ceramic matrix composite combustor shell 690 . Alternatively or in addition, the layup tool 40 may create a chute shape from the chute opening 31 that is scarfed
  • forming the porous ceramic preform 34 into the ceramic matrix composite body 50 may include infiltrating a molten metal or alloy (for example, a silicon metal or alloy) into the ceramic preform 34 .
  • the silicon metal or alloy may fill gaps between the ceramic fibers 22 .
  • the silicon metal or alloy may also react with a reactive element source present in the ceramic preform 34 to form additional silicon based ceramic matrix material.
  • a chemical vapor infiltration coating may be applied to the ceramic preform 34 prior to the melt infiltration to stiffen the ceramic fibers 22 .
  • forming the ceramic matrix composite body 50 from the ceramic preform 34 may include chemical vapor infiltrating the ceramic preform 34 instead of melt infiltrating a material into the ceramic preform 34 .
  • the ceramic matrix composite body 50 may be formed by a slurry infiltration process.
  • a slurry comprising a solvent and the solid particulate matter may be infiltrated into the ceramic preform 34 assembled from silicon carbide fibers.
  • the ceramic preform 34 Prior to introducing the slurry, the ceramic preform 34 may be exposed to a vacuum, and the vacuum may be removed during infiltration to create a pressure gradient (for example, about 1 atm) that forces slurry into the preform.
  • the infiltration may be carried out at room temperature (for example, from about 15° C. to about 25° C.).
  • the ceramic matrix composite body 50 may be dried to remove the solvent.
  • Drying may be carried out at room temperature or at an elevated temperature (for example, from about 40° C. to about 150° C.).
  • slurry infiltration leads to a loading level of solid particulate matter in the ceramic matrix composite body 50 of from about 40 vol. % to about 60 vol. %, with the remainder being porosity.
  • forming the ceramic matrix composite body 50 from the ceramic preform 34 may include slurry infiltrating the ceramic preform 34 instead of melt infiltrating a material into the ceramic preform 34 .
  • FIG. 8 illustrates a flow chart of a second example method for fabricating the ceramic matrix composite chute 30 .
  • the method may include additional, fewer, or different steps than illustrated in FIG. 8 .
  • the ceramic preform 34 may be formed ( 810 ) into the frame 36 for the combustion liner 20 and the chute 30 .
  • the ceramic preform 34 may be formed ( 820 ) into the ceramic matrix composite body 50 .
  • the aperture 32 may be enlarged ( 830 ) in the ceramic preform 34 with the layup tool 40 .
  • forming the ceramic preform 34 may include shaping the ceramic preform 34 into a desired shape.
  • the ceramic preform 34 may be formed into the frame 36 for the combustion liner 20 and for the plurality of chutes 30 .
  • the ceramic matrix composite body 50 may include the combustion liner 20 and the chutes 30 . Forming the ceramic matrix composite body 50 may comprise chemical vapor infiltration, slurry infiltration, or melt infiltration into the ceramic preform 34 .
  • enlarging the aperture 32 in the ceramic preform 34 with the layup tool 40 may include shaping the aperture 32 into the larger chute shape with the layup tool 40 .
  • the layup tool 40 may include a cylinder.
  • the aperture 32 may be enlarged when the cylinder is inserted into the aperture 32 .
  • enlarging the aperture 32 in the ceramic preform 34 with the layup tool 40 may include moving ceramic fibers 22 in the ceramic preform 34 such that the ceramic fibers 22 extend from the combustion liner 20 into the chute 30 in the ceramic matrix composite body 50 .
  • Each component may include additional, different, or fewer components.
  • the ceramic matrix composite body 50 may include more than one chute 30 or more than one combustion liner 20 .
  • the layup tool 40 may include multiple components, such as the cylinder and a handle.
  • the phrases “at least one of ⁇ A>, ⁇ B>, . . . and ⁇ N>” or “at least one of ⁇ A>, ⁇ B>, . . . ⁇ N>, or combinations thereof” or “ ⁇ A>, ⁇ B>, . . . and/or ⁇ N>” are defined by the Applicant in the broadest sense, superseding any other implied definitions hereinbefore or hereinafter unless expressly asserted by the Applicant to the contrary, to mean one or more elements selected from the group comprising A, B, . . . and N.
  • the phrases mean any combination of one or more of the elements A, B, . . . or N including any one element alone or the one element in combination with one or more of the other elements which may also include, in combination, additional elements not listed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

A combustion assembly for a gas turbine engine may be provided. The combustion assembly may include a ceramic matrix composite combustor shell, which may include a chamber defined by a wall of the ceramic matrix composite combustor shell, and the ceramic matrix composite combustor shell may include a ceramic matrix composite chute integral with the ceramic matrix composite combustor shell. The ceramic matrix composite chute may extend towards a midline of the chamber. A method for fabricating a ceramic matrix composite chute may be provided. At least one chute may be woven in three dimensions into a ceramic preform. A layup tool may be inserted into the chute. The chute may be enlarged with the layup tool. The ceramic preform may be formed into a ceramic matrix composite body, which includes a combustor shell and the chute.

Description

    TECHNICAL FIELD
  • This disclosure relates to ceramic matrix composite (CMC) components and, in particular, to CMC combustor shells.
  • BACKGROUND
  • Present approaches to attaching chutes to ceramic matrix composite combustor shells suffer from a variety of drawbacks, limitations, and disadvantages. There is a need for the inventive ceramic matrix composite components, apparatuses, systems and methods disclosed herein.
  • BRIEF SUMMARY
  • A combustion assembly for a gas turbine engine may be provided. The combustion assembly for the gas turbine engine may include a ceramic matrix composite combustor shell. The ceramic matrix composite combustor shell may include a chamber defined by a wall of the ceramic matrix composite combustor shell and a ceramic matrix composite chute integral with the ceramic matrix composite combustor shell. The ceramic matrix composite chute may extend towards a midline of the chamber of the ceramic matrix composite combustor shell.
  • A method for fabricating a ceramic matrix composite chute may be provided. A porous ceramic preform comprising a plurality of ceramic fibers may be formed. An aperture in the porous ceramic preform may be formed. The aperture may be enlarged into a chute shape by inserting a layup tool into the aperture. The porous ceramic preform may be formed into a ceramic matrix composite body, which includes a combustor shell and a chute.
  • Another method for fabricating a ceramic matrix composite chute may be provided. A ceramic preform may be formed into a frame for a combustor shell and a chute. The ceramic preform may be formed into a ceramic matrix composite body including the combustor shell and the chute. An aperture in the ceramic preform may be enlarged with a layup tool.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale. Moreover, in the figures, like-referenced numerals designate corresponding parts throughout the different views.
  • FIG. 1 illustrates a cross-sectional view of a combustion assembly for a gas turbine engine;
  • FIG. 2 illustrates a plan view of an example of a ceramic preform comprising a plurality of ceramic fibers;
  • FIG. 3 illustrates a plan view of another example of a ceramic preform comprising a plurality of ceramic fibers;
  • FIG. 4 illustrates a cross-sectional view of an example of a ceramic matrix composite body; and
  • FIG. 5 illustrates a cross-sectional view of a ceramic preform and chute and a layup tool.
  • FIG. 6 illustrates another cross-sectional view of a combustion assembly for a gas turbine engine;
  • FIG. 7 illustrates a flow chart of a method for fabricating a ceramic matrix composite chute.
  • FIG. 8 illustrates a flow chart of another method for fabricating a ceramic matrix composite chute.
  • DETAILED DESCRIPTION
  • By way of introduction, in one example, a combustion assembly for a gas turbine engine may be provided. The combustion assembly may include a ceramic matrix composite combustion liner that attaches to a combustor and is located in a chamber of the combustor. The ceramic matrix composite combustion liner may alternatively be referred to herein as a ceramic matrix composite liner or liner. The chamber may be defined by a wall of the combustor and the ceramic matrix composite liner may include a ceramic matrix composite chute integral with the ceramic matrix composite liner. The ceramic matrix composite chute may extend towards a midline of the chamber of the combustor.
  • Advantageously, the ceramic matrix composite chute may direct mixing air so that the mixing performance of the combustor is enhanced. By fabricating the ceramic matrix composite chute integral with the ceramic matrix composite liner, any difficulties in attaching chutes to ceramic matrix composite liners may be avoided. Fabricating the ceramic matrix composite chute integral with the ceramic matrix composite liner may allow a variety of chute shapes to be used.
  • FIG. 1 is a cross-sectional view of a combustion assembly 2 for a gas turbine engine. The gas turbine engine may be an internal combustion engine that has an upstream rotating compressor coupled to a downstream turbine, and a combustor 10 in between. The combustion assembly 2 may be a component capable of withstanding high temperatures, for example temperatures above 1000 degrees Celsius. The combustion assembly 2 may include, for example, the combustor 10, a ceramic matrix composite liner 20, and a ceramic matrix composite chute 30. In some examples, the combustion assembly 2 may include a ceramic matrix composite coating, an environmental barrier coating, or a combination thereof.
  • The combustor 10 may comprise a wall 12 that defines a chamber 14. The combustor 10 may be a portion of the gas turbine engine where combustion takes place. The combustor 10 may be a component in which fuel is ignited in the gas turbine engine. In some examples, the combustor 10 may be a component in which air and fuel are combined and ignited. Examples of the combustor 10 may include a can, cannular, annular, or double annular combustor.
  • The ceramic matrix composite liner 20 may be a component made of a ceramic matrix composite material that covers an inner surface of the combustor 10. The ceramic matrix composite liner 20 may cover the wall 12 of the combustor 10. In some examples, the ceramic matrix composite liner 20 may at least partially cover the wall 12 of the combustor 10. The ceramic matric composite liner 20 may or may not be in contact with the wall 12 of the combustor 10. The ceramic matrix composite liner 20 may include ceramic fibers 22, as shown in FIGS. 2-3. Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • The ceramic matrix composite chute 30 may be a passage through which fluid, such as air, may pass. The ceramic matrix composite chute 30 may be in a form of a tube that is open at both ends of the tube. Alternatively, the ceramic matrix composite chute 30 may be in any other shape through which the passage may channel fluid. The ceramic matrix composite chute 30 may extend towards a midline 16 of the chamber 14 of the combustor 10. The ceramic matrix composite chute 30 may extend up to one inch towards the midline 16 of the chamber 14 of the combustor 10. The midline 16 may be a line that passes through the center of the combustor 10 in an axial direction and spans the combustor. The ceramic matrix composite chute 30 may define a chute opening 31 into the chamber 14 that is in a plane substantially parallel with a plane that is tangent to the ceramic matrix composite liner 20 where the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 intersect. Alternatively or in addition, the chute opening 31 may be scarfed, as shown in FIG. 4. The scarfed chute opening 31 may be an opening defined by a tapered end of the chute 30. The scarfed chute opening 31 may be formed by, for example, cutting a tapered end on the chute 30. Alternatively or in addition, the opening 31 of the ceramic matrix composite chute 30 may include a cross-sectional profile of a circle, oval, square, rectangle, trapezoid, or other shape. Like ceramic matrix composite liner 20, the ceramic matrix composite chute 30 may comprise ceramic fibers 22, as shown in FIGS. 2-3. Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • The ceramic matrix composite chute 30 may be integral with the ceramic matrix composite liner 20. In other words, the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 may be one continuous piece. The ceramic matrix composite chute 30 and the ceramic matrix composite liner 20 may be formed from a single ceramic preform 34, as shown in FIG. 2, resulting in one continuous piece without any seams between the ceramic matrix composite chute 30 and the ceramic matrix composite liner 20. Methods of forming the ceramic matrix composite chute 30 integral to the ceramic matrix composite liner 20 are described further below.
  • During operation of the combustion assembly 2, the ceramic matrix composite chute 30 directs mixing air into the chamber 14 of the combustor 10. The flow of mixing air is shown by arrow A in FIG. 1. As a result of the ceramic matrix composite chute 30 extending towards the midline 16 of the chamber 14 of the combustor 10, the flow of mixing air may avoid an axial flow of air passing through the chamber 14 of the combustor 10 and approach the midline 16 of the chamber 14 of the combustor 10. In other words, the chute 30 channels the mixing air toward the midline 16 allowing the mixing air to mix with fuel near the midline 16, resulting in more efficient combustion. Without the chute 30 extending towards the midline 16 of the chamber 14 of the combustor 10, the mixing air may not reach the fuel near the midline 16.
  • FIGS. 2 and 3 are plan views of examples of the ceramic preform 34 comprising a plurality of ceramic fibers 22. The ceramic preform 34 may be an arrangement of the ceramic fibers 22. The arrangement may be fixed in a desired shape. The arrangement of the ceramic fibers 22 may be a frame. The ceramic preform 34 is porous. Examples of the ceramic preform 34 may include a three-dimensional weave of the ceramic fibers 22. Alternatively or in addition, the ceramic preform 34 may include a two-dimensional weave of the ceramic fibers 22. The ceramic preform 34 may include multiple stacked layers of two-dimensional weaves of the ceramic fibers 22. Alternatively or in addition, the ceramic preform 34 may include a fiber layup, such as a unidirectional layup. The ceramic preform 34 may include multiple stacked layers of unidirectional layups of the ceramic fibers 22.
  • In some examples, each of the ceramic fibers 22 may be a bundle and/or a tow of ceramic fibers. The fibers in each bundle or tow may be braided or otherwise arranged.
  • The ceramic fibers 22 may comprise a material that is stable at temperatures above 1000 degrees Celsius. Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia or carbon. The ceramic fibers 22 may not be organic, metallic or glass fibers.
  • FIG. 4 is a cross-sectional view of an example of a ceramic matrix composite body 50. The ceramic matrix composite body 50 may comprise the combustion liner 20 and the chute 30 as one continuous piece. The ceramic matrix composite chute 30 may define the chute opening 31, which may be scarfed.
  • FIG. 5 is a cross-sectional view of the ceramic preform 34 and chute 30 and a layup tool 40. The ceramic preform 34 may be formed into a frame 36 for the combustion liner 20 and the chute 30. The frame 36 may be an underlying structure that gives shape or strength.
  • FIG. 6 is a cross-sectional view of another embodiment of a combustion assembly 602 for a gas turbine engine. The combustion assembly 602 may be a component capable of withstanding high temperatures, for example temperatures above 1000 degrees Celsius. The combustion assembly 602 may include, for example, a ceramic matrix composite combustor shell 690 and a ceramic matrix composite chute 630. In some examples, the combustion assembly 602 may include a ceramic matrix composite coating, an environmental barrier coating, or a combination thereof.
  • The ceramic matrix composite combustor shell 690 may comprise a wall 612 that defines a chamber 614. The ceramic matrix composite combustor shell 690 may be a ceramic matrix composite combustor with no metal backbone, a full annular ceramic matrix composite heat shield, or a ceramic matrix composite combustor tile. The full annular ceramic matrix composite heat shield may be a one piece ceramic matrix composite heat shield attached to a metal support structure and/or combustor. The ceramic matrix composite combustor tile may be one or more ceramic matrix composite pieces attached to a metal support structure and/or combustor.
  • The ceramic matrix composite combustor shell 690 may include ceramic fibers 22, as shown in FIGS. 2-3. Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • The ceramic matrix composite chute 630 may be a passage through which fluid, such as air, may pass. The ceramic matrix composite chute 30 may be in a form of a tube that is open at both ends of the tube. Alternatively, the ceramic matrix composite chute 630 may be in any other shape through which the passage may channel fluid. The ceramic matrix composite chute 630 may extend towards a midline 616 of the chamber 614. The ceramic matrix composite chute 630 may extend up to one inch towards the midline 616 of the chamber 614. The midline 616 may be a line that passes through the center of the ceramic matrix composite combustor shell 690 in an axial direction and spans the combustor. The ceramic matrix composite chute 630 may define a chute opening 631 into the chamber 614 that is in a plane substantially parallel with a plane that is tangent to the ceramic matrix composite combustor shell 690 where the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 intersect. Alternatively or in addition, the chute opening 631 may be scarfed. The scarfed chute opening 631 may be an opening defined by a tapered end of the chute 630. The scarfed chute opening 631 may be formed by, for example, cutting a tapered end on the chute 630. Alternatively or in addition, the opening 631 of the ceramic matrix composite chute 630 may include a cross-sectional profile of a circle, oval, square, rectangle, trapezoid, or other shape. Like ceramic matrix composite combustor shell 690, the ceramic matrix composite chute 630 may comprise ceramic fibers 22, as shown in FIGS. 2-3. Examples of the ceramic fibers 22 may include fibers of alumina, mullite, silicon carbide, zirconia, or carbon.
  • The ceramic matrix composite chute 630 may be integral with the ceramic matrix composite combustor shell 690. In other words, the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 may be one continuous piece. The ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690 may be formed from a single ceramic preform 34, as shown in FIG. 2, resulting in one continuous piece without any seams between the ceramic matrix composite chute 630 and the ceramic matrix composite combustor shell 690. Methods of forming the ceramic matrix composite chute 630 integral to the ceramic matrix composite combustor shell 690 are described further below. The methods of forming the ceramic matrix composite chute 630 integral to the ceramic matrix composite combustor shell 690 are the same whether the ceramic matrix composite chute 630 is integral to the ceramic matrix composite combustor with no metal backbone, the full annular ceramic matrix composite heat shield, or the ceramic matrix composite combustor tile.
  • During operation of the combustion assembly 602, the ceramic matrix composite chute 630 directs mixing air into the chamber 614. The flow of mixing air is shown by arrow B in FIG. 6. As a result of the ceramic matrix composite chute 630 extending towards the midline 616 of the chamber 614, the flow of mixing air may avoid an axial flow of air passing through the chamber 614 and approach the midline 616 of the chamber 614. In other words, the chute 630 channels the mixing air toward the midline 616 allowing the mixing air to mix with fuel near the midline 616, resulting in more efficient combustion. Without the chute 630 extending towards the midline 616 of the chamber 614, the mixing air may not reach the fuel near the midline 616.
  • FIG. 7 illustrates a flow chart of an example method for fabricating the ceramic matrix composite chute 30. The method may include additional, fewer, or different steps than illustrated in FIG. 7.
  • First, the ceramic preform 34 may be formed (710) into the ceramic preform 34. Next, the aperture 32 may be formed (720) in the ceramic preform 34. The aperture 32 may be enlarged (730) into the chute shape by inserting the layup tool 40 into the aperture 32. Finally, the ceramic preform 34 may be formed (740) into the ceramic matrix composite body 50 that comprises the combustion liner 20 and the chute 30. More generally, the ceramic preform 34 may be formed into the ceramic matrix composite body 50 that comprises the ceramic matrix composite combustor shell 690 and the chute 30.
  • In some examples, forming the porous ceramic preform 34 comprising the ceramic fibers 22 may include shaping the ceramic fibers 22 into a desired shape. Forming the porous ceramic preform 34 may include configuring the ceramic fibers 22 into one or more shapes. Alternatively or in addition, forming the porous ceramic preform 34 may include stacking two-dimensional weaves or unidirectional tape layups, or weaving the ceramic fibers 22 in three dimensions.
  • In some examples, forming the aperture 32 in the porous ceramic preform 34 may include leaving a gap in the porous ceramic preform 34. Forming the aperture 32 in the porous ceramic preform 34 may include cutting a hole in the porous ceramic preform 34. Forming the aperture 32 in the porous ceramic preform 34 may include forming an opening in each two-dimensional weave or unidirectional tape layup and aligning the openings in the stacked plurality of two-dimensional weaves or unidirectional tape layups. Forming the aperture 32 in the porous ceramic preform 34 may include weaving the aperture 32 into the porous ceramic preform 34.
  • In some examples, enlarging the aperture 32 into the chute shape by inserting the layup tool 40, as shown in FIG. 5, into the aperture 32 may include shaping the aperture 32 into the larger chute shape with the layup tool 40. Enlarging the aperture 32 into the chute shape by inserting the layup tool 40 into the aperture 32 may include pressing the layup tool 40 into the aperture 32 until the larger chute shape remains. The layup tool 40 may be a material that shapes the porous ceramic preform 34. The layup tool 40 may be the inverse of the desired chute shape. The layup tool 40 may create a chute shape with the chute opening 31 that is substantially parallel with the combustion liner 20 or with the ceramic matrix composite combustor shell 690. Alternatively or in addition, the layup tool 40 may create a chute shape from the chute opening 31 that is scarfed
  • In some examples, forming the porous ceramic preform 34 into the ceramic matrix composite body 50, as shown in FIG. 4, may include infiltrating a molten metal or alloy (for example, a silicon metal or alloy) into the ceramic preform 34. The silicon metal or alloy may fill gaps between the ceramic fibers 22. The silicon metal or alloy may also react with a reactive element source present in the ceramic preform 34 to form additional silicon based ceramic matrix material. In some examples, a chemical vapor infiltration coating may be applied to the ceramic preform 34 prior to the melt infiltration to stiffen the ceramic fibers 22. Alternatively or in addition, forming the ceramic matrix composite body 50 from the ceramic preform 34 may include chemical vapor infiltrating the ceramic preform 34 instead of melt infiltrating a material into the ceramic preform 34.
  • Prior to melt infiltration and/or chemical vapor infiltration, the ceramic matrix composite body 50 may be formed by a slurry infiltration process. A slurry comprising a solvent and the solid particulate matter may be infiltrated into the ceramic preform 34 assembled from silicon carbide fibers. Prior to introducing the slurry, the ceramic preform 34 may be exposed to a vacuum, and the vacuum may be removed during infiltration to create a pressure gradient (for example, about 1 atm) that forces slurry into the preform. The infiltration may be carried out at room temperature (for example, from about 15° C. to about 25° C.). After infiltration, the ceramic matrix composite body 50 may be dried to remove the solvent. Drying may be carried out at room temperature or at an elevated temperature (for example, from about 40° C. to about 150° C.). Typically, slurry infiltration leads to a loading level of solid particulate matter in the ceramic matrix composite body 50 of from about 40 vol. % to about 60 vol. %, with the remainder being porosity. Alternatively or in addition, forming the ceramic matrix composite body 50 from the ceramic preform 34 may include slurry infiltrating the ceramic preform 34 instead of melt infiltrating a material into the ceramic preform 34.
  • FIG. 8 illustrates a flow chart of a second example method for fabricating the ceramic matrix composite chute 30. The method may include additional, fewer, or different steps than illustrated in FIG. 8.
  • First, the ceramic preform 34 may be formed (810) into the frame 36 for the combustion liner 20 and the chute 30. Next, the ceramic preform 34 may be formed (820) into the ceramic matrix composite body 50. Finally, the aperture 32 may be enlarged (830) in the ceramic preform 34 with the layup tool 40.
  • In some examples, forming the ceramic preform 34 may include shaping the ceramic preform 34 into a desired shape. The ceramic preform 34 may be formed into the frame 36 for the combustion liner 20 and for the plurality of chutes 30. The ceramic matrix composite body 50 may include the combustion liner 20 and the chutes 30. Forming the ceramic matrix composite body 50 may comprise chemical vapor infiltration, slurry infiltration, or melt infiltration into the ceramic preform 34.
  • In some examples, enlarging the aperture 32 in the ceramic preform 34 with the layup tool 40 may include shaping the aperture 32 into the larger chute shape with the layup tool 40. The layup tool 40 may include a cylinder. The aperture 32 may be enlarged when the cylinder is inserted into the aperture 32. Alternatively or in addition, enlarging the aperture 32 in the ceramic preform 34 with the layup tool 40 may include moving ceramic fibers 22 in the ceramic preform 34 such that the ceramic fibers 22 extend from the combustion liner 20 into the chute 30 in the ceramic matrix composite body 50.
  • Each component may include additional, different, or fewer components. For example, the ceramic matrix composite body 50 may include more than one chute 30 or more than one combustion liner 20. Alternatively or in addition, the layup tool 40 may include multiple components, such as the cylinder and a handle.
  • To clarify the use of and to hereby provide notice to the public, the phrases “at least one of <A>, <B>, . . . and <N>” or “at least one of <A>, <B>, . . . <N>, or combinations thereof” or “<A>, <B>, . . . and/or <N>” are defined by the Applicant in the broadest sense, superseding any other implied definitions hereinbefore or hereinafter unless expressly asserted by the Applicant to the contrary, to mean one or more elements selected from the group comprising A, B, . . . and N. In other words, the phrases mean any combination of one or more of the elements A, B, . . . or N including any one element alone or the one element in combination with one or more of the other elements which may also include, in combination, additional elements not listed.
  • While various embodiments have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible. Accordingly, the embodiments described herein are examples, not the only possible embodiments and implementations.
  • Furthermore, the advantages described above are not necessarily the only advantages, and it is not necessarily expected that all of the described advantages will be achieved with every embodiment.

Claims (20)

What is claimed is:
1. A combustion assembly for a gas turbine engine, the combustion assembly comprising:
a ceramic matrix composite combustor shell comprising:
a chamber defined by a wall of the ceramic matrix composite combustor shell, and
a ceramic matrix composite chute integral with the ceramic matrix composite combustor shell, wherein the ceramic matrix composite chute extends towards a midline of the chamber of the ceramic matrix composite combustor shell.
2. The combustion assembly of claim 1, wherein the ceramic matrix composite combustor shell is a combustor.
3. The combustion assembly of claim 1, wherein the ceramic matrix composite combustor shell is a ceramic matrix composite liner configured to mount to a combustor and be disposed in a chamber of the combustor when mounted to the combustor.
4. The combustion assembly of claim 1, wherein the ceramic matrix composite combustor shell and the ceramic matrix composite chute comprise ceramic fibers that extend from the ceramic matrix composite combustor shell into the ceramic matrix composite chute.
5. The combustion assembly of claim 1, wherein the ceramic matrix composite combustor shell and the ceramic matrix composite chute form one continuous unit.
6. The combustion assembly of claim 1, wherein the ceramic matrix composite combustor shell is coupled to the ceramic matrix composite chute without welding or brazing.
7. The combustion assembly of claim 1, wherein the ceramic matrix composite chute defines a chute opening into the chamber that is in a plane substantially parallel with a plane that is tangent to the ceramic matrix composite combustor shell where the ceramic matrix composite chute and the ceramic matrix composite combustor shell intersect.
8. A method for fabricating a ceramic matrix composite chute, comprising:
forming a porous ceramic preform comprising a plurality of ceramic fibers;
forming an aperture in the porous ceramic preform;
enlarging the aperture into a chute shape by inserting a layup tool into the aperture; and
forming the porous ceramic preform into a ceramic matrix composite body, the ceramic matrix composite body comprising a combustor shell and a chute.
9. The method of claim 8, wherein forming the porous ceramic preform comprises stacking a plurality of two-dimensional weaves or unidirectional tape layups.
10. The method of claim 9, wherein forming the aperture in the porous ceramic preform comprises forming an opening in each two-dimensional weave or unidirectional tape layup and aligning the openings in the stacked plurality of two-dimensional weaves or unidirectional tape layups.
11. The method of claim 8, wherein forming the aperture in the porous ceramic preform comprises cutting the aperture into the porous ceramic preform.
12. The method of claim 8, wherein forming the aperture in the porous ceramic preform comprises weaving the aperture into the porous ceramic preform.
13. The method of claim 8, wherein forming the porous ceramic preform into the ceramic matrix composite body comprises treating the porous ceramic preform with one or more of a chemical vapor infiltration, a slurry infiltration, or a melt infiltration.
14. The method of claim 8, wherein the chute defines a chute opening into a chamber that is scarfed.
15. A method for fabricating a ceramic matrix composite chute, comprising:
forming a ceramic preform into a frame for a combustor shell and a chute; and
forming the ceramic preform into a ceramic matrix composite body, the ceramic matrix composite body comprising the combustor shell and the chute.
16. The method of claim 15 further comprising enlarging an aperture in the ceramic preform with a layup tool.
17. The method of claim 16, wherein the layup tool includes a cylinder, the aperture is enlarged when the cylinder is inserted into the aperture.
18. The method of claim 16 further comprising moving ceramic fibers in the ceramic preform with the layup tool when enlarging the aperture such that the ceramic fibers extend from the combustor shell into the chute in the ceramic matrix composite body.
19. The method of claim 15, wherein forming the ceramic preform comprises forming the ceramic preform into the frame for the combustor shell and for a plurality of chutes, and, wherein the ceramic matrix composite body comprises the combustor shell and the chutes.
20. The method of claim 15 wherein forming the ceramic matrix composite body comprises one or more of a chemical vapor infiltration, a slurry infiltration, or a melt infiltration.
US14/834,605 2015-08-25 2015-08-25 Cmc combustor shell with integral chutes Abandoned US20170059159A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/834,605 US20170059159A1 (en) 2015-08-25 2015-08-25 Cmc combustor shell with integral chutes
EP16185097.9A EP3135999A1 (en) 2015-08-25 2016-08-22 Cmc combustor shell with integral chutes
US16/518,575 US11796174B2 (en) 2015-08-25 2019-07-22 CMC combustor shell with integral chutes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/834,605 US20170059159A1 (en) 2015-08-25 2015-08-25 Cmc combustor shell with integral chutes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/518,575 Division US11796174B2 (en) 2015-08-25 2019-07-22 CMC combustor shell with integral chutes

Publications (1)

Publication Number Publication Date
US20170059159A1 true US20170059159A1 (en) 2017-03-02

Family

ID=56842649

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/834,605 Abandoned US20170059159A1 (en) 2015-08-25 2015-08-25 Cmc combustor shell with integral chutes
US16/518,575 Active 2038-09-26 US11796174B2 (en) 2015-08-25 2019-07-22 CMC combustor shell with integral chutes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/518,575 Active 2038-09-26 US11796174B2 (en) 2015-08-25 2019-07-22 CMC combustor shell with integral chutes

Country Status (2)

Country Link
US (2) US20170059159A1 (en)
EP (1) EP3135999A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283695A1 (en) * 2017-04-03 2018-10-04 United Technologies Corporation Combustion panel grommet
US10329201B2 (en) 2017-09-21 2019-06-25 General Electric Company Ceramic matrix composite articles formation method
US10774008B2 (en) 2017-09-21 2020-09-15 General Electric Company Ceramic matrix composite articles
US11085639B2 (en) 2018-12-27 2021-08-10 Rolls-Royce North American Technologies Inc. Gas turbine combustor liner with integral chute made by additive manufacturing process
US11143054B2 (en) * 2018-11-19 2021-10-12 Rolls-Royce Corporation Tip clearance radio frequency sensor
US11149684B2 (en) 2018-09-28 2021-10-19 Raytheon Technologies Corporation Method for fabricating dilution holes in ceramic matrix composite combustor panels
US11181273B2 (en) * 2016-09-27 2021-11-23 Siemens Energy Global GmbH & Co. KG Fuel oil axial stage combustion for improved turbine combustor performance
US11187105B2 (en) * 2017-02-09 2021-11-30 General Electric Company Apparatus with thermal break
US11248789B2 (en) * 2018-12-07 2022-02-15 Raytheon Technologies Corporation Gas turbine engine with integral combustion liner and turbine nozzle
US11543127B2 (en) * 2020-02-14 2023-01-03 Raytheon Technologies Corporation Gas turbine engine dilution chute geometry
US11867402B2 (en) 2021-03-19 2024-01-09 Rtx Corporation CMC stepped combustor liner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692612A (en) * 2020-06-19 2020-09-22 宜兴市新立织造有限公司 Three-dimensional woven aviation flame stabilizer and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656297A (en) * 1968-05-13 1972-04-18 Rolls Royce Combustion chamber air inlet
US3735589A (en) * 1970-06-02 1973-05-29 Snecma Walls of combustion chambers
US5687572A (en) * 1992-11-02 1997-11-18 Alliedsignal Inc. Thin wall combustor with backside impingement cooling
US6397603B1 (en) * 2000-05-05 2002-06-04 The United States Of America As Represented By The Secretary Of The Air Force Conbustor having a ceramic matrix composite liner
US20020184892A1 (en) * 2001-06-06 2002-12-12 Snecma Moteurs Fastening a CMC combustion chamber in a turbomachine using brazed tabs
US20040221941A1 (en) * 2003-03-04 2004-11-11 Snecma Propulsion Solide Method of making a multi-perforated part out of ceramic matrix composite material
US7371043B2 (en) * 2006-01-12 2008-05-13 Siemens Power Generation, Inc. CMC turbine shroud ring segment and fabrication method
US20100024427A1 (en) * 2008-07-30 2010-02-04 Rolls-Royce Corporation Precision counter-swirl combustor
US8616004B2 (en) * 2007-11-29 2013-12-31 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981142A (en) 1974-04-01 1976-09-21 General Motors Corporation Ceramic combustion liner
GB9407029D0 (en) 1994-04-08 1994-06-08 Rolls Royce Plc Gas turbine engine combustion apparatus
JPH11255567A (en) * 1998-03-09 1999-09-21 Toshiba Corp Ceramic fiber-combined material part and its production
US6351949B1 (en) 1999-09-03 2002-03-05 Allison Advanced Development Company Interchangeable combustor chute
FR2825784B1 (en) 2001-06-06 2003-08-29 Snecma Moteurs HANGING THE TURBOMACHINE CMC COMBUSTION CHAMBER USING THE DILUTION HOLES
US6554563B2 (en) * 2001-08-13 2003-04-29 General Electric Company Tangential flow baffle
DE10214574A1 (en) * 2002-04-02 2003-10-16 Rolls Royce Deutschland Combustion chamber for jet propulsion unit has openings in wall, ceramic, glass or glass-ceramic, secondary air element with profiling
FR2894500B1 (en) 2005-12-08 2009-07-10 Snecma Sa BRAZING ASSEMBLY OF A METAL PIECE WITH A PIECE OF CERAMIC MATERIAL
FR2897418B1 (en) 2006-02-10 2013-03-01 Snecma ANNULAR COMBUSTION CHAMBER OF A TURBOMACHINE
GB2444736B (en) * 2006-12-12 2009-06-03 Rolls Royce Plc Combustion Chamber Air Inlet
FR2932251B1 (en) 2008-06-10 2011-09-16 Snecma COMBUSTION CHAMBER FOR A GAS TURBINE ENGINE COMPRISING CMC DEFLECTORS
US8745989B2 (en) 2009-04-09 2014-06-10 Pratt & Whitney Canada Corp. Reverse flow ceramic matrix composite combustor
US8943835B2 (en) 2010-05-10 2015-02-03 General Electric Company Gas turbine engine combustor with CMC heat shield and methods therefor
US10266972B2 (en) * 2010-10-21 2019-04-23 Albany Engineered Composites, Inc. Woven preforms, fiber reinforced composites, and methods of making thereof
US9038395B2 (en) * 2012-03-29 2015-05-26 Honeywell International Inc. Combustors with quench inserts
DE102012015452A1 (en) * 2012-08-03 2014-04-24 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber wall for gas turbine engine, has mixed air openings formed by tubular air guide elements, which are fastened at wall and penetrate shingles arranged at inner side of wall
CA2913031C (en) * 2013-05-29 2021-09-21 General Electric Company Method of forming a ceramic matrix composite component with cooling features
EP3044511B1 (en) * 2013-09-11 2021-10-06 Raytheon Technologies Corporation Combustor, gas turbine engine comprising such a combustor, and method
EP2907974B1 (en) * 2014-02-12 2020-10-07 United Technologies Corporation Component and corresponding gas turbine engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656297A (en) * 1968-05-13 1972-04-18 Rolls Royce Combustion chamber air inlet
US3735589A (en) * 1970-06-02 1973-05-29 Snecma Walls of combustion chambers
US5687572A (en) * 1992-11-02 1997-11-18 Alliedsignal Inc. Thin wall combustor with backside impingement cooling
US6397603B1 (en) * 2000-05-05 2002-06-04 The United States Of America As Represented By The Secretary Of The Air Force Conbustor having a ceramic matrix composite liner
US20020184892A1 (en) * 2001-06-06 2002-12-12 Snecma Moteurs Fastening a CMC combustion chamber in a turbomachine using brazed tabs
US20040221941A1 (en) * 2003-03-04 2004-11-11 Snecma Propulsion Solide Method of making a multi-perforated part out of ceramic matrix composite material
US7371043B2 (en) * 2006-01-12 2008-05-13 Siemens Power Generation, Inc. CMC turbine shroud ring segment and fabrication method
US8616004B2 (en) * 2007-11-29 2013-12-31 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
US20100024427A1 (en) * 2008-07-30 2010-02-04 Rolls-Royce Corporation Precision counter-swirl combustor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181273B2 (en) * 2016-09-27 2021-11-23 Siemens Energy Global GmbH & Co. KG Fuel oil axial stage combustion for improved turbine combustor performance
US11187105B2 (en) * 2017-02-09 2021-11-30 General Electric Company Apparatus with thermal break
US20180283695A1 (en) * 2017-04-03 2018-10-04 United Technologies Corporation Combustion panel grommet
US10329201B2 (en) 2017-09-21 2019-06-25 General Electric Company Ceramic matrix composite articles formation method
US10774008B2 (en) 2017-09-21 2020-09-15 General Electric Company Ceramic matrix composite articles
US11149684B2 (en) 2018-09-28 2021-10-19 Raytheon Technologies Corporation Method for fabricating dilution holes in ceramic matrix composite combustor panels
US11143054B2 (en) * 2018-11-19 2021-10-12 Rolls-Royce Corporation Tip clearance radio frequency sensor
US11612938B2 (en) 2018-12-07 2023-03-28 Raytheon Technologies Corporation Engine article with integral liner and nozzle
US11248789B2 (en) * 2018-12-07 2022-02-15 Raytheon Technologies Corporation Gas turbine engine with integral combustion liner and turbine nozzle
US12053821B2 (en) 2018-12-07 2024-08-06 Rtx Corporation Engine article with integral liner and nozzle
US11085639B2 (en) 2018-12-27 2021-08-10 Rolls-Royce North American Technologies Inc. Gas turbine combustor liner with integral chute made by additive manufacturing process
US11543127B2 (en) * 2020-02-14 2023-01-03 Raytheon Technologies Corporation Gas turbine engine dilution chute geometry
US11867402B2 (en) 2021-03-19 2024-01-09 Rtx Corporation CMC stepped combustor liner

Also Published As

Publication number Publication date
EP3135999A1 (en) 2017-03-01
US20200103112A1 (en) 2020-04-02
US11796174B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US11796174B2 (en) CMC combustor shell with integral chutes
US11391171B2 (en) Methods and features for positioning a flow path assembly within a gas turbine engine
US11143402B2 (en) Unitary flow path structure
CA3049870C (en) Unitary flow path structure
US10378770B2 (en) Unitary flow path structure
US11149575B2 (en) Airfoil fluid curtain to mitigate or prevent flow path leakage
US11262072B2 (en) CMC combustor deflector
US10907501B2 (en) Shroud hanger assembly cooling
US11739663B2 (en) CTE matching hanger support for CMC structures
US10822974B2 (en) Turbine nozzle with CMC aft band
US10570760B2 (en) Turbine nozzle with CMC aft band

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROLLS-ROYCE CORPORATION, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARNEY, BRUCE EDWARD;REEL/FRAME:036417/0751

Effective date: 20150821

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION