US20150223865A1 - System and method for dc tissue impedance sensing - Google Patents
System and method for dc tissue impedance sensing Download PDFInfo
- Publication number
- US20150223865A1 US20150223865A1 US14/694,093 US201514694093A US2015223865A1 US 20150223865 A1 US20150223865 A1 US 20150223865A1 US 201514694093 A US201514694093 A US 201514694093A US 2015223865 A1 US2015223865 A1 US 2015223865A1
- Authority
- US
- United States
- Prior art keywords
- radio frequency
- electrosurgical
- direct current
- property
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B18/1233—Generators therefor with circuits for assuring patient safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1402—Probes for open surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
- A61B2018/00077—Electrical conductivity high, i.e. electrically conducting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/0063—Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
- A61B2018/00708—Power or energy switching the power on or off
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00827—Current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00892—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
Definitions
- the present disclosure relates to an electrosurgical system and method for performing electrosurgical procedures. More particularly, the present disclosure relates to a system and method for detecting direct current (DC) properties (e.g., voltage and current) within an electrosurgical generator and controlling output of radio frequency treatment energy based on the measured DC properties.
- DC direct current
- Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue.
- a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator.
- the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated.
- a patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
- one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode.
- the return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps).
- an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps).
- the applied electrical current is limited to the body tissue positioned between the electrodes.
- Bipolar electrosurgery generally involves the use of forceps.
- a forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures.
- Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue.
- the forceps include electrosurgical conductive surfaces which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue.
- Tissue or vessel sealing is a process of liquefying the collagen, elastin and ground substances in the tissue so that they reform into a fused mass with significantly-reduced demarcation between the opposing tissue structures.
- Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.
- Tissue sealing procedures involve more than simply cauterizing or coagulating tissue to create an effective seal; the procedures involve precise control of a variety of factors. For example, in order to affect a proper seal in vessels or tissue, it has been determined that two predominant mechanical parameters must be accurately controlled: the pressure applied to the tissue; and the gap distance between the electrodes (i.e., distance between opposing jaw members or opposing sealing surfaces). In addition, electrosurgical energy must be applied to the tissue under controlled conditions to ensure creation of an effective vessel seal.
- Electrosurgical procedures outlined above may utilize various tissue and energy parameters in a feedback-based control system. There is continual need to improve sensors as well as systems and method for processing the sense signals.
- the present disclosure provides for an electrosurgical system.
- the system includes a direct current power supply configured to supply direct current; a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to transform direct current into a radio frequency waveform; a direct current voltage sensor coupled to the direct current power supply and configured to measure direct current voltage; a direct current current sensor coupled to the direct current power supply and configured to measure direct current; and a controller coupled to the direct current voltage and current sensors, the controller configured to determine at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
- the present disclosure provides for a method for delivering radio frequency energy to tissue.
- the method includes generating direct current at a direct current power supply; transforming direct current into a radio frequency waveform at a radio frequency output stage electrically coupled to the direct current power supply; measuring voltage and current of the direct current supplied to the radio frequency output stage; and determining at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
- an electrosurgical system in further embodiments, includes an electrosurgical generator having a direct current power supply configured to supply direct current; a direct current voltage sensor coupled to the direct current power supply and configured to measure direct current voltage; a direct current current sensor coupled to the direct current power supply and configured to measure direct current; and a controller coupled to the direct current voltage and current sensors.
- the system also includes an electrosurgical instrument coupled to the electrosurgical generator, the electrosurgical instrument including a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to transform direct current into a radio frequency waveform, wherein the controller is configured to determine at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
- FIG. 1 is a schematic block diagram of an embodiment of an electrosurgical system according to the present disclosure
- FIG. 2 is a front view of an electrosurgical generator according to the present disclosure
- FIG. 3 is a schematic block diagram of the electrosurgical generator of FIG. 2 according to the present disclosure
- FIG. 4 is a flow chart of a method according to the present disclosure.
- FIG. 5 is a schematic block diagram of an embodiment of an electrosurgical system according to the present disclosure.
- a generator can perform monopolar and/or bipolar electrosurgical procedures, including vessel sealing procedures.
- the generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar instrument, return electrode, bipolar electrosurgical forceps, footswitch, etc.).
- the generator includes electronic circuitry configured to generate radio frequency energy specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing).
- the generator may be embedded, integrated or otherwise coupled to the electrosurgical instruments providing for an all-in-one electrosurgical apparatus.
- FIG. 1 is a schematic illustration of a bipolar and monopolar electrosurgical system 1 according to the present disclosure.
- the system 1 may include one or more monopolar electrosurgical instruments 2 having one or more electrodes (e.g., electrosurgical cutting probe, ablation electrode(s), etc.) for treating tissue of a patient.
- Electrosurgical energy is supplied to the instrument 2 by a generator 200 via a supply line 4 that is connected to an active terminal 230 ( FIG. 3 ) of the generator 200 , allowing the instrument 2 to coagulate, ablate and/or otherwise treat tissue.
- the energy is returned to the generator 200 through a return electrode 6 via a return line 8 at a return terminal 32 ( FIG. 3 ) of the generator 200 .
- the system 1 may include a plurality of return electrodes 6 that are disposed on a patient to minimize the chances of tissue damage by maximizing the overall contact area with the patient.
- the generator 200 and the return electrode 6 may be configured for monitoring so-called “tissue-to-patient” contact to insure that sufficient contact exists therebetween to further minimize chances of tissue damage.
- the system 1 may also include a bipolar electrosurgical forceps 10 having one or more electrodes for treating tissue of a patient.
- the electrosurgical forceps 10 includes a housing 11 and opposing jaw members 13 and 15 disposed at a distal end of a shaft 12 .
- the jaw members 13 and 15 have one or more active electrodes 14 and a return electrode 16 disposed therein, respectively.
- the active electrode 14 and the return electrode 16 are connected to the generator 200 through cable 18 that includes the supply and return lines 4 , 8 coupled to the active and return terminals 230 , 232 , respectively ( FIG. 3 ).
- the electrosurgical forceps 10 is coupled to the generator 200 at a connector having connections to the active and return terminals 230 and 232 (e.g., pins) via a plug disposed at the end of the cable 18 , wherein the plug includes contacts from the supply and return lines 4 , 8 as discussed in more detail below.
- the generator 200 may be any suitable type (e.g., electrosurgical, microwave, etc.) and may include a plurality of connectors 250 - 262 to accommodate various types of electrosurgical instruments (e.g., electrosurgical forceps 10 , etc.).
- the connectors 250 - 262 may include various detection devices that can read (e.g., scan, decode, etc.) identifying information encoded or otherwise recorded on or within the plugs or cables of the instruments.
- the connectors 250 - 262 are configured to decode the information encoded on the plugs corresponding to the operating parameters of particular instruments allowing the generator 200 to preset energy delivery settings based on the connected instrument.
- data may be encoded in bar codes, electrical components (e.g., resistors, capacitors, etc.), RFID chips, magnets, non-transitory storage (e.g., non-volatile memory, EEPROM, etc.), which may then be coupled to or integrated into the plug.
- Corresponding detection devices may include, but are not limited to, bar code readers, electrical sensors, RFID readers, Hall Effect sensors, memory readers, etc. and any other suitable decoders configured to decode data.
- the generator 200 includes one or more display screens 242 , 244 , 246 for providing the user with variety of output information (e.g., intensity settings, treatment complete indicators, etc.). Each of the screens 242 , 244 , 246 is associated with corresponding connector 250 - 262 .
- the generator 200 includes suitable input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 200 .
- the display screens 242 , 244 , 246 are also configured as touch screens that display a corresponding menu for the electrosurgical instruments (e.g., electrosurgical forceps 10 , etc.). The user then makes inputs by simply touching corresponding menu options.
- Screen 242 controls monopolar output and the devices connected to the connectors 250 and 252 .
- Connector 250 is configured to couple to monopolar electrosurgical instrument (e.g., electrosurgical pencil) and connector 252 is configured to couple to a foot switch (not shown). The foot switch provides for additional inputs (e.g., replicating inputs of the generator 200 ).
- Screen 244 controls monopolar and bipolar output and the devices connected to the connectors 256 and 258 .
- Connector 256 is configured to couple to other monopolar instruments.
- Connector 258 is configured to couple to a bipolar instrument (not shown).
- Screen 246 controls bipolar sealing procedures performed by the forceps 10 that may be plugged into the connectors 260 and 262 .
- the generator 200 outputs energy through the connectors 260 and 262 suitable for sealing tissue grasped by the forceps 10 .
- screen 246 outputs a user interface that allows the user to input a user-defined intensity setting.
- the user-defined setting may be any setting that allows the user to adjust one or more energy delivery parameters, such as power, current, voltage, energy, etc. or sealing parameters, such as pressure, sealing duration, etc.
- the user-defined setting is transmitted to the controller 224 where the setting may be saved in memory 226 .
- the intensity setting may be a number scale, such as from one to ten or one to five.
- the intensity setting may be associated with an output curve of the generator 200 .
- the intensity settings may be specific for each forceps 10 being utilized, such that various instruments provide the user with a specific intensity scale corresponding to the forceps 10 .
- FIG. 3 shows a schematic block diagram of the generator 200 configured to output electrosurgical energy.
- the generator 200 includes a controller 224 , a power supply 227 , and an output stage 228 .
- the power supply 227 may be a direct current high voltage power supply and is connected to an AC source (e.g., line voltage) and provides high voltage DC power to an output stage 228 , which then converts high voltage DC power into treatment energy (e.g., ultrasonic, electrosurgical or microwave) and delivers the energy to the active terminal 230 .
- treatment energy e.g., ultrasonic, electrosurgical or microwave
- the energy is returned thereto via the return terminal 232 .
- the output stage 228 is configured to operate in a plurality of modes, during which the generator 200 outputs corresponding waveforms having specific duty cycles, peak voltages, crest factors, etc.
- the generator 200 may be based on other types of suitable power supply topologies.
- the controller 224 includes a microprocessor 225 operably connected to a memory 226 , which may include transitory type memory (e.g., RAM) and/or non-transitory type memory (e.g., flash media, disk media, etc.).
- the microprocessor 225 includes an output port that is operably connected to the power supply 227 and/or output stage 228 allowing the microprocessor 225 to control the output of the generator 200 according to either open and/or closed control loop schemes.
- the microprocessor 225 may be substituted by any logic processor (e.g., control circuit) adapted to perform the calculations discussed herein.
- a closed loop control scheme is a feedback control loop, in which a plurality of sensors measure a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output power, current and/or voltage, etc.), and provide feedback to the controller 224 .
- the controller 224 then signals the power supply 227 and/or output stage 228 , which then adjusts the DC and/or power supply, respectively.
- the controller 224 also receives input signals from the input controls of the generator 200 , the instrument 2 and/or forceps 10 .
- the controller 224 utilizes the input signals to adjust power outputted by the generator 200 and/or performs other control functions thereon.
- the generator 200 includes an RF voltage sensor 300 and an RF current sensor 302 .
- the RF voltage sensor 300 is coupled to the active and return terminals 230 and 232 provides measurements of the RF voltage supplied by the output stage 228 .
- the RF current sensor 302 is coupled to the active terminal 230 and provides measurements of the RF current supplied by the output stage 228 .
- the RF voltage and current sensors 230 and 232 may be any suitable RF voltage/current sensor including, but not limited to, sense transformers, sense resistors, sense capacitors, and combinations thereof.
- the RF voltage and current sensors 300 and 302 provide the sensed RF voltage and current signals, respectively, to the controller 224 , which then may adjust output of the power supply 227 and/or the output stage 228 in response to the sensed RF voltage and current signals.
- the generator 200 also includes a DC voltage sensor 304 and a DC current sensor 306 .
- the power supply 227 is shown schematically being coupled to the output stage 228 via a connection 301 .
- the DC voltage and current sensors 304 and 306 are coupled to the connection 301 and provide measurements of the DC voltage and current supplied to the output stage 228 by the power supply 227 .
- the DC voltage and current sensors 304 and 306 may be any suitable DC voltage/current sensor including, but not limited to, Hall Effect sensors, sense resistors, and combinations thereof.
- the DC voltage and current sensors 304 and 306 provide the sensed DC voltage and current signals, respectively, to the controller 224 , which then may adjust output of the power supply 227 and/or the output stage 228 in response to the sensed DC voltage and current signals.
- the output stage 228 may be embodied as any suitable RF inverter power supply topology including, but not limited to, half bridge, full bridge, push pull, and combinations thereof.
- the output of the output stage 228 may be any amplitude-modulated RF waveform generated by varying DC voltage of the power supply 227 .
- the generator 200 adjusts the RF output of the output stage 228 based on the sensed signals as measured by either the DC voltage and current sensors 304 and 306 and/or the RF voltage and current sensors 300 and 302 .
- the controller 224 includes a transfer function that correlates the sensed DC voltage and current signals to the sensed RF voltage and current signals.
- the operating parameters of the output stage 228 may be expressed as a transfer function, which may be used to calculate output RF voltage and current based on the sensed DC voltage and current signals.
- the transfer function may be used to compensate for the loss and/or distortion introduced between the output stage 228 and the load.
- This data may then be used to generate a polynomial curve fit and/or piecewise linear curve.
- the curves are then transposed to a transfer function that describes the relationship between the DC voltage and current and the output RF voltage and current thus providing the transfer function.
- the process to obtain the transfer function may be performed during initial setup of the generator 200 on a unit-by-unit basis or for any specific lot and then preprogrammed and stored in memory 226 .
- the controller 224 determines the output RF voltage and current based on the sensed DC voltage and current signals.
- the calculated output RF voltage and current may then be compared with actual sensed RF voltage and current as a redundant measurement (e.g., to verify functionality of the sensors 300 , 302 , 304 , and 306 ).
- FIG. 4 illustrates a method in accordance with the present disclosure.
- step 400 DC voltage and current outputted by the power supply 227 are measured by the DC voltage and current sensors 304 and 306 , respectively.
- the measured sensor signals are transmitted to the controller 224 .
- step 402 the controller 224 calculates the output RF voltage and current based on the sensed DC voltage and current values.
- the controller 224 e.g., the microprocessor 225
- step 401 RF voltage and current outputted by the output stage 228 are measured by the RF voltage and current sensors 300 and 302 , respectively.
- the measured sensor signals are transmitted to the controller 224 .
- step 403 the controller 224 compares measured RF output values with the calculated the RF voltage and current based on the sensed DC voltage and current values.
- the difference between calculated RF values and measured RF values may be used to determine functionality of the generator 200 , such that if the difference between the measured and calculated RF values varies by a predetermined amount an error is issued resulting in stoppage and/or adjustment of the power output.
- the difference between calculated and measured RF values which triggers an error condition may be from about 10% and above, in embodiments, from about 20% and above.
- the controller 224 may utilize the comparison to determine dosage error in delivery of output power.
- dosage error denotes a difference between preset output power (e.g., user or generator selected) and delivered output power. The difference may be due to a variety of factors (e.g., malfunctioning power generating components, sensors, etc.).
- the dosage error e.g., difference between preset power and calculated RF values based on measured DC values and/or actual measured RF values may be from about 10% and above, in embodiments, from about 20% and above.
- the dosage error calculation determines the functionality (or malfunction) of the sensors 300 , 302 , 304 , and 306 . Thus, if the dosage error is outside a desired limit, in step 405 , the controller 224 may issue an alarm and/or terminate the output of the generator 200 .
- step 404 the controller 224 signals the power supply 227 and/or the output stage 228 to adjust its output in response to an algorithm or other instructions for controlling the output of the generator 200 including differences calculated in steps 403 and 405 .
- FIG. 5 illustrates another embodiment of an electrosurgical system 500 .
- the system 500 includes a generator 502 , which is similar to the generator 200 described above with respect to FIGS. 2 and 3 .
- the generator 502 is coupled to the forceps 10 , which is shown for illustrative purposes only, and any other electrosurgical instrument may be utilized.
- the system 500 decouples the output stage 228 from the generator 502 .
- the output stage 228 is instead disposed in the housing 11 of the forceps 10 .
- the generator 502 also does not include RF voltage and current sensors 300 and 302 , which allows for significant miniaturization of the output stage 228 and repositioning thereof into the housing 11 . This significantly simplifies the hardware design for the electrosurgical system 500 .
- Calculation of output RF values based on measured DC signals also simplifies hardware and software requirements of electrosurgical generators, which usually perform intensive root mean square calculations. Further, this configuration obviates the need to include sensors at the high voltage side of the generator, allowing for use of components with a lower voltage rating.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Surgical Instruments (AREA)
Abstract
A system and method for transmitting electrosurgical energy from a generator to an electrosurgical instrument are provided. The electrosurgical system includes a generator adapted to generate electrosurgical energy for treating tissue. The generator includes one or more active output terminals which supply energy to the tissue. The active output terminals are operatively connected to one or more active leads. The generator also includes one or more return output terminals which returns energy from the tissue. The return output terminals are operatively connected to at least one return lead. The system also includes an electrosurgical instrument operatively connected to the one or more active leads and one or more return electrodes operatively connected to one or more return leads. The system further includes an electrosurgical cable including one or more active leads and one or more return leads. The one or more active leads and one or more return leads are wound in a double helix fashion such that the electrical field along the cable is mitigated along the length thereof.
Description
- This application is a continuation application of U.S. patent application Ser. No. 13/221,424, filed Aug. 30, 2011, the entire contents of which is incorporated herein by reference.
- 1. Technical Field
- The present disclosure relates to an electrosurgical system and method for performing electrosurgical procedures. More particularly, the present disclosure relates to a system and method for detecting direct current (DC) properties (e.g., voltage and current) within an electrosurgical generator and controlling output of radio frequency treatment energy based on the measured DC properties.
- 2. Background of Related Art
- Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
- In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact of body tissue with either of the separated electrodes prevents current flow.
- Bipolar electrosurgery generally involves the use of forceps. A forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to effect hemostasis on the clamped tissue. The forceps include electrosurgical conductive surfaces which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can coagulate, cauterize and/or seal tissue.
- Tissue or vessel sealing is a process of liquefying the collagen, elastin and ground substances in the tissue so that they reform into a fused mass with significantly-reduced demarcation between the opposing tissue structures. Cauterization involves the use of heat to destroy tissue and coagulation is a process of desiccating tissue wherein the tissue cells are ruptured and dried.
- Tissue sealing procedures involve more than simply cauterizing or coagulating tissue to create an effective seal; the procedures involve precise control of a variety of factors. For example, in order to affect a proper seal in vessels or tissue, it has been determined that two predominant mechanical parameters must be accurately controlled: the pressure applied to the tissue; and the gap distance between the electrodes (i.e., distance between opposing jaw members or opposing sealing surfaces). In addition, electrosurgical energy must be applied to the tissue under controlled conditions to ensure creation of an effective vessel seal.
- Electrosurgical procedures outlined above may utilize various tissue and energy parameters in a feedback-based control system. There is continual need to improve sensors as well as systems and method for processing the sense signals.
- In one embodiment, the present disclosure provides for an electrosurgical system. The system includes a direct current power supply configured to supply direct current; a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to transform direct current into a radio frequency waveform; a direct current voltage sensor coupled to the direct current power supply and configured to measure direct current voltage; a direct current current sensor coupled to the direct current power supply and configured to measure direct current; and a controller coupled to the direct current voltage and current sensors, the controller configured to determine at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
- In another embodiment, the present disclosure provides for a method for delivering radio frequency energy to tissue. The method includes generating direct current at a direct current power supply; transforming direct current into a radio frequency waveform at a radio frequency output stage electrically coupled to the direct current power supply; measuring voltage and current of the direct current supplied to the radio frequency output stage; and determining at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
- In further embodiments, an electrosurgical system is disclosed. The system includes an electrosurgical generator having a direct current power supply configured to supply direct current; a direct current voltage sensor coupled to the direct current power supply and configured to measure direct current voltage; a direct current current sensor coupled to the direct current power supply and configured to measure direct current; and a controller coupled to the direct current voltage and current sensors. The system also includes an electrosurgical instrument coupled to the electrosurgical generator, the electrosurgical instrument including a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to transform direct current into a radio frequency waveform, wherein the controller is configured to determine at least one of voltage and current of the radio frequency waveform based on the measured voltage and current of the direct current.
- Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
-
FIG. 1 is a schematic block diagram of an embodiment of an electrosurgical system according to the present disclosure; -
FIG. 2 is a front view of an electrosurgical generator according to the present disclosure; -
FIG. 3 is a schematic block diagram of the electrosurgical generator ofFIG. 2 according to the present disclosure; -
FIG. 4 is a flow chart of a method according to the present disclosure; and -
FIG. 5 is a schematic block diagram of an embodiment of an electrosurgical system according to the present disclosure. - Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
- A generator according to the present disclosure can perform monopolar and/or bipolar electrosurgical procedures, including vessel sealing procedures. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar instrument, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured to generate radio frequency energy specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing). In embodiments, the generator may be embedded, integrated or otherwise coupled to the electrosurgical instruments providing for an all-in-one electrosurgical apparatus.
-
FIG. 1 is a schematic illustration of a bipolar and monopolarelectrosurgical system 1 according to the present disclosure. Thesystem 1 may include one or more monopolarelectrosurgical instruments 2 having one or more electrodes (e.g., electrosurgical cutting probe, ablation electrode(s), etc.) for treating tissue of a patient. Electrosurgical energy is supplied to theinstrument 2 by agenerator 200 via asupply line 4 that is connected to an active terminal 230 (FIG. 3 ) of thegenerator 200, allowing theinstrument 2 to coagulate, ablate and/or otherwise treat tissue. The energy is returned to thegenerator 200 through areturn electrode 6 via areturn line 8 at a return terminal 32 (FIG. 3 ) of thegenerator 200. Thesystem 1 may include a plurality ofreturn electrodes 6 that are disposed on a patient to minimize the chances of tissue damage by maximizing the overall contact area with the patient. In addition, thegenerator 200 and thereturn electrode 6 may be configured for monitoring so-called “tissue-to-patient” contact to insure that sufficient contact exists therebetween to further minimize chances of tissue damage. - The
system 1 may also include a bipolarelectrosurgical forceps 10 having one or more electrodes for treating tissue of a patient. Theelectrosurgical forceps 10 includes ahousing 11 and opposingjaw members shaft 12. Thejaw members active electrodes 14 and areturn electrode 16 disposed therein, respectively. Theactive electrode 14 and thereturn electrode 16 are connected to thegenerator 200 throughcable 18 that includes the supply andreturn lines return terminals FIG. 3 ). Theelectrosurgical forceps 10 is coupled to thegenerator 200 at a connector having connections to the active andreturn terminals 230 and 232 (e.g., pins) via a plug disposed at the end of thecable 18, wherein the plug includes contacts from the supply andreturn lines - With reference to
FIG. 2 , afront face 240 of thegenerator 200 is shown. Thegenerator 200 may be any suitable type (e.g., electrosurgical, microwave, etc.) and may include a plurality of connectors 250-262 to accommodate various types of electrosurgical instruments (e.g.,electrosurgical forceps 10, etc.). The connectors 250-262 may include various detection devices that can read (e.g., scan, decode, etc.) identifying information encoded or otherwise recorded on or within the plugs or cables of the instruments. The connectors 250-262 are configured to decode the information encoded on the plugs corresponding to the operating parameters of particular instruments allowing thegenerator 200 to preset energy delivery settings based on the connected instrument. In embodiments, data may be encoded in bar codes, electrical components (e.g., resistors, capacitors, etc.), RFID chips, magnets, non-transitory storage (e.g., non-volatile memory, EEPROM, etc.), which may then be coupled to or integrated into the plug. Corresponding detection devices may include, but are not limited to, bar code readers, electrical sensors, RFID readers, Hall Effect sensors, memory readers, etc. and any other suitable decoders configured to decode data. - The
generator 200 includes one ormore display screens screens generator 200 includes suitable input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling thegenerator 200. The display screens 242, 244, 246 are also configured as touch screens that display a corresponding menu for the electrosurgical instruments (e.g.,electrosurgical forceps 10, etc.). The user then makes inputs by simply touching corresponding menu options. -
Screen 242 controls monopolar output and the devices connected to theconnectors Connector 250 is configured to couple to monopolar electrosurgical instrument (e.g., electrosurgical pencil) andconnector 252 is configured to couple to a foot switch (not shown). The foot switch provides for additional inputs (e.g., replicating inputs of the generator 200).Screen 244 controls monopolar and bipolar output and the devices connected to theconnectors Connector 256 is configured to couple to other monopolar instruments.Connector 258 is configured to couple to a bipolar instrument (not shown). -
Screen 246 controls bipolar sealing procedures performed by theforceps 10 that may be plugged into theconnectors generator 200 outputs energy through theconnectors forceps 10. In particular,screen 246 outputs a user interface that allows the user to input a user-defined intensity setting. The user-defined setting may be any setting that allows the user to adjust one or more energy delivery parameters, such as power, current, voltage, energy, etc. or sealing parameters, such as pressure, sealing duration, etc. The user-defined setting is transmitted to thecontroller 224 where the setting may be saved inmemory 226. In embodiments, the intensity setting may be a number scale, such as from one to ten or one to five. In embodiments, the intensity setting may be associated with an output curve of thegenerator 200. The intensity settings may be specific for eachforceps 10 being utilized, such that various instruments provide the user with a specific intensity scale corresponding to theforceps 10. -
FIG. 3 shows a schematic block diagram of thegenerator 200 configured to output electrosurgical energy. Thegenerator 200 includes acontroller 224, apower supply 227, and anoutput stage 228. Thepower supply 227 may be a direct current high voltage power supply and is connected to an AC source (e.g., line voltage) and provides high voltage DC power to anoutput stage 228, which then converts high voltage DC power into treatment energy (e.g., ultrasonic, electrosurgical or microwave) and delivers the energy to theactive terminal 230. The energy is returned thereto via thereturn terminal 232. Theoutput stage 228 is configured to operate in a plurality of modes, during which thegenerator 200 outputs corresponding waveforms having specific duty cycles, peak voltages, crest factors, etc. In another embodiment, thegenerator 200 may be based on other types of suitable power supply topologies. - The
controller 224 includes amicroprocessor 225 operably connected to amemory 226, which may include transitory type memory (e.g., RAM) and/or non-transitory type memory (e.g., flash media, disk media, etc.). Themicroprocessor 225 includes an output port that is operably connected to thepower supply 227 and/oroutput stage 228 allowing themicroprocessor 225 to control the output of thegenerator 200 according to either open and/or closed control loop schemes. Those skilled in the art will appreciate that themicroprocessor 225 may be substituted by any logic processor (e.g., control circuit) adapted to perform the calculations discussed herein. - A closed loop control scheme is a feedback control loop, in which a plurality of sensors measure a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output power, current and/or voltage, etc.), and provide feedback to the
controller 224. Thecontroller 224 then signals thepower supply 227 and/oroutput stage 228, which then adjusts the DC and/or power supply, respectively. Thecontroller 224 also receives input signals from the input controls of thegenerator 200, theinstrument 2 and/orforceps 10. Thecontroller 224 utilizes the input signals to adjust power outputted by thegenerator 200 and/or performs other control functions thereon. - The
generator 200 according to the present disclosure includes anRF voltage sensor 300 and an RFcurrent sensor 302. TheRF voltage sensor 300 is coupled to the active and returnterminals output stage 228. The RFcurrent sensor 302 is coupled to theactive terminal 230 and provides measurements of the RF current supplied by theoutput stage 228. The RF voltage andcurrent sensors current sensors controller 224, which then may adjust output of thepower supply 227 and/or theoutput stage 228 in response to the sensed RF voltage and current signals. - The
generator 200 according to the present disclosure also includes aDC voltage sensor 304 and a DCcurrent sensor 306. For simplicity, thepower supply 227 is shown schematically being coupled to theoutput stage 228 via aconnection 301. Those skilled in the art will appreciate that thepower supply 227 is connected with its positive and negative terminals (not shown) to theoutput stage 228. The DC voltage andcurrent sensors connection 301 and provide measurements of the DC voltage and current supplied to theoutput stage 228 by thepower supply 227. The DC voltage andcurrent sensors current sensors controller 224, which then may adjust output of thepower supply 227 and/or theoutput stage 228 in response to the sensed DC voltage and current signals. - The
output stage 228 may be embodied as any suitable RF inverter power supply topology including, but not limited to, half bridge, full bridge, push pull, and combinations thereof. In embodiments, the output of theoutput stage 228 may be any amplitude-modulated RF waveform generated by varying DC voltage of thepower supply 227. Thegenerator 200 adjusts the RF output of theoutput stage 228 based on the sensed signals as measured by either the DC voltage andcurrent sensors current sensors - The
controller 224 includes a transfer function that correlates the sensed DC voltage and current signals to the sensed RF voltage and current signals. In particular, the operating parameters of theoutput stage 228 may be expressed as a transfer function, which may be used to calculate output RF voltage and current based on the sensed DC voltage and current signals. The transfer function may be used to compensate for the loss and/or distortion introduced between theoutput stage 228 and the load. These non-ideal behaviors can be impacted by many different factors including input voltage, input current, output voltage, output current and load impedance. One way to characterize these behaviors may include analysis of thegenerator 200 at different open loop operating points while monitoring the input and/or output characteristics, namely, DC voltage and current and RF output voltage and current. This data may then be used to generate a polynomial curve fit and/or piecewise linear curve. The curves are then transposed to a transfer function that describes the relationship between the DC voltage and current and the output RF voltage and current thus providing the transfer function. The process to obtain the transfer function may be performed during initial setup of thegenerator 200 on a unit-by-unit basis or for any specific lot and then preprogrammed and stored inmemory 226. - Thus, the
controller 224 determines the output RF voltage and current based on the sensed DC voltage and current signals. The calculated output RF voltage and current may then be compared with actual sensed RF voltage and current as a redundant measurement (e.g., to verify functionality of thesensors -
FIG. 4 illustrates a method in accordance with the present disclosure. Instep 400, DC voltage and current outputted by thepower supply 227 are measured by the DC voltage andcurrent sensors controller 224. Instep 402, thecontroller 224 calculates the output RF voltage and current based on the sensed DC voltage and current values. In particular, the controller 224 (e.g., the microprocessor 225) utilizes a transfer function that correlates the sensed output DC values with output RF values. - In
step 401, RF voltage and current outputted by theoutput stage 228 are measured by the RF voltage andcurrent sensors controller 224. Instep 403, thecontroller 224 compares measured RF output values with the calculated the RF voltage and current based on the sensed DC voltage and current values. The difference between calculated RF values and measured RF values may be used to determine functionality of thegenerator 200, such that if the difference between the measured and calculated RF values varies by a predetermined amount an error is issued resulting in stoppage and/or adjustment of the power output. The difference between calculated and measured RF values which triggers an error condition may be from about 10% and above, in embodiments, from about 20% and above. - In
step 405, thecontroller 224 may utilize the comparison to determine dosage error in delivery of output power. The term “dosage error” as used herein denotes a difference between preset output power (e.g., user or generator selected) and delivered output power. The difference may be due to a variety of factors (e.g., malfunctioning power generating components, sensors, etc.). The dosage error, e.g., difference between preset power and calculated RF values based on measured DC values and/or actual measured RF values may be from about 10% and above, in embodiments, from about 20% and above. The dosage error calculation determines the functionality (or malfunction) of thesensors step 405, thecontroller 224 may issue an alarm and/or terminate the output of thegenerator 200. - In
step 404, thecontroller 224 signals thepower supply 227 and/or theoutput stage 228 to adjust its output in response to an algorithm or other instructions for controlling the output of thegenerator 200 including differences calculated insteps -
FIG. 5 illustrates another embodiment of anelectrosurgical system 500. Thesystem 500 includes agenerator 502, which is similar to thegenerator 200 described above with respect toFIGS. 2 and 3 . Thegenerator 502 is coupled to theforceps 10, which is shown for illustrative purposes only, and any other electrosurgical instrument may be utilized. Thesystem 500 decouples theoutput stage 228 from thegenerator 502. Theoutput stage 228 is instead disposed in thehousing 11 of theforceps 10. Thegenerator 502 also does not include RF voltage andcurrent sensors output stage 228 and repositioning thereof into thehousing 11. This significantly simplifies the hardware design for theelectrosurgical system 500. - Calculation of output RF values based on measured DC signals also simplifies hardware and software requirements of electrosurgical generators, which usually perform intensive root mean square calculations. Further, this configuration obviates the need to include sensors at the high voltage side of the generator, allowing for use of components with a lower voltage rating.
- While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Claims (16)
1-20. (canceled)
21. An electrosurgical generator, comprising:
a direct current power supply configured to supply direct current;
a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to generate a radio frequency waveform based on the direct current;
a direct current power supply sensor coupled to the direct current power supply and configured to measure at least one property of the direct current; and
a controller configured to derive at least one property of the radio frequency waveform based on a measured property of the direct current.
22. The electrosurgical generator according to claim 21 , wherein the radio frequency output stage includes at least one active output terminal and at least one return output terminal.
23. The electrosurgical generator according to claim 22 , further comprising:
a radio frequency output stage sensor coupled to at least one of the at least one active output terminal or the at least one return output terminal and configured to measure at least one property of the radio frequency waveform.
24. The electrosurgical generator according to claim 23 , wherein the controller is further configured to compare a derived property of the radio frequency waveform with the measured property of the radio frequency waveform.
25. The electrosurgical generator according to claim 24 , wherein the controller is further configured to determine a dosage error based on the comparison.
26. The electrosurgical generator according to claim 21 , wherein the radio frequency output stage is disposed within a housing of a handheld electrosurgical instrument.
27. The electrosurgical generator according to claim 21 , wherein the handheld electrosurgical instrument is an electrosurgical forceps including at least one shaft member having an end effector assembly disposed at a distal end thereof, the end effector assembly including two jaw members, at least one of the jaw members being movable from a first position in spaced relation relative to the other jaw member to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween, each of the jaw members including an electrically conductive sealing surface.
28. The electrosurgical generator according to claim 21 , wherein the controller is further configured to derive the at least one property of the radio frequency waveform based on the measured property of the direct current using a transfer function.
29. An electrosurgical system, comprising:
an electrosurgical instrument; and
an electrosurgical generator coupled to the electrosurgical instrument, the electrosurgical generator including:
a direct current power supply configured to supply direct current;
a radio frequency output stage electrically coupled to the direct current power supply, the radio frequency output stage configured to generate a radio frequency waveform based on the direct current;
a direct current power supply sensor coupled to the direct current power supply and configured to measure at least one property of the direct current; and
a controller configured to derive at least one property of the radio frequency waveform based on a measured property of the direct current.
30. The electrosurgical system according to claim 29 , wherein the electrosurgical instrument is an electrosurgical forceps including at least one shaft member having an end effector assembly disposed at a distal end thereof, the end effector assembly including two jaw members, at least one of the jaw members being movable from a first position in spaced relation relative to the other jaw member to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween, each of the jaw members including an electrically conductive sealing surface.
31. The electrosurgical system according to claim 30 , wherein the radio frequency output stage includes at least one active output terminal and at least one return output terminal, each of which is coupled to one of the electrically conductive sealing surfaces.
32. The electrosurgical system according to claim 31 , further comprising:
a radio frequency output stage sensor coupled to at least one of the at least one active output terminal or the at least one return output terminal and configured to measure at least one property of the radio frequency waveform.
33. The electrosurgical system according to claim 32 , wherein the controller is further configured to compare a derived property of the radio frequency waveform with the measured property of the radio frequency waveform.
34. The electrosurgical system according to claim 33 , wherein the controller is further configured to determine a dosage error based on the comparison.
35. The electrosurgical system according to claim 32 , wherein the controller is further configured to derive the at least one property of the radio frequency waveform based on the measured property of the direct current using a transfer function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/694,093 US20150223865A1 (en) | 2011-08-30 | 2015-04-23 | System and method for dc tissue impedance sensing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/221,424 US9033973B2 (en) | 2011-08-30 | 2011-08-30 | System and method for DC tissue impedance sensing |
US14/694,093 US20150223865A1 (en) | 2011-08-30 | 2015-04-23 | System and method for dc tissue impedance sensing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/221,424 Continuation US9033973B2 (en) | 2011-08-30 | 2011-08-30 | System and method for DC tissue impedance sensing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150223865A1 true US20150223865A1 (en) | 2015-08-13 |
Family
ID=47744723
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/221,424 Active 2034-01-29 US9033973B2 (en) | 2011-08-30 | 2011-08-30 | System and method for DC tissue impedance sensing |
US14/694,093 Abandoned US20150223865A1 (en) | 2011-08-30 | 2015-04-23 | System and method for dc tissue impedance sensing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/221,424 Active 2034-01-29 US9033973B2 (en) | 2011-08-30 | 2011-08-30 | System and method for DC tissue impedance sensing |
Country Status (7)
Country | Link |
---|---|
US (2) | US9033973B2 (en) |
EP (1) | EP2750618B1 (en) |
JP (1) | JP2014529465A (en) |
CN (2) | CN204133601U (en) |
AU (1) | AU2012300446A1 (en) |
CA (1) | CA2845345A1 (en) |
WO (1) | WO2013032799A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106994041A (en) * | 2016-01-23 | 2017-08-01 | 柯惠有限合伙公司 | Dual output electrosurgery generator and electrosurgical operation system |
US10363086B2 (en) | 2014-10-31 | 2019-07-30 | Medtronic Advanced Energy Llc | Power monitoring circuitry and method for reducing leakage current in RF generators |
WO2020180944A1 (en) | 2019-03-05 | 2020-09-10 | Intuitive Surgical Operations, Inc. | Auxiliary function control apparatus for medical devices, and related systems, and methods |
US10869712B2 (en) | 2016-05-02 | 2020-12-22 | Covidien Lp | System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators |
US11648047B2 (en) | 2017-10-06 | 2023-05-16 | Vive Scientific, Llc | System and method to treat obstructive sleep apnea |
Families Citing this family (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US7396336B2 (en) | 2003-10-30 | 2008-07-08 | Sherwood Services Ag | Switched resonant ultrasonic power amplifier system |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
MX2007004151A (en) | 2004-10-08 | 2007-09-11 | Johnson & Johnson | Ultrasonic surgical instrument. |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
CA2701962C (en) | 2007-10-05 | 2016-05-31 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8377053B2 (en) | 2008-09-05 | 2013-02-19 | Covidien Lp | Electrosurgical apparatus with high speed energy recovery |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8650728B2 (en) | 2009-06-24 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Method of assembling a transducer for a surgical instrument |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9060776B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
US10376301B2 (en) | 2011-09-28 | 2019-08-13 | Covidien Lp | Logarithmic amplifier, electrosurgical generator including same, and method of controlling electrosurgical generator using same |
WO2013119545A1 (en) | 2012-02-10 | 2013-08-15 | Ethicon-Endo Surgery, Inc. | Robotically controlled surgical instrument |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9375250B2 (en) | 2012-04-09 | 2016-06-28 | Covidien Lp | Method for employing single fault safe redundant signals |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
CA2874620C (en) * | 2012-05-29 | 2022-07-26 | Autonomix Medical, Inc. | Endoscopic sympathectomy systems and methods |
US9192425B2 (en) | 2012-06-26 | 2015-11-24 | Covidien Lp | System and method for testing electrosurgical generators |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9529025B2 (en) | 2012-06-29 | 2016-12-27 | Covidien Lp | Systems and methods for measuring the frequency of signals generated by high frequency medical devices |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US20150105701A1 (en) * | 2013-08-22 | 2015-04-16 | Energize Medical Llc | Therapeutic energy systems |
US11253732B2 (en) * | 2012-08-22 | 2022-02-22 | Energize Medical Llc | Therapeutic energy systems |
US9301811B2 (en) | 2012-09-17 | 2016-04-05 | Intuitive Surgical Operations, Inc. | Methods and systems for assigning input devices to teleoperated surgical instrument functions |
WO2014052181A1 (en) | 2012-09-28 | 2014-04-03 | Ethicon Endo-Surgery, Inc. | Multi-function bi-polar forceps |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US10631939B2 (en) | 2012-11-02 | 2020-04-28 | Intuitive Surgical Operations, Inc. | Systems and methods for mapping flux supply paths |
US10864048B2 (en) * | 2012-11-02 | 2020-12-15 | Intuitive Surgical Operations, Inc. | Flux disambiguation for teleoperated surgical systems |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9456862B2 (en) | 2013-02-19 | 2016-10-04 | Covidien Lp | Electrosurgical generator and system |
US9519021B2 (en) | 2013-03-11 | 2016-12-13 | Covidien Lp | Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator |
US9895186B2 (en) | 2013-03-11 | 2018-02-20 | Covidien | Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9283028B2 (en) | 2013-03-15 | 2016-03-15 | Covidien Lp | Crest-factor control of phase-shifted inverter |
US9498276B2 (en) | 2013-03-15 | 2016-11-22 | Covidien Lp | Systems and methods for narrowband real impedance control in electrosurgery |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US10729484B2 (en) | 2013-07-16 | 2020-08-04 | Covidien Lp | Electrosurgical generator with continuously and arbitrarily variable crest factor |
US10610285B2 (en) | 2013-07-19 | 2020-04-07 | Covidien Lp | Electrosurgical generators |
US9872719B2 (en) | 2013-07-24 | 2018-01-23 | Covidien Lp | Systems and methods for generating electrosurgical energy using a multistage power converter |
US9636165B2 (en) | 2013-07-29 | 2017-05-02 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9839469B2 (en) | 2013-09-24 | 2017-12-12 | Covidien Lp | Systems and methods for improving efficiency of electrosurgical generators |
US9770283B2 (en) | 2013-09-24 | 2017-09-26 | Covidien Lp | Systems and methods for improving efficiency of electrosurgical generators |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US10166061B2 (en) * | 2014-03-17 | 2019-01-01 | Intuitive Surgical Operations, Inc. | Teleoperated surgical system equipment with user interface |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10281496B2 (en) | 2014-12-02 | 2019-05-07 | Covidien Lp | Electrosurgical generators and sensors |
US10278764B2 (en) | 2014-12-02 | 2019-05-07 | Covidien Lp | Electrosurgical generators and sensors |
US10292753B2 (en) | 2014-12-02 | 2019-05-21 | Covidien Lp | Electrosurgical generators and sensors |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US11020166B2 (en) * | 2015-09-25 | 2021-06-01 | Gyrus Acmi, Inc. | Multifunctional medical device |
US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
JP2020517371A (en) | 2017-04-28 | 2020-06-18 | ストライカー・コーポレイション | Control console and accessory for RF nerve ablation and method for performing RF nerve ablation |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US11564703B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
WO2019133144A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11896322B2 (en) * | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
CN108888336B (en) * | 2018-08-09 | 2023-11-07 | 深圳世格赛思医疗科技有限公司 | Electrosurgical knife and control method thereof |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US20210196359A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instruments with electrodes having energy focusing features |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US20210361337A1 (en) * | 2020-05-21 | 2021-11-25 | Covidien Lp | Independent control of dual rf bipolar electrosurgery |
Family Cites Families (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE179607C (en) | 1906-11-12 | |||
DE390937C (en) | 1922-10-13 | 1924-03-03 | Adolf Erb | Device for internal heating of furnace furnaces for hardening, tempering, annealing, quenching and melting |
DE1099658B (en) | 1959-04-29 | 1961-02-16 | Siemens Reiniger Werke Ag | Automatic switch-on device for high-frequency surgical devices |
FR1275415A (en) | 1960-09-26 | 1961-11-10 | Device for detecting disturbances for electrical installations, in particular electrosurgery | |
DE1139927B (en) | 1961-01-03 | 1962-11-22 | Friedrich Laber | High-frequency surgical device |
DE1149832C2 (en) | 1961-02-25 | 1977-10-13 | Siemens AG, 1000 Berlin und 8000 München | HIGH FREQUENCY SURGICAL EQUIPMENT |
FR1347865A (en) | 1962-11-22 | 1964-01-04 | Improvements to diathermo-coagulation devices | |
DE1439302B2 (en) | 1963-10-26 | 1971-05-19 | Siemens AG, 1000 Berlin u 8000 München | High frequency surgical device |
GB1480736A (en) | 1973-08-23 | 1977-07-20 | Matburn Ltd | Electrodiathermy apparatus |
FR2251864A1 (en) | 1973-11-21 | 1975-06-13 | Termiflex Corp | Portable input and output unit for connection to a data processor - is basically a calculator with transmitter and receiver |
DE2407559C3 (en) | 1974-02-16 | 1982-01-21 | Dornier System Gmbh, 7990 Friedrichshafen | Heat probe |
US4237887A (en) | 1975-01-23 | 1980-12-09 | Valleylab, Inc. | Electrosurgical device |
DE2504280C3 (en) | 1975-02-01 | 1980-08-28 | Hans Heinrich Prof. Dr. 8035 Gauting Meinke | Device for cutting and / or coagulating human tissue with high frequency current |
CA1064581A (en) | 1975-06-02 | 1979-10-16 | Stephen W. Andrews | Pulse control circuit and method for electrosurgical units |
DE2540968C2 (en) | 1975-09-13 | 1982-12-30 | Erbe Elektromedizin GmbH, 7400 Tübingen | Device for switching on the coagulation current of a bipolar coagulation forceps |
US4094320A (en) | 1976-09-09 | 1978-06-13 | Valleylab, Inc. | Electrosurgical safety circuit and method of using same |
FR2390968A1 (en) | 1977-05-16 | 1978-12-15 | Skovajsa Joseph | Local acupuncture treatment appts. - has oblong head with end aperture and contains laser diode unit (NL 20.11.78) |
SU727201A2 (en) | 1977-11-02 | 1980-04-15 | Киевский Научно-Исследовательский Институт Нейрохирургии | Electric surgical apparatus |
DE2803275C3 (en) | 1978-01-26 | 1980-09-25 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | Remote switching device for switching a monopolar HF surgical device |
DE2823291A1 (en) | 1978-05-27 | 1979-11-29 | Rainer Ing Grad Koch | Coagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base |
DE2946728A1 (en) | 1979-11-20 | 1981-05-27 | Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen | HF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration |
JPS5778844A (en) | 1980-11-04 | 1982-05-17 | Kogyo Gijutsuin | Lasre knife |
DE3045996A1 (en) | 1980-12-05 | 1982-07-08 | Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg | Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon |
FR2502935B1 (en) | 1981-03-31 | 1985-10-04 | Dolley Roger | METHOD AND DEVICE FOR CONTROLLING THE COAGULATION OF TISSUES USING A HIGH FREQUENCY CURRENT |
DE3120102A1 (en) | 1981-05-20 | 1982-12-09 | F.L. Fischer GmbH & Co, 7800 Freiburg | ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES |
FR2517953A1 (en) | 1981-12-10 | 1983-06-17 | Alvar Electronic | Diaphanometer for optical examination of breast tissue structure - measures tissue transparency using two plates and optical fibre bundle cooperating with photoelectric cells |
US4878493A (en) * | 1983-10-28 | 1989-11-07 | Ninetronix Venture I | Hand-held diathermy apparatus |
US4569345A (en) | 1984-02-29 | 1986-02-11 | Aspen Laboratories, Inc. | High output electrosurgical unit |
US4727874A (en) * | 1984-09-10 | 1988-03-01 | C. R. Bard, Inc. | Electrosurgical generator with high-frequency pulse width modulated feedback power control |
FR2573301B3 (en) | 1984-11-16 | 1987-04-30 | Lamidey Gilles | SURGICAL PLIERS AND ITS CONTROL AND CONTROL APPARATUS |
DE3510586A1 (en) | 1985-03-23 | 1986-10-02 | Erbe Elektromedizin GmbH, 7400 Tübingen | Control device for a high-frequency surgical instrument |
DE3604823C2 (en) | 1986-02-15 | 1995-06-01 | Lindenmeier Heinz | High frequency generator with automatic power control for high frequency surgery |
EP0246350A1 (en) | 1986-05-23 | 1987-11-25 | Erbe Elektromedizin GmbH. | Coagulation electrode |
DE3638748A1 (en) | 1986-11-13 | 1988-06-01 | Hirschmann Radiotechnik | CAPACITIVE DISCONNECT |
US5073167A (en) | 1987-06-26 | 1991-12-17 | M/A-Com, Inc. | In-line microwave warming apparatus |
US4931047A (en) | 1987-09-30 | 1990-06-05 | Cavitron, Inc. | Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis |
ATE132047T1 (en) | 1988-01-20 | 1996-01-15 | G2 Design Ltd | DIATHERMY DEVICE |
EP0336742A3 (en) | 1988-04-08 | 1990-05-16 | Bristol-Myers Company | Method and apparatus for the calibration of electrosurgical apparatus |
DE3904558C2 (en) | 1989-02-15 | 1997-09-18 | Lindenmeier Heinz | Automatically power-controlled high-frequency generator for high-frequency surgery |
EP0390937B1 (en) | 1989-04-01 | 1994-11-02 | Erbe Elektromedizin GmbH | Device for the surveillance of the adherence of neutral electrodes in high-frequency surgery |
DE3942998C2 (en) | 1989-12-27 | 1998-11-26 | Delma Elektro Med App | High frequency electrosurgical unit |
US6142992A (en) | 1993-05-10 | 2000-11-07 | Arthrocare Corporation | Power supply for limiting power in electrosurgery |
DE4205213A1 (en) | 1992-02-20 | 1993-08-26 | Delma Elektro Med App | HIGH FREQUENCY SURGERY DEVICE |
DE4206433A1 (en) | 1992-02-29 | 1993-09-02 | Bosch Gmbh Robert | Capacity separator for inner and outer leads of HF coaxial cable to be coupled together - has electrically conductive casing in two coaxial parts, each coupled to outer conductor and leaving meandering air gap in-between |
US5540681A (en) * | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5484400A (en) * | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5334193A (en) | 1992-11-13 | 1994-08-02 | American Cardiac Ablation Co., Inc. | Fluid cooled ablation catheter |
US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5558671A (en) | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
DE4339049C2 (en) | 1993-11-16 | 2001-06-28 | Erbe Elektromedizin | Surgical system configuration facility |
US5560355A (en) | 1993-12-17 | 1996-10-01 | Nellcor Puritan Bennett Incorporated | Medical sensor with amplitude independent output |
US5422567A (en) | 1993-12-27 | 1995-06-06 | Valleylab Inc. | High frequency power measurement |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5720744A (en) | 1995-06-06 | 1998-02-24 | Valleylab Inc | Control system for neurosurgery |
US5810804A (en) | 1995-08-15 | 1998-09-22 | Rita Medical Systems | Multiple antenna ablation apparatus and method with cooling element |
US6059780A (en) | 1995-08-15 | 2000-05-09 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5772659A (en) | 1995-09-26 | 1998-06-30 | Valleylab Inc. | Electrosurgical generator power control circuit and method |
US5837001A (en) | 1995-12-08 | 1998-11-17 | C. R. Bard | Radio frequency energy delivery system for multipolar electrode catheters |
US5792138A (en) | 1996-02-22 | 1998-08-11 | Apollo Camera, Llc | Cordless bipolar electrocautery unit with automatic power control |
US6458121B1 (en) | 1996-03-19 | 2002-10-01 | Diapulse Corporation Of America | Apparatus for athermapeutic medical treatments |
US6544260B1 (en) | 1996-08-20 | 2003-04-08 | Oratec Interventions, Inc. | Method for treating tissue in arthroscopic environment using precooling and apparatus for same |
US5836943A (en) * | 1996-08-23 | 1998-11-17 | Team Medical, L.L.C. | Electrosurgical generator |
DE19643127A1 (en) | 1996-10-18 | 1998-04-23 | Berchtold Gmbh & Co Geb | High frequency surgical device and method for its operation |
ES2353846T3 (en) | 1997-04-11 | 2011-03-07 | United States Surgical Corporation | APPLIANCE FOR RF ABLATION AND CONTROLLER OF THE SAME. |
GB9708268D0 (en) | 1997-04-24 | 1997-06-18 | Gyrus Medical Ltd | An electrosurgical instrument |
DE19717411A1 (en) | 1997-04-25 | 1998-11-05 | Aesculap Ag & Co Kg | Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit |
US5838558A (en) | 1997-05-19 | 1998-11-17 | Trw Inc. | Phase staggered full-bridge converter with soft-PWM switching |
EP0882955B1 (en) | 1997-06-06 | 2005-04-06 | Endress + Hauser GmbH + Co. KG | Level measuring apparatus using microwaves |
US6139546A (en) | 1997-10-06 | 2000-10-31 | Somnus Medical Technologies, Inc. | Linear power control with digital phase lock |
DE19757720A1 (en) * | 1997-12-23 | 1999-06-24 | Sulzer Osypka Gmbh | Method for operating a high-frequency ablation device and device for high-frequency tissue ablation |
US6657173B2 (en) | 1998-04-21 | 2003-12-02 | State Board Of Higher Education On Behalf Of Oregon State University | Variable frequency automated capacitive radio frequency (RF) dielectric heating system |
DE19848540A1 (en) | 1998-10-21 | 2000-05-25 | Reinhard Kalfhaus | Circuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current. |
US20100042093A9 (en) | 1998-10-23 | 2010-02-18 | Wham Robert H | System and method for terminating treatment in impedance feedback algorithm |
US6427089B1 (en) | 1999-02-19 | 2002-07-30 | Edward W. Knowlton | Stomach treatment apparatus and method |
JP2000271145A (en) | 1999-03-24 | 2000-10-03 | Olympus Optical Co Ltd | Device and system for treatment |
US6203541B1 (en) | 1999-04-23 | 2001-03-20 | Sherwood Services Ag | Automatic activation of electrosurgical generator bipolar output |
US6258085B1 (en) | 1999-05-11 | 2001-07-10 | Sherwood Services Ag | Electrosurgical return electrode monitor |
US20030181898A1 (en) * | 1999-05-28 | 2003-09-25 | Bowers William J. | RF filter for an electrosurgical generator |
US7146210B2 (en) | 2000-02-17 | 2006-12-05 | Standen Ltd. | Apparatus and method for optimizing tumor treatment efficiency by electric fields |
US6953461B2 (en) | 2002-05-16 | 2005-10-11 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
AU2001249874A1 (en) * | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
US6936047B2 (en) | 2000-05-12 | 2005-08-30 | Agility Capital Llc | Multi-channel RF energy delivery with coagulum reduction |
WO2002011634A1 (en) | 2000-08-08 | 2002-02-14 | Erbe Elektromedizin Gmbh | High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation |
DE10061278B4 (en) | 2000-12-08 | 2004-09-16 | GFD-Gesellschaft für Diamantprodukte mbH | Instrument for surgical purposes |
US8133218B2 (en) | 2000-12-28 | 2012-03-13 | Senorx, Inc. | Electrosurgical medical system and method |
US7101373B2 (en) * | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
US6648883B2 (en) | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US7250048B2 (en) | 2001-04-26 | 2007-07-31 | Medtronic, Inc. | Ablation system and method of use |
DE10218895B4 (en) | 2002-04-26 | 2006-12-21 | Storz Endoskop Produktions Gmbh | High-frequency surgical generator |
US20040003391A1 (en) | 2002-06-27 | 2004-01-01 | Koninklijke Philips Electronics N.V. | Method, system and program product for locally analyzing viewing behavior |
US7041096B2 (en) | 2002-10-24 | 2006-05-09 | Synergetics Usa, Inc. | Electrosurgical generator apparatus |
JP2006506129A (en) | 2002-11-13 | 2006-02-23 | アーテミス・メディカル・インコーポレイテッド | Apparatus and method for controlling initial operation of electrosurgical electrode |
US6948503B2 (en) | 2002-11-19 | 2005-09-27 | Conmed Corporation | Electrosurgical generator and method for cross-checking output power |
US6875210B2 (en) | 2002-11-19 | 2005-04-05 | Conmed Corporation | Electrosurgical generator and method for cross-checking mode functionality |
US7422582B2 (en) | 2004-09-29 | 2008-09-09 | Stryker Corporation | Control console to which powered surgical handpieces are connected, the console configured to simultaneously energize more than one and less than all of the handpieces |
DE102004054575A1 (en) | 2004-11-11 | 2006-05-24 | Erbe Elektromedizin Gmbh | Control for an electrosurgical unit |
US20060161148A1 (en) | 2005-01-13 | 2006-07-20 | Robert Behnke | Circuit and method for controlling an electrosurgical generator using a full bridge topology |
ATE542486T1 (en) | 2005-03-28 | 2012-02-15 | Minnow Medical Llc | INTRALUMINAL ELECTRICAL TISSUE CHARACTERIZATION AND TUNED RF ENERGY FOR SELECTIVE TREATMENT OF ATHEROMA AND OTHER TARGET TISSUES |
US8734438B2 (en) | 2005-10-21 | 2014-05-27 | Covidien Ag | Circuit and method for reducing stored energy in an electrosurgical generator |
US20070173813A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for tissue sealing |
CA2574934C (en) | 2006-01-24 | 2015-12-29 | Sherwood Services Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US8034049B2 (en) | 2006-08-08 | 2011-10-11 | Covidien Ag | System and method for measuring initial tissue impedance |
US7736358B2 (en) | 2006-10-02 | 2010-06-15 | Conmed Corporation | Electrosurgical generator and method for simulating output signals |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
CN102961184B (en) | 2006-10-10 | 2016-08-10 | 医疗设备创新有限公司 | Utilize microwave radiation to treat the device of tissue and antenna calibration system and method |
GB0620063D0 (en) | 2006-10-10 | 2006-11-22 | Medical Device Innovations Ltd | Needle structure and method of performing needle biopsies |
US20080103495A1 (en) | 2006-10-31 | 2008-05-01 | Takashi Mihori | High frequency cauterization power supply apparatus |
GB0624658D0 (en) | 2006-12-11 | 2007-01-17 | Medical Device Innovations Ltd | Electrosurgical ablation apparatus and a method of ablating biological tissue |
USD574323S1 (en) | 2007-02-12 | 2008-08-05 | Tyco Healthcare Group Lp | Generator |
GB0704650D0 (en) | 2007-03-09 | 2007-04-18 | Medical Device Innovations Ltd | Tissue classifying apparatus |
US8388612B2 (en) | 2007-05-11 | 2013-03-05 | Covidien Lp | Temperature monitoring return electrode |
US8512332B2 (en) | 2007-09-21 | 2013-08-20 | Covidien Lp | Real-time arc control in electrosurgical generators |
US8045943B2 (en) | 2008-01-29 | 2011-10-25 | Freescale Semiconductor, Inc. | High performance CMOS radio frequency receiver |
US8409186B2 (en) | 2008-03-13 | 2013-04-02 | Covidien Lp | Crest factor enhancement in electrosurgical generators |
US8226639B2 (en) | 2008-06-10 | 2012-07-24 | Tyco Healthcare Group Lp | System and method for output control of electrosurgical generator |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US8346370B2 (en) | 2008-09-30 | 2013-01-01 | Vivant Medical, Inc. | Delivered energy generator for microwave ablation |
US8174267B2 (en) | 2008-09-30 | 2012-05-08 | Vivant Medical, Inc. | Intermittent microwave energy delivery system |
US8248075B2 (en) | 2008-09-30 | 2012-08-21 | Vivant Medical, Inc. | System, apparatus and method for dissipating standing wave in a microwave delivery system |
US8180433B2 (en) | 2008-09-30 | 2012-05-15 | Vivant Medical, Inc. | Microwave system calibration apparatus, system and method of use |
US8242782B2 (en) | 2008-09-30 | 2012-08-14 | Vivant Medical, Inc. | Microwave ablation generator control system |
US20100082083A1 (en) | 2008-09-30 | 2010-04-01 | Brannan Joseph D | Microwave system tuner |
US8287527B2 (en) | 2008-09-30 | 2012-10-16 | Vivant Medical, Inc. | Microwave system calibration apparatus and method of use |
US8852179B2 (en) | 2008-10-10 | 2014-10-07 | Covidien Lp | Apparatus, system and method for monitoring tissue during an electrosurgical procedure |
US8152802B2 (en) | 2009-01-12 | 2012-04-10 | Tyco Healthcare Group Lp | Energy delivery algorithm filter pre-loading |
US8162932B2 (en) | 2009-01-12 | 2012-04-24 | Tyco Healthcare Group Lp | Energy delivery algorithm impedance trend adaptation |
US8262652B2 (en) | 2009-01-12 | 2012-09-11 | Tyco Healthcare Group Lp | Imaginary impedance process monitoring and intelligent shut-off |
US7956620B2 (en) | 2009-08-12 | 2011-06-07 | Tyco Healthcare Group Lp | System and method for augmented impedance sensing |
US8377054B2 (en) | 2009-09-24 | 2013-02-19 | Covidien Lp | Automatic control circuit for use in an electrosurgical generator |
US20110071516A1 (en) | 2009-09-24 | 2011-03-24 | Tyco Healthcare Group Lp | System and Method for Controlling Electrosurgical Output |
US8652125B2 (en) | 2009-09-28 | 2014-02-18 | Covidien Lp | Electrosurgical generator user interface |
US10039588B2 (en) | 2009-12-16 | 2018-08-07 | Covidien Lp | System and method for tissue sealing |
US8655299B2 (en) | 2010-06-03 | 2014-02-18 | Broadcom Corporation | Saw-less receiver with RF frequency translated BPF |
US9028479B2 (en) | 2011-08-01 | 2015-05-12 | Covidien Lp | Electrosurgical apparatus with real-time RF tissue energy control |
-
2011
- 2011-08-30 US US13/221,424 patent/US9033973B2/en active Active
-
2012
- 2012-08-22 CN CN201290000738.2U patent/CN204133601U/en not_active Expired - Lifetime
- 2012-08-22 WO PCT/US2012/051796 patent/WO2013032799A1/en active Application Filing
- 2012-08-22 AU AU2012300446A patent/AU2012300446A1/en not_active Abandoned
- 2012-08-22 CN CN201420854417.XU patent/CN204734544U/en not_active Expired - Lifetime
- 2012-08-22 EP EP12827271.3A patent/EP2750618B1/en active Active
- 2012-08-22 CA CA2845345A patent/CA2845345A1/en not_active Abandoned
- 2012-08-22 JP JP2014528452A patent/JP2014529465A/en active Pending
-
2015
- 2015-04-23 US US14/694,093 patent/US20150223865A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10363086B2 (en) | 2014-10-31 | 2019-07-30 | Medtronic Advanced Energy Llc | Power monitoring circuitry and method for reducing leakage current in RF generators |
US11399885B2 (en) | 2014-10-31 | 2022-08-02 | Medtronic Advanced Energy Llc | Power monitoring circuitry and method for reducing leakage current in RF generators |
CN106994041A (en) * | 2016-01-23 | 2017-08-01 | 柯惠有限合伙公司 | Dual output electrosurgery generator and electrosurgical operation system |
EP3216409A1 (en) * | 2016-01-23 | 2017-09-13 | Covidien LP | System and method for harmonic control of dual-output generators |
EP3434213A1 (en) * | 2016-01-23 | 2019-01-30 | Covidien LP | Method for harmonic control of dual-output generators |
US10582962B2 (en) | 2016-01-23 | 2020-03-10 | Covidien Lp | System and method for harmonic control of dual-output generators |
US11096737B2 (en) | 2016-01-23 | 2021-08-24 | Covidien Lp | System and method for harmonic control of dual-output generators |
US11864814B2 (en) | 2016-01-23 | 2024-01-09 | Covidien Lp | System and method for harmonic control of dual-output generators |
US10869712B2 (en) | 2016-05-02 | 2020-12-22 | Covidien Lp | System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators |
US11648047B2 (en) | 2017-10-06 | 2023-05-16 | Vive Scientific, Llc | System and method to treat obstructive sleep apnea |
WO2020180944A1 (en) | 2019-03-05 | 2020-09-10 | Intuitive Surgical Operations, Inc. | Auxiliary function control apparatus for medical devices, and related systems, and methods |
EP3934556A4 (en) * | 2019-03-05 | 2022-12-07 | Intuitive Surgical Operations, Inc. | Auxiliary function control apparatus for medical devices, and related systems, and methods |
Also Published As
Publication number | Publication date |
---|---|
EP2750618A1 (en) | 2014-07-09 |
CA2845345A1 (en) | 2013-03-07 |
EP2750618A4 (en) | 2015-04-01 |
US9033973B2 (en) | 2015-05-19 |
CN204133601U (en) | 2015-02-04 |
AU2012300446A1 (en) | 2014-01-16 |
WO2013032799A1 (en) | 2013-03-07 |
CN204734544U (en) | 2015-11-04 |
US20130053840A1 (en) | 2013-02-28 |
JP2014529465A (en) | 2014-11-13 |
EP2750618B1 (en) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9033973B2 (en) | System and method for DC tissue impedance sensing | |
US11950834B2 (en) | Systems and methods for detecting opening of the jaws of a vessel sealer mid-seal | |
US9044238B2 (en) | Electrosurgical monopolar apparatus with arc energy vascular coagulation control | |
US8653994B2 (en) | System and method for detection of ADC errors | |
US7794457B2 (en) | Transformer for RF voltage sensing | |
EP2353533B1 (en) | Square wave for vessel sealing | |
EP2620115B1 (en) | Electrosurgical apparatus with integrated energy sensing at tissue site | |
AU2012201623B2 (en) | Isolated current sensor | |
US20110071516A1 (en) | System and Method for Controlling Electrosurgical Output | |
AU2011253695A1 (en) | System and method for tissue sealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRAPOHL, JAMES E.;SMITH, ROBERT B.;JOHNSTON, MARK A.;SIGNING DATES FROM 20110808 TO 20110830;REEL/FRAME:035478/0920 |
|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:035506/0643 Effective date: 20120928 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |