Nothing Special   »   [go: up one dir, main page]

US20150238097A1 - Apparatus for monitoring health, wellness and fitness - Google Patents

Apparatus for monitoring health, wellness and fitness Download PDF

Info

Publication number
US20150238097A1
US20150238097A1 US14/636,157 US201514636157A US2015238097A1 US 20150238097 A1 US20150238097 A1 US 20150238097A1 US 201514636157 A US201514636157 A US 201514636157A US 2015238097 A1 US2015238097 A1 US 2015238097A1
Authority
US
United States
Prior art keywords
data
sensor device
user
individual
monitoring unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/636,157
Inventor
Eric Teller
John M. Stivoric
Christopher D. Kasabach
Christopher D. Pacione
John L. Moss
Craig B. Liden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JB IP Acquisition LLC
Original Assignee
Bodymedia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/595,660 external-priority patent/US7689437B1/en
Priority claimed from US09/602,537 external-priority patent/US6605038B1/en
Priority claimed from US09/923,181 external-priority patent/US7261690B2/en
Application filed by Bodymedia Inc filed Critical Bodymedia Inc
Priority to US14/636,157 priority Critical patent/US20150238097A1/en
Assigned to BLACKROCK ADVISORS, LLC reassignment BLACKROCK ADVISORS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPH, INC., ALIPHCOM, BODYMEDIA, INC., MACGYVER ACQUISITION LLC, PROJECT PARIS ACQUISITION LLC
Assigned to BODYMEDIA, INC. reassignment BODYMEDIA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOSS, JOHN L., KASABACH, CHRISTOPHER D., STIVORIC, JOHN M.
Assigned to BODYMEDIA, INC. reassignment BODYMEDIA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TELLER, ERIC
Assigned to BODYMEDIA, INC. reassignment BODYMEDIA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIDEN, CRAIG B, PACIONE, CHRISTOPHER D
Publication of US20150238097A1 publication Critical patent/US20150238097A1/en
Assigned to BLACKROCK ADVISORS, LLC reassignment BLACKROCK ADVISORS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPH, INC., ALIPHCOM, BODYMEDIA, INC., MACGYVER ACQUISITION LLC, PROJECT PARIS ACQUISITION LLC
Assigned to BLACKROCK ADVISORS, LLC reassignment BLACKROCK ADVISORS, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NO. 13870843 PREVIOUSLY RECORDED ON REEL 036500 FRAME 0173. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: ALIPH, INC., ALIPHCOM, BODYMEDIA, INC., MACGYVER ACQUISITION, LLC, PROJECT PARIS ACQUISITION LLC
Assigned to JB IP ACQUISITION LLC reassignment JB IP ACQUISITION LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPHCOM, LLC, BODYMEDIA, INC.
Assigned to J FITNESS LLC reassignment J FITNESS LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JB IP ACQUISITION, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC UCC FINANCING STATEMENT Assignors: JB IP ACQUISITION, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC UCC FINANCING STATEMENT Assignors: JAWBONE HEALTH HUB, INC.
Assigned to ALIPHCOM LLC reassignment ALIPHCOM LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BLACKROCK ADVISORS, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JAWBONE HEALTH HUB, INC., JB IP ACQUISITION, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7455Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0295Operational features adapted for recording user messages or annotations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0456Apparatus provided with a docking unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0257Proximity sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/221Ergometry, e.g. by using bicycle type apparatus
    • A61B5/222Ergometry, e.g. by using bicycle type apparatus combined with detection or measurement of physiological parameters, e.g. heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4875Hydration status, fluid retention of the body
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13092Scanning of subscriber lines, monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13098Mobile subscriber
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13103Memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13104Central control, computer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13389LAN, internet

Definitions

  • the present invention relates to a system for monitoring health, wellness and fitness, and in particular, to a system for collecting, using a sensor device, and storing at a remote site data relating to an individual's physiological state, lifestyle, and various contextual parameters, and making such data and analytical information based on such data available to the individual, preferably over an electronic network.
  • the present invention also relates to an apparatus for monitoring health, wellness and fitness, and in particular, to an apparatus including one or more sensors for collecting and storing data relating to an individual's physiological state and various contextual parameters, and making such data and analytical information based on such data available to the individual.
  • barriers include the fact that the individual is often left to himself or herself to find motivation, to implement a plan for achieving a healthier lifestyle, to monitor progress, and to brainstorm solutions when problems arise; the fact that existing programs are directed to only certain aspects of a healthier lifestyle, and rarely come as a complete package; and the fact that recommendations are often not targeted to the unique characteristics of the individual or his life circumstances.
  • a system for detecting, monitoring and reporting human physiological information.
  • the system includes a sensor device which generates at least one of data indicative of one or more physiological parameters and derived data from at least a portion of the data indicative of one or more physiological parameters when placed in proximity with at least a portion of the human body.
  • the system also includes a central monitoring unit located remote from the sensor device.
  • the central monitoring unit generates analytical status data from at least one of the data indicative of one or more physiological parameters, the derived data, and analytical status data that has previously been generated.
  • the central monitoring unit also includes a data storage device for retrievably storing the data it receives and generates.
  • the disclosed system also includes means for establishing electronic communication between the sensor device and the central monitoring unit.
  • Examples may include various known types of long range wireless transmission devices, or a physical or a short range wireless coupling to a computer which in turn establishes electronic communication with the central monitoring unit over an electronic network such as the Internet. Also included in the system is a means for transmitting the data indicative of one or more physiological parameters, the derived data, and/or the analytical status data to a recipient, such as the individual or a third party authorized by the individual.
  • the method includes generating at least one of data indicative of one or more physiological parameters of an individual and derived data from at least a portion of the data indicative of one or more physiological parameters using a sensor device adapted to be placed in proximity with at least a portion of the human body.
  • the at least one of the data indicative of one or more physiological parameters and the derived data are transmitted to a central monitoring unit remote from said sensor device and retrievably stored in a storage device.
  • Analytical status data is generated from at least a portion of at least one of the data indicative of one or more physiological parameters, the derived data and the analytical status data, and at least one of the data indicative of one or more physiological parameters, the derived data and the analytical status data is transmitted to a recipient.
  • the sensor device includes one or more sensors for generating signals in response to physiological characteristics of the individual.
  • the sensor device may also include a processor that is adapted to generate the data indicative of one or more physiological parameters from the signals generated by the one or more sensors.
  • the processor may also be adapted to generate the derived data.
  • the derived data may be generated by the central monitoring unit.
  • the central monitoring unit may be adapted to generate one or more web pages containing the data indicative of one or more physiological parameters, the derived data, and/or the analytical status data.
  • the web pages generated by the central monitoring unit are accessible by the recipient over an electronic network, such as the Internet.
  • the data indicative of one or more physiological parameters, the derived data, and/or the analytical status data may be transmitted to the recipient in a physical form such as mail or facsimile.
  • the system and method may also obtain life activities data of the individual and may use such life activities data when generating the analytical status data. Furthermore, the sensor device may also be adapted to generate data indicative of one or more contextual parameters of the individual. The system and method may then use the data indicative of one or more contextual parameters when generating the analytical status data.
  • the system includes a sensor device adapted to generate at least one of data indicative of one or more physiological parameters of the individual and derived data from at least a portion of the data indicative of one or more physiological parameters when the sensor device is placed in proximity with at least a portion of the human body. Also included is a means for transmitting the data that is generated by the sensor device to a central monitoring unit remote from the sensor device and means for providing life activities data of the individual to the central monitoring unit.
  • the central monitoring unit is adapted to generate and provide feedback to a recipient relating to the degree to which the individual has followed the predetermined routine. The feedback is generated from at least a portion of at least one of the data indicative of one or more physiological parameters, the derived data, and the life activities data.
  • the method includes receiving, at a central monitoring unit, at least one of data indicative of one or more physiological parameters of said individual and derived data based on at least a portion of the data indicative of one or more physiological parameters, wherein the data indicative of one or more physiological parameters and the derived data are generated by a sensor device when placed in proximity with at least a portion of the human body. Also received at the central monitoring unit is life activities data of the individual.
  • the method further includes generating at the central monitoring unit feedback relating to the degree to which the individual has followed the predetermined routine, the feedback being generated from at least a portion of at least one of the data indicative of one or more physiological parameters of the individual, the derived data, and the life activities data, and providing the feedback to a recipient.
  • the predetermined routine may include a plurality of categories, wherein the feedback is generated and provided with respect to each of the categories. Examples of the categories include nutrition, activity level, mind centering, sleep, and daily activities.
  • the feedback may be provided in graphical or textual form and may be contained in one or more web pages generated by the central monitoring unit. Alternatively, the feedback may be transmitted to the recipient in a physical form.
  • the system includes a sensor device adapted to be placed in contact with an individual's upper arm.
  • the sensor device includes at least one of an accelerometer, a GSR sensor and a heat flux sensor and is adapted to generate data indicative of at least one of activity, galvanic skin response, and heat flow of the individual wearing the sensor device.
  • the sensor device may also be adapted to generate derived data from at least a portion of the data indicative of at least one of activity, galvanic skin response and heat flow.
  • the sensor device may include a computer housing and a flexible wing body having first and second wings adapted to wrap around a portion of the individual's arm.
  • the sensor device may also be adapted to provide audible, visible or tactile feedback to the wearer.
  • the system also includes a central monitoring unit located remote from the sensor device.
  • the central monitoring unit generates analytical status data from at least one of the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and analytical status data that has previously been generated.
  • the central monitoring unit may also be adapted to generate derived data from the data indicative of at least one of activity, galvanic skin response and heat flow.
  • the central monitoring unit also includes a data storage device for retrievably storing the data it receives and generates.
  • the disclosed system also includes means for establishing electronic communication between the sensor device and the central monitoring unit. Also included in the system is a means for transmitting the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data to a recipient, such as the individual or a third party authorized by the individual.
  • the central monitoring unit may be adapted to generate one or more web pages containing the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data.
  • the web pages generated by the central monitoring unit are accessible by the recipient over an electronic network, such as the Internet.
  • the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data may be transmitted to the recipient in a physical form such as mail or facsimile.
  • the system may also obtain life activities data of the individual and may use such life activities data when generating the analytical status data. Furthermore, the sensor device may also be adapted to generate data indicative of one or more contextual parameters of the individual. The system may then use the data indicative of one or more contextual parameters when generating the analytical status data.
  • the system includes a sensor device as described above. Also included is a means for transmitting the data that is generated by the sensor device to a central monitoring unit remote from the sensor device and means for providing life activities data of the individual to the central monitoring unit.
  • the central monitoring unit is adapted to generate and provide feedback to a recipient relating to the degree to which the individual has followed the suggested routine. The feedback is generated from at least a portion of at least one of the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and the life activities data.
  • the suggested routine may include a plurality of categories, wherein the feedback is generated and provided with respect to each of the categories.
  • categories include nutrition, activity level, mind centering, sleep, and daily activities.
  • the feedback may be provided in graphical or textual form and may be contained in one or more web pages generated by the central monitoring unit. Alternatively, the feedback may be transmitted to the recipient in a physical form.
  • an apparatus for detecting, monitoring and reporting at least one of human physiological and contextual information which includes at least two sensors selected from the group consisting of physiological sensors and contextual sensors.
  • the physiological sensors are adapted to facilitate the generation of data indicative of one or more physiological parameters of an individual
  • the contextual sensors are adapted to facilitate the generation of data indicative of one or more contextual parameters of the individual.
  • a processor is coupled to the sensors and is adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data.
  • a memory is provided for retrievably storing at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data.
  • Various options are available for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data, including a visual output device, a tactile output device, an audible output device, and a computing device coupled to the apparatus.
  • the apparatus may also include a component to enable the manual entry of information, and a wireless device to enable the apparatus to receive information from and/or output information to at least one of a wireless device worn by the individual, a wireless device implanted in the body of the individual, and a wireless device located near the individual.
  • an apparatus for detecting, monitoring and reporting at least one of human physiological and contextual information includes a sensor device and a computing device coupled to the sensor device.
  • the sensor device includes at least two sensors selected from the group consisting of physiological sensors and contextual sensors.
  • the physiological sensors are adapted to facilitate the generation of data indicative of one or more physiological parameters of an individual
  • the contextual sensors are adapted to facilitate the generation of data indicative of one or more contextual parameters of the individual.
  • the sensor device also includes a memory for retrievably storing at least one of the data indicative of physiological parameters and the data indicative of contextual parameters.
  • the computing device is adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data.
  • Various options are available for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data, including a visual output device, a tactile output device, an audible output device, and the computing device.
  • the apparatus may also include a component to enable the manual entry of information, and a wireless device to enable the apparatus to receive information from and/or output information to at least one of a wireless device worn by the individual, a wireless device implanted in the body of the individual, and a wireless device located near the individual.
  • the apparatus may include a processor adapted to generate derived data from at least a portion of the data indicative of physiological parameters.
  • an apparatus for monitoring and reporting at least one of human physiological and contextual information and nutritional information includes at least two sensors selected from the group consisting of physiological sensors and contextual sensors.
  • the physiological sensors are adapted to facilitate the generation of data indicative of one or more physiological parameters of an individual and the contextual sensors are adapted to facilitate the generation of data indicative of one or more contextual parameters of said individual.
  • the apparatus also includes means for entering food consumption information into the apparatus.
  • a memory for storing conversion information for converting the food consumption information into nutritional information is also provided.
  • the apparatus further includes a processor adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data, the nutritional information and the analytical status data, and means for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data, and the analytical status data.
  • a processor adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data, the nutritional information and the analytical status data, and means for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data, and the analytical status data.
  • FIG. 1 is a diagram of an embodiment of a system for monitoring physiological data and lifestyle over an electronic network according to the present invention
  • FIG. 2 is a block diagram of an embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 3 is a block diagram of an embodiment of the central monitoring unit shown in FIG. 1 ;
  • FIG. 4 is a block diagram of an alternate embodiment of the central monitoring unit shown in FIG. 1 ;
  • FIG. 5 is a representation of a preferred embodiment of the Health Manager web page according to an aspect of the present invention.
  • FIG. 6 is a representation of a preferred embodiment of the nutrition web page according to an aspect of the present invention.
  • FIG. 7 is a representation of a preferred embodiment of the activity level web page according to an aspect of the present invention.
  • FIG. 8 is a representation of a preferred embodiment of the mind centering web page according to an aspect of the present invention.
  • FIG. 9 is a representation of a preferred embodiment of the sleep web page according to an aspect of the present invention.
  • FIG. 10 is a representation of a preferred embodiment of the daily activities web page according to an aspect of the present invention.
  • FIG. 11 is a representation of a preferred embodiment of the Health Index web page according to an aspect of the present invention.
  • FIG. 12 is a front view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 13 is a back view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 14 is a side view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 15 is a bottom view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIGS. 16 and 17 are front perspective views of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 18 is an exploded side perspective view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 19 is a side view of the sensor device shown in FIGS. 12 through 18 inserted into a battery recharger unit;
  • FIG. 20 is a block diagram illustrating all of the components either mounted on or coupled to the printed circuit board forming a part of the sensor device shown in FIGS. 12 through 18 ;
  • FIG. 21 is a block diagram of an apparatus for monitoring health, wellness and fitness according to an alternate embodiment of the present invention.
  • data relating to the physiological state, the lifestyle and certain contextual parameters of an individual is collected and transmitted, either subsequently or in real-time, to a site, preferably remote from the individual, where it is stored for later manipulation and presentation to a recipient, preferably over an electronic network such as the Internet.
  • Contextual parameters as used herein means parameters relating to the environment, surroundings and location of the individual, including, but not limited to, air quality, sound quality, ambient temperature, global positioning and the like.
  • sensor device 10 located at user location 5 is sensor device 10 adapted to be placed in proximity with at least a portion of the human body.
  • Sensor device 10 is preferably worn by an individual user on his or her body, for example as part of a garment such as a form fitting shirt, or as part of an arm band or the like.
  • Sensor device 10 includes one or more sensors, which are adapted to generate signals in response to physiological characteristics of an individual, and a microprocessor.
  • Proximity as used herein means that the sensors of sensor device 10 are separated from the individual's body by a material or the like, or a distance such that the capabilities of the sensors are not impeded.
  • Sensor device 10 generates data indicative of various physiological parameters of an individual, such as the individual's heart rate, pulse rate, beat-to-beat heart variability, EKG or ECG, respiration rate, skin temperature, core body temperature, heat flow off the body, galvanic skin response or GSR, EMG, EEG, EOG, blood pressure, body fat, hydration level, activity level, oxygen consumption, glucose or blood sugar level, body position, pressure on muscles or bones, and UV radiation exposure and absorption.
  • the data indicative of the various physiological parameters is the signal or signals themselves generated by the one or more sensors and in certain other cases the data is calculated by the microprocessor based on the signal or signals generated by the one or more sensors. Methods for generating data indicative of various physiological parameters and sensors to be used therefor are well known.
  • Table 1 provides several examples of such well known methods and shows the parameter in question, the method used, the sensor device used, and the signal that is generated. Table 1 also provides an indication as to whether further processing based on the generated signal is required to generate the data.
  • TABLE-US-00001 TABLE 1 Further Parameter Method Sensor Signal Processing Heart Rate EKG 2 Electrodes DC Voltage Yes Pulse Rate BVP LED Emitter and Change in Yes Resistance Beat-to-Beat Heart Rate 2 Electrodes DC Voltage Yes Variability EKG Skin Surface 3-10 Electrodes DC Voltage No Potentials Respiration Rate Chest Volume Strain Gauge Change in Yes Change Resistance Skin Temperature Surface Thermistors Change in Yes Temperature Resistance Probe Core Esophageal or Thermistors Change in Yes Temperature Rectal Probe Resistance Heat Flow Heat Flux Thermopile DC Voltage Yes Galvanic Skin Skin 2 Electrodes Change in No Response Conductance Resistance EMG Skin Surface 3 Electrodes DC Voltage No Potentials EEG Skin Surface Multiple DC Voltage Yes Potentials Electrodes EOG Eye Movement Thin Film DC Voltage Yes Piez
  • Table 1 The types of data listed in Table 1 are intended to be examples of the types of data that can be generated by sensor device 10 . It is to be understood that other types of data relating to other parameters can be generated by sensor device 10 without departing from the scope of the present invention.
  • the microprocessor of sensor device 10 may be programmed to summarize and analyze the data. For example, the microprocessor can be programmed to calculate an average, minimum or maximum heart rate or respiration rate over a defined period of time, such as ten minutes. Sensor device 10 may be able to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. The microprocessor of sensor device 10 is programmed to derive such information using known methods based on the data indicative of one or more physiological parameters. Table 2 provides examples of the type of information that can be derived, and indicates some of the types of data that can be used therefor.
  • sensor device 10 may also generate data indicative of various contextual parameters relating to the environment surrounding the individual.
  • sensor device 10 can generate data indicative of the air quality, sound level/quality, light quality or ambient temperature near the individual, or even the global positioning of the individual.
  • Sensor device 10 may include one or more sensors for generating signals in response to contextual characteristics relating to the environment surrounding the individual, the signals ultimately being used to generate the type of data described above. Such sensors are well known, as are methods for generating contextual parametric data such as air quality, sound level/quality, ambient temperature and global positioning.
  • FIG. 2 is a block diagram of an embodiment of sensor device 10 .
  • Sensor device 10 includes at least one sensor 12 and microprocessor 20 .
  • the signal can be sent through one or more of amplifier 14 , conditioning circuit 16 , and analog-to-digital converter 18 , before being sent to microprocessor 20 .
  • amplifier 14 For example, where sensor 12 generates an analog signal in need of amplification and filtering, that signal can be sent to amplifier 14 , and then on to conditioning circuit 16 , which may, for example, be a band pass filter.
  • the amplified and conditioned analog signal can then be transferred to analog-to-digital converter 18 , where it is converted to a digital signal.
  • the digital signal is then sent to microprocessor 20 .
  • sensor 12 generates a digital signal
  • that signal can be sent directly to microprocessor 20 .
  • a digital signal or signals representing certain physiological and/or contextual characteristics of the individual user may be used by microprocessor 20 to calculate or generate data indicative of physiological and/or contextual parameters of the individual user.
  • Microprocessor 20 is programmed to derive information relating to at least one aspect of the individual's physiological state. It should be understood that microprocessor 20 may also comprise other forms of processors or processing devices, such as a microcontroller, or any other device that can be programmed to perform the functionality described herein.
  • the data indicative of physiological and/or contextual parameters can, according to one embodiment of the present invention, be sent to memory 22 , such as flash memory, where it is stored until uploaded in the manner to be described below.
  • memory 22 is shown in FIG. 2 as a discrete element, it will be appreciated that it may also be part of microprocessor 20 .
  • Sensor device 10 also includes input/output circuitry 24 , which is adapted to output and receive as input certain data signals in the manners to be described herein.
  • memory 22 of the sensor device 10 will build up, over time, a store of data relating to the individual user's body and/or environment. That data is periodically uploaded from sensor device 10 and sent to remote central monitoring unit 30 , as shown in FIG.
  • sensor device 10 may continuously upload data in real time.
  • the uploading of data from sensor device 10 to central monitoring unit 30 for storage can be accomplished in various ways.
  • the data collected by sensor device 10 is uploaded by first transferring the data to personal computer 35 shown in FIG. 1 by means of physical connection 40 , which, for example, may be a serial connection such as an RS232 or USB port.
  • This physical connection may also be accomplished by using a cradle, not shown, that is electronically coupled to personal computer 35 into which sensor device 10 can be inserted, as is common with many commercially available personal digital assistants.
  • the uploading of data could be initiated by then pressing a button on the cradle or could be initiated automatically upon insertion of sensor device 10 .
  • the data collected by sensor device 10 may be uploaded by first transferring the data to personal computer 35 by means of short-range wireless transmission, such as infrared or RF transmission, as indicated at 45 .
  • personal computer 35 Once the data is received by personal computer 35 , it is optionally compressed and encrypted by any one of a variety of well known methods and then sent out over a local or global electronic network, preferably the Internet, to central monitoring unit 30 .
  • personal computer 35 can be replaced by any computing device that has access to and that can transmit and receive data through the electronic network, such as, for example, a personal digital assistant such as the Palm VII sold by Palm, Inc., or the Blackberry 2-way pager sold by Research in Motion, Inc.
  • the data collected by sensor device 10 after being encrypted and, optionally, compressed by microprocessor 20 , may be transferred to wireless device 50 , such as a 2-way pager or cellular phone, for subsequent long distance wireless transmission to local telco site 55 using a wireless protocol such as e-mail or as ASCII or binary data.
  • Local telco site 55 includes tower 60 that receives the wireless transmission from wireless device 50 and computer 65 connected to tower 60 .
  • computer 65 has access to the relevant electronic network, such as the Internet, and is used to transmit the data received in the form of the wireless transmission to the central monitoring unit 30 over the Internet.
  • wireless device 50 is shown in FIG. 1 as a discrete device coupled to sensor device 10 , it or a device having the same or similar functionality may be embedded as part of sensor device 10 .
  • Sensor device 10 may be provided with a button to be used to time stamp events such as time to bed, wake time, and time of meals. These time stamps are stored in sensor device 10 and are uploaded to central monitoring unit 30 with the rest of the data as described above.
  • the time stamps may include a digitally recorded voice message that, after being uploaded to central monitoring unit 30 , are translated using voice recognition technology into text or some other information format that can be used by central monitoring unit 30 .
  • a kiosk could be adapted to collect such data by, for example, weighing the individual, providing a sensing device similar to sensor device 10 on which an individual places his or her hand or another part of his or her body, or by scanning the individual's body using, for example, laser technology or an iStat blood analyzer.
  • the kiosk would be provided with processing capability as described herein and access to the relevant electronic network, and would thus be adapted to send the collected data to the central monitoring unit 30 through the electronic network.
  • a desktop sensing device again similar to sensor device 10 , on which an individual places his or her hand or another part of his or her body may also be provided.
  • such a desktop sensing device could be a blood pressure monitor in which an individual places his or her arm.
  • An individual might also wear a ring having a sensor device 10 incorporated therein.
  • a base not shown, could then be provided which is adapted to be coupled to the ring.
  • the desktop sensing device or the base just described may then be coupled to a computer such as personal computer 35 by means of a physical or short range wireless connection so that the collected data could be uploaded to central monitoring unit 30 over the relevant electronic network in the manner described above.
  • a mobile device such as, for example, a personal digital assistant, might also be provided with a sensor device 10 incorporated therein.
  • Such a sensor device 10 would be adapted to collect data when mobile device is placed in proximity with the individual's body, such as by holding the device in the palm of one's hand, and upload the collected data to central monitoring unit 30 in any of the ways described herein.
  • central monitoring unit 30 can also manually provide data relating to various life activities that is ultimately transferred to and stored at central monitoring unit 30 .
  • An individual user can access a web site maintained by central monitoring unit 30 and can directly input information relating to life activities by entering text freely, by responding to questions posed by the web site, or by clicking through dialog boxes provided by the web site.
  • Central monitoring unit 30 can also be adapted to periodically send electronic mail messages containing questions designed to elicit information relating to life activities to personal computer 35 or to some other device that can receive electronic mail, such as a personal digital assistant, a pager, or a cellular phone. The individual would then provide data relating to life activities to central monitoring unit 30 by responding to the appropriate electronic mail message with the relevant data.
  • Central monitoring unit 30 may also be adapted to place a telephone call to an individual user in which certain questions would be posed to the individual user.
  • the user could respond to the questions by entering information using a telephone keypad, or by voice, in which case conventional voice recognition technology would be used by central monitoring unit 30 to receive and process the response.
  • the telephone call may also be initiated by the user, in which case the user could speak to a person directly or enter information using the keypad or by voice/voice recognition technology.
  • Central monitoring unit 30 may also be given access to a source of information controlled by the user, for example the user's electronic calendar such as that provided with the Outlook product sold by Microsoft Corporation of Redmond, Wash., from which it could automatically collect information.
  • the data relating to life activities may relate to the eating, sleep, exercise, mind centering or relaxation, and/or daily living habits, patterns and/or activities of the individual.
  • sample questions may include: What did you have for lunch today? What time did you go to sleep last night? What time did you wake up this morning? How long did you run on the treadmill today?
  • Feedback may also be provided to a user directly through sensor device 10 in a visual form, for example through an LED or LCD or by constructing sensor device 10 , at least in part, of a thermochromatic plastic, in the form of an acoustic signal or in the form of tactile feedback such as vibration.
  • Such feedback may be a reminder or an alert to eat a meal or take medication or a supplement such as a vitamin, to engage in an activity such as exercise or meditation, or to drink water when a state of dehydration is detected. Additionally, a reminder or alert can be issued in the event that a particular physiological parameter such as ovulation has been detected, a level of calories burned during a workout has been achieved or a high heart rate or respiration rate has been encountered.
  • Adownload@ data from central monitoring unit 30 to sensor device 10 it may be possible to Adownload@ data from central monitoring unit 30 to sensor device 10 .
  • the flow of data in such a download process would be substantially the reverse of that described above with respect to the upload of data from sensor device 10 .
  • the firmware of microprocessor 20 of sensor device 10 can be updated or altered remotely, i.e., the microprocessor can be reprogrammed, by downloading new firmware to sensor device 10 from central monitoring unit 30 for such parameters as timing and sample rates of sensor device 10 .
  • the reminders/alerts provided by sensor device 10 may be set by the user using the web site maintained by central monitoring unit 30 and subsequently downloaded to the sensor device 10 .
  • Central monitoring unit 30 includes CSU/DSU 70 which is connected to router 75 , the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30 .
  • CSU/DSU 70 which is connected to router 75 , the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30 .
  • firewall 80 Connected to router 75 is firewall 80 .
  • the main purpose of firewall 80 is to protect the remainder of central monitoring unit 30 from unauthorized or malicious intrusions.
  • Switch 85 connected to firewall 80 , is used to direct data flow between middleware servers 95 a through 95 c and database server 110 .
  • Load balancer 90 is provided to spread the workload of incoming requests among the identically configured middleware servers 95 a through 95 c.
  • Load balancer 90 analyzes the availability of each middleware server 95 a through 95 c, and the amount of system resources being used in each middleware server 95 a through 95 c, in order to spread tasks among them appropriately.
  • Central monitoring unit 30 includes network storage device 100 , such as a storage area network or SAN, which acts as the central repository for data.
  • network storage device 100 comprises a database that stores all data gathered for each individual user in the manners described above.
  • An example of a suitable network storage device 100 is the Symmetrix product sold by EMC Corporation of Hopkinton, Mass. Although only one network storage device 100 is shown in FIG. 3 , it will be understood that multiple network storage devices of various capacities could be used depending on the data storage needs of central monitoring unit 30 .
  • Central monitoring unit 30 also includes database server 110 which is coupled to network storage device 100 .
  • Database server 110 is made up of two main components: a large scale multiprocessor server and an enterprise type software server component such as the 8/8i component sold by Oracle Corporation of Redwood City, Calif., or the 506 7 component sold by Microsoft Corporation of Redmond, Wash.
  • the primary functions of database server 110 are that of providing access upon request to the data stored in network storage device 100 , and populating network storage device 100 with new data.
  • controller 115 Coupled to network storage device 100 is controller 115 , which typically comprises a desktop personal computer, for managing the data stored in network storage device 100 .
  • Middleware servers 95 a through 95 c each contain software for generating and maintaining the corporate or home web page or pages of the web site maintained by central monitoring unit 30 .
  • a web page refers to a block or blocks of data available on the World-Wide Web comprising a file or files written in Hypertext Markup Language or HTML
  • a web site commonly refers to any computer on the Internet running a World-Wide Web server process.
  • the corporate or home web page or pages are the opening or landing web page or pages that are accessible by all members of the general public that visit the site by using the appropriate uniform resource locator or URL.
  • URLs are the form of address used on the World-Wide Web and provide a standard way of specifying the location of an object, typically a web page, on the Internet.
  • Middleware servers 95 a through 95 c also each contain software for generating and maintaining the web pages of the web site of central monitoring unit 30 that can only be accessed by individuals that register and become members of central monitoring unit 30 .
  • the member users will be those individuals who wish to have their data stored at central monitoring unit 30 . Access by such member users is controlled using passwords for security purposes.
  • Preferred embodiments of those web pages are described in detail below and are generated using collected data that is stored in the database of network storage device 100 .
  • Middleware servers 95 a through 95 c also contain software for requesting data from and writing data to network storage device 100 through database server 110 .
  • the central monitoring unit 30 When an individual user desires to initiate a session with the central monitoring unit 30 for the purpose of entering data into the database of network storage device 100 , viewing his or her data stored in the database of network storage device 100 , or both, the user visits the home web page of central monitoring unit 30 using a browser program such as Internet Explorer distributed by Microsoft Corporation of Redmond, Wash., and logs in as a registered user.
  • Load balancer 90 assigns the user to one of the middleware servers 95 a through 95 c, identified as the chosen middleware server. A user will preferably be assigned to a chosen middleware server for each entire session.
  • the chosen middleware server authenticates the user using any one of many well known methods, to ensure that only the true user is permitted to access the information in the database.
  • a member user may also grant access to his or her data to a third party such as a health care provider or a personal trainer.
  • Each authorized third party may be given a separate password and may view the member user's data using a conventional browser. It is therefore possible for both the user and the third party to be the recipient of the data.
  • the chosen middleware server When the user is authenticated, the chosen middleware server requests, through database server 110 , the individual user's data from network storage device 100 for a predetermined time period.
  • the predetermined time period is preferably thirty days.
  • the requested data once received from network storage device 100 , is temporarily stored by the chosen middleware server in cache memory.
  • the cached data is used by the chosen middleware server as the basis for presenting information, in the form of web pages, to the user again through the user's browser.
  • Each middleware server 95 a through 95 c is provided with appropriate software for generating such web pages, including software for manipulating and performing calculations utilizing the data to put the data in appropriate format for presentation to the user. Once the user ends his or her session, the data is discarded from cache.
  • This caching system thus ideally requires that only one call to the network storage device 100 be made per session, thereby reducing the traffic that database server 110 must handle. Should a request from a user during a particular session require data that is outside of a predetermined time period of cached data already retrieved, a separate call to network storage device 100 may be performed by the chosen middleware server. The predetermined time period should be chosen, however, such that such additional calls are minimized. Cached data may also be saved in cache memory so that it can be reused when a user starts a new session, thus eliminating the need to initiate a new call to network storage device 100 .
  • the microprocessor of sensor device 10 may be programmed to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters.
  • Central monitoring unit 30 and preferably middleware servers 95 a through 95 c, may also be similarly programmed to derive such information based on the data indicative of one or more physiological parameters.
  • a user will input additional data during a session, for example, information relating to the user's eating or sleeping habits.
  • This additional data is preferably stored by the chosen middleware server in a cache during the duration of the user's session.
  • this additional new data stored in a cache is transferred by the chosen middleware server to database server 110 for population in network storage device 100 .
  • the input data may also be immediately transferred to database server 110 for population in network storage device 100 , as part of a write-through cache system which is well known in the art.
  • Data collected by sensor device 10 shown in FIG. 1 is periodically uploaded to central monitoring unit 30 .
  • a connection to central monitoring unit 30 is made through an electronic network, preferably the Internet.
  • connection is made to load balancer 90 through CSU/DSU 70 , router 75 , firewall 80 and switch 85 .
  • Load balancer 90 then chooses one of the middleware servers 95 a through 95 c to handle the upload of data, hereafter called the chosen middleware server.
  • the chosen middleware server authenticates the user using any one of many well known methods. If authentication is successful, the data is uploaded to the chosen middleware server as described above, and is ultimately transferred to database server 110 for population in the network storage device 100 .
  • FIG. 4 an alternate embodiment of central monitoring unit 30 is shown.
  • the embodiment of the central monitoring unit 30 shown in FIG. 4 includes a mirror network storage device 120 which is a redundant backup of network storage device 100 . Coupled to mirror network storage device 120 is controller 122 . Data from network storage device 100 is periodically copied to mirror network storage device 120 for data redundancy purposes.
  • Third parties such as insurance companies or research institutions may be given access, possibly for a fee, to certain of the information stored in mirror network storage device 120 .
  • these third parties are not given access to such user's individual database records, but rather are only given access to the data stored in mirror network storage device 120 in aggregate form.
  • Such third parties may be able to access the information stored in mirror network storage device 120 through the Internet using a conventional browser program. Requests from third parties may come in through CSU/DSU 70 , router 75 , firewall 80 and switch 85 . In the embodiment shown in FIG.
  • a separate load balancer 130 is provided for spreading tasks relating to the accessing and presentation of data from mirror drive array 120 among identically configured middleware servers 135 a through 135 c.
  • Middleware servers 135 a through 135 c each contain software for enabling the third parties to, using a browser, formulate queries for information from mirror network storage device 120 through separate database server 125 .
  • Middleware servers 135 a through 135 c also contain software for presenting the information obtained from mirror network storage device 120 to the third parties over the Internet in the form of web pages.
  • the third parties can choose from a series of prepared reports that have information packaged along subject matter lines, such as various demographic categories.
  • the third parties may be given access to the data stored in network storage device 100 .
  • the same functionality instead of providing load balancer 90 and middleware servers 95 a through 95 c, the same functionality, although at a sacrificed level of performance, could be provided by load balancer 90 and middleware servers 95 a through 95 c.
  • the purposes of the survey are to: identify unique characteristics/circumstances for each user that they might need to address in order to maximize the likelihood that they will implement and maintain a healthy lifestyle as suggested by central monitoring unit 30 ; gather baseline data which will be used to set initial goals for the individual user and facilitate the calculation and display of certain graphical data output such as the Health Index pistons; identify unique user characteristics and circumstances that will help central monitoring unit 30 customize the type of content provided to the user in the Health Manager's Daily Dose; and identify unique user characteristics and circumstances that the Health Manager can guide the user to address as possible barriers to a healthy lifestyle through the problem-solving function of the Health Manager.
  • the specific information to be surveyed may include: key individual temperamental characteristics, including activity level, regularity of eating, sleeping, and bowel habits, initial response to situations, adaptability, persistence, threshold of responsiveness, intensity of reaction, and quality of mood; the user's level of independent functioning, i.e., self-organization and management, socialization, memory, and academic achievement skills; the user's ability to focus and sustain attention, including the user's level of arousal, cognitive tempo, ability to filter distractions, vigilance, and self-monitoring; the user's current health status including current weight, height, and blood pressure, most recent general physician visit, gynecological exam, and other applicable physician/healthcare contacts, current medications and supplements, allergies, and a review of current symptoms and/or health-related behaviors; the user's past health history, i.e., illnesses/surgeries, family history, and social stress events, such as divorce or loss of a job, that have required adjustment by the individual; the user's beliefs, values and opinions about health priorities
  • Each member user will have access, through the home web page of central monitoring unit 30 , to a series of web pages customized for that user, referred to as the Health Manager.
  • the opening Health Manager web page 150 is shown in FIG. 5 .
  • the Health Manager web pages are the main workspace area for the member user.
  • the Health Manager web pages comprise a utility through which central monitoring unit 30 provides various types and forms of data, commonly referred to as analytical status data, to the user that is generated from the data it collects or generates, namely one or more of: the data indicative of various physiological parameters generated by sensor device 10 ; the data derived from the data indicative of various physiological parameters; the data indicative of various contextual parameters generated by sensor device 10 ; and the data input by the user.
  • Analytical status data is characterized by the application of certain utilities or algorithms to convert one or more of the data indicative of various physiological parameters generated by sensor device 10 , the data derived from the data indicative of various physiological parameters, the data indicative of various contextual parameters generated by sensor device 10 , and the data input by the user into calculated health, wellness and lifestyle indicators. For example, based on data input by the user relating to the foods he or she has eaten, things such as calories and amounts of proteins, fats, carbohydrates, and certain vitamins can be calculated. As another example, skin temperature, heart rate, respiration rate, heat flow and/or GSR can be used to provide an indicator to the user of his or her stress level over a desired time period.
  • skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption, ambient sound and body movement or motion as detected by a device such as an accelerometer can be used to provide indicators to the user of his or her sleep patterns over a desired time period.
  • Health Index 155 is a graphical utility used to measure and provide feedback to member users regarding their performance and the degree to which they have succeeded in reaching a healthy daily routine suggested by central monitoring unit 30 . Health Index 155 thus provides an indication for the member user to track his or her progress. Health Index 155 includes six categories relating to the user's health and lifestyle: Nutrition, Activity Level, Mind Centering, Sleep, Daily Activities and How You Feel. The Nutrition category relates to what, when and how much a person eats and drinks The Activity Level category relates to how much a person moves around.
  • the Mind Centering category relates to the quality and quantity of time a person spends engaging in some activity that allows the body to achieve a state of profound relaxation while the mind becomes highly alert and focused.
  • the Sleep category relates to the quality and quantity of a person's sleep.
  • the Daily Activities category relates to the daily responsibilities and health risks people encounter.
  • the How You Feel category relates to the general perception that a person has about how they feel on a particular day.
  • Each category has an associated level indicator or piston that indicates, preferably on a scale ranging from poor to excellent, how the user is performing with respect to that category.
  • a profile is generated that provides the user with a summary of his or her relevant characteristics and life circumstances.
  • a plan and/or set of goals is provided in the form of a suggested healthy daily routine.
  • the suggested healthy daily routine may include any combination of specific suggestions for incorporating proper nutrition, exercise, mind centering, sleep, and selected activities of daily living in the user's life. Prototype schedules may be offered as guides for how these suggested activities can be incorporated into the user's life. The user may periodically retake the survey, and based on the results, the items discussed above will be adjusted accordingly.
  • the Nutrition category is calculated from both data input by the user and sensed by sensor device 10 .
  • the data input by the user comprises the time and duration of breakfast, lunch, dinner and any snacks, and the foods eaten, the supplements such as vitamins that are taken, and the water and other liquids consumed during a relevant, pre-selected time period.
  • central monitoring unit 30 calculates well known nutritional food values such as calories and amounts of proteins, fats, carbohydrates, vitamins, etc., consumed.
  • the Nutrition Health Index piston level is preferably determined with respect to the following suggested healthy daily routine: eat at least three meals; eat a varied diet consisting of 6-11 servings of bread, pasta, cereal, and rice, 2-4 servings fruit, 3-5 servings of vegetables, 2-3 servings of fish, meat, poultry, dry beans, eggs, and nuts, and 2-3 servings of milk, yogurt and cheese; and drink 8 or more 8 ounce glasses of water.
  • This routine may be adjusted based on information about the user, such as sex, age, height and/or weight.
  • Certain nutritional targets may also be set by the user or for the user, relating to daily calories, protein, fiber, fat, carbohydrates, and/or water consumption and percentages of total consumption. Parameters utilized in the calculation of the relevant piston level include the number of meals per day, the number of glasses of water, and the types and amounts of food eaten each day as input by the user.
  • Nutritional information is presented to the user through nutrition web page 160 as shown in FIG. 6 .
  • the preferred nutritional web page 160 includes nutritional fact charts 165 and 170 which illustrate actual and target nutritional facts, respectively as pie charts, and nutritional intake charts 175 and 180 which show total actual nutritional intake and target nutritional intake, respectively as pie charts.
  • Nutritional fact charts 165 and 170 preferably show a percentage breakdown of items such as carbohydrates, protein and fat, and nutritional intake charts 175 and 180 are preferably broken down to show components such as total and target calories, fat, carbohydrates, protein, and vitamins.
  • Web page 160 also includes meal and water consumption tracking 185 with time entries, hyperlinks 190 which allow the user to directly access nutrition-related news items and articles, suggestions for refining or improving daily routine with respect to nutrition and affiliate advertising elsewhere on the network, and calendar 195 for choosing between views having variable and selectable time periods.
  • the items shown at 190 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Activity Level category of Health Index 155 is designed to help users monitor how and when they move around during the day and utilizes both data input by the user and data sensed by sensor device 10 .
  • the data input by the user may include details regarding the user's daily activities, for example the fact that the user worked at a desk from 8 a.m. to 5 p.m. and then took an aerobics class from 6 p.m. to 7 p.m.
  • Relevant data sensed by sensor device 10 may include heart rate, movement as sensed by a device such as an accelerometer, heat flow, respiration rate, calories burned, GSR and hydration level, which may be derived by sensor device 60 or central monitoring unit 30 .
  • Calories burned may be calculated in a variety of manners, including: the multiplication of the type of exercise input by the user by the duration of exercise input by the user; sensed motion multiplied by time of motion multiplied by a filter constant; or sensed heat flux multiplied by time multiplied by a filter constant.
  • the Activity Level Health Index piston level is preferably determined with respect to a suggested healthy daily routine that includes: exercising aerobically for a pre-set time period, preferably 20 minutes, or engaging in a vigorous lifestyle activity for a pre-set time period, preferably one hour, and burning at least a minimum target number of calories, preferably 205 calories, through the aerobic exercise and/or lifestyle activity.
  • the minimum target number of calories may be set according to information about the user, such as sex, age, height and/or weight. Parameters utilized in the calculation of the relevant piston level include the amount of time spent exercising aerobically or engaging in a vigorous lifestyle activity as input by the user and/or sensed by sensor device 10 , and the number of calories burned above pre-calculated energy expenditure parameters.
  • Activity level web page 200 shown in FIG. 7 , which may include activity graph 205 in the form of a bar graph, for monitoring the individual user's activities in one of three categories: high, medium and low intensity with respect to a pre-selected unit of time.
  • Activity percentage chart 210 in the form or a pie chart, may also be provided for showing the percentage of a pre-selected time period, such as one day, that the user spent in each category.
  • Activity level web page 200 may also include calorie section 215 for displaying items such as total calories burned, daily target calories burned, total caloric intake, and duration of aerobic activity.
  • activity level web page 200 may include at least one hyperlink 220 to allow a user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to activity level and affiliate advertising elsewhere on the network.
  • Activity level web page 200 may be viewed in a variety of formats, and may include user-selectable graphs and charts such as a bar graph, pie chart, or both, as selectable by Activity level check boxes 225 .
  • Activity level calendar 230 is provided for selecting among views having variable and selectable time periods. The items shown at 220 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Mind Centering category of Health Index 155 is designed to help users monitor the parameters relating to time spent engaging in certain activities which allow the body to achieve a state of profound relaxation while the mind becomes focused, and is based upon both data input by the user and data sensed by the sensor device 10 .
  • a user may input the beginning and end times of relaxation activities such as yoga or meditation.
  • the quality of those activities as determined by the depth of a mind centering event can be measured by monitoring parameters including skin temperature, heart rate, respiration rate, and heat flow as sensed by sensor device 10 . Percent change in GSR as derived either by sensor device 10 or central monitoring unit 30 may also be utilized.
  • the Mind Centering Health Index piston level is preferably calculated with respect to a suggested healthy daily routine that includes participating each day in an activity that allows the body to achieve profound relaxation while the mind stays highly focused for at least fifteen minutes.
  • Parameters utilized in the calculation of the relevant piston level include the amount of time spent in a mind centering activity, and the percent change in skin temperature, heart rate, respiration rate, heat flow or GSR as sensed by sensor device 10 compared to a baseline which is an indication of the depth or quality of the mind centering activity.
  • the preferred mind centering web page 250 includes the time spent during the session, shown at 255 , the target time, shown at 260 , comparison section 265 showing target and actual depth of mind centering, or focus, and a histogram 270 that shows the overall level of stress derived from such things as skin temperature, heart rate, respiration rate, heat flow and/or GSR.
  • comparison section 265 the human figure outline showing target focus is solid, and the human figure outline showing actual focus ranges from fuzzy to solid depending on the level of focus.
  • the preferred mind centering web page may also include an indication of the total time spent on mind centering activities, shown at 275 , hyperlinks 280 which allow the user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to mind centering and affiliate advertising, and a calendar 285 for choosing among views having variable and selectable time periods.
  • the items shown at 280 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Sleep category of Health Index 155 is designed to help users monitor their sleep patterns and the quality of their sleep. It is intended to help users learn about the importance of sleep in their healthy lifestyle and the relationship of sleep to circadian rhythms, being the normal daily variations in body functions.
  • the Sleep category is based upon both data input by the user and data sensed by sensor device 10 .
  • the data input by the user for each relevant time interval includes the times the user went to sleep and woke up and a rating of the quality of sleep.
  • the data from sensor device 10 that is relevant includes skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, and oxygen consumption.
  • ambient sound and body movement or motion as detected by a device such as an accelerometer. This data can then be used to calculate or derive sleep onset and wake time, sleep interruptions, and the quality and depth of sleep.
  • the Sleep Health Index piston level is determined with respect to a healthy daily routine including getting a minimum amount, preferably eight hours, of sleep each night and having a predictable bed time and wake time.
  • the specific parameters which determine the piston level calculation include the number of hours of sleep per night and the bed time and wake time as sensed by sensor device 10 or as input by the user, and the quality of the sleep as rated by the user or derived from other data.
  • Sleep web page 290 includes a sleep duration indicator 295 , based on either data from sensor device 10 or on data input by the user, together with user sleep time indicator 300 and wake time indicator 305 .
  • a quality of sleep rating 310 input by the user may also be utilized and displayed. If more than a one day time interval is being displayed on sleep web page 290 , then sleep duration indicator 295 is calculated and displayed as a cumulative value, and sleep time indicator 300 , wake time indicator 305 and quality of sleep rating 310 are calculated and illustrated as averages.
  • Sleep web page 290 also includes a user-selectable sleep graph 315 which calculates and displays one sleep related parameter over a pre-selected time interval.
  • FIG. 9 shows heat flow over a one-day period, which tends to be lower during sleeping hours and higher during waking hours. From this information, a person's bio-rhythms can be derived.
  • Sleep graph 315 may also include a graphical representation of data from an accelerometer incorporated in sensor device 10 which monitors the movement of the body.
  • the sleep web page 290 may also include hyperlinks 320 which allow the user to directly access sleep related news items and articles, suggestions for refining or improving daily routine with respect to sleep and affiliate advertising available elsewhere on the network, and a sleep calendar 325 for choosing a relevant time interval. The items shown at 320 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Activities of Daily Living category of Health Index 155 is designed to help users monitor certain health and safety related activities and risks and is based entirely on data input by the user.
  • the Activities of Daily Living category is divided into four sub-categories: personal hygiene, which allows the user to monitor activities such as brushing and flossing his or her teeth and showering; health maintenance, that tracks whether the user is taking prescribed medication or supplements and allows the user to monitor tobacco and alcohol consumption and automobile safety such as seat belt use; personal time, that allows the user to monitor time spent socially with family and friends, leisure, and mind centering activities; and responsibilities, that allows the user to monitor certain work and financial activities such as paying bills and household chores.
  • the Activities of Daily Living Health Index piston level is preferably determined with respect to the healthy daily routine described below.
  • the routine requires that the users shower or bathe each day, brush and floss teeth each day, and maintain regular bowel habits.
  • the routine requires that the user take medications and vitamins and/or supplements, use a seat belt, refrain from smoking, drink moderately, and monitor health each day with the Health Manager.
  • the routine requires the users to spend at least one hour of quality time each day with family and/or friends, restrict work time to a maximum of nine hours a day, spend some time on a leisure or play activity each day, and engage in a mind stimulating activity.
  • the routine requires the users to do household chores, pay bills, be on time for work, and keep appointments.
  • the piston level is calculated based on the degree to which the user completes a list of daily activities as determined by information input by the user.
  • activities chart 335 selectable for one or more of the sub-categories, shows whether the user has done what is required by the daily routine.
  • a colored or shaded box indicates that the user has done the required activity, and an empty, non-colored or shaded box indicates that the user has not done the activity.
  • Activities chart 335 can be created and viewed in selectable time intervals.
  • FIG. 10 shows the personal hygiene and personal time sub-categories for a particular week.
  • daily activities web page 330 may include daily activity hyperlinks 340 which allow the user to directly access relevant news items and articles, suggestions for improving or refining daily routine with respect to activities of daily living and affiliate advertising, and a daily activities calendar 345 for selecting a relevant time interval.
  • the items shown at 340 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the How You Feel category of Health Index 155 is designed to allow users to monitor their perception of how they felt on a particular day, and is based on information, essentially a subjective rating, that is input directly by the user.
  • a user provides a rating, preferably on a scale of 1 to 5, with respect to the following nine subject areas: mental sharpness; emotional and psychological well being; energy level; ability to cope with life stresses; appearance; physical well being; self-control; motivation; and comfort in relating to others. Those ratings are averaged and used to calculate the relevant piston level.
  • Health Index web page 350 enables users to view the performance of their Health Index over a user selectable time interval including any number of consecutive or non-consecutive days.
  • Health Index selector buttons 360 the user can select to view the Health Index piston levels for one category, or can view a side-by-side comparison of the Health Index piston levels for two or more categories. For example, a user might want to just turn on Sleep to see if their overall sleep rating improved over the previous month, much in the same way they view the performance of their favorite stock.
  • Sleep and Activity Level might be simultaneously displayed in order to compare and evaluate Sleep ratings with corresponding Activity Level ratings to determine if any day-to-day correlations exist.
  • Nutrition ratings might be displayed with How You Feel for a pre-selected time interval to determine if any correlation exists between daily eating habits and how they felt during that interval.
  • FIG. 11 illustrates a comparison of Sleep and Activity Level piston levels for the week of June 10 through June 16.
  • Health Index web page 350 also includes tracking calculator 365 that displays access information and statistics such as the total number of days the user has logged in and used the Health Manager, the percentage of days the user has used the Health Manager since becoming a subscriber, and percentage of time the user has used the sensor device 10 to gather data.
  • opening Health Manager web page 150 may include a plurality of user selectable category summaries 156 a through 156 f, one corresponding to each of the Health Index 155 categories.
  • Each category summary 156 a through 156 f presents a pre-selected filtered subset of the data associated with the corresponding category.
  • Nutrition category summary 156 a displays daily target and actual caloric intake.
  • Activity Level category summary 156 b displays daily target and actual calories burned.
  • Mind Centering category summary 156 c displays target and actual depth of mind centering or focus.
  • Sleep category summary 156 d displays target sleep, actual sleep, and a sleep quality rating.
  • Daily Activities category summary 156 e displays a target and actual score based on the percentage of suggested daily activities that are completed. The How You Feel category summary 156 f shows a target and actual rating for the day.
  • Opening Health Manager web page 150 also may include Daily Dose section 157 which provides, on a daily time interval basis, information to the user, including, but not limited to, hyperlinks to news items and articles, commentary and reminders to the user based on tendencies, such as poor nutritional habits, determined from the initial survey.
  • the commentary for Daily Dose 157 may, for example, be a factual statement that drinking 8 glasses of water a day can reduce the risk of colon cancer by as much as 32%, accompanied by a suggestion to keep a cup of water by your computer or on your desk at work and refill often.
  • Opening Health Manager web page 150 also may include a Problem Solver section 158 that actively evaluates the user's performance in each of the categories of Health Index 155 and presents suggestions for improvement.
  • Opening Health Manager web page 150 may also include a Daily Data section 159 that launches an input dialog box.
  • the input dialog box facilitates input by the user of the various data required by the Health Manager.
  • data entry may be in the form of selection from pre-defined lists or general free form text input.
  • opening Health Manager web page 150 may include Body Stats section 161 which may provide information regarding the user's height, weight, body measurements, body mass index or BMI, and vital signs such as heart rate, blood pressure or any of the identified physiological parameters.
  • Armband sensor device 400 includes computer housing 405 , flexible wing body 410 , and, as shown in FIG. 17 , elastic strap 415 .
  • Computer housing 405 and flexible wing body 410 are preferably made of a flexible urethane material or an elastomeric material such as rubber or a rubber-silicone blend by a molding process.
  • Flexible wing body 410 includes first and second wings 418 each having a thru-hole 420 located near the ends 425 thereof. First and second wings 418 are adapted to wrap around a portion of the wearer's upper arm.
  • Elastic strap 415 is used to removably affix armband sensor device 400 to the individual's upper arm. As seen in FIG. 17 , bottom surface 426 of elastic strap 415 is provided with velcro loops 416 along a portion thereof. Each end 427 of elastic strap 415 is provided with velcro hook patch 428 on bottom surface 426 and pull tab 429 on top surface 430 . A portion of each pull tab 429 extends beyond the edge of each end 427 .
  • a user inserts each end 427 of elastic strap 415 into a respective thru-hole 420 of flexible wing body 410 .
  • the user places his arm through the loop created by elastic strap 415 , flexible wing body 410 and computer housing 405 .
  • the user can adjust elastic strap 415 to fit comfortably. Since velcro hook patches 428 can be engaged with velcro loops 416 at almost any position along bottom surface 426 , armband sensor device 400 can be adjusted to fit arms of various sizes.
  • elastic strap 415 may be provided in various lengths to accommodate a wider range of arm sizes.
  • other means of fastening and adjusting the size of elastic strap may be used, including, but not limited to, snaps, buttons, or buckles. It is also possible to use two elastic straps that fasten by one of several conventional means including velcro, snaps, buttons, buckles or the like, or merely a single elastic strap affixed to wings 418 .
  • loops having the shape of the letter D may be attached to ends 425 of wings 418 by one of several conventional means.
  • a pin may be inserted through ends 425 , wherein the pin engages each end of each loop.
  • the D-shaped loops would serve as connecting points for elastic strap 415 , effectively creating a thru-hole between each end 425 of each wing 418 and each loop.
  • computer housing 405 includes a top portion 435 and a bottom portion 440 .
  • Contained within computer housing 405 are printed circuit board or PCB 445 , rechargeable battery 450 , preferably a lithium ion battery, and vibrating motor 455 for providing tactile feedback to the wearer, such as those used in pagers, suitable examples of which are the Model 12342 and 12343 motors sold by MG Motors Ltd. of the United Kingdom.
  • Top portion 435 and bottom portion 440 of computer housing 405 sealingly mate along groove 436 into which O-ring 437 is fit, and may be affixed to one another by screws, not shown, which pass through screw holes 438 a and stiffeners 438 b of bottom portion 440 and apertures 439 in PCB 445 and into threaded receiving stiffeners 451 of top portion 435 .
  • top portion 435 and bottom portion 440 may be snap fit together or affixed to one another with an adhesive.
  • the assembled computer housing 405 is sufficiently water resistant to permit armband sensor device 400 to be worn while swimming without adversely affecting the performance thereof.
  • bottom portion 440 includes, on a bottom side thereof, a raised platform 430 .
  • heat flow or flux sensor 460 a suitable example of which is the micro-foil heat flux sensor sold by RdF Corporation of Hudson, N.H.
  • Heat flux sensor 460 functions as a self-generating thermopile transducer, and preferably includes a carrier made of a polyamide film.
  • Bottom portion 440 may include on a top side thereof, that is on a side opposite the side to which heat flux sensor 460 is affixed, a heat sink, not shown, made of a suitable metallic material such as aluminum.
  • GSR sensors 465 are also affixed to raised platform 430 , preferably comprising electrodes formed of a material such as conductive carbonized rubber, gold or stainless steel. Although two GSR sensors 465 are shown in FIG. 13 , it will be appreciated by one of skill in the art that the number of GSR sensors 465 and the placement thereof on raised platform 430 can vary as long as the individual GSR sensors 465 , i.e., the electrodes, are electrically isolated from one another. By being affixed to raised platform 430 , heat flux sensor 460 and GSR sensors 465 are adapted to be in contact with the wearer's skin when armband sensor device 400 is worn.
  • Bottom portion 440 of computer housing 405 may also be provided with a removable and replaceable soft foam fabric pad, not shown, on a portion of the surface thereof that does not include raised platform 430 and screw holes 438 a.
  • the soft foam fabric is intended to contact the wearer's skin and make armband sensor device 400 more comfortable to wear.
  • heat flux sensor 460 GSR sensors 465 , and PCB 445 may be accomplished in one of various known methods.
  • suitable wiring may be molded into bottom portion 440 of computer housing 405 and then electrically connected, such as by soldering, to appropriate input locations on PCB 445 and to heat flux sensor 460 and GSR sensors 465 .
  • thru-holes may be provided in bottom portion 440 through which appropriate wiring may pass. The thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405 .
  • heat flux sensor 460 and GSR sensors 465 may be affixed to the inner portion 466 of flexible wing body 410 on either or both of wings 418 so as to be in contact with the wearer's skin when armband sensor device 400 is worn.
  • electrical coupling between heat flux sensor 460 and GSR sensors 465 , whichever the case may be, and the PCB 445 may be accomplished through suitable wiring, not shown, molded into flexible wing body 410 that passes through one or more thru-holes in computer housing 405 and that is electrically connected, such as by soldering, to appropriate input locations on PCB 445 .
  • the thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405 .
  • the wiring may be captured in computer housing 405 during an overmolding process, described below, and ultimately soldered to appropriate input locations on PCB 445 .
  • computer housing 405 includes a button 470 that is coupled to and adapted to activate a momentary switch 585 on PCB 445 .
  • Button 470 may be used to activate armband sensor device 400 for use, to mark the time an event occurred or to request system status information such as battery level and memory capacity.
  • momentary switch 585 closes a circuit and a signal is sent to processing unit 490 on PCB 445 .
  • the generated signal triggers one of the events just described.
  • Computer housing 405 also includes LEDs 475 , which may be used to indicate battery level or memory capacity or to provide visual feedback to the wearer. Rather than LEDs 475 , computer housing 405 may also include a liquid crystal display or LCD to provide battery level, memory capacity or visual feedback information to the wearer. Battery level, memory capacity or feedback information may also be given to the user tactily or audibly.
  • Armband sensor device 400 may be adapted to be activated for use, that is collecting data, when either of GSR sensors 465 or heat flux sensor 460 senses a particular condition that indicates that armband sensor device 400 has been placed in contact with the user's skin. Also, armband sensor device 400 may be adapted to be activated for use when one or more of heat flux sensor 460 , GSR sensors 465 , accelerometer 495 or 550 , or any other device in communication with armband sensor device 400 , alone or in combination, sense a particular condition or conditions that indicate that the armband sensor device 400 has been placed in contact with the user's skin for use. At other times, armband sensor device 400 would be deactivated, thus preserving battery power.
  • Computer housing 405 is adapted to be coupled to a battery recharger unit 480 shown in FIG. 19 for the purpose of recharging rechargeable battery 450 .
  • Computer housing 405 includes recharger contacts 485 , shown in FIGS. 12 , 15 , 16 and 17 , that are coupled to rechargeable battery 450 .
  • Recharger contacts 485 may be made of a material such as brass, gold or stainless steel, and are adapted to mate with and be electrically coupled to electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein.
  • the electrical contacts provided in battery recharger unit 480 may be coupled to recharging circuit 481 a provided inside battery recharger unit 480 .
  • recharging circuit 481 would be coupled to a wall outlet, such as by way of wiring including a suitable plug that is attached or is attachable to battery recharger unit 480 .
  • electrical contacts 480 may be coupled to wiring that is attached to or is attachable to battery recharger unit 480 that in turn is coupled to recharging circuit 481 b external to battery recharger unit 480 .
  • the wiring in this configuration would also include a plug, not shown, adapted to be plugged into a conventional wall outlet.
  • RF transceiver 483 adapted to receive signals from and transmit signals to RF transceiver 565 provided in computer housing 405 and shown in FIG. 20 .
  • RF transceiver 483 is adapted to be coupled, for example by a suitable cable, to a serial port, such as an RS 232 port or a USB port, of a device such as personal computer 35 shown in FIG. 1 .
  • a serial port such as an RS 232 port or a USB port
  • data may be uploaded from and downloaded to armband sensor device 400 using RF transceiver 483 and RF transceiver 565 . It will be appreciated that although RF transceivers 483 and 565 are shown in FIGS.
  • computer housing 405 may be provided with additional electrical contacts, not shown, that would be adapted to mate with and be electrically coupled to additional electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein.
  • the additional electrical contacts in the computer housing 405 would be coupled to the processing unit 490 and the additional electrical contacts provided in battery recharger unit 480 would be coupled to a suitable cable that in turn would be coupled to a serial port, such as an RS R32 port or a USB port, of a device such as personal computer 35 .
  • This configuration thus provides an alternate method for uploading of data from and downloading of data to armband sensor device 400 using a physical connection.
  • FIG. 20 is a schematic diagram that shows the system architecture of armband sensor device 400 , and in particular each of the components that is either on or coupled to PCB 445 .
  • PCB 445 includes processing unit 490 , which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein.
  • Processing unit 490 is adapted to provide all of the functionality described in connection with microprocessor 20 shown in FIG. 2 .
  • a suitable example of processing unit 490 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Ill.
  • PCB 445 also has thereon a two-axis accelerometer 495 , a suitable example of which is the Model ADXL210 accelerometer sold by Analog Devices, Inc. of Norwood, Mass.
  • Two-axis accelerometer 495 is preferably mounted on PCB 445 at an angle such that its sensing axes are offset at an angle substantially equal to 45 degrees from the longitudinal axis of PCB 445 and thus the longitudinal axis of the wearer's arm when armband sensor device 400 is worn.
  • the longitudinal axis of the wearer's arm refers to the axis defined by a straight line drawn from the wearer's shoulder to the wearer's elbow.
  • the output signals of two-axis accelerometer 495 are passed through buffers 500 and input into analog to digital converter 505 that in turn is coupled to processing unit 490 .
  • GSR sensors 465 are coupled to amplifier 510 on PCB 445 .
  • Amplifier 510 provides amplification and low pass filtering functionality, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass.
  • the amplified and filtered signal output by amplifier 510 is input into amp/offset 515 to provide further gain and to remove any bias voltage and into filter/conditioning circuit 520 , which in turn are each coupled to analog to digital converter 505 .
  • Heat flux sensor 460 is coupled to differential input amplifier 525 , such as the Model INA amplifier sold by Burr-Brown Corporation of Arlington, Ariz., and the resulting amplified signal is passed through filter circuit 530 , buffer 535 and amplifier 540 before being input to analog to digital converter 505 .
  • Amplifier 540 is configured to provide further gain and low pass filtering, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass.
  • PCB 445 also includes thereon a battery monitor 545 that monitors the remaining power level of rechargeable battery 450 .
  • Battery monitor 545 preferably comprises a voltage divider with a low pass filter to provide average battery voltage.
  • processing unit 490 checks the output of battery monitor 545 and provides an indication thereof to the user, preferably through LEDs 475 , but also possibly through vibrating motor 455 or ringer 575 .
  • An LCD may also be used.
  • PCB 445 may include three-axis accelerometer 550 instead of or in addition to two-axis accelerometer 495 .
  • the three-axis accelerometer outputs a signal to processing unit 490 .
  • a suitable example of three-axis accelerometer is the .mu.PAM product sold by I.M. Systems, Inc. of Scottsdale, Ariz.
  • Three-axis accelerometer 550 is preferably tilted in the manner described with respect to two-axis accelerometer 495 .
  • PCB 445 also includes RF receiver 555 that is coupled to processing unit 490 .
  • RF receiver 555 may be used to receive signals that are output by another device capable of wireless transmission, shown in FIG. 20 as wireless device 558 , worn by or located near the individual wearing armband sensor device 400 .
  • wireless device 558 may be a chest mounted heart rate monitor such as the Tempo product sold by Polar Electro of Oulu, Finland. Using such a heart rate monitor, data indicative of the wearer's heart rate can be collected by armband sensor device 400 .
  • Antenna 560 and RF transceiver 565 are coupled to processing unit 490 and are provided for purposes of uploading data to central monitoring unit 30 and receiving data downloaded from central monitoring unit 30 .
  • RF transceiver 565 and RF receiver 555 may, for example, employ Bluetooth technology as the wireless transmission protocol. Also, other forms of wireless transmission may be used, such as infrared transmission.
  • RF Transceiver 565 may be used for wirelessly uploading data from and wirelessly downloading data to armband sensor device 400 is advantageous because it eliminates the need to remove armband sensor device 400 to perform these functions, as would be required with a physical connection. For example, if armband sensor device 400 was being worn under the user's clothing, requiring removal of armband sensor device 400 prior to uploading and/or downloading data increases user inconvenience. In addition, the wearing of armband sensor device 400 has an effect on the user's skin and underlying blood vessels, which in turn may effect any measurements being made with respect thereto. It may be necessary for a period of time during which armband sensor device 400 is worn by the user to elapse before a steady state is achieved and consistent, accurate measurements can be made.
  • armband sensor device 400 By providing armband sensor device 400 with wireless communications capability, data can be uploaded and downloaded without disturbing an established steady state equilibrium condition. For example, programming data for processing unit 490 that controls the sampling characteristics of armband sensor device 400 can be downloaded to armband sensor device 400 without disturbing the steady state equilibrium condition.
  • antenna 560 and RF transceiver 565 permit armband sensor device 400 to communicate wirelessly with other devices capable of wireless communication, i.e., transmit information to and receive information from those devices.
  • the devices may include, for example, devices that are implanted in the body of the person using armband sensor device 400 , such as an implantable heart pacemaker or an implantable insulin dispensing device, for example the MiniMed® 2007 implantable insulin pump sold by MiniMed Inc. of Northridge, Calif., devices worn on the body of the person using armband sensor device 400 , or devices located near the person using armband sensor device 400 at any particular time, such as an electronic scale, a blood pressure monitor, a glucose monitor, a cholesterol monitor or another armband sensor device 400 .
  • armband sensor device 400 may be adapted to transmit information that activates or deactivates such a device for use or information that programs such a device to behave in a particular way.
  • armband sensor device 400 may be adapted to activate a piece of exercise equipment such as a treadmill and program it to operate with certain parameters that are dictated or desired by or optimal for the user of armband sensor device 400 .
  • armband sensor device 400 may be adapted to adjust a computer controlled thermostat in a home based on the detected skin temperature of the wearer or turn off a computer controlled lighting system, television or stereo when the wearer is determined to have fallen asleep.
  • Vibrating motor 455 is coupled to processing unit 490 through vibrator driver 570 and provides tactile feedback to the wearer.
  • ringer 575 a suitable example of which is the Model SMT916A ringer sold by Projects Unlimited, Inc. of Dayton, Ohio, is coupled to processing unit 490 through ringer driver 580 , a suitable example of which is the Model MMBTA14 CTI darlington transistor driver sold by Motorola, Inc. of Schaumburg, Ill., and provides audible feedback to the wearer.
  • Feedback may include, for example, celebratory, cautionary and other threshold or event driven messages, such as when a wearer reaches a level of calories burned during a workout.
  • momentary switch 585 is also coupled to button 470 for activating momentary switch 585 .
  • LEDs 475 used to provide various types of feedback information to the wearer, are coupled to processing unit 490 through LED latch/driver 590 .
  • Oscillator 595 is provided on PCB 445 and supplies the system clock to processing unit 490 .
  • Reset circuit 600 accessible and triggerable through a pin-hole in the side of computer housing 405 , is coupled to processing unit 490 and enables processing unit 490 to be reset to a standard initial setting.
  • Rechargeable battery 450 which is the main power source for the armband sensor device 400 , is coupled to processing unit 490 through voltage regulator 605 .
  • memory functionality is provided for armband sensor device 400 by SRAM 610 , which stores data relating to the wearer of armband sensor device 400 , and flash memory 615 , which stores program and configuration data, provided on PCB 445 .
  • SRAM 610 and flash memory 615 are coupled to processing unit 490 and each preferably have at least 512K of memory.
  • top portion 435 of computer housing 405 is preferably formed first, such as by a conventional molding process, and flexible wing body 410 is then overmolded on top of top portion 435 . That is, top portion 435 is placed into an appropriately shaped mold, i.e., one that, when top portion 435 is placed therein, has a remaining cavity shaped according to the desired shape of flexible wing body 410 , and flexible wing body 410 is molded on top of top portion 435 . As a result, flexible wing body 410 and top portion 435 will merge or bond together, forming a single unit.
  • top portion 435 of computer housing 405 and flexible wing body 410 may be formed together, such as by molding in a single mold, to form a single unit. The single unit however formed may then be turned over such that the underside of top portion 435 is facing upwards, and the contents of computer housing 405 can be placed into top portion 435 , and top portion 435 and bottom portion 440 can be affixed to one another.
  • flexible wing body 410 may be separately formed, such as by a conventional molding process, and computer housing 405 , and in particular top portion 435 of computer housing 405 , may be affixed to flexible wing body 410 by one of several known methods, such as by an adhesive, by snap-fitting, or by screwing the two pieces together.
  • FIG. 21 a block diagram of an alternate embodiment of the present invention is shown.
  • This alternate embodiment includes stand alone sensor device 700 which functions as an independent device, meaning that it is capable of collecting and/or generating the various types of data described herein in connection with sensor device 10 and sensor device 400 and providing analytical status data to the user without interaction with a remotely located apparatus such as central monitoring unit 30 .
  • Stand alone sensor device 700 includes a processor that is programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data from the data indicative of various physiological and/or contextual parameters of the user, the data derived therefrom, and the data input by the user, all of which is stored in and accessed as needed from memory provided in stand alone sensor device 700 .
  • Stand alone sensor device 700 may comprise sensor device 10 shown in FIGS. 1 and 2 that includes microprocessor 20 and memory 22 or armband sensor device 400 shown in FIGS. 12-17 that includes processing unit 490 and SRAM 610 .
  • stand alone sensor device 700 may include one or more physiological sensors 705 as described herein for facilitating the collection of data indicative of various physiological parameters of the user.
  • Stand alone sensor device 700 may also include one or more contextual sensors 710 as described herein for facilitating the collection of data indicative of various contextual parameters of the user.
  • stand alone sensor device 700 may be adapted to enable the manual entry of data by the user.
  • stand alone sensor device 700 may include a data input button, such as a button 470 of armband sensor device 400 , through which a user could manually enter information such as information relating to various life activities of the user as described herein or information relating to the operation and/or control of stand alone sensor device 700 , for example, the setting of reminders or alerts as described herein.
  • a data input button such as a button 470 of armband sensor device 400
  • button 470 may simply record or time stamp that an event such as a meal has occurred, with the wearer needing to assign a meaning to that time stamp through data entry at a later time.
  • stand alone sensor device 700 may include a more sophisticated means for manual entry of information such as a keypad, a touch screen, a microphone, or a remote control device, for example a remote control device incorporated into a wristwatch.
  • the processor of stand alone sensor device 700 would be provided with well known voice recognition software or the like for converting the input speech into usable data.
  • information comprising data indicative of various physiological and/or contextual parameters and data derived therefrom may be input into stand alone sensor device 700 through interaction with other devices.
  • information such as handshake data or data indicative of various physiological and/or contextual parameters and data derived therefrom may be output from stand alone sensor device 700 to such other devices.
  • the interaction is in the form of wireless communication between stand alone sensor device 700 and another device capable of wireless communication by way of a wireless transceiver provided in stand alone sensor device 700 , such as wireless transceiver 565 shown and described in connection with FIG. 20 .
  • the device-to-device interaction may, as shown by reference number 720 , be explicit, meaning that the user of stand alone sensor device 700 has knowingly initiated the interaction.
  • a user may activate a button on a scale to upload data to stand alone sensor device 700 .
  • the device-to-device interaction may also, as shown by reference number 725 , be hidden, meaning that the user of stand alone sensor device 700 does not knowingly initiate the interaction.
  • a gym may have a sensor that wirelessly transmits a signal to sensing device 700 when the user enters and leaves the gym to time stamp when the user began and ended a workout.
  • information may be output or transmitted from stand alone sensor device 700 in a number of ways.
  • Such information may include the data indicative of various physiological parameters and/or contextual parameters, the data derived therefrom, the data manually input by the user, the analytical status data, or any combination thereof.
  • information may be output or transmitted in an audible fashion such as by a series of tones or beeps or a recorded voice by a device such as a speaker, in a visual fashion such as by one or more LEDs, or in a tactile fashion such as by vibration.
  • stand alone sensor device 700 may be adapted to output a tone or tones, light an LED or LEDs, or vibrate as a reminder for an event, such as a reminder to eat or exercise at a particular time, or when a goal has been reached, such as a target number of calories burned during a workout, or a condition has been sensed, such as ovulation.
  • stand alone sensor device 700 may be provided with a more sophisticated visual output means such as an LCD similar to those found on commercially available cell phones, pagers and personal digital assistants. With an LCD or a similar device and the expanded visual output capabilities it would provide, stand alone sensor device 700 may be adapted to output or transmit some or all of the information described in connection with FIGS.
  • stand alone sensor device 700 could provide analytical status data in the form of the Health Index to the user.
  • stand alone sensor device 700 may be coupled to computing device 750 such as a personal computer, a cell phone, a pager, a personal digital assistant, another stand alone sensor device 700 or any other device having a processor by either wired connection 755 or wireless connection 760 .
  • computing device 750 such as a personal computer, a cell phone, a pager, a personal digital assistant, another stand alone sensor device 700 or any other device having a processor by either wired connection 755 or wireless connection 760 .
  • battery recharger unit 480 shown in FIG. 19 may be used to provide the wired connection 755 or wireless connection 760 .
  • the display of the computing device could be used to visually output information from stand alone sensor device 700 .
  • computing device 750 since computing device 750 includes a sophisticated output means such as an LCD, it may be used to output or transmit to the user some or all of the information described in connection with FIGS. 5 through 11 , such as the Health Index, in the same or a similar format.
  • computing device 750 may in turn be used to control other devices, such as the lights or thermostat in a home, based on data output by stand alone sensor device 700 , such as the fact that the wearer has fallen asleep or the fact that the wearer's skin temperature has reached a certain level.
  • stand alone sensor device 700 and in particular its processor, may be adapted to cause a computing device 750 to trigger an event upon detection of one or more physiological and/or contextual conditions by stand alone sensor device 700 .
  • stand alone sensor device 700 may be adapted to cause a computing device 750 to trigger an event based upon information received from another computing device 750 .
  • Stand alone sensor device 700 may be adapted to interact with and influence an interactive electronic media device, such as a video game, or non-interactive electronic media device, such as on a display device such as a DVD or digital video disc player playing a digitally recorded movie.
  • stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the video game, which in turn adjusts the characteristics of the game, such as the level of difficulty.
  • stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the device displaying the digitally recorded movie which in turn adjusts the characteristics, such as the outcome, of the movie.
  • stand alone sensor device 700 may include location sensing device 765 , such as an ultrasonic or a radio-frequency identification tag, for enabling a computing device 750 to detect the geographic location of stand alone sensor device 700 , such as the location of stand alone sensor device 700 within a defined space such as a building.
  • a location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, preferably based on the detection by stand alone sensor device 700 of one or more physiological conditions of the wearer, such as skin temperature.
  • the location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, if stand alone sensor device 700 detects one or more physiological conditions, such as a skin temperature of the wearer being above a certain level.
  • the input means of the computing device such as the mouse and keyboard of a personal computer, the keypad of a cell phone or pager, or the touch screen of a personal digital assistant, may be used to manually input information into stand alone sensor device 700 .
  • the different modes of output may be used in combination to provide different types and levels of information to a user.
  • stand alone sensor device 700 could be worn by an individual while exercising and an LED or a tone can be used to signal that a goal of a certain number of calories burned has been reached.
  • the user could then transmit additional data wirelessly from stand alone sensor device 700 to a computing device 750 such as a cell phone after he or she is finished exercising to view data such as heart rate and/or respiration rate over time.
  • computing device 750 could be so programmed.
  • stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the data manually input by the user, and/or data input as a result of device-to-device interaction shown at 720 and 725 , all of which is stored in the memory provided in stand alone sensor device 700 .
  • This data is then periodically uploaded to computing device 750 which in turn generates derived data and/or analytical status data.
  • the processor of stand alone sensor device 700 could be programmed to generate the derived data with computing device 750 being programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700 .
  • the processor of stand alone sensor device 700 could be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700 with computing device 750 being programmed to generate the derived data.
  • any or all of the data indicative of physiological and/or contextual parameters of the user, the data derived therefrom, the data manually input by the user, the data input as a result of device-to-device interaction shown at 720 and 725 and the analytical status data may then be viewed by the user using the output means of the programmed computing device 750 or another computing device 750 to which the data is downloaded.
  • the analytical status data may also be output by stand alone sensor device 700 as described herein.
  • Computing device 750 in these alternative embodiments may be connected to an electronic network, such as the Internet, to enable it to communicate with central monitoring unit 30 or the like.
  • the programming of computing device 750 that enables it to generate the derived data and/or the analytical status data may, with such a configuration, be modified or replaced by downloading the relevant data to computing device 750 over the electronic network.
  • computing device 750 may be provided with a custom written plug-in adapted to provide data display functionality through use of a well known browser program.
  • stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the derived data, the data input by the user, data input as a result of device-to-device interaction shown at 720 and 725 , and/or analytical status data based thereon and uploads this data to computing device 750 .
  • the plug-in provided in computing device 750 then generates appropriate display pages based on the data which may be viewed by the user using the browser provided with computing device 750 .
  • the plug-in may be modified/updated from a source such as central monitoring unit 30 over an electronic network such as the Internet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Dentistry (AREA)
  • Vascular Medicine (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Obesity (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A detecting, monitoring and reporting apparatus includes at least two sensors for facilitating the generation of data indicative of physiological parameters of the individual and/or data indicative of a contextual parameters of the individual. A processor is coupled to the sensors and is adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data. A memory retrievably stores the data and one of various ways of transmitting the data is provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of copending U.S. patent application Ser. No. 11/322,010 filed on Dec. 29, 2005, which is a continuation of U.S. patent application Ser. No. 09/923,181, now U.S. Pat. No. 7,261,690, filed on Aug. 6, 2001, which is a continuation of U.S. patent application Ser. No. 09/602,537, now U.S. Pat. No. 6,605,038, filed on Jun. 23, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/565,660, now U.S. Pat. No. 7,209,947, filed on Jun. 16, 2000, all of which are incorporated herein by reference.
  • FIELD
  • The present invention relates to a system for monitoring health, wellness and fitness, and in particular, to a system for collecting, using a sensor device, and storing at a remote site data relating to an individual's physiological state, lifestyle, and various contextual parameters, and making such data and analytical information based on such data available to the individual, preferably over an electronic network. In addition, the present invention also relates to an apparatus for monitoring health, wellness and fitness, and in particular, to an apparatus including one or more sensors for collecting and storing data relating to an individual's physiological state and various contextual parameters, and making such data and analytical information based on such data available to the individual.
  • BACKGROUND
  • Research has shown that a large number of the top health problems in society are either caused in whole or in part by an unhealthy lifestyle. More and more, our society requires people to lead fast-paced, achievement-oriented lifestyles that often result in poor eating habits, high stress levels, lack of exercise, poor sleep habits and the inability to find the time to center the mind and relax. Recognizing this fact, people are becoming increasingly interested in establishing a healthier lifestyle.
  • Traditional medicine, embodied in the form of an HMO or similar organizations, does not have the time, the training, or the reimbursement mechanism to address the needs of those individuals interested in a healthier lifestyle. There have been several attempts to meet the needs of these individuals, including a perfusion of fitness programs and exercise equipment, dietary plans, self-help books, alternative therapies, and most recently, a plethora of health information web sites on the Internet. Each of these attempts are targeted to empower the individual to take charge and get healthy. Each of these attempts, however, addresses only part of the needs of individuals seeking a healthier lifestyle and ignores many of the real barriers that most individuals face when trying to adopt a healthier lifestyle. These barriers include the fact that the individual is often left to himself or herself to find motivation, to implement a plan for achieving a healthier lifestyle, to monitor progress, and to brainstorm solutions when problems arise; the fact that existing programs are directed to only certain aspects of a healthier lifestyle, and rarely come as a complete package; and the fact that recommendations are often not targeted to the unique characteristics of the individual or his life circumstances.
  • SUMMARY OF THE INVENTION
  • A system is disclosed for detecting, monitoring and reporting human physiological information. The system includes a sensor device which generates at least one of data indicative of one or more physiological parameters and derived data from at least a portion of the data indicative of one or more physiological parameters when placed in proximity with at least a portion of the human body. The system also includes a central monitoring unit located remote from the sensor device. The central monitoring unit generates analytical status data from at least one of the data indicative of one or more physiological parameters, the derived data, and analytical status data that has previously been generated. The central monitoring unit also includes a data storage device for retrievably storing the data it receives and generates. The disclosed system also includes means for establishing electronic communication between the sensor device and the central monitoring unit. Examples may include various known types of long range wireless transmission devices, or a physical or a short range wireless coupling to a computer which in turn establishes electronic communication with the central monitoring unit over an electronic network such as the Internet. Also included in the system is a means for transmitting the data indicative of one or more physiological parameters, the derived data, and/or the analytical status data to a recipient, such as the individual or a third party authorized by the individual.
  • Also disclosed is a method of detecting, monitoring and reporting human physiological information. The method includes generating at least one of data indicative of one or more physiological parameters of an individual and derived data from at least a portion of the data indicative of one or more physiological parameters using a sensor device adapted to be placed in proximity with at least a portion of the human body. The at least one of the data indicative of one or more physiological parameters and the derived data are transmitted to a central monitoring unit remote from said sensor device and retrievably stored in a storage device. Analytical status data is generated from at least a portion of at least one of the data indicative of one or more physiological parameters, the derived data and the analytical status data, and at least one of the data indicative of one or more physiological parameters, the derived data and the analytical status data is transmitted to a recipient.
  • The sensor device includes one or more sensors for generating signals in response to physiological characteristics of the individual. The sensor device may also include a processor that is adapted to generate the data indicative of one or more physiological parameters from the signals generated by the one or more sensors. The processor may also be adapted to generate the derived data. Alternatively, the derived data may be generated by the central monitoring unit.
  • The central monitoring unit may be adapted to generate one or more web pages containing the data indicative of one or more physiological parameters, the derived data, and/or the analytical status data. The web pages generated by the central monitoring unit are accessible by the recipient over an electronic network, such as the Internet. Alternatively, the data indicative of one or more physiological parameters, the derived data, and/or the analytical status data may be transmitted to the recipient in a physical form such as mail or facsimile.
  • The system and method may also obtain life activities data of the individual and may use such life activities data when generating the analytical status data. Furthermore, the sensor device may also be adapted to generate data indicative of one or more contextual parameters of the individual. The system and method may then use the data indicative of one or more contextual parameters when generating the analytical status data.
  • Also disclosed is a system for monitoring the degree to which an individual has followed a predetermined routine. The system includes a sensor device adapted to generate at least one of data indicative of one or more physiological parameters of the individual and derived data from at least a portion of the data indicative of one or more physiological parameters when the sensor device is placed in proximity with at least a portion of the human body. Also included is a means for transmitting the data that is generated by the sensor device to a central monitoring unit remote from the sensor device and means for providing life activities data of the individual to the central monitoring unit. The central monitoring unit is adapted to generate and provide feedback to a recipient relating to the degree to which the individual has followed the predetermined routine. The feedback is generated from at least a portion of at least one of the data indicative of one or more physiological parameters, the derived data, and the life activities data.
  • Also disclosed is a method of monitoring the degree to which an individual has followed a predetermined routine. The method includes receiving, at a central monitoring unit, at least one of data indicative of one or more physiological parameters of said individual and derived data based on at least a portion of the data indicative of one or more physiological parameters, wherein the data indicative of one or more physiological parameters and the derived data are generated by a sensor device when placed in proximity with at least a portion of the human body. Also received at the central monitoring unit is life activities data of the individual. The method further includes generating at the central monitoring unit feedback relating to the degree to which the individual has followed the predetermined routine, the feedback being generated from at least a portion of at least one of the data indicative of one or more physiological parameters of the individual, the derived data, and the life activities data, and providing the feedback to a recipient.
  • The predetermined routine may include a plurality of categories, wherein the feedback is generated and provided with respect to each of the categories. Examples of the categories include nutrition, activity level, mind centering, sleep, and daily activities. The feedback may be provided in graphical or textual form and may be contained in one or more web pages generated by the central monitoring unit. Alternatively, the feedback may be transmitted to the recipient in a physical form.
  • An alternate system for detecting, monitoring and reporting human physiological information is also disclosed. The system includes a sensor device adapted to be placed in contact with an individual's upper arm. The sensor device includes at least one of an accelerometer, a GSR sensor and a heat flux sensor and is adapted to generate data indicative of at least one of activity, galvanic skin response, and heat flow of the individual wearing the sensor device. The sensor device may also be adapted to generate derived data from at least a portion of the data indicative of at least one of activity, galvanic skin response and heat flow. The sensor device may include a computer housing and a flexible wing body having first and second wings adapted to wrap around a portion of the individual's arm. The sensor device may also be adapted to provide audible, visible or tactile feedback to the wearer.
  • The system also includes a central monitoring unit located remote from the sensor device. The central monitoring unit generates analytical status data from at least one of the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and analytical status data that has previously been generated. The central monitoring unit may also be adapted to generate derived data from the data indicative of at least one of activity, galvanic skin response and heat flow. The central monitoring unit also includes a data storage device for retrievably storing the data it receives and generates. The disclosed system also includes means for establishing electronic communication between the sensor device and the central monitoring unit. Also included in the system is a means for transmitting the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data to a recipient, such as the individual or a third party authorized by the individual.
  • The central monitoring unit may be adapted to generate one or more web pages containing the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data. The web pages generated by the central monitoring unit are accessible by the recipient over an electronic network, such as the Internet. Alternatively, the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data may be transmitted to the recipient in a physical form such as mail or facsimile.
  • The system may also obtain life activities data of the individual and may use such life activities data when generating the analytical status data. Furthermore, the sensor device may also be adapted to generate data indicative of one or more contextual parameters of the individual. The system may then use the data indicative of one or more contextual parameters when generating the analytical status data.
  • Also disclosed is an alternate system for monitoring the degree to which an individual has followed a suggested routine. The system includes a sensor device as described above. Also included is a means for transmitting the data that is generated by the sensor device to a central monitoring unit remote from the sensor device and means for providing life activities data of the individual to the central monitoring unit. The central monitoring unit is adapted to generate and provide feedback to a recipient relating to the degree to which the individual has followed the suggested routine. The feedback is generated from at least a portion of at least one of the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and the life activities data.
  • The suggested routine may include a plurality of categories, wherein the feedback is generated and provided with respect to each of the categories. Examples of the categories include nutrition, activity level, mind centering, sleep, and daily activities. The feedback may be provided in graphical or textual form and may be contained in one or more web pages generated by the central monitoring unit. Alternatively, the feedback may be transmitted to the recipient in a physical form.
  • According to an alternate embodiment of the present invention, an apparatus for detecting, monitoring and reporting at least one of human physiological and contextual information is disclosed which includes at least two sensors selected from the group consisting of physiological sensors and contextual sensors. The physiological sensors are adapted to facilitate the generation of data indicative of one or more physiological parameters of an individual, and the contextual sensors are adapted to facilitate the generation of data indicative of one or more contextual parameters of the individual. A processor is coupled to the sensors and is adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data. A memory is provided for retrievably storing at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data. Various options are available for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data, including a visual output device, a tactile output device, an audible output device, and a computing device coupled to the apparatus. The apparatus may also include a component to enable the manual entry of information, and a wireless device to enable the apparatus to receive information from and/or output information to at least one of a wireless device worn by the individual, a wireless device implanted in the body of the individual, and a wireless device located near the individual.
  • According to a further alternate embodiment of the present invention, an apparatus for detecting, monitoring and reporting at least one of human physiological and contextual information is disclosed that includes a sensor device and a computing device coupled to the sensor device. The sensor device includes at least two sensors selected from the group consisting of physiological sensors and contextual sensors. The physiological sensors are adapted to facilitate the generation of data indicative of one or more physiological parameters of an individual, and the contextual sensors are adapted to facilitate the generation of data indicative of one or more contextual parameters of the individual. The sensor device also includes a memory for retrievably storing at least one of the data indicative of physiological parameters and the data indicative of contextual parameters. The computing device is adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data. Various options are available for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data, including a visual output device, a tactile output device, an audible output device, and the computing device. The apparatus may also include a component to enable the manual entry of information, and a wireless device to enable the apparatus to receive information from and/or output information to at least one of a wireless device worn by the individual, a wireless device implanted in the body of the individual, and a wireless device located near the individual. As an alternative, the apparatus may include a processor adapted to generate derived data from at least a portion of the data indicative of physiological parameters.
  • According to a further alternate embodiment of the present invention, an apparatus for monitoring and reporting at least one of human physiological and contextual information and nutritional information is disclosed that includes at least two sensors selected from the group consisting of physiological sensors and contextual sensors. The physiological sensors are adapted to facilitate the generation of data indicative of one or more physiological parameters of an individual and the contextual sensors are adapted to facilitate the generation of data indicative of one or more contextual parameters of said individual. The apparatus also includes means for entering food consumption information into the apparatus. A memory for storing conversion information for converting the food consumption information into nutritional information is also provided. The apparatus further includes a processor adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data, the nutritional information and the analytical status data, and means for transmitting to the individual at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data, and the analytical status data.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further features and advantages of the present invention will be apparent upon consideration of the following detailed description of the present invention, taken in conjunction with the following drawings, in which like reference characters refer to like parts, and in which:
  • FIG. 1 is a diagram of an embodiment of a system for monitoring physiological data and lifestyle over an electronic network according to the present invention;
  • FIG. 2 is a block diagram of an embodiment of the sensor device shown in FIG. 1;
  • FIG. 3 is a block diagram of an embodiment of the central monitoring unit shown in FIG. 1;
  • FIG. 4 is a block diagram of an alternate embodiment of the central monitoring unit shown in FIG. 1;
  • FIG. 5 is a representation of a preferred embodiment of the Health Manager web page according to an aspect of the present invention;
  • FIG. 6 is a representation of a preferred embodiment of the nutrition web page according to an aspect of the present invention;
  • FIG. 7 is a representation of a preferred embodiment of the activity level web page according to an aspect of the present invention;
  • FIG. 8 is a representation of a preferred embodiment of the mind centering web page according to an aspect of the present invention;
  • FIG. 9 is a representation of a preferred embodiment of the sleep web page according to an aspect of the present invention;
  • FIG. 10 is a representation of a preferred embodiment of the daily activities web page according to an aspect of the present invention;
  • FIG. 11 is a representation of a preferred embodiment of the Health Index web page according to an aspect of the present invention;
  • FIG. 12 is a front view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 13 is a back view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 14 is a side view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 15 is a bottom view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIGS. 16 and 17 are front perspective views of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 18 is an exploded side perspective view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 19 is a side view of the sensor device shown in FIGS. 12 through 18 inserted into a battery recharger unit;
  • FIG. 20 is a block diagram illustrating all of the components either mounted on or coupled to the printed circuit board forming a part of the sensor device shown in FIGS. 12 through 18; and
  • FIG. 21 is a block diagram of an apparatus for monitoring health, wellness and fitness according to an alternate embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In general, according to the present invention, data relating to the physiological state, the lifestyle and certain contextual parameters of an individual is collected and transmitted, either subsequently or in real-time, to a site, preferably remote from the individual, where it is stored for later manipulation and presentation to a recipient, preferably over an electronic network such as the Internet. Contextual parameters as used herein means parameters relating to the environment, surroundings and location of the individual, including, but not limited to, air quality, sound quality, ambient temperature, global positioning and the like. Referring to FIG. 1, located at user location 5 is sensor device 10 adapted to be placed in proximity with at least a portion of the human body. Sensor device 10 is preferably worn by an individual user on his or her body, for example as part of a garment such as a form fitting shirt, or as part of an arm band or the like. Sensor device 10, includes one or more sensors, which are adapted to generate signals in response to physiological characteristics of an individual, and a microprocessor. Proximity as used herein means that the sensors of sensor device 10 are separated from the individual's body by a material or the like, or a distance such that the capabilities of the sensors are not impeded.
  • Sensor device 10 generates data indicative of various physiological parameters of an individual, such as the individual's heart rate, pulse rate, beat-to-beat heart variability, EKG or ECG, respiration rate, skin temperature, core body temperature, heat flow off the body, galvanic skin response or GSR, EMG, EEG, EOG, blood pressure, body fat, hydration level, activity level, oxygen consumption, glucose or blood sugar level, body position, pressure on muscles or bones, and UV radiation exposure and absorption. In certain cases, the data indicative of the various physiological parameters is the signal or signals themselves generated by the one or more sensors and in certain other cases the data is calculated by the microprocessor based on the signal or signals generated by the one or more sensors. Methods for generating data indicative of various physiological parameters and sensors to be used therefor are well known. Table 1 provides several examples of such well known methods and shows the parameter in question, the method used, the sensor device used, and the signal that is generated. Table 1 also provides an indication as to whether further processing based on the generated signal is required to generate the data. TABLE-US-00001 TABLE 1 Further Parameter Method Sensor Signal Processing Heart Rate EKG 2 Electrodes DC Voltage Yes Pulse Rate BVP LED Emitter and Change in Yes Resistance Beat-to-Beat Heart Rate 2 Electrodes DC Voltage Yes Variability EKG Skin Surface 3-10 Electrodes DC Voltage No Potentials Respiration Rate Chest Volume Strain Gauge Change in Yes Change Resistance Skin Temperature Surface Thermistors Change in Yes Temperature Resistance Probe Core Esophageal or Thermistors Change in Yes Temperature Rectal Probe Resistance Heat Flow Heat Flux Thermopile DC Voltage Yes Galvanic Skin Skin 2 Electrodes Change in No Response Conductance Resistance EMG Skin Surface 3 Electrodes DC Voltage No Potentials EEG Skin Surface Multiple DC Voltage Yes Potentials Electrodes EOG Eye Movement Thin Film DC Voltage Yes Piezoelectric Sensors Blood Pressure Non-Invasive Electronic Change in Yes Korotkuff Sphygromarometer Resistance Sounds Body Fat Body Impedance 2 Active Change in Yes Electrodes Impedance Activity in Body Movement Accelerometer DC Voltage, Yes Interpreted G Capacitance Shocks per Changes Minute Oxygen Oxygen Uptake Electro-chemical DC Voltage Yes Consumption Change Body Position N/A Mercury Switch DC Voltage Yes (e.g. supine, Array Change erect, sitting) Muscle Pressure N/A Thin Film DC Voltage Yes Piezoelectric Change Sensors UV Radiation N/A UV Sensitive DC Voltage Yes Absorption Photo Cells Change
  • The types of data listed in Table 1 are intended to be examples of the types of data that can be generated by sensor device 10. It is to be understood that other types of data relating to other parameters can be generated by sensor device 10 without departing from the scope of the present invention.
  • The microprocessor of sensor device 10 may be programmed to summarize and analyze the data. For example, the microprocessor can be programmed to calculate an average, minimum or maximum heart rate or respiration rate over a defined period of time, such as ten minutes. Sensor device 10 may be able to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. The microprocessor of sensor device 10 is programmed to derive such information using known methods based on the data indicative of one or more physiological parameters. Table 2 provides examples of the type of information that can be derived, and indicates some of the types of data that can be used therefor. TABLE-US-00002 TABLE 2 Derived Information Data Used Ovulation Skin temperature, core temperature, oxygen consumption Sleep onset/wake Beat-to-beat variability, heart rate, pulse rate, respiration rate, skin temperature, core temperature, heat flow, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption Calories burned Heart rate, pulse rate, respiration rate, heat flow, activity, oxygen consumption Basal metabolic rate Heart rate, pulse rate, respiration rate, heat flow, activity, oxygen consumption Basal temperature Skin temperature, core temperature Activity level Heart rate, pulse rate, respiration rate, heat flow, activity, oxygen consumption Stress level EKG, beat-to-beat variability, heart rate, pulse rate, respiration rate, skin temperature, heat flow, galvanic skin response, EMG, EEG, blood pressure, activity, oxygen consumption Relaxation level EKG, beat-to-beat variability, heart rate, pulse rate, respiration rate, skin temperature, heat flow, galvanic skin response, EMG, EEG, blood pressure, activity, oxygen consumption Maximum oxygen EKG, heart rate, pulse rate, respiration rate, consumption rate heat flow, blood pressure, activity, oxygen consumption Rise time or the time it Heart rate, pulse rate, heat flow, takes to rise from a oxygen consumption resting rate to 85% of a target maximum Time in zone or the time Heart rate, pulse rate, heat flow, heart rate was above 85% oxygen consumption of a target maximum Recovery time or the Heart rate, pulse rate, heat flow, time it takes heart rate to oxygen consumption return to a resting rate after heart rate was above 85% of a target maximum
  • Additionally, sensor device 10 may also generate data indicative of various contextual parameters relating to the environment surrounding the individual. For example, sensor device 10 can generate data indicative of the air quality, sound level/quality, light quality or ambient temperature near the individual, or even the global positioning of the individual. Sensor device 10 may include one or more sensors for generating signals in response to contextual characteristics relating to the environment surrounding the individual, the signals ultimately being used to generate the type of data described above. Such sensors are well known, as are methods for generating contextual parametric data such as air quality, sound level/quality, ambient temperature and global positioning.
  • FIG. 2 is a block diagram of an embodiment of sensor device 10. Sensor device 10 includes at least one sensor 12 and microprocessor 20. Depending upon the nature of the signal generated by sensor 12, the signal can be sent through one or more of amplifier 14, conditioning circuit 16, and analog-to-digital converter 18, before being sent to microprocessor 20. For example, where sensor 12 generates an analog signal in need of amplification and filtering, that signal can be sent to amplifier 14, and then on to conditioning circuit 16, which may, for example, be a band pass filter. The amplified and conditioned analog signal can then be transferred to analog-to-digital converter 18, where it is converted to a digital signal. The digital signal is then sent to microprocessor 20. Alternatively, if sensor 12 generates a digital signal, that signal can be sent directly to microprocessor 20.
  • A digital signal or signals representing certain physiological and/or contextual characteristics of the individual user may be used by microprocessor 20 to calculate or generate data indicative of physiological and/or contextual parameters of the individual user. Microprocessor 20 is programmed to derive information relating to at least one aspect of the individual's physiological state. It should be understood that microprocessor 20 may also comprise other forms of processors or processing devices, such as a microcontroller, or any other device that can be programmed to perform the functionality described herein.
  • The data indicative of physiological and/or contextual parameters can, according to one embodiment of the present invention, be sent to memory 22, such as flash memory, where it is stored until uploaded in the manner to be described below. Although memory 22 is shown in FIG. 2 as a discrete element, it will be appreciated that it may also be part of microprocessor 20. Sensor device 10 also includes input/output circuitry 24, which is adapted to output and receive as input certain data signals in the manners to be described herein. Thus, memory 22 of the sensor device 10 will build up, over time, a store of data relating to the individual user's body and/or environment. That data is periodically uploaded from sensor device 10 and sent to remote central monitoring unit 30, as shown in FIG. 1, where it is stored in a database for subsequent processing and presentation to the user, preferably through a local or global electronic network such as the Internet. This uploading of data can be an automatic process that is initiated by sensor device 10 periodically or upon the happening of an event such as the detection by sensor device 10 of a heart rate below a certain level, or can be initiated by the individual user or some third party authorized by the user, preferably according to some periodic schedule, such as every day at 10:00 p.m. Alternatively, rather than storing data in memory 22, sensor device 10 may continuously upload data in real time.
  • The uploading of data from sensor device 10 to central monitoring unit 30 for storage can be accomplished in various ways. In one embodiment, the data collected by sensor device 10 is uploaded by first transferring the data to personal computer 35 shown in FIG. 1 by means of physical connection 40, which, for example, may be a serial connection such as an RS232 or USB port. This physical connection may also be accomplished by using a cradle, not shown, that is electronically coupled to personal computer 35 into which sensor device 10 can be inserted, as is common with many commercially available personal digital assistants. The uploading of data could be initiated by then pressing a button on the cradle or could be initiated automatically upon insertion of sensor device 10. The data collected by sensor device 10 may be uploaded by first transferring the data to personal computer 35 by means of short-range wireless transmission, such as infrared or RF transmission, as indicated at 45.
  • Once the data is received by personal computer 35, it is optionally compressed and encrypted by any one of a variety of well known methods and then sent out over a local or global electronic network, preferably the Internet, to central monitoring unit 30. It should be noted that personal computer 35 can be replaced by any computing device that has access to and that can transmit and receive data through the electronic network, such as, for example, a personal digital assistant such as the Palm VII sold by Palm, Inc., or the Blackberry 2-way pager sold by Research in Motion, Inc.
  • Alternatively, the data collected by sensor device 10, after being encrypted and, optionally, compressed by microprocessor 20, may be transferred to wireless device 50, such as a 2-way pager or cellular phone, for subsequent long distance wireless transmission to local telco site 55 using a wireless protocol such as e-mail or as ASCII or binary data. Local telco site 55 includes tower 60 that receives the wireless transmission from wireless device 50 and computer 65 connected to tower 60. According to the preferred embodiment, computer 65 has access to the relevant electronic network, such as the Internet, and is used to transmit the data received in the form of the wireless transmission to the central monitoring unit 30 over the Internet. Although wireless device 50 is shown in FIG. 1 as a discrete device coupled to sensor device 10, it or a device having the same or similar functionality may be embedded as part of sensor device 10.
  • Sensor device 10 may be provided with a button to be used to time stamp events such as time to bed, wake time, and time of meals. These time stamps are stored in sensor device 10 and are uploaded to central monitoring unit 30 with the rest of the data as described above. The time stamps may include a digitally recorded voice message that, after being uploaded to central monitoring unit 30, are translated using voice recognition technology into text or some other information format that can be used by central monitoring unit 30.
  • In addition to using sensor device 10 to automatically collect physiological data relating to an individual user, a kiosk could be adapted to collect such data by, for example, weighing the individual, providing a sensing device similar to sensor device 10 on which an individual places his or her hand or another part of his or her body, or by scanning the individual's body using, for example, laser technology or an iStat blood analyzer. The kiosk would be provided with processing capability as described herein and access to the relevant electronic network, and would thus be adapted to send the collected data to the central monitoring unit 30 through the electronic network. A desktop sensing device, again similar to sensor device 10, on which an individual places his or her hand or another part of his or her body may also be provided. For example, such a desktop sensing device could be a blood pressure monitor in which an individual places his or her arm. An individual might also wear a ring having a sensor device 10 incorporated therein. A base, not shown, could then be provided which is adapted to be coupled to the ring. The desktop sensing device or the base just described may then be coupled to a computer such as personal computer 35 by means of a physical or short range wireless connection so that the collected data could be uploaded to central monitoring unit 30 over the relevant electronic network in the manner described above. A mobile device such as, for example, a personal digital assistant, might also be provided with a sensor device 10 incorporated therein. Such a sensor device 10 would be adapted to collect data when mobile device is placed in proximity with the individual's body, such as by holding the device in the palm of one's hand, and upload the collected data to central monitoring unit 30 in any of the ways described herein.
  • Furthermore, in addition to collecting data by automatically sensing such data in the manners described above, individuals can also manually provide data relating to various life activities that is ultimately transferred to and stored at central monitoring unit 30. An individual user can access a web site maintained by central monitoring unit 30 and can directly input information relating to life activities by entering text freely, by responding to questions posed by the web site, or by clicking through dialog boxes provided by the web site. Central monitoring unit 30 can also be adapted to periodically send electronic mail messages containing questions designed to elicit information relating to life activities to personal computer 35 or to some other device that can receive electronic mail, such as a personal digital assistant, a pager, or a cellular phone. The individual would then provide data relating to life activities to central monitoring unit 30 by responding to the appropriate electronic mail message with the relevant data. Central monitoring unit 30 may also be adapted to place a telephone call to an individual user in which certain questions would be posed to the individual user. The user could respond to the questions by entering information using a telephone keypad, or by voice, in which case conventional voice recognition technology would be used by central monitoring unit 30 to receive and process the response. The telephone call may also be initiated by the user, in which case the user could speak to a person directly or enter information using the keypad or by voice/voice recognition technology. Central monitoring unit 30 may also be given access to a source of information controlled by the user, for example the user's electronic calendar such as that provided with the Outlook product sold by Microsoft Corporation of Redmond, Wash., from which it could automatically collect information. The data relating to life activities may relate to the eating, sleep, exercise, mind centering or relaxation, and/or daily living habits, patterns and/or activities of the individual. Thus, sample questions may include: What did you have for lunch today? What time did you go to sleep last night? What time did you wake up this morning? How long did you run on the treadmill today? Feedback may also be provided to a user directly through sensor device 10 in a visual form, for example through an LED or LCD or by constructing sensor device 10, at least in part, of a thermochromatic plastic, in the form of an acoustic signal or in the form of tactile feedback such as vibration. Such feedback may be a reminder or an alert to eat a meal or take medication or a supplement such as a vitamin, to engage in an activity such as exercise or meditation, or to drink water when a state of dehydration is detected. Additionally, a reminder or alert can be issued in the event that a particular physiological parameter such as ovulation has been detected, a level of calories burned during a workout has been achieved or a high heart rate or respiration rate has been encountered.
  • As will be apparent to those of skill in the art, it may be possible to Adownload@ data from central monitoring unit 30 to sensor device 10. The flow of data in such a download process would be substantially the reverse of that described above with respect to the upload of data from sensor device 10. Thus, it is possible that the firmware of microprocessor 20 of sensor device 10 can be updated or altered remotely, i.e., the microprocessor can be reprogrammed, by downloading new firmware to sensor device 10 from central monitoring unit 30 for such parameters as timing and sample rates of sensor device 10. Also, the reminders/alerts provided by sensor device 10 may be set by the user using the web site maintained by central monitoring unit 30 and subsequently downloaded to the sensor device 10.
  • Referring to FIG. 3, a block diagram of an embodiment of central monitoring unit 30 is shown. Central monitoring unit 30 includes CSU/DSU 70 which is connected to router 75, the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30. Connected to router 75 is firewall 80. The main purpose of firewall 80 is to protect the remainder of central monitoring unit 30 from unauthorized or malicious intrusions. Switch 85, connected to firewall 80, is used to direct data flow between middleware servers 95 a through 95 c and database server 110. Load balancer 90 is provided to spread the workload of incoming requests among the identically configured middleware servers 95 a through 95 c. Load balancer 90, a suitable example of which is the F5 ServerIron product sold by Foundry Networks, Inc. of San Jose, Calif., analyzes the availability of each middleware server 95 a through 95 c, and the amount of system resources being used in each middleware server 95 a through 95 c, in order to spread tasks among them appropriately.
  • Central monitoring unit 30 includes network storage device 100, such as a storage area network or SAN, which acts as the central repository for data. In particular, network storage device 100 comprises a database that stores all data gathered for each individual user in the manners described above. An example of a suitable network storage device 100 is the Symmetrix product sold by EMC Corporation of Hopkinton, Mass. Although only one network storage device 100 is shown in FIG. 3, it will be understood that multiple network storage devices of various capacities could be used depending on the data storage needs of central monitoring unit 30. Central monitoring unit 30 also includes database server 110 which is coupled to network storage device 100. Database server 110 is made up of two main components: a large scale multiprocessor server and an enterprise type software server component such as the 8/8i component sold by Oracle Corporation of Redwood City, Calif., or the 506 7 component sold by Microsoft Corporation of Redmond, Wash. The primary functions of database server 110 are that of providing access upon request to the data stored in network storage device 100, and populating network storage device 100 with new data. Coupled to network storage device 100 is controller 115, which typically comprises a desktop personal computer, for managing the data stored in network storage device 100.
  • Middleware servers 95 a through 95 c, a suitable example of which is the 22OR Dual Processor sold by Sun Microsystems, Inc. of Palo Alto, Calif., each contain software for generating and maintaining the corporate or home web page or pages of the web site maintained by central monitoring unit 30. As is known in the art, a web page refers to a block or blocks of data available on the World-Wide Web comprising a file or files written in Hypertext Markup Language or HTML, and a web site commonly refers to any computer on the Internet running a World-Wide Web server process. The corporate or home web page or pages are the opening or landing web page or pages that are accessible by all members of the general public that visit the site by using the appropriate uniform resource locator or URL. As is known in the art, URLs are the form of address used on the World-Wide Web and provide a standard way of specifying the location of an object, typically a web page, on the Internet. Middleware servers 95 a through 95 c also each contain software for generating and maintaining the web pages of the web site of central monitoring unit 30 that can only be accessed by individuals that register and become members of central monitoring unit 30. The member users will be those individuals who wish to have their data stored at central monitoring unit 30. Access by such member users is controlled using passwords for security purposes. Preferred embodiments of those web pages are described in detail below and are generated using collected data that is stored in the database of network storage device 100.
  • Middleware servers 95 a through 95 c also contain software for requesting data from and writing data to network storage device 100 through database server 110. When an individual user desires to initiate a session with the central monitoring unit 30 for the purpose of entering data into the database of network storage device 100, viewing his or her data stored in the database of network storage device 100, or both, the user visits the home web page of central monitoring unit 30 using a browser program such as Internet Explorer distributed by Microsoft Corporation of Redmond, Wash., and logs in as a registered user. Load balancer 90 assigns the user to one of the middleware servers 95 a through 95 c, identified as the chosen middleware server. A user will preferably be assigned to a chosen middleware server for each entire session. The chosen middleware server authenticates the user using any one of many well known methods, to ensure that only the true user is permitted to access the information in the database. A member user may also grant access to his or her data to a third party such as a health care provider or a personal trainer. Each authorized third party may be given a separate password and may view the member user's data using a conventional browser. It is therefore possible for both the user and the third party to be the recipient of the data.
  • When the user is authenticated, the chosen middleware server requests, through database server 110, the individual user's data from network storage device 100 for a predetermined time period. The predetermined time period is preferably thirty days. The requested data, once received from network storage device 100, is temporarily stored by the chosen middleware server in cache memory. The cached data is used by the chosen middleware server as the basis for presenting information, in the form of web pages, to the user again through the user's browser. Each middleware server 95 a through 95 c is provided with appropriate software for generating such web pages, including software for manipulating and performing calculations utilizing the data to put the data in appropriate format for presentation to the user. Once the user ends his or her session, the data is discarded from cache. When the user initiates a new session, the process for obtaining and caching data for that user as described above is repeated. This caching system thus ideally requires that only one call to the network storage device 100 be made per session, thereby reducing the traffic that database server 110 must handle. Should a request from a user during a particular session require data that is outside of a predetermined time period of cached data already retrieved, a separate call to network storage device 100 may be performed by the chosen middleware server. The predetermined time period should be chosen, however, such that such additional calls are minimized. Cached data may also be saved in cache memory so that it can be reused when a user starts a new session, thus eliminating the need to initiate a new call to network storage device 100.
  • As described in connection with Table 2, the microprocessor of sensor device 10 may be programmed to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. Central monitoring unit 30, and preferably middleware servers 95 a through 95 c, may also be similarly programmed to derive such information based on the data indicative of one or more physiological parameters.
  • It is also contemplated that a user will input additional data during a session, for example, information relating to the user's eating or sleeping habits. This additional data is preferably stored by the chosen middleware server in a cache during the duration of the user's session. When the user ends the session, this additional new data stored in a cache is transferred by the chosen middleware server to database server 110 for population in network storage device 100. Alternatively, in addition to being stored in a cache for potential use during a session, the input data may also be immediately transferred to database server 110 for population in network storage device 100, as part of a write-through cache system which is well known in the art.
  • Data collected by sensor device 10 shown in FIG. 1 is periodically uploaded to central monitoring unit 30. Either by long distance wireless transmission or through personal computer 35, a connection to central monitoring unit 30 is made through an electronic network, preferably the Internet. In particular, connection is made to load balancer 90 through CSU/DSU 70, router 75, firewall 80 and switch 85. Load balancer 90 then chooses one of the middleware servers 95 a through 95 c to handle the upload of data, hereafter called the chosen middleware server. The chosen middleware server authenticates the user using any one of many well known methods. If authentication is successful, the data is uploaded to the chosen middleware server as described above, and is ultimately transferred to database server 110 for population in the network storage device 100.
  • Referring to FIG. 4, an alternate embodiment of central monitoring unit 30 is shown. In addition to the elements shown and described with respect to FIG. 3, the embodiment of the central monitoring unit 30 shown in FIG. 4 includes a mirror network storage device 120 which is a redundant backup of network storage device 100. Coupled to mirror network storage device 120 is controller 122. Data from network storage device 100 is periodically copied to mirror network storage device 120 for data redundancy purposes.
  • Third parties such as insurance companies or research institutions may be given access, possibly for a fee, to certain of the information stored in mirror network storage device 120. Preferably, in order to maintain the confidentiality of the individual users who supply data to central monitoring unit 30, these third parties are not given access to such user's individual database records, but rather are only given access to the data stored in mirror network storage device 120 in aggregate form. Such third parties may be able to access the information stored in mirror network storage device 120 through the Internet using a conventional browser program. Requests from third parties may come in through CSU/DSU 70, router 75, firewall 80 and switch 85. In the embodiment shown in FIG. 4, a separate load balancer 130 is provided for spreading tasks relating to the accessing and presentation of data from mirror drive array 120 among identically configured middleware servers 135 a through 135 c. Middleware servers 135 a through 135 c each contain software for enabling the third parties to, using a browser, formulate queries for information from mirror network storage device 120 through separate database server 125. Middleware servers 135 a through 135 c also contain software for presenting the information obtained from mirror network storage device 120 to the third parties over the Internet in the form of web pages. In addition, the third parties can choose from a series of prepared reports that have information packaged along subject matter lines, such as various demographic categories.
  • As will be apparent to one of skill in the art, instead of giving these third parties access to the backup data stored in mirror network storage device 120, the third parties may be given access to the data stored in network storage device 100. Also, instead of providing load balancer 130 and middleware servers 135 a through 135 c, the same functionality, although at a sacrificed level of performance, could be provided by load balancer 90 and middleware servers 95 a through 95 c.
  • When an individual user first becomes a registered user or member, that user completes a detailed survey. The purposes of the survey are to: identify unique characteristics/circumstances for each user that they might need to address in order to maximize the likelihood that they will implement and maintain a healthy lifestyle as suggested by central monitoring unit 30; gather baseline data which will be used to set initial goals for the individual user and facilitate the calculation and display of certain graphical data output such as the Health Index pistons; identify unique user characteristics and circumstances that will help central monitoring unit 30 customize the type of content provided to the user in the Health Manager's Daily Dose; and identify unique user characteristics and circumstances that the Health Manager can guide the user to address as possible barriers to a healthy lifestyle through the problem-solving function of the Health Manager.
  • The specific information to be surveyed may include: key individual temperamental characteristics, including activity level, regularity of eating, sleeping, and bowel habits, initial response to situations, adaptability, persistence, threshold of responsiveness, intensity of reaction, and quality of mood; the user's level of independent functioning, i.e., self-organization and management, socialization, memory, and academic achievement skills; the user's ability to focus and sustain attention, including the user's level of arousal, cognitive tempo, ability to filter distractions, vigilance, and self-monitoring; the user's current health status including current weight, height, and blood pressure, most recent general physician visit, gynecological exam, and other applicable physician/healthcare contacts, current medications and supplements, allergies, and a review of current symptoms and/or health-related behaviors; the user's past health history, i.e., illnesses/surgeries, family history, and social stress events, such as divorce or loss of a job, that have required adjustment by the individual; the user's beliefs, values and opinions about health priorities, their ability to alter their behavior and, what might contribute to stress in their life, and how they manage it; the user's degree of self-awareness, empathy, empowerment, and self-esteem, and the user's current daily routines for eating, sleeping, exercise, relaxation and completing activities of daily living; and the user's perception of the temperamental characteristics of two key persons in their life, for example, their spouse, a friend, a co-worker, or their boss, and whether there are clashes present in their relationships that might interfere with a healthy lifestyle or contribute to stress.
  • Each member user will have access, through the home web page of central monitoring unit 30, to a series of web pages customized for that user, referred to as the Health Manager. The opening Health Manager web page 150 is shown in FIG. 5. The Health Manager web pages are the main workspace area for the member user. The Health Manager web pages comprise a utility through which central monitoring unit 30 provides various types and forms of data, commonly referred to as analytical status data, to the user that is generated from the data it collects or generates, namely one or more of: the data indicative of various physiological parameters generated by sensor device 10; the data derived from the data indicative of various physiological parameters; the data indicative of various contextual parameters generated by sensor device 10; and the data input by the user. Analytical status data is characterized by the application of certain utilities or algorithms to convert one or more of the data indicative of various physiological parameters generated by sensor device 10, the data derived from the data indicative of various physiological parameters, the data indicative of various contextual parameters generated by sensor device 10, and the data input by the user into calculated health, wellness and lifestyle indicators. For example, based on data input by the user relating to the foods he or she has eaten, things such as calories and amounts of proteins, fats, carbohydrates, and certain vitamins can be calculated. As another example, skin temperature, heart rate, respiration rate, heat flow and/or GSR can be used to provide an indicator to the user of his or her stress level over a desired time period. As still another example, skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption, ambient sound and body movement or motion as detected by a device such as an accelerometer can be used to provide indicators to the user of his or her sleep patterns over a desired time period.
  • Located on the opening Health Manager web page 150 is Health Index 155. Health Index 155 is a graphical utility used to measure and provide feedback to member users regarding their performance and the degree to which they have succeeded in reaching a healthy daily routine suggested by central monitoring unit 30. Health Index 155 thus provides an indication for the member user to track his or her progress. Health Index 155 includes six categories relating to the user's health and lifestyle: Nutrition, Activity Level, Mind Centering, Sleep, Daily Activities and How You Feel. The Nutrition category relates to what, when and how much a person eats and drinks The Activity Level category relates to how much a person moves around. The Mind Centering category relates to the quality and quantity of time a person spends engaging in some activity that allows the body to achieve a state of profound relaxation while the mind becomes highly alert and focused. The Sleep category relates to the quality and quantity of a person's sleep. The Daily Activities category relates to the daily responsibilities and health risks people encounter. Finally, the How You Feel category relates to the general perception that a person has about how they feel on a particular day. Each category has an associated level indicator or piston that indicates, preferably on a scale ranging from poor to excellent, how the user is performing with respect to that category.
  • When each member user completes the initial survey described above, a profile is generated that provides the user with a summary of his or her relevant characteristics and life circumstances. A plan and/or set of goals is provided in the form of a suggested healthy daily routine. The suggested healthy daily routine may include any combination of specific suggestions for incorporating proper nutrition, exercise, mind centering, sleep, and selected activities of daily living in the user's life. Prototype schedules may be offered as guides for how these suggested activities can be incorporated into the user's life. The user may periodically retake the survey, and based on the results, the items discussed above will be adjusted accordingly.
  • The Nutrition category is calculated from both data input by the user and sensed by sensor device 10. The data input by the user comprises the time and duration of breakfast, lunch, dinner and any snacks, and the foods eaten, the supplements such as vitamins that are taken, and the water and other liquids consumed during a relevant, pre-selected time period. Based upon this data and on stored data relating to known properties of various foods, central monitoring unit 30 calculates well known nutritional food values such as calories and amounts of proteins, fats, carbohydrates, vitamins, etc., consumed.
  • The Nutrition Health Index piston level is preferably determined with respect to the following suggested healthy daily routine: eat at least three meals; eat a varied diet consisting of 6-11 servings of bread, pasta, cereal, and rice, 2-4 servings fruit, 3-5 servings of vegetables, 2-3 servings of fish, meat, poultry, dry beans, eggs, and nuts, and 2-3 servings of milk, yogurt and cheese; and drink 8 or more 8 ounce glasses of water. This routine may be adjusted based on information about the user, such as sex, age, height and/or weight. Certain nutritional targets may also be set by the user or for the user, relating to daily calories, protein, fiber, fat, carbohydrates, and/or water consumption and percentages of total consumption. Parameters utilized in the calculation of the relevant piston level include the number of meals per day, the number of glasses of water, and the types and amounts of food eaten each day as input by the user.
  • Nutritional information is presented to the user through nutrition web page 160 as shown in FIG. 6. The preferred nutritional web page 160 includes nutritional fact charts 165 and 170 which illustrate actual and target nutritional facts, respectively as pie charts, and nutritional intake charts 175 and 180 which show total actual nutritional intake and target nutritional intake, respectively as pie charts. Nutritional fact charts 165 and 170 preferably show a percentage breakdown of items such as carbohydrates, protein and fat, and nutritional intake charts 175 and 180 are preferably broken down to show components such as total and target calories, fat, carbohydrates, protein, and vitamins. Web page 160 also includes meal and water consumption tracking 185 with time entries, hyperlinks 190 which allow the user to directly access nutrition-related news items and articles, suggestions for refining or improving daily routine with respect to nutrition and affiliate advertising elsewhere on the network, and calendar 195 for choosing between views having variable and selectable time periods. The items shown at 190 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Activity Level category of Health Index 155 is designed to help users monitor how and when they move around during the day and utilizes both data input by the user and data sensed by sensor device 10. The data input by the user may include details regarding the user's daily activities, for example the fact that the user worked at a desk from 8 a.m. to 5 p.m. and then took an aerobics class from 6 p.m. to 7 p.m. Relevant data sensed by sensor device 10 may include heart rate, movement as sensed by a device such as an accelerometer, heat flow, respiration rate, calories burned, GSR and hydration level, which may be derived by sensor device 60 or central monitoring unit 30. Calories burned may be calculated in a variety of manners, including: the multiplication of the type of exercise input by the user by the duration of exercise input by the user; sensed motion multiplied by time of motion multiplied by a filter constant; or sensed heat flux multiplied by time multiplied by a filter constant.
  • [The Activity Level Health Index piston level is preferably determined with respect to a suggested healthy daily routine that includes: exercising aerobically for a pre-set time period, preferably 20 minutes, or engaging in a vigorous lifestyle activity for a pre-set time period, preferably one hour, and burning at least a minimum target number of calories, preferably 205 calories, through the aerobic exercise and/or lifestyle activity. The minimum target number of calories may be set according to information about the user, such as sex, age, height and/or weight. Parameters utilized in the calculation of the relevant piston level include the amount of time spent exercising aerobically or engaging in a vigorous lifestyle activity as input by the user and/or sensed by sensor device 10, and the number of calories burned above pre-calculated energy expenditure parameters.
  • Information regarding the individual user's movement is presented to the user through activity level web page 200 shown in FIG. 7, which may include activity graph 205 in the form of a bar graph, for monitoring the individual user's activities in one of three categories: high, medium and low intensity with respect to a pre-selected unit of time. Activity percentage chart 210, in the form or a pie chart, may also be provided for showing the percentage of a pre-selected time period, such as one day, that the user spent in each category. Activity level web page 200 may also include calorie section 215 for displaying items such as total calories burned, daily target calories burned, total caloric intake, and duration of aerobic activity. Finally, activity level web page 200 may include at least one hyperlink 220 to allow a user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to activity level and affiliate advertising elsewhere on the network. Activity level web page 200 may be viewed in a variety of formats, and may include user-selectable graphs and charts such as a bar graph, pie chart, or both, as selectable by Activity level check boxes 225. Activity level calendar 230 is provided for selecting among views having variable and selectable time periods. The items shown at 220 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Mind Centering category of Health Index 155 is designed to help users monitor the parameters relating to time spent engaging in certain activities which allow the body to achieve a state of profound relaxation while the mind becomes focused, and is based upon both data input by the user and data sensed by the sensor device 10. In particular, a user may input the beginning and end times of relaxation activities such as yoga or meditation. The quality of those activities as determined by the depth of a mind centering event can be measured by monitoring parameters including skin temperature, heart rate, respiration rate, and heat flow as sensed by sensor device 10. Percent change in GSR as derived either by sensor device 10 or central monitoring unit 30 may also be utilized.
  • The Mind Centering Health Index piston level is preferably calculated with respect to a suggested healthy daily routine that includes participating each day in an activity that allows the body to achieve profound relaxation while the mind stays highly focused for at least fifteen minutes. Parameters utilized in the calculation of the relevant piston level include the amount of time spent in a mind centering activity, and the percent change in skin temperature, heart rate, respiration rate, heat flow or GSR as sensed by sensor device 10 compared to a baseline which is an indication of the depth or quality of the mind centering activity.
  • Information regarding the time spent on self-reflection and relaxation is presented to the user through mind centering web page 250 shown in FIG. 8. For each mind centering activity, referred to as a session, the preferred mind centering web page 250 includes the time spent during the session, shown at 255, the target time, shown at 260, comparison section 265 showing target and actual depth of mind centering, or focus, and a histogram 270 that shows the overall level of stress derived from such things as skin temperature, heart rate, respiration rate, heat flow and/or GSR. In comparison section 265, the human figure outline showing target focus is solid, and the human figure outline showing actual focus ranges from fuzzy to solid depending on the level of focus. The preferred mind centering web page may also include an indication of the total time spent on mind centering activities, shown at 275, hyperlinks 280 which allow the user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to mind centering and affiliate advertising, and a calendar 285 for choosing among views having variable and selectable time periods. The items shown at 280 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Sleep category of Health Index 155 is designed to help users monitor their sleep patterns and the quality of their sleep. It is intended to help users learn about the importance of sleep in their healthy lifestyle and the relationship of sleep to circadian rhythms, being the normal daily variations in body functions. The Sleep category is based upon both data input by the user and data sensed by sensor device 10. The data input by the user for each relevant time interval includes the times the user went to sleep and woke up and a rating of the quality of sleep. As noted in Table 2, the data from sensor device 10 that is relevant includes skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, and oxygen consumption. Also relevant is ambient sound and body movement or motion as detected by a device such as an accelerometer. This data can then be used to calculate or derive sleep onset and wake time, sleep interruptions, and the quality and depth of sleep.
  • The Sleep Health Index piston level is determined with respect to a healthy daily routine including getting a minimum amount, preferably eight hours, of sleep each night and having a predictable bed time and wake time. The specific parameters which determine the piston level calculation include the number of hours of sleep per night and the bed time and wake time as sensed by sensor device 10 or as input by the user, and the quality of the sleep as rated by the user or derived from other data.
  • Information regarding sleep is presented to the user through sleep web page 290 shown in FIG. 9. Sleep web page 290 includes a sleep duration indicator 295, based on either data from sensor device 10 or on data input by the user, together with user sleep time indicator 300 and wake time indicator 305. A quality of sleep rating 310 input by the user may also be utilized and displayed. If more than a one day time interval is being displayed on sleep web page 290, then sleep duration indicator 295 is calculated and displayed as a cumulative value, and sleep time indicator 300, wake time indicator 305 and quality of sleep rating 310 are calculated and illustrated as averages. Sleep web page 290 also includes a user-selectable sleep graph 315 which calculates and displays one sleep related parameter over a pre-selected time interval. For illustrative purposes, FIG. 9 shows heat flow over a one-day period, which tends to be lower during sleeping hours and higher during waking hours. From this information, a person's bio-rhythms can be derived. Sleep graph 315 may also include a graphical representation of data from an accelerometer incorporated in sensor device 10 which monitors the movement of the body. The sleep web page 290 may also include hyperlinks 320 which allow the user to directly access sleep related news items and articles, suggestions for refining or improving daily routine with respect to sleep and affiliate advertising available elsewhere on the network, and a sleep calendar 325 for choosing a relevant time interval. The items shown at 320 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Activities of Daily Living category of Health Index 155 is designed to help users monitor certain health and safety related activities and risks and is based entirely on data input by the user. The Activities of Daily Living category is divided into four sub-categories: personal hygiene, which allows the user to monitor activities such as brushing and flossing his or her teeth and showering; health maintenance, that tracks whether the user is taking prescribed medication or supplements and allows the user to monitor tobacco and alcohol consumption and automobile safety such as seat belt use; personal time, that allows the user to monitor time spent socially with family and friends, leisure, and mind centering activities; and responsibilities, that allows the user to monitor certain work and financial activities such as paying bills and household chores.
  • The Activities of Daily Living Health Index piston level is preferably determined with respect to the healthy daily routine described below. With respect to personal hygiene, the routine requires that the users shower or bathe each day, brush and floss teeth each day, and maintain regular bowel habits. With respect to health maintenance, the routine requires that the user take medications and vitamins and/or supplements, use a seat belt, refrain from smoking, drink moderately, and monitor health each day with the Health Manager. With respect to personal time, the routine requires the users to spend at least one hour of quality time each day with family and/or friends, restrict work time to a maximum of nine hours a day, spend some time on a leisure or play activity each day, and engage in a mind stimulating activity. With respect to responsibilities, the routine requires the users to do household chores, pay bills, be on time for work, and keep appointments. The piston level is calculated based on the degree to which the user completes a list of daily activities as determined by information input by the user.
  • Information relating to these activities is presented to the user through daily activities web page 330 shown in FIG. 10. In preferred daily activities web page 330, activities chart 335, selectable for one or more of the sub-categories, shows whether the user has done what is required by the daily routine. A colored or shaded box indicates that the user has done the required activity, and an empty, non-colored or shaded box indicates that the user has not done the activity. Activities chart 335 can be created and viewed in selectable time intervals. For illustrative purposes, FIG. 10 shows the personal hygiene and personal time sub-categories for a particular week. In addition, daily activities web page 330 may include daily activity hyperlinks 340 which allow the user to directly access relevant news items and articles, suggestions for improving or refining daily routine with respect to activities of daily living and affiliate advertising, and a daily activities calendar 345 for selecting a relevant time interval. The items shown at 340 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The How You Feel category of Health Index 155 is designed to allow users to monitor their perception of how they felt on a particular day, and is based on information, essentially a subjective rating, that is input directly by the user. A user provides a rating, preferably on a scale of 1 to 5, with respect to the following nine subject areas: mental sharpness; emotional and psychological well being; energy level; ability to cope with life stresses; appearance; physical well being; self-control; motivation; and comfort in relating to others. Those ratings are averaged and used to calculate the relevant piston level.
  • Referring to FIG. 11, Health Index web page 350 is shown. Health Index web page 350 enables users to view the performance of their Health Index over a user selectable time interval including any number of consecutive or non-consecutive days. Using Health Index selector buttons 360, the user can select to view the Health Index piston levels for one category, or can view a side-by-side comparison of the Health Index piston levels for two or more categories. For example, a user might want to just turn on Sleep to see if their overall sleep rating improved over the previous month, much in the same way they view the performance of their favorite stock. Alternatively, Sleep and Activity Level might be simultaneously displayed in order to compare and evaluate Sleep ratings with corresponding Activity Level ratings to determine if any day-to-day correlations exist. Nutrition ratings might be displayed with How You Feel for a pre-selected time interval to determine if any correlation exists between daily eating habits and how they felt during that interval. For illustrative purposes, FIG. 11 illustrates a comparison of Sleep and Activity Level piston levels for the week of June 10 through June 16. Health Index web page 350 also includes tracking calculator 365 that displays access information and statistics such as the total number of days the user has logged in and used the Health Manager, the percentage of days the user has used the Health Manager since becoming a subscriber, and percentage of time the user has used the sensor device 10 to gather data.
  • Referring again to FIG. 5, opening Health Manager web page 150 may include a plurality of user selectable category summaries 156 a through 156 f, one corresponding to each of the Health Index 155 categories. Each category summary 156 a through 156 f presents a pre-selected filtered subset of the data associated with the corresponding category. Nutrition category summary 156 a displays daily target and actual caloric intake. Activity Level category summary 156 b displays daily target and actual calories burned. Mind Centering category summary 156 c displays target and actual depth of mind centering or focus. Sleep category summary 156 d displays target sleep, actual sleep, and a sleep quality rating. Daily Activities category summary 156 e displays a target and actual score based on the percentage of suggested daily activities that are completed. The How You Feel category summary 156 f shows a target and actual rating for the day.
  • Opening Health Manager web page 150 also may include Daily Dose section 157 which provides, on a daily time interval basis, information to the user, including, but not limited to, hyperlinks to news items and articles, commentary and reminders to the user based on tendencies, such as poor nutritional habits, determined from the initial survey. The commentary for Daily Dose 157 may, for example, be a factual statement that drinking 8 glasses of water a day can reduce the risk of colon cancer by as much as 32%, accompanied by a suggestion to keep a cup of water by your computer or on your desk at work and refill often. Opening Health Manager web page 150 also may include a Problem Solver section 158 that actively evaluates the user's performance in each of the categories of Health Index 155 and presents suggestions for improvement. For example, if the system detects that a user's Sleep levels have been low, which suggest that the user has been having trouble sleeping, Problem Solver 158 can provide suggestions for way to improve sleep. Problem Solver 158 also may include the capability of user questions regarding improvements in performance. Opening Health Manager web page 150 may also include a Daily Data section 159 that launches an input dialog box. The input dialog box facilitates input by the user of the various data required by the Health Manager. As is known in the art, data entry may be in the form of selection from pre-defined lists or general free form text input. Finally, opening Health Manager web page 150 may include Body Stats section 161 which may provide information regarding the user's height, weight, body measurements, body mass index or BMI, and vital signs such as heart rate, blood pressure or any of the identified physiological parameters.
  • Referring to FIGS. 12-17, a specific embodiment of sensor device 10 is shown which is in the form of an armband adapted to be worn by an individual on his or her upper arm, between the shoulder and the elbow. The specific embodiment of sensor device 10 shown in FIGS. 12-17 will, for convenience, be referred to as armband sensor device 400. Armband sensor device 400 includes computer housing 405, flexible wing body 410, and, as shown in FIG. 17, elastic strap 415. Computer housing 405 and flexible wing body 410 are preferably made of a flexible urethane material or an elastomeric material such as rubber or a rubber-silicone blend by a molding process. Flexible wing body 410 includes first and second wings 418 each having a thru-hole 420 located near the ends 425 thereof. First and second wings 418 are adapted to wrap around a portion of the wearer's upper arm.
  • Elastic strap 415 is used to removably affix armband sensor device 400 to the individual's upper arm. As seen in FIG. 17, bottom surface 426 of elastic strap 415 is provided with velcro loops 416 along a portion thereof. Each end 427 of elastic strap 415 is provided with velcro hook patch 428 on bottom surface 426 and pull tab 429 on top surface 430. A portion of each pull tab 429 extends beyond the edge of each end 427.
  • In order to wear armband sensor device 400, a user inserts each end 427 of elastic strap 415 into a respective thru-hole 420 of flexible wing body 410. The user then places his arm through the loop created by elastic strap 415, flexible wing body 410 and computer housing 405. By pulling each pull tab 429 and engaging velcro hook patches 428 with velcro loops 416 at a desired position along bottom surface 426 of elastic strap 415, the user can adjust elastic strap 415 to fit comfortably. Since velcro hook patches 428 can be engaged with velcro loops 416 at almost any position along bottom surface 426, armband sensor device 400 can be adjusted to fit arms of various sizes. Also, elastic strap 415 may be provided in various lengths to accommodate a wider range of arm sizes. As will be apparent to one of skill in the art, other means of fastening and adjusting the size of elastic strap may be used, including, but not limited to, snaps, buttons, or buckles. It is also possible to use two elastic straps that fasten by one of several conventional means including velcro, snaps, buttons, buckles or the like, or merely a single elastic strap affixed to wings 418.
  • Alternatively, instead of providing thru-holes 420 in wings 418, loops having the shape of the letter D, not shown, may be attached to ends 425 of wings 418 by one of several conventional means. For example, a pin, not shown, may be inserted through ends 425, wherein the pin engages each end of each loop. In this configuration, the D-shaped loops would serve as connecting points for elastic strap 415, effectively creating a thru-hole between each end 425 of each wing 418 and each loop.
  • As shown in FIG. 18, which is an exploded view of armband sensor device 400, computer housing 405 includes a top portion 435 and a bottom portion 440. Contained within computer housing 405 are printed circuit board or PCB 445, rechargeable battery 450, preferably a lithium ion battery, and vibrating motor 455 for providing tactile feedback to the wearer, such as those used in pagers, suitable examples of which are the Model 12342 and 12343 motors sold by MG Motors Ltd. of the United Kingdom.
  • Top portion 435 and bottom portion 440 of computer housing 405 sealingly mate along groove 436 into which O-ring 437 is fit, and may be affixed to one another by screws, not shown, which pass through screw holes 438 a and stiffeners 438 b of bottom portion 440 and apertures 439 in PCB 445 and into threaded receiving stiffeners 451 of top portion 435. Alternately, top portion 435 and bottom portion 440 may be snap fit together or affixed to one another with an adhesive. Preferably, the assembled computer housing 405 is sufficiently water resistant to permit armband sensor device 400 to be worn while swimming without adversely affecting the performance thereof.
  • As can be seen in FIG. 13, bottom portion 440 includes, on a bottom side thereof, a raised platform 430. Affixed to raised platform 430 is heat flow or flux sensor 460, a suitable example of which is the micro-foil heat flux sensor sold by RdF Corporation of Hudson, N.H. Heat flux sensor 460 functions as a self-generating thermopile transducer, and preferably includes a carrier made of a polyamide film. Bottom portion 440 may include on a top side thereof, that is on a side opposite the side to which heat flux sensor 460 is affixed, a heat sink, not shown, made of a suitable metallic material such as aluminum. Also affixed to raised platform 430 are GSR sensors 465, preferably comprising electrodes formed of a material such as conductive carbonized rubber, gold or stainless steel. Although two GSR sensors 465 are shown in FIG. 13, it will be appreciated by one of skill in the art that the number of GSR sensors 465 and the placement thereof on raised platform 430 can vary as long as the individual GSR sensors 465, i.e., the electrodes, are electrically isolated from one another. By being affixed to raised platform 430, heat flux sensor 460 and GSR sensors 465 are adapted to be in contact with the wearer's skin when armband sensor device 400 is worn. Bottom portion 440 of computer housing 405 may also be provided with a removable and replaceable soft foam fabric pad, not shown, on a portion of the surface thereof that does not include raised platform 430 and screw holes 438 a. The soft foam fabric is intended to contact the wearer's skin and make armband sensor device 400 more comfortable to wear.
  • Electrical coupling between heat flux sensor 460, GSR sensors 465, and PCB 445 may be accomplished in one of various known methods. For example, suitable wiring, not shown, may be molded into bottom portion 440 of computer housing 405 and then electrically connected, such as by soldering, to appropriate input locations on PCB 445 and to heat flux sensor 460 and GSR sensors 465. Alternatively, rather than molding wiring into bottom portion 440, thru-holes may be provided in bottom portion 440 through which appropriate wiring may pass. The thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405.
  • Rather than being affixed to raised platform 430 as shown in FIG. 13, one or both of heat flux sensor 460 and GSR sensors 465 may be affixed to the inner portion 466 of flexible wing body 410 on either or both of wings 418 so as to be in contact with the wearer's skin when armband sensor device 400 is worn. In such a configuration, electrical coupling between heat flux sensor 460 and GSR sensors 465, whichever the case may be, and the PCB 445 may be accomplished through suitable wiring, not shown, molded into flexible wing body 410 that passes through one or more thru-holes in computer housing 405 and that is electrically connected, such as by soldering, to appropriate input locations on PCB 445. Again, the thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405. Alternatively, rather than providing thru-holes in computer housing 405 through Which the wiring passes, the wiring may be captured in computer housing 405 during an overmolding process, described below, and ultimately soldered to appropriate input locations on PCB 445.
  • As shown in FIGS. 12, 16, 17 and 18, computer housing 405 includes a button 470 that is coupled to and adapted to activate a momentary switch 585 on PCB 445. Button 470 may be used to activate armband sensor device 400 for use, to mark the time an event occurred or to request system status information such as battery level and memory capacity. When button 470 is depressed, momentary switch 585 closes a circuit and a signal is sent to processing unit 490 on PCB 445. Depending on the time interval for which button 470 is depressed, the generated signal triggers one of the events just described. Computer housing 405 also includes LEDs 475, which may be used to indicate battery level or memory capacity or to provide visual feedback to the wearer. Rather than LEDs 475, computer housing 405 may also include a liquid crystal display or LCD to provide battery level, memory capacity or visual feedback information to the wearer. Battery level, memory capacity or feedback information may also be given to the user tactily or audibly.
  • Armband sensor device 400 may be adapted to be activated for use, that is collecting data, when either of GSR sensors 465 or heat flux sensor 460 senses a particular condition that indicates that armband sensor device 400 has been placed in contact with the user's skin. Also, armband sensor device 400 may be adapted to be activated for use when one or more of heat flux sensor 460, GSR sensors 465, accelerometer 495 or 550, or any other device in communication with armband sensor device 400, alone or in combination, sense a particular condition or conditions that indicate that the armband sensor device 400 has been placed in contact with the user's skin for use. At other times, armband sensor device 400 would be deactivated, thus preserving battery power.
  • Computer housing 405 is adapted to be coupled to a battery recharger unit 480 shown in FIG. 19 for the purpose of recharging rechargeable battery 450. Computer housing 405 includes recharger contacts 485, shown in FIGS. 12, 15, 16 and 17, that are coupled to rechargeable battery 450. Recharger contacts 485 may be made of a material such as brass, gold or stainless steel, and are adapted to mate with and be electrically coupled to electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein. The electrical contacts provided in battery recharger unit 480 may be coupled to recharging circuit 481 a provided inside battery recharger unit 480. In this configuration, recharging circuit 481 would be coupled to a wall outlet, such as by way of wiring including a suitable plug that is attached or is attachable to battery recharger unit 480. Alternatively, electrical contacts 480 may be coupled to wiring that is attached to or is attachable to battery recharger unit 480 that in turn is coupled to recharging circuit 481 b external to battery recharger unit 480. The wiring in this configuration would also include a plug, not shown, adapted to be plugged into a conventional wall outlet.
  • Also provided inside battery recharger unit 480 is RF transceiver 483 adapted to receive signals from and transmit signals to RF transceiver 565 provided in computer housing 405 and shown in FIG. 20. RF transceiver 483 is adapted to be coupled, for example by a suitable cable, to a serial port, such as an RS 232 port or a USB port, of a device such as personal computer 35 shown in FIG. 1. Thus, data may be uploaded from and downloaded to armband sensor device 400 using RF transceiver 483 and RF transceiver 565. It will be appreciated that although RF transceivers 483 and 565 are shown in FIGS. 19 and 20, other forms of wireless transceivers may be used, such as infrared transceivers. Alternatively, computer housing 405 may be provided with additional electrical contacts, not shown, that would be adapted to mate with and be electrically coupled to additional electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein. The additional electrical contacts in the computer housing 405 would be coupled to the processing unit 490 and the additional electrical contacts provided in battery recharger unit 480 would be coupled to a suitable cable that in turn would be coupled to a serial port, such as an RS R32 port or a USB port, of a device such as personal computer 35. This configuration thus provides an alternate method for uploading of data from and downloading of data to armband sensor device 400 using a physical connection.
  • FIG. 20 is a schematic diagram that shows the system architecture of armband sensor device 400, and in particular each of the components that is either on or coupled to PCB 445.
  • As shown in FIG. 17, PCB 445 includes processing unit 490, which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein. Processing unit 490 is adapted to provide all of the functionality described in connection with microprocessor 20 shown in FIG. 2. A suitable example of processing unit 490 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Ill. PCB 445 also has thereon a two-axis accelerometer 495, a suitable example of which is the Model ADXL210 accelerometer sold by Analog Devices, Inc. of Norwood, Mass. Two-axis accelerometer 495 is preferably mounted on PCB 445 at an angle such that its sensing axes are offset at an angle substantially equal to 45 degrees from the longitudinal axis of PCB 445 and thus the longitudinal axis of the wearer's arm when armband sensor device 400 is worn. The longitudinal axis of the wearer's arm refers to the axis defined by a straight line drawn from the wearer's shoulder to the wearer's elbow. The output signals of two-axis accelerometer 495 are passed through buffers 500 and input into analog to digital converter 505 that in turn is coupled to processing unit 490. GSR sensors 465 are coupled to amplifier 510 on PCB 445. Amplifier 510 provides amplification and low pass filtering functionality, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass. The amplified and filtered signal output by amplifier 510 is input into amp/offset 515 to provide further gain and to remove any bias voltage and into filter/conditioning circuit 520, which in turn are each coupled to analog to digital converter 505. Heat flux sensor 460 is coupled to differential input amplifier 525, such as the Model INA amplifier sold by Burr-Brown Corporation of Tucson, Ariz., and the resulting amplified signal is passed through filter circuit 530, buffer 535 and amplifier 540 before being input to analog to digital converter 505. Amplifier 540 is configured to provide further gain and low pass filtering, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass. PCB 445 also includes thereon a battery monitor 545 that monitors the remaining power level of rechargeable battery 450. Battery monitor 545 preferably comprises a voltage divider with a low pass filter to provide average battery voltage. When a user depresses button 470 in the manner adapted for requesting battery level, processing unit 490 checks the output of battery monitor 545 and provides an indication thereof to the user, preferably through LEDs 475, but also possibly through vibrating motor 455 or ringer 575. An LCD may also be used.
  • PCB 445 may include three-axis accelerometer 550 instead of or in addition to two-axis accelerometer 495. The three-axis accelerometer outputs a signal to processing unit 490. A suitable example of three-axis accelerometer is the .mu.PAM product sold by I.M. Systems, Inc. of Scottsdale, Ariz. Three-axis accelerometer 550 is preferably tilted in the manner described with respect to two-axis accelerometer 495.
  • PCB 445 also includes RF receiver 555 that is coupled to processing unit 490. RF receiver 555 may be used to receive signals that are output by another device capable of wireless transmission, shown in FIG. 20 as wireless device 558, worn by or located near the individual wearing armband sensor device 400. Located near as used herein means within the transmission range of wireless device 558. For example, wireless device 558 may be a chest mounted heart rate monitor such as the Tempo product sold by Polar Electro of Oulu, Finland. Using such a heart rate monitor, data indicative of the wearer's heart rate can be collected by armband sensor device 400. Antenna 560 and RF transceiver 565 are coupled to processing unit 490 and are provided for purposes of uploading data to central monitoring unit 30 and receiving data downloaded from central monitoring unit 30. RF transceiver 565 and RF receiver 555 may, for example, employ Bluetooth technology as the wireless transmission protocol. Also, other forms of wireless transmission may be used, such as infrared transmission.
  • The fact that RF Transceiver 565 may be used for wirelessly uploading data from and wirelessly downloading data to armband sensor device 400 is advantageous because it eliminates the need to remove armband sensor device 400 to perform these functions, as would be required with a physical connection. For example, if armband sensor device 400 was being worn under the user's clothing, requiring removal of armband sensor device 400 prior to uploading and/or downloading data increases user inconvenience. In addition, the wearing of armband sensor device 400 has an effect on the user's skin and underlying blood vessels, which in turn may effect any measurements being made with respect thereto. It may be necessary for a period of time during which armband sensor device 400 is worn by the user to elapse before a steady state is achieved and consistent, accurate measurements can be made. By providing armband sensor device 400 with wireless communications capability, data can be uploaded and downloaded without disturbing an established steady state equilibrium condition. For example, programming data for processing unit 490 that controls the sampling characteristics of armband sensor device 400 can be downloaded to armband sensor device 400 without disturbing the steady state equilibrium condition.
  • In addition, antenna 560 and RF transceiver 565 permit armband sensor device 400 to communicate wirelessly with other devices capable of wireless communication, i.e., transmit information to and receive information from those devices. The devices may include, for example, devices that are implanted in the body of the person using armband sensor device 400, such as an implantable heart pacemaker or an implantable insulin dispensing device, for example the MiniMed® 2007 implantable insulin pump sold by MiniMed Inc. of Northridge, Calif., devices worn on the body of the person using armband sensor device 400, or devices located near the person using armband sensor device 400 at any particular time, such as an electronic scale, a blood pressure monitor, a glucose monitor, a cholesterol monitor or another armband sensor device 400. With this two-way wireless communication capability, armband sensor device 400 may be adapted to transmit information that activates or deactivates such a device for use or information that programs such a device to behave in a particular way. For example, armband sensor device 400 may be adapted to activate a piece of exercise equipment such as a treadmill and program it to operate with certain parameters that are dictated or desired by or optimal for the user of armband sensor device 400. As another example, armband sensor device 400 may be adapted to adjust a computer controlled thermostat in a home based on the detected skin temperature of the wearer or turn off a computer controlled lighting system, television or stereo when the wearer is determined to have fallen asleep.
  • Vibrating motor 455 is coupled to processing unit 490 through vibrator driver 570 and provides tactile feedback to the wearer. Similarly, ringer 575, a suitable example of which is the Model SMT916A ringer sold by Projects Unlimited, Inc. of Dayton, Ohio, is coupled to processing unit 490 through ringer driver 580, a suitable example of which is the Model MMBTA14 CTI darlington transistor driver sold by Motorola, Inc. of Schaumburg, Ill., and provides audible feedback to the wearer. Feedback may include, for example, celebratory, cautionary and other threshold or event driven messages, such as when a wearer reaches a level of calories burned during a workout.
  • Also provided on PCB 445 and coupled to processing unit 490 is momentary switch 585. Momentary switch 585 is also coupled to button 470 for activating momentary switch 585. LEDs 475, used to provide various types of feedback information to the wearer, are coupled to processing unit 490 through LED latch/driver 590.
  • Oscillator 595 is provided on PCB 445 and supplies the system clock to processing unit 490. Reset circuit 600, accessible and triggerable through a pin-hole in the side of computer housing 405, is coupled to processing unit 490 and enables processing unit 490 to be reset to a standard initial setting.
  • Rechargeable battery 450, which is the main power source for the armband sensor device 400, is coupled to processing unit 490 through voltage regulator 605. Finally, memory functionality is provided for armband sensor device 400 by SRAM 610, which stores data relating to the wearer of armband sensor device 400, and flash memory 615, which stores program and configuration data, provided on PCB 445. SRAM 610 and flash memory 615 are coupled to processing unit 490 and each preferably have at least 512K of memory.
  • In manufacturing and assembling armband sensor device 400, top portion 435 of computer housing 405 is preferably formed first, such as by a conventional molding process, and flexible wing body 410 is then overmolded on top of top portion 435. That is, top portion 435 is placed into an appropriately shaped mold, i.e., one that, when top portion 435 is placed therein, has a remaining cavity shaped according to the desired shape of flexible wing body 410, and flexible wing body 410 is molded on top of top portion 435. As a result, flexible wing body 410 and top portion 435 will merge or bond together, forming a single unit. Alternatively, top portion 435 of computer housing 405 and flexible wing body 410 may be formed together, such as by molding in a single mold, to form a single unit. The single unit however formed may then be turned over such that the underside of top portion 435 is facing upwards, and the contents of computer housing 405 can be placed into top portion 435, and top portion 435 and bottom portion 440 can be affixed to one another. As still another alternative, flexible wing body 410 may be separately formed, such as by a conventional molding process, and computer housing 405, and in particular top portion 435 of computer housing 405, may be affixed to flexible wing body 410 by one of several known methods, such as by an adhesive, by snap-fitting, or by screwing the two pieces together. Then, the remainder of computer housing 405 would be assembled as described above. It will be appreciated that rather than assembling the remainder of computer housing 405 after top portion 435 has been affixed to flexible wing body 410, the computer housing 405 could be assembled first and then affixed to flexible wing body 410.
  • Referring to FIG. 21, a block diagram of an alternate embodiment of the present invention is shown. This alternate embodiment includes stand alone sensor device 700 which functions as an independent device, meaning that it is capable of collecting and/or generating the various types of data described herein in connection with sensor device 10 and sensor device 400 and providing analytical status data to the user without interaction with a remotely located apparatus such as central monitoring unit 30. Stand alone sensor device 700 includes a processor that is programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data from the data indicative of various physiological and/or contextual parameters of the user, the data derived therefrom, and the data input by the user, all of which is stored in and accessed as needed from memory provided in stand alone sensor device 700. Stand alone sensor device 700 may comprise sensor device 10 shown in FIGS. 1 and 2 that includes microprocessor 20 and memory 22 or armband sensor device 400 shown in FIGS. 12-17 that includes processing unit 490 and SRAM 610.
  • As shown schematically in FIG. 21, data may be input into stand alone sensor device 700 in a number of ways. Stand alone sensor device 700 may include one or more physiological sensors 705 as described herein for facilitating the collection of data indicative of various physiological parameters of the user. Stand alone sensor device 700 may also include one or more contextual sensors 710 as described herein for facilitating the collection of data indicative of various contextual parameters of the user. As indicated by reference number 715, stand alone sensor device 700 may be adapted to enable the manual entry of data by the user. For example, stand alone sensor device 700 may include a data input button, such as a button 470 of armband sensor device 400, through which a user could manually enter information such as information relating to various life activities of the user as described herein or information relating to the operation and/or control of stand alone sensor device 700, for example, the setting of reminders or alerts as described herein. In this example, activation of button 470 may simply record or time stamp that an event such as a meal has occurred, with the wearer needing to assign a meaning to that time stamp through data entry at a later time. Alternatively, activation of button 470 in certain sequences, such as one activation, two successive activations, three successive activations, etc., can be preset to have different specific meanings A wearer would need to follow a menu or guide of such preset activation sequences to input relevant data. Alternatively, stand alone sensor device 700 may include a more sophisticated means for manual entry of information such as a keypad, a touch screen, a microphone, or a remote control device, for example a remote control device incorporated into a wristwatch. In the case of a microphone, the processor of stand alone sensor device 700 would be provided with well known voice recognition software or the like for converting the input speech into usable data.
  • As indicated by reference numbers 720 and 725, information comprising data indicative of various physiological and/or contextual parameters and data derived therefrom may be input into stand alone sensor device 700 through interaction with other devices. In addition, information such as handshake data or data indicative of various physiological and/or contextual parameters and data derived therefrom may be output from stand alone sensor device 700 to such other devices. According to one embodiment, the interaction is in the form of wireless communication between stand alone sensor device 700 and another device capable of wireless communication by way of a wireless transceiver provided in stand alone sensor device 700, such as wireless transceiver 565 shown and described in connection with FIG. 20. The device-to-device interaction may, as shown by reference number 720, be explicit, meaning that the user of stand alone sensor device 700 has knowingly initiated the interaction. For example, a user may activate a button on a scale to upload data to stand alone sensor device 700. The device-to-device interaction may also, as shown by reference number 725, be hidden, meaning that the user of stand alone sensor device 700 does not knowingly initiate the interaction. For example, a gym may have a sensor that wirelessly transmits a signal to sensing device 700 when the user enters and leaves the gym to time stamp when the user began and ended a workout.
  • As shown schematically in FIG. 21, information may be output or transmitted from stand alone sensor device 700 in a number of ways. Such information may include the data indicative of various physiological parameters and/or contextual parameters, the data derived therefrom, the data manually input by the user, the analytical status data, or any combination thereof. As shown by reference numbers 730, 735 and 740, information may be output or transmitted in an audible fashion such as by a series of tones or beeps or a recorded voice by a device such as a speaker, in a visual fashion such as by one or more LEDs, or in a tactile fashion such as by vibration. For example, stand alone sensor device 700 may be adapted to output a tone or tones, light an LED or LEDs, or vibrate as a reminder for an event, such as a reminder to eat or exercise at a particular time, or when a goal has been reached, such as a target number of calories burned during a workout, or a condition has been sensed, such as ovulation. Alternatively, stand alone sensor device 700 may be provided with a more sophisticated visual output means such as an LCD similar to those found on commercially available cell phones, pagers and personal digital assistants. With an LCD or a similar device and the expanded visual output capabilities it would provide, stand alone sensor device 700 may be adapted to output or transmit some or all of the information described in connection with FIGS. 5 through 11 in the same or a similar format. For example, stand alone sensor device 700 could provide analytical status data in the form of the Health Index to the user. As a further alternative, stand alone sensor device 700 may be coupled to computing device 750 such as a personal computer, a cell phone, a pager, a personal digital assistant, another stand alone sensor device 700 or any other device having a processor by either wired connection 755 or wireless connection 760. For example, battery recharger unit 480 shown in FIG. 19 may be used to provide the wired connection 755 or wireless connection 760. In this configuration, the display of the computing device could be used to visually output information from stand alone sensor device 700. It will be appreciated that since computing device 750 includes a sophisticated output means such as an LCD, it may be used to output or transmit to the user some or all of the information described in connection with FIGS. 5 through 11, such as the Health Index, in the same or a similar format.
  • Also, computing device 750 may in turn be used to control other devices, such as the lights or thermostat in a home, based on data output by stand alone sensor device 700, such as the fact that the wearer has fallen asleep or the fact that the wearer's skin temperature has reached a certain level. In other words, stand alone sensor device 700, and in particular its processor, may be adapted to cause a computing device 750 to trigger an event upon detection of one or more physiological and/or contextual conditions by stand alone sensor device 700. Alternatively, stand alone sensor device 700 may be adapted to cause a computing device 750 to trigger an event based upon information received from another computing device 750.
  • Stand alone sensor device 700 may be adapted to interact with and influence an interactive electronic media device, such as a video game, or non-interactive electronic media device, such as on a display device such as a DVD or digital video disc player playing a digitally recorded movie. For example, stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the video game, which in turn adjusts the characteristics of the game, such as the level of difficulty. As another example, stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the device displaying the digitally recorded movie which in turn adjusts the characteristics, such as the outcome, of the movie.
  • Furthermore, stand alone sensor device 700 may include location sensing device 765, such as an ultrasonic or a radio-frequency identification tag, for enabling a computing device 750 to detect the geographic location of stand alone sensor device 700, such as the location of stand alone sensor device 700 within a defined space such as a building. In one embodiment, a location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, preferably based on the detection by stand alone sensor device 700 of one or more physiological conditions of the wearer, such as skin temperature. In another embodiment, the location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, if stand alone sensor device 700 detects one or more physiological conditions, such as a skin temperature of the wearer being above a certain level. In addition, the input means of the computing device, such as the mouse and keyboard of a personal computer, the keypad of a cell phone or pager, or the touch screen of a personal digital assistant, may be used to manually input information into stand alone sensor device 700.
  • The different modes of output may be used in combination to provide different types and levels of information to a user. For example, stand alone sensor device 700 could be worn by an individual while exercising and an LED or a tone can be used to signal that a goal of a certain number of calories burned has been reached. The user could then transmit additional data wirelessly from stand alone sensor device 700 to a computing device 750 such as a cell phone after he or she is finished exercising to view data such as heart rate and/or respiration rate over time.
  • As a further alternative embodiment of the present invention, rather than the processor provided in stand alone sensor device 700 being programmed and/or otherwise adapted to generate the derived data and to include the utilities and algorithms necessary to create analytical status data, computing device 750 could be so programmed. In this embodiment, stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the data manually input by the user, and/or data input as a result of device-to-device interaction shown at 720 and 725, all of which is stored in the memory provided in stand alone sensor device 700. This data is then periodically uploaded to computing device 750 which in turn generates derived data and/or analytical status data. Alternatively, the processor of stand alone sensor device 700 could be programmed to generate the derived data with computing device 750 being programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700. As still a further alternative, the processor of stand alone sensor device 700 could be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700 with computing device 750 being programmed to generate the derived data. In either alternative, any or all of the data indicative of physiological and/or contextual parameters of the user, the data derived therefrom, the data manually input by the user, the data input as a result of device-to-device interaction shown at 720 and 725 and the analytical status data may then be viewed by the user using the output means of the programmed computing device 750 or another computing device 750 to which the data is downloaded. In the latter alternative, everything but the analytical status data may also be output by stand alone sensor device 700 as described herein.
  • Computing device 750 in these alternative embodiments may be connected to an electronic network, such as the Internet, to enable it to communicate with central monitoring unit 30 or the like. The programming of computing device 750 that enables it to generate the derived data and/or the analytical status data may, with such a configuration, be modified or replaced by downloading the relevant data to computing device 750 over the electronic network.
  • As still a further alternative embodiment, computing device 750 may be provided with a custom written plug-in adapted to provide data display functionality through use of a well known browser program. In this embodiment, stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the derived data, the data input by the user, data input as a result of device-to-device interaction shown at 720 and 725, and/or analytical status data based thereon and uploads this data to computing device 750. The plug-in provided in computing device 750 then generates appropriate display pages based on the data which may be viewed by the user using the browser provided with computing device 750. The plug-in may be modified/updated from a source such as central monitoring unit 30 over an electronic network such as the Internet.
  • The terms and expressions which have been employed herein are used as terms of description and not as limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention claimed. Although particular embodiments of the present invention have been illustrated in the foregoing detailed description, it is to be further understood that the present invention is not to be limited to just the embodiments disclosed, but that they are capable of numerous rearrangements, modifications and substitutions.

Claims (1)

What is claimed:
1. A system for operating an electronic media device using physiological parameters of an individual as input, said system comprising:
a. at least two sensors, each sensor generating an electronic output signal of a physiological parameter corresponding to the respective sensor of the at least two sensors, at least one of said sensors being an accelerometer, the at least two sensors mounted in a housing, said housing being configured for wear on a body of said individual,
b. a processor in electronic communication with said sensors and mounted within said housing, said processor having as input said signals indicative of said physiological parameters of said individual in order to generate, as an output signal, data indicative of a physiological state of said individual not directly measurable by said sensors, wherein the data indicative of a physiological state further comprises calories burned by said individual; and
c. an electronic media presentation and display device having a second processor in electronic communication with said processor, said electronic media device having as input said processor output signal data and using the processor output signal to adjust the operating characteristics of the electronic media presentation and display device in accordance with said processor output signal data.
US14/636,157 2000-06-16 2015-03-02 Apparatus for monitoring health, wellness and fitness Abandoned US20150238097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/636,157 US20150238097A1 (en) 2000-06-16 2015-03-02 Apparatus for monitoring health, wellness and fitness

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/595,660 US7689437B1 (en) 2000-06-16 2000-06-16 System for monitoring health, wellness and fitness
US09/602,537 US6605038B1 (en) 2000-06-16 2000-06-23 System for monitoring health, wellness and fitness
US09/923,181 US7261690B2 (en) 2000-06-16 2001-08-06 Apparatus for monitoring health, wellness and fitness
US11/322,010 US20060122474A1 (en) 2000-06-16 2005-12-29 Apparatus for monitoring health, wellness and fitness
US14/636,157 US20150238097A1 (en) 2000-06-16 2015-03-02 Apparatus for monitoring health, wellness and fitness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/322,010 Continuation US20060122474A1 (en) 2000-06-16 2005-12-29 Apparatus for monitoring health, wellness and fitness

Publications (1)

Publication Number Publication Date
US20150238097A1 true US20150238097A1 (en) 2015-08-27

Family

ID=46205812

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/322,010 Abandoned US20060122474A1 (en) 2000-06-16 2005-12-29 Apparatus for monitoring health, wellness and fitness
US11/724,373 Expired - Fee Related US8961414B2 (en) 2000-06-16 2007-03-15 Apparatus for monitoring health, wellness and fitness
US14/630,618 Abandoned US20150374289A1 (en) 2000-06-16 2015-02-24 Apparatus for monitoring health, wellness and fitness
US14/636,157 Abandoned US20150238097A1 (en) 2000-06-16 2015-03-02 Apparatus for monitoring health, wellness and fitness

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/322,010 Abandoned US20060122474A1 (en) 2000-06-16 2005-12-29 Apparatus for monitoring health, wellness and fitness
US11/724,373 Expired - Fee Related US8961414B2 (en) 2000-06-16 2007-03-15 Apparatus for monitoring health, wellness and fitness
US14/630,618 Abandoned US20150374289A1 (en) 2000-06-16 2015-02-24 Apparatus for monitoring health, wellness and fitness

Country Status (1)

Country Link
US (4) US20060122474A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140155705A1 (en) * 2005-03-11 2014-06-05 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US10699247B2 (en) 2017-05-16 2020-06-30 Under Armour, Inc. Systems and methods for providing health task notifications
US12123654B2 (en) 2010-05-04 2024-10-22 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a fractal heat sink

Families Citing this family (362)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881723A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated Ventilator breath display and graphic user interface
US20060202859A1 (en) * 1998-10-08 2006-09-14 Mastrototaro John J Telemetered characteristic monitor system and method of using the same
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US6527711B1 (en) 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US6811516B1 (en) * 1999-10-29 2004-11-02 Brian M. Dugan Methods and apparatus for monitoring and encouraging health and fitness
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
MXPA06002836A (en) 2000-06-16 2006-06-14 Bodymedia Inc System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability.
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
IL153516A (en) 2000-06-23 2007-07-24 Bodymedia Inc System for monitoring health, wellness and fitness
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
US20070111858A1 (en) * 2001-03-08 2007-05-17 Dugan Brian M Systems and methods for using a video game to achieve an exercise objective
US8939831B2 (en) 2001-03-08 2015-01-27 Brian M. Dugan Systems and methods for improving fitness equipment and exercise
US20020160883A1 (en) 2001-03-08 2002-10-31 Dugan Brian M. System and method for improving fitness equipment and exercise
US7702394B2 (en) 2001-05-01 2010-04-20 Intrapace, Inc. Responsive gastric stimulator
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7423526B2 (en) * 2003-01-29 2008-09-09 Despotis George J Integrated patient diagnostic and identification system
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7588033B2 (en) 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
CN1905917B (en) 2003-08-18 2011-08-03 门罗生命公司 Method and device for non-invasive ventilation with nasal interface
EP1779344A4 (en) * 2004-07-29 2009-08-19 Motiva Llc A human movement measurement system
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US8934976B2 (en) 2004-09-23 2015-01-13 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
JP4517866B2 (en) * 2005-01-28 2010-08-04 株式会社日立製作所 Sensor data processing method
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
WO2006116718A2 (en) 2005-04-28 2006-11-02 Proteus Biomedical, Inc. Pharma-informatics system
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
EP1903929A1 (en) * 2005-06-30 2008-04-02 Koninklijke Philips Electronics N.V. Device providing spot-check of vital signs using an in-the-ear probe
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operation device
US7942745B2 (en) 2005-08-22 2011-05-17 Nintendo Co., Ltd. Game operating device
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US20070050058A1 (en) * 2005-08-23 2007-03-01 Zbigniew Zuziak Placemat for calculating and monitoring calorie intake
JP4262726B2 (en) 2005-08-24 2009-05-13 任天堂株式会社 Game controller and game system
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
US7533670B1 (en) 2005-09-20 2009-05-19 Breathe Technologies, Inc. Systems, methods and apparatus for respiratory support of a patient
WO2007053439A2 (en) 2005-10-28 2007-05-10 Ace Ideas, Llc Behavior monitoring and reinforcement system and method
CA2634706A1 (en) * 2005-12-20 2007-06-28 Arbitron Inc. Methods and systems for conducting research operations
US11826652B2 (en) 2006-01-04 2023-11-28 Dugan Health, Llc Systems and methods for improving fitness equipment and exercise
JP4714025B2 (en) * 2006-01-06 2011-06-29 株式会社日立製作所 Sensor node, base station, sensor network, and sensing data transmission method
US20100049006A1 (en) * 2006-02-24 2010-02-25 Surendar Magar Medical signal processing system with distributed wireless sensors
JP2009528141A (en) * 2006-02-28 2009-08-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Biometric monitor with electronic equipment arranged in neck collar
JP2007229315A (en) * 2006-03-02 2007-09-13 Tanita Corp Data management system, data transmitting and receiving apparatus, data management server and data management method
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
CN101496042A (en) 2006-05-02 2009-07-29 普罗秋斯生物医学公司 Patient customized therapeutic regimens
JP2007304666A (en) * 2006-05-08 2007-11-22 Sony Computer Entertainment Inc Information output system and information output method
US7539533B2 (en) * 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
JP5191005B2 (en) 2006-05-18 2013-04-24 ブリーズ テクノロジーズ, インコーポレイテッド Method and device for tracheostomy
US8043337B2 (en) * 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8781568B2 (en) 2006-06-23 2014-07-15 Brian M. Dugan Systems and methods for heart rate monitoring, data transmission, and use
US20080020037A1 (en) * 2006-07-11 2008-01-24 Robertson Timothy L Acoustic Pharma-Informatics System
EP2068992B1 (en) 2006-08-03 2016-10-05 Breathe Technologies, Inc. Devices for minimally invasive respiratory support
BRPI0715884A2 (en) 2006-08-17 2013-10-15 Koninkl Philips Electronics Nv DYNAMIC BODY STATUS DEVICE, CLOTHING ARTICLE AND METHOD OF DISPLAYING A DYNAMIC BODY STATUS
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US8430770B2 (en) * 2006-10-07 2013-04-30 Brian M. Dugan Systems and methods for measuring and/or analyzing swing information
US8337335B2 (en) * 2006-10-07 2012-12-25 Dugan Brian M Systems and methods for measuring and/or analyzing swing information
EP2083680B1 (en) 2006-10-25 2016-08-10 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US7607443B2 (en) 2006-10-31 2009-10-27 Resurgent Health & Medical, Llc Wash chamber for automated appendage-washing apparatus
US7659824B2 (en) 2006-10-31 2010-02-09 Resurgent Health & Medical, Llc Sanitizer dispensers with compliance verification
US7698770B2 (en) * 2006-10-31 2010-04-20 Resurgent Health & Medical, Llc Automated appendage cleaning apparatus with brush
US7818083B2 (en) 2006-10-31 2010-10-19 Resurgent Health & Medical, Llc Automated washing system with compliance verification and automated compliance monitoring reporting
CA2567275A1 (en) * 2006-11-06 2008-05-06 Saskatchewan Telecommunications Health monitoring system and method
EP2069004A4 (en) 2006-11-20 2014-07-09 Proteus Digital Health Inc Active signal processing personal health signal receivers
US20230412680A9 (en) * 2006-12-01 2023-12-21 Fitistics, Llc System and method for processing information
EP2104917A4 (en) 2006-12-01 2011-12-28 Fitistics Llc System and method for processing information
US11196811B2 (en) * 2006-12-01 2021-12-07 Fitistics, Llc Data communications between an exercise device and a personal content device
ES2930588T3 (en) 2007-02-01 2022-12-19 Otsuka Pharma Co Ltd Ingestible Event Marker Systems
MY154556A (en) 2007-02-14 2015-06-30 Proteus Digital Health Inc In-body power source having high surface area electrode
US20100106783A1 (en) * 2007-02-15 2010-04-29 Yuichiro Kinoshita Continous supporting system using computer
WO2008099288A2 (en) * 2007-02-16 2008-08-21 Vyro Games Ltd. Biosensor device and method
US7927292B2 (en) * 2007-03-08 2011-04-19 Health Hero Network, Inc. Self-powered vibration sensor
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
JP2008234009A (en) * 2007-03-16 2008-10-02 Denso Corp Health management support system
WO2008120677A1 (en) * 2007-03-30 2008-10-09 Panasonic Electric Works Co., Ltd. System for measuring amount of activity
WO2008144589A1 (en) 2007-05-18 2008-11-27 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
JP5073371B2 (en) * 2007-06-06 2012-11-14 株式会社タニタ Sleep evaluation device
US9754078B2 (en) * 2007-06-21 2017-09-05 Immersion Corporation Haptic health feedback monitoring
DE102007032610A1 (en) 2007-07-11 2009-01-15 Deutsche Telekom Ag A method of remotely monitoring the medical condition of a user, system and apparatus therefor
US9046919B2 (en) * 2007-08-20 2015-06-02 Hmicro, Inc. Wearable user interface device, system, and method of use
US8926509B2 (en) * 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
US8374688B2 (en) 2007-09-14 2013-02-12 Corventis, Inc. System and methods for wireless body fluid monitoring
EP2194858B1 (en) 2007-09-14 2017-11-22 Corventis, Inc. Medical device automatic start-up upon contact to patient tissue
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
WO2009036256A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
WO2009036327A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent device for respiratory monitoring and sleep disordered breathing
EP3922171A1 (en) 2007-09-14 2021-12-15 Medtronic Monitoring, Inc. Adherent cardiac monitor with advanced sensing capabilities
EP4011289A1 (en) 2007-09-25 2022-06-15 Otsuka Pharmaceutical Co., Ltd. In-body device with virtual dipole signal amplification
WO2009042974A1 (en) 2007-09-26 2009-04-02 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
AU2008304203B9 (en) 2007-09-26 2014-02-27 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
EP2206053A4 (en) * 2007-10-03 2012-11-21 Ottawa Hospital Res Inst Method and apparatus for monitoring physiological parameter variability over time for one or more organs
EP3677228B1 (en) 2007-10-12 2024-07-10 Medivance Incorporated Improved system for patient temperature control
US20110019824A1 (en) * 2007-10-24 2011-01-27 Hmicro, Inc. Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use
EP2212856A4 (en) 2007-10-24 2012-05-09 Hmicro Inc Method and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US20090131835A1 (en) * 2007-11-16 2009-05-21 Medivance Incorporated Patient temperature response control system and method
US8892999B2 (en) 2007-11-30 2014-11-18 Nike, Inc. Interactive avatar for social network services
WO2009100401A2 (en) * 2008-02-06 2009-08-13 Hmicro, Inc. Wireless communications systems using multiple radios
US20090216090A1 (en) * 2008-02-26 2009-08-27 Sinbon Electronics Company Ltd. Household health monitoring system
EP2268261B1 (en) 2008-03-05 2017-05-10 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
JP5405500B2 (en) 2008-03-12 2014-02-05 コーヴェンティス,インク. Predicting cardiac decompensation based on cardiac rhythm
US20090270743A1 (en) * 2008-04-17 2009-10-29 Dugan Brian M Systems and methods for providing authenticated biofeedback information to a mobile device and for using such information
US8976007B2 (en) * 2008-08-09 2015-03-10 Brian M. Dugan Systems and methods for providing biofeedback information to a cellular telephone and for using such information
EP2276535B1 (en) 2008-04-18 2020-05-27 Breathe Technologies, Inc. Devices for sensing respiration and controlling ventilator functions
EP2274036A4 (en) 2008-04-18 2014-08-13 Breathe Technologies Inc Methods and devices for sensing respiration and controlling ventilator functions
WO2009146214A1 (en) 2008-04-18 2009-12-03 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US8377229B2 (en) 2008-04-29 2013-02-19 Resurgent Health & Medical, Llc Ingress/egress system for hygiene compliance
AR075745A1 (en) * 2008-05-28 2011-04-27 Kraft Foods Global Brands Llc METHOD AND APPLIANCE TO IDENTIFY DESIRABLE OPTIONS, A METHOD TO HELP A PERSON MAINTAIN A DEFAULT DIET, A METHOD FOR RO-TULAR FOOD ITEMS WITH A RELATIONAL QUALIFICATION NUMBER, A RECEIPT THAT INCLUDES A PORTION OF AN IT EDIBLE DISPOSED WITHIN THE RECIPI
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
US9002680B2 (en) 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
CN105768322A (en) 2008-06-13 2016-07-20 耐克创新有限合伙公司 Footwear Having Sensor System
CA3039236C (en) 2008-07-08 2022-05-17 Proteus Digital Health, Inc. Ingestible event marker data framework
CN102176862B (en) 2008-08-13 2014-10-22 普罗透斯数字保健公司 Ingestible circuitry
JP5715950B2 (en) 2008-08-22 2015-05-13 ブリーズ・テクノロジーズ・インコーポレーテッド Method and apparatus for providing mechanical ventilation with an open airway interface
US20100056873A1 (en) * 2008-08-27 2010-03-04 Allen Paul G Health-related signaling via wearable items
WO2010039989A1 (en) * 2008-10-01 2010-04-08 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
KR101708104B1 (en) 2008-10-22 2017-02-17 그라코 미네소타 인크. Portable airless sprayer
US7980997B2 (en) * 2008-10-23 2011-07-19 University Of Southern California System for encouraging a user to perform substantial physical activity
US8372093B2 (en) * 2008-11-04 2013-02-12 Koletry Processing L.L.C. Systems and processes for controlling gastric bands based on geographic location
US8647287B2 (en) 2008-12-07 2014-02-11 Andrew Greenberg Wireless synchronized movement monitoring apparatus and system
JP2012511961A (en) 2008-12-11 2012-05-31 プロテウス バイオメディカル インコーポレイテッド Judgment of digestive tract function using portable visceral electrical recording system and method using the same
DE102008061997A1 (en) * 2008-12-12 2010-06-17 Karlsruher Institut für Technologie System and method for stress training of a user
EP2375968B1 (en) 2008-12-15 2018-11-14 Medtronic Monitoring, Inc. Patient monitoring systems and methods
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
TWI424832B (en) 2008-12-15 2014-02-01 Proteus Digital Health Inc Body-associated receiver and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
KR101210277B1 (en) * 2008-12-23 2012-12-18 한국전자통신연구원 System for activity monitoring and information transmission method for activity monitoring
JP5785097B2 (en) 2009-01-06 2015-09-24 プロテウス デジタル ヘルス, インコーポレイテッド Pharmaceutical dosage delivery system
WO2010080843A2 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US9198605B2 (en) * 2009-03-20 2015-12-01 Christine Contant Eating utensil to monitor and regulate dietary intake
GB2480965B (en) 2009-03-25 2014-10-08 Proteus Digital Health Inc Probablistic pharmacokinetic and pharmacodynamic modeling
CN102481425A (en) 2009-04-02 2012-05-30 呼吸科技公司 Methods, systems and apparatus for non-invasive open ventilation using a gas delivery nozzle within an outer tube
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
AU2010232407B2 (en) * 2009-04-03 2014-10-30 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments
US8454437B2 (en) 2009-07-17 2013-06-04 Brian M. Dugan Systems and methods for portable exergaming
BRPI1015298A2 (en) 2009-04-28 2018-05-22 Proteus Biomedical Inc highly reliable ingestible event markers and methods for using them
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
GB2471903A (en) 2009-07-17 2011-01-19 Sharp Kk Sleep management system for monitoring sleep quality and making recommendations for improvement
WO2011022732A2 (en) 2009-08-21 2011-02-24 Proteus Biomedical, Inc. Apparatus and method for measuring biochemical parameters
US8303500B2 (en) * 2009-08-21 2012-11-06 Fazal Raheman Prescription zero: a non-pharmaceutical prescription device for prescribing, administering, monitoring, measuring and motivating a therapeutic lifestyle regimen for prevention and treatment of chronic diseases
CA2774902C (en) 2009-09-03 2017-01-03 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
CA2773868A1 (en) 2009-09-10 2011-03-17 Intrapace, Inc. Improved diagnostic sensors and/or treatments for gastrointestinal stimulation or monitoring devices
ES2753273T3 (en) 2009-10-08 2020-04-07 Delos Living Llc LED lighting system
WO2011046178A1 (en) * 2009-10-14 2011-04-21 株式会社デルタツーリング Biological state estimation device, biological state estimation system, and computer program
WO2011050283A2 (en) 2009-10-22 2011-04-28 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
KR101161492B1 (en) * 2010-01-12 2012-06-29 삼성전자주식회사 Apparatus and method for portable calorie measurement using inter-digital capacitor sensor
AU2011210648B2 (en) 2010-02-01 2014-10-16 Otsuka Pharmaceutical Co., Ltd. Data gathering system
US20110213276A1 (en) * 2010-02-18 2011-09-01 Israel Sarussi Apparatus and method for monitoring activity level
JP5573282B2 (en) * 2010-03-26 2014-08-20 アイシン精機株式会社 Biological information detection device
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
CA2795746C (en) 2010-04-07 2019-10-01 Timothy Robertson Miniature ingestible device
US8909950B1 (en) 2010-04-18 2014-12-09 Aptima, Inc. Systems and methods of power management
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
CN103096981B (en) 2010-08-16 2015-07-22 呼吸科技公司 Methods, systems and devices using lox to provide ventilatory support
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US8615377B1 (en) * 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
AU2011308548B2 (en) 2010-09-30 2014-10-23 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US20120094600A1 (en) 2010-10-19 2012-04-19 Welch Allyn, Inc. Platform for patient monitoring
CN113270185B (en) 2010-11-10 2024-09-24 耐克创新有限合伙公司 System and method for time-based athletic activity measurement and display
US9107806B2 (en) 2010-11-22 2015-08-18 Proteus Digital Health, Inc. Ingestible device with pharmaceutical product
US9177259B1 (en) * 2010-11-29 2015-11-03 Aptima Inc. Systems and methods for recognizing and reacting to spatiotemporal patterns
US8682704B2 (en) * 2011-01-03 2014-03-25 Express Scripts, Inc. Methods and systems for scheduling activity level based meetings
US8721543B2 (en) * 2011-01-12 2014-05-13 Arsham Andy Saffarian Data analytics system
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
CN112545101B (en) 2011-02-17 2022-05-03 耐克创新有限合伙公司 Footwear with sensor system
CA2827524A1 (en) 2011-02-17 2012-11-29 Nike International Ltd. Tracking of user performance metrics during a workout session
CA2827684C (en) 2011-02-17 2016-09-27 Nike International Ltd. Footwear having sensor system
WO2012125425A2 (en) 2011-03-11 2012-09-20 Proteus Biomedical, Inc. Wearable personal body associated device with various physical configurations
US20120229270A1 (en) * 2011-03-11 2012-09-13 Christopher Morley Wearable biofeedback system
US9533228B2 (en) 2011-03-28 2017-01-03 Brian M. Dugan Systems and methods for fitness and video games
US9610506B2 (en) 2011-03-28 2017-04-04 Brian M. Dugan Systems and methods for fitness and video games
US20120253489A1 (en) 2011-03-28 2012-10-04 Dugan Brian M Systems and methods for fitness and video games
US8947226B2 (en) 2011-06-03 2015-02-03 Brian M. Dugan Bands for measuring biometric information
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
CA2841122A1 (en) * 2011-06-10 2012-12-13 Aliphcom Personal advisor system using data-capable band
US20130004923A1 (en) * 2011-06-10 2013-01-03 Aliphcom Nutrition management method and apparatus for a wellness application using data from a data-capable band
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
WO2012171033A1 (en) * 2011-06-10 2012-12-13 Aliphcom Spacial and temporal vector analysis in wearable devices using sensor data
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20120316458A1 (en) * 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
CN103827914A (en) 2011-07-21 2014-05-28 普罗秋斯数字健康公司 Mobile communication device, system, and method
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
FI124367B (en) * 2011-11-11 2014-07-31 Firstbeat Technologies Oy Procedures and systems for mapping a person's physiological state
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US20130213146A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US8739639B2 (en) 2012-02-22 2014-06-03 Nike, Inc. Footwear having sensor system
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US20130213147A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US9135805B2 (en) 2012-03-27 2015-09-15 IntelligentM Methods and systems for encouraging and enforcing hand hygiene
US9569591B2 (en) 2012-05-31 2017-02-14 Hill-Rom Services, Inc. Configurable user interface systems for hospital bed
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
US9582035B2 (en) 2014-02-25 2017-02-28 Medibotics Llc Wearable computing devices and methods for the wrist and/or forearm
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US10130277B2 (en) 2014-01-28 2018-11-20 Medibotics Llc Willpower glasses (TM)—a wearable food consumption monitor
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US10772559B2 (en) 2012-06-14 2020-09-15 Medibotics Llc Wearable food consumption monitor
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9814426B2 (en) 2012-06-14 2017-11-14 Medibotics Llc Mobile wearable electromagnetic brain activity monitor
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
MY182541A (en) 2012-07-23 2021-01-25 Proteus Digital Health Inc Techniques for manufacturing ingestible event markers comprising an ingestible component
US9579048B2 (en) 2012-07-30 2017-02-28 Treefrog Developments, Inc Activity monitoring system with haptic feedback
EP3702685A1 (en) 2012-08-28 2020-09-02 Delos Living LLC Environmental control system and method of operation such system
US9875450B1 (en) * 2012-08-29 2018-01-23 James Robert Hendrick, III System and method of automated healthcare assessments and event inferences
WO2014047570A1 (en) 2012-09-21 2014-03-27 Md Revolution, Inc. Systems and methods for developing and implementing personalized health and wellness programs
US20140094940A1 (en) * 2012-09-28 2014-04-03 Saeed S. Ghassemzadeh System and method of detection of a mode of motion
UA116783C2 (en) 2012-10-18 2018-05-10 Протеус Діджитал Хелс, Інк. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US9189021B2 (en) 2012-11-29 2015-11-17 Microsoft Technology Licensing, Llc Wearable food nutrition feedback system
US9043004B2 (en) 2012-12-13 2015-05-26 Nike, Inc. Apparel having sensor system
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
US20140207263A1 (en) * 2013-01-23 2014-07-24 David B. Patzwald Evaluating a fitness level
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
US10463273B2 (en) * 2013-02-01 2019-11-05 Halo Wearables, Llc Hydration monitor
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
CN104884133B (en) 2013-03-14 2018-02-23 艾肯运动与健康公司 Force exercise equipment with flywheel
US9361778B1 (en) * 2013-03-15 2016-06-07 Gary German Hands-free assistive and preventive remote monitoring system
US9279734B2 (en) 2013-03-15 2016-03-08 Nike, Inc. System and method for analyzing athletic activity
JP5941240B2 (en) 2013-03-15 2016-06-29 プロテウス デジタル ヘルス, インコーポレイテッド Metal detector device, system and method
JP6498177B2 (en) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド Identity authentication system and method
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
EP3968263A1 (en) 2013-06-04 2022-03-16 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
MX356850B (en) 2013-09-20 2018-06-15 Proteus Digital Health Inc Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping.
JP2016537924A (en) 2013-09-24 2016-12-01 プロテウス デジタル ヘルス, インコーポレイテッド Method and apparatus for use with electromagnetic signals received at frequencies that are not accurately known in advance
US20150088542A1 (en) * 2013-09-26 2015-03-26 Be Labs, Llc System and method for correlating emotional or mental states with quantitative data
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
EP3066592A4 (en) * 2013-11-08 2017-07-19 Performance Lab Technologies Limited Automated prescription of activity based on physical activity data
US20150140527A1 (en) * 2013-11-19 2015-05-21 Microsoft Corporation Providing Interventions by Leveraging Popular Computer Resources
US9403047B2 (en) 2013-12-26 2016-08-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US10429888B2 (en) 2014-02-25 2019-10-01 Medibotics Llc Wearable computer display devices for the forearm, wrist, and/or hand
MX2016011107A (en) 2014-02-28 2017-02-17 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments.
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US10117600B2 (en) * 2014-04-15 2018-11-06 Apple Inc. Pacing activity data of a user
US10216904B2 (en) 2014-04-16 2019-02-26 Carkmh, Llc Cloud-assisted rehabilitation methods and systems for musculoskeletal conditions
US10898075B2 (en) * 2014-04-25 2021-01-26 Halo Wearables, Llc Wearable stress-testing device
US20150339949A1 (en) * 2014-05-20 2015-11-26 Matthew Landers Health and fitness tracker module software platform
US11107578B2 (en) * 2014-05-30 2021-08-31 Apple Inc. Systems and methods for facilitating health research
USD798900S1 (en) 2014-06-01 2017-10-03 Apple Inc. Display screen or portion thereof with icon
GB2529998A (en) * 2014-06-04 2016-03-16 Ki Health Innovation Ltd Monitoring adherence to healthcare guidelines
WO2015191445A1 (en) 2014-06-09 2015-12-17 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
JP6720140B2 (en) 2014-08-14 2020-07-08 メディヴァンス インコーポレイテッドMedivance,Inc. System for temperature control outside the body
JP6156287B2 (en) * 2014-08-18 2017-07-05 Tdk株式会社 Activity meter
USD762659S1 (en) 2014-09-02 2016-08-02 Apple Inc. Display screen or portion thereof with graphical user interface
KR102276900B1 (en) 2014-09-11 2021-07-12 삼성전자주식회사 Mobile device and System and for emergency situation notifying
EP3193715B1 (en) * 2014-09-15 2024-05-15 Attenti Electronic Monitoring Ltd. Impairment detection
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US10653369B2 (en) * 2014-12-23 2020-05-19 Intel Corporation Device for health monitoring and response
WO2016115230A1 (en) 2015-01-13 2016-07-21 Delos Living Llc Systems, methods and articles for monitoring and enhancing human wellness
EP3253282A4 (en) * 2015-02-05 2018-09-26 Mc10, Inc. Method and system for interacting with an environment
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US20180139931A1 (en) * 2015-04-28 2018-05-24 Kyocera Corporation State detector, method of using state detector, and state detection system
CN104873177A (en) * 2015-05-25 2015-09-02 广东欧珀移动通信有限公司 Body temperature detecting method and device of intelligent wearing equipment
US9542828B1 (en) 2015-06-22 2017-01-10 Peter D. Haaland System, device, and method for measurement of hand hygiene technique
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US10413182B2 (en) 2015-07-24 2019-09-17 Johnson & Johnson Vision Care, Inc. Biomedical devices for biometric based information communication
EP3359031A4 (en) * 2015-10-05 2019-05-22 Mc10, Inc. Method and system for neuromodulation and stimulation
KR20170074000A (en) * 2015-12-21 2017-06-29 삼성전자주식회사 Electronic apparatus and method for managing sleep
DE102015226194A1 (en) * 2015-12-21 2017-06-22 Robert Bosch Gmbh Mobile functional device
US20170188843A1 (en) * 2016-01-05 2017-07-06 Tosense, Inc. Handheld physiological sensor
US20170188873A1 (en) * 2016-01-05 2017-07-06 Tosense, Inc. Handheld physiological sensor
WO2017124378A1 (en) * 2016-01-21 2017-07-27 深圳迈瑞生物医疗电子股份有限公司 Biosensor device and physiological monitor comprising the biosensor device
US10080530B2 (en) 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
CN105748044A (en) * 2016-02-23 2016-07-13 康志强 Sleep detection method and system of smartwatch
US11164596B2 (en) 2016-02-25 2021-11-02 Samsung Electronics Co., Ltd. Sensor assisted evaluation of health and rehabilitation
US10420514B2 (en) 2016-02-25 2019-09-24 Samsung Electronics Co., Ltd. Detection of chronotropic incompetence
US10172517B2 (en) 2016-02-25 2019-01-08 Samsung Electronics Co., Ltd Image-analysis for assessing heart failure
US11039986B2 (en) 2016-02-25 2021-06-22 Samsung Electronics Co., Ltd. Chronotherapeutic dosing of medication and medication regimen adherence
US10362998B2 (en) 2016-02-25 2019-07-30 Samsung Electronics Co., Ltd. Sensor-based detection of changes in health and ventilation threshold
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US11030911B2 (en) * 2016-03-31 2021-06-08 Casio Computer Co., Ltd. Electronic apparatus, notification method, and computer-readable storage medium
USD804502S1 (en) 2016-06-11 2017-12-05 Apple Inc. Display screen or portion thereof with graphical user interface
EP3482297B1 (en) * 2016-07-07 2021-05-19 Universität Zürich Method and computer program for monitoring touchscreen events of a handheld device
EP3487393A4 (en) 2016-07-22 2020-01-15 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US11338107B2 (en) 2016-08-24 2022-05-24 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
WO2018039600A1 (en) * 2016-08-26 2018-03-01 AMI Research & Development, LLC Vital sign monitoring via touchscreen using bioelectric impedance
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
USD838278S1 (en) * 2016-09-29 2019-01-15 United Services Automobile Association (Usaa) Display screen or portion thereof with a payday forecast graphical user interface
US11682495B2 (en) 2016-10-13 2023-06-20 Carnegie Mellon University Structured medical data classification system for monitoring and remediating treatment risks
CA3040890C (en) 2016-10-17 2021-03-16 Feradyne Outdoors, Llc Broadhead having both deployable and fixed cutting blades
US20180113987A1 (en) * 2016-10-20 2018-04-26 Jiping Zhu Method and system for quantitative classification of health conditions via wearable device and application thereof
US10820831B2 (en) 2016-10-26 2020-11-03 Proteus Digital Health, Inc. Methods for manufacturing capsules with ingestible event markers
WO2018118703A1 (en) * 2016-12-23 2018-06-28 Abbott Diabetes Care Inc. Device, method and system for fitness level monitoring using continuous lactate monitoring device
USD805089S1 (en) 2016-12-23 2017-12-12 Apple Inc. Display screen or portion thereof with graphical user interface
CN108653897A (en) * 2017-03-31 2018-10-16 高军 A kind of individual soldier's mental accommodation instrument system
US11406282B2 (en) * 2017-04-20 2022-08-09 Step Analysis Llc Multidimensional acceleration and/or force gait analysis system for diagnosis
US10945675B2 (en) 2017-05-24 2021-03-16 Samsung Electronics Co., Ltd. Determining a health status for a user
US20180366024A1 (en) * 2017-06-14 2018-12-20 Microsoft Technology Licensing, Llc Providing suggested behavior modifications for a correlation
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
CN107361747A (en) * 2017-08-23 2017-11-21 广东小天才科技有限公司 Warning method and device for intelligent wearable equipment
WO2019046580A1 (en) 2017-08-30 2019-03-07 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
USD877170S1 (en) 2018-01-22 2020-03-03 Apple Inc. Electronic device with graphical user interface
CN109040455B (en) * 2018-08-13 2021-12-14 青岛民航凯亚系统集成有限公司 Incoming call processing method, incoming call processing device, terminal and computer readable storage medium
EP3850458A4 (en) 2018-09-14 2022-06-08 Delos Living, LLC Systems and methods for air remediation
CN111407271A (en) * 2018-11-30 2020-07-14 吴迪 Wearable subassembly of intelligence of self-power flexible electrode
CN109620262B (en) * 2018-12-12 2020-12-22 华南理工大学 Emotion recognition system and method based on wearable bracelet
US10568570B1 (en) 2019-02-14 2020-02-25 Trungram Gyaltrul Sherpa Methods and systems for providing a preferred fitness state of a user
WO2020176503A1 (en) 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
US11898898B2 (en) 2019-03-25 2024-02-13 Delos Living Llc Systems and methods for acoustic monitoring
EP3976270A1 (en) 2019-05-31 2022-04-06 Graco Minnesota Inc. Handheld fluid sprayer
USD961603S1 (en) 2019-06-01 2022-08-23 Apple Inc. Electronic device with animated graphical user interface
USD962246S1 (en) 2019-06-02 2022-08-30 Apple Inc. Electronic device with graphical user interface
USD921669S1 (en) 2019-09-09 2021-06-08 Apple Inc. Display screen or portion thereof with animated graphical user interface
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
USD974371S1 (en) 2020-07-29 2023-01-03 Apple Inc. Display screen or portion thereof with graphical user interface
USD1042513S1 (en) 2022-06-03 2024-09-17 Apple Inc. Display screen or portion thereof with graphical user interface

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834702A (en) * 1973-06-11 1974-09-10 W Bliss Jogging game apparatus
US4278095A (en) * 1977-09-12 1981-07-14 Lapeyre Pierre A Exercise monitor system and method
US4751642A (en) * 1986-08-29 1988-06-14 Silva John M Interactive sports simulation system with physiological sensing and psychological conditioning
US5227239A (en) * 1990-11-30 1993-07-13 The United States Of America As Represented By The United States Department Of Energy Production of hollow aerogel microspheres
US5362069A (en) * 1992-12-03 1994-11-08 Heartbeat Corporation Combination exercise device/video game
US5524637A (en) * 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US5524618A (en) * 1993-06-02 1996-06-11 Pottgen; Paul A. Method and apparatus for measuring heat flow
US5527239A (en) * 1993-02-04 1996-06-18 Abbondanza; James M. Pulse rate controlled exercise system
US5577981A (en) * 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
US5673691A (en) * 1991-01-11 1997-10-07 Pics, Inc. Apparatus to control diet and weight using human behavior modification techniques
US5701894A (en) * 1995-11-09 1997-12-30 Del Mar Avionics Modular physiological computer-recorder
US5779596A (en) * 1995-09-20 1998-07-14 Weber; Daniel W. Remote controller mechanism for use with a videocassette recorder or the like
US5839990A (en) * 1994-03-14 1998-11-24 Virkkala; Antero J. Apparatus for connecting an exercise bicycle to a computer
US5839901A (en) * 1997-10-01 1998-11-24 Karkanen; Kip M. Integrated weight loss control method
US5888172A (en) * 1993-04-26 1999-03-30 Brunswick Corporation Physical exercise video system
US5896164A (en) * 1993-07-20 1999-04-20 Orbach; Tuvi Video display apparatus
US5947868A (en) * 1997-06-27 1999-09-07 Dugan; Brian M. System and method for improving fitness equipment and exercise
US6004243A (en) * 1995-10-11 1999-12-21 Ewert; Bruce Dynamic real time exercise video apparatus and method
US6030342A (en) * 1996-06-12 2000-02-29 Seiko Epson Corporation Device for measuring calorie expenditure and device for measuring body temperature
US6132337A (en) * 1997-03-24 2000-10-17 Keytron Electronics & Technologies Ltd. Exercise monitoring system
US6198394B1 (en) * 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6244988B1 (en) * 1999-06-28 2001-06-12 David H. Delman Interactive exercise system and attachment module for same
US20020019585A1 (en) * 1999-05-18 2002-02-14 Dickinson Elisabeth N. Electronic apparatus and method for monitoring net calorie intake
US6428449B1 (en) * 2000-05-17 2002-08-06 Stanford Apseloff Interactive video system responsive to motion and voice command
US20020107433A1 (en) * 1999-10-08 2002-08-08 Mault James R. System and method of personal fitness training using interactive television
US20020133378A1 (en) * 2000-10-13 2002-09-19 Mault James R. System and method of integrated calorie management
US6468222B1 (en) * 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
US6478736B1 (en) * 1999-10-08 2002-11-12 Healthetech, Inc. Integrated calorie management system
US6493652B1 (en) * 1997-10-02 2002-12-10 Personal Electronic Devices, Inc. Monitoring activity of a user in locomotion on foot
US6506152B1 (en) * 2000-05-09 2003-01-14 Robert P. Lackey Caloric energy balance monitor
US6513046B1 (en) * 1999-12-15 2003-01-28 Tangis Corporation Storing and recalling information to augment human memories
US20030022140A1 (en) * 2001-07-09 2003-01-30 Huang-Tung Chang Interactive game apparatus by utilizing parameters related to exerciser user
US6572511B1 (en) * 1999-11-12 2003-06-03 Joseph Charles Volpe Heart rate sensor for controlling entertainment devices
US6585622B1 (en) * 1999-12-03 2003-07-01 Nike, Inc. Interactive use an athletic performance monitoring and reward method, system, and computer program product
US20030126593A1 (en) * 2002-11-04 2003-07-03 Mault James R. Interactive physiological monitoring system
US6694182B1 (en) * 1999-12-07 2004-02-17 Ya-Man Ltd. Wearable calorie calculator
US6790178B1 (en) * 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6898550B1 (en) * 1997-10-02 2005-05-24 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6997852B2 (en) * 1999-07-08 2006-02-14 Icon Ip, Inc. Methods and systems for controlling an exercise apparatus using a portable remote device
US20060183980A1 (en) * 2005-02-14 2006-08-17 Chang-Ming Yang Mental and physical health status monitoring, analyze and automatic follow up methods and its application on clothing
US7103407B2 (en) * 2002-06-28 2006-09-05 Nokia Corporation Body fat monitoring system and method employing mobile terminal
US7354380B2 (en) * 2003-04-23 2008-04-08 Volpe Jr Joseph C Heart rate monitor for controlling entertainment devices
US20110125063A1 (en) * 2004-09-22 2011-05-26 Tadmor Shalon Systems and Methods for Monitoring and Modifying Behavior

Family Cites Families (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870034A (en) * 1973-03-26 1975-03-11 Cyborg Corp Personal galvanic skin response monitoring instrument
IT1041291B (en) 1975-08-21 1980-01-10 Raggiotti G BODY TEMPERATURE CONTROL AND INDICATION DEVICE
US4052979A (en) 1975-12-04 1977-10-11 Mary Ann Scherr Jewelry and bracelet heartbeat monitor
US4151831A (en) * 1976-11-15 1979-05-01 Safetime Monitors, Inc. Fertility indicator
US4148304A (en) * 1976-11-29 1979-04-10 Bmd Development Trust Device for measuring ovulation
US4129125A (en) 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4192000A (en) * 1977-07-14 1980-03-04 Calorie Counter Limited Partnership Electronic calorie counter
IT1162556B (en) 1979-07-06 1987-04-01 Pirelli INDIVIDUAL MICROCLIMATE INDEX METER
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
JPS56118630A (en) * 1980-02-23 1981-09-17 Sharp Corp Electronic clinical thermometer
USRE32758E (en) 1980-05-12 1988-10-04 New Mexico State University Foundation, Inc. Method for remotely monitoring the long term deep body temperature in female mammals
US4407295A (en) 1980-10-16 1983-10-04 Dna Medical, Inc. Miniature physiological monitor with interchangeable sensors
AT371326B (en) 1981-06-16 1983-06-27 Wiener Innovationsges MEASURING PROBE FOR MONITORING A CHILD DURING BIRTH
US4539994A (en) 1981-10-13 1985-09-10 Radiometer A/S Method for transcutaneous measurement of a blood parameter and an electrochemical measuring electrode device for carrying out the method
WO1983003744A1 (en) 1982-04-23 1983-11-10 Reinhold Herbert Edward Jr Ambulatory monitoring system with real time analysis and telephone transmission
US4509531A (en) * 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
US4608987A (en) 1982-12-03 1986-09-02 Physioventures, Inc. Apparatus for transmitting ECG data
US4557273A (en) 1982-12-27 1985-12-10 Stoller Kenneth P Method and apparatus for detecting ovulation
US4981139A (en) * 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4622979A (en) 1984-03-02 1986-11-18 Cardiac Monitoring, Inc. User-worn apparatus for monitoring and recording electrocardiographic data and method of operation
DE3509503C2 (en) 1985-03-16 1987-02-12 Hermann-Josef Dr. 5300 Bonn Frohn Device for measuring a body parameter
US5040541A (en) 1985-04-01 1991-08-20 Thermonetics Corporation Whole body calorimeter
US5012411A (en) * 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US5007427A (en) * 1987-05-07 1991-04-16 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US5111818A (en) 1985-10-08 1992-05-12 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US4819860A (en) * 1986-01-09 1989-04-11 Lloyd D. Lillie Wrist-mounted vital functions monitor and emergency locator
US4757453A (en) 1986-03-25 1988-07-12 Nasiff Roger E Body activity monitor using piezoelectric transducers on arms and legs
US4828257A (en) 1986-05-20 1989-05-09 Powercise International Corporation Electronically controlled exercise system
US4672977A (en) 1986-06-10 1987-06-16 Cherne Industries, Inc. Lung sound cancellation method and apparatus
US4803625A (en) * 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US4827943A (en) 1986-09-23 1989-05-09 Advanced Medical Technologies, Inc. Portable, multi-channel, physiological data monitoring system
GB8708038D0 (en) 1987-04-03 1987-05-07 Simpson H W Measurement of physical parameter of body tissue
US5072458A (en) 1987-05-07 1991-12-17 Capintec, Inc. Vest for use in an ambulatory physiological evaluation system including cardiac monitoring
US4883063A (en) 1987-05-29 1989-11-28 Electric Power Research Institute, Inc. Personal monitor and process for heat and work stress
GB8726933D0 (en) 1987-11-18 1987-12-23 Cadell T E Telemetry system
DE3802479A1 (en) 1988-01-28 1989-08-10 Uebe Thermometer Gmbh Method and device for determining the ovulation period of humans or animals by means of electric detection of the deviation in body temperature
US4966154A (en) 1988-02-04 1990-10-30 Jonni Cooper Multiple parameter monitoring system for hospital patients
US5038792A (en) 1988-06-29 1991-08-13 Mault James R Oxygen consumption meter
US5179958A (en) * 1988-06-29 1993-01-19 Mault James R Respiratory calorimeter with bidirectional flow monitor
US4917108A (en) * 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US5178155A (en) * 1988-06-29 1993-01-12 Mault James R Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US6247647B1 (en) 1988-09-19 2001-06-19 Symbol Technologies, Inc. Scan pattern generator convertible between multiple and single line patterns
US4891756A (en) * 1988-09-26 1990-01-02 Williams Iii William B Nutritional microcomputer and method
WO1990008361A1 (en) 1989-01-13 1990-07-26 The Scott Fetzer Company Apparatus and method for controlling and monitoring the exercise session for remotely located patients
US5511553A (en) * 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5027824A (en) 1989-12-01 1991-07-02 Edmond Dougherty Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances
US5929782A (en) 1990-02-21 1999-07-27 Stark; John G. Communication system for an instrumented orthopedic restraining device and method therefor
US5052375A (en) * 1990-02-21 1991-10-01 John G. Stark Instrumented orthopedic restraining device and method of use
US5823975A (en) 1990-02-21 1998-10-20 Stark; John G. Local monitoring system for an instrumented orthopedic restraining device and method therefor
IL94421A (en) 1990-05-17 1993-04-04 Israel State Accelerometer
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5148002A (en) 1991-03-14 1992-09-15 Kuo David D Multi-functional garment system
US5224479A (en) 1991-06-21 1993-07-06 Topy Enterprises Limited ECG diagnostic pad
US5135311A (en) 1991-07-03 1992-08-04 University Of New Mexico Convective calorimeter apparatus and method
GB9117015D0 (en) 1991-08-07 1991-09-18 Software Solutions Ltd Operation of computer systems
US5335664A (en) 1991-09-17 1994-08-09 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
US5476103A (en) 1991-10-10 1995-12-19 Neurocom International, Inc. Apparatus and method for assessment and biofeedback training of leg coordination and strength skills
US5353793A (en) 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
FI95535C (en) * 1991-12-09 1996-02-26 Polar Electro Oy Device for measuring heartbeat
JP3144030B2 (en) * 1992-02-24 2001-03-07 東陶機器株式会社 Health management network system
FI92139C (en) 1992-02-28 1994-10-10 Matti Myllymaeki Monitoring device for the health condition, which is attached to the wrist
US5305244B2 (en) * 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5469861A (en) 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
US5263491A (en) 1992-05-12 1993-11-23 William Thornton Ambulatory metabolic monitor
US5285398A (en) * 1992-05-15 1994-02-08 Mobila Technology Inc. Flexible wearable computer
US5491651A (en) 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
IT1255065B (en) 1992-05-22 1995-10-17 Rotolo Giuseppe ELECTRODE POSITIONING DEVICE FOR ELECTROCARDIOGRAPHY
WO1994000817A1 (en) 1992-06-22 1994-01-06 Health Risk Management, Inc. Health care management system
US5718235A (en) * 1992-10-06 1998-02-17 Gw Scientific, Inc. Detection of abnormal and induction of normal heart rate variability
DK170548B1 (en) * 1992-11-02 1995-10-23 Verner Rasmussen Garment for use in recording electrocardiographic measurements using a monitoring device
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5913310A (en) 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5879163A (en) * 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5960403A (en) 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5951300A (en) 1997-03-10 1999-09-14 Health Hero Network Online system and method for providing composite entertainment and health information
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US6968375B1 (en) 1997-03-28 2005-11-22 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5832448A (en) 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
EP0602459B1 (en) 1992-12-16 1999-11-03 Siemens Medical Systems, Inc. System for monitoring patient location and data
DE69413585T2 (en) * 1993-03-31 1999-04-29 Siemens Medical Systems, Inc., Iselin, N.J. Apparatus and method for providing dual output signals in a telemetry transmitter
ES2070738B1 (en) 1993-04-29 1997-06-01 Portugal Conrado Martinez SYSTEM FOR THE DETECTION AND REMOTE NOTIFICATION BY RADIO FREQUENCY, OF A PREFIXED TEMPERATURE IN PEOPLE AND ANIMALS OF HOT BLOOD.
DE4329898A1 (en) * 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
FI100941B (en) 1993-09-14 1998-03-31 Internat Business Innovations Health monitoring device attached to the body
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5523742A (en) * 1993-11-18 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Motion sensor
US5555490A (en) 1993-12-13 1996-09-10 Key Idea Development, L.L.C. Wearable personal computer system
US5660176A (en) * 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5435315A (en) 1994-01-28 1995-07-25 Mcphee; Ron J. Physical fitness evalution system
FI96066C (en) 1994-03-24 1996-04-25 Polar Electro Oy Method and apparatus for determining the internal temperature and coefficient of heat conduction in a structure
US5704350A (en) * 1994-03-25 1998-01-06 Nutritec Corporation Nutritional microcomputer and method
US5515865A (en) 1994-04-22 1996-05-14 The United States Of America As Represented By The Secretary Of The Army Sudden Infant Death Syndrome (SIDS) monitor and stimulator
AU2365695A (en) 1994-04-26 1995-11-16 Raya Systems, Inc. Modular microprocessor-based diagnostic measurement system for psychological conditions
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5652570A (en) 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
WO2004093025A1 (en) * 1994-06-28 2004-10-28 Tohru Oka Emergency call unit
IL110419A (en) 1994-07-24 1997-04-15 Slp Scient Lab Prod Ltd Compositions for disposable bio-medical electrodes
US5908027A (en) 1994-08-22 1999-06-01 Alaris Medical Systems, Inc. Tonometry system for monitoring blood pressure
US5566679A (en) 1994-08-31 1996-10-22 Omniglow Corporation Methods for managing the Reproductive status of an animal using color heat mount detectors
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5827180A (en) 1994-11-07 1998-10-27 Lifemasters Supported Selfcare Method and apparatus for a personal health network
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
WO2002093272A1 (en) 2000-12-15 2002-11-21 Phatrat Technology, Inc. Movement and event systems and associated methods related applications
US6266623B1 (en) 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US6539336B1 (en) 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
US5636146A (en) 1994-11-21 1997-06-03 Phatrat Technology, Inc. Apparatus and methods for determining loft time and speed
US5559497A (en) 1994-11-28 1996-09-24 Hong; Chia-Ping Body temperature sensing and alarming device
US5697791A (en) 1994-11-29 1997-12-16 Nashner; Lewis M. Apparatus and method for assessment and biofeedback training of body coordination skills critical and ball-strike power and accuracy during athletic activitites
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
US5778882A (en) 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5749372A (en) * 1995-03-02 1998-05-12 Allen; Richard P. Method for monitoring activity and providing feedback
US5959611A (en) 1995-03-06 1999-09-28 Carnegie Mellon University Portable computer system with ergonomic input device
US5617477A (en) * 1995-03-08 1997-04-01 Interval Research Corporation Personal wearable communication system with enhanced low frequency response
US5645068A (en) 1995-03-20 1997-07-08 Bioscan, Inc. Methods and apparatus for ambulatory and non-ambulatory monitoring of physiological data using digital flash storage
US5971597A (en) 1995-03-29 1999-10-26 Hubbell Corporation Multifunction sensor and network sensor system
AUPN236595A0 (en) 1995-04-11 1995-05-11 Rescare Limited Monitoring of apneic arousals
US5832296A (en) 1995-04-26 1998-11-03 Interval Research Corp. Wearable context sensitive user interface for interacting with plurality of electronic devices of interest to the user
US5730140A (en) * 1995-04-28 1998-03-24 Fitch; William Tecumseh S. Sonification system using synthesized realistic body sounds modified by other medically-important variables for physiological monitoring
US6126595A (en) 1995-05-12 2000-10-03 Seiko Epson Corporation Device for diagnosing physiological state and device for controlling the same
US5581238A (en) 1995-05-12 1996-12-03 Chang; Mei-Hui Pacifier with fever heat alarm device
US5666096A (en) 1995-06-02 1997-09-09 Van Zeeland; Anthony J. Switch with magnetically-coupled armature
JPH0956705A (en) 1995-06-15 1997-03-04 Matsushita Electric Works Ltd Consumption calorimeter
US5752976A (en) 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5663703A (en) 1995-07-12 1997-09-02 Sony Corporation Silent wrist pager with tactile alarm
US6001065A (en) 1995-08-02 1999-12-14 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
US5942986A (en) 1995-08-09 1999-08-24 Cedars-Sinai Medical Center System and method for automatic critical event notification
JPH09114955A (en) 1995-10-18 1997-05-02 Seiko Epson Corp Pitch meter
US5738104A (en) * 1995-11-08 1998-04-14 Salutron, Inc. EKG based heart rate monitor
US5803915A (en) 1995-12-07 1998-09-08 Ohmeda Inc. System for detection of probe dislodgement
US5899963A (en) * 1995-12-12 1999-05-04 Acceleron Technologies, Llc System and method for measuring movement of objects
US6059692A (en) 1996-12-13 2000-05-09 Hickman; Paul L. Apparatus for remote interactive exercise and health equipment
WO1997022295A1 (en) 1995-12-18 1997-06-26 Seiko Epson Corporation Health care device and exercise supporting device
US5778345A (en) 1996-01-16 1998-07-07 Mccartney; Michael J. Health data processing system
US20010044588A1 (en) 1996-02-22 2001-11-22 Mault James R. Monitoring system
US5890128A (en) * 1996-03-04 1999-03-30 Diaz; H. Benjamin Personalized hand held calorie computer (ECC)
US5836300A (en) 1996-03-11 1998-11-17 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6135107A (en) 1996-03-11 2000-10-24 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6208900B1 (en) * 1996-03-28 2001-03-27 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing using header mounted pressure wave transducer
US5853005A (en) 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
US6014638A (en) * 1996-05-29 2000-01-11 America Online, Inc. System for customizing computer displays in accordance with user preferences
DE69729202T2 (en) 1996-07-02 2005-05-04 Graber Products, Inc., Madison ELECTRONIC EXERCISE SYSTEM
US6265978B1 (en) 1996-07-14 2001-07-24 Atlas Researches, Ltd. Method and apparatus for monitoring states of consciousness, drowsiness, distress, and performance
US5741217A (en) * 1996-07-30 1998-04-21 Gero; Jeffrey Biofeedback apparatus
US5989157A (en) 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
US5719743A (en) * 1996-08-15 1998-02-17 Xybernaut Corporation Torso worn computer which can stand alone
US5884198A (en) * 1996-08-16 1999-03-16 Ericsson, Inc. Body conformal portable radio and method of constructing the same
JPH10118052A (en) 1996-10-22 1998-05-12 Kowa Boseki Kk Navigator for maintenance of health and palmus monitor
US6364834B1 (en) * 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US5855550A (en) * 1996-11-13 1999-01-05 Lai; Joseph Method and system for remotely monitoring multiple medical parameters
US5771001A (en) 1996-11-18 1998-06-23 Cobb; Marlon J. Personal alarm system
US5726631A (en) * 1996-11-26 1998-03-10 Lin; Wen-Juei Structure kick-activated wearable alarm for infants
US6298218B1 (en) 1996-12-18 2001-10-02 Clubcom, Inc. Combined advertising and entertainment system network
US6050950A (en) * 1996-12-18 2000-04-18 Aurora Holdings, Llc Passive/non-invasive systemic and pulmonary blood pressure measurement
US6151586A (en) 1996-12-23 2000-11-21 Health Hero Network, Inc. Computerized reward system for encouraging participation in a health management program
US6032119A (en) * 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5868671A (en) * 1997-01-28 1999-02-09 Hewlett-Packard Company Multiple ECG electrode strip
GB2322952A (en) 1997-02-05 1998-09-09 Gakken Combined baby monitor and audio-visual device
US5865733A (en) * 1997-02-28 1999-02-02 Spacelabs Medical, Inc. Wireless optical patient monitoring apparatus
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
KR20000076025A (en) 1997-03-07 2000-12-26 인포메딕스 인코포레이티드 Method, apparatus, and operating system for real-time monitoring and management of patients' health status and medical treatment regimens
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
WO1998041279A1 (en) * 1997-03-17 1998-09-24 Nims, Inc. Physiologic signs feedback system
US6270455B1 (en) 1997-03-28 2001-08-07 Health Hero Network, Inc. Networked system for interactive communications and remote monitoring of drug delivery
US5902250A (en) 1997-03-31 1999-05-11 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
JPH10295651A (en) 1997-04-28 1998-11-10 N T T Data:Kk System of health care and portable terminal unit
US6248065B1 (en) 1997-04-30 2001-06-19 Health Hero Network, Inc. Monitoring system for remotely querying individuals
WO1998050873A1 (en) 1997-05-02 1998-11-12 Cyberhealth, Inc. Cyber medicine disease management
JPH10305016A (en) 1997-05-08 1998-11-17 Casio Comput Co Ltd Behavior information providing system
JPH10305072A (en) 1997-05-09 1998-11-17 Yoshihiro Toyama Bath timer with calory consumption computing function
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
US6251048B1 (en) 1997-06-05 2001-06-26 Epm Develoment Systems Corporation Electronic exercise monitor
US5857939A (en) * 1997-06-05 1999-01-12 Talking Counter, Inc. Exercise device with audible electronic monitor
JPH114820A (en) 1997-06-18 1999-01-12 Ee D K:Kk Health caring device
US6056435A (en) 1997-06-24 2000-05-02 Exergen Corporation Ambient and perfusion normalized temperature detector
US5857967A (en) * 1997-07-09 1999-01-12 Hewlett-Packard Company Universally accessible healthcare devices with on the fly generation of HTML files
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US6471087B1 (en) 1997-07-31 2002-10-29 Larry Shusterman Remote patient monitoring system with garment and automated medication dispenser
US5813766A (en) 1997-08-12 1998-09-29 Chen; Mei-Yen Finger temperature indicating ring
US6138079A (en) 1997-08-18 2000-10-24 Putnam; John M. Device for calculating fluid loss from a body during exercise
US6882955B1 (en) * 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US5931791A (en) 1997-11-05 1999-08-03 Instromedix, Inc. Medical patient vital signs-monitoring apparatus
IL122875A0 (en) * 1998-01-08 1998-08-16 S L P Ltd An integrated sleep apnea screening system
US6225980B1 (en) 1998-02-06 2001-05-01 Carnegie Mellon University Multi-functional, rotary dial input device for portable computers
US6101407A (en) 1998-02-13 2000-08-08 Eastman Kodak Company Method and system for remotely viewing and configuring output from a medical imaging device
US7222054B2 (en) 1998-03-03 2007-05-22 Card Guard Scientific Survival Ltd. Personal ambulatory wireless health monitor
US6366871B1 (en) * 1999-03-03 2002-04-02 Card Guard Scientific Survival Ltd. Personal ambulatory cellular health monitor for mobile patient
BR9904898A (en) 1998-03-03 2000-07-04 Guard Scient Survival Ltd Outpatient patient monitoring device; system to monitor a patient; and method for monitoring a patient
US6013007A (en) * 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6579231B1 (en) 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
IL124900A0 (en) * 1998-06-14 1999-01-26 Tapuz Med Tech Ltd Apron for performing ecg tests and additional examinations
US7854684B1 (en) * 1998-06-24 2010-12-21 Samsung Electronics Co., Ltd. Wearable device
US6190314B1 (en) 1998-07-15 2001-02-20 International Business Machines Corporation Computer input device with biosensors for sensing user emotions
DE19832361A1 (en) 1998-07-20 2000-02-03 Noehte Steffen Body function monitor measures bodily conditions, determines environmental stresses, pauses and computes probabilities, before pronouncing on criticality with high confidence level
US6154668A (en) 1998-08-06 2000-11-28 Medtronics Inc. Ambulatory recorder having a real time and non-real time processors
US6240323B1 (en) 1998-08-11 2001-05-29 Conmed Corporation Perforated size adjustable biomedical electrode
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
JP2000083935A (en) 1998-09-10 2000-03-28 Casio Comput Co Ltd Display controller
US6420959B1 (en) 1998-09-18 2002-07-16 Timex Group B.V. Multi-level user interface for a multimode device
US6306088B1 (en) 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US5912865A (en) 1998-10-19 1999-06-15 U.S.A. Technologies Inc. Watch case with positioning means
WO2000026882A2 (en) 1998-10-30 2000-05-11 Strategic Product Development Monitoring physical and environmental conditions of a person
US6377162B1 (en) * 1998-11-25 2002-04-23 Ge Medical Systems Global Technology Company, Llc Medical diagnostic field service method and apparatus
US7073129B1 (en) 1998-12-18 2006-07-04 Tangis Corporation Automated selection of appropriate information based on a computer user's context
US6466232B1 (en) * 1998-12-18 2002-10-15 Tangis Corporation Method and system for controlling presentation of information to a user based on the user's condition
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US6155267A (en) 1998-12-31 2000-12-05 Medtronic, Inc. Implantable medical device monitoring method and system regarding same
US6358202B1 (en) 1999-01-25 2002-03-19 Sun Microsystems, Inc. Network for implanted computer devices
WO2000047108A1 (en) 1999-02-08 2000-08-17 Medoc Ltd. Ambulatory monitor
JP4046883B2 (en) 1999-02-09 2008-02-13 株式会社タニタ Body fat scale and health management system
IL128815A0 (en) 1999-03-03 2000-01-31 S L P Ltd A nocturnal muscle activity monitoring system
WO2000052604A1 (en) 1999-03-05 2000-09-08 Stayhealty. Com System and method for on-line health monitoring and education
US6454707B1 (en) 1999-03-08 2002-09-24 Samuel W. Casscells, III Method and apparatus for predicting mortality in congestive heart failure patients
US6302844B1 (en) 1999-03-31 2001-10-16 Walker Digital, Llc Patient care delivery system
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6385473B1 (en) 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device
US6454708B1 (en) 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6450953B1 (en) 1999-04-15 2002-09-17 Nexan Limited Portable signal transfer unit
US6755783B2 (en) 1999-04-16 2004-06-29 Cardiocom Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6371123B1 (en) * 1999-06-11 2002-04-16 Izex Technology, Inc. System for orthopedic treatment protocol and method of use thereof
EP1185845A1 (en) 1999-06-23 2002-03-13 Eliahu Rubenstein Fever alarm system
DE19929328A1 (en) 1999-06-26 2001-01-04 Daimlerchrysler Aerospace Ag Device for long-term medical monitoring of people
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US7060006B1 (en) * 1999-07-08 2006-06-13 Icon Ip, Inc. Computer systems and methods for interaction with exercise device
US6312363B1 (en) 1999-07-08 2001-11-06 Icon Health & Fitness, Inc. Systems and methods for providing an improved exercise device with motivational programming
US6221011B1 (en) 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2379188A1 (en) 1999-08-02 2001-02-08 Timothy J. Prachar Metabolic calorimeter employing respiratory gas analysis
US6147618A (en) 1999-09-15 2000-11-14 Ilife Systems, Inc. Apparatus and method for reducing power consumption in physiological condition monitors
US6339720B1 (en) * 1999-09-20 2002-01-15 Fernando Anzellini Early warning apparatus for acute Myocardial Infarction in the first six hours of pain
US6571200B1 (en) 1999-10-08 2003-05-27 Healthetech, Inc. Monitoring caloric expenditure resulting from body activity
US20020062069A1 (en) 1999-10-08 2002-05-23 Mault James R. System and method of integrated calorie management using interactive television
US6612306B1 (en) 1999-10-13 2003-09-02 Healthetech, Inc. Respiratory nitric oxide meter
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
FI114282B (en) * 1999-11-05 2004-09-30 Polar Electro Oy Method, Arrangement and Heart Rate Monitor for Heartbeat Detection
US6440066B1 (en) 1999-11-16 2002-08-27 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder
WO2001039089A1 (en) 1999-11-24 2001-05-31 Healthetech, Inc. Health management system with connection to remote computer system
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US7454002B1 (en) 2000-01-03 2008-11-18 Sportbrain, Inc. Integrating personal data capturing functionality into a portable computing device and a wireless communication device
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7676384B2 (en) 2000-01-18 2010-03-09 Medigenesis, Inc. System and method for the automated presentation of system data to, and interaction with, a computer maintained database
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
US6551251B2 (en) * 2000-02-14 2003-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passive fetal heart monitoring system
JP3846844B2 (en) 2000-03-14 2006-11-15 株式会社東芝 Body-mounted life support device
US6773344B1 (en) 2000-03-16 2004-08-10 Creator Ltd. Methods and apparatus for integration of interactive toys with interactive television and cellular communication systems
US6610012B2 (en) * 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
EP1296591B1 (en) * 2000-04-17 2018-11-14 Adidas AG Systems for ambulatory monitoring of physiological signs
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6702719B1 (en) * 2000-04-28 2004-03-09 International Business Machines Corporation Exercise machine
AU2001259278A1 (en) 2000-04-28 2001-11-12 Healthetech, Inc. Method and apparatus for diet control
US6746371B1 (en) * 2000-04-28 2004-06-08 International Business Machines Corporation Managing fitness activity across diverse exercise machines utilizing a portable computer system
CA2407993A1 (en) 2000-05-04 2001-11-08 Healthetech, Inc. Interactive physiological monitoring system
US6514200B1 (en) 2000-05-17 2003-02-04 Brava, Llc Patient compliance monitor
US6482158B2 (en) 2000-05-19 2002-11-19 Healthetech, Inc. System and method of ultrasonic mammography
US6712615B2 (en) * 2000-05-22 2004-03-30 Rolf John Martin High-precision cognitive performance test battery suitable for internet and non-internet use
WO2001089365A2 (en) 2000-05-25 2001-11-29 Healthetech, Inc. Weight control method using physical activity based parameters
EP1284642A4 (en) 2000-05-25 2005-03-09 Healthetech Inc Physiological monitoring using wrist-mounted device
US6389308B1 (en) 2000-05-30 2002-05-14 Vladimir Shusterman System and device for multi-scale analysis and representation of electrocardiographic data
US7485095B2 (en) 2000-05-30 2009-02-03 Vladimir Shusterman Measurement and analysis of trends in physiological and/or health data
JP2001344352A (en) 2000-05-31 2001-12-14 Toshiba Corp Life assisting device, life assisting method and advertisement information providing method
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US7285090B2 (en) * 2000-06-16 2007-10-23 Bodymedia, Inc. Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information
MXPA06002836A (en) 2000-06-16 2006-06-14 Bodymedia Inc System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability.
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6690959B2 (en) * 2000-09-01 2004-02-10 Medtronic, Inc. Skin-mounted electrodes with nano spikes
WO2002021426A1 (en) * 2000-09-07 2002-03-14 Healthetech, Inc. Portable computing apparatus particularly useful in a weight management program
US6773405B2 (en) 2000-09-15 2004-08-10 Jacob Fraden Ear temperature monitor and method of temperature measurement
JP2002095637A (en) 2000-09-26 2002-04-02 Kireicom:Kk Portable terminal and electronic device
US6665559B2 (en) 2000-10-06 2003-12-16 Ge Medical Systems Information Technologies, Inc. Method and apparatus for perioperative assessment of cardiovascular risk
US6904408B1 (en) 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US20020055857A1 (en) 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
US7330818B1 (en) 2000-11-09 2008-02-12 Lifespan Interactive: Medical Information Management. Llc. Health and life expectancy management system
US7171331B2 (en) * 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
US20020169634A1 (en) 2000-12-26 2002-11-14 Kenzo Nishi Healthcare system, healthcare apparatus, server and healthcare method
US6532381B2 (en) * 2001-01-11 2003-03-11 Ge Medical Systems Information Technologies, Inc. Patient monitor for determining a probability that a patient has acute cardiac ischemia
JP2002224065A (en) 2001-02-07 2002-08-13 Nippon Colin Co Ltd Cardiac sound detecting device and cardiac sound detecting method
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US6584344B2 (en) 2001-02-22 2003-06-24 Polar Electro Oy Method and apparatus for measuring heart rate
US6834436B2 (en) 2001-02-23 2004-12-28 Microstrain, Inc. Posture and body movement measuring system
AUPR343401A0 (en) 2001-02-28 2001-03-29 Nguyen, Hung Modelling and design for early warning systems using physiological responses
US6611206B2 (en) 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
US6595929B2 (en) 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US7191183B1 (en) 2001-04-10 2007-03-13 Rgi Informatics, Llc Analytics and data warehousing infrastructure and services
US6808473B2 (en) 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US6635015B2 (en) 2001-04-20 2003-10-21 The Procter & Gamble Company Body weight management system
US6533731B2 (en) * 2001-05-15 2003-03-18 Lifecheck, Llc Method and apparatus for measuring heat flow
US8572059B2 (en) 2001-05-15 2013-10-29 Colin P. Britton Surveillance, monitoring and real-time events platform
WO2002097571A2 (en) 2001-05-29 2002-12-05 Becton, Dickinson And Company Health care management system and method
US6656125B2 (en) 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
US20030013072A1 (en) 2001-07-03 2003-01-16 Thomas Richard Todd Processor adjustable exercise apparatus
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
WO2003013335A2 (en) 2001-08-03 2003-02-20 Vega Research Lab, Llc Method and apparatus for determining metabolic factors from an electrocardiogram
US20030040002A1 (en) 2001-08-08 2003-02-27 Ledley Fred David Method for providing current assessments of genetic risk
US20030069510A1 (en) * 2001-10-04 2003-04-10 Semler Herbert J. Disposable vital signs monitor
US6755795B2 (en) 2001-10-26 2004-06-29 Koninklijke Philips Electronics N.V. Selectively applied wearable medical sensors
US20030083559A1 (en) 2001-10-31 2003-05-01 Thompson David L. Non-contact monitor
US6955542B2 (en) 2002-01-23 2005-10-18 Aquatech Fitness Corp. System for monitoring repetitive movement
US20030176797A1 (en) 2002-03-12 2003-09-18 Fernando Anzellini Thrombust; implantable delivery system sensible to self diagnosis of acute myocardial infarction for thrombolysis in the first minutes of chest pain
US20050226310A1 (en) 2002-03-20 2005-10-13 Sanyo Electric Co., Ltd. Adhesive clinical thermometer pad and temperature measuring pad
US6923324B2 (en) 2002-05-17 2005-08-02 Seiko Epson Corporation Packaging system
US8663106B2 (en) 2002-08-22 2014-03-04 Bodymedia, Inc. Non-invasive temperature monitoring device
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
JP4341243B2 (en) 2002-12-27 2009-10-07 カシオ計算機株式会社 Tape printer and scale used therefor
US7290134B2 (en) 2002-12-31 2007-10-30 Broadcom Corporation Encapsulation mechanism for packet processing
CA2539547A1 (en) * 2003-08-20 2005-03-03 Philometron, Inc. Hydration monitoring
JP5174348B2 (en) 2003-09-12 2013-04-03 ボディーメディア インコーポレイテッド Method and apparatus for monitoring heart related condition parameters
US20090131759A1 (en) 2003-11-04 2009-05-21 Nathaniel Sims Life sign detection and health state assessment system
US10417298B2 (en) 2004-12-02 2019-09-17 Insignio Technologies, Inc. Personalized content processing and delivery system and media
US8359338B2 (en) 2004-07-30 2013-01-22 Carefusion 303, Inc. System and method for managing medical databases for patient care devices
US7647285B2 (en) 2005-11-04 2010-01-12 Microsoft Corporation Tools for health and wellness

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834702A (en) * 1973-06-11 1974-09-10 W Bliss Jogging game apparatus
US4278095A (en) * 1977-09-12 1981-07-14 Lapeyre Pierre A Exercise monitor system and method
US4751642A (en) * 1986-08-29 1988-06-14 Silva John M Interactive sports simulation system with physiological sensing and psychological conditioning
US5227239A (en) * 1990-11-30 1993-07-13 The United States Of America As Represented By The United States Department Of Energy Production of hollow aerogel microspheres
US5673691A (en) * 1991-01-11 1997-10-07 Pics, Inc. Apparatus to control diet and weight using human behavior modification techniques
US5362069A (en) * 1992-12-03 1994-11-08 Heartbeat Corporation Combination exercise device/video game
US5527239A (en) * 1993-02-04 1996-06-18 Abbondanza; James M. Pulse rate controlled exercise system
US5888172A (en) * 1993-04-26 1999-03-30 Brunswick Corporation Physical exercise video system
US5813994A (en) * 1993-06-02 1998-09-29 Pottgen; Paul A. Method and apparatus for measuring heat flow
US5524618A (en) * 1993-06-02 1996-06-11 Pottgen; Paul A. Method and apparatus for measuring heat flow
US5896164A (en) * 1993-07-20 1999-04-20 Orbach; Tuvi Video display apparatus
US5577981A (en) * 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
US5839990A (en) * 1994-03-14 1998-11-24 Virkkala; Antero J. Apparatus for connecting an exercise bicycle to a computer
US5524637A (en) * 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US5779596A (en) * 1995-09-20 1998-07-14 Weber; Daniel W. Remote controller mechanism for use with a videocassette recorder or the like
US6004243A (en) * 1995-10-11 1999-12-21 Ewert; Bruce Dynamic real time exercise video apparatus and method
US5701894A (en) * 1995-11-09 1997-12-30 Del Mar Avionics Modular physiological computer-recorder
US6030342A (en) * 1996-06-12 2000-02-29 Seiko Epson Corporation Device for measuring calorie expenditure and device for measuring body temperature
US6198394B1 (en) * 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6132337A (en) * 1997-03-24 2000-10-17 Keytron Electronics & Technologies Ltd. Exercise monitoring system
US5947868A (en) * 1997-06-27 1999-09-07 Dugan; Brian M. System and method for improving fitness equipment and exercise
US5839901A (en) * 1997-10-01 1998-11-24 Karkanen; Kip M. Integrated weight loss control method
US6493652B1 (en) * 1997-10-02 2002-12-10 Personal Electronic Devices, Inc. Monitoring activity of a user in locomotion on foot
US6898550B1 (en) * 1997-10-02 2005-05-24 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US20020019585A1 (en) * 1999-05-18 2002-02-14 Dickinson Elisabeth N. Electronic apparatus and method for monitoring net calorie intake
US6675041B2 (en) * 1999-05-18 2004-01-06 Physi-Cal Enterprises Lp Electronic apparatus and method for monitoring net calorie intake
US6244988B1 (en) * 1999-06-28 2001-06-12 David H. Delman Interactive exercise system and attachment module for same
US6997852B2 (en) * 1999-07-08 2006-02-14 Icon Ip, Inc. Methods and systems for controlling an exercise apparatus using a portable remote device
US6468222B1 (en) * 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
US6790178B1 (en) * 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6478736B1 (en) * 1999-10-08 2002-11-12 Healthetech, Inc. Integrated calorie management system
US20020107433A1 (en) * 1999-10-08 2002-08-08 Mault James R. System and method of personal fitness training using interactive television
US6572511B1 (en) * 1999-11-12 2003-06-03 Joseph Charles Volpe Heart rate sensor for controlling entertainment devices
US6585622B1 (en) * 1999-12-03 2003-07-01 Nike, Inc. Interactive use an athletic performance monitoring and reward method, system, and computer program product
US6694182B1 (en) * 1999-12-07 2004-02-17 Ya-Man Ltd. Wearable calorie calculator
US6513046B1 (en) * 1999-12-15 2003-01-28 Tangis Corporation Storing and recalling information to augment human memories
US6506152B1 (en) * 2000-05-09 2003-01-14 Robert P. Lackey Caloric energy balance monitor
US6428449B1 (en) * 2000-05-17 2002-08-06 Stanford Apseloff Interactive video system responsive to motion and voice command
US20020133378A1 (en) * 2000-10-13 2002-09-19 Mault James R. System and method of integrated calorie management
US20030022140A1 (en) * 2001-07-09 2003-01-30 Huang-Tung Chang Interactive game apparatus by utilizing parameters related to exerciser user
US7103407B2 (en) * 2002-06-28 2006-09-05 Nokia Corporation Body fat monitoring system and method employing mobile terminal
US20030126593A1 (en) * 2002-11-04 2003-07-03 Mault James R. Interactive physiological monitoring system
US7354380B2 (en) * 2003-04-23 2008-04-08 Volpe Jr Joseph C Heart rate monitor for controlling entertainment devices
US20110125063A1 (en) * 2004-09-22 2011-05-26 Tadmor Shalon Systems and Methods for Monitoring and Modifying Behavior
US20060183980A1 (en) * 2005-02-14 2006-08-17 Chang-Ming Yang Mental and physical health status monitoring, analyze and automatic follow up methods and its application on clothing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140155705A1 (en) * 2005-03-11 2014-06-05 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US9526421B2 (en) * 2005-03-11 2016-12-27 Nrv-Wellness, Llc Mobile wireless customizable health and condition monitor
US12123654B2 (en) 2010-05-04 2024-10-22 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a fractal heat sink
US10699247B2 (en) 2017-05-16 2020-06-30 Under Armour, Inc. Systems and methods for providing health task notifications

Also Published As

Publication number Publication date
US8961414B2 (en) 2015-02-24
US20150374289A1 (en) 2015-12-31
US20070173705A1 (en) 2007-07-26
US20060122474A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US7261690B2 (en) Apparatus for monitoring health, wellness and fitness
US8961414B2 (en) Apparatus for monitoring health, wellness and fitness
US9033875B2 (en) Multi-sensor system, device, and method for deriving human status information
US6605038B1 (en) System for monitoring health, wellness and fitness
EP1292218B1 (en) System for monitoring health, wellness and fitness
US9168001B2 (en) Adhesively mounted apparatus for determining physiological and contextual status
DK1702560T3 (en) System for monitoring health, wellbeing and fitness
IL160079A (en) Apparatus for monitoring health, wellness and fitness

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNORS:ALIPHCOM;MACGYVER ACQUISITION LLC;ALIPH, INC.;AND OTHERS;REEL/FRAME:035531/0312

Effective date: 20150428

AS Assignment

Owner name: BODYMEDIA, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STIVORIC, JOHN M.;KASABACH, CHRISTOPHER D.;MOSS, JOHN L.;SIGNING DATES FROM 20150414 TO 20150420;REEL/FRAME:036078/0443

AS Assignment

Owner name: BODYMEDIA, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELLER, ERIC;REEL/FRAME:036136/0498

Effective date: 20150418

AS Assignment

Owner name: BODYMEDIA, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PACIONE, CHRISTOPHER D;LIDEN, CRAIG B;SIGNING DATES FROM 20000920 TO 20000925;REEL/FRAME:036147/0206

AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNORS:ALIPHCOM;MACGYVER ACQUISITION LLC;ALIPH, INC.;AND OTHERS;REEL/FRAME:036500/0173

Effective date: 20150826

AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NO. 13870843 PREVIOUSLY RECORDED ON REEL 036500 FRAME 0173. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNORS:ALIPHCOM;MACGYVER ACQUISITION, LLC;ALIPH, INC.;AND OTHERS;REEL/FRAME:041793/0347

Effective date: 20150826

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JB IP ACQUISITION LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALIPHCOM, LLC;BODYMEDIA, INC.;REEL/FRAME:049805/0582

Effective date: 20180205

AS Assignment

Owner name: J FITNESS LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0907

Effective date: 20180205

Owner name: J FITNESS LLC, NEW YORK

Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0718

Effective date: 20180205

Owner name: J FITNESS LLC, NEW YORK

Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JAWBONE HEALTH HUB, INC.;REEL/FRAME:049825/0659

Effective date: 20180205

AS Assignment

Owner name: ALIPHCOM LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BLACKROCK ADVISORS, LLC;REEL/FRAME:050005/0095

Effective date: 20190529

AS Assignment

Owner name: J FITNESS LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:JAWBONE HEALTH HUB, INC.;JB IP ACQUISITION, LLC;REEL/FRAME:050067/0286

Effective date: 20190808