US20140203950A1 - Mobile Communication Device, System, and Method - Google Patents
Mobile Communication Device, System, and Method Download PDFInfo
- Publication number
- US20140203950A1 US20140203950A1 US14/234,069 US201214234069A US2014203950A1 US 20140203950 A1 US20140203950 A1 US 20140203950A1 US 201214234069 A US201214234069 A US 201214234069A US 2014203950 A1 US2014203950 A1 US 2014203950A1
- Authority
- US
- United States
- Prior art keywords
- mobile device
- detection
- subsystem
- electrical signal
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/07—Endoradiosondes
- A61B5/073—Intestinal transmitters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4833—Assessment of subject's compliance to treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6803—Head-worn items, e.g. helmets, masks, headphones or goggles
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6898—Portable consumer electronic devices, e.g. music players, telephones, tablet computers
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
Definitions
- the present disclosure is related generally to a mobile device apparatus, system, and method for detecting a communication from another device, e.g., an ingestible device, an implantable device, an ingestible event marker (IEM), an implantable pulse generator such as a pacemaker, for example, a stent, an ingestible or implantable transceiver, among other devices.
- a wearable patch device is worn by the patient to detect the ingestion of a medicinal dose comprising an IEM embedded therein.
- the present disclosure is related to a mobile device such as a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (PC), kiosk, desktop computer, or laptop computer, or any combination thereof, configured to detect the ingestion of an IEM by a patient.
- a mobile device such as a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (PC), kiosk, desktop computer, or laptop computer, or any combination thereof, configured to detect the ingestion of an IEM by a patient.
- detecting the ingestion of an IEM device by a patient is done by detection electronics provided in the form factor of a wearable patch applied to an outer surface of the skin.
- the patch may include wet or dry electrodes which are made to contact the skin.
- An adhesive layer affixes the entire patch arrangement to the patient.
- the mobile device provides IEM communication in a discreet private manner without the need for the patient to wear a patch.
- a mobile device for detecting an electrical signal generated by an ingestible event marker.
- the mobile device comprises a detection subsystem to receive an electrical signal generated by an ingestible event marker from a detection arrangement.
- a processing subsystem is coupled to the detection subsystem to decode the electrical signal.
- a radio subsystem is configured to transmit the decoded electrical signal to a wireless node.
- FIG. 1 illustrates one aspect of a system comprising a mobile device for detecting an electrical signal generated by an ingestible event marker device.
- FIG. 2 illustrates one aspect of the system shown in FIG. 1 comprising a mobile device for detecting an electrical signal generated by an ingestible event marker device.
- FIG. 3A illustrates a side view of one aspect of a detection arrangement in the form of an earphone.
- FIG. 3B illustrates a front view of one aspect of the detection arrangement shown in FIG. 3A .
- FIG. 4 illustrates one aspect of a system comprising a detection arrangement in the form of earphones wiredly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker device.
- FIG. 5 is a system diagram of one aspect of a mobile device for detecting an electrical signal generated by an ingestible event marker configured to couple to an external detection arrangement.
- FIG. 6A is a diagram of one aspect of an earphone plug coupled to an electrode input circuit section of a detection subsystem of a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 6B is a diagram of one aspect of an electrode input circuit of the detection subsystem shown in FIG. 6A .
- FIG. 7 is a system diagram of one aspect of a detection subsystem of a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 8 illustrates one aspect of a mobile device comprising integrated electrodes for detecting an electrical signal generated by an ingestible event marker.
- FIG. 9 is system diagram of one aspect of a mobile device for detecting an electrical signal generated by an ingestible event marker configured to couple to integrated electrodes.
- FIG. 10 illustrates a patient in the process of using one aspect of the mobile device comprising integrated electrodes, shown in FIGS. 8-9 , for detecting an electrical signal generated by an ingestible event marker.
- FIG. 11 illustrates one aspect of mobile device received in a mating configuration with a mobile device enclosing arrangement comprising a detection circuit integrated therewith for detecting an electrical signal generated by an ingestible event marker.
- FIG. 12 illustrates the mobile device and the housing for receiving the mobile device shown in FIG. 11 in an unmated configuration.
- FIG. 13 illustrates one aspect of a housing for receiving a mobile device where the housing comprises a detection circuit for detecting an electrical signal generated by an ingestible event marker integrated therewith and a connector for electrically coupling the detection circuit to the functional modules of the mobile device.
- FIG. 14 is a system diagram of one aspect of a detection circuit for detecting an electrical signal generated by an ingestible event marker.
- FIG. 15 illustrates one aspect of a system comprising a detection arrangement in the form of eyeglasses wiredly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 16 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a pair of eyeglasses wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 17 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a visor wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 18 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a helmet wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 19 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a set of hearing aids wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 20 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a chair wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker.
- FIG. 21 illustrates a system corresponding to one aspect of an ingestible event marker device.
- FIG. 22 is a block diagram representation of another aspect of the event indicator system with dissimilar metals positioned on the same end and separated by a non-conducting material.
- FIG. 23 shows ionic transfer or the current path through a conducting fluid when the event indicator system of FIG. 21 is in contact with conducting liquid and in an active state.
- FIG. 23A shows an exploded view of the surface of dissimilar materials of FIG. 23 .
- FIG. 23B shows the event indicator system of FIG. 23 with a pH sensor unit.
- FIG. 24 is a block diagram illustration of one aspect of the control device used in the system of FIGS. 21 and 22 .
- FIG. 25 is a functional block diagram of a demodulation circuit that performs coherent demodulation that may be present in a receiver, according to one aspect.
- FIG. 26 illustrates a functional block diagram for a beacon module within a receiver, according to one aspect.
- FIG. 27 is a block diagram of the different functional modules that may be present in a receiver, according to one aspect.
- FIG. 28 is a block diagram of a receiver, according to one aspect.
- FIG. 29 provides a block diagram of a high frequency signal chain in a receiver, according to one aspect.
- FIG. 30 provides a diagram of how a system that includes a signal receiver and an ingestible event marker may be employed, according to one aspect.
- the present disclosure is directed generally to an apparatus, system, and method employing a mobile device for detecting a communication from another device, e.g., an ingestible device, an implantable device, an ingestible event marker (IEM), an implantable pulse generator such as a pacemaker, for example, a stent, an ingestible or implantable transceiver, among other devices.
- a detection arrangement may be wiredly and/or wirelessly coupled to a mobile device for detecting a communication from another device directly without employing a conventional detection patch (as described, for example, in Body-Associated Receiver and Method, filed Dec.
- a detection circuit module may be integrated with the mobile device.
- the detection circuit module may be integrated within a housing and/or cradle removably attachable to the mobile device.
- the detection circuit module may be integrated within a conventional device, which may be wiredly and/or wirelessly coupled to the mobile device.
- the detection circuit module is configured to detect and receive information encoded in an electrical current signature generated by an IEM device when it contacts a conducting fluid, and more particularly, when the IEM device is ingested by a patient and comes into contact with the digestive fluids in the stomach. Examples of such IEM devices are shown in FIGS. 21-24 , as discussed hereinafter.
- the term “mobile device” may refer generally to any device which can be configured as a communication node for receiving a first communication from a first device and transmitting a second communication to a second device.
- the mobile device may comprise various physical or logical elements implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints.
- the physical or logical elements may be connected by one or more communications media.
- communication media may comprise wired communication media, wireless communication media, or a combination of both, as desired for a given implementation.
- the mobile device or elements of the mobile device such as the physical or logical elements of the device may be incorporated in any suitable device including, without limitation, a personal digital assistant (PDA), laptop computer, ultra-laptop computer, combination cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, messaging device, data communication device, tablet computer, e-book reader, cellular telephone, pager, one-way pager, two-way pager, messaging device, data communication device, computers that are arranged to be worn by a person, such as a wrist computer, finger computer, ring computer, eyeglass computer, belt-clip computer, arm-band computer, shoe computers, clothing computers, and other wearable computers, media or multimedia controllers (e.g., audio and/or visual remote control devices), intelligent devices/appliances such as consumer and home devices and appliances that are capable of receipt of data such as physiologic data and perform other data-related functions, e.g., transmit, display, store, and/or
- medicaments may include, without limitation, various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, and the like, to be taken in conjunction with an IEM.
- various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, and the like, to be taken in conjunction with an IEM.
- OTC over-the-counter
- FIG. 1 where one aspect of a system 100 comprising a mobile device 102 (e.g., a first node) for detecting an electrical signal generated by an ingestible event marker 104 (IEM device) is illustrated.
- a living body such as a patient 106 is wearing a detection arrangement 108 in the form of earphones 110 wiredly connected to the mobile device 102 .
- the detection arrangement 108 comprises a right ear bud 110 R and a left ear bud 110 L wiredly coupled to the mobile device by respective electrical conducting cables 112 R, 112 L.
- the electrical conducting cables 112 R, 112 L are electrically coupled to a plug, which is configured to be received by a corresponding socket or jack connector of the mobile device 102 .
- the digestive fluids 114 in the stomach 116 activate the IEM device 104 to begin conducting a unique electrical current signature of various data, e.g., data identifying the IEM device 104 , data identifying the medication, etc.
- data e.g., data identifying the IEM device 104
- data identifying the medication e.g., data identifying the medication, etc.
- Various aspects of an IEM device are disclosed in commonly assigned applications Pharma-Informatics System, PCT Application No. PCT/US2006/16370 published as WO/2006/116718; Controlled Activation Ingestible Identifier, PCT Application No. PCT/US2007/82563 published as WO/2008/052136; Active Signal Processing Personal Health Signal Receivers, PCT Application No.
- PCT/US2007/24225 published as WO/2008/63626; Low Voltage Oscillator for Medical Devices, PCT Application No. PCT/US2007/22257 published as WO/2008/066617; Ingestible Event Marker Systems, PCT Application No. PCT/US2008/52845 published as WO/2008/095183; In-Body Power Source Having High Surface Area Electrode, PCT Application No. PCT/US2008/53999 published as WO/2008/101107; In-Body Device Having a Multi-Directional Transmitter, PCT Application No. PCT/US2008/56296 published as WO/2008/112577; In-Body Device Having Deployable Antenna, PCT Application No.
- the IEM device 104 conducts when in the process of being consumed by the digestive fluids 114 in the stomach 116 .
- IEM devices 104 may be configured to communicate continuously or intermittently while being consumed. Additionally, the IEM device 104 may be wholly or partially consumed.
- an IEM device 104 or components thereof may pass through a patient's system.
- an IEM device 104 may be configured to be selectively activated, deactivated, and/or reactivated.
- the architecture and operation of a typical IEM device 104 is explained in more detail below in connection with FIG. 21 .
- the electrical current signature generated by the IEM device 104 while disintegrating in the digestive fluids 114 is detectable by the detection arrangement 108 coupled to the patient 106 .
- Each of the ear buds 110 R, 110 L comprises a conducting electrode portion 300 R as shown in FIGS. 3A , 3 B for the right ear bud 110 R.
- the conducting electrode portion 300 R of the right ear bud 110 R and 300 L of the left ear bud 110 L are coupled to the skin of the patient 106 and detect the minute electrical current signature generated by the dissolving IEM device 104 .
- the electrodes 300 R, 300 L electrically couple the IEM device 104 ( FIGS. 1 and 2 ) signal to the detection circuitry in the mobile device 102 .
- the detection arrangement 108 in the form of ear buds 110 R, 110 L may be used to support periodic detection of ingestion of an IEM device 104 .
- the patient 106 inserts the ear buds 110 R, 110 L in corresponding ears and connects the plug into a corresponding connector located on the mobile device 102 .
- the electrodes 300 contact the skin of the patient 106 to pick up the current signal generated by the IEM device 104 .
- an application is launched on the mobile device 102 and the patient 106 takes their medication, which includes the IEM device 104 .
- the application may be launched automatically upon detection of the ear buds 110 R, 110 L, electrodes 300 , and the like, or may be launched by the user selection using conventional techniques such as mouse over and click, pushbutton switch activation, virtual pushbutton switch activation, voice recognition, vibration, tapping user interface screen, orientation of the device, for example.
- the IEM device 104 When the IEM device 104 reaches the stomach 116 , it begins to dissolve in the digestive fluids 114 and initiates communication of a unique electrical current signature, which is detected by the electrodes 300 located on the ear buds 110 R, 110 L.
- the signal is coupled to detection circuitry in the mobile device 102 and the ingestion of the IEM device 104 is confirmed or the application simply times out due to no detection.
- the patient 106 is then free to remove the ear buds 110 R, 110 L.
- the ear buds 110 R, 110 L may be used to pipe sound so that the patient 106 may be engaged by music, news feed, or other sounds while waiting for the IEM device 104 to be detected by the mobile device 102 .
- an audible signal may alert the patient 106 to remove the ear buds 110 R, 110 L at the end of the process.
- the form factor of the detection arrangement 108 is configured to look like a familiar object such that the patient 106 can readily interact with it and will not feel a stigma associated with wearing the detection arrangement 108 .
- the ear buds 110 R, 110 L will not lead to a stigma about requiring observed therapy because they blend into standard everyday electronics with which people are quite familiar and often use.
- the patient 106 may be instructed to place the ear buds 110 R, 110 L on prior to taking the medicinal dose comprising the IEM device 104 to assure that the detection electrodes 300 are in place prior to the occurrence of the detectable event. It also minimizes opportunities for the patient 106 getting distracted after taking the medicinal dose and forgetting to attach the detection electrodes 300 associated with the ear buds 110 R, 110 L. It also minimizes anxiety that detection may be missed and rushing to locate the detector. The techniques described herein also free the patient's 106 hands for subsequent handling of the medicinal doses and for subsequent activity after taking the medicinal doses while waiting for the detection to take place.
- the mobile device 102 acts as a first node for the detection of the unique current signature generated by the IEM 104 .
- the mobile device 102 may perform a number of functions.
- the mobile device 102 may store the time and date when the unique current signature was detected, which corresponds approximately to the time and date when the IEM device 104 was ingested by the patient 106 .
- the mobile device 102 may store information encoded in the unique electrical current signature. For example, the identity of the IEM device 104 , the type of medication associated with the IEM device 104 , the manufacturer of the medication and/or IEM device 104 , among other information, may be encoded by the unique electrical current signature, without limitation.
- the mobile device 102 may transmit the detected information associated with the IEM device 104 to a wireless node 120 (e.g., a second node).
- the wireless node 120 may comprise, for example, a mobile station or fixed station having wireless capabilities. Examples for the wireless node 120 may include any of the examples given for the mobile device 102 , and further may include a wireless access point, base station or node, base station radio/transceiver, router, switch, hub, gateway, and so forth. In one aspect, for example, the wireless node 120 may comprise a base station for a cellular radiotelephone communications system. Although some aspects may be described with the wireless node 120 implemented as a base station by way of example, it may be appreciated that other aspects may be implemented using other wireless devices as well.
- the wireless node 120 may be a communication hub, access point, another mobile device, and so on. Accordingly, the wireless node 120 may act as a local access point to wide area networks such as the Internet to communicate the information received from the IEM device 104 to a node 122 , which is remotely located from the first and second nodes, e.g., the mobile device 102 and the wireless node 120 , respectively.
- the remote node 122 may be a healthcare facility (physician's office, hospital, pharmacy), drug manufacturer, nutrition center, back end patient healthcare data processing facility, and the like.
- the mobile device 102 communicates with the wireless node 120 over a wireless medium 124 .
- the mobile device 102 and the wireless node 120 may comprise or be implemented by a wireless device.
- the wireless device generally may comprise various physical or logical elements implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints.
- the physical or logical elements may be connected by one or more communications media.
- communication media may comprise wired communication media, wireless communication media, or a combination of both, as desired for a given implementation.
- the described aspects of the mobile device 102 and/or the wireless node 120 may comprise part of a cellular communication system.
- the mobile device 102 and the wireless node 120 may provide voice and/or data communications functionality in accordance with different types of cellular radiotelephone systems.
- Examples of cellular communication systems may include Code Division Multiple Access (CDMA) cellular radiotelephone communication systems, Global System for Mobile Communications (GSM) cellular radiotelephone systems, North American Digital Cellular (NADC) cellular radiotelephone systems, Time Division Multiple Access (TDMA) cellular radiotelephone systems, Extended-TDMA (E-TDMA) cellular radiotelephone systems, Narrowband Advanced Mobile Phone Service (NAMPS) cellular radiotelephone systems, third generation (3G) systems such as Wide-band CDMA (WCDMA), CDMA-2000, Universal Mobile Telephone System (UMTS) cellular radiotelephone systems compliant with the Third-Generation Partnership Project (3GPP), fourth generation systems (4G), and so forth.
- CDMA Code Division Multiple Access
- GSM Global System for Mobile Communications
- NADC North American Digital Cellular
- TDMA Time Division Multiple Access
- E-TDMA Extended-TDMA
- NAMPS Narrowband Advanced Mobile Phone Service
- third generation (3G) systems such as Wide-band CDMA (WCDMA), CDMA-2000, Universal Mobile Telephone
- the mobile device 102 and the wireless node 120 may be arranged to communicate using a number of different wireless wide area network (WWAN) data communication services.
- WWAN data communication services may include GSM with General Packet Radio Service (GPRS) systems (GSM/GPRS), CDMA/1xRTT systems, Enhanced Data Rates for Global Evolution (EDGE) systems, Evolution Data Only or Evolution Data Optimized (EV-DO) systems, Evolution For Data and Voice (EV-DV) systems, High Speed Downlink Packet Access (HSDPA) systems, and so forth.
- GSM with General Packet Radio Service (GPRS) systems GSM/GPRS
- CDMA/1xRTT systems
- EDGE Enhanced Data Rates for Global Evolution
- EV-DO Evolution Data Only or Evolution Data Optimized
- EV-DV Evolution For Data and Voice
- HSDPA High Speed Downlink Packet Access
- the wireless node 120 may be connected by wired communications medium to additional nodes and connections to other networks, including a voice/data network such as the Public Switched Telephone Network (PSTN), a packet network such as the Internet, a local area network (LAN), a metropolitan area network (MAN), a wide area network (WAN), an enterprise network, a private network, and so forth.
- PSTN Public Switched Telephone Network
- packet network such as the Internet
- LAN local area network
- MAN metropolitan area network
- WAN wide area network
- enterprise network a private network
- network 130 may be arranged to communicate information in accordance with one or more Internet protocols as defined by the Internet Engineering Task Force (IETF), such as the Transmission Control Protocol/Internet Protocol (TCP/IP), for example.
- IETF Internet Engineering Task Force
- TCP/IP Transmission Control Protocol/Internet Protocol
- the network also may include other cellular radio telephone system infrastructure and equipment, such as base stations, mobile subscriber centers, central offices, and so forth.
- the mobile device 102 and the wireless node 120 also may be capable of voice and/or data communications. Communications between the mobile device 102 and the wireless node 120 may be performed over wireless shared media 124 in accordance with a number of wireless protocols. Examples of wireless protocols may include various wireless local area network (WLAN) protocols, including the Institute of Electrical and Electronics Engineers (IEEE) 802.xx series of protocols, such as IEEE 802.11a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth.
- WLAN wireless local area network
- IEEE 802.xx series of protocols such as IEEE 802.11a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth.
- wireless protocols may include various WWAN protocols, such as GSM cellular radiotelephone system protocols with GPRS, CDMA cellular radiotelephone communication systems with 1xRTT, EDGE systems, EV-DO systems, EV-DV systems, HSDPA systems, and so forth.
- WWAN protocols such as GSM cellular radiotelephone system protocols with GPRS, CDMA cellular radiotelephone communication systems with 1xRTT, EDGE systems, EV-DO systems, EV-DV systems, HSDPA systems, and so forth.
- wireless protocols may include wireless personal area network (PAN) protocols, such as an Infrared protocol, a protocol from the Bluetooth Special Interest Group (SIG) series of protocols, including Bluetooth Specification versions v1.0, v1.1, v1.2, v2.0, v2.0 with Enhanced Data Rate (EDR), as well as one or more Bluetooth Profiles, and so forth.
- SIG Bluetooth Special Interest Group
- the Bluetooth wireless technology uses short wavelength radio transmissions in the industrial, scientific, and medical (ISM) radio band from 2400-2480 MHz) from fixed and mobile devices, creating personal area networks (PANs) with high levels of security.
- ISM industrial, scientific, and medical
- PANs personal area networks
- wireless protocols may include near-field communication techniques and protocols, such as electro-magnetic induction (EMI) techniques.
- EMI techniques may include passive or active radio-frequency identification (RFID) protocols and devices.
- RFID radio-frequency identification
- Other suitable protocols may include Ultra Wide Band (UWB), Digital Office (DO), Digital Home, Trusted Platform Module (TPM), ZigBee, and other protocols.
- the mobile device 102 may have one or more application client modules.
- an application client module receives information from the detection arrangement 108 and process the information to confirm that the patient 106 has ingested the IEM device 104 .
- the application client module records a time and date that the IEM device 104 was detected, which corresponds approximately to the time and date when the IEM device 104 was ingested by the patient 106 .
- client application module may store information encoded in the unique electrical current signature such as the identity of the IEM device 104 , the type of medication associated with the IEM device 104 , the manufacturer of the medication and/or IEM device 104 , among other information.
- the client application module may implement a data logging function tracking the ingestible events associated with the patient 106 .
- the client application module can initiate communication with other devices and/or networks.
- client application modules may be arranged to retrieve and process information from a network (e.g., servers) and display the information on a display or audibly announce the information by way of speaker.
- the mobile device 102 may be implemented as an open platform adaptable to execute one or more application client programs and integrate with third party software application client programs.
- the application client modules may provide the necessary interface to existing data sources or backend services, such as web related and wireless services, support GPS navigation modules, process browser based content, and operate with one or more wireless mobile computing devices and web applications, for example.
- the application client modules may integrate with third party application client programs via APIs to retrieve location information, such as, for example, geographic coordinates, map interfaces, queries for search engines, interfaces to third party location based services (LBS), and any other services provided via servers, and the like.
- the application client modules may include a user interface layer to process search queries, search results, display maps (e.g., zoom/pan), provide turn-by-turn directions, provide voice activated turn-by-turn directions, and provide permission based interface for LBS type location information, among others.
- the application client modules also may include an interface layer to process local information, point of interface (POI) data, and a data abstraction layer to process map data, for example.
- POI point of interface
- the application client modules also may process data from various data sources or backend services distributed throughout a network (e.g., servers) such as, for example, GPS integrated circuits located either on or off the mobile device 500 , carrier AGPS, various prolific search engines (e.g., GOOGLE, YAHOO, and the like), vector data, tile data, among others, for example.
- a network e.g., servers
- GPS integrated circuits located either on or off the mobile device 500
- carrier AGPS various prolific search engines (e.g., GOOGLE, YAHOO, and the like)
- vector data e.g., GOOGLE, YAHOO, and the like
- tile data may be defined as a spatial unit representing a sub-region of an image, usually of rectangular nature, by which geographic data is organized, subdivided, and stored in a map library.
- the mobile device 102 may employ a software architecture for retrieving and processing information from a communications network.
- the software architecture may enable the mobile device 102 to communicate and process information from the network and servers, for example.
- the software architecture includes component implementations and specifies standard programmatic interfaces such as APIs to assist in the common requirements of retrieving information wirelessly between an application client and multiple data source servers.
- the software architecture may provide a method to enable application clients to interact with disparate data providers.
- the software architecture may be implemented using object-oriented programming (OOP) techniques.
- OOP is a computer programming paradigm. OOP assumes that a computer program is composed of a collection of individual units, or objects, as opposed to a traditional assumption that a program is a list of instructions to the computer. Each object is capable of receiving messages, processing data, and sending messages to other objects. Almost any concept may be represented as an object. Examples of an object may include menu objects, image objects, frame objects, title objects, border objects, tab objects, list objects, color blue objects, button objects, scroll bar objects, input field objects, text and image objects, and so forth.
- the software architecture may be described in the context of OOP by way of example, it may be appreciated that other software paradigms may be used as desired for a given implementation.
- the software architecture may be implemented using a model-view-controller (MVC) architecture as well. The aspects are not limited in this context.
- MVC model-view-controller
- the wireless node 120 may comprise an optional display 126 .
- the display 126 may be implemented using any type of visual interface such as a liquid crystal display (LCD), capacitive touch screen panel, and the like.
- LCD liquid crystal display
- capacitive touch screen panel and the like.
- the wireless node 120 may comprise a memory 128 .
- the memory 128 may comprise any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory.
- memory may include read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDR-RAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase-change memory (e.g., ovonic memory), ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, disk memory (e.g., floppy disk, hard drive, optical disk, magnetic disk), or card (e.g.,
- SONOS
- the wireless node 120 may comprise a processor 130 such as a central processing unit (CPU).
- the processor 130 may be implemented as a general purpose processor, a chip multiprocessor (CMP), a dedicated processor, an embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a co-processor, a microprocessor such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, and/or a very long instruction word (VLIW) microprocessor, or other processing device.
- the processor 510 also may be implemented by a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- PLD programmable logic device
- the processor 130 may be arranged to run an operating system (OS) and various mobile applications.
- OS operating system
- mobile applications include, for example, a telephone application, a camera (e.g., digital camera, video camera) application, a browser application, a multimedia player application, a gaming application, a messaging application (e.g., e-mail, short message, multimedia), a viewer application, and so forth.
- the processor 130 may be arranged to receive information through a communications interface 132 .
- the communications interface 132 may comprise any suitable hardware, software, or combination of hardware and software that is capable of coupling the wireless node 120 to one or more networks and/or devices.
- the wireless node 120 is in wireless communication with the mobile device 102 via the wireless medium 124 .
- the wireless node 120 also may communicate with the remote node 122 via a wired communication medium 134 or a wireless communication medium 136 .
- the communications interface 132 may be arranged to operate using any suitable technique for controlling information signals using a desired set of communications protocols, services or operating procedures.
- the communications interface 138 may include the appropriate physical connectors to connect with a corresponding communications medium, whether wired or wireless.
- Vehicles of communication include a network.
- the network may comprise LANs as well as WANs including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data.
- the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
- Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices.
- the points include, for example, wireless devices such as wireless headsets, audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as tablet computers, printers.
- Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices.
- the points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as tablet computers, printers.
- the communications interface 138 may comprise one or more interfaces such as, for example, a wireless communications interface, a wired communications interface, a network interface, a transmit interface, a receive interface, a media interface, a system interface, a component interface, a switching interface, a chip interface, a controller, and so forth.
- the local node 120 may include a wireless communication interface 132 comprising one or more antennas 133 , transmitters, receivers, transceivers, amplifiers, filters, control logic, and so forth.
- the wireless node 120 may comprise the functionality to wirelessly receive and/or wirelessly transmit data received from the mobile device 102 and transmit that data to other nodes, such as the external node 122 or other nearby nodes, for example. Further, in various aspects, the wireless node 120 may incorporate and/or be associated with, e.g., communicate with, various devices. Such devices may generate, receive, and/or communicate data, e.g., physiologic data. The devices include, for example, “intelligent” devices such as gaming devices, e.g., electronic slot machines, handheld electronic games, electronic components associated with games and recreational activities.
- SMS short message service
- MMS multimedia messaging system
- Some aspects of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones.
- PSTN public switched telephone network
- Various aspects of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
- Some aspects may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the aspects.
- a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software.
- the machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like.
- memory removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic
- the instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like.
- the instructions may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Perl, Matlab, Pascal, Visual BASIC, arrangement language, machine code, and so forth.
- the wireless node 120 may be configured as a communication hub and may include any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate information received from the mobile device 102 to the remote node 122 . Communication of the information includes receiving, storing, manipulating, displaying, processing, and/or transmitting the data to the remote node 122 via wired or wireless media 134 , 136 .
- the wireless node 120 also functions to communicate, e.g., receive and transmit, non-physiologic data.
- non-physiologic data include gaming rules and data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub (local node 120 ) directly or indirectly, e.g., via the mobile device 102 .
- each of the mobile device 102 and/or the wireless node 120 include, for example, base stations, personal communication devices, handheld devices, mobile telephones, and mobile computing devices having wireless capabilities generally known as smartphones capable of executing computer applications, as well as voice communications and/or data communications.
- mobile computing devices include any type of wireless device, mobile station, or portable computing device with a self-contained power source, e.g., battery.
- smartphones include, for example, products generally known under the trade designations Palm, Blackberry, iPhone, Android, Windows Phone, among others.
- the mobile device 102 and/or the wireless node 120 may comprise, or be implemented as, a PDA, laptop computer, ultra-laptop computer, combination cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, messaging device, data communication device, tablet computer, e-book reader, cellular telephone, pager, one-way pager, two-way pager, messaging device, data communication device, and so forth.
- Examples of a mobile device 102 and/or wireless node 120 also may include computers that are arranged to be worn by a person, such as a wrist computer, finger computer, ring computer, eyeglass computer, belt-clip computer, arm-band computer, shoe computers, clothing computers, and other wearable computers.
- a fixed computing device for example, may be implemented as a desk top computer, workstation, client/server computer, and so forth.
- the mobile device 102 and/or wireless node 120 may comprise personal communication devices including, for example, devices having communication and computer functionality and typically intended for individual use, e.g., mobile computers, sometimes referred to as “handheld devices.”
- Base stations comprise any device or appliance capable of receiving data such as physiologic data. Examples include computers, such as desktop computers and laptop computers, and intelligent devices/appliances.
- Intelligent devices/appliances include consumer and home devices and appliances that are capable of receipt of data such as physiologic data. Intelligent devices/appliances may also perform other data-related functions, e.g., transmit, display, store, and/or process data. Examples of intelligent devices/appliances include refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales. Such devices and appliances may include additional functionality such as sensing or monitoring various physiologic data, e.g., weight, heart rate.
- Mobile telephones include telephonic communication devices associated with various mobile technologies, e.g., cellular networks.
- the wireless node 120 is in communication with a remote node 122 .
- the remote node 122 comprises a processing system 138 communicatively coupled to a database 140 .
- Information associated with patients, including identity and medication types and doses, may be stored in the database 140 .
- the processing system 138 receives information from the mobile device 102 via the wireless node 120 and accesses the information in the database 140 to provide information to the care provider through the wireless node 120 and/or the mobile device 102 .
- the remote node 122 can communicate various information; for example, identification information such as a photo of the patient for identification, a photo of the IEM device 104 before it is ingested, the type of medication combined with the IEM device 104 , as well as confirmation of the type and dose of medication that the patient ingested.
- the wireless node 120 can communicate with the remote node 122 using any mode and frequency of communication that is available at the site, such as wireless, G2, G3, G4, real-time, periodically based on predetermined time delays, as well as store and forward at later time.
- Vehicles of communication between the wireless node 120 and the remote node 122 include a network.
- the network may comprise a LAN as well as a WAN including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data.
- the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
- the processing system 138 at the remote node 122 may comprise servers configured as desired, e.g., to provide for subject directed permissions.
- the servers may be configured to allow a family caregiver to participate in the subject's therapeutic regimen, e.g., via an interface (such as a web interface) that allows the family caregiver to monitor alerts and trends generated by the server, and provide support back to the patient.
- the servers also may be configured to provide responses directly to the subject, e.g., in the form of subject alerts, subject incentives, which are relayed to the subject via the communication device.
- the servers also may interact with a health care professional, e.g., RN, physician, which can use data processing algorithms to obtain measures of health and compliance of the subject, e.g., wellness index summaries, alerts, cross-patient benchmarks, and provide informed clinical communication and support back to the patient.
- RN health care professional
- the servers also may interact with pharmacies, nutrition centers, and drug manufactures.
- the remote node 122 may store information received from the mobile device 102 in the database 140 .
- Such information may comprise the approximate time and date stamp when the IEM device 104 was ingested by the patient 106 .
- an identification number such as a serial number, for example, associated with the IEM device 104 , the individual patient identification, the source of the medication, and the expiration date or shelf life of the medication combined with the IEM device 104 may be stored in the database 140 .
- FIG. 2 illustrates one aspect of the system 200 comprising a mobile device 102 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIG. 1 ), for example.
- the IEM device 104 communicates information to the mobile device 102 via the detection arrangement 108 wiredly connected to the mobile device 102 .
- the mobile device 102 communicates with a cellular tower 202 and base station 204 and can access the Internet 206 via a cellular network 208 .
- information received by the mobile device 102 from the IEM device 104 can be communicated to the remote node 122 via the Internet 206 through the cellular network 208 .
- the processing system 138 at the remote node 122 receives the information from the mobile device 102 and may store it in the database 140 .
- the mobile device 102 communicates with a local wireless access point 210 (e.g., Wi-Fi), which is coupled to a LAN 212 .
- the LAN 212 is coupled to a WAN such as the Internet 206 , which is coupled to the remotely located remote node 122 .
- the mobile device 102 can communicate the information to the processing system 138 at the remote node 122 via the access point 210 , LAN 212 , and Internet 206 .
- the processing system 134 stores the information in the database 140 .
- the remote node 122 can access other networks 214 for additional processing of the information associated with the IEM device 104 stored in the database 140 .
- the mobile device 102 may transmit information associated with the IEM device 104 to another mobile device.
- the other mobile device then communicates with the cellular tower 202 , base station 204 , cellular network 208 , and the Internet 206 to the remote node 122 .
- the other mobile device communicates with the access point 210 , LAN 212 , and the Internet 206 to the remote node 122 .
- the information associated with the IEM device 104 can be processed by the processing system and/or stored in the database 140 .
- FIG. 4 illustrates one aspect of a system 400 comprising a detection arrangement 108 in the form of earphones 110 wiredly coupled to a mobile device 102 for detecting an electrical signal generated by an ingestible event marker device.
- the detection arrangement 108 comprises ear buds 110 R, 110 L coupled by electrical conductors 112 R, 112 L to a plug 402 .
- the plug 402 is received in a corresponding data port socket or jack connector 404 portion of the mobile device 102 .
- the mobile device 102 comprises a housing 406 , a display 408 , an input/output (I/O) system 410 , an aperture 412 for capturing digital images, and an antenna 414 .
- the functional modules of the mobile device 102 are described below in connection with FIG. 5 .
- the display 408 may comprise any suitable display unit for displaying information appropriate for a mobile device 102 .
- the I/O system 410 may comprise any suitable I/O device for entering information into the mobile device 102 .
- Examples for the I/O system 410 may include an alphanumeric keyboard, a numeric keypad, a touch pad, a capacitive touch screen panel, input keys, buttons, switches, rocker switches, voice recognition device and software, and so forth.
- the I/O system 410 may comprise a microphone and speaker, for example. Information also may be entered into the mobile device 102 by way of the microphone. Such information may be digitized by a voice recognition device.
- FIG. 5 illustrates a system diagram of one aspect of a mobile device 500 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 and 2 ), for example, configured to couple to an external detection arrangement.
- FIG. 5 illustrates a more detailed block diagram of the mobile computing device 102 described with reference to FIGS. 1 , 2 , 4 .
- the mobile device 500 may comprise multiple elements.
- FIG. 5 shows a limited number of elements in a certain topology by way of example, it can be appreciated that additional or fewer elements in any suitable topology may be used in the mobile device 500 as desired for a given implementation.
- any element as described herein may be implemented using hardware, software, or a combination of both, as previously described with reference to node implementations. Aspects of the mobile device 500 , however, are not limited in this context.
- the mobile device 500 comprises a housing 406 , an antenna 414 , a radio subsystem 514 , and a processing subsystem 512 connected to the radio subsystem 514 via a bus.
- the radio subsystem 514 may perform voice and data communications operations using wireless shared media for the mobile device 500 .
- the processing subsystem 512 may execute software for the mobile device 500 .
- a bus may comprise a universal serial bus (USB), micro-USB bus, dataport, and appropriate interfaces, as well as others.
- the radio subsystem 514 may be arranged to communicate voice information and control information over one or more assigned frequency bands of the wireless shared media.
- the mobile device 500 may comprise an imaging subsystem 508 for processing images captured through the aperture 412 .
- a camera may be coupled (e.g., wired or wirelessly) to the processing subsystem 512 and is configured to output image data (photographic data of a person or thing, e.g., video data, digital still image data) to the processing subsystem 512 and to the display 408 .
- the imaging subsystem 508 may comprise a digital camera implemented as an electronic device used to capture and store images electronically in a digital format. Additionally, in some aspects the digital camera may be capable of recording sound and/or video in addition to still images.
- the imaging subsystem 508 may comprise a controller to provide control signals to components of a digital camera, including lens position component, microphone position component, and a flash control module, to provide functionality for the digital camera.
- the controller may be implemented as, for example, a host processor element of the processing subsystem 512 of the mobile device 500 .
- the imaging controller may be implemented as a separate processor from the host processor.
- the imaging subsystem 508 may comprise memory either as an element of the processing subsystem 512 of the mobile device 500 or as a separate element. It is worthy to note that in various aspects some portion or the entire memory may be included on the same integrated circuit as the controller. Alternatively, some portion or the entire memory may be disposed on an integrated circuit or other medium (e.g., hard disk drive) external to the integrated circuit of the controller.
- the imaging subsystem 508 may comprise an aperture 412 with a lens component and a lens position component.
- the lens component may consist of a photographic or optical lens or arrangement of lenses made of a transparent material such as glass, plastic, acrylic or Plexiglass, for example.
- the one or more lens elements of the lens component may reproduce an image of an object and allow for zooming in or out on the object by mechanically changing the focal length of the lens elements.
- a digital zoom may be employed in the imaging subsystem 508 to zoom in or out on an image.
- the one or more lens elements may be used to focus on different portions of an image by varying the focal length of the lens elements. The desired focus can be obtained with an autofocus feature of the digital imaging subsystem 508 or by manually focusing on the desired portion of the image, for example.
- a navigation subsystem 510 supports navigation using the mobile device 500 .
- the mobile device 500 may comprise location or position determination capabilities and may employ one or more location determination techniques including, for example, Global Positioning System (GPS) techniques, Cell Global Identity (CGI) techniques, CGI including timing advance (TA) techniques, Enhanced Forward Link Trilateration (EFLT) techniques, Time Difference of Arrival (TDOA) techniques, Angle of Arrival (AOA) techniques, Advanced Forward Link Trilateration (AFTL) techniques, Observed Time Difference of Arrival (OTDOA), Enhanced Observed Time Difference (EOTD) techniques, Assisted GPS (AGPS) techniques, hybrid techniques (e.g., GPS/CGI, AGPS/CGI, GPS/AFTL or AGPS/AFTL for CDMA networks, GPS/EOTD or AGPS/EOTD for GSM/GPRS networks, GPS/OTDOA or AGPS/OTDOA for UMTS networks), among others.
- GPS Global Positioning System
- CGI Cell Global Identity
- CGI including timing advance (TA) techniques,
- the mobile device 500 may be configured to operate in one or more location determination modes including, for example, a standalone mode, a mobile station (MS) assisted mode, and/or a MS-based mode.
- a standalone mode such as a standalone GPS mode
- the mobile device 500 may be configured to determine its position without receiving wireless navigation data from the network, though it may receive certain types of position assist data, such as almanac, ephemeris, and coarse data.
- the mobile device 500 may comprise a local location determination circuit such as a GPS receiver which may be integrated within the housing 406 configured to receive satellite data via the antenna 414 and to calculate a position fix.
- Local location determination circuit may alternatively comprise a GPS receiver in a second housing separate from the housing 406 but in the vicinity of the mobile device 500 and configured to communicate with the mobile device 500 wirelessly (e.g., via a PAN, such as Bluetooth).
- the mobile device 500 may be configured to communicate over a radio access network (e.g., UMTS radio access network) with a remote computer (e.g., a location determination entity (LDE), a location proxy server (LPS) and/or a mobile positioning center (MPC), among others).
- a radio access network e.g., UMTS radio access network
- a remote computer e.g., a location determination entity (LDE), a location proxy server (LPS) and/or a mobile positioning center (MPC), among others.
- LDE location determination entity
- LPS location proxy server
- MPC mobile positioning center
- a detection subsystem 516 is coupled to a connector 404 , which is configured to receive the plug 402 ( FIG. 4 ) portion of the detection arrangement 108 .
- the detection subsystem 516 detects the unique current signature generated by the IEM device 104 ( FIGS. 1 , 2 ), which encodes the information associated with the IEM device, the medication, and/or the patient, among other information.
- the detection subsystem 516 is coupled to the processing subsystem 512 and provides the decoded information to the processing subsystem 512 .
- the processing subsystem 512 activates the radio subsystem 514 to communicate the decoded IEM information to the wireless node 120 ( FIGS. 1 , 2 ) and/or the cellular network 208 ( FIG. 2 ).
- the detection subsystem 516 is described in more detail below in connection with FIGS. 6 and 7 .
- the mobile device 500 also may comprise a power management subsystem (not shown) to manage power for the mobile device 500 , including the radio subsystem 514 , the processing subsystem 512 , and other elements of the mobile device 500 .
- the power management subsystem may include one or more batteries to provide direct current (DC) power, and one or more alternating current (AC) interfaces to draw power from a standard AC main power supply.
- the radio subsystem 514 may include an antenna 414 .
- the antenna 414 may broadcast and receive RF energy over the wireless shared media 124 ( FIG. 1 ).
- Examples for the antenna 414 may include an internal antenna, an omni-directional antenna, a monopole antenna, a dipole antenna, an end fed antenna, a circularly polarized antenna, a micro-strip antenna, a diversity antenna, a dual antenna, an antenna array, a helical antenna, and so forth. The aspects are not limited in this context.
- the antenna 414 may be connected to a multiplexer.
- the multiplexer multiplexes signals from a power amplifier for delivery to the antenna 414 .
- the multiplexer demultiplexes signals received from the antenna for delivery to an RF chipset.
- the multiplexer may be connected to a power amplifier, where the power amplifier may be used to amplify any signals to be transmitted over the wireless shared media 124 ( FIG. 1 ).
- the power amplifier may work in all assigned frequency bands, such as four (4) frequency bands in a quad-band system.
- the power amplifier also may operate in various modulation modes, such as Gaussian Minimum Shift Keying (GMSK) modulation suitable for GSM systems and 8-ary Phase Shift Keying (8-PSK) modulation suitable for EDGE systems.
- GMSK Gaussian Minimum Shift Keying
- 8-PSK Phase Shift Keying
- the power amplifier may be connected to an RF chipset.
- the RF chipset also may be connected to the multiplexer.
- the RF chipset may comprise an RF driver and an RF transceiver.
- the RF chipset performs all of the modulation and direct conversion operations required for GMSK and 8-PSK signal types for quad-band E-GPRS radio.
- the RF chipset receives analog in-phase (I) and quadrature (Q) signals from a baseband processor, and converts the I/O signals to an RF signal suitable for amplification by the power amplifier.
- the RF chipset converts the signals received from the wireless shared media 124 ( FIG.
- the RF chipset may use two chips by way of example, it may be appreciated that the RF chipset may be implemented using more or less chips and still fall within the intended scope of the aspects.
- the RF chipset may be connected to the baseband processor, where the baseband processor may perform baseband operations for the radio subsystem 514 .
- the baseband processor may comprise both analog and digital baseband sections.
- the analog baseband section includes I/O filters, analog-to-digital converters, digital-to-analog converters, audio circuits, and other circuits.
- the digital baseband section may include one or more encoders, decoders, equalizers/demodulators, GMSK modulators, GPRS ciphers, transceiver controls, automatic frequency control (AFC), automatic gain control (AGC), power amplifier (PA) ramp control, and other circuits.
- AFC automatic frequency control
- AGC automatic gain control
- PA power amplifier
- the baseband processor also may be connected to one or more memory units via a memory bus.
- the baseband processor may be connected to a flash memory unit and a secure digital (SD) memory unit.
- the memory units may be removable or non-removable memory.
- the baseband processor may use approximately 1.6 megabytes of static read-only memory (SRAM) for E-GPRS and other protocol stack needs.
- SRAM static read-only memory
- the baseband processor also may be connected to a subscriber identity module (SIM).
- SIM subscriber identity module
- the baseband processor may have a SIM interface for the SIM, where the SIM may comprise a smart card that encrypts voice and data transmissions and stores data about the specific user so that the user can be identified and authenticated to the network supplying voice or data communications.
- the SIM also may store data such as personal phone settings specific to the user and phone numbers.
- the SIM can be removable or non-removable.
- the baseband processor may further include various interfaces for communicating with a host processor of the processing subsystem 512 .
- the baseband processor may have one or more universal asynchronous receiver-transmitter (UART) interfaces, one or more control/status lines to the host processor, one or more control/data lines to the host processor, and one or more audio lines to communicate audio signals to an audio subsystem of processing subsystem 514 .
- UART universal asynchronous receiver-transmitter
- the processing subsystem 514 may provide computing or processing operations for the mobile device 500 and/or for the detection subsystem 516 .
- the processing subsystem 514 may be arranged to execute various software programs for the mobile device 500 as well as several software programs for the detection subsystem 516 .
- the processing subsystem 514 may be used to implement operations for the various aspects as software executed by a processor, it may be appreciated that the operations performed by the processing subsystem 514 also may be implemented using hardware circuits or structures, or a combination of hardware and software, as desired for a particular implementation.
- the processing subsystem 512 may include a processor implemented using any processor or logic device, such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing a combination of instruction sets, or other processor device.
- CISC complex instruction set computer
- RISC reduced instruction set computing
- VLIW very long instruction word
- a processor may be implemented as a general purpose processor, such as a processor made by Intel Corporation, Santa Clara, Calif.
- the processor also may be implemented as a dedicated processor, such as a controller, microcontroller, embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
- a dedicated processor such as a controller, microcontroller, embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
- DSP digital signal processor
- I/O input/output
- MAC media access control
- FPGA field programmable gate array
- PLD programmable logic device
- the processing subsystem 514 may include a memory to connect to the processor.
- the memory may be implemented using any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory.
- the memory may include ROM, RAM, DRAM, DDRAM, SDRAM, SRAM, PROM, EPROM, EEPROM, flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any other type of media suitable for storing information.
- some portion or all of the memory may be included on the same integrated circuit as the processor thereby obviating the need for a memory bus.
- some portion or all of the memory may be disposed on an integrated circuit or other medium, for example a hard disk drive, that is external to the integrated circuit of the processor, and the processor may access the memory via a memory bus, for example.
- the memory may store one or more software components (e.g., application client modules).
- a software component may refer to one or more programs, or a portion of a program, used to implement a discrete set of operations.
- a collection of software components for a given device may be collectively referred to as a software architecture or application framework.
- a software architecture for the mobile device 500 is described in more detail below.
- a software architecture suitable for use with the mobile device 500 may include a user interface (UI) module, an interface module, a data source or backend services module (data source), and a third party API module.
- An optional LBS module may comprise a user based permission module, a parser module (e.g., National Maritime Electronic Association or NMEA), a location information source module, and a position information source module.
- NMEA National Maritime Electronic Association
- some software components may be omitted and others added. Further, operations for some programs may be separated into additional software components, or consolidated into fewer software components, as desired for a given implementation.
- the mobile device 500 software architecture may comprise several elements, components or modules, collectively referred to herein as a “module.”
- a module may be implemented as a circuit, an integrated circuit, an application specific integrated circuit (ASIC), an integrated circuit array, a chipset comprising an integrated circuit or an integrated circuit array, a logic circuit, a memory, an element of an integrated circuit array or a chipset, a stacked integrated circuit array, a processor, a digital signal processor, a programmable logic device, code, firmware, software, and any combination thereof.
- ASIC application specific integrated circuit
- FIG. 6A is a diagram 600 of one aspect of an earphone plug 402 coupled to an electrode input circuit 602 portion of a detection subsystem 516 of the mobile device 500 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 and 2 ), for example.
- the plug 402 comprises a conductive prong 604 having a plurality of conductive segments (L, R, G) separated by electrically insulative elements. Segment L is electrically connected to the left ear bud 110 L ( FIGS. 1 , 2 , 4 ) electrode element 300 L (not shown), segment R is electrically connected to the right ear bud 110 R ( FIGS. 1 , 2 , 4 ) electrode element 300 R ( FIGS.
- segment G is connected to ground.
- additional segments may be included in a plug.
- additional segments may be employed to pipe audio signals to the ear buds 110 R, 110 L in addition to the providing electrical connections to the electrode elements 300 R, 300 L.
- the plug 402 may be any type of electrical connector suitable for carrying electrical signals in either analog or digital form.
- the electrically conductive segments (L, R, G) are coupled to a corresponding connector 514 portion of the electrode input circuit 602 .
- FIG. 6B is a diagram of one aspect of an electrode input circuit 602 of the detection subsystem 516 shown in FIG. 6A .
- FIG. 6B provides a more detailed block diagram of a circuit configured to implement the block functional diagram of the electrode input circuit 602 depicted in FIG. 6A , according to one aspect.
- electrode input circuit 602 includes electrodes e1, e2 ( 611 , 612 ) which, for example, receive the conductively transmitted signals by an IEM device via connections L and R from the plug 402 .
- the signals received by the electrodes 611 , 612 are multiplexed by a multiplexer 620 which is electrically coupled to the electrodes 611 , 612 .
- the multiplexer 620 is electrically coupled to a high band pass filter 630 .
- the signal chain provides for a programmable gain to cover the desired level or range.
- the high band pass filter 630 passes frequencies in the 10 KHz to 34 KHz band while filtering out noise from out-of-band frequencies.
- the high band pass filter 630 may be replaced with any suitable band pass filter for any suitable frequency.
- the high frequency band may vary, and may include, for example, a range of about 3 KHz to about 300 KHz.
- the frequency band may vary, and may include, for example, a range of about 0.3 KHz to about 30 KHz, for example.
- the passing frequencies are then amplified by an amplifier 632 before being converted into a digital signal by a converter 634 for input into a high power processor 680 (shown as a DSP), which is electrically coupled to the frequency signal chain. Also shown in FIG. 6B is a flash memory 690 electrically coupled to the high power processor 680 to enable memory storage and enhance efficiency of operations.
- a DSP digital signal processor
- FIG. 6B Also shown in FIG. 6B is a flash memory 690 electrically coupled to the high power processor 680 to enable memory storage and enhance efficiency of operations.
- the high power processor 680 may be, for example, a VC5509 digital signal processor from Texas Instruments.
- the high power processor 680 performs the signal processing actions during the active state. These actions, may require larger amounts of current than the idle state—e.g., currents of 30 ⁇ A or more, such as 500 or more—and may include, for example, actions such as scanning for conductively transmitted signals, or processing conductively transmitted signals when received.
- the detection subsystem 516 may include a hardware accelerator module (not shown) to process data signals.
- the hardware accelerator module (not shown) may be implemented instead of, for example, a DSP. Being a more specialized computation unit, the hardware accelerator module performs aspects of the signal processing algorithm with fewer transistors (less cost and power) compared to the more general purpose DSP.
- the blocks of hardware may be used to “accelerate” the performance of important specific function(s).
- Some architectures for hardware accelerators may be “programmable” via microcode or VLIW assembly. In the course of use, their functions may be accessed by calls to function libraries.
- FIG. 7 is a system diagram of one aspect of a detection subsystem 516 of a mobile device for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 and 2 ), for example.
- FIG. 7 is a block functional diagram of one aspect of an integrated circuit component.
- the detection subsystem 516 comprises an electrode input circuit 602 , which receives the electrical current signature generated by the IEM device 104 from the detection arrangement 108 (both shown in FIGS. 1 and 2 ).
- electrically coupled to the electrode input circuit 602 is a transbody conductive communication module 702 and, in another aspect, a physiological sensing module 704 optionally may be coupled to the electrode input circuit 602 .
- the transbody conductive communication module 702 may be implemented as a first, e.g., high, frequency (HF) signal chain and the physiological sensing module 704 may be implemented as a second, e.g., low, frequency (LF) signal chain.
- the detection subsystem 516 also may include a temperature sensing module 706 for detecting ambient temperature and a 3-axis accelerometer 708 .
- the temperature sensing module 706 may be implemented using complementary oxide semiconductor (CMOS) circuit elements.
- CMOS complementary oxide semiconductor
- additional modules may be provided for sensing of the environment around the IEM device 104 , for example, including, without limitation, Ph sensing, impedance sensing.
- the detection subsystem 516 also may comprise a memory 710 for data storage (similar to any of the previously discussed memory elements), and a wireless communication module 712 to receive data from and/or transmit data to another device, for example in a data download/upload action, respectively.
- the sensors 714 and the feedback modules 716 also may be included in the detection subsystem 516 .
- the various functional modules are coupled to the processing subsystem 512 of the mobile device 500 ( FIG. 5 ).
- a detection subsystem may comprise its own dedicated processing engine.
- the detection subsystem 516 may comprise a dedicated processing engine 1402 , for example, a microcontroller or a digital signal processor, that is separate from the processing subsystem 512 of the mobile device 500 .
- the transbody conductive communication module 702 and the wireless communication module 712 each may comprise one or more transmitters/receivers (“transceiver”) modules.
- the term “transceiver” may be used in a very general sense to include a transmitter, a receiver, or a combination of both, without limitation.
- the transbody conductive communication module 702 is configured to communicate with the IEM device 104 ( FIGS. 1 and 2 ).
- the wireless communication module 712 may be configured to communicate with the wireless access point 210 ( FIG. 2 ).
- the wireless communication module 712 may be configured to communicate with other mobile devices.
- the sensors 714 typically contact the patient 106 ( FIGS. 1 and 2 ), e.g., can be removably attached to the torso. In various other aspects, the sensors 714 may be removably or permanently attached to the detection subsystem 516 . For example, the sensors 714 may be removably connected to the detection subsystem 516 by snapping metal studs.
- the sensors 714 may comprise, for example, various devices capable of sensing or receiving the physiologic data.
- the types of sensors 714 include, for example, electrodes such as biocompatible electrodes.
- the sensors 714 may be configured, for example, as a pressure sensor, a motion sensor, an accelerometer 708 , an electromyography (EMG) sensor, an IEM device 104 ( FIGS. 1 and 2 ), a biopotential sensor, an electrocardiogram sensor, a temperature sensor, a tactile event marker sensor, an impedance sensor, among other sensors.
- EMG electromyography
- IEM device 104 FIGS. 1 and 2
- the feedback module 716 may be implemented with software, hardware, circuitry, various devices, and combinations thereof.
- the function of the feedback module 716 is to provide communication with the patient 106 ( FIGS. 1 and 2 ) in a discreet, tactful, circumspect manner as described above.
- the feedback module 716 may be implemented to communicate with the patient 106 ( FIGS. 1 and 2 ) using techniques that employ visual, audio, vibratory/tactile, olfactory, and taste.
- FIG. 8 illustrates one aspect of a mobile device 800 comprising integrated electrodes 804 A, 804 B for detecting electrical signals generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 and 2 ), for example.
- the integrated electrodes 804 A, 804 B are coupled to a detection subsystem 516 ( FIG. 9 ) similar to the detection subsystem 516 ( FIGS. 5-7 ).
- the electrodes are replaced by the integrated electrodes 804 A, 804 B.
- the patient 106 FIG. 10
- the patient 106 ingests the medication comprising the IEM device 104 ( FIG.
- the mobile device with the contacting electrodes may be placed over a wrist-band or an arm-band which enables physical connectivity with the user.
- the mobile device 800 also comprises a housing 806 , a display 808 , an input/output (I/O) system 810 , an aperture 812 for capturing digital images, and an antenna 814 .
- I/O input/output
- a high level description of similar functional modules was provided in connection with the mobile device 102 shown in FIG. 5 and for the sake of conciseness and clarity will not be repeated here.
- FIG. 9 is system diagram of one aspect of a mobile device 900 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 , 2 , 10 ), for example, configured to couple to the integrated electrodes 805 A, 804 B.
- the mobile device 900 may comprise multiple elements.
- FIG. 9 shows a limited number of elements in a certain topology by way of example, it can be appreciated that additional or fewer elements in any suitable topology may be used in the mobile device 900 as desired for a given implementation.
- any element as described herein may be implemented using hardware, software, or a combination of both, as previously described with reference to node implementations. Aspects of the mobile device 900 , however, are not limited in this context.
- the mobile device 900 comprises a housing 806 and an antenna 814 .
- the mobile device 900 also comprises a radio subsystem 514 connected via a bus to a processing subsystem 512 .
- the radio subsystem 514 may perform voice and data communications operations using wireless shared media for the mobile device 900 .
- the processing subsystem 512 may execute software for the mobile device 900 .
- a bus may comprise a USB or micro-USB bus and appropriate interfaces, as well as others.
- the detection subsystem 516 is coupled to the integrated electrodes 804 A, 804 B, which are configured to be touched by the patient 106 ( FIG. 10 ) to conduct the unique electrical signature generated by the IEM device 104 ( FIG. 10 ). Accordingly, once the patient 106 has ingested the IEM device 104 and contacts the integrated electrodes 804 A, 804 B, the detection subsystem 516 detects the unique current signature generated by the IEM device 104 and coupled through the integrated electrodes 804 A, 804 B. As previously discussed, the unique current signature generated by the IEM device 104 encodes the information associated with the IEM device 104 , the medication, and/or the patient 106 , among other information.
- the detection subsystem 516 is coupled to the processing subsystem 512 and provides the decoded sequence to the processing subsystem 512 .
- the processing subsystem 512 activates the radio subsystem 514 to communicate the decoded information received from the IEM device 104 to the wireless node 120 ( FIGS. 1 , 2 ) or the cellular network 208 ( FIG. 2 ).
- the imaging subsystem 508 , navigation subsystem 510 , processing subsystem, 512 , and radio subsystem 514 were previously described in connection with FIG. 5 and will not be repeated here for the sake of conciseness and clarity of disclosure.
- FIG. 10 illustrates a patient 106 in the process of using one aspect of the mobile device 800 comprising integrated electrodes 804 A, 804 B ( FIG. 8 ) for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 , for example.
- an ingestible event marker such as the IEM device 104
- the patient 106 holds the mobile device 800 by contacting the integrated electrodes 804 A, 804 B.
- the unique electrical current signature that is generated by the IEM device 104 when it dissolves in the digestive fluids 114 of the stomach 116 is coupled from the patient 106 to the integrated electrodes 804 A, 804 B and to the detection subsystem 516 ( FIG. 9 ), as previously discussed.
- FIG. 11 illustrates one aspect of a mobile device 1100 received in a mating configuration with a mobile device enclosing arrangement 1102 comprising a detection circuit integrated therewith for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 , 2 , 10 ), for example.
- the enclosing arrangement 1102 may be referred to as a housing, enclosure, attachment, among others., and may substantially or partially cover or enclose the mobile device 1100 .
- FIG. 12 illustrates the mobile device 1100 and the enclosing arrangement 1102 (cradle, protective cover, skin, and the like) for receiving the mobile device 1100 in an unmated configuration.
- the mobile device 1100 shown in FIGS. 11 and 12 is substantially similar to the mobile devices 102 , 800 described hereinbefore and, therefore, a high level description of similar functional modules will not be repeated here for the sake of conciseness and clarity of disclosure.
- the mobile device 1100 is configured to mate with the enclosing arrangement 1102 .
- the enclosing arrangement 1102 contains a detection module 1200 integrated therewith.
- the detection module 1200 comprises a detection subsystem comprising an electrode input circuit similar to the detection subsystem 516 and electrode input circuit 602 described in connection with FIGS. 6 and 7 . Due to the similarity of the detection subsystem and electrode input circuit components, the particular details will not be repeated here for the sake of conciseness and clarity of disclosure.
- the enclosing arrangement 1102 also includes electrodes 1202 A and 12026 (not shown in FIG. 12 and shown in FIG. 13 ) to couple the patient to the detection module 1200 .
- the detection module 1200 may be electrically coupled to functional modules of the mobile device 1100 to detect and process the unique electrical signature generated by the IEM device 104 ( FIGS. 1 , 2 , 10 ).
- the detection module 1200 may be electrically coupled to the functional modules of the mobile device 1100 using any suitable techniques such as, for example, inductive coupling, wireless transmission, electrical connector, and the like.
- a housing comprising a suitable connector to electrically couple the detection module 1200 to the functional modules of the mobile device 1100 is described in connection with FIG. 13 .
- FIG. 13 illustrates one aspect of a enclosing arrangement 1102 for receiving a mobile device
- the enclosing arrangement 1102 comprises a detection circuit 1200 for detecting an electrical signal generated by an ingestible event marker integrated therewith and a connector 1300 for electrically coupling the detection circuit 1200 to the functional modules of the mobile device.
- the mobile device (not shown) is slidably inserted over the enclosing arrangement 1102 and plugged into the connector 1300 .
- the electrodes 1202 A, 12026 are used tot couple the patient to the detection module 1200 .
- the connector 1300 couples the detection module 1200 to the functional modules of the mobile device 1100 ( FIG. 12 ) for communication purposes, among other purposes.
- the detection module 1200 integrated with the enclosing arrangement 1102 is a standalone module and includes all the necessary electronic modules to detect the unique electrical current signature generated by the IEM device.
- FIG. 14 is a system diagram of one aspect of a detection circuit 1400 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 ( FIGS. 1 , 2 , 10 ), for example.
- the detection circuit 1400 is a standalone module that includes a processing engine 1402 .
- the processing engine 1402 is similar in functionality to the processing subsystem 512 previously discussed in connection with FIG. 5 , for example.
- the electrode input circuit 602 receives electrical inputs from the electrodes 1202 A, 12028 integrated with the enclosing arrangement 1102 ( FIG. 13 ).
- the processing engine 1402 receives inputs from the transbody conductive communication module 702 and the physiological sensing module 704 and decodes the unique electrical signature generated by the IEM device 104 ( FIGS. 1 , 2 , 10 ).
- the other modules including the temperature sensor 706 , accelerometer 708 , memory 710 , wireless communication module 712 , sensors 714 , and feedback module 716 are optional and are also coupled to the processing engine 1402 .
- FIG. 15 illustrates one aspect of a system 1500 comprising an detection arrangement 1502 in the form of eyeglasses 1504 wiredly coupled to a mobile device 1506 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device ( FIGS. 1 , 2 , 10 ), for example.
- the detection arrangement 102 comprises a pair of eyeglasses 1504 , or any form eyewear such as reading glasses, prescription glasses, sunglasses, and the like.
- the eyeglasses 1504 comprise electrodes 1508 L, 1508 R coupled by electrical conductors 1510 R, 1510 L to a plug 1512 .
- the plug 1512 is received in a corresponding data port socket or jack connector 1514 portion of the mobile device 1506 .
- the mobile device 1506 comprises a housing 1516 , a display 1518 , an input/output (I/O) system 1520 , an aperture 1522 for capturing digital images, and an antenna 1524 .
- I/O input/output
- the mobile device 1506 comprises a detection subsystem and an electrode input circuit similar to the detection subsystem 516 and the electrode input circuit 602 described in connection with FIGS. 4-7 , for example.
- the patient 106 puts on the eyeglasses 1504 ensuring that there is sufficient contact of the electrodes 1508 R, 1508 L with the patient's skin and electrically couples the electrodes 1508 R, 1508 L into the mobile device 1506 by connecting the plug 1512 into the corresponding jack 1514 in the mobile device 1506 .
- any suitable connection arrangements is contemplated to be within the scope of the present disclosure other than the plug/jack connection arrangement shown in FIG. 15 .
- Such other connection arrangements include, without limitation, data ports, USB, socket, audio/video type connectors, among other suitable connection mechanisms.
- the patient 106 ingests the IEM device 104 and upon dissolving in the digestive fluids 114 of the stomach 116 , the IEM device 104 powers up and initiates conduction of a unique electrical current signature signal, which encodes information associated with the IEM device 104 , the medication, the patient 106 , among other information.
- the unique electrical current signature signal is detected by the electrodes 1508 R, 1508 L and is coupled via the electrical conductors 1510 R, 1510 L to the mobile device 1506 where the electrode input circuit 602 portion of the detection subsystem 516 to decode the signal and communicate the information to the processing subsystem 512 of the mobile device 1506 .
- the detection subsystem 512 may include a dedicated processing engine 1402 as described in connection with FIG. 14 , without limitation.
- FIG. 16 illustrates one aspect of a system 1600 comprising electrodes 1602 R, 1602 L, detection circuit module 1604 , and antenna 1606 integrated in a pair of eyeglasses 1608 wirelessly coupled to a mobile device 1610 for detecting an electrical signal generated by an ingestible event marker.
- the detection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in the eyeglasses 1608 to essentially eliminate the need for the electrical conductors 1510 R, 1510 L as shown in FIG. 15 , for example.
- the wireless signal 1612 transmitted by the detection circuit module 1604 may be received by the onboard antenna 1614 of the wireless device 1610 .
- the detection circuit module 1604 may communicate with the mobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices.
- the eyeglasses 1608 may include a battery 1616 embedded therein to supply electrical power to the detection circuit module 1604 .
- a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of the battery 1616 .
- the mobile device 1610 may be configured to transmit an interrogation signal to the detection circuit module 1604 which serves to power up the detection circuit module 1604 and initiate taking readings and wirelessly transmitting information back to the mobile device 1610 .
- the mobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique.
- FIG. 17 illustrates one aspect of a system 1700 comprising electrodes 1702 R, 1702 L, detection circuit module 1604 , and antenna 1606 integrated in a in a visor 1708 wirelessly coupled to a mobile device 1610 for detecting an electrical signal generated by an ingestible event marker.
- the detection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in the visor 1708 to essentially eliminate the need for the electrical conductors to couple the electrodes 1702 R, 1702 L to the mobile device 1610 , for example.
- the wireless signal 1612 transmitted by the detection circuit module 1604 may be received by the onboard antenna 1614 of the wireless device 1610 .
- the detection circuit module 1604 may communicate with the mobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices.
- the visor 1708 may include a battery 1616 embedded therein to supply electrical power to the detection circuit module 1604 .
- a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of the battery 1616 .
- the mobile device 1610 may be configured to transmit an interrogation signal to the detection circuit module 1604 which serves to power up the detection circuit module 1604 and initiate taking readings from the IEM device and wirelessly transmitting the information back to the mobile device 1610 .
- the mobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique.
- FIG. 18 illustrates one aspect of a system 1800 comprising electrodes 1802 R, 1802 L, detection circuit module 1604 , and antenna 1606 integrated in a helmet 1808 wirelessly coupled to a mobile device 1610 for detecting an electrical signal generated by an ingestible event marker.
- the detection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in the helmet 1808 to essentially eliminate the need for the electrical conductors to couple the electrodes 1802 R, 1802 L to the mobile device 1610 , for example.
- the wireless signal 1612 transmitted by the detection circuit module 1604 may be received by the onboard antenna 1614 of the wireless device 1610 .
- the detection circuit module 1604 may communicate with the mobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices.
- the helmet 1808 may include a battery 1616 embedded therein to supply electrical power to the detection circuit module 1604 .
- a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of the battery 1616 .
- the mobile device 1610 may be configured to transmit an interrogation signal to the detection circuit module 1604 which serves to power up the detection circuit module 1604 and initiate taking readings from the IEM device and wirelessly transmitting the information back to the mobile device 1610 .
- the mobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique.
- FIG. 19 illustrates one aspect of a system 1900 comprising electrodes 1902 R, 1902 L, detection circuit modules 1604 R, 1604 L, and antennas 1606 R integrated in a pair of hearing aids 1904 R, 1904 L wirelessly coupled to a mobile device 1610 for detecting an electrical signal generated by an ingestible event marker.
- the detection circuit module(s) 1604 R, 1604 L including the electrode input circuit and detection subsystem are embedded in the hearing aid(s) 1904 R, 1904 L to essentially eliminate the need for the electrical conductors to couple the electrodes 1902 R, 1902 L to the mobile device 1610 , for example.
- the wireless signal 1612 transmitted by the either one of the detection circuit modules 1604 R, 1604 L may be received by the onboard antenna 1614 of the wireless device 1610 .
- either one of the detection circuit modules 1604 R, 1604 L may communicate with the mobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances.
- other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices.
- the hearing aid(s) 1904 R, 1904 L may include a battery 1616 embedded therein to supply electrical power to either one of the detection circuit modules 1604 R, 1604 L.
- a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of the battery 1616 .
- the mobile device 1610 may be configured to transmit an interrogation signal to either one of the detection circuit modules 1604 R, 1604 L which serves to power up either one of the detection circuit modules 1604 R, 1604 L and initiate taking readings from the IEM device and wirelessly transmitting the information back to the mobile device 1610 .
- the mobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique.
- FIG. 20 illustrates one aspect of a system 2000 comprising electrodes 2004 R, 2004 L, detection circuit module 1604 , and antenna 1606 integrated in a chair 2008 wirelessly coupled to a mobile device 1610 for detecting an electrical signal generated by an ingestible event marker.
- the detection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in the chair 2008 to essentially eliminate the need for the electrical conductors to couple the electrodes 2002 R, 2002 L to the mobile device 1610 , for example.
- the wireless signal 1612 transmitted by the detection circuit module 1604 may be received by the onboard antenna 1614 of the wireless device 1610 .
- the detection circuit module 1604 may communicate with the mobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices.
- the chair 2008 may include a battery 1616 embedded therein to supply electrical power to the detection circuit module 1604 or may be plugged into a household altering current (AC) mains socket.
- AC household altering current
- the mobile device 1610 may be configured to transmit an interrogation signal to the detection circuit module 1604 which serves to power up the detection circuit module 1604 and initiate taking readings from the IEM device and wirelessly transmitting the information back to the mobile device 1610 .
- the mobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique.
- FIG. 21 illustrates a system 2100 corresponding to one aspect of an ingestible event marker device.
- the IEM devices 104 shown in FIGS. 1 and 2 may be implemented in accordance with the system 2100 shown in FIG. 21 .
- the system 2100 can be used in association with any medication product, as mentioned above, to determine the origin of the medication and to confirm that at least one of the right type and the right dosage of medication was delivered to the patient and in some aspects to determine when a patient takes the medication product.
- the scope of the present disclosure is not limited by the environment and the medication product that may be used with the system 2100 .
- the system 2100 may be activated either in wireless mode, in galvanic mode by placing the system 2100 within a capsule and then placing the capsule within a conducting fluid, or a combination thereof, or exposing the system 2100 to air. Once placed in a conducting fluid, for example, the capsule would dissolve over a period of time and release the system 2100 into the conducting fluid. Thus, in one aspect, the capsule would contain the system 2100 and no product. Such a capsule may then be used in any environment where a conducting fluid is present and with any product. For example, the capsule may be dropped into a container filled with jet fuel, salt water, tomato sauce, motor oil, or any similar product. Additionally, the capsule containing the system 2100 may be ingested at the same time that any pharmaceutical product is ingested in order to record the occurrence of the event, such as when the product was taken.
- the system 2100 when the system 2100 is combined with a medication or pharmaceutical product, as the product or pill is ingested, or exposed to air, the system 2100 is activated in galvanic mode.
- the system 2100 controls conductance to produce a unique electrical current signature that is detected by the electrode assemblies (e.g., 108 . . . etc., described herein), for example, thereby signifying that the pharmaceutical product has been taken.
- the electrode assemblies e.g., 108 . . . etc., described herein
- the system controls modulation of capacitive plates to produce a unique voltage signature associated with the system 2100 that is detected.
- Various aspects of the system 2100 are described in commonly assigned U.S. Patent Application Applications Pharma Informatics System, filed Apr.
- the system 2100 includes a framework 2102 .
- the framework 2102 is a chassis for the system 2100 and multiple components are attached to, deposited upon, or secured to the framework 2102 .
- a digestible material 2104 is physically associated with the framework 2102 .
- the material 2104 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to the framework 2102 .
- the material 2104 is deposited on one side of the framework 2102 .
- the materials of interest that can be used as material 2104 include, but are not limited to: Cu, CuCl, or CuI.
- the material 2104 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols.
- the material 2104 may be from about 0.05 to about 500 ⁇ m thick, such as from about 5 to about 100 ⁇ m thick.
- the shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 2100 may contain two or more electrically unique regions where the material 2104 may be deposited, as desired.
- another digestible material 2106 is deposited, such that the materials 2104 , 2106 are dissimilar and insulated from each other.
- the different side selected may be the side next to the side selected for the material 2104 .
- the scope of the present disclosure is not limited by the side selected and the term “different side” can mean any of the multiple sides that are different from the first selected side.
- the dissimilar material may be located at different positions on a same side.
- the shape of the system is shown as a square, the shape may be any geometrically suitable shape.
- the materials 2104 , 2106 are selected such that they produce a voltage potential difference when the system 2100 is in contact with conducting liquid, such as body fluids.
- the materials of interest for material 2106 include, but are not limited to: Mg, Zn, or other electronegative metals. As indicated above with respect to the material 2104 , the material 2106 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework. Also, an adhesion layer may be necessary to help the material 2106 (as well as material 2104 when needed) to adhere to the framework 2102 . Typical adhesion layers for the material 2106 are Ti, TiW, Cr or similar material. Anode material and the adhesion layer may be deposited by physical vapor deposition, electrodeposition or plasma deposition. The material 2106 may be from about 0.05 to about 500 ⁇ m thick, such as from about 5 to about 100 ⁇ m thick. However, the scope of the present disclosure is not limited by the thickness of any of the materials nor by the type of process used to deposit or secure the materials to the framework 2102 .
- the materials 2104 , 2106 can be any pair of materials with different electrochemical potentials. Additionally, in the aspects wherein the system 2100 is used in-vivo, the materials 2104 , 2106 may be vitamins that can be absorbed. More specifically, the materials 2104 , 2106 can be made of any two materials appropriate for the environment in which the system 2100 will be operating. For example, when used with an ingestible product, the materials 2104 , 2106 are any pair of materials with different electrochemical potentials that are ingestible. An illustrative example includes the instance when the system 2100 is in contact with an ionic solution, such as stomach acids.
- Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI).
- a metal such as Mg
- a salt such as CuCl or CuI
- any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
- one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid.
- Non-metals that may be used as doping agents in certain aspects include, but are not limited to: sulfur, iodine, and the like.
- the materials are copper iodine (CuI) as the anode and magnesium (Mg) as the cathode. Aspects of the present disclosure use electrode materials that are not harmful to the human body.
- a control device 2108 is secured to the framework 2102 and electrically coupled to the materials 2104 , 2106 .
- the control device 2108 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 2104 , 2106 .
- the voltage potential created between the dissimilar materials 2104 , 2106 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system 2100 .
- the system 2100 operates in direct current mode.
- the system 720 controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current.
- the control device 2108 controls the path for current flow between the dissimilar materials 2104 , 2106 ; the current path through the system 2100 .
- Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 2100 has been activate and the desired event is occurring or has occurred.
- the two dissimilar materials 2104 , 2106 are similar in function to the two electrodes needed for a direct current power source, such as a battery.
- the conducting liquid acts as the electrolyte needed to complete the power source.
- the completed power source described is defined by the electrochemical reaction between the materials 2104 , 2106 of the system 2100 and enabled by the fluids of the body.
- the completed power source may be viewed as a power source that exploits electrochemical conduction in an ionic or a conducting solution such as gastric fluid, blood, or other bodily fluids and some tissues.
- the environment may be something other than a body and the liquid may be any conducting liquid.
- the conducting fluid may be salt water or a metallic based paint.
- the two dissimilar materials 2104 , 2106 are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials 2104 , 2106 are exposed to the target site, a voltage potential is generated.
- the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging.
- the active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuI).
- any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
- electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier.
- the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain aspects, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V.
- the dissimilar materials 2104 , 2106 provide the voltage potential to activate the control device 2108 .
- the control device 2108 can alter conductance between the first and second materials 2104 , 2106 in a unique manner.
- the control device 2108 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 2100 . This produces a unique current signature that can be detected and measured by a receiver (not shown), which can be positioned internal or external to the body. The receiver is disclosed in greater detail in U.S.
- the terms “non-conducting material,” “membrane,” and “skirt” are interchangeably used with the term “current path extender” without impacting the scope or the present aspects and the claims herein.
- the skirt shown in portion at 2105 , 2107 , respectively, may be associated with, e.g., secured to, the framework 2102 .
- Various shapes and configurations for the skirt are contemplated as within the scope of the various aspects of the present invention.
- the system 2100 may be surrounded entirely or partially by the skirt and the skirt maybe positioned along a central axis of the system 2100 or off-center relative to a central axis.
- the scope of the present disclosure as claimed herein is not limited by the shape or size of the skirt.
- the dissimilar materials 2104 , 2106 may be separated by one skirt that is positioned in any defined region between the dissimilar materials 2104 , 2106 .
- the system 2100 may be grounded through a ground contact.
- the system 720 also may include a sensor module.
- ion or current paths are established between the first material 2104 to the second material 2106 and through a conducting fluid in contact with the system 2100 .
- the voltage potential created between the first and second materials 2104 , 2106 is created through chemical reactions between the first and second materials 2104 , 2106 and the conducting fluid.
- the surface of the first material 2104 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.
- the term “mass” as used herein includes any ionic or non-ionic species that may be added or removed from the conductive fluid as part of the electrochemical reactions occurring on material 2104 .
- One example includes the instant where the material is CuCI and when in contact with the conducting fluid, CuCI is converted to Cu metal (solid) and Cl— is released into solution. The flow of positive ions into the conduction fluid is via current path(s). Negative ions flow in the opposite direction.
- the release of negative ions at the material 2104 and the release of positive ions by the material 36 are related to each other through the current flow that is controlled by control device 38 .
- the rate of reaction and hence the ionic emission rate or current is controlled by the control device 2108 .
- the control device 2108 can increase or decrease the rate of ion flow by altering its internal conductance, which alters the impedance, and therefore the current flow and reaction rates at the materials 2104 , 2106 .
- the system 2100 can encode information in the ionic flow.
- the system 2100 encodes information using ionic emission or flow.
- the control device 2108 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 2108 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 2108 encodes information in the current flow or the ionic exchange. For example, the control device 2108 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency Modulation (FM), Amplitude Modulation (AM), On-Off Keying, and PSK with On-Off Keying.
- PSK Binary Phase-Shift Keying
- FM Frequency Modulation
- AM Amplitude Modulation
- On-Off Keying On-Off Keying
- Various aspects of the system 2100 may comprise electronic components as part of the control device 2108 .
- Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters.
- Each component may be secured to the framework and/or to another component.
- the components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.
- the system 2100 controls the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the system 2100 is capable of producing various different unique exchanges or signatures and, thus, provides additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
- the system 2040 includes a framework 2042 .
- a digestible or dissolvable material 2044 is deposited on a portion of one side of the framework 2042 .
- another digestible material 2046 is deposited, such that materials 2044 and 2046 are dissimilar. More specifically, material 2044 and 2046 are selected such that they form a voltage potential difference when in contact with a conducting liquid, such as body fluids.
- a conducting liquid such as body fluids.
- a control device 2048 is secured to the framework 2042 and electrically coupled to the materials 2044 and 2046 .
- the control device 2048 includes electronic circuitry that is capable of controlling part of the conductance path between the materials 2044 and 2046 .
- the materials 2044 and 2046 are separated by a non-conducting skirt 2049 .
- Various examples of the skirt 2049 are disclosed in U.S. Provisional Application No. 61/173,511 filed on Apr. 28, 2009 and entitled “HIGHLY RELIABLE INGESTIBLE EVENT MARKERS AND METHODS OF USING SAME” and U.S. Provisional Application No. 61/173,564 filed on Apr.
- the control device 2048 can alter conductance between the materials 2044 and 2046 .
- the control device 2048 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 2040 .
- a unique current signature that is associated with the system 2040 can be detected by a receiver (not shown) to mark the activation of the system 2040 .
- the size of the skirt 2049 is altered. The longer the current path, the easier it may be for the receiver to detect the current.
- the system 2030 of FIG. 21 is shown in an activated state and in contact with conducting liquid.
- the system 2030 is grounded through ground contact 2052 .
- the system 2030 also includes a sensor module 2074 , which is described in greater detail with respect to FIG. 24 .
- Ion or current paths 2050 form between material 2034 to material 2036 through the conducting fluid in contact with the system 2030 .
- the voltage potential created between the material 2034 and 2036 is created through chemical reactions between materials 2034 / 2036 and the conducting fluid.
- FIG. 23A shows an exploded view of the surface of the material 2034 .
- the surface of the material 2034 is not planar, but rather an irregular surface 2054 as shown.
- the irregular surface 2054 increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.
- the term “mass” as used herein refers to protons and neutrons that form a substance.
- the material is CuCI and when in contact with the conducting fluid, CuCI becomes Cu (solid) and Cl.sup.—in solution.
- the flow of ions into the conduction fluid is depicted by the ion paths 2050 .
- the release of ions at the material 2034 and capture of ion by the material 2036 is collectively referred to as the ionic exchange.
- the rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 2038 .
- the control device 2038 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the materials 2034 and 2036 .
- the system 2030 can encode information in the ionic exchange process.
- the system 2030 uses ionic emission to encode information in the ionic exchange.
- the control device 2038 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 2038 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 2038 encodes information in the current flow or the ionic exchange. For example, the control device 2038 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency modulation, Amplitude modulation, on-off keying, and PSK with on-off keying.
- PSK Binary Phase-Shift Keying
- the various aspects disclosed herein include electronic components as part of the control device 2038 or the control device 2048 .
- Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters.
- Each component may be secured to the framework and/or to another component.
- the components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.
- the system such as system 2100 and 2040 , control the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow.
- the system is capable of encoding information in the ionic exchange and the current signature.
- the ionic exchange or the current signature is used to uniquely identify the specific system.
- the systems 2100 and 2040 are capable of producing various different unique exchanges or signatures and, thus, provide additional information.
- a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment.
- a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
- the device 2030 includes a control module 2062 , a counter or clock 2064 , and a memory 2066 . Additionally, the device 2038 is shown to include a sensor module 2072 as well as the sensor module 2074 , which was referenced in FIG. 23 .
- the control module 2062 has an input 2068 electrically coupled to the material 2034 and an output 2070 electrically coupled to the material 2036 .
- the control module 2062 , the clock 2064 , the memory 2066 , and the sensor modules 2072 / 2074 also have power inputs (some not shown).
- the power for each of these components is supplied by the voltage potential produced by the chemical reaction between materials 2034 and 2036 and the conducting fluid, when the system 2030 is in contact with the conducting fluid.
- the control module 2062 controls the conductance through logic that alters the overall impedance of the system 2030 .
- the control module 2062 is electrically coupled to the clock 2064 .
- the clock 2064 provides a clock cycle to the control module 2062 . Based upon the programmed characteristics of the control module 2062 , when a set number of clock cycles have passed, the control module 2062 alters the conductance characteristics between materials 2034 and 2036 . This cycle is repeated and thereby the control device 2038 produces a unique current signature characteristic.
- the control module 2062 is also electrically coupled to the memory 2066 .
- Both the clock 2064 and the memory 2066 are powered by the voltage potential created between the materials 2034 and 2036 .
- the control module 2062 is also electrically coupled to and in communication with the sensor modules 2072 and 2074 .
- the sensor module 2072 is part of the control device 2038 and the sensor module 2074 is a separate component.
- either one of the sensor modules 2072 and 2074 can be used without the other and the scope of the present invention is not limited by the structural or functional location of the sensor modules 2072 or 2074 .
- any component of the system 2030 may be functionally or structurally moved, combined, or repositioned without limiting the scope of the present invention as claimed.
- the control module 2062 the clock 2064 , the memory 2066 , and the sensor module 2072 or 2074 .
- each of these functional components located in independent structures that are linked electrically and able to communicate.
- the sensor modules 2072 or 2074 can include any of the following sensors: temperature, pressure, pH level, and conductivity. In one aspect, the sensor modules 2072 or 2074 gather information from the environment and communicate the analog information to the control module 2062 .
- the control module then converts the analog information to digital information and the digital information is encoded in the current flow or the rate of the transfer of mass that produces the ionic flow.
- the sensor modules 2072 or 2074 gather information from the environment and convert the analog information to digital information and then communicate the digital information to control module 2062 .
- the sensor modules 2074 is shown as being electrically coupled to the material 2034 and 2036 as well as the control device 2038 .
- the sensor module 2074 is electrically coupled to the control device and the connection acts as both a source for power supply to the sensor module 2074 and a communication channel between the sensor module 2074 and the control device 2038 . Referring now to FIG.
- the system 2030 includes a pH sensor module 2076 connected to a material 2039 , which is selected in accordance with the specific type of sensing function being performed.
- the pH sensor module 2076 is also connected to the control device 2038 .
- the material 2039 is electrically isolated from the material 2034 by a non-conductive barrier 2055 .
- the material 2039 is platinum.
- the pH sensor module 2076 uses the voltage potential difference between the materials 2034 / 2036 .
- the pH sensor module 2076 measures the voltage potential difference between the material 2034 and the material 2039 and records that value for later comparison.
- the pH sensor module 2076 also measures the voltage potential difference between the material 2039 and the material 2036 and records that value for later comparison.
- the pH sensor module 2076 calculates the pH level of the surrounding environment using the voltage potential values.
- the pH sensor module 2076 provides that information to the control device 2038 .
- the control device 2038 varies the rate of the transfer of mass that produces the ionic transfer and the current flow to encode the information relevant to the pH level in the ionic transfer, which can be detected by a receiver (not shown).
- the system 2030 can determine and provide the information related to the pH level to a source external to the environment.
- the control device 2038 can be programmed in advance to output a pre-defined current signature.
- the system can include a receiver system that can receive programming information when the system is activated.
- the switch 2064 and the memory 2066 can be combined into one device.
- the system 2030 may also include one or other electronic components.
- Electrical components of interest include, but are not limited to: additional logic and/or memory elements, e.g., in the form of an integrated circuit; a power regulation device, e.g., battery, fuel cell or capacitor; a sensor, a stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc.
- additional logic and/or memory elements e.g., in the form of an integrated circuit
- a power regulation device e.g., battery, fuel cell or capacitor
- a sensor e.g., a stimulator, etc.
- a signal transmission element e.g., in the form of an antenna, electrode, coil, etc.
- a passive element e.g., an inductor, resistor, etc.
- connection arrangements include, without limitation, any electrical connector that is an electro-mechanical device for joining electrical circuits as an interface using a mechanical arrangement.
- the connection may be temporary, as for portable equipment, require a tool for arrangement and removal, or serve as a permanent electrical joint between two wires or devices.
- electrical connectors for joining two lengths of flexible wire or cable, or connect a wire or cable or optical interface to an electrical terminal.
- an electrical connector also may be referred to as a physical interface.
- Such connectors include, without limitation, plug and socket, audio/video, posts, keyed and unkeyed, locked and unlocked, modular multi-conductor plug and jacks commonly used for Ethernet/Cat5 applications, D-subminiature, data ports, USB, RF, direct current (DC), hybrid, among other suitable connection mechanisms.
- Such ordinary objects include headphones with ear buds 108 as shown in FIGS. 1-4 , a mobile device 800 as shown in FIGS. 8-10 , a mobile device enclosing arrangement 1102 as shown in FIGS. 11-13 , eyeglasses 1504 , 1608 as shown in FIGS. 15-16 , a visor as shown in FIG. 17 , a helmet 1808 as shown in FIG. 18 , hearing aids 1904 R, 1904 L as shown in FIG. 19 , and a chair 2008 as shown in FIG. 20 .
- any suitable ordinary object can be modified to include a set of electrodes to carry the unique electrical current signal generated by the IEM device when the patient holds the object and makes physical contact with the electrodes after ingesting the IEM and associated medication.
- electrodes include, without limitation, ear muffs, hats, drinking glasses, eating utensils (chopsticks, knife, spoon, fork), remote control devices entertainment systems (television, stereo, DVD player), portable media players (iPod by Apple, MP3 devices), computer keyboards, computer mouse, tabletop, medicine containers (pill bottles, vitamin bottles, inhalable dosing units), cardboard packaging of the medicine containers, head bands, hair bands, motorcycle helmets, ski helmets, goggles, ski goggles, coffee cups, toothbrushes, canes, walkers, bracelets, belts, suspenders, medic alert bracelets, steering wheel of a vehicle (car, truck), keys, house keys, vehicle (car, truck) keys, musical instruments (keyboards, saxophone), laptop computer, iPad by Apple or other tablet computer, e-book reader (Kindle by Amazon), purse,; purse handles, gloves, mittens, business card holder, thimbles, pulse oximeters, salt
- an image capture device e.g., a digital camera
- the mobile devices that incorporate an image capture device may be used to capture an image of the IEM device, medication, container in which the medication, among others. Once the image is captured it can be used to verify the patient taking the medication, the medication itself, expiration dates on the package, among other information.
- the digitally captured image can be stored, compressed, transmitted over local and wide area networks (such as the Internet), and so on.
- any reference to “one aspect” or “an aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect.
- appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect.
- the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
- Coupled and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. Notwithstanding the claims, the invention is also defined by the following clauses:
- a mobile device for detecting an electrical signal generated by an ingestible event marker comprising:
- a system for detecting an electrical signal generated by an ingestible event marker comprising:
- the detection arrangement is located in an object, preferably selected from the group consisting essentially of headphones with ear buds, a mobile device, a mobile device cover, eyeglasses, a visor, and a helmet.
- a method of processing an electrical signal generated by an ingestible event marker comprising:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Telephone Function (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephonic Communication Services (AREA)
Abstract
A mobile device for detecting an electrical signal generated by an ingestible event marker is disclosed. The mobile device includes a detection subsystem to receive an electrical signal generated by an ingestible event marker from a detection arrangement. A processing subsystem is coupled to the detection subsystem to decode the electrical signal. A radio subsystem is configured to transmit the decoded electrical signal to a wireless node. A system includes the mobile device and the detection arrangement. A method includes receiving the electrical signal generated by the ingestible event marker at the mobile device, decoding the electrical signal to extract information associated with the ingestible event marker, and transmitting the information to a wireless node.
Description
- This application claims the benefit of U.S. Provisional Patent Application No. 61/510,434 entitled “Mobile Communication Device, System and Method” and filed on Jul. 21, 2011, which is herein entirely incorporated by reference.
- The present disclosure is related generally to a mobile device apparatus, system, and method for detecting a communication from another device, e.g., an ingestible device, an implantable device, an ingestible event marker (IEM), an implantable pulse generator such as a pacemaker, for example, a stent, an ingestible or implantable transceiver, among other devices. In the case of an ingestible event marker (IEM), for example, currently, a wearable patch device is worn by the patient to detect the ingestion of a medicinal dose comprising an IEM embedded therein. The present disclosure is related to a mobile device such as a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (PC), kiosk, desktop computer, or laptop computer, or any combination thereof, configured to detect the ingestion of an IEM by a patient.
- Generally, detecting the ingestion of an IEM device by a patient is done by detection electronics provided in the form factor of a wearable patch applied to an outer surface of the skin. The patch may include wet or dry electrodes which are made to contact the skin. An adhesive layer affixes the entire patch arrangement to the patient. When the IEM device is ingested by the patient and comes into contact with stomach fluids, the IEM device initiates a communication with the detection circuitry of the patch to indicate that the particular IEM device was ingested by the patient.
- To address various issues associated with wearing a patch to detect the ingestion of an IEM device, there is a need to eliminate the patch and communicate directly to a mobile device. The mobile device provides IEM communication in a discreet private manner without the need for the patient to wear a patch.
- In one aspect, a mobile device for detecting an electrical signal generated by an ingestible event marker is provided. The mobile device comprises a detection subsystem to receive an electrical signal generated by an ingestible event marker from a detection arrangement. A processing subsystem is coupled to the detection subsystem to decode the electrical signal. A radio subsystem is configured to transmit the decoded electrical signal to a wireless node.
-
FIG. 1 illustrates one aspect of a system comprising a mobile device for detecting an electrical signal generated by an ingestible event marker device. -
FIG. 2 illustrates one aspect of the system shown inFIG. 1 comprising a mobile device for detecting an electrical signal generated by an ingestible event marker device. -
FIG. 3A illustrates a side view of one aspect of a detection arrangement in the form of an earphone. -
FIG. 3B illustrates a front view of one aspect of the detection arrangement shown inFIG. 3A . -
FIG. 4 illustrates one aspect of a system comprising a detection arrangement in the form of earphones wiredly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker device. -
FIG. 5 is a system diagram of one aspect of a mobile device for detecting an electrical signal generated by an ingestible event marker configured to couple to an external detection arrangement. -
FIG. 6A is a diagram of one aspect of an earphone plug coupled to an electrode input circuit section of a detection subsystem of a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 6B is a diagram of one aspect of an electrode input circuit of the detection subsystem shown inFIG. 6A . -
FIG. 7 is a system diagram of one aspect of a detection subsystem of a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 8 illustrates one aspect of a mobile device comprising integrated electrodes for detecting an electrical signal generated by an ingestible event marker. -
FIG. 9 is system diagram of one aspect of a mobile device for detecting an electrical signal generated by an ingestible event marker configured to couple to integrated electrodes. -
FIG. 10 illustrates a patient in the process of using one aspect of the mobile device comprising integrated electrodes, shown inFIGS. 8-9 , for detecting an electrical signal generated by an ingestible event marker. -
FIG. 11 illustrates one aspect of mobile device received in a mating configuration with a mobile device enclosing arrangement comprising a detection circuit integrated therewith for detecting an electrical signal generated by an ingestible event marker. -
FIG. 12 illustrates the mobile device and the housing for receiving the mobile device shown inFIG. 11 in an unmated configuration. -
FIG. 13 illustrates one aspect of a housing for receiving a mobile device where the housing comprises a detection circuit for detecting an electrical signal generated by an ingestible event marker integrated therewith and a connector for electrically coupling the detection circuit to the functional modules of the mobile device. -
FIG. 14 is a system diagram of one aspect of a detection circuit for detecting an electrical signal generated by an ingestible event marker. -
FIG. 15 illustrates one aspect of a system comprising a detection arrangement in the form of eyeglasses wiredly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 16 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a pair of eyeglasses wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 17 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a visor wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 18 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a helmet wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 19 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a set of hearing aids wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 20 illustrates one aspect of a system comprising electrodes, detection circuit module, and antenna integrated in a chair wirelessly coupled to a mobile device for detecting an electrical signal generated by an ingestible event marker. -
FIG. 21 illustrates a system corresponding to one aspect of an ingestible event marker device. -
FIG. 22 is a block diagram representation of another aspect of the event indicator system with dissimilar metals positioned on the same end and separated by a non-conducting material. -
FIG. 23 shows ionic transfer or the current path through a conducting fluid when the event indicator system ofFIG. 21 is in contact with conducting liquid and in an active state. -
FIG. 23A shows an exploded view of the surface of dissimilar materials ofFIG. 23 . -
FIG. 23B shows the event indicator system ofFIG. 23 with a pH sensor unit. -
FIG. 24 is a block diagram illustration of one aspect of the control device used in the system ofFIGS. 21 and 22 . -
FIG. 25 is a functional block diagram of a demodulation circuit that performs coherent demodulation that may be present in a receiver, according to one aspect. -
FIG. 26 illustrates a functional block diagram for a beacon module within a receiver, according to one aspect. -
FIG. 27 is a block diagram of the different functional modules that may be present in a receiver, according to one aspect. -
FIG. 28 is a block diagram of a receiver, according to one aspect. -
FIG. 29 provides a block diagram of a high frequency signal chain in a receiver, according to one aspect. -
FIG. 30 provides a diagram of how a system that includes a signal receiver and an ingestible event marker may be employed, according to one aspect. - In various aspects, the present disclosure is directed generally to an apparatus, system, and method employing a mobile device for detecting a communication from another device, e.g., an ingestible device, an implantable device, an ingestible event marker (IEM), an implantable pulse generator such as a pacemaker, for example, a stent, an ingestible or implantable transceiver, among other devices. In one aspect, the present disclosure provides a detection arrangement that may be wiredly and/or wirelessly coupled to a mobile device for detecting a communication from another device directly without employing a conventional detection patch (as described, for example, in Body-Associated Receiver and Method, filed Dec. 15, 2009, published as 2010-0312188 A1, the disclosure of which is herein incorporated by reference in its entirety. Examples of such receivers are shown in
FIGS. 25-30 , as discussed hereinafter.) In one aspect, a detection circuit module may be integrated with the mobile device. In one aspect, the detection circuit module may be integrated within a housing and/or cradle removably attachable to the mobile device. In one aspect, the detection circuit module may be integrated within a conventional device, which may be wiredly and/or wirelessly coupled to the mobile device. In one particular example, the detection circuit module is configured to detect and receive information encoded in an electrical current signature generated by an IEM device when it contacts a conducting fluid, and more particularly, when the IEM device is ingested by a patient and comes into contact with the digestive fluids in the stomach. Examples of such IEM devices are shown inFIGS. 21-24 , as discussed hereinafter. - It will be appreciated that the term “mobile device” may refer generally to any device which can be configured as a communication node for receiving a first communication from a first device and transmitting a second communication to a second device. In one aspect, the mobile device may comprise various physical or logical elements implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints. In various aspects, the physical or logical elements may be connected by one or more communications media. For example, communication media may comprise wired communication media, wireless communication media, or a combination of both, as desired for a given implementation.
- In various aspects, the mobile device or elements of the mobile device such as the physical or logical elements of the device may be incorporated in any suitable device including, without limitation, a personal digital assistant (PDA), laptop computer, ultra-laptop computer, combination cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, messaging device, data communication device, tablet computer, e-book reader, cellular telephone, pager, one-way pager, two-way pager, messaging device, data communication device, computers that are arranged to be worn by a person, such as a wrist computer, finger computer, ring computer, eyeglass computer, belt-clip computer, arm-band computer, shoe computers, clothing computers, and other wearable computers, media or multimedia controllers (e.g., audio and/or visual remote control devices), intelligent devices/appliances such as consumer and home devices and appliances that are capable of receipt of data such as physiologic data and perform other data-related functions, e.g., transmit, display, store, and/or process data, refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales, mobile telephones, portable telephones, eyeglasses, hearing aids, headwear (e.g., hats, caps, visors, helmets, goggles, earmuffs, headbands), wristbands, jewelry, furniture, and/or any suitable object that may be configured to incorporate the appropriate physical and/or logical elements for implementing the mobile device and to receive a first communication from a first device and transmit a second communication to a second device.
- It will be appreciated that the term “medication” or “medicinal dose” as used throughout this disclosure may include, without limitation, various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, and the like, to be taken in conjunction with an IEM.
- For clarity of disclosure, these and other aspects of the present disclosure will now be described in conjunction with the associated figures. Accordingly, turning now to
FIG. 1 , where one aspect of asystem 100 comprising a mobile device 102 (e.g., a first node) for detecting an electrical signal generated by an ingestible event marker 104 (IEM device) is illustrated. As shown, a living body such as apatient 106 is wearing adetection arrangement 108 in the form of earphones 110 wiredly connected to themobile device 102. In one aspect, thedetection arrangement 108 comprises aright ear bud 110R and aleft ear bud 110L wiredly coupled to the mobile device by respectiveelectrical conducting cables electrical conducting cables mobile device 102. - When the
patient 106 ingests anIEM device 104, thedigestive fluids 114 in thestomach 116 activate theIEM device 104 to begin conducting a unique electrical current signature of various data, e.g., data identifying theIEM device 104, data identifying the medication, etc. Various aspects of an IEM device are disclosed in commonly assigned applications Pharma-Informatics System, PCT Application No. PCT/US2006/16370 published as WO/2006/116718; Controlled Activation Ingestible Identifier, PCT Application No. PCT/US2007/82563 published as WO/2008/052136; Active Signal Processing Personal Health Signal Receivers, PCT Application No. PCT/US2007/24225 published as WO/2008/63626; Low Voltage Oscillator for Medical Devices, PCT Application No. PCT/US2007/22257 published as WO/2008/066617; Ingestible Event Marker Systems, PCT Application No. PCT/US2008/52845 published as WO/2008/095183; In-Body Power Source Having High Surface Area Electrode, PCT Application No. PCT/US2008/53999 published as WO/2008/101107; In-Body Device Having a Multi-Directional Transmitter, PCT Application No. PCT/US2008/56296 published as WO/2008/112577; In-Body Device Having Deployable Antenna, PCT Application No. PCT/US2008/56299 published as WO/2008/112578; and In-Body Device with Virtual Dipole Signal Amplification, PCT Application No. PCT/US2008/77753 published as WO 2009/042812; the disclosures of which applications are herein incorporated by reference. Smart parenteral delivery systems are described in PCT application serial no. PCT/US2007/015547 published as WO 2008/008281; each of the foregoing disclosures is herein incorporated by reference in its entirety. TheIEM device 104 conducts when in the process of being consumed by thedigestive fluids 114 in thestomach 116. In various aspects,IEM devices 104 may be configured to communicate continuously or intermittently while being consumed. Additionally, theIEM device 104 may be wholly or partially consumed. In various aspects, for example, anIEM device 104 or components thereof may pass through a patient's system. In other aspects, anIEM device 104 may be configured to be selectively activated, deactivated, and/or reactivated. The architecture and operation of atypical IEM device 104 is explained in more detail below in connection withFIG. 21 . The electrical current signature generated by theIEM device 104 while disintegrating in thedigestive fluids 114 is detectable by thedetection arrangement 108 coupled to thepatient 106. Each of theear buds electrode portion 300R as shown inFIGS. 3A , 3B for theright ear bud 110R. - With reference now to
FIGS. 1 , 3A, and 3B, the conductingelectrode portion 300R of theright ear bud 110R and 300L of theleft ear bud 110L (not shown) are coupled to the skin of thepatient 106 and detect the minute electrical current signature generated by the dissolvingIEM device 104. Theelectrodes 300R, 300L electrically couple the IEM device 104 (FIGS. 1 and 2 ) signal to the detection circuitry in themobile device 102. Thedetection arrangement 108 in the form ofear buds IEM device 104. - In use, the
patient 106 inserts theear buds mobile device 102. The electrodes 300 contact the skin of thepatient 106 to pick up the current signal generated by theIEM device 104. Once the detection arrangement is in place, an application is launched on themobile device 102 and thepatient 106 takes their medication, which includes theIEM device 104. The application may be launched automatically upon detection of theear buds IEM device 104 reaches thestomach 116, it begins to dissolve in thedigestive fluids 114 and initiates communication of a unique electrical current signature, which is detected by the electrodes 300 located on theear buds mobile device 102 and the ingestion of theIEM device 104 is confirmed or the application simply times out due to no detection. Thepatient 106 is then free to remove theear buds ear buds patient 106 may be engaged by music, news feed, or other sounds while waiting for theIEM device 104 to be detected by themobile device 102. In another aspect, an audible signal may alert the patient 106 to remove theear buds - It will be appreciated that the form factor of the
detection arrangement 108 is configured to look like a familiar object such that thepatient 106 can readily interact with it and will not feel a stigma associated with wearing thedetection arrangement 108. For example, theear buds - In one aspect, the
patient 106 may be instructed to place theear buds IEM device 104 to assure that the detection electrodes 300 are in place prior to the occurrence of the detectable event. It also minimizes opportunities for thepatient 106 getting distracted after taking the medicinal dose and forgetting to attach the detection electrodes 300 associated with theear buds - With reference back to
FIG. 1 , themobile device 102 acts as a first node for the detection of the unique current signature generated by theIEM 104. In response to detection of the unique current signature generated by theIEM device 104, themobile device 102 may perform a number of functions. In one aspect, themobile device 102 may store the time and date when the unique current signature was detected, which corresponds approximately to the time and date when theIEM device 104 was ingested by thepatient 106. In addition, themobile device 102 may store information encoded in the unique electrical current signature. For example, the identity of theIEM device 104, the type of medication associated with theIEM device 104, the manufacturer of the medication and/orIEM device 104, among other information, may be encoded by the unique electrical current signature, without limitation. - The
mobile device 102 may transmit the detected information associated with theIEM device 104 to a wireless node 120 (e.g., a second node). Thewireless node 120 may comprise, for example, a mobile station or fixed station having wireless capabilities. Examples for thewireless node 120 may include any of the examples given for themobile device 102, and further may include a wireless access point, base station or node, base station radio/transceiver, router, switch, hub, gateway, and so forth. In one aspect, for example, thewireless node 120 may comprise a base station for a cellular radiotelephone communications system. Although some aspects may be described with thewireless node 120 implemented as a base station by way of example, it may be appreciated that other aspects may be implemented using other wireless devices as well. Thewireless node 120 may be a communication hub, access point, another mobile device, and so on. Accordingly, thewireless node 120 may act as a local access point to wide area networks such as the Internet to communicate the information received from theIEM device 104 to anode 122, which is remotely located from the first and second nodes, e.g., themobile device 102 and thewireless node 120, respectively. Theremote node 122 may be a healthcare facility (physician's office, hospital, pharmacy), drug manufacturer, nutrition center, back end patient healthcare data processing facility, and the like. - In one aspect, the
mobile device 102 communicates with thewireless node 120 over awireless medium 124. In various aspects, themobile device 102 and thewireless node 120 may comprise or be implemented by a wireless device. The wireless device generally may comprise various physical or logical elements implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints. In various aspects, the physical or logical elements may be connected by one or more communications media. For example, communication media may comprise wired communication media, wireless communication media, or a combination of both, as desired for a given implementation. - In various implementations, the described aspects of the
mobile device 102 and/or thewireless node 120 may comprise part of a cellular communication system. In one aspect, themobile device 102 and thewireless node 120 may provide voice and/or data communications functionality in accordance with different types of cellular radiotelephone systems. Examples of cellular communication systems may include Code Division Multiple Access (CDMA) cellular radiotelephone communication systems, Global System for Mobile Communications (GSM) cellular radiotelephone systems, North American Digital Cellular (NADC) cellular radiotelephone systems, Time Division Multiple Access (TDMA) cellular radiotelephone systems, Extended-TDMA (E-TDMA) cellular radiotelephone systems, Narrowband Advanced Mobile Phone Service (NAMPS) cellular radiotelephone systems, third generation (3G) systems such as Wide-band CDMA (WCDMA), CDMA-2000, Universal Mobile Telephone System (UMTS) cellular radiotelephone systems compliant with the Third-Generation Partnership Project (3GPP), fourth generation systems (4G), and so forth. - In addition to voice communication services, the
mobile device 102 and thewireless node 120 may be arranged to communicate using a number of different wireless wide area network (WWAN) data communication services. Examples of cellular data communication systems offering WWAN data communication services may include GSM with General Packet Radio Service (GPRS) systems (GSM/GPRS), CDMA/1xRTT systems, Enhanced Data Rates for Global Evolution (EDGE) systems, Evolution Data Only or Evolution Data Optimized (EV-DO) systems, Evolution For Data and Voice (EV-DV) systems, High Speed Downlink Packet Access (HSDPA) systems, and so forth. - In one aspect, the
wireless node 120 may be connected by wired communications medium to additional nodes and connections to other networks, including a voice/data network such as the Public Switched Telephone Network (PSTN), a packet network such as the Internet, a local area network (LAN), a metropolitan area network (MAN), a wide area network (WAN), an enterprise network, a private network, and so forth. In one aspect, for example,network 130 may be arranged to communicate information in accordance with one or more Internet protocols as defined by the Internet Engineering Task Force (IETF), such as the Transmission Control Protocol/Internet Protocol (TCP/IP), for example. The network also may include other cellular radio telephone system infrastructure and equipment, such as base stations, mobile subscriber centers, central offices, and so forth. - In various aspects, the
mobile device 102 and thewireless node 120 also may be capable of voice and/or data communications. Communications between themobile device 102 and thewireless node 120 may be performed over wireless sharedmedia 124 in accordance with a number of wireless protocols. Examples of wireless protocols may include various wireless local area network (WLAN) protocols, including the Institute of Electrical and Electronics Engineers (IEEE) 802.xx series of protocols, such as IEEE 802.11a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth. Other examples of wireless protocols may include various WWAN protocols, such as GSM cellular radiotelephone system protocols with GPRS, CDMA cellular radiotelephone communication systems with 1xRTT, EDGE systems, EV-DO systems, EV-DV systems, HSDPA systems, and so forth. Further examples of wireless protocols may include wireless personal area network (PAN) protocols, such as an Infrared protocol, a protocol from the Bluetooth Special Interest Group (SIG) series of protocols, including Bluetooth Specification versions v1.0, v1.1, v1.2, v2.0, v2.0 with Enhanced Data Rate (EDR), as well as one or more Bluetooth Profiles, and so forth. In one aspect, the Bluetooth wireless technology uses short wavelength radio transmissions in the industrial, scientific, and medical (ISM) radio band from 2400-2480 MHz) from fixed and mobile devices, creating personal area networks (PANs) with high levels of security. Yet another example of wireless protocols may include near-field communication techniques and protocols, such as electro-magnetic induction (EMI) techniques. An example of EMI techniques may include passive or active radio-frequency identification (RFID) protocols and devices. Other suitable protocols may include Ultra Wide Band (UWB), Digital Office (DO), Digital Home, Trusted Platform Module (TPM), ZigBee, and other protocols. - In various aspects, the
mobile device 102 may have one or more application client modules. In one aspect, an application client module receives information from thedetection arrangement 108 and process the information to confirm that thepatient 106 has ingested theIEM device 104. The application client module records a time and date that theIEM device 104 was detected, which corresponds approximately to the time and date when theIEM device 104 was ingested by thepatient 106. In addition, client application module may store information encoded in the unique electrical current signature such as the identity of theIEM device 104, the type of medication associated with theIEM device 104, the manufacturer of the medication and/orIEM device 104, among other information. In some aspects, the client application module may implement a data logging function tracking the ingestible events associated with thepatient 106. The client application module can initiate communication with other devices and/or networks. - Other client application modules may be arranged to retrieve and process information from a network (e.g., servers) and display the information on a display or audibly announce the information by way of speaker. The
mobile device 102 may be implemented as an open platform adaptable to execute one or more application client programs and integrate with third party software application client programs. The application client modules may provide the necessary interface to existing data sources or backend services, such as web related and wireless services, support GPS navigation modules, process browser based content, and operate with one or more wireless mobile computing devices and web applications, for example. In one aspect, the application client modules may integrate with third party application client programs via APIs to retrieve location information, such as, for example, geographic coordinates, map interfaces, queries for search engines, interfaces to third party location based services (LBS), and any other services provided via servers, and the like. The application client modules may include a user interface layer to process search queries, search results, display maps (e.g., zoom/pan), provide turn-by-turn directions, provide voice activated turn-by-turn directions, and provide permission based interface for LBS type location information, among others. The application client modules also may include an interface layer to process local information, point of interface (POI) data, and a data abstraction layer to process map data, for example. The application client modules also may process data from various data sources or backend services distributed throughout a network (e.g., servers) such as, for example, GPS integrated circuits located either on or off themobile device 500, carrier AGPS, various prolific search engines (e.g., GOOGLE, YAHOO, and the like), vector data, tile data, among others, for example. It will be appreciated by those skilled in the art that tile data may be defined as a spatial unit representing a sub-region of an image, usually of rectangular nature, by which geographic data is organized, subdivided, and stored in a map library. - In one aspect, for example, the
mobile device 102 may employ a software architecture for retrieving and processing information from a communications network. The software architecture may enable themobile device 102 to communicate and process information from the network and servers, for example. The software architecture includes component implementations and specifies standard programmatic interfaces such as APIs to assist in the common requirements of retrieving information wirelessly between an application client and multiple data source servers. As a result, the software architecture may provide a method to enable application clients to interact with disparate data providers. - In one aspect, for example, the software architecture may be implemented using object-oriented programming (OOP) techniques. OOP is a computer programming paradigm. OOP assumes that a computer program is composed of a collection of individual units, or objects, as opposed to a traditional assumption that a program is a list of instructions to the computer. Each object is capable of receiving messages, processing data, and sending messages to other objects. Almost any concept may be represented as an object. Examples of an object may include menu objects, image objects, frame objects, title objects, border objects, tab objects, list objects, color blue objects, button objects, scroll bar objects, input field objects, text and image objects, and so forth. Although the software architecture may be described in the context of OOP by way of example, it may be appreciated that other software paradigms may be used as desired for a given implementation. For example, the software architecture may be implemented using a model-view-controller (MVC) architecture as well. The aspects are not limited in this context.
- As shown, the
wireless node 120 may comprise anoptional display 126. Thedisplay 126 may be implemented using any type of visual interface such as a liquid crystal display (LCD), capacitive touch screen panel, and the like. - As shown, the
wireless node 120 may comprise amemory 128. In various aspects, thememory 128 may comprise any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, memory may include read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDR-RAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase-change memory (e.g., ovonic memory), ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, disk memory (e.g., floppy disk, hard drive, optical disk, magnetic disk), or card (e.g., magnetic card, optical card), or any other type of media suitable for storing information. - The
wireless node 120 may comprise aprocessor 130 such as a central processing unit (CPU). In various aspects, theprocessor 130 may be implemented as a general purpose processor, a chip multiprocessor (CMP), a dedicated processor, an embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a co-processor, a microprocessor such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, and/or a very long instruction word (VLIW) microprocessor, or other processing device. Theprocessor 510 also may be implemented by a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth. - In various aspects, the
processor 130 may be arranged to run an operating system (OS) and various mobile applications. Examples of an OS include, for example, operating systems generally known under the trade name of Microsoft Windows OS, and any other proprietary or open source OS. Examples of mobile applications include, for example, a telephone application, a camera (e.g., digital camera, video camera) application, a browser application, a multimedia player application, a gaming application, a messaging application (e.g., e-mail, short message, multimedia), a viewer application, and so forth. - In various aspects, the
processor 130 may be arranged to receive information through acommunications interface 132. Thecommunications interface 132 may comprise any suitable hardware, software, or combination of hardware and software that is capable of coupling thewireless node 120 to one or more networks and/or devices. In one aspect, thewireless node 120 is in wireless communication with themobile device 102 via thewireless medium 124. Thewireless node 120 also may communicate with theremote node 122 via awired communication medium 134 or awireless communication medium 136. Thecommunications interface 132 may be arranged to operate using any suitable technique for controlling information signals using a desired set of communications protocols, services or operating procedures. Thecommunications interface 138 may include the appropriate physical connectors to connect with a corresponding communications medium, whether wired or wireless. - Vehicles of communication include a network. In various aspects, the network may comprise LANs as well as WANs including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data. For example, the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
- Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices. The points include, for example, wireless devices such as wireless headsets, audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as tablet computers, printers.
- Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices. The points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as tablet computers, printers.
- Accordingly, in various aspects, the
communications interface 138 may comprise one or more interfaces such as, for example, a wireless communications interface, a wired communications interface, a network interface, a transmit interface, a receive interface, a media interface, a system interface, a component interface, a switching interface, a chip interface, a controller, and so forth. When implemented by a wireless device or within wireless system, for example, thelocal node 120 may include awireless communication interface 132 comprising one ormore antennas 133, transmitters, receivers, transceivers, amplifiers, filters, control logic, and so forth. - In various aspects, the
wireless node 120 may comprise the functionality to wirelessly receive and/or wirelessly transmit data received from themobile device 102 and transmit that data to other nodes, such as theexternal node 122 or other nearby nodes, for example. Further, in various aspects, thewireless node 120 may incorporate and/or be associated with, e.g., communicate with, various devices. Such devices may generate, receive, and/or communicate data, e.g., physiologic data. The devices include, for example, “intelligent” devices such as gaming devices, e.g., electronic slot machines, handheld electronic games, electronic components associated with games and recreational activities. - In addition to the standard voice function of a telephone, various aspects of mobile telephones may support many additional services and accessories such as short message service (SMS) for text messaging, email, packet switching for access to the Internet, java gaming, wireless, e.g., short range data/voice communications, infrared, camera with video recorder, and multimedia messaging system (MMS) for sending and receiving photos and video. Some aspects of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones. Various aspects of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
- Some aspects may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the aspects. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like. The instructions may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Perl, Matlab, Pascal, Visual BASIC, arrangement language, machine code, and so forth.
- In one aspect, the
wireless node 120 may be configured as a communication hub and may include any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate information received from themobile device 102 to theremote node 122. Communication of the information includes receiving, storing, manipulating, displaying, processing, and/or transmitting the data to theremote node 122 via wired orwireless media - In various aspects, the
wireless node 120 also functions to communicate, e.g., receive and transmit, non-physiologic data. Example of non-physiologic data include gaming rules and data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub (local node 120) directly or indirectly, e.g., via themobile device 102. - Broad categories of each of the
mobile device 102 and/or thewireless node 120 include, for example, base stations, personal communication devices, handheld devices, mobile telephones, and mobile computing devices having wireless capabilities generally known as smartphones capable of executing computer applications, as well as voice communications and/or data communications. Examples of mobile computing devices include any type of wireless device, mobile station, or portable computing device with a self-contained power source, e.g., battery. Examples of smartphones include, for example, products generally known under the trade designations Palm, Blackberry, iPhone, Android, Windows Phone, among others. In various aspects, themobile device 102 and/or thewireless node 120 may comprise, or be implemented as, a PDA, laptop computer, ultra-laptop computer, combination cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, messaging device, data communication device, tablet computer, e-book reader, cellular telephone, pager, one-way pager, two-way pager, messaging device, data communication device, and so forth. Examples of amobile device 102 and/orwireless node 120 also may include computers that are arranged to be worn by a person, such as a wrist computer, finger computer, ring computer, eyeglass computer, belt-clip computer, arm-band computer, shoe computers, clothing computers, and other wearable computers. A fixed computing device, for example, may be implemented as a desk top computer, workstation, client/server computer, and so forth. - The
mobile device 102 and/orwireless node 120 may comprise personal communication devices including, for example, devices having communication and computer functionality and typically intended for individual use, e.g., mobile computers, sometimes referred to as “handheld devices.” Base stations comprise any device or appliance capable of receiving data such as physiologic data. Examples include computers, such as desktop computers and laptop computers, and intelligent devices/appliances. Intelligent devices/appliances include consumer and home devices and appliances that are capable of receipt of data such as physiologic data. Intelligent devices/appliances may also perform other data-related functions, e.g., transmit, display, store, and/or process data. Examples of intelligent devices/appliances include refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales. Such devices and appliances may include additional functionality such as sensing or monitoring various physiologic data, e.g., weight, heart rate. Mobile telephones include telephonic communication devices associated with various mobile technologies, e.g., cellular networks. - As shown in
FIG. 1 , thewireless node 120 is in communication with aremote node 122. Theremote node 122 comprises aprocessing system 138 communicatively coupled to adatabase 140. Information associated with patients, including identity and medication types and doses, may be stored in thedatabase 140. In one aspect, theprocessing system 138 receives information from themobile device 102 via thewireless node 120 and accesses the information in thedatabase 140 to provide information to the care provider through thewireless node 120 and/or themobile device 102. Theremote node 122 can communicate various information; for example, identification information such as a photo of the patient for identification, a photo of theIEM device 104 before it is ingested, the type of medication combined with theIEM device 104, as well as confirmation of the type and dose of medication that the patient ingested. Thewireless node 120 can communicate with theremote node 122 using any mode and frequency of communication that is available at the site, such as wireless, G2, G3, G4, real-time, periodically based on predetermined time delays, as well as store and forward at later time. - Vehicles of communication between the
wireless node 120 and theremote node 122 include a network. In various aspects, the network may comprise a LAN as well as a WAN including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data. For example, the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same. - The
processing system 138 at theremote node 122 may comprise servers configured as desired, e.g., to provide for subject directed permissions. For example, the servers may be configured to allow a family caregiver to participate in the subject's therapeutic regimen, e.g., via an interface (such as a web interface) that allows the family caregiver to monitor alerts and trends generated by the server, and provide support back to the patient. The servers also may be configured to provide responses directly to the subject, e.g., in the form of subject alerts, subject incentives, which are relayed to the subject via the communication device. The servers also may interact with a health care professional, e.g., RN, physician, which can use data processing algorithms to obtain measures of health and compliance of the subject, e.g., wellness index summaries, alerts, cross-patient benchmarks, and provide informed clinical communication and support back to the patient. The servers also may interact with pharmacies, nutrition centers, and drug manufactures. - In one aspect, the
remote node 122 may store information received from themobile device 102 in thedatabase 140. Such information may comprise the approximate time and date stamp when theIEM device 104 was ingested by thepatient 106. In addition, an identification number such as a serial number, for example, associated with theIEM device 104, the individual patient identification, the source of the medication, and the expiration date or shelf life of the medication combined with theIEM device 104 may be stored in thedatabase 140. -
FIG. 2 illustrates one aspect of thesystem 200 comprising amobile device 102 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIG. 1 ), for example. In one aspect, shortly after theIEM device 104 is ingested by thepatient 106, theIEM device 104 communicates information to themobile device 102 via thedetection arrangement 108 wiredly connected to themobile device 102. Themobile device 102 communicates with acellular tower 202 andbase station 204 and can access theInternet 206 via acellular network 208. Accordingly, information received by themobile device 102 from theIEM device 104 can be communicated to theremote node 122 via theInternet 206 through thecellular network 208. Theprocessing system 138 at theremote node 122 receives the information from themobile device 102 and may store it in thedatabase 140. - In another aspect, the
mobile device 102 communicates with a local wireless access point 210 (e.g., Wi-Fi), which is coupled to aLAN 212. TheLAN 212 is coupled to a WAN such as theInternet 206, which is coupled to the remotely locatedremote node 122. Upon detecting the unique electrical current signature generated by theIEM device 104, themobile device 102 can communicate the information to theprocessing system 138 at theremote node 122 via theaccess point 210,LAN 212, andInternet 206. Theprocessing system 134 stores the information in thedatabase 140. Theremote node 122 can accessother networks 214 for additional processing of the information associated with theIEM device 104 stored in thedatabase 140. - In another aspect, the
mobile device 102 may transmit information associated with theIEM device 104 to another mobile device. The other mobile device then communicates with thecellular tower 202,base station 204,cellular network 208, and theInternet 206 to theremote node 122. In another aspect, the other mobile device communicates with theaccess point 210,LAN 212, and theInternet 206 to theremote node 122. Once communication is established with theremote node 122, the information associated with theIEM device 104 can be processed by the processing system and/or stored in thedatabase 140. -
FIG. 4 illustrates one aspect of asystem 400 comprising adetection arrangement 108 in the form of earphones 110 wiredly coupled to amobile device 102 for detecting an electrical signal generated by an ingestible event marker device. As shown inFIG. 4 thedetection arrangement 108 comprisesear buds electrical conductors plug 402. Theplug 402 is received in a corresponding data port socket orjack connector 404 portion of themobile device 102. Themobile device 102 comprises ahousing 406, adisplay 408, an input/output (I/O)system 410, anaperture 412 for capturing digital images, and anantenna 414. The functional modules of themobile device 102 are described below in connection withFIG. 5 . - The
display 408 may comprise any suitable display unit for displaying information appropriate for amobile device 102. The I/O system 410 may comprise any suitable I/O device for entering information into themobile device 102. Examples for the I/O system 410 may include an alphanumeric keyboard, a numeric keypad, a touch pad, a capacitive touch screen panel, input keys, buttons, switches, rocker switches, voice recognition device and software, and so forth. The I/O system 410 may comprise a microphone and speaker, for example. Information also may be entered into themobile device 102 by way of the microphone. Such information may be digitized by a voice recognition device. -
FIG. 5 illustrates a system diagram of one aspect of amobile device 500 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 and 2 ), for example, configured to couple to an external detection arrangement.FIG. 5 illustrates a more detailed block diagram of themobile computing device 102 described with reference toFIGS. 1 , 2, 4. As shown inFIG. 5 , for example, themobile device 500 may comprise multiple elements. AlthoughFIG. 5 shows a limited number of elements in a certain topology by way of example, it can be appreciated that additional or fewer elements in any suitable topology may be used in themobile device 500 as desired for a given implementation. Furthermore, any element as described herein may be implemented using hardware, software, or a combination of both, as previously described with reference to node implementations. Aspects of themobile device 500, however, are not limited in this context. - In various aspects, the
mobile device 500 comprises ahousing 406, anantenna 414, aradio subsystem 514, and aprocessing subsystem 512 connected to theradio subsystem 514 via a bus. Theradio subsystem 514 may perform voice and data communications operations using wireless shared media for themobile device 500. Theprocessing subsystem 512 may execute software for themobile device 500. A bus may comprise a universal serial bus (USB), micro-USB bus, dataport, and appropriate interfaces, as well as others. In one aspect theradio subsystem 514 may be arranged to communicate voice information and control information over one or more assigned frequency bands of the wireless shared media. - In one aspect, the
mobile device 500 may comprise animaging subsystem 508 for processing images captured through theaperture 412. A camera may be coupled (e.g., wired or wirelessly) to theprocessing subsystem 512 and is configured to output image data (photographic data of a person or thing, e.g., video data, digital still image data) to theprocessing subsystem 512 and to thedisplay 408. In one aspect, theimaging subsystem 508 may comprise a digital camera implemented as an electronic device used to capture and store images electronically in a digital format. Additionally, in some aspects the digital camera may be capable of recording sound and/or video in addition to still images. - In one aspect, the
imaging subsystem 508 may comprise a controller to provide control signals to components of a digital camera, including lens position component, microphone position component, and a flash control module, to provide functionality for the digital camera. In some aspects, the controller may be implemented as, for example, a host processor element of theprocessing subsystem 512 of themobile device 500. Alternatively, the imaging controller may be implemented as a separate processor from the host processor. - In various aspects, the
imaging subsystem 508 may comprise memory either as an element of theprocessing subsystem 512 of themobile device 500 or as a separate element. It is worthy to note that in various aspects some portion or the entire memory may be included on the same integrated circuit as the controller. Alternatively, some portion or the entire memory may be disposed on an integrated circuit or other medium (e.g., hard disk drive) external to the integrated circuit of the controller. - In various aspects, the
imaging subsystem 508 may comprise anaperture 412 with a lens component and a lens position component. The lens component may consist of a photographic or optical lens or arrangement of lenses made of a transparent material such as glass, plastic, acrylic or Plexiglass, for example. In one aspect, the one or more lens elements of the lens component may reproduce an image of an object and allow for zooming in or out on the object by mechanically changing the focal length of the lens elements. In various aspects, a digital zoom may be employed in theimaging subsystem 508 to zoom in or out on an image. In some aspects, the one or more lens elements may be used to focus on different portions of an image by varying the focal length of the lens elements. The desired focus can be obtained with an autofocus feature of thedigital imaging subsystem 508 or by manually focusing on the desired portion of the image, for example. - A
navigation subsystem 510 supports navigation using themobile device 500. In various aspects themobile device 500 may comprise location or position determination capabilities and may employ one or more location determination techniques including, for example, Global Positioning System (GPS) techniques, Cell Global Identity (CGI) techniques, CGI including timing advance (TA) techniques, Enhanced Forward Link Trilateration (EFLT) techniques, Time Difference of Arrival (TDOA) techniques, Angle of Arrival (AOA) techniques, Advanced Forward Link Trilateration (AFTL) techniques, Observed Time Difference of Arrival (OTDOA), Enhanced Observed Time Difference (EOTD) techniques, Assisted GPS (AGPS) techniques, hybrid techniques (e.g., GPS/CGI, AGPS/CGI, GPS/AFTL or AGPS/AFTL for CDMA networks, GPS/EOTD or AGPS/EOTD for GSM/GPRS networks, GPS/OTDOA or AGPS/OTDOA for UMTS networks), among others. - In one aspect, the
mobile device 500 may be configured to operate in one or more location determination modes including, for example, a standalone mode, a mobile station (MS) assisted mode, and/or a MS-based mode. In a standalone mode, such as a standalone GPS mode, themobile device 500 may be configured to determine its position without receiving wireless navigation data from the network, though it may receive certain types of position assist data, such as almanac, ephemeris, and coarse data. In a standalone mode, themobile device 500 may comprise a local location determination circuit such as a GPS receiver which may be integrated within thehousing 406 configured to receive satellite data via theantenna 414 and to calculate a position fix. Local location determination circuit may alternatively comprise a GPS receiver in a second housing separate from thehousing 406 but in the vicinity of themobile device 500 and configured to communicate with themobile device 500 wirelessly (e.g., via a PAN, such as Bluetooth). When operating in an MS-assisted mode or an MS-based mode, however, themobile device 500 may be configured to communicate over a radio access network (e.g., UMTS radio access network) with a remote computer (e.g., a location determination entity (LDE), a location proxy server (LPS) and/or a mobile positioning center (MPC), among others). - A
detection subsystem 516 is coupled to aconnector 404, which is configured to receive the plug 402 (FIG. 4 ) portion of thedetection arrangement 108. Thedetection subsystem 516 detects the unique current signature generated by the IEM device 104 (FIGS. 1 , 2), which encodes the information associated with the IEM device, the medication, and/or the patient, among other information. Thedetection subsystem 516 is coupled to theprocessing subsystem 512 and provides the decoded information to theprocessing subsystem 512. Theprocessing subsystem 512 activates theradio subsystem 514 to communicate the decoded IEM information to the wireless node 120 (FIGS. 1 , 2) and/or the cellular network 208 (FIG. 2 ). Thedetection subsystem 516 is described in more detail below in connection withFIGS. 6 and 7 . - In various aspects, the
mobile device 500 also may comprise a power management subsystem (not shown) to manage power for themobile device 500, including theradio subsystem 514, theprocessing subsystem 512, and other elements of themobile device 500. For example, the power management subsystem may include one or more batteries to provide direct current (DC) power, and one or more alternating current (AC) interfaces to draw power from a standard AC main power supply. - In various aspects, the
radio subsystem 514 may include anantenna 414. Theantenna 414 may broadcast and receive RF energy over the wireless shared media 124 (FIG. 1 ). Examples for theantenna 414 may include an internal antenna, an omni-directional antenna, a monopole antenna, a dipole antenna, an end fed antenna, a circularly polarized antenna, a micro-strip antenna, a diversity antenna, a dual antenna, an antenna array, a helical antenna, and so forth. The aspects are not limited in this context. - In various aspects, the
antenna 414 may be connected to a multiplexer. The multiplexer multiplexes signals from a power amplifier for delivery to theantenna 414. The multiplexer demultiplexes signals received from the antenna for delivery to an RF chipset. - In various aspects, the multiplexer may be connected to a power amplifier, where the power amplifier may be used to amplify any signals to be transmitted over the wireless shared media 124 (
FIG. 1 ). The power amplifier may work in all assigned frequency bands, such as four (4) frequency bands in a quad-band system. The power amplifier also may operate in various modulation modes, such as Gaussian Minimum Shift Keying (GMSK) modulation suitable for GSM systems and 8-ary Phase Shift Keying (8-PSK) modulation suitable for EDGE systems. - In various aspects, the power amplifier may be connected to an RF chipset. The RF chipset also may be connected to the multiplexer. In one aspect, the RF chipset may comprise an RF driver and an RF transceiver. The RF chipset performs all of the modulation and direct conversion operations required for GMSK and 8-PSK signal types for quad-band E-GPRS radio. The RF chipset receives analog in-phase (I) and quadrature (Q) signals from a baseband processor, and converts the I/O signals to an RF signal suitable for amplification by the power amplifier. Similarly, the RF chipset converts the signals received from the wireless shared media 124 (
FIG. 1 ) via theantenna 414 and the multiplexer to analog I/O signals to be sent to the baseband processor. Although the RF chipset may use two chips by way of example, it may be appreciated that the RF chipset may be implemented using more or less chips and still fall within the intended scope of the aspects. - In various aspects, the RF chipset may be connected to the baseband processor, where the baseband processor may perform baseband operations for the
radio subsystem 514. The baseband processor may comprise both analog and digital baseband sections. The analog baseband section includes I/O filters, analog-to-digital converters, digital-to-analog converters, audio circuits, and other circuits. The digital baseband section may include one or more encoders, decoders, equalizers/demodulators, GMSK modulators, GPRS ciphers, transceiver controls, automatic frequency control (AFC), automatic gain control (AGC), power amplifier (PA) ramp control, and other circuits. - In various aspects, the baseband processor also may be connected to one or more memory units via a memory bus. In one aspect, for example, the baseband processor may be connected to a flash memory unit and a secure digital (SD) memory unit. The memory units may be removable or non-removable memory. In one aspect, for example, the baseband processor may use approximately 1.6 megabytes of static read-only memory (SRAM) for E-GPRS and other protocol stack needs.
- In various aspects, the baseband processor also may be connected to a subscriber identity module (SIM). The baseband processor may have a SIM interface for the SIM, where the SIM may comprise a smart card that encrypts voice and data transmissions and stores data about the specific user so that the user can be identified and authenticated to the network supplying voice or data communications. The SIM also may store data such as personal phone settings specific to the user and phone numbers. The SIM can be removable or non-removable.
- In various aspects, the baseband processor may further include various interfaces for communicating with a host processor of the
processing subsystem 512. For example, the baseband processor may have one or more universal asynchronous receiver-transmitter (UART) interfaces, one or more control/status lines to the host processor, one or more control/data lines to the host processor, and one or more audio lines to communicate audio signals to an audio subsystem ofprocessing subsystem 514. The aspects are not limited in this context. - In various aspects, the
processing subsystem 514 may provide computing or processing operations for themobile device 500 and/or for thedetection subsystem 516. For example, theprocessing subsystem 514 may be arranged to execute various software programs for themobile device 500 as well as several software programs for thedetection subsystem 516. Although theprocessing subsystem 514 may be used to implement operations for the various aspects as software executed by a processor, it may be appreciated that the operations performed by theprocessing subsystem 514 also may be implemented using hardware circuits or structures, or a combination of hardware and software, as desired for a particular implementation. - In various aspects, the
processing subsystem 512 may include a processor implemented using any processor or logic device, such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing a combination of instruction sets, or other processor device. In one aspect, for example, a processor may be implemented as a general purpose processor, such as a processor made by Intel Corporation, Santa Clara, Calif. The processor also may be implemented as a dedicated processor, such as a controller, microcontroller, embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth. - In one aspect, the
processing subsystem 514 may include a memory to connect to the processor. The memory may be implemented using any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, the memory may include ROM, RAM, DRAM, DDRAM, SDRAM, SRAM, PROM, EPROM, EEPROM, flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any other type of media suitable for storing information. It is worthy to note that some portion or all of the memory may be included on the same integrated circuit as the processor thereby obviating the need for a memory bus. Alternatively some portion or all of the memory may be disposed on an integrated circuit or other medium, for example a hard disk drive, that is external to the integrated circuit of the processor, and the processor may access the memory via a memory bus, for example. - In various aspects, the memory may store one or more software components (e.g., application client modules). A software component may refer to one or more programs, or a portion of a program, used to implement a discrete set of operations. A collection of software components for a given device may be collectively referred to as a software architecture or application framework. A software architecture for the
mobile device 500 is described in more detail below. - A software architecture suitable for use with the
mobile device 500 may include a user interface (UI) module, an interface module, a data source or backend services module (data source), and a third party API module. An optional LBS module may comprise a user based permission module, a parser module (e.g., National Maritime Electronic Association or NMEA), a location information source module, and a position information source module. In some aspects, some software components may be omitted and others added. Further, operations for some programs may be separated into additional software components, or consolidated into fewer software components, as desired for a given implementation. Themobile device 500 software architecture may comprise several elements, components or modules, collectively referred to herein as a “module.” A module may be implemented as a circuit, an integrated circuit, an application specific integrated circuit (ASIC), an integrated circuit array, a chipset comprising an integrated circuit or an integrated circuit array, a logic circuit, a memory, an element of an integrated circuit array or a chipset, a stacked integrated circuit array, a processor, a digital signal processor, a programmable logic device, code, firmware, software, and any combination thereof. -
FIG. 6A is a diagram 600 of one aspect of anearphone plug 402 coupled to anelectrode input circuit 602 portion of adetection subsystem 516 of themobile device 500 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 and 2 ), for example. Theplug 402 comprises aconductive prong 604 having a plurality of conductive segments (L, R, G) separated by electrically insulative elements. Segment L is electrically connected to theleft ear bud 110L (FIGS. 1 , 2, 4)electrode element 300L (not shown), segment R is electrically connected to theright ear bud 110R (FIGS. 1 , 2, 4)electrode element 300R (FIGS. 3A , 3B), and segment G is connected to ground. It will be appreciated that other configurations or additional segments may be included in a plug. For example, additional segments may be employed to pipe audio signals to theear buds electrode elements 300R, 300L. Theplug 402 may be any type of electrical connector suitable for carrying electrical signals in either analog or digital form. The electrically conductive segments (L, R, G) are coupled to acorresponding connector 514 portion of theelectrode input circuit 602. -
FIG. 6B is a diagram of one aspect of anelectrode input circuit 602 of thedetection subsystem 516 shown inFIG. 6A .FIG. 6B provides a more detailed block diagram of a circuit configured to implement the block functional diagram of theelectrode input circuit 602 depicted inFIG. 6A , according to one aspect. InFIG. 6B ,electrode input circuit 602 includes electrodes e1, e2 (611, 612) which, for example, receive the conductively transmitted signals by an IEM device via connections L and R from theplug 402. The signals received by theelectrodes multiplexer 620 which is electrically coupled to theelectrodes - The
multiplexer 620 is electrically coupled to a highband pass filter 630. The signal chain provides for a programmable gain to cover the desired level or range. In this specific aspect, the highband pass filter 630 passes frequencies in the 10 KHz to 34 KHz band while filtering out noise from out-of-band frequencies. In other aspects, the highband pass filter 630 may be replaced with any suitable band pass filter for any suitable frequency. In the aspect illustrated inFIG. 6B , the high frequency band may vary, and may include, for example, a range of about 3 KHz to about 300 KHz. In other aspects, the frequency band may vary, and may include, for example, a range of about 0.3 KHz to about 30 KHz, for example. The passing frequencies are then amplified by anamplifier 632 before being converted into a digital signal by aconverter 634 for input into a high power processor 680 (shown as a DSP), which is electrically coupled to the frequency signal chain. Also shown inFIG. 6B is aflash memory 690 electrically coupled to thehigh power processor 680 to enable memory storage and enhance efficiency of operations. - The
high power processor 680 may be, for example, a VC5509 digital signal processor from Texas Instruments. Thehigh power processor 680 performs the signal processing actions during the active state. These actions, may require larger amounts of current than the idle state—e.g., currents of 30 μA or more, such as 500 or more—and may include, for example, actions such as scanning for conductively transmitted signals, or processing conductively transmitted signals when received. - The detection subsystem 516 (
FIG. 6A ) may include a hardware accelerator module (not shown) to process data signals. The hardware accelerator module (not shown) may be implemented instead of, for example, a DSP. Being a more specialized computation unit, the hardware accelerator module performs aspects of the signal processing algorithm with fewer transistors (less cost and power) compared to the more general purpose DSP. The blocks of hardware may be used to “accelerate” the performance of important specific function(s). Some architectures for hardware accelerators may be “programmable” via microcode or VLIW assembly. In the course of use, their functions may be accessed by calls to function libraries. -
FIG. 7 is a system diagram of one aspect of adetection subsystem 516 of a mobile device for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 and 2 ), for example.FIG. 7 is a block functional diagram of one aspect of an integrated circuit component. As shown inFIG. 7 , thedetection subsystem 516 comprises anelectrode input circuit 602, which receives the electrical current signature generated by theIEM device 104 from the detection arrangement 108 (both shown inFIGS. 1 and 2 ). In one aspect, electrically coupled to theelectrode input circuit 602 is a transbodyconductive communication module 702 and, in another aspect, aphysiological sensing module 704 optionally may be coupled to theelectrode input circuit 602. In one aspect, the transbodyconductive communication module 702 may be implemented as a first, e.g., high, frequency (HF) signal chain and thephysiological sensing module 704 may be implemented as a second, e.g., low, frequency (LF) signal chain. In one aspect, thedetection subsystem 516 also may include atemperature sensing module 706 for detecting ambient temperature and a 3-axis accelerometer 708. In one aspect, thetemperature sensing module 706 may be implemented using complementary oxide semiconductor (CMOS) circuit elements. In various aspects, additional modules may be provided for sensing of the environment around theIEM device 104, for example, including, without limitation, Ph sensing, impedance sensing. Thedetection subsystem 516 also may comprise amemory 710 for data storage (similar to any of the previously discussed memory elements), and awireless communication module 712 to receive data from and/or transmit data to another device, for example in a data download/upload action, respectively. In various aspects, thesensors 714 and thefeedback modules 716 also may be included in thedetection subsystem 516. In one aspect, as shown inFIG. 7 , the various functional modules are coupled to theprocessing subsystem 512 of the mobile device 500 (FIG. 5 ). In other aspects, a detection subsystem may comprise its own dedicated processing engine. For example, as shown for example inFIG. 14 , thedetection subsystem 516 may comprise adedicated processing engine 1402, for example, a microcontroller or a digital signal processor, that is separate from theprocessing subsystem 512 of themobile device 500. - With reference back to
FIG. 7 , in various aspects, the transbodyconductive communication module 702 and thewireless communication module 712 each may comprise one or more transmitters/receivers (“transceiver”) modules. As used herein, the term “transceiver” may be used in a very general sense to include a transmitter, a receiver, or a combination of both, without limitation. In one aspect, the transbodyconductive communication module 702 is configured to communicate with the IEM device 104 (FIGS. 1 and 2 ). In one aspect, thewireless communication module 712 may be configured to communicate with the wireless access point 210 (FIG. 2 ). In another aspect, thewireless communication module 712 may be configured to communicate with other mobile devices. - In various aspects, the
sensors 714 typically contact the patient 106 (FIGS. 1 and 2 ), e.g., can be removably attached to the torso. In various other aspects, thesensors 714 may be removably or permanently attached to thedetection subsystem 516. For example, thesensors 714 may be removably connected to thedetection subsystem 516 by snapping metal studs. Thesensors 714 may comprise, for example, various devices capable of sensing or receiving the physiologic data. The types ofsensors 714 include, for example, electrodes such as biocompatible electrodes. Thesensors 714 may be configured, for example, as a pressure sensor, a motion sensor, anaccelerometer 708, an electromyography (EMG) sensor, an IEM device 104 (FIGS. 1 and 2 ), a biopotential sensor, an electrocardiogram sensor, a temperature sensor, a tactile event marker sensor, an impedance sensor, among other sensors. - In various aspects, the
feedback module 716 may be implemented with software, hardware, circuitry, various devices, and combinations thereof. The function of thefeedback module 716 is to provide communication with the patient 106 (FIGS. 1 and 2 ) in a discreet, tactful, circumspect manner as described above. In various aspects thefeedback module 716 may be implemented to communicate with the patient 106 (FIGS. 1 and 2 ) using techniques that employ visual, audio, vibratory/tactile, olfactory, and taste. -
FIG. 8 illustrates one aspect of amobile device 800 comprising integrated electrodes 804A, 804B for detecting electrical signals generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 and 2 ), for example. With reference now toFIGS. 8-10 , the integrated electrodes 804A, 804B are coupled to a detection subsystem 516 (FIG. 9 ) similar to the detection subsystem 516 (FIGS. 5-7 ). In this particular aspect, the electrodes are replaced by the integrated electrodes 804A, 804B. Accordingly, in use, the patient 106 (FIG. 10 ) ingests the medication comprising the IEM device 104 (FIG. 10 ) and holds themobile device 800 while contacting the electrodes 804A, 804B with both hands in order to couple the unique electrical current signature generated by theIEM device 104 to thedetection subsystem 516. In another aspect, the mobile device with the contacting electrodes may be placed over a wrist-band or an arm-band which enables physical connectivity with the user. - The
mobile device 800 also comprises a housing 806, a display 808, an input/output (I/O) system 810, an aperture 812 for capturing digital images, and an antenna 814. A high level description of similar functional modules was provided in connection with themobile device 102 shown inFIG. 5 and for the sake of conciseness and clarity will not be repeated here. -
FIG. 9 is system diagram of one aspect of a mobile device 900 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 , 2, 10), for example, configured to couple to the integrated electrodes 805A, 804B. As shown inFIG. 9 , the mobile device 900 may comprise multiple elements. AlthoughFIG. 9 shows a limited number of elements in a certain topology by way of example, it can be appreciated that additional or fewer elements in any suitable topology may be used in the mobile device 900 as desired for a given implementation. Furthermore, any element as described herein may be implemented using hardware, software, or a combination of both, as previously described with reference to node implementations. Aspects of the mobile device 900, however, are not limited in this context. - In various aspects, the mobile device 900 comprises a housing 806 and an antenna 814. The mobile device 900 also comprises a
radio subsystem 514 connected via a bus to aprocessing subsystem 512. Theradio subsystem 514 may perform voice and data communications operations using wireless shared media for the mobile device 900. Theprocessing subsystem 512 may execute software for the mobile device 900. A bus may comprise a USB or micro-USB bus and appropriate interfaces, as well as others. - The
detection subsystem 516, as previously described in connection withFIGS. 5-7 , is coupled to the integrated electrodes 804A, 804B, which are configured to be touched by the patient 106 (FIG. 10 ) to conduct the unique electrical signature generated by the IEM device 104 (FIG. 10 ). Accordingly, once the patient 106 has ingested theIEM device 104 and contacts the integrated electrodes 804A, 804B, thedetection subsystem 516 detects the unique current signature generated by theIEM device 104 and coupled through the integrated electrodes 804A, 804B. As previously discussed, the unique current signature generated by theIEM device 104 encodes the information associated with theIEM device 104, the medication, and/or thepatient 106, among other information. Thedetection subsystem 516 is coupled to theprocessing subsystem 512 and provides the decoded sequence to theprocessing subsystem 512. Theprocessing subsystem 512 activates theradio subsystem 514 to communicate the decoded information received from theIEM device 104 to the wireless node 120 (FIGS. 1 , 2) or the cellular network 208 (FIG. 2 ). Theimaging subsystem 508,navigation subsystem 510, processing subsystem, 512, andradio subsystem 514 were previously described in connection withFIG. 5 and will not be repeated here for the sake of conciseness and clarity of disclosure. -
FIG. 10 illustrates apatient 106 in the process of using one aspect of themobile device 800 comprising integrated electrodes 804A, 804B (FIG. 8 ) for detecting an electrical signal generated by an ingestible event marker, such as theIEM device 104, for example. As previously discussed, once the patient ingests theIEM device 104, thepatient 106 holds themobile device 800 by contacting the integrated electrodes 804A, 804B. The unique electrical current signature that is generated by theIEM device 104 when it dissolves in thedigestive fluids 114 of thestomach 116 is coupled from thepatient 106 to the integrated electrodes 804A, 804B and to the detection subsystem 516 (FIG. 9 ), as previously discussed. -
FIG. 11 illustrates one aspect of amobile device 1100 received in a mating configuration with a mobiledevice enclosing arrangement 1102 comprising a detection circuit integrated therewith for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 , 2, 10), for example. Theenclosing arrangement 1102 may be referred to as a housing, enclosure, attachment, among others., and may substantially or partially cover or enclose themobile device 1100.FIG. 12 illustrates themobile device 1100 and the enclosing arrangement 1102 (cradle, protective cover, skin, and the like) for receiving themobile device 1100 in an unmated configuration. Themobile device 1100 shown inFIGS. 11 and 12 is substantially similar to themobile devices - As shown in
FIGS. 11 and 12 , themobile device 1100 is configured to mate with theenclosing arrangement 1102. Theenclosing arrangement 1102 contains adetection module 1200 integrated therewith. Thedetection module 1200 comprises a detection subsystem comprising an electrode input circuit similar to thedetection subsystem 516 andelectrode input circuit 602 described in connection withFIGS. 6 and 7 . Due to the similarity of the detection subsystem and electrode input circuit components, the particular details will not be repeated here for the sake of conciseness and clarity of disclosure. Theenclosing arrangement 1102 also includeselectrodes 1202A and 12026 (not shown inFIG. 12 and shown inFIG. 13 ) to couple the patient to thedetection module 1200. Thedetection module 1200 may be electrically coupled to functional modules of themobile device 1100 to detect and process the unique electrical signature generated by the IEM device 104 (FIGS. 1 , 2, 10). Thedetection module 1200 may be electrically coupled to the functional modules of themobile device 1100 using any suitable techniques such as, for example, inductive coupling, wireless transmission, electrical connector, and the like. One example of a housing comprising a suitable connector to electrically couple thedetection module 1200 to the functional modules of themobile device 1100 is described in connection withFIG. 13 . -
FIG. 13 illustrates one aspect of aenclosing arrangement 1102 for receiving a mobile device where theenclosing arrangement 1102 comprises adetection circuit 1200 for detecting an electrical signal generated by an ingestible event marker integrated therewith and aconnector 1300 for electrically coupling thedetection circuit 1200 to the functional modules of the mobile device. In use, the mobile device (not shown) is slidably inserted over the enclosingarrangement 1102 and plugged into theconnector 1300. Theelectrodes 1202A, 12026 are used tot couple the patient to thedetection module 1200. Theconnector 1300 couples thedetection module 1200 to the functional modules of the mobile device 1100 (FIG. 12 ) for communication purposes, among other purposes. In one aspect, thedetection module 1200 integrated with theenclosing arrangement 1102 is a standalone module and includes all the necessary electronic modules to detect the unique electrical current signature generated by the IEM device. -
FIG. 14 is a system diagram of one aspect of adetection circuit 1400 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device 104 (FIGS. 1 , 2, 10), for example. In one aspect, thedetection circuit 1400 is a standalone module that includes aprocessing engine 1402. Theprocessing engine 1402 is similar in functionality to theprocessing subsystem 512 previously discussed in connection withFIG. 5 , for example. Theelectrode input circuit 602 receives electrical inputs from theelectrodes 1202A, 12028 integrated with the enclosing arrangement 1102 (FIG. 13 ). Theprocessing engine 1402 receives inputs from the transbodyconductive communication module 702 and thephysiological sensing module 704 and decodes the unique electrical signature generated by the IEM device 104 (FIGS. 1 , 2, 10). The other modules including thetemperature sensor 706,accelerometer 708,memory 710,wireless communication module 712,sensors 714, andfeedback module 716 are optional and are also coupled to theprocessing engine 1402. -
FIG. 15 illustrates one aspect of asystem 1500 comprising andetection arrangement 1502 in the form ofeyeglasses 1504 wiredly coupled to amobile device 1506 for detecting an electrical signal generated by an ingestible event marker, such as the IEM device (FIGS. 1 , 2, 10), for example. Thedetection arrangement 102 comprises a pair ofeyeglasses 1504, or any form eyewear such as reading glasses, prescription glasses, sunglasses, and the like. Theeyeglasses 1504 compriseelectrodes electrical conductors plug 1512. Theplug 1512 is received in a corresponding data port socket orjack connector 1514 portion of themobile device 1506. Themobile device 1506 comprises ahousing 1516, adisplay 1518, an input/output (I/O)system 1520, anaperture 1522 for capturing digital images, and anantenna 1524. A high level description of the functional modules of themobile device 1506 has been provided herein in connection withFIGS. 4-7 , with theeyeglasses 1504 replacing theear buds mobile device 1506 comprises a detection subsystem and an electrode input circuit similar to thedetection subsystem 516 and theelectrode input circuit 602 described in connection withFIGS. 4-7 , for example. - Accordingly, with reference now to
FIGS. 15 , 1, 2, 4-7, and 10 in use, thepatient 106 puts on theeyeglasses 1504 ensuring that there is sufficient contact of theelectrodes electrodes mobile device 1506 by connecting theplug 1512 into the correspondingjack 1514 in themobile device 1506. It will be appreciated that any suitable connection arrangements is contemplated to be within the scope of the present disclosure other than the plug/jack connection arrangement shown inFIG. 15 . Such other connection arrangements include, without limitation, data ports, USB, socket, audio/video type connectors, among other suitable connection mechanisms. Once thedetection arrangement 1502 is located in place, thepatient 106 ingests theIEM device 104 and upon dissolving in thedigestive fluids 114 of thestomach 116, theIEM device 104 powers up and initiates conduction of a unique electrical current signature signal, which encodes information associated with theIEM device 104, the medication, thepatient 106, among other information. The unique electrical current signature signal is detected by theelectrodes electrical conductors mobile device 1506 where theelectrode input circuit 602 portion of thedetection subsystem 516 to decode the signal and communicate the information to theprocessing subsystem 512 of themobile device 1506. In other aspects, thedetection subsystem 512 may include adedicated processing engine 1402 as described in connection withFIG. 14 , without limitation. -
FIG. 16 illustrates one aspect of asystem 1600 comprisingelectrodes detection circuit module 1604, andantenna 1606 integrated in a pair ofeyeglasses 1608 wirelessly coupled to amobile device 1610 for detecting an electrical signal generated by an ingestible event marker. As shown inFIG. 16 , thedetection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in theeyeglasses 1608 to essentially eliminate the need for theelectrical conductors FIG. 15 , for example. Thewireless signal 1612 transmitted by thedetection circuit module 1604 may be received by theonboard antenna 1614 of thewireless device 1610. In one aspect, thedetection circuit module 1604 may communicate with themobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices. - In one aspect, the
eyeglasses 1608 may include abattery 1616 embedded therein to supply electrical power to thedetection circuit module 1604. In other aspects, a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of thebattery 1616. In one aspect, themobile device 1610 may be configured to transmit an interrogation signal to thedetection circuit module 1604 which serves to power up thedetection circuit module 1604 and initiate taking readings and wirelessly transmitting information back to themobile device 1610. - Once the
detection circuit module 1604 transmits the information associated with the IEM device to themobile device 1610, themobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique. -
FIG. 17 illustrates one aspect of asystem 1700 comprisingelectrodes detection circuit module 1604, andantenna 1606 integrated in a in avisor 1708 wirelessly coupled to amobile device 1610 for detecting an electrical signal generated by an ingestible event marker. As shown inFIG. 17 , thedetection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in thevisor 1708 to essentially eliminate the need for the electrical conductors to couple theelectrodes mobile device 1610, for example. Thewireless signal 1612 transmitted by thedetection circuit module 1604 may be received by theonboard antenna 1614 of thewireless device 1610. In one aspect, thedetection circuit module 1604 may communicate with themobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices. - In one aspect, the
visor 1708 may include abattery 1616 embedded therein to supply electrical power to thedetection circuit module 1604. In other aspects, a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of thebattery 1616. In one aspect, themobile device 1610 may be configured to transmit an interrogation signal to thedetection circuit module 1604 which serves to power up thedetection circuit module 1604 and initiate taking readings from the IEM device and wirelessly transmitting the information back to themobile device 1610. - Once the
detection circuit module 1604 transmits the information associated with the IEM device to themobile device 1610, themobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique. -
FIG. 18 illustrates one aspect of asystem 1800 comprisingelectrodes detection circuit module 1604, andantenna 1606 integrated in ahelmet 1808 wirelessly coupled to amobile device 1610 for detecting an electrical signal generated by an ingestible event marker. As shown inFIG. 18 , thedetection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in thehelmet 1808 to essentially eliminate the need for the electrical conductors to couple theelectrodes mobile device 1610, for example. Thewireless signal 1612 transmitted by thedetection circuit module 1604 may be received by theonboard antenna 1614 of thewireless device 1610. In one aspect, thedetection circuit module 1604 may communicate with themobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices. - In one aspect, the
helmet 1808 may include abattery 1616 embedded therein to supply electrical power to thedetection circuit module 1604. In other aspects, a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of thebattery 1616. In one aspect, themobile device 1610 may be configured to transmit an interrogation signal to thedetection circuit module 1604 which serves to power up thedetection circuit module 1604 and initiate taking readings from the IEM device and wirelessly transmitting the information back to themobile device 1610. - Once the
detection circuit module 1604 transmits the information associated with the IEM device to themobile device 1610, themobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique. -
FIG. 19 illustrates one aspect of asystem 1900 comprisingelectrodes detection circuit modules antennas 1606R integrated in a pair ofhearing aids mobile device 1610 for detecting an electrical signal generated by an ingestible event marker. As shown inFIG. 19 , the detection circuit module(s) 1604R, 1604L including the electrode input circuit and detection subsystem are embedded in the hearing aid(s) 1904R, 1904L to essentially eliminate the need for the electrical conductors to couple theelectrodes mobile device 1610, for example. Thewireless signal 1612 transmitted by the either one of thedetection circuit modules onboard antenna 1614 of thewireless device 1610. In one aspect, either one of thedetection circuit modules mobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices. - In one aspect, the hearing aid(s) 1904R, 1904L may include a
battery 1616 embedded therein to supply electrical power to either one of thedetection circuit modules battery 1616. In one aspect, themobile device 1610 may be configured to transmit an interrogation signal to either one of thedetection circuit modules detection circuit modules mobile device 1610. - Once either one of the
detection circuit modules mobile device 1610, themobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique. -
FIG. 20 illustrates one aspect of asystem 2000 comprising electrodes 2004R, 2004L,detection circuit module 1604, andantenna 1606 integrated in achair 2008 wirelessly coupled to amobile device 1610 for detecting an electrical signal generated by an ingestible event marker. As shown inFIG. 20 , thedetection circuit module 1604 including the electrode input circuit and detection subsystem are embedded in thechair 2008 to essentially eliminate the need for the electrical conductors to couple theelectrodes mobile device 1610, for example. Thewireless signal 1612 transmitted by thedetection circuit module 1604 may be received by theonboard antenna 1614 of thewireless device 1610. In one aspect, thedetection circuit module 1604 may communicate with themobile device 1610 using Bluetooth or other suitable proprietary open wireless technology standard for exchanging data over short distances. In other aspects, other wireless communications such as the Wi-Fi (IEEE 802.11) wireless standard for connecting electronic devices. - In one aspect, the
chair 2008 may include abattery 1616 embedded therein to supply electrical power to thedetection circuit module 1604 or may be plugged into a household altering current (AC) mains socket. In other aspects, a wireless power transfer technique commonly employed in RFID tags or by inductive coupling may be employed instead of thebattery 1616. In one aspect, themobile device 1610 may be configured to transmit an interrogation signal to thedetection circuit module 1604 which serves to power up thedetection circuit module 1604 and initiate taking readings from the IEM device and wirelessly transmitting the information back to themobile device 1610. - Once the
detection circuit module 1604 transmits the information associated with the IEM device to themobile device 1610, themobile device 1610 can act as a hub to transfer the information to a local wireless node or remote node via the cellular network, Wi-Fi, Bluetooth, or other suitable wireless communication technique. -
FIG. 21 illustrates asystem 2100 corresponding to one aspect of an ingestible event marker device. In various aspects theIEM devices 104 shown inFIGS. 1 and 2 , for example, may be implemented in accordance with thesystem 2100 shown inFIG. 21 . Thesystem 2100 can be used in association with any medication product, as mentioned above, to determine the origin of the medication and to confirm that at least one of the right type and the right dosage of medication was delivered to the patient and in some aspects to determine when a patient takes the medication product. The scope of the present disclosure, however, is not limited by the environment and the medication product that may be used with thesystem 2100. For example, thesystem 2100 may be activated either in wireless mode, in galvanic mode by placing thesystem 2100 within a capsule and then placing the capsule within a conducting fluid, or a combination thereof, or exposing thesystem 2100 to air. Once placed in a conducting fluid, for example, the capsule would dissolve over a period of time and release thesystem 2100 into the conducting fluid. Thus, in one aspect, the capsule would contain thesystem 2100 and no product. Such a capsule may then be used in any environment where a conducting fluid is present and with any product. For example, the capsule may be dropped into a container filled with jet fuel, salt water, tomato sauce, motor oil, or any similar product. Additionally, the capsule containing thesystem 2100 may be ingested at the same time that any pharmaceutical product is ingested in order to record the occurrence of the event, such as when the product was taken. - In the specific example of the
system 2100 shown inFIG. 21 , when thesystem 2100 is combined with a medication or pharmaceutical product, as the product or pill is ingested, or exposed to air, thesystem 2100 is activated in galvanic mode. Thesystem 2100 controls conductance to produce a unique electrical current signature that is detected by the electrode assemblies (e.g., 108 . . . etc., described herein), for example, thereby signifying that the pharmaceutical product has been taken. When activated in wireless mode, the system controls modulation of capacitive plates to produce a unique voltage signature associated with thesystem 2100 that is detected. Various aspects of thesystem 2100 are described in commonly assigned U.S. Patent Application Applications Pharma Informatics System, filed Apr. 28, 2006, published as 2008-0284599 A1; Highly Reliable Ingestible Event Markers and Methods for Using Same, filed Apr. 27, 2009, published as 2011-0054265 A1; Miniature Ingestible Device, filed Apr. 6, 2011 as International Application No. PCT/US11/31536; Ingestible Device with Pharmaceutical Product, filed Nov. 22, 2010, and the following U.S. Applications No. 61/416,150; Wireless Energy Sources for Integrated Circuits, filed Dec. 29, 2010, Application No. 61/428,055; Communication System with Remote Activation, filed Jul. 11, 2011, application Ser. No. 13/180,516; Communication System with Multiple Sources of Power, filed Jul. 11, 2011, application Ser. No. 13/180,498; Communication System Using an Implantable Device, filed Jul. 11, 2011, application Ser. No. 13/180,539; Communication System with Enhanced Partial Power and Method of Manufacturing Same, filed Jul. 11, 2011, application Ser. No. 13/180,525; Communication System Using Polypharmacy Co-Packaged Medication Dosing Unit, filed Jul. 11, 2011, application Ser. No. 13/180,538; Communication System Incorporated in an Ingestible Product, filed Jul. 11, 2011, application Ser. No. 13/180,507; each of the disclosures of which is entirely herein incorporated by reference. - In one aspect, the
system 2100 includes aframework 2102. Theframework 2102 is a chassis for thesystem 2100 and multiple components are attached to, deposited upon, or secured to theframework 2102. In this aspect of thesystem 2100, adigestible material 2104 is physically associated with theframework 2102. Thematerial 2104 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to theframework 2102. Thematerial 2104 is deposited on one side of theframework 2102. The materials of interest that can be used as material 2104 include, but are not limited to: Cu, CuCl, or CuI. Thematerial 2104 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. Thematerial 2104 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, eachsystem 2100 may contain two or more electrically unique regions where thematerial 2104 may be deposited, as desired. - At a different side, which is the opposite side as shown in
FIG. 21 , anotherdigestible material 2106 is deposited, such that thematerials material 2104. The scope of the present disclosure is not limited by the side selected and the term “different side” can mean any of the multiple sides that are different from the first selected side. In various aspects, the dissimilar material may be located at different positions on a same side. Furthermore, although the shape of the system is shown as a square, the shape may be any geometrically suitable shape. Thematerials system 2100 is in contact with conducting liquid, such as body fluids. The materials of interest formaterial 2106 include, but are not limited to: Mg, Zn, or other electronegative metals. As indicated above with respect to thematerial 2104, thematerial 2106 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework. Also, an adhesion layer may be necessary to help the material 2106 (as well as material 2104 when needed) to adhere to theframework 2102. Typical adhesion layers for thematerial 2106 are Ti, TiW, Cr or similar material. Anode material and the adhesion layer may be deposited by physical vapor deposition, electrodeposition or plasma deposition. Thematerial 2106 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. However, the scope of the present disclosure is not limited by the thickness of any of the materials nor by the type of process used to deposit or secure the materials to theframework 2102. - According to the disclosure set forth, the
materials system 2100 is used in-vivo, thematerials materials system 2100 will be operating. For example, when used with an ingestible product, thematerials system 2100 is in contact with an ionic solution, such as stomach acids. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable. - Materials and pairings of interest include, but are not limited to, those reported in TABLE 1 below. In one aspect, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid. Non-metals that may be used as doping agents in certain aspects include, but are not limited to: sulfur, iodine, and the like. In another aspect, the materials are copper iodine (CuI) as the anode and magnesium (Mg) as the cathode. Aspects of the present disclosure use electrode materials that are not harmful to the human body.
-
TABLE 1 Anode Cathode Metals Magnesium, Zinc Sodium, Lithium Iron Salts Copper salts: iodide, chloride, bromide, sulfate, formate, (other anions possible) Fe3+ salts: e.g. orthophosphate, pyrophosphate, (other anions possible) Oxygen or H+ on platinum, gold or other catalytic surfaces Intercalation Graphite with Li, K, Vanadium oxide Manganese oxide compounds Ca, Na, Mg - Thus, when the
system 2100 is in contact with the conducting fluid, a current path is formed through the conducting fluid between thedissimilar materials control device 2108 is secured to theframework 2102 and electrically coupled to thematerials control device 2108 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between thematerials - The voltage potential created between the
dissimilar materials system 2100. In one aspect, thesystem 2100 operates in direct current mode. In an alternative aspect, the system 720 controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between thedissimilar materials system 2100; the current path through thesystem 2100 is controlled by thecontrol device 2108. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that thesystem 2100 has been activate and the desired event is occurring or has occurred. - In one aspect, the two
dissimilar materials materials system 2100 and enabled by the fluids of the body. The completed power source may be viewed as a power source that exploits electrochemical conduction in an ionic or a conducting solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint. - In certain aspects, the two
dissimilar materials dissimilar materials - In certain aspects, the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging. The active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
- A variety of different materials may be employed as the materials that form the electrodes. In certain aspects, electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier. In certain aspects, the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain aspects, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V.
- Still referring to
FIG. 21 , thedissimilar materials control device 2108. Once thecontrol device 2108 is activated or powered up, thecontrol device 2108 can alter conductance between the first andsecond materials second materials control device 2108 is capable of controlling the magnitude of the current through the conducting liquid that surrounds thesystem 2100. This produces a unique current signature that can be detected and measured by a receiver (not shown), which can be positioned internal or external to the body. The receiver is disclosed in greater detail in U.S. patent application Ser. No. 12/673,326 entitled “BODY-ASSOCIATED RECEIVER AND METHOD” filed on Dec. 15, 2009, and published as 2010-0312188 A1 dated Dec. 9, 2010 which is incorporated herein by reference in its entirety. In addition to controlling the magnitude of the current path between the materials, non-conducting materials, membrane, or “skirt” are used to increase the “length” of the current path and, hence, act to boost the conductance path, as disclosed in the U.S. patent application Ser. No. 12/238,345 entitled, “IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL AMPLIFICATION” filed Sep. 25, 2008, the entire content of which is incorporated herein by reference. Alternatively, throughout the disclosure herein, the terms “non-conducting material,” “membrane,” and “skirt” are interchangeably used with the term “current path extender” without impacting the scope or the present aspects and the claims herein. The skirt, shown in portion at 2105, 2107, respectively, may be associated with, e.g., secured to, theframework 2102. Various shapes and configurations for the skirt are contemplated as within the scope of the various aspects of the present invention. For example, thesystem 2100 may be surrounded entirely or partially by the skirt and the skirt maybe positioned along a central axis of thesystem 2100 or off-center relative to a central axis. Thus, the scope of the present disclosure as claimed herein is not limited by the shape or size of the skirt. Furthermore, in other aspects, thedissimilar materials dissimilar materials - The
system 2100 may be grounded through a ground contact. The system 720 also may include a sensor module. In operation, ion or current paths are established between thefirst material 2104 to thesecond material 2106 and through a conducting fluid in contact with thesystem 2100. The voltage potential created between the first andsecond materials second materials first material 2104 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid. - In one aspect, at the surface of the
first material 2104, there is an electrochemical reaction between the material 2104 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term “mass” as used herein includes any ionic or non-ionic species that may be added or removed from the conductive fluid as part of the electrochemical reactions occurring onmaterial 2104. One example includes the instant where the material is CuCI and when in contact with the conducting fluid, CuCI is converted to Cu metal (solid) and Cl— is released into solution. The flow of positive ions into the conduction fluid is via current path(s). Negative ions flow in the opposite direction. In a similar manner, there is an electrochemical reaction involving thesecond material 2106 that results in ions released or removed from the conducting fluid. In this example, the release of negative ions at thematerial 2104 and the release of positive ions by the material 36 are related to each other through the current flow that is controlled by control device 38. The rate of reaction and hence the ionic emission rate or current, is controlled by thecontrol device 2108. Thecontrol device 2108 can increase or decrease the rate of ion flow by altering its internal conductance, which alters the impedance, and therefore the current flow and reaction rates at thematerials system 2100 can encode information in the ionic flow. Thus, thesystem 2100 encodes information using ionic emission or flow. - The
control device 2108 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, thecontrol device 2108 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, thecontrol device 2108 encodes information in the current flow or the ionic exchange. For example, thecontrol device 2108 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency Modulation (FM), Amplitude Modulation (AM), On-Off Keying, and PSK with On-Off Keying. - Various aspects of the
system 2100 may comprise electronic components as part of thecontrol device 2108. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided. - The
system 2100 controls the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, thesystem 2100 is capable of producing various different unique exchanges or signatures and, thus, provides additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature. - Referring now to
FIG. 22 , in another aspect of an ingestible device is shown in more detail assystem 2040. Thesystem 2040 includes aframework 2042. In this aspect of thesystem 2040, a digestible ordissolvable material 2044 is deposited on a portion of one side of theframework 2042. At a different portion of the same side of theframework 2042, anotherdigestible material 2046 is deposited, such thatmaterials material system 2040 is in contact with and/or partially in contact with the conducting liquid, then a current path, an example is shown inFIG. 23 , is formed through the conducting liquid betweenmaterial control device 2048 is secured to theframework 2042 and electrically coupled to thematerials control device 2048 includes electronic circuitry that is capable of controlling part of the conductance path between thematerials materials non-conducting skirt 2049. Various examples of theskirt 2049 are disclosed in U.S. Provisional Application No. 61/173,511 filed on Apr. 28, 2009 and entitled “HIGHLY RELIABLE INGESTIBLE EVENT MARKERS AND METHODS OF USING SAME” and U.S. Provisional Application No. 61/173,564 filed on Apr. 28, 2009 and entitled “INGESTIBLE EVENT MARKERS HAVING SIGNAL AMPLIFIERS THAT COMPRISE AN ACTIVE AGENT”; as well as U.S. application Ser. No. 12/238,345 filed Sep. 25, 2008 and published as 2009-0082645, entitled “IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL AMPLIFICATION”; the entire disclosure of each is incorporated herein by reference. - Once the
control device 2048 is activated or powered up, thecontrol device 2048 can alter conductance between thematerials control device 2048 is capable of controlling the magnitude of the current through the conducting liquid that surrounds thesystem 2040. As indicated above with respect tosystem 2030, a unique current signature that is associated with thesystem 2040 can be detected by a receiver (not shown) to mark the activation of thesystem 2040. In order to increase the “length” of the current path the size of theskirt 2049 is altered. The longer the current path, the easier it may be for the receiver to detect the current. - Referring now to
FIG. 23 , thesystem 2030 ofFIG. 21 is shown in an activated state and in contact with conducting liquid. Thesystem 2030 is grounded throughground contact 2052. Thesystem 2030 also includes asensor module 2074, which is described in greater detail with respect toFIG. 24 . Ion orcurrent paths 2050 form betweenmaterial 2034 to material 2036 through the conducting fluid in contact with thesystem 2030. The voltage potential created between the material 2034 and 2036 is created through chemical reactions betweenmaterials 2034/2036 and the conducting fluid. -
FIG. 23A shows an exploded view of the surface of thematerial 2034. The surface of thematerial 2034 is not planar, but rather anirregular surface 2054 as shown. Theirregular surface 2054 increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid. - In one aspect, at the surface of the
material 2034, there is chemical reaction between the material 2034 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term “mass” as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCI and when in contact with the conducting fluid, CuCI becomes Cu (solid) and Cl.sup.—in solution. The flow of ions into the conduction fluid is depicted by theion paths 2050. In a similar manner, there is a chemical reaction between the material 2036 and the surrounding conducting fluid and ions are captured by thematerial 2036. The release of ions at thematerial 2034 and capture of ion by thematerial 2036 is collectively referred to as the ionic exchange. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by thecontrol device 2038. Thecontrol device 2038 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between thematerials system 2030 can encode information in the ionic exchange process. Thus, thesystem 2030 uses ionic emission to encode information in the ionic exchange. - The
control device 2038 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, thecontrol device 2038 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, thecontrol device 2038 encodes information in the current flow or the ionic exchange. For example, thecontrol device 2038 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency modulation, Amplitude modulation, on-off keying, and PSK with on-off keying. - As indicated above, the various aspects disclosed herein, such as
systems FIGS. 21 and 22 , respectively, include electronic components as part of thecontrol device 2038 or thecontrol device 2048. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided. - As indicated above, the system, such as
system systems - Referring now to
FIG. 24 , a block diagram representation of thecontrol device 2038 is shown. Thedevice 2030 includes acontrol module 2062, a counter orclock 2064, and amemory 2066. Additionally, thedevice 2038 is shown to include asensor module 2072 as well as thesensor module 2074, which was referenced inFIG. 23 . Thecontrol module 2062 has aninput 2068 electrically coupled to thematerial 2034 and anoutput 2070 electrically coupled to thematerial 2036. Thecontrol module 2062, theclock 2064, thememory 2066, and thesensor modules 2072/2074 also have power inputs (some not shown). The power for each of these components is supplied by the voltage potential produced by the chemical reaction betweenmaterials system 2030 is in contact with the conducting fluid. Thecontrol module 2062 controls the conductance through logic that alters the overall impedance of thesystem 2030. Thecontrol module 2062 is electrically coupled to theclock 2064. Theclock 2064 provides a clock cycle to thecontrol module 2062. Based upon the programmed characteristics of thecontrol module 2062, when a set number of clock cycles have passed, thecontrol module 2062 alters the conductance characteristics betweenmaterials control device 2038 produces a unique current signature characteristic. Thecontrol module 2062 is also electrically coupled to thememory 2066. Both theclock 2064 and thememory 2066 are powered by the voltage potential created between thematerials control module 2062 is also electrically coupled to and in communication with thesensor modules sensor module 2072 is part of thecontrol device 2038 and thesensor module 2074 is a separate component. In alternative aspects, either one of thesensor modules sensor modules system 2030 may be functionally or structurally moved, combined, or repositioned without limiting the scope of the present invention as claimed. Thus, it is possible to have one single structure, for example a processor, which is designed to perform the functions of all of the following modules: thecontrol module 2062, theclock 2064, thememory 2066, and thesensor module FIG. 24 , thesensor modules sensor modules control module 2062. The control module then converts the analog information to digital information and the digital information is encoded in the current flow or the rate of the transfer of mass that produces the ionic flow. In another aspect, thesensor modules module 2062. In the aspect shown inFIG. 23 , thesensor modules 2074 is shown as being electrically coupled to thematerial control device 2038. In another aspect, as shown inFIG. 24 , thesensor module 2074 is electrically coupled to the control device and the connection acts as both a source for power supply to thesensor module 2074 and a communication channel between thesensor module 2074 and thecontrol device 2038. Referring now toFIG. 23B , thesystem 2030 includes apH sensor module 2076 connected to amaterial 2039, which is selected in accordance with the specific type of sensing function being performed. ThepH sensor module 2076 is also connected to thecontrol device 2038. Thematerial 2039 is electrically isolated from thematerial 2034 by anon-conductive barrier 2055. In one aspect, thematerial 2039 is platinum. In operation, thepH sensor module 2076 uses the voltage potential difference between thematerials 2034/2036. ThepH sensor module 2076 measures the voltage potential difference between the material 2034 and thematerial 2039 and records that value for later comparison. ThepH sensor module 2076 also measures the voltage potential difference between the material 2039 and thematerial 2036 and records that value for later comparison. ThepH sensor module 2076 calculates the pH level of the surrounding environment using the voltage potential values. ThepH sensor module 2076 provides that information to thecontrol device 2038. Thecontrol device 2038 varies the rate of the transfer of mass that produces the ionic transfer and the current flow to encode the information relevant to the pH level in the ionic transfer, which can be detected by a receiver (not shown). Thus, thesystem 2030 can determine and provide the information related to the pH level to a source external to the environment. As indicated above, thecontrol device 2038 can be programmed in advance to output a pre-defined current signature. In another aspect, the system can include a receiver system that can receive programming information when the system is activated. In another aspect, not shown, theswitch 2064 and thememory 2066 can be combined into one device. In addition to the above components, thesystem 2030 may also include one or other electronic components. Electrical components of interest include, but are not limited to: additional logic and/or memory elements, e.g., in the form of an integrated circuit; a power regulation device, e.g., battery, fuel cell or capacitor; a sensor, a stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc. It will be appreciated that in the interest of conciseness and clarity, although the plug/jack connection arrangement has been disclosed herein, other suitable connection arrangements are contemplated to be within the scope of the present disclosure. Such other connection arrangements include, without limitation, any electrical connector that is an electro-mechanical device for joining electrical circuits as an interface using a mechanical arrangement. The connection may be temporary, as for portable equipment, require a tool for arrangement and removal, or serve as a permanent electrical joint between two wires or devices. Those skilled in the art will appreciate that there are hundreds of types of electrical connectors for joining two lengths of flexible wire or cable, or connect a wire or cable or optical interface to an electrical terminal. In the context of the present disclosure, an electrical connector also may be referred to as a physical interface. Such connectors include, without limitation, plug and socket, audio/video, posts, keyed and unkeyed, locked and unlocked, modular multi-conductor plug and jacks commonly used for Ethernet/Cat5 applications, D-subminiature, data ports, USB, RF, direct current (DC), hybrid, among other suitable connection mechanisms. - It also will be appreciated that as described in the present disclosure, various ordinary objects have been modified to include electrodes to pick up the unique electrical current signature generated by the IEM device. Such ordinary objects include headphones with
ear buds 108 as shown inFIGS. 1-4 , amobile device 800 as shown inFIGS. 8-10 , a mobiledevice enclosing arrangement 1102 as shown inFIGS. 11-13 ,eyeglasses FIGS. 15-16 , a visor as shown inFIG. 17 , ahelmet 1808 as shown inFIG. 18 , hearing aids 1904R, 1904L as shown inFIG. 19 , and achair 2008 as shown inFIG. 20 . It will be appreciated, however, that the present disclosure is not limited in this context and it is contemplated that any suitable ordinary object can be modified to include a set of electrodes to carry the unique electrical current signal generated by the IEM device when the patient holds the object and makes physical contact with the electrodes after ingesting the IEM and associated medication. For example, other ordinary objects that can be modified to incorporate the electrodes include, without limitation, ear muffs, hats, drinking glasses, eating utensils (chopsticks, knife, spoon, fork), remote control devices entertainment systems (television, stereo, DVD player), portable media players (iPod by Apple, MP3 devices), computer keyboards, computer mouse, tabletop, medicine containers (pill bottles, vitamin bottles, inhalable dosing units), cardboard packaging of the medicine containers, head bands, hair bands, motorcycle helmets, ski helmets, goggles, ski goggles, coffee cups, toothbrushes, canes, walkers, bracelets, belts, suspenders, medic alert bracelets, steering wheel of a vehicle (car, truck), keys, house keys, vehicle (car, truck) keys, musical instruments (keyboards, saxophone), laptop computer, iPad by Apple or other tablet computer, e-book reader (Kindle by Amazon), purse,; purse handles, gloves, mittens, business card holder, thimbles, pulse oximeters, salt and pepper shakers, beverage decanters (milk, wine), beverage bottles or cans (soda, juice, water) dentures, electronic scales, thermometers, stuffed animals (especially for children), exercise equipment (elliptical machine, dumbbells, weightlifting, exercise ball, stationary bike), digital camera (still or motion image camera), board games (Scrabble, Monopoly, chess), digital recording device, Dictaphone, among others. - It also will be appreciated that as described in the present disclosure, that the mobile devices that incorporate an image capture device (e.g., a digital camera) may be used to capture an image of the IEM device, medication, container in which the medication, among others. Once the image is captured it can be used to verify the patient taking the medication, the medication itself, expiration dates on the package, among other information. The digitally captured image can be stored, compressed, transmitted over local and wide area networks (such as the Internet), and so on.
- It is worthy to note that any reference to “one aspect” or “an aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
- Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. Notwithstanding the claims, the invention is also defined by the following clauses:
- 1. A mobile device for detecting an electrical signal generated by an ingestible event marker, the mobile device comprising:
-
- a detection subsystem to receive an electrical signal generated by an ingestible event marker from a detection arrangement, preferably wherein the detection subsystem comprises an electrode input circuit to receive the electrical signal from the detection arrangement,
- a processing subsystem coupled to the detection subsystem to decode the electrical signal; and
- a radio subsystem configured to transmit the decoded electrical signal to a wireless node.
- 2. The mobile device of
clause 1, comprising one or more of the following: -
- a connector to receive a plug coupled to the detection arrangement,
- a housing, wherein the detection arrangement is integrated with the housing,
- an application software program comprising a series of computer executable instructions executable by the processing system, wherein when the computer executable instructions are executed by the processing subsystem causes the radio subsystem to initiate communication with the wireless node.
- 3. The mobile device according to
clauses - 4. The mobile device according to any of the preceding clauses further comprising a connector coupled to the electrode input circuit and the detection arrangement comprises a plug to be received in the connector.
- 5. A system for detecting an electrical signal generated by an ingestible event marker, the system comprising:
-
- a mobile device according to any of the preceding clauses and
- a detection arrangement to couple to the mobile device.
- 6. The system of clause 5, comprising a cover to receive the mobile device, wherein the detection subsystem is located in the enclosing arrangement.
- 7. The system of clause 5 or 6, wherein the processing subsystem is located in the cover.
- 8. The system of clause 6 or 7, wherein the cover comprises a connector to couple to the detection subsystem of the processing to receive the processing subsystem of the mobile device.
- 9. The system according to any of the clauses 5-8 wherein the detection arrangement comprises:
-
- at least one electrode to couple to a living body; and
- a plug having a first end wiredly coupled to the at least one electrode and a second end wiredly coupled to a connector of the mobile device to wiredly connect the at least one electrode to the detection subsystem of the mobile device.
- 10. The system according to any of the clauses 5-8 wherein the detection arrangement comprises:
-
- at least one electrode to couple to a living body;
- a detection circuit module coupled to the at least one electrode; and
- an antenna coupled to the detection circuit module.
- 11. The system of
clause 10, wherein the detection arrangement is wirelessly coupled to the mobile device. - 12. The system according to any of the clauses 5-11 wherein the detection arrangement is located in an object, preferably selected from the group consisting essentially of headphones with ear buds, a mobile device, a mobile device cover, eyeglasses, a visor, and a helmet.
- 13. The system according to any of the preceding clauses 5-12 further comprising an ingestible event marker.
- 15. A method of processing an electrical signal generated by an ingestible event marker, the method comprising:
-
- receiving an electrical signal generated by an ingestible event marker at a mobile device, the mobile device preferably according to any of the preceding clauses 1-4,
- decoding the electrical signal received by the mobile device to extract information associated with the ingestible event marker; and transmitting the information to a wireless node.
- 16. The method of clause 15, further comprising transmitting the information to a remote node.
- 17. Use of a mobile device and/or a system according to any of the preceding clauses 1-4, 5-13 respectively for detecting an electrical signal generated by an ingestible event marker.
- While certain features of the aspects have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the aspects.
Claims (20)
1. A mobile device for detecting an electrical signal generated by an ingestible event marker, the mobile device comprising:
a detection subsystem to receive an electrical signal generated by an ingestible event marker from a detection arrangement;
a processing subsystem coupled to the detection subsystem to decode the electrical signal; and
a radio subsystem configured to transmit the decoded electrical signal to a wireless node.
2. The mobile device of claim 1 , wherein the detection subsystem comprises an electrode input circuit to receive the electrical signal from the detection arrangement.
3. The mobile device of claim 1 , comprising a connector to receive a plug coupled to the detection arrangement.
4. The mobile device of claim 1 , comprising a housing, wherein the detection arrangement is integrated with the housing.
5. The mobile device of claim 1 , comprising an application software program comprising a series of computer executable instructions executable by the processing system, wherein when the computer executable instructions are executed by the processing subsystem causes the radio subsystem to initiate communication with the wireless node.
6. A system for detecting an electrical signal generated by an ingestible event marker, the system comprising:
a mobile device;
a detection arrangement to couple to the mobile device;
a detection subsystem to receive an electrical signal generated by an ingestible event marker from the detection arrangement;
a processing subsystem coupled to the detection subsystem to decode the electrical signal; and
a radio subsystem configured to transmit the decoded electrical signal to a wireless node.
7. The system of claim 6 , wherein the detection subsystem comprises an electrode input circuit to receive the electrical signal from the detection arrangement.
8. The system of claim 6 , wherein the mobile device comprises a connector coupled to the electrode input circuit and the detection arrangement comprises a plug to be received in the connector.
9. The system of claim 6 , wherein the mobile device comprises a housing, and wherein the detection arrangement is integrated with the housing.
10. The system of claim 6 , comprising an application software program comprising a series of computer executable instructions executable by the processing system, wherein when the computer executable instructions are executed by the processing subsystem causes the radio subsystem to initiate communication with the wireless node.
11. The system of claim 6 , comprising a cover to receive the mobile device, wherein the detection subsystem is located in the enclosing arrangement.
12. The system of claim 11 , wherein the processing subsystem is located in the cover.
13. The system of claim 11 , wherein the cover comprises a connector to couple to the detection subsystem of the processing to receive the processing subsystem of the mobile device.
14. The system of claim 6 , wherein the detection arrangement comprises:
at least one electrode to couple to a living body; and
a plug having a first end wiredly coupled to the at least one electrode and a second end wiredly coupled to a connector of the mobile device to wiredly connect the at least one electrode to the detection subsystem of the mobile device.
15. The system of claim 6 , wherein the detection arrangement comprises:
at least one electrode to couple to a living body;
a detection circuit module coupled to the at least one electrode; and
an antenna coupled to the detection circuit module.
16. The system of claim 15 , wherein the detection arrangement is wirelessly coupled to the mobile device.
17. The system of claim 6 , wherein the detection arrangement is located in a suitable ordinary object.
18. The system of claim 17 , wherein the ordinary object is selected from the group consisting essentially of headphones with ear buds, a mobile device, a mobile device cover, eyeglasses, a visor, and a helmet.
19. A method of processing an electrical signal generated by an ingestible event marker, the method comprising:
receiving an electrical signal generated by an ingestible event marker at a mobile device;
decoding the electrical signal received by the mobile device to extract information associated with the ingestible event marker; and
transmitting the information to a wireless node.
20. The method of claim 19 , further comprising transmitting the information to a remote node.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/234,069 US20140203950A1 (en) | 2011-07-21 | 2012-07-17 | Mobile Communication Device, System, and Method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161510434P | 2011-07-21 | 2011-07-21 | |
US14/234,069 US20140203950A1 (en) | 2011-07-21 | 2012-07-17 | Mobile Communication Device, System, and Method |
PCT/US2012/047076 WO2013012869A1 (en) | 2011-07-21 | 2012-07-17 | Mobile communication device, system, and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/047076 A-371-Of-International WO2013012869A1 (en) | 2008-12-15 | 2012-07-17 | Mobile communication device, system, and method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/612,955 Continuation US10223905B2 (en) | 2011-07-21 | 2017-06-02 | Mobile device and system for detection and communication of information received from an ingestible device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140203950A1 true US20140203950A1 (en) | 2014-07-24 |
Family
ID=47558429
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/234,069 Abandoned US20140203950A1 (en) | 2011-07-21 | 2012-07-17 | Mobile Communication Device, System, and Method |
US15/612,955 Active US10223905B2 (en) | 2011-07-21 | 2017-06-02 | Mobile device and system for detection and communication of information received from an ingestible device |
US16/256,341 Active US10720044B2 (en) | 2011-07-21 | 2019-01-24 | Headwear device for detection and communication of information received from an ingestible device |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/612,955 Active US10223905B2 (en) | 2011-07-21 | 2017-06-02 | Mobile device and system for detection and communication of information received from an ingestible device |
US16/256,341 Active US10720044B2 (en) | 2011-07-21 | 2019-01-24 | Headwear device for detection and communication of information received from an ingestible device |
Country Status (16)
Country | Link |
---|---|
US (3) | US20140203950A1 (en) |
EP (1) | EP2734973A4 (en) |
JP (3) | JP6144678B2 (en) |
KR (1) | KR101898964B1 (en) |
CN (1) | CN103827914A (en) |
AU (1) | AU2012284125A1 (en) |
BR (1) | BR112014001397A2 (en) |
CA (1) | CA2842952C (en) |
IL (1) | IL230497A0 (en) |
IN (1) | IN2014MN00183A (en) |
MX (1) | MX340001B (en) |
RU (1) | RU2014106126A (en) |
TW (1) | TW201320964A (en) |
UA (1) | UA118745C2 (en) |
WO (1) | WO2013012869A1 (en) |
ZA (1) | ZA201400451B (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140283017A1 (en) * | 2013-03-13 | 2014-09-18 | Motorola Mobility Llc | Communicating via a body-area network |
CN104867309A (en) * | 2015-04-30 | 2015-08-26 | 深圳市全球锁安防系统工程有限公司 | Middle aged and elderly people good health service intelligent wearing device and deep learning method |
CN105005059A (en) * | 2015-06-26 | 2015-10-28 | 泰斗微电子科技有限公司 | Transmission method for original observed quantity data in ANDROID terminal, and corresponding terminal |
US20160005299A1 (en) * | 2014-07-07 | 2016-01-07 | Google Inc. | Meal-based medication reminder system |
TWI551995B (en) * | 2015-03-06 | 2016-10-01 | 拓連科技股份有限公司 | Methods and systems for data transmission and acknowledgement between electronic devices, and related computer program products |
US20160331964A1 (en) * | 2015-05-14 | 2016-11-17 | Cochlear Limited | Functionality migration |
US9692868B2 (en) * | 2015-09-01 | 2017-06-27 | Lg Electronics Inc. | Mobile terminal and control method for the mobile terminal |
EP3236674A1 (en) * | 2016-04-19 | 2017-10-25 | Sonova AG | Hearing aid with public key security features and various systems comprising such |
US20180103871A1 (en) * | 2016-10-13 | 2018-04-19 | Etectrx, Inc. | System for ingestion event monitoring and method for detecting ingestion events with high accuracy |
US20180188854A1 (en) * | 2012-02-23 | 2018-07-05 | Cypress Semiconductor Corporation | Method and apparatus for data transmission via capacitance sensing device |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US10305544B2 (en) | 2009-11-04 | 2019-05-28 | Proteus Digital Health, Inc. | System for supply chain management |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US10405374B2 (en) * | 2017-03-17 | 2019-09-03 | Google Llc | Antenna system for head mounted display device |
US10405745B2 (en) * | 2015-09-27 | 2019-09-10 | Gnana Haranth | Human socializable entity for improving digital health care delivery |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US10529044B2 (en) | 2010-05-19 | 2020-01-07 | Proteus Digital Health, Inc. | Tracking and delivery confirmation of pharmaceutical products |
US10682071B2 (en) | 2008-07-08 | 2020-06-16 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US10868618B2 (en) * | 2018-09-13 | 2020-12-15 | Kristin Renee Little | Device and method for providing a synchronized pattern sequence on multiple devices |
US11017892B1 (en) * | 2017-09-11 | 2021-05-25 | Massachusetts Mutual Life Insurance Company | System and method for ingestible drug delivery |
US11089646B2 (en) * | 2019-03-26 | 2021-08-10 | Canon Kabushiki Kaisha | Communication apparatus, method for controlling communication apparatus and non-transitory computer-readable storage medium |
US20220053169A1 (en) * | 2009-11-25 | 2022-02-17 | Oliver Koemmerling | Methods for the covert transmission of data |
US20220059205A1 (en) * | 2018-12-31 | 2022-02-24 | Becton, Dickinson And Company | Systems, apparatuses and methods for medical device communication with one or more remote devices |
US11259758B2 (en) * | 2015-03-30 | 2022-03-01 | Avaya, Inc. | Enhanced communication with an application service provider based on medical telemetry collected by a user device |
US20220076816A1 (en) * | 2020-09-04 | 2022-03-10 | Micron Technology, Inc. | Wearable monitor with memory |
US11277728B2 (en) * | 2014-08-25 | 2022-03-15 | Phyzio, Inc. | Physiologic sensors for sensing, measuring, transmitting, and processing signals |
US11310703B2 (en) | 2019-03-26 | 2022-04-19 | Canon Kabushiki Kai Sha | Communication apparatus, control method, and storage medium |
US11388207B2 (en) | 2018-04-17 | 2022-07-12 | Fasetto, Inc. | Device presentation with real-time feedback |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US11985244B2 (en) * | 2017-12-01 | 2024-05-14 | Fasetto, Inc. | Systems and methods for improved data encryption |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8730031B2 (en) | 2005-04-28 | 2014-05-20 | Proteus Digital Health, Inc. | Communication system using an implantable device |
US9198608B2 (en) | 2005-04-28 | 2015-12-01 | Proteus Digital Health, Inc. | Communication system incorporated in a container |
CN101496042A (en) | 2006-05-02 | 2009-07-29 | 普罗秋斯生物医学公司 | Patient customized therapeutic regimens |
EP2069004A4 (en) | 2006-11-20 | 2014-07-09 | Proteus Digital Health Inc | Active signal processing personal health signal receivers |
EP2124725A1 (en) | 2007-03-09 | 2009-12-02 | Proteus Biomedical, Inc. | In-body device having a multi-directional transmitter |
EP4011289A1 (en) | 2007-09-25 | 2022-06-15 | Otsuka Pharmaceutical Co., Ltd. | In-body device with virtual dipole signal amplification |
EP2268261B1 (en) | 2008-03-05 | 2017-05-10 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
US9659423B2 (en) | 2008-12-15 | 2017-05-23 | Proteus Digital Health, Inc. | Personal authentication apparatus system and method |
US9439566B2 (en) | 2008-12-15 | 2016-09-13 | Proteus Digital Health, Inc. | Re-wearable wireless device |
WO2010080843A2 (en) | 2009-01-06 | 2010-07-15 | Proteus Biomedical, Inc. | Ingestion-related biofeedback and personalized medical therapy method and system |
AU2011210648B2 (en) | 2010-02-01 | 2014-10-16 | Otsuka Pharmaceutical Co., Ltd. | Data gathering system |
WO2012125425A2 (en) | 2011-03-11 | 2012-09-20 | Proteus Biomedical, Inc. | Wearable personal body associated device with various physical configurations |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US9235683B2 (en) | 2011-11-09 | 2016-01-12 | Proteus Digital Health, Inc. | Apparatus, system, and method for managing adherence to a regimen |
EP2967389B1 (en) * | 2013-03-15 | 2023-08-16 | EMPI, Inc. | Personalized image-based guidance for energy-based therapeutic devices |
JP6498177B2 (en) | 2013-03-15 | 2019-04-10 | プロテウス デジタル ヘルス, インコーポレイテッド | Identity authentication system and method |
MX356850B (en) | 2013-09-20 | 2018-06-15 | Proteus Digital Health Inc | Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping. |
JP2016537924A (en) | 2013-09-24 | 2016-12-01 | プロテウス デジタル ヘルス, インコーポレイテッド | Method and apparatus for use with electromagnetic signals received at frequencies that are not accurately known in advance |
US10078811B2 (en) | 2013-11-29 | 2018-09-18 | Fedex Corporate Services, Inc. | Determining node location based on context data in a wireless node network |
CN104027092A (en) * | 2014-06-04 | 2014-09-10 | 同济大学 | Household measuring and monitoring system based on personal mobile terminal with headphone jack |
US9485034B2 (en) | 2014-08-06 | 2016-11-01 | Sony Corporation | Device with external metal frame as coupling element for body-coupled-communication signals |
TW201626941A (en) * | 2015-01-26 | 2016-08-01 | Sen Science Inc | Wearable ECG detection device |
US10491479B2 (en) * | 2015-07-08 | 2019-11-26 | Fedex Corporate Services, Inc. | Systems, apparatus, and methods of time gap related monitoring for an event candidate related to an ID node within a wireless node network |
US20170024009A1 (en) * | 2015-07-21 | 2017-01-26 | Htc Corporation | Mobile device and control method thereof |
TWI608824B (en) * | 2015-08-31 | 2017-12-21 | Wearable ECG measuring device | |
EP3348187A4 (en) * | 2015-09-11 | 2019-06-12 | Fukuda Denshi Co., Ltd. | Biological-information measurement device |
US9974903B1 (en) * | 2016-05-02 | 2018-05-22 | Dexcom, Inc. | System and method for providing alerts optimized for a user |
RU2701107C2 (en) * | 2016-12-28 | 2019-09-24 | Дмитрий Александрович Ромашев | Emergency notification device for people in life-threatening situation |
CN108306836B (en) * | 2018-04-03 | 2024-05-14 | 广州视源电子科技股份有限公司 | Data transmission device, intelligent interaction panel and data transmission method |
TWI739204B (en) * | 2019-07-22 | 2021-09-11 | 財團法人工業技術研究院 | System and method for signal sensing |
GB201913086D0 (en) * | 2019-09-11 | 2019-10-23 | Univ Oslo Hf | On-body antenna for wireless communication with medical implant |
KR102263585B1 (en) | 2020-07-28 | 2021-06-10 | 주식회사 에이티센스 | Bio-Signal Monitoring Device |
TWI749696B (en) * | 2020-08-11 | 2021-12-11 | 明新學校財團法人明新科技大學 | Skin detection method |
TWI798694B (en) * | 2021-05-11 | 2023-04-11 | 明基電通股份有限公司 | Data sharing method and data sharing system |
US12019820B2 (en) | 2021-11-29 | 2024-06-25 | Samsung Electronics Co., Ltd. | Wearable electronic device comprising antenna and electrode |
TWI825913B (en) * | 2022-08-10 | 2023-12-11 | 中原大學 | Hearing aid device with functions of anti-noise and 3d sound recognition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050261559A1 (en) * | 2004-05-18 | 2005-11-24 | Mumford John R | Wireless physiological monitoring system |
US20060287693A1 (en) * | 2005-06-08 | 2006-12-21 | Clifford Kraft | Implanted telephone system |
US20070156015A1 (en) * | 2005-12-29 | 2007-07-05 | Zvika Gilad | Device, system and method for in-vivo sensing of a body lumen |
US20090203964A1 (en) * | 2008-02-13 | 2009-08-13 | Fujifilm Corporation | Capsule endoscope system and endoscopic image filing method |
US20100081894A1 (en) * | 2005-04-28 | 2010-04-01 | Proteus Biomedical, Inc. | Communication system with partial power source |
US20100185055A1 (en) * | 2007-02-01 | 2010-07-22 | Timothy Robertson | Ingestible event marker systems |
US20100217100A1 (en) * | 2009-02-25 | 2010-08-26 | Leboeuf Steven Francis | Methods and Apparatus for Measuring Physiological Conditions |
US20110270112A1 (en) * | 2009-11-02 | 2011-11-03 | Applied Cardiac Systems, Inc. | Multi-Function Health Monitor |
US20120116184A1 (en) * | 2010-11-05 | 2012-05-10 | National Cheng Kung University | Peripheral physiology inspection apparatus and peripheral auxiliary apparatus of smart phone |
Family Cites Families (1091)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB775071A (en) | 1954-08-03 | 1957-05-22 | The Chloride Electrical Storage Co. Ltd. | Improvements in primary electric batteries |
US3218638A (en) | 1962-05-29 | 1965-11-16 | William M Honig | Wireless passive biological telemetry system |
US3353539A (en) | 1963-10-31 | 1967-11-21 | United Aircraft Corp | Electrical power generator employing a body fluid as electrolyte and method of operation |
US3345989A (en) | 1963-11-05 | 1967-10-10 | Gen Electric | Implantable power source employing a body fluid as an electrolyte |
GB1140684A (en) | 1965-08-31 | 1969-01-22 | Rotax Ltd | Switching circuits |
US3799802A (en) | 1966-06-28 | 1974-03-26 | F Schneble | Plated through hole printed circuit boards |
US3409721A (en) | 1967-09-15 | 1968-11-05 | Neomed Lab Inc | Oral dosage system effective to control the reproduction cycle |
US3607788A (en) | 1967-11-20 | 1971-09-21 | Robert J Adolph | Liquid electrode material |
US3589943A (en) | 1968-08-29 | 1971-06-29 | Gen Electric | Electrochemical battery |
US3642008A (en) | 1968-09-25 | 1972-02-15 | Medical Plastics Inc | Ground electrode and test circuit |
US3679480A (en) | 1969-05-08 | 1972-07-25 | Dow Chemical Co | Electrical cell assembly |
US3682160A (en) | 1969-10-16 | 1972-08-08 | Matsushita Electric Ind Co Ltd | Physiological signal transmitter for use inside the body |
US3628669A (en) | 1969-12-22 | 1971-12-21 | Owens Corning Fiberglass Corp | Semipermeable membranes |
US3719183A (en) | 1970-03-05 | 1973-03-06 | H Schwartz | Method for detecting blockage or insufficiency of pancreatic exocrine function |
US3727616A (en) | 1971-06-15 | 1973-04-17 | Gen Dynamics Corp | Electronic system for the stimulation of biological systems |
US3837339A (en) | 1972-02-03 | 1974-09-24 | Whittaker Corp | Blood glucose level monitoring-alarm system and method therefor |
US3825016A (en) | 1972-02-28 | 1974-07-23 | Devices Ltd | Implantable cardiac pacemaker with battery voltage-responsive rate |
US3828766A (en) | 1972-08-14 | 1974-08-13 | Jet Medical Prod Inc | Disposable medical electrode |
US3989050A (en) | 1972-09-19 | 1976-11-02 | Gilbert Buchalter | Process for utilizing certain gel compositions for electrical stimulation |
US3944064A (en) | 1973-10-26 | 1976-03-16 | Alza Corporation | Self-monitored device for releasing agent at functional rate |
US4106348A (en) | 1974-02-20 | 1978-08-15 | U.S. Philips Corporation | Device for examination by means of ultrasonic vibrations |
US3893111A (en) | 1974-03-14 | 1975-07-01 | Albert Albert F | System and method for remote monitoring of animal temperature |
US3967202A (en) | 1974-07-25 | 1976-06-29 | Northern Illinois Gas Company | Data transmission system including an RF transponder for generating a broad spectrum of intelligence bearing sidebands |
US4090752A (en) | 1974-10-07 | 1978-05-23 | Baxter Travenol Laboratories, Inc. | Diagnostic electrode assembly |
US4077397A (en) | 1974-10-07 | 1978-03-07 | Baxter Travenol Laboratories, Inc. | Diagnostic electrode assembly |
ZA755785B (en) | 1974-10-07 | 1976-08-25 | Baxter Laboratories Inc | Diagnostic electrode assembly |
US4062750A (en) | 1974-12-18 | 1977-12-13 | James Francis Butler | Thin film electrochemical electrode and cell |
FR2330368A1 (en) | 1975-11-04 | 1977-06-03 | Anvar | METHOD AND DEVICE FOR IN VIVO MEASUREMENT OF THE DEGREE OF BONE CONSOLIDATION |
US4017856A (en) | 1976-03-10 | 1977-04-12 | Westinghouse Electric Corporation | Self-calibrating microwave transponder |
US4055178A (en) | 1976-03-10 | 1977-10-25 | Harrigan Roy Major | Drug delivery device for preventing contact of undissolved drug with the stomach lining |
US4075070A (en) | 1976-06-09 | 1978-02-21 | Ppg Industries, Inc. | Electrode material |
US4129125A (en) | 1976-12-27 | 1978-12-12 | Camin Research Corp. | Patient monitoring system |
US4105023A (en) | 1977-01-19 | 1978-08-08 | American Optical Corporation | Pacemaker artifact suppression in coronary monitoring |
GB1594214A (en) | 1977-01-21 | 1981-07-30 | Cardio Tech | Body electrodes |
US4082087A (en) | 1977-02-07 | 1978-04-04 | Isis Medical Instruments | Body contact electrode structure for deriving electrical signals due to physiological activity |
JPS5475284A (en) | 1977-11-29 | 1979-06-15 | Asahi Chemical Ind | Threeeterminal magnetic reluctance effect element |
US4239046A (en) | 1978-09-21 | 1980-12-16 | Ong Lincoln T | Medical electrode |
US4345588A (en) | 1979-04-23 | 1982-08-24 | Northwestern University | Method of delivering a therapeutic agent to a target capillary bed |
US4281664A (en) | 1979-05-14 | 1981-08-04 | Medtronic, Inc. | Implantable telemetry transmission system for analog and digital data |
US4269189A (en) | 1979-07-09 | 1981-05-26 | Consolidated Medical Equipment Inc. | Skin conducting electrode assembly |
DE2928477C3 (en) | 1979-07-14 | 1982-04-15 | Battelle-Institut E.V., 6000 Frankfurt | Device for the release of substances at defined locations in the digestive tract |
US4331654A (en) | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4578061A (en) | 1980-10-28 | 1986-03-25 | Lemelson Jerome H | Injection catheter and method |
US4418697A (en) | 1981-08-17 | 1983-12-06 | Francine Tama | Electrode attachment method |
US4494950A (en) | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4439196A (en) | 1982-03-18 | 1984-03-27 | Merck & Co., Inc. | Osmotic drug delivery system |
GB8315308D0 (en) | 1983-06-03 | 1983-07-06 | Jenkins W N | Arc deposition of metal onto substrate |
DE3335301C2 (en) | 1983-06-25 | 1985-05-02 | Udo 8500 Nürnberg Simon | Drug container |
US4564363A (en) | 1983-07-13 | 1986-01-14 | Smithkline Beckman Corporation | Delayed action assembly |
GB8322007D0 (en) | 1983-08-16 | 1983-09-21 | Wellcome Found | Pharmaceutical delivery system |
US4749575A (en) | 1983-10-03 | 1988-06-07 | Bio-Dar Ltd. | Microencapsulated medicament in sweet matrix |
US4559950A (en) | 1983-11-25 | 1985-12-24 | Graphic Controls Corporation | Disposable biomedical and diagnostic electrode |
US5000957A (en) | 1984-03-19 | 1991-03-19 | Alza Corporation | Dispenser comprising hydrophilic osmopolymer |
JPS6117949A (en) | 1984-07-05 | 1986-01-25 | Katsuo Ebara | Solid ph sensor |
GB8422876D0 (en) | 1984-09-11 | 1984-10-17 | Secr Defence | Silicon implant devices |
FR2571603B1 (en) | 1984-10-11 | 1989-01-06 | Ascher Gilles | PORTABLE ELECTROCARDIOGRAM RECORDER |
US4618533A (en) | 1984-11-30 | 1986-10-21 | Millipore Corporation | Porous membrane having hydrophilic surface and process |
US4681111A (en) | 1985-04-05 | 1987-07-21 | Siemens-Pacesetter, Inc. | Analog and digital telemetry system for an implantable device |
US4654165A (en) | 1985-04-16 | 1987-03-31 | Micro Tracers, Inc. | Microingredient containing tracer |
US4767627A (en) | 1985-05-29 | 1988-08-30 | Merck & Co., Inc. | Drug delivery device which can be retained in the stomach for a controlled period of time |
US4669479A (en) | 1985-08-21 | 1987-06-02 | Spring Creek Institute, Inc. | Dry electrode system for detection of biopotentials |
US4763659A (en) | 1985-08-21 | 1988-08-16 | Spring Creek Institute, Inc. | Dry electrode system for detection of biopotentials |
US4635641A (en) | 1985-10-16 | 1987-01-13 | Murray Electronics Associates Limited | Multi-element electrode |
US4663250A (en) | 1986-03-12 | 1987-05-05 | Institute Of Gas Technology | Reduction of electrode dissolution |
US4725997A (en) | 1986-08-22 | 1988-02-16 | Aprex Corporation | Contingent dosing device |
US4784162A (en) | 1986-09-23 | 1988-11-15 | Advanced Medical Technologies | Portable, multi-channel, physiological data monitoring system |
US4896261A (en) | 1986-11-24 | 1990-01-23 | Motorola Inc. | System for scheduling serial message transmission on a bus which is adoptable for rescheduling prioritized messages using a doubly-linked list |
DE3713251C2 (en) | 1987-04-18 | 1996-04-11 | Mannesmann Kienzle Gmbh | Device for the transmission and storage of energy and information in a card-shaped, mobile data carrier |
US4876093A (en) | 1987-07-02 | 1989-10-24 | Alza Corporation | Dispenser with dispersing member for delivering beneficial agent |
DE3723310A1 (en) | 1987-07-15 | 1989-01-26 | John Urquhart | PHARMACEUTICAL PREPARATION AND METHOD FOR THE PRODUCTION THEREOF |
JPH01285247A (en) | 1988-05-12 | 1989-11-16 | Olympus Optical Co Ltd | Medical capsule |
US5002772A (en) | 1988-05-31 | 1991-03-26 | Pfizer Inc. | Gastric retention system for controlled drug release |
CA1327838C (en) | 1988-06-13 | 1994-03-15 | Fred Zacouto | Implantable device to prevent blood clotting disorders |
US4975230A (en) | 1988-06-17 | 1990-12-04 | Vapor Technologies Inc. | Method of making an open pore structure |
US5245332A (en) | 1988-06-22 | 1993-09-14 | Iedsco Oy | Programmable memory for an encoding system |
US4844076A (en) | 1988-08-26 | 1989-07-04 | The Johns Hopkins University | Ingestible size continuously transmitting temperature monitoring pill |
US4871974A (en) | 1988-12-23 | 1989-10-03 | International Business Machines, Corp. | Coherent phase shift keyed demodulator |
EP0392032B1 (en) | 1989-04-10 | 1995-01-25 | Pacesetter AB | Medical implantable apparatus with telematic data transmission means |
CA2016517C (en) | 1989-05-11 | 1999-01-12 | Dale R. Shackle | Solid state electrochemical cell having microroughened current collector |
US5281287A (en) | 1989-07-21 | 1994-01-25 | Iomed, Inc. | Method of making a hydratable bioelectrode |
US4987897A (en) | 1989-09-18 | 1991-01-29 | Medtronic, Inc. | Body bus medical device communication system |
JP2552927B2 (en) | 1990-01-26 | 1996-11-13 | 三菱電機株式会社 | Demodulator for π / 4 shift QPSK signal |
US5468222A (en) | 1990-05-03 | 1995-11-21 | Mayo Foundation For Medical Education & Research | Process for determining drug taper schedules |
US6749122B1 (en) | 1990-05-25 | 2004-06-15 | Broadcom Corporation | Multi-level hierarchial radio-frequency system communication system |
US6359872B1 (en) | 1997-10-28 | 2002-03-19 | Intermec Ip Corp. | Wireless personal local area network |
US5167626A (en) | 1990-10-02 | 1992-12-01 | Glaxo Inc. | Medical capsule device actuated by radio-frequency (RF) signal |
US5395366A (en) | 1991-05-30 | 1995-03-07 | The State University Of New York | Sampling capsule and process |
US5279607A (en) | 1991-05-30 | 1994-01-18 | The State University Of New York | Telemetry capsule and process |
US6605046B1 (en) | 1991-06-03 | 2003-08-12 | Del Mar Medical Systems, Llc | Ambulatory physio-kinetic monitor with envelope enclosure |
EP0526166A2 (en) | 1991-07-29 | 1993-02-03 | Albert L. Dessertine | Patient compliance monitoring method and system |
CA2074889C (en) | 1991-07-30 | 1997-12-09 | Motoya Iwasaki | Carrier frequency error detector capable of accurately detecting a carrier frequency error |
GB9123638D0 (en) | 1991-11-07 | 1992-01-02 | Magill Alan R | Apparel & fabric & devices suitable for health monitoring applications |
US5176626A (en) | 1992-01-15 | 1993-01-05 | Wilson-Cook Medical, Inc. | Indwelling stent |
JPH05228128A (en) | 1992-02-25 | 1993-09-07 | Olympus Optical Co Ltd | Capsule for medical treatment |
JPH05245215A (en) | 1992-03-03 | 1993-09-24 | Terumo Corp | Heart pace maker |
ES2155068T3 (en) | 1992-04-03 | 2001-05-01 | Micromedical Ind Ltd | PHYSIOLOGICAL SUPERVISION SYSTEM. |
US5263481A (en) | 1992-05-21 | 1993-11-23 | Jens Axelgaard | Electrode system with disposable gel |
US5283136A (en) | 1992-06-03 | 1994-02-01 | Ramot University Authority For Applied Research And Industrial Development Ltd. | Rechargeable batteries |
US5318557A (en) | 1992-07-13 | 1994-06-07 | Elan Medical Technologies Limited | Medication administering device |
US5261402A (en) | 1992-07-20 | 1993-11-16 | Graphic Controls Corporation | Snapless, tabless, disposable medical electrode with low profile |
JP3454525B2 (en) | 1992-07-23 | 2003-10-06 | 三洋電機株式会社 | Micromachines and power systems in micromachines |
US5428961A (en) | 1992-07-21 | 1995-07-04 | Sanyo Electric Co., Ltd. | Micromachines |
US5338625A (en) | 1992-07-29 | 1994-08-16 | Martin Marietta Energy Systems, Inc. | Thin film battery and method for making same |
US7758503B2 (en) | 1997-01-27 | 2010-07-20 | Lynn Lawrence A | Microprocessor system for the analysis of physiologic and financial datasets |
US5412372A (en) | 1992-09-21 | 1995-05-02 | Medical Microsystems, Inc. | Article dispenser for monitoring dispensing times |
US5288564A (en) | 1992-09-30 | 1994-02-22 | Magnavox Electronic Systems Company | Compact, cylindrical, multi-cell seawater battery |
JP3214159B2 (en) | 1993-01-22 | 2001-10-02 | 三菱電機株式会社 | Carrier detector |
US5394879A (en) | 1993-03-19 | 1995-03-07 | Gorman; Peter G. | Biomedical response monitor-exercise equipment and technique using error correction |
US5757326A (en) | 1993-03-29 | 1998-05-26 | Seiko Epson Corporation | Slot antenna device and wireless apparatus employing the antenna device |
US5406945A (en) | 1993-05-24 | 1995-04-18 | Ndm Acquisition Corp. | Biomedical electrode having a secured one-piece conductive terminal |
US5394882A (en) | 1993-07-21 | 1995-03-07 | Respironics, Inc. | Physiological monitoring system |
US5458141A (en) | 1993-08-04 | 1995-10-17 | Quinton Instrument Company | Abrasive skin electrode |
US5443461A (en) | 1993-08-31 | 1995-08-22 | Alza Corporation | Segmented device for simultaneous delivery of multiple beneficial agents |
DE4329898A1 (en) | 1993-09-04 | 1995-04-06 | Marcus Dr Besson | Wireless medical diagnostic and monitoring device |
US5402793A (en) | 1993-11-19 | 1995-04-04 | Advanced Technology Laboratories, Inc. | Ultrasonic transesophageal probe for the imaging and diagnosis of multiple scan planes |
SE512207C2 (en) | 1993-11-26 | 2000-02-14 | Meditelligence Ab | Drug storage device |
US6390088B1 (en) | 1993-12-13 | 2002-05-21 | Boehringer Ingelheim Kg | Aerosol inhaler |
US5476488A (en) | 1993-12-15 | 1995-12-19 | Pacesetter, Inc. | Telemetry system power control for implantable medical devices |
US6206829B1 (en) | 1996-07-12 | 2001-03-27 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system including network access |
DE69526371T2 (en) | 1994-03-21 | 2002-11-28 | Dusa Pharmaceuticals, Inc. | PLASTER AND CONTROL DEVICE FOR PHOTODYNAMIC THERAPY FROM DERMAL INJURIES |
US5925066A (en) | 1995-10-26 | 1999-07-20 | Galvani, Ltd. | Atrial arrythmia sensor with drug and electrical therapy control apparatus |
US5600548A (en) | 1994-08-11 | 1997-02-04 | Sundstrand Corporation | DC content control for an inverter |
IE70735B1 (en) | 1994-08-15 | 1996-12-11 | Elan Med Tech | Orally administrable delivery device |
DE9414065U1 (en) | 1994-08-31 | 1994-11-03 | Röhm GmbH & Co. KG, 64293 Darmstadt | Thermoplastic plastic for pharmaceutical casings soluble in intestinal juice |
JP3376462B2 (en) | 1994-09-19 | 2003-02-10 | 日本光電工業株式会社 | Signal transmission device and biological signal measurement device |
IL111396A (en) | 1994-10-25 | 1997-07-13 | Ness Neuromuscular Electrical Stimulation Systems Ltd | Electrode system |
US5551953A (en) | 1994-10-31 | 1996-09-03 | Alza Corporation | Electrotransport system with remote telemetry link |
US5485841A (en) | 1995-02-14 | 1996-01-23 | Univ Mcgill | Ultrasonic lung tissue assessment |
US5778882A (en) | 1995-02-24 | 1998-07-14 | Brigham And Women's Hospital | Health monitoring system |
US6374670B1 (en) | 1995-03-13 | 2002-04-23 | University Of Washington | Non-invasive gut motility monitor |
US5845265A (en) | 1995-04-26 | 1998-12-01 | Mercexchange, L.L.C. | Consignment nodes |
ES2180767T3 (en) | 1995-05-08 | 2003-02-16 | Massachusetts Inst Technology | SYSTEM FOR DETECTION WITHOUT CONTACT AND SIGNALING USING THE HUMAN BODY AS A MEANS OF TRANSMISSION. |
US5645063A (en) | 1995-06-05 | 1997-07-08 | Quinton Instrument Company | Skin electrode having multiple conductive center members |
US5738708A (en) | 1995-06-07 | 1998-04-14 | The Regents Of The University Of California Office Of Technology Transfer | Composite metal membrane |
US6083248A (en) | 1995-06-23 | 2000-07-04 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US5720771A (en) | 1995-08-02 | 1998-02-24 | Pacesetter, Inc. | Method and apparatus for monitoring physiological data from an implantable medical device |
USD377983S (en) | 1995-09-13 | 1997-02-11 | Mohamed Sabri | Cardiac monitor |
US5802467A (en) | 1995-09-28 | 1998-09-01 | Innovative Intelcom Industries | Wireless and wired communications, command, control and sensing system for sound and/or data transmission and reception |
WO1997014112A1 (en) | 1995-10-11 | 1997-04-17 | Motorola Inc. | Remotely powered electronic tag and associated exciter/reader and related method |
US6076016A (en) | 1995-10-19 | 2000-06-13 | Feierbach; Gary F. | Galvanic transdermal conduction communication system and method |
GB9522872D0 (en) | 1995-11-08 | 1996-01-10 | Oxford Medical Ltd | Improvements relating to physiological monitoring |
US8092224B2 (en) | 1995-11-22 | 2012-01-10 | James A. Jorasch | Systems and methods for improved health care compliance |
SE9504258D0 (en) | 1995-11-28 | 1995-11-28 | Pacesetter Ab | Device and method for generating a synthesized ECG |
US6090489A (en) | 1995-12-22 | 2000-07-18 | Toto, Ltd. | Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface |
US5596302A (en) | 1996-01-17 | 1997-01-21 | Lucent Technologies Inc. | Ring oscillator using even numbers of differential stages with current mirrors |
US5868136A (en) | 1996-02-20 | 1999-02-09 | Axelgaard Manufacturing Co. Ltd. | Medical electrode |
US20010044588A1 (en) | 1996-02-22 | 2001-11-22 | Mault James R. | Monitoring system |
US5833603A (en) | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US6453199B1 (en) | 1996-04-01 | 2002-09-17 | Valery Ivanovich Kobozev | Electrical gastro-intestinal tract stimulator |
US5965629A (en) | 1996-04-19 | 1999-10-12 | Korea Institute Of Science And Technology | Process for modifying surfaces of materials, and materials having surfaces modified thereby |
GB9608268D0 (en) | 1996-04-22 | 1996-06-26 | Robertson James L | Blister pack |
US5864578A (en) | 1996-04-29 | 1999-01-26 | Golden Bridge Technology, Inc. | Matched filter-based handoff method and apparatus |
JPH09330159A (en) | 1996-06-11 | 1997-12-22 | Omron Corp | Data processor, game controller data processing method and game processing method |
US5800421A (en) | 1996-06-12 | 1998-09-01 | Lemelson; Jerome H. | Medical devices using electrosensitive gels |
JP3636826B2 (en) | 1996-07-01 | 2005-04-06 | 積水化学工業株式会社 | Bioelectrical impedance measuring device |
WO1998007364A1 (en) | 1996-08-16 | 1998-02-26 | Roche Diagnostics Gmbh | Monitoring system for the regular intake of a medicament |
SI0938318T1 (en) | 1996-08-29 | 2001-12-31 | Sanofi Synthelabo | Tablet with controlled release of alfuzosine chlorydrate |
US5792048A (en) | 1996-09-03 | 1998-08-11 | Schaefer; Guenter | Indentification pill with integrated microchip: smartpill, smartpill with integrated microchip and microprocessor for medical analyses and a smartpill, smartbox, smartplague, smartbadge or smartplate for luggage control on commercial airliners |
US6394953B1 (en) | 2000-02-25 | 2002-05-28 | Aspect Medical Systems, Inc. | Electrode array system for measuring electrophysiological signals |
US5963132A (en) | 1996-10-11 | 1999-10-05 | Avid Indentification Systems, Inc. | Encapsulated implantable transponder |
US6364834B1 (en) | 1996-11-13 | 2002-04-02 | Criticare Systems, Inc. | Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system |
US8734339B2 (en) | 1996-12-16 | 2014-05-27 | Ip Holdings, Inc. | Electronic skin patch for real time monitoring of cardiac activity and personal health management |
US5928142A (en) | 1996-12-17 | 1999-07-27 | Ndm, Inc. | Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector |
US5974124A (en) | 1997-01-21 | 1999-10-26 | Med Graph | Method and system aiding medical diagnosis and treatment |
US6122351A (en) | 1997-01-21 | 2000-09-19 | Med Graph, Inc. | Method and system aiding medical diagnosis and treatment |
WO1998041279A1 (en) | 1997-03-17 | 1998-09-24 | Nims, Inc. | Physiologic signs feedback system |
AU6943698A (en) | 1997-03-31 | 1998-10-22 | Telecom Medical, Inc. | Patient monitoring apparatus |
US5981166A (en) | 1997-04-23 | 1999-11-09 | Pharmaseq, Inc. | Screening of soluble chemical compounds for their pharmacological properties utilizing transponders |
DE19717023C2 (en) | 1997-04-23 | 2003-02-06 | Micronas Gmbh | Device for treating malignant, tumorous tissue areas |
US6288629B1 (en) | 1997-05-23 | 2001-09-11 | Intermec Ip Corp. | Method of using write—ok flag for radio frequency (RF) transponders (RF Tags) |
US5921925A (en) | 1997-05-30 | 1999-07-13 | Ndm, Inc. | Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector |
US5984875A (en) | 1997-08-22 | 1999-11-16 | Innotek Pet Products, Inc. | Ingestible animal temperature sensor |
US5862808A (en) | 1997-08-26 | 1999-01-26 | Cigar Savor Enterprises Llc | Cigar punch |
US5917346A (en) | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US6409674B1 (en) | 1998-09-24 | 2002-06-25 | Data Sciences International, Inc. | Implantable sensor with wireless communication |
AU1449699A (en) | 1997-10-31 | 1999-05-24 | Technical Chemicals & Products, Inc. | Reflectometer |
JPH11195415A (en) | 1997-11-05 | 1999-07-21 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte battery and its manufacture |
US5948227A (en) | 1997-12-17 | 1999-09-07 | Caliper Technologies Corp. | Methods and systems for performing electrophoretic molecular separations |
JP3697629B2 (en) * | 1999-09-13 | 2005-09-21 | 日本光電工業株式会社 | Communication system for biological signals |
US6856832B1 (en) * | 1997-12-25 | 2005-02-15 | Nihon Kohden Corporation | Biological signal detection apparatus Holter electrocardiograph and communication system of biological signals |
GB9801363D0 (en) | 1998-01-22 | 1998-03-18 | Danbiosyst Uk | Novel dosage form |
US6097927A (en) | 1998-01-27 | 2000-08-01 | Symbix, Incorporated | Active symbolic self design method and apparatus |
US6009350A (en) | 1998-02-06 | 1999-12-28 | Medtronic, Inc. | Implant device telemetry antenna |
US6038464A (en) | 1998-02-09 | 2000-03-14 | Axelgaard Manufacturing Co., Ltd. | Medical electrode |
US6275476B1 (en) | 1998-02-19 | 2001-08-14 | Micron Technology, Inc. | Method of addressing messages and communications system |
US7542878B2 (en) | 1998-03-03 | 2009-06-02 | Card Guard Scientific Survival Ltd. | Personal health monitor and a method for health monitoring |
US6141592A (en) | 1998-03-06 | 2000-10-31 | Intermedics Inc. | Data transmission using a varying electric field |
US6579231B1 (en) | 1998-03-27 | 2003-06-17 | Mci Communications Corporation | Personal medical monitoring unit and system |
US6091975A (en) | 1998-04-01 | 2000-07-18 | Alza Corporation | Minimally invasive detecting device |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
JP3600158B2 (en) | 1998-05-13 | 2004-12-08 | シグナス, インコーポレイテッド | Monitoring physiological analytes |
TW406018B (en) | 1998-05-21 | 2000-09-21 | Elan Corp Plc | Improved adhesive system for medical devices |
AU4094599A (en) | 1998-05-21 | 1999-12-06 | Telecom Medical, Inc. | Patient monitoring apparatus |
US6477424B1 (en) | 1998-06-19 | 2002-11-05 | Medtronic, Inc. | Medical management system integrated programming apparatus for communication with an implantable medical device |
US6704602B2 (en) | 1998-07-02 | 2004-03-09 | Medtronic, Inc. | Implanted medical device/external medical instrument communication utilizing surface electrodes |
EP1098591B1 (en) | 1998-07-20 | 2007-01-03 | George Coggins | Physiological parameter monitoring and bio-feedback apparatus |
US7209787B2 (en) | 1998-08-05 | 2007-04-24 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US7548787B2 (en) | 2005-08-03 | 2009-06-16 | Kamilo Feher | Medical diagnostic and communication system |
US6703047B2 (en) | 2001-02-02 | 2004-03-09 | Incept Llc | Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use |
US6558320B1 (en) | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6333699B1 (en) | 1998-08-28 | 2001-12-25 | Marathon Oil Company | Method and apparatus for determining position in a pipe |
NZ510107A (en) | 1998-09-04 | 2003-03-28 | Wolfe Res Pty Ltd | Medical implant system |
CA2343404C (en) | 1998-09-11 | 2002-11-12 | Key-Trak, Inc. | Object tracking system with non-contact object detection and identification |
US6344824B1 (en) | 1998-09-18 | 2002-02-05 | Hitachi Maxell, Ltd. | Noncontact communication semiconductor device |
FI116957B (en) | 1998-10-29 | 2006-04-13 | Nokia Corp | The method of communication between the wireless device and the electronic device and the communication device |
US6708060B1 (en) | 1998-11-09 | 2004-03-16 | Transpharma Ltd. | Handheld apparatus and method for transdermal drug delivery and analyte extraction |
WO2000033246A1 (en) | 1998-11-25 | 2000-06-08 | Ball Semiconductor, Inc. | Method of and system for identifying medical products |
US6217744B1 (en) | 1998-12-18 | 2001-04-17 | Peter Crosby | Devices for testing fluid |
AU2483600A (en) | 1998-12-21 | 2000-07-12 | Sequella, Inc. | Methods and compositions comprising monitoring devices |
US6115636A (en) | 1998-12-22 | 2000-09-05 | Medtronic, Inc. | Telemetry for implantable devices using the body as an antenna |
CN1291369A (en) | 1998-12-22 | 2001-04-11 | 精工爱普生株式会社 | Power supply system, power receiving system, power transmission system, power transmission, portable device and timer device |
US6269058B1 (en) | 1999-01-04 | 2001-07-31 | Texas Instruments Incorporated | Wide capture range circuitry |
US6117077A (en) | 1999-01-22 | 2000-09-12 | Del Mar Medical Systems, Llc | Long-term, ambulatory physiological recorder |
US6358202B1 (en) | 1999-01-25 | 2002-03-19 | Sun Microsystems, Inc. | Network for implanted computer devices |
US8636648B2 (en) | 1999-03-01 | 2014-01-28 | West View Research, Llc | Endoscopic smart probe |
US6285897B1 (en) | 1999-04-07 | 2001-09-04 | Endonetics, Inc. | Remote physiological monitoring system |
US6494829B1 (en) | 1999-04-15 | 2002-12-17 | Nexan Limited | Physiological sensor array |
US6755783B2 (en) | 1999-04-16 | 2004-06-29 | Cardiocom | Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients |
US6290646B1 (en) | 1999-04-16 | 2001-09-18 | Cardiocom | Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients |
US6200265B1 (en) | 1999-04-16 | 2001-03-13 | Medtronic, Inc. | Peripheral memory patch and access method for use with an implantable medical device |
WO2000069490A1 (en) | 1999-05-18 | 2000-11-23 | Sonometrics Corporation | System for incorporating sonomicrometer functions into medical instruments and implantable biomedical devices |
AU4133299A (en) | 1999-05-25 | 2000-12-12 | Medicotest A/S | A skin electrode |
EP1246414B1 (en) | 1999-05-26 | 2012-05-23 | Johnson Controls Technology Company | Wireless communications system and method therefor |
US6366206B1 (en) | 1999-06-02 | 2002-04-02 | Ball Semiconductor, Inc. | Method and apparatus for attaching tags to medical and non-medical devices |
EP1060704A3 (en) | 1999-06-18 | 2002-09-18 | Agilent Technologies, Inc. (a Delaware corporation) | Multi-parameter capability transmitter for wireless telemetry systems |
JP3402267B2 (en) | 1999-06-23 | 2003-05-06 | ソニーケミカル株式会社 | Electronic element mounting method |
DE19929328A1 (en) | 1999-06-26 | 2001-01-04 | Daimlerchrysler Aerospace Ag | Device for long-term medical monitoring of people |
US6287252B1 (en) | 1999-06-30 | 2001-09-11 | Monitrak | Patient monitor |
US6804558B2 (en) * | 1999-07-07 | 2004-10-12 | Medtronic, Inc. | System and method of communicating between an implantable medical device and a remote computer system or health care provider |
US6307468B1 (en) | 1999-07-20 | 2001-10-23 | Avid Identification Systems, Inc. | Impedance matching network and multidimensional electromagnetic field coil for a transponder interrogator |
HN2000000165A (en) | 1999-08-05 | 2001-07-09 | Dimensional Foods Corp | EDIBLE HOLOGRAPHIC PRODUCTS, PARTICULARLY PHARMACEUTICALS, AND METHODS AND APPLIANCES FOR PRODUCERS. |
US6428809B1 (en) | 1999-08-18 | 2002-08-06 | Microdose Technologies, Inc. | Metering and packaging of controlled release medication |
US6206702B1 (en) | 1999-08-24 | 2001-03-27 | Deborah A. Hayden | Methods and devices for treating unilateral neglect |
JP3876573B2 (en) | 1999-09-20 | 2007-01-31 | カシオ計算機株式会社 | Net game apparatus and caricature image display control method |
US6526034B1 (en) | 1999-09-21 | 2003-02-25 | Tantivy Communications, Inc. | Dual mode subscriber unit for short range, high rate and long range, lower rate data communications |
US6533733B1 (en) | 1999-09-24 | 2003-03-18 | Ut-Battelle, Llc | Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring |
US6990082B1 (en) | 1999-11-08 | 2006-01-24 | Intel Corporation | Wireless apparatus having a transceiver equipped to support multiple wireless communication protocols |
EP1089572B1 (en) | 1999-09-30 | 2011-09-21 | Sony Corporation | Recording apparatus, recording method, and record medium |
WO2001026232A2 (en) | 1999-10-07 | 2001-04-12 | La Mont, Llc | Physiological signal monitoring apparatus and method |
US6852084B1 (en) | 2000-04-28 | 2005-02-08 | Peter V. Boesen | Wireless physiological pressure sensor and transmitter with capability of short range radio frequency transmissions |
US6882881B1 (en) | 1999-10-19 | 2005-04-19 | The Johns Hopkins University | Techniques using heat flow management, stimulation, and signal analysis to treat medical disorders |
US7076437B1 (en) | 1999-10-29 | 2006-07-11 | Victor Levy | Process for consumer-directed diagnostic and health care information |
US6426863B1 (en) | 1999-11-25 | 2002-07-30 | Lithium Power Technologies, Inc. | Electrochemical capacitor |
US6612984B1 (en) | 1999-12-03 | 2003-09-02 | Kerr, Ii Robert A. | System and method for collecting and transmitting medical data |
CA2401777A1 (en) | 1999-12-21 | 2001-06-28 | Bozidar Ferek-Petric | System for dynamic remote networking with implantable medical devices |
GB9930000D0 (en) | 1999-12-21 | 2000-02-09 | Phaeton Research Ltd | An ingestible device |
JP3850611B2 (en) | 1999-12-28 | 2006-11-29 | 三菱電機株式会社 | Timing regenerator and demodulator using the same |
US6294999B1 (en) | 1999-12-29 | 2001-09-25 | Becton, Dickinson And Company | Systems and methods for monitoring patient compliance with medication regimens |
DE60018978T2 (en) | 1999-12-30 | 2006-05-04 | Medtronic, Inc., Minneapolis | USER AUTHENTICATION IN MEDICAL SYSTEMS |
US8002700B2 (en) | 1999-12-30 | 2011-08-23 | Medtronic, Inc. | Communications system for an implantable medical device and a delivery device |
US6471645B1 (en) | 1999-12-30 | 2002-10-29 | Medtronic, Inc. | Communications system for an implantable device and a drug dispenser |
US8049597B1 (en) | 2000-01-10 | 2011-11-01 | Ensign Holdings, Llc | Systems and methods for securely monitoring an individual |
EP1119137B1 (en) | 2000-01-20 | 2006-08-16 | Lucent Technologies Inc. | Interoperability for bluetooth/IEEE 802.11 |
AR026148A1 (en) | 2000-01-21 | 2003-01-29 | Osmotica Argentina S A | OSMOTIC DEVICE WITH PREFORMED PASSAGE THAT INCREASES SIZE |
US6368190B1 (en) | 2000-01-26 | 2002-04-09 | Agere Systems Guardian Corp. | Electrochemical mechanical planarization apparatus and method |
JP3839212B2 (en) | 2000-02-04 | 2006-11-01 | 三菱電機株式会社 | Timing reproduction apparatus and demodulator |
US7039453B2 (en) | 2000-02-08 | 2006-05-02 | Tarun Mullick | Miniature ingestible capsule |
IL141907A0 (en) | 2000-03-08 | 2002-03-10 | Given Imaging Ltd | A device and system for in vivo imaging |
US7366675B1 (en) | 2000-03-10 | 2008-04-29 | Walker Digital, Llc | Methods and apparatus for increasing, monitoring and/or rewarding a party's compliance with a schedule for taking medicines |
US6526315B1 (en) | 2000-03-17 | 2003-02-25 | Tanita Corporation | Portable bioelectrical impedance measuring instrument |
DE10014588A1 (en) | 2000-03-27 | 2001-10-04 | Basf Ag | Sustained-release oral dosage form that floats in gastric fluid includes a blend of polyvinyl acetate and polyvinylpyrrolidone |
GB0007617D0 (en) | 2000-03-29 | 2000-05-17 | Psion Dacom Plc | A short range radio transceiver device |
US6622050B2 (en) | 2000-03-31 | 2003-09-16 | Medtronic, Inc. | Variable encryption scheme for data transfer between medical devices and related data management systems |
US6757523B2 (en) | 2000-03-31 | 2004-06-29 | Zeus Wireless, Inc. | Configuration of transmit/receive switching in a transceiver |
US6922592B2 (en) | 2000-04-04 | 2005-07-26 | Medtronic, Inc. | Implantable medical device controlled by a non-invasive physiological data measurement device |
US6654638B1 (en) | 2000-04-06 | 2003-11-25 | Cardiac Pacemakers, Inc. | Ultrasonically activated electrodes |
US6496705B1 (en) | 2000-04-18 | 2002-12-17 | Motorola Inc. | Programmable wireless electrode system for medical monitoring |
US6441747B1 (en) | 2000-04-18 | 2002-08-27 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
US6561975B1 (en) | 2000-04-19 | 2003-05-13 | Medtronic, Inc. | Method and apparatus for communicating with medical device systems |
US6836862B1 (en) | 2000-04-24 | 2004-12-28 | 3Com Corporation | Method of indicating wireless connection integrity |
US20010039503A1 (en) | 2000-04-28 | 2001-11-08 | Chan Bryan K. | Method and system for managing chronic disease and wellness online |
US6792247B2 (en) | 2000-05-08 | 2004-09-14 | Microtune (San Diego), Inc. | Co-located frequency-agile system and method |
US6432292B1 (en) | 2000-05-16 | 2002-08-13 | Metallic Power, Inc. | Method of electrodepositing metal on electrically conducting particles |
EP1404213B1 (en) | 2000-05-19 | 2011-03-23 | Welch Allyn Protocol Inc | Patient monitoring system |
US6680923B1 (en) | 2000-05-23 | 2004-01-20 | Calypso Wireless, Inc. | Communication system and method |
US20030130714A1 (en) | 2000-05-29 | 2003-07-10 | Brian Nielsen | Electrode for establishing electrical contact with the skin |
US7485095B2 (en) | 2000-05-30 | 2009-02-03 | Vladimir Shusterman | Measurement and analysis of trends in physiological and/or health data |
IL163684A0 (en) | 2000-05-31 | 2005-12-18 | Given Imaging Ltd | Measurement of electrical characteristics of tissue |
GB0014854D0 (en) | 2000-06-16 | 2000-08-09 | Isis Innovation | System and method for acquiring data |
GB0014855D0 (en) | 2000-06-16 | 2000-08-09 | Isis Innovation | Combining measurements from different sensors |
US6605038B1 (en) | 2000-06-16 | 2003-08-12 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US7689437B1 (en) | 2000-06-16 | 2010-03-30 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US20060122474A1 (en) | 2000-06-16 | 2006-06-08 | Bodymedia, Inc. | Apparatus for monitoring health, wellness and fitness |
US7261690B2 (en) | 2000-06-16 | 2007-08-28 | Bodymedia, Inc. | Apparatus for monitoring health, wellness and fitness |
US7285090B2 (en) | 2000-06-16 | 2007-10-23 | Bodymedia, Inc. | Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information |
US6505077B1 (en) | 2000-06-19 | 2003-01-07 | Medtronic, Inc. | Implantable medical device with external recharging coil electrical connection |
US7009946B1 (en) | 2000-06-22 | 2006-03-07 | Intel Corporation | Method and apparatus for multi-access wireless communication |
GB0016561D0 (en) | 2000-07-05 | 2000-08-23 | Rolls Royce Plc | Health monitoring |
US6411567B1 (en) | 2000-07-07 | 2002-06-25 | Mark A. Niemiec | Drug delivery management system |
US6961285B2 (en) | 2000-07-07 | 2005-11-01 | Ddms Holdings L.L.C. | Drug delivery management system |
WO2002005712A1 (en) | 2000-07-19 | 2002-01-24 | Medicotest A/S | A skin electrode with a by-pass element |
JP2004516863A (en) * | 2000-07-24 | 2004-06-10 | モトローラ・インコーポレイテッド | Ingestible electronic capsule |
US6564079B1 (en) | 2000-07-27 | 2003-05-13 | Ckm Diagnostics, Inc. | Electrode array and skin attachment system for noninvasive nerve location and imaging device |
US7558965B2 (en) | 2000-08-04 | 2009-07-07 | First Data Corporation | Entity authentication in electronic communications by providing verification status of device |
JP4428835B2 (en) | 2000-08-09 | 2010-03-10 | 昭和電工株式会社 | Magnetic recording medium and method for manufacturing the same |
US8036731B2 (en) | 2001-01-22 | 2011-10-11 | Spectrum Dynamics Llc | Ingestible pill for diagnosing a gastrointestinal tract |
KR20020015907A (en) | 2000-08-23 | 2002-03-02 | 정병렬 | A method and system of a fitness using a game control for a beating of the heart |
ATE438152T1 (en) | 2000-08-24 | 2009-08-15 | Koninkl Philips Electronics Nv | IDENTIFICATION TRANSPONDER |
WO2002018936A2 (en) | 2000-08-28 | 2002-03-07 | Cygnus, Inc. | Methods of monitoring glucose levels in a subject and uses thereof |
US7685005B2 (en) | 2000-08-29 | 2010-03-23 | Medtronic, Inc. | Medical device systems implemented network scheme for remote patient management |
DE60102331T2 (en) | 2000-09-08 | 2005-03-17 | Matsushita Electric Works, Ltd., Kadoma | Data transmission system using a human body as a signal transmission path |
US6720923B1 (en) | 2000-09-14 | 2004-04-13 | Stata Labs, Llc | Antenna design utilizing a cavity architecture for global positioning system (GPS) applications |
US6572636B1 (en) | 2000-09-19 | 2003-06-03 | Robert Sean Hagen | Pulse sensing patch and associated methods |
JP4489922B2 (en) | 2000-09-22 | 2010-06-23 | 株式会社日立国際電気 | Demodulation method |
AU2001292946A1 (en) | 2000-09-26 | 2002-04-08 | Advantage 3D Llc | Method and system for generation, storage and distribution of omni-directional object views |
AU2002224453A1 (en) | 2000-10-11 | 2002-04-22 | Microchips, Inc. | Microchip reservoir devices and facilitated corrosion of electrodes |
US7024248B2 (en) | 2000-10-16 | 2006-04-04 | Remon Medical Technologies Ltd | Systems and methods for communicating with implantable devices |
JP4154559B2 (en) | 2000-10-19 | 2008-09-24 | ニプロ株式会社 | Medical diagnostic system and diagnostic processing method thereof |
US7857626B2 (en) | 2000-10-23 | 2010-12-28 | Toly Christopher C | Medical physiological simulator including a conductive elastomer layer |
US6738671B2 (en) | 2000-10-26 | 2004-05-18 | Medtronic, Inc. | Externally worn transceiver for use with an implantable medical device |
AUPR113900A0 (en) | 2000-10-31 | 2000-11-23 | Commonwealth Scientific And Industrial Research Organisation | A monitoring system |
US6929636B1 (en) | 2000-11-08 | 2005-08-16 | Hewlett-Packard Development Company, L.P. | Internal drug dispenser capsule medical device |
US6632175B1 (en) | 2000-11-08 | 2003-10-14 | Hewlett-Packard Development Company, L.P. | Swallowable data recorder capsule medical device |
ES2177434B1 (en) | 2000-12-05 | 2004-10-16 | Gesimpex Comercial, S.L. | PROCEDURE AND CAPSULE FOR REMOTE IDENTIFICATION AND MONITORING OF BIRDS. |
US20020128934A1 (en) | 2000-12-11 | 2002-09-12 | Ari Shaer | Interactive event planning and payment method and system |
US6638231B2 (en) | 2000-12-18 | 2003-10-28 | Biosense, Inc. | Implantable telemetric medical sensor and method |
US6689117B2 (en) | 2000-12-18 | 2004-02-10 | Cardiac Pacemakers, Inc. | Drug delivery system for implantable medical device |
US6879810B2 (en) | 2000-12-20 | 2005-04-12 | Nokia Corporation | Control of short range RF communication |
TW567695B (en) | 2001-01-17 | 2003-12-21 | Ibm | Digital baseband system |
KR100526699B1 (en) | 2001-01-17 | 2005-11-08 | 이종식 | Method and System for Network Games |
US6771174B2 (en) | 2001-01-24 | 2004-08-03 | Intel Corporation | Digital pillbox |
JP2002224053A (en) | 2001-02-05 | 2002-08-13 | Next:Kk | Remote medical control system |
ATE418314T1 (en) | 2001-02-06 | 2009-01-15 | Draeger Medical Systems Inc | INCUBATOR FOR NON-CONTACT MEASUREMENT AND MONITORING |
DE60215924T2 (en) | 2001-02-08 | 2007-05-10 | Mini-Mitter Co., Inc., Bend | SKIN PAD WITH TEMPERATURE SENSOR |
US7050419B2 (en) | 2001-02-23 | 2006-05-23 | Terayon Communicaion Systems, Inc. | Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing |
JP2002263185A (en) | 2001-03-12 | 2002-09-17 | Sanyo Electric Co Ltd | Medicine administration system and method and medicine administration device |
JP2002282219A (en) | 2001-03-22 | 2002-10-02 | Toshio Chiba | Intracorporeal capsule |
US6342774B1 (en) | 2001-03-27 | 2002-01-29 | Motorola, Inc. | Battery having user charge capacity control |
JP2002290212A (en) | 2001-03-27 | 2002-10-04 | Nec Corp | Voltage controlled oscillator |
US7188151B2 (en) | 2001-03-28 | 2007-03-06 | Televital, Inc. | System and method for real-time monitoring, assessment, analysis, retrieval, and storage of physiological data over a wide area network |
JP2002282218A (en) * | 2001-03-28 | 2002-10-02 | Matsushita Electric Ind Co Ltd | Portable examination terminal, examination system, communication terminal and method of examination |
JP2002291684A (en) | 2001-03-29 | 2002-10-08 | Olympus Optical Co Ltd | Endoscope for surgical operation, and outer tube |
US6595929B2 (en) | 2001-03-30 | 2003-07-22 | Bodymedia, Inc. | System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow |
EP1372472B1 (en) | 2001-04-02 | 2006-04-26 | N.I. MEDICAL Ltd. | Device for determining hemodynamic state |
WO2002080762A1 (en) | 2001-04-06 | 2002-10-17 | Medic4All Inc. | A physiological monitoring system for a computational device of a human subject |
GR1003802B (en) | 2001-04-17 | 2002-02-08 | Micrel �.�.�. ������� ��������� ��������������� ��������� | Tele-medicine system |
US6694161B2 (en) | 2001-04-20 | 2004-02-17 | Monsanto Technology Llc | Apparatus and method for monitoring rumen pH |
US6801137B2 (en) | 2001-04-23 | 2004-10-05 | Cardionet, Inc. | Bidirectional communication between a sensor unit and a monitor unit in patient monitoring |
US6782290B2 (en) | 2001-04-27 | 2004-08-24 | Medtronic, Inc. | Implantable medical device with rechargeable thin-film microbattery power source |
WO2002087696A1 (en) | 2001-04-30 | 2002-11-07 | Medtronic,Inc. | Transcutaneous monitor and method of use, using therapeutic output from an implanted medical device |
EP1383425A1 (en) | 2001-05-03 | 2004-01-28 | Telzuit Technologies, Inc. | Wireless medical monitoring apparatus and system |
US7039033B2 (en) | 2001-05-07 | 2006-05-02 | Ixi Mobile (Israel) Ltd. | System, device and computer readable medium for providing a managed wireless network using short-range radio signals |
WO2002095351A2 (en) | 2001-05-20 | 2002-11-28 | Given Imaging Ltd. | A floatable in vivo sensing device |
US20020184415A1 (en) | 2001-05-29 | 2002-12-05 | Board Of Regents, The University Of Texas System | Health hub system and method of use |
GB0113212D0 (en) | 2001-05-31 | 2001-07-25 | Oxford Biosignals Ltd | Patient condition display |
US20020192159A1 (en) | 2001-06-01 | 2002-12-19 | Reitberg Donald P. | Single-patient drug trials used with accumulated database: flowchart |
DE60228266D1 (en) | 2001-06-18 | 2008-09-25 | Given Imaging Ltd | SWITCHABLE IN VIVO CAPSULE WITH A RIGID AND FLEXIBLE SECTION CIRCUIT BOARD |
KR20040030681A (en) | 2001-06-19 | 2004-04-09 | 디지털 스포츠 미디어 | Physiological monitoring and system |
US6939292B2 (en) | 2001-06-20 | 2005-09-06 | Olympus Corporation | Capsule type endoscope |
US7160258B2 (en) | 2001-06-26 | 2007-01-09 | Entrack, Inc. | Capsule and method for treating or diagnosing the intestinal tract |
US7044911B2 (en) | 2001-06-29 | 2006-05-16 | Philometron, Inc. | Gateway platform for biological monitoring and delivery of therapeutic compounds |
US7062308B1 (en) | 2001-07-05 | 2006-06-13 | Jackson William J | Remote physiological monitoring with the reticulum of livestock |
DE60232522D1 (en) | 2001-07-11 | 2009-07-16 | Cns Response Inc | METHOD FOR PREDICTING TREATMENT RESULTS |
US7083578B2 (en) | 2001-07-12 | 2006-08-01 | Given Imaging Ltd. | Device and method for examining a body lumen |
US20030017826A1 (en) | 2001-07-17 | 2003-01-23 | Dan Fishman | Short-range wireless architecture |
WO2003009920A1 (en) | 2001-07-25 | 2003-02-06 | Biosource, Inc. | Electrode array for use in electrochemical cells |
FR2827919B1 (en) | 2001-07-26 | 2004-03-05 | Thermodyn | SEALING FOR COMPRESSOR AND CENTRIFUGAL COMPRESSOR PROVIDED WITH SUCH A SEAL |
US7257438B2 (en) | 2002-07-23 | 2007-08-14 | Datascope Investment Corp. | Patient-worn medical monitoring device |
US6951536B2 (en) * | 2001-07-30 | 2005-10-04 | Olympus Corporation | Capsule-type medical device and medical system |
US6747556B2 (en) | 2001-07-31 | 2004-06-08 | Medtronic Physio-Control Corp. | Method and system for locating a portable medical device |
US20030037063A1 (en) | 2001-08-10 | 2003-02-20 | Qlinx | Method and system for dynamic risk assessment, risk monitoring, and caseload management |
US20030065536A1 (en) | 2001-08-13 | 2003-04-03 | Hansen Henrik Egesborg | Portable device and method of communicating medical data information |
WO2003015890A1 (en) | 2001-08-20 | 2003-02-27 | President And Fellows Of Harvard College | Fluidic arrays and method of using |
JP3962250B2 (en) | 2001-08-29 | 2007-08-22 | 株式会社レアメタル | In vivo information detection system and tag device and relay device used therefor |
US6650191B2 (en) | 2001-09-07 | 2003-11-18 | Texas Instruments Incorporated | Low jitter ring oscillator architecture |
US6604650B2 (en) | 2001-09-28 | 2003-08-12 | Koninklijke Philips Electronics N.V. | Bottle-cap medication reminder and overdose safeguard |
US20050137480A1 (en) | 2001-10-01 | 2005-06-23 | Eckhard Alt | Remote control of implantable device through medical implant communication service band |
US6840904B2 (en) | 2001-10-11 | 2005-01-11 | Jason Goldberg | Medical monitoring device and system |
US7357891B2 (en) | 2001-10-12 | 2008-04-15 | Monosol Rx, Llc | Process for making an ingestible film |
US6745082B2 (en) | 2001-10-22 | 2004-06-01 | Jens Axelgaard | Current-controlling electrode with adjustable contact area |
US20030152622A1 (en) | 2001-10-25 | 2003-08-14 | Jenny Louie-Helm | Formulation of an erodible, gastric retentive oral diuretic |
US20030083559A1 (en) | 2001-10-31 | 2003-05-01 | Thompson David L. | Non-contact monitor |
US7377647B2 (en) | 2001-11-13 | 2008-05-27 | Philadelphia Retina Endowment Fund | Clarifying an image of an object to perform a procedure on the object |
US6643541B2 (en) | 2001-12-07 | 2003-11-04 | Motorola, Inc | Wireless electromyography sensor and system |
US20030107487A1 (en) | 2001-12-10 | 2003-06-12 | Ronen Korman | Method and device for measuring physiological parameters at the wrist |
GB0130010D0 (en) | 2001-12-14 | 2002-02-06 | Isis Innovation | Combining measurements from breathing rate sensors |
US7016648B2 (en) | 2001-12-18 | 2006-03-21 | Ixi Mobile (Israel) Ltd. | Method, system and computer readable medium for downloading a software component to a device in a short distance wireless network |
JP2005519884A (en) | 2001-12-19 | 2005-07-07 | アルザ・コーポレーシヨン | Formulations and dosage forms for improving the oral bioavailability of hydrophilic polymers |
US7729776B2 (en) | 2001-12-19 | 2010-06-01 | Cardiac Pacemakers, Inc. | Implantable medical device with two or more telemetry systems |
US7877273B2 (en) | 2002-01-08 | 2011-01-25 | Fredric David Abramson | System and method for evaluating and providing nutrigenomic data, information and advice |
US6985870B2 (en) | 2002-01-11 | 2006-01-10 | Baxter International Inc. | Medication delivery system |
EP1464026A2 (en) | 2002-01-11 | 2004-10-06 | Hexalog SA | Systems and methods for medication monitoring |
JP3957272B2 (en) | 2002-01-22 | 2007-08-15 | オリンパス株式会社 | Capsule medical device |
US6980852B2 (en) | 2002-01-25 | 2005-12-27 | Subqiview Inc. | Film barrier dressing for intravascular tissue monitoring system |
US7519416B2 (en) | 2002-02-04 | 2009-04-14 | Heartview, Llc | Diagnostic method utilizing standard lead ECG signals |
US6958034B2 (en) | 2002-02-11 | 2005-10-25 | Given Imaging Ltd. | Self propelled device |
FR2835730B1 (en) | 2002-02-11 | 2004-12-10 | C T M Ct De Transfert Des Micr | DEVICE FOR DELIVERY OF SUBSTANCES AND INTRACORPOREAL SAMPLING |
US6935560B2 (en) | 2002-02-26 | 2005-08-30 | Safety Syringes, Inc. | Systems and methods for tracking pharmaceuticals within a facility |
US20030162556A1 (en) | 2002-02-28 | 2003-08-28 | Libes Michael A. | Method and system for communication between two wireless-enabled devices |
US8660645B2 (en) | 2002-02-28 | 2014-02-25 | Greatbatch Ltd. | Electronic network components utilizing biocompatible conductive adhesives for direct body fluid exposure |
US7043305B2 (en) | 2002-03-06 | 2006-05-09 | Cardiac Pacemakers, Inc. | Method and apparatus for establishing context among events and optimizing implanted medical device performance |
US20040122296A1 (en) | 2002-12-18 | 2004-06-24 | John Hatlestad | Advanced patient management for triaging health-related data |
US7468032B2 (en) | 2002-12-18 | 2008-12-23 | Cardiac Pacemakers, Inc. | Advanced patient management for identifying, displaying and assisting with correlating health-related data |
US7081693B2 (en) | 2002-03-07 | 2006-07-25 | Microstrain, Inc. | Energy harvesting for wireless sensor operation and data transmission |
JP4363843B2 (en) | 2002-03-08 | 2009-11-11 | オリンパス株式会社 | Capsule endoscope |
US6968153B1 (en) | 2002-03-13 | 2005-11-22 | Nokia Corporation | Apparatus, method and system for a Bluetooth repeater |
US6957107B2 (en) | 2002-03-13 | 2005-10-18 | Cardionet, Inc. | Method and apparatus for monitoring and communicating with an implanted medical device |
US7188767B2 (en) | 2002-03-18 | 2007-03-13 | Precision Dynamics Corporation | Physical condition or environmental threat detection appliance system |
US7022070B2 (en) | 2002-03-22 | 2006-04-04 | Mini-Mitter Co., Inc. | Method for continuous monitoring of patients to detect the potential onset of sepsis |
JP3869291B2 (en) | 2002-03-25 | 2007-01-17 | オリンパス株式会社 | Capsule medical device |
US6850788B2 (en) | 2002-03-25 | 2005-02-01 | Masimo Corporation | Physiological measurement communications adapter |
US7376435B2 (en) | 2002-04-01 | 2008-05-20 | Intel Corporation | Transferring multiple data units over a wireless communication link |
US7797033B2 (en) | 2002-04-08 | 2010-09-14 | Smart Pill Corporation | Method of using, and determining location of, an ingestible capsule |
US7654901B2 (en) | 2002-04-10 | 2010-02-02 | Breving Joel S | Video game system using bio-feedback devices |
US7424268B2 (en) | 2002-04-22 | 2008-09-09 | Cisco Technology, Inc. | System and method for management of a shared frequency band |
AU2003234159A1 (en) | 2002-04-22 | 2003-11-03 | Purdue Research Foundation | Hydrogels having enhanced elasticity and mechanical strength properties |
EP1356762A1 (en) | 2002-04-22 | 2003-10-29 | UbiCom Gesellschaft für Telekommunikation mbH | Device for remote monitoring of body functions |
CA2483195C (en) | 2002-04-22 | 2010-01-26 | Marcio Marc Abreu | Apparatus and method for measuring biologic parameters |
US7485093B2 (en) | 2002-04-25 | 2009-02-03 | Given Imaging Ltd. | Device and method for in-vivo sensing |
US20030216622A1 (en) | 2002-04-25 | 2003-11-20 | Gavriel Meron | Device and method for orienting a device in vivo |
TW553735B (en) | 2002-05-01 | 2003-09-21 | Jin-Shing Luo | Common electrode using human body as common electric reservoir and application thereof |
US7368190B2 (en) | 2002-05-02 | 2008-05-06 | Abbott Diabetes Care Inc. | Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods |
US7901939B2 (en) | 2002-05-09 | 2011-03-08 | University Of Chicago | Method for performing crystallization and reactions in pressure-driven fluid plugs |
JP2003325439A (en) | 2002-05-15 | 2003-11-18 | Olympus Optical Co Ltd | Capsule type medical treatment device |
JP2004041709A (en) | 2002-05-16 | 2004-02-12 | Olympus Corp | Capsule medical care device |
JP4187463B2 (en) | 2002-05-16 | 2008-11-26 | オリンパス株式会社 | Capsule medical device |
SE0201490D0 (en) | 2002-05-17 | 2002-05-17 | St Jude Medical | Implantable Antenna |
US20030216729A1 (en) | 2002-05-20 | 2003-11-20 | Marchitto Kevin S. | Device and method for wound healing and uses therefor |
JP3576150B2 (en) | 2002-05-31 | 2004-10-13 | 株式会社東芝 | Relay device and power control method |
US6847844B2 (en) | 2002-06-06 | 2005-01-25 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Method of data communication with implanted device and associated apparatus |
US8003179B2 (en) | 2002-06-20 | 2011-08-23 | Alcan Packaging Flexible France | Films having a desiccant material incorporated therein and methods of use and manufacture |
JP2005532849A (en) | 2002-07-01 | 2005-11-04 | ジーエムピー ワイヤレス メディスン インコーポレイテッド | Wireless ECG system |
US20060129060A1 (en) | 2002-07-02 | 2006-06-15 | Healthpia America | Management method of fat mass and management device of fat mass using mobile phone |
US20040008123A1 (en) | 2002-07-15 | 2004-01-15 | Battelle Memorial Institute | System and method for tracking medical devices |
US20040019172A1 (en) | 2002-07-26 | 2004-01-29 | Tou-Hsiung Yang | Biodegradable, water absorbable resin and its preparation method |
CA2494491C (en) | 2002-07-29 | 2010-11-02 | C-Signature Ltd. | Method and apparatus for electro-biometric identity recognition |
US7211349B2 (en) | 2002-08-06 | 2007-05-01 | Wilson Greatbatch Technologies, Inc. | Silver vanadium oxide provided with a metal oxide coating |
US20040143182A1 (en) | 2002-08-08 | 2004-07-22 | Pavel Kucera | System and method for monitoring and stimulating gastro-intestinal motility |
US7291014B2 (en) | 2002-08-08 | 2007-11-06 | Fats, Inc. | Wireless data communication link embedded in simulated weapon systems |
US6909878B2 (en) | 2002-08-20 | 2005-06-21 | Ixi Mobile (Israel) Ltd. | Method, system and computer readable medium for providing an output signal having a theme to a device in a short distance wireless network |
US7619819B2 (en) | 2002-08-20 | 2009-11-17 | Illumina, Inc. | Method and apparatus for drug product tracking using encoded optical identification elements |
US8663106B2 (en) | 2002-08-22 | 2014-03-04 | Bodymedia, Inc. | Non-invasive temperature monitoring device |
US7020508B2 (en) | 2002-08-22 | 2006-03-28 | Bodymedia, Inc. | Apparatus for detecting human physiological and contextual information |
US7294105B1 (en) | 2002-09-03 | 2007-11-13 | Cheetah Omni, Llc | System and method for a wireless medical communication system |
US7102508B2 (en) | 2002-09-09 | 2006-09-05 | Persephone, Inc. | Method and apparatus for locating and tracking persons |
US20040049245A1 (en) | 2002-09-09 | 2004-03-11 | Volker Gass | Autonomous patch for communication with an implantable device, and medical kit for using said patch |
US7388903B2 (en) | 2002-09-18 | 2008-06-17 | Conexant, Inc. | Adaptive transmission rate and fragmentation threshold mechanism for local area networks |
GB2393356B (en) | 2002-09-18 | 2006-02-01 | E San Ltd | Telemedicine system |
US7118531B2 (en) | 2002-09-24 | 2006-10-10 | The Johns Hopkins University | Ingestible medical payload carrying capsule with wireless communication |
US6842636B2 (en) | 2002-09-27 | 2005-01-11 | Axelgaard Manufacturing Co., Ltd. | Medical electrode |
US7736309B2 (en) | 2002-09-27 | 2010-06-15 | Medtronic Minimed, Inc. | Implantable sensor method and system |
US7209790B2 (en) | 2002-09-30 | 2007-04-24 | Medtronic, Inc. | Multi-mode programmer for medical device communication |
US7686762B1 (en) | 2002-10-03 | 2010-03-30 | Integrated Sensing Systems, Inc. | Wireless device and system for monitoring physiologic parameters |
US20040073454A1 (en) | 2002-10-10 | 2004-04-15 | John Urquhart | System and method of portal-mediated, website-based analysis of medication dosing |
US20050272989A1 (en) | 2004-06-04 | 2005-12-08 | Medtronic Minimed, Inc. | Analyte sensors and methods for making and using them |
US6959217B2 (en) | 2002-10-24 | 2005-10-25 | Alfred E. Mann Foundation For Scientific Research | Multi-mode crystal oscillator system selectively configurable to minimize power consumption or noise generation |
EP1432140B1 (en) | 2002-10-31 | 2017-12-20 | Nippon Telegraph And Telephone Corporation | Transceiver capable of causing series resonance with parasitic capacitance |
US7027871B2 (en) | 2002-10-31 | 2006-04-11 | Medtronic, Inc. | Aggregation of data from external data sources within an implantable medical device |
US20030126593A1 (en) | 2002-11-04 | 2003-07-03 | Mault James R. | Interactive physiological monitoring system |
US7232627B2 (en) | 2002-11-08 | 2007-06-19 | Honda Motor Co., Ltd. | Electrode for solid polymer fuel cell |
US20040092801A1 (en) | 2002-11-13 | 2004-05-13 | Budimir Drakulic | System for, and method of, acquiring physiological signals of a patient |
EP1565107A4 (en) | 2002-11-14 | 2008-03-05 | Ethicon Endo Surgery Inc | Methods and devices for detecting tissue cells |
WO2004049947A2 (en) | 2002-11-29 | 2004-06-17 | Given Imaging Ltd. | Methods device and system for in vivo diagnosis |
US20040115507A1 (en) | 2002-12-05 | 2004-06-17 | Potter Curtis N | Monolithic fuel cell and method of manufacture |
CA2508722A1 (en) | 2002-12-11 | 2004-06-24 | Pfizer Products Inc. | Controlled-release of an active substance into a high fat environment |
US20040167226A1 (en) | 2002-12-16 | 2004-08-26 | Serafini Tito A. | Methods for the treatment of pain and traumatic injury using benzamides and compositions containing the same |
EP1578260B1 (en) | 2002-12-16 | 2012-10-24 | Given Imaging Ltd. | Device, system and method for selective activation of in vivo sensors |
US7009511B2 (en) | 2002-12-17 | 2006-03-07 | Cardiac Pacemakers, Inc. | Repeater device for communications with an implantable medical device |
WO2004056418A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | An electrode assembly and a system with impedance control |
US20050038680A1 (en) | 2002-12-19 | 2005-02-17 | Mcmahon Kevin Lee | System and method for glucose monitoring |
US7127300B2 (en) | 2002-12-23 | 2006-10-24 | Cardiac Pacemakers, Inc. | Method and apparatus for enabling data communication between an implantable medical device and a patient management system |
US7547278B2 (en) | 2002-12-27 | 2009-06-16 | Matsushita Electric Industrial Co., Ltd. | Tele-care monitoring device |
US20050154277A1 (en) | 2002-12-31 | 2005-07-14 | Jing Tang | Apparatus and methods of using built-in micro-spectroscopy micro-biosensors and specimen collection system for a wireless capsule in a biological body in vivo |
US6975174B1 (en) | 2002-12-31 | 2005-12-13 | Radioframe Networks, Inc. | Clock oscillator |
AU2003303597A1 (en) | 2002-12-31 | 2004-07-29 | Therasense, Inc. | Continuous glucose monitoring system and methods of use |
US7396330B2 (en) | 2003-01-07 | 2008-07-08 | Triage Data Networks | Wireless, internet-based medical-diagnostic system |
US20060142648A1 (en) | 2003-01-07 | 2006-06-29 | Triage Data Networks | Wireless, internet-based, medical diagnostic system |
US7512448B2 (en) | 2003-01-10 | 2009-03-31 | Phonak Ag | Electrode placement for wireless intrabody communication between components of a hearing system |
US20040147326A1 (en) | 2003-01-14 | 2004-07-29 | Stiles Thomas William | Gaming device system |
KR100873683B1 (en) | 2003-01-25 | 2008-12-12 | 한국과학기술연구원 | Method and system for data communication in human body and capsule-type endoscope used therein |
KR100522132B1 (en) | 2003-01-25 | 2005-10-18 | 한국과학기술연구원 | Data receiving method and apparatus in human body communication system |
EP1594477A4 (en) | 2003-01-29 | 2009-07-15 | Pill Pharma Ltd E | Active drug delivery in the gastrointestinal tract |
US20040267240A1 (en) | 2003-01-29 | 2004-12-30 | Yossi Gross | Active drug delivery in the gastrointestinal tract |
EP1443780B1 (en) | 2003-01-30 | 2013-05-29 | Accenture Global Services Limited | Event data acquisition and transmission system |
US7002476B2 (en) | 2003-01-30 | 2006-02-21 | Leap Of Faith Technologies, Inc. | Medication compliance system |
US7149581B2 (en) | 2003-01-31 | 2006-12-12 | Medtronic, Inc. | Patient monitoring device with multi-antenna receiver |
US7215660B2 (en) | 2003-02-14 | 2007-05-08 | Rearden Llc | Single transceiver architecture for a wireless network |
US7392015B1 (en) | 2003-02-14 | 2008-06-24 | Calamp Corp. | Calibration methods and structures in wireless communications systems |
JP2004248961A (en) * | 2003-02-21 | 2004-09-09 | Hitachi Medical Corp | Helmet for mounting measuring instrument |
JP4158097B2 (en) | 2003-02-27 | 2008-10-01 | ソニー株式会社 | Authentication system |
US7653031B2 (en) | 2003-03-05 | 2010-01-26 | Timothy Gordon Godfrey | Advance notification of transmit opportunities on a shared-communications channel |
US7155232B2 (en) | 2003-03-05 | 2006-12-26 | Conexant Systems, Inc. | Transmit request signaling between transceivers |
JP2004274452A (en) | 2003-03-10 | 2004-09-30 | Nippon Telegr & Teleph Corp <Ntt> | Transceiver |
JP2006520657A (en) | 2003-03-21 | 2006-09-14 | ウェルチ・アリン・インコーポレーテッド | Personal condition physiological monitoring system and structure, and monitoring method |
US7321920B2 (en) | 2003-03-21 | 2008-01-22 | Vocel, Inc. | Interactive messaging system |
DE10313005B4 (en) | 2003-03-24 | 2007-05-03 | Siemens Ag | Backup battery and method for its manufacture |
US20040193446A1 (en) | 2003-03-27 | 2004-09-30 | Mayer Steven Lloyd | System and method for managing a patient treatment program including a prescribed drug regimen |
US7245954B2 (en) | 2003-03-27 | 2007-07-17 | Given Imaging Ltd. | Measuring a gradient in-vivo |
US7713239B2 (en) | 2003-04-08 | 2010-05-11 | Medrad, Inc. | System for delivery of hazardous pharmaceuticals |
GB0308114D0 (en) | 2003-04-08 | 2003-05-14 | Glaxo Group Ltd | Novel compounds |
JP4593083B2 (en) | 2003-04-11 | 2010-12-08 | オリンパス株式会社 | Inspection data management method |
GB0308467D0 (en) | 2003-04-11 | 2003-05-21 | Rolls Royce Plc | Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components |
JP2004318534A (en) | 2003-04-16 | 2004-11-11 | Matsushita Electric Ind Co Ltd | System for supporting health promotion |
FI116117B (en) | 2003-04-17 | 2005-09-30 | Polar Electro Oy | Measuring device and method for measuring heart rate and the method of manufacture of the measuring device |
US7972616B2 (en) | 2003-04-17 | 2011-07-05 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
CN100475121C (en) | 2003-04-25 | 2009-04-08 | 奥林巴斯株式会社 | Radio-type in-subject information acquisition system and device for introduction into subject |
JPWO2004096023A1 (en) | 2003-04-25 | 2006-07-13 | オリンパス株式会社 | Wireless in-subject information acquisition system and subject external device |
US20040218683A1 (en) | 2003-05-01 | 2004-11-04 | Texas Instruments Incorporated | Multi-mode wireless devices having reduced-mode receivers |
TWI226761B (en) | 2003-05-08 | 2005-01-11 | Ind Tech Res Inst | Dual band transceiver architecture for wireless application |
US20040225199A1 (en) | 2003-05-08 | 2004-11-11 | Evanyk Shane Walter | Advanced physiological monitoring systems and methods |
US7031745B2 (en) | 2003-05-12 | 2006-04-18 | Shen Ein-Yiao | Cellular phone combined physiological condition examination and processing device |
WO2004100776A1 (en) | 2003-05-14 | 2004-11-25 | Olympus Corporation | Capsule medical device |
US7311665B2 (en) | 2003-05-19 | 2007-12-25 | Alcohol Monitoring Systems, Inc. | Bio-information sensor monitoring system and method |
DE10323216B3 (en) | 2003-05-22 | 2004-12-23 | Siemens Ag | Endoscope apparatus has cameras which are provided at respective ends of endoscope capsule, such that one of camera is tilted or rotated to change photography range |
KR100542101B1 (en) | 2003-06-02 | 2006-01-11 | 삼성전자주식회사 | Power control method and bluetooth device using the same |
US7725150B2 (en) | 2003-06-04 | 2010-05-25 | Lifewave, Inc. | System and method for extracting physiological data using ultra-wideband radar and improved signal processing techniques |
JP4507058B2 (en) | 2003-06-05 | 2010-07-21 | ソニー株式会社 | Distance detection system |
JP4399625B2 (en) | 2003-06-05 | 2010-01-20 | Qファクター株式会社 | Electronic device, quasi-electrostatic field generation method and communication system |
JP4414682B2 (en) | 2003-06-06 | 2010-02-10 | オリンパス株式会社 | Ultrasound endoscope device |
WO2004110555A1 (en) | 2003-06-06 | 2004-12-23 | Medtronic, Inc. | Implantable medical device including a hermetic connector block extension |
US7313163B2 (en) | 2003-06-17 | 2007-12-25 | Motorola, Inc. | Fast synchronization for half duplex digital communications |
US7252152B2 (en) | 2003-06-18 | 2007-08-07 | Weatherford/Lamb, Inc. | Methods and apparatus for actuating a downhole tool |
US20040260154A1 (en) | 2003-06-18 | 2004-12-23 | Boris Sidelnik | Human physiological and chemical monitoring system |
EP1637063B1 (en) | 2003-06-24 | 2012-11-28 | Olympus Corporation | Capsule type medical device communication system |
JP2005031840A (en) | 2003-07-09 | 2005-02-03 | Seiko Instruments Inc | Emergency notifying device |
WO2005006968A1 (en) | 2003-07-16 | 2005-01-27 | Koninklijke Philips Electronics N.V. | A portable electronic device and a health management system arranged for monitoring a physiological condition of an individual |
WO2005007223A2 (en) | 2003-07-16 | 2005-01-27 | Sasha John | Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations |
US7554452B2 (en) * | 2003-07-18 | 2009-06-30 | Cary Cole | Ingestible tracking and locating device |
US7653350B2 (en) | 2003-07-24 | 2010-01-26 | Sony Ericsson Mobile Communications Ab | Wireless terminals and methods for communicating over cellular and enhanced mode bluetooth communication links |
US20050021372A1 (en) | 2003-07-25 | 2005-01-27 | Dimagi, Inc. | Interactive motivation systems and methods for self-care compliance |
JP4038575B2 (en) | 2003-07-25 | 2008-01-30 | 独立行政法人産業技術総合研究所 | Biosensor, biosensor device or biosensor storage method |
US7243118B2 (en) | 2003-07-30 | 2007-07-10 | Broadcom Corporation | Method and apparatus for efficient derivation of modulo arithmetic for frequency selection |
US7295877B2 (en) | 2003-07-31 | 2007-11-13 | Biosense Webster, Inc. | Encapsulated sensor with external antenna |
US20050027175A1 (en) | 2003-07-31 | 2005-02-03 | Zhongping Yang | Implantable biosensor |
US7591801B2 (en) | 2004-02-26 | 2009-09-22 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
WO2005016558A2 (en) | 2003-08-04 | 2005-02-24 | Microchips, Inc. | Methods for accelerated release of material from a reservoir device |
US7787946B2 (en) | 2003-08-18 | 2010-08-31 | Cardiac Pacemakers, Inc. | Patient monitoring, diagnosis, and/or therapy systems and methods |
US20050172958A1 (en) | 2003-08-20 | 2005-08-11 | The Brigham And Women's Hospital, Inc. | Inhalation device and system for the remote monitoring of drug administration |
CA2539547A1 (en) | 2003-08-20 | 2005-03-03 | Philometron, Inc. | Hydration monitoring |
US8346482B2 (en) | 2003-08-22 | 2013-01-01 | Fernandez Dennis S | Integrated biosensor and simulation system for diagnosis and therapy |
JP4398204B2 (en) | 2003-08-29 | 2010-01-13 | オリンパス株式会社 | In-subject introduction apparatus and wireless in-subject information acquisition system |
JP4332152B2 (en) | 2003-09-02 | 2009-09-16 | 富士通株式会社 | Drug administration status management method and drug |
JP4432625B2 (en) | 2003-09-05 | 2010-03-17 | セイコーエプソン株式会社 | Capacitance detection device |
JP3993546B2 (en) | 2003-09-08 | 2007-10-17 | オリンパス株式会社 | In-subject introduction apparatus and wireless in-subject information acquisition system |
US20050062644A1 (en) | 2003-09-08 | 2005-03-24 | Leci Jonathan Ilan | Capsule device to identify the location of an individual |
JP4603547B2 (en) | 2003-09-11 | 2010-12-22 | セラノス, インコーポレイテッド | Medical devices for analyte monitoring and drug delivery |
US7499674B2 (en) | 2003-09-12 | 2009-03-03 | Nokia Corporation | Method and system for repeat request in hybrid ultra wideband-bluetooth radio |
JP5174348B2 (en) | 2003-09-12 | 2013-04-03 | ボディーメディア インコーポレイテッド | Method and apparatus for monitoring heart related condition parameters |
US7352998B2 (en) | 2003-09-12 | 2008-04-01 | Nokia Corporation | Method and system for establishing a wireless communications link |
JP4153852B2 (en) | 2003-09-18 | 2008-09-24 | オリンパス株式会社 | Energy supply coil and wireless in-vivo information acquisition system using the same |
US20090157358A1 (en) | 2003-09-22 | 2009-06-18 | Hyeung-Yun Kim | System for diagnosing and monitoring structural health conditions |
KR100623634B1 (en) | 2003-09-22 | 2006-09-13 | 김형윤 | Methods for monitoring structural health conditions |
US7218967B2 (en) | 2003-09-26 | 2007-05-15 | Medtronic, Inc. | System and method for real-time remote monitoring of implantable medical devices |
JP4503979B2 (en) | 2003-10-22 | 2010-07-14 | オリンパス株式会社 | Internal devices and medical devices |
US20050075145A1 (en) | 2003-10-03 | 2005-04-07 | Dvorak Joseph L. | Method and system for coordinating use of objects using wireless communications |
US8626262B2 (en) | 2003-10-30 | 2014-01-07 | Halthion Medical Technologies, Inc. | Physiological data collection system |
US20050096514A1 (en) | 2003-11-01 | 2005-05-05 | Medtronic, Inc. | Gastric activity notification |
CA2543751A1 (en) | 2003-11-03 | 2005-05-12 | Microchips, Inc. | Medical device for sensing glucose |
US6892590B1 (en) | 2003-11-04 | 2005-05-17 | Andermotion Technologies Llc | Single-balanced shield electrode configuration for use in capacitive displacement sensing systems and methods |
US7101343B2 (en) | 2003-11-05 | 2006-09-05 | Temple University Of The Commonwealth System Of Higher Education | Implantable telemetric monitoring system, apparatus, and method |
US20050101843A1 (en) | 2003-11-06 | 2005-05-12 | Welch Allyn, Inc. | Wireless disposable physiological sensor |
US7415242B1 (en) | 2003-11-10 | 2008-08-19 | Sprint Spectrum L.P. | Method and system for proximity detection for an in-building wireless repeater |
DE102004032812B4 (en) | 2003-11-11 | 2006-07-20 | Dräger Safety AG & Co. KGaA | Combination sensor for physiological measurements |
JP4324858B2 (en) | 2003-11-19 | 2009-09-02 | ソニー株式会社 | Motion detection system and distance determination device |
JP4041058B2 (en) | 2003-11-20 | 2008-01-30 | 日本電信電話株式会社 | Urine test system and method and recording medium recording urine test program |
AU2004293030A1 (en) | 2003-11-20 | 2005-06-09 | Angiotech International Ag | Electrical devices and anti-scarring agents |
JP2005158770A (en) | 2003-11-20 | 2005-06-16 | Matsushita Electric Ind Co Ltd | Laminated substrate and manufacturing method thereof, manufacturing method and apparatus of module using the laminated substrate |
JP4683554B2 (en) | 2003-11-28 | 2011-05-18 | 日本碍子株式会社 | Method for producing porous titania molded body |
JP4675241B2 (en) | 2003-12-01 | 2011-04-20 | オリンパス株式会社 | Endoscope system |
US6987691B2 (en) | 2003-12-02 | 2006-01-17 | International Business Machines Corporation | Easy axis magnetic amplifier |
US7427266B2 (en) | 2003-12-15 | 2008-09-23 | Hewlett-Packard Development Company, L.P. | Method and apparatus for verification of ingestion |
US8306592B2 (en) | 2003-12-19 | 2012-11-06 | Olympus Corporation | Capsule medical device |
JP4198045B2 (en) | 2003-12-25 | 2008-12-17 | オリンパス株式会社 | In-subject position detection system |
JP2005185567A (en) | 2003-12-25 | 2005-07-14 | Olympus Corp | Medical capsule apparatus |
US8185191B1 (en) | 2003-12-29 | 2012-05-22 | Michael Evan Shapiro | Pulse monitoring and warning system for infants |
US7392091B2 (en) | 2003-12-30 | 2008-06-24 | Cochlear Limited | Implanted antenna and radio communications link |
JP2005192821A (en) | 2004-01-07 | 2005-07-21 | Olympus Corp | Capsule type medical apparatus |
JP2005193535A (en) | 2004-01-07 | 2005-07-21 | Alps Electric Co Ltd | Thermal head, method of manufacturing the same, and method of adjusting dot aspect ratio of the thermal head |
US7081807B2 (en) | 2004-01-14 | 2006-07-25 | Joseph Lai | Automatic pill reminder bottles |
JP2007525261A (en) | 2004-01-16 | 2007-09-06 | ザ シティ カレッジ オブ ザ シティ ユニバーシティ オブ ニューヨーク | A microscale compact device for in vivo medical diagnostics combining optical imaging and point fluorescence spectroscopy |
US7176784B2 (en) | 2004-01-21 | 2007-02-13 | Battelle Memorial Institute K1-53 | Multi-mode radio frequency device |
US7342895B2 (en) | 2004-01-30 | 2008-03-11 | Mark Serpa | Method and system for peer-to-peer wireless communication over unlicensed communication spectrum |
US7647112B2 (en) | 2004-02-11 | 2010-01-12 | Ethicon, Inc. | System and method for selectively stimulating different body parts |
CA2556331A1 (en) | 2004-02-17 | 2005-09-29 | Therasense, Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US20060154642A1 (en) | 2004-02-20 | 2006-07-13 | Scannell Robert F Jr | Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses |
US20050187789A1 (en) | 2004-02-25 | 2005-08-25 | Cardiac Pacemakers, Inc. | Advanced patient and medication therapy management system and method |
DE602005022282D1 (en) | 2004-02-27 | 2010-08-26 | Koninkl Philips Electronics Nv | PORTABLE WIRELESS DEVICE FOR MONITORING, ANALYSIS AND COMMUNICATION OF THE PHYSIOLOGICAL STATUS |
CN1284505C (en) * | 2004-02-28 | 2006-11-15 | 重庆金山科技(集团)有限公司 | Radio capsule like endoscope system for medical use |
US7406105B2 (en) | 2004-03-03 | 2008-07-29 | Alfred E. Mann Foundation For Scientific Research | System and method for sharing a common communication channel between multiple systems of implantable medical devices |
DE602004024227D1 (en) | 2004-03-04 | 2009-12-31 | Olympus Corp | MEDICAL SYSTEM OF CAPSULE TYPE |
GB0405798D0 (en) | 2004-03-15 | 2004-04-21 | E San Ltd | Medical data display |
JP4119863B2 (en) * | 2004-03-31 | 2008-07-16 | ソフトバンクモバイル株式会社 | Information communication terminal |
JP4520198B2 (en) | 2004-04-07 | 2010-08-04 | オリンパス株式会社 | In-subject position display system |
US20050234307A1 (en) | 2004-04-15 | 2005-10-20 | Nokia Corporation | Physiological event handling system and method |
US9011329B2 (en) | 2004-04-19 | 2015-04-21 | Searete Llc | Lumenally-active device |
US8512219B2 (en) | 2004-04-19 | 2013-08-20 | The Invention Science Fund I, Llc | Bioelectromagnetic interface system |
JP2005304880A (en) | 2004-04-23 | 2005-11-04 | Hitachi Ltd | In-vivo object management system utilizing non-contact ic tag |
KR20070001285A (en) | 2004-04-24 | 2007-01-03 | 인레인지 시스템즈, 인크. | Integrated, non-sequential, remote medication management and compliance system |
US20050245794A1 (en) | 2004-04-29 | 2005-11-03 | Medtronic, Inc. | Communication with implantable monitoring probe |
GB0410248D0 (en) | 2004-05-07 | 2004-06-09 | Isis Innovation | Signal analysis method |
EP1761165A4 (en) | 2004-05-10 | 2011-07-13 | Univ Minnesota | Portable device for monitoring electrocardiographic signals and indices of blood flow |
US20080051667A1 (en) | 2004-05-16 | 2008-02-28 | Rami Goldreich | Method And Device For Measuring Physiological Parameters At The Hand |
US7575005B2 (en) | 2004-05-18 | 2009-08-18 | Excel-Tech Ltd. | Mask assembly with integrated sensors |
US7125382B2 (en) | 2004-05-20 | 2006-10-24 | Digital Angel Corporation | Embedded bio-sensor system |
KR100592934B1 (en) | 2004-05-21 | 2006-06-23 | 한국전자통신연구원 | Wearable physiological signal detection module and measurement apparatus with the same |
US20050259768A1 (en) | 2004-05-21 | 2005-11-24 | Oki Techno Centre (Singapore) Pte Ltd | Digital receiver and method for processing received signals |
US7653542B2 (en) | 2004-05-26 | 2010-01-26 | Verizon Business Global Llc | Method and system for providing synthesized speech |
US20050267556A1 (en) | 2004-05-28 | 2005-12-01 | Allan Shuros | Drug eluting implants to prevent cardiac apoptosis |
US20050267550A1 (en) | 2004-05-28 | 2005-12-01 | Medtronic Minimed, Inc. | System and method for medical communication device and communication protocol for same |
US9082268B2 (en) | 2004-05-28 | 2015-07-14 | Therasolve Nv | Communication unit for a person's skin |
WO2005117697A2 (en) | 2004-05-28 | 2005-12-15 | Narayanan Ramasubramanian | Unified indigestion package and process for patient compliance with prescribed medication regimen |
JP4666951B2 (en) | 2004-06-03 | 2011-04-06 | シーケーディ株式会社 | Blister packaging machine and pharmaceutical solid preparation |
CA2572455C (en) | 2004-06-04 | 2014-10-28 | Therasense, Inc. | Diabetes care host-client architecture and data management system |
US7289855B2 (en) | 2004-06-09 | 2007-10-30 | Medtronic, Inc. | Implantable medical device package antenna |
WO2006022993A2 (en) | 2004-06-10 | 2006-03-02 | Ndi Medical, Llc | Implantable generator for muscle and nerve stimulation |
US7697994B2 (en) | 2004-06-18 | 2010-04-13 | Medtronic, Inc. | Remote scheduling for management of an implantable medical device |
US7460014B2 (en) | 2004-06-22 | 2008-12-02 | Vubiq Incorporated | RFID system utilizing parametric reflective technology |
KR100615431B1 (en) | 2004-06-22 | 2006-08-25 | 한국전자통신연구원 | Physiological signal detection module, a multi-channel connector module and physiological signal detection apparatus with the same |
JP2006006377A (en) | 2004-06-22 | 2006-01-12 | Elquest Corp | Powder paper for packing medicine |
US20050285746A1 (en) | 2004-06-25 | 2005-12-29 | Sengupta Uttam K | Radio frequency identification based system to track consumption of medication |
US20050285732A1 (en) | 2004-06-25 | 2005-12-29 | Sengupta Uttam K | Radio frequency identification based system to track consumption of medication |
US7206630B1 (en) | 2004-06-29 | 2007-04-17 | Cleveland Medical Devices, Inc | Electrode patch and wireless physiological measurement system and method |
JP4488810B2 (en) | 2004-06-30 | 2010-06-23 | 富士通株式会社 | Communication system and reception method |
US20070027383A1 (en) | 2004-07-01 | 2007-02-01 | Peyser Thomas A | Patches, systems, and methods for non-invasive glucose measurement |
US20060001496A1 (en) | 2004-07-02 | 2006-01-05 | Abrosimov Igor A | Array oscillator and polyphase clock generator |
JP4462614B2 (en) | 2004-07-05 | 2010-05-12 | ソニー・エリクソン・モバイルコミュニケーションズ株式会社 | Short-range wireless communication system, portable terminal device, and wireless communication device |
US7505795B1 (en) | 2004-07-07 | 2009-03-17 | Advanced Micro Devices, Inc. | Power save management with customized range for user configuration and tuning value based upon recent usage |
US7343186B2 (en) | 2004-07-07 | 2008-03-11 | Masimo Laboratories, Inc. | Multi-wavelength physiological monitor |
US20080208009A1 (en) | 2004-07-09 | 2008-08-28 | Dror Shklarski | Wearable Device, System and Method for Measuring Vital Parameters |
CN1314134C (en) | 2004-07-15 | 2007-05-02 | 上海交通大学 | Method for preparing silicon thin film heterojunction solar cell |
US7614743B2 (en) | 2004-07-20 | 2009-11-10 | Medtronic, Inc. | Vital signs monitoring system with wireless pupilometer interface |
US20080027679A1 (en) | 2004-07-21 | 2008-01-31 | Dror Shklarski | Wearable Device, System and Method for Measuring Physiological and/or Environmental Parameters |
CN100459614C (en) | 2004-07-22 | 2009-02-04 | 华为技术有限公司 | Mobile phone external device and method |
KR20060009472A (en) | 2004-07-23 | 2006-02-01 | 이기방 | Systems with water-activated battery |
US7336732B1 (en) | 2004-07-28 | 2008-02-26 | L-3 Communications Titan Corporation | Carrier frequency detection for signal acquisition |
WO2006016370A2 (en) | 2004-08-11 | 2006-02-16 | Ramot At Tel Aviv University Ltd. | Soluble fusion proteins comprising heterologous polypeptides |
US7253716B2 (en) | 2004-08-17 | 2007-08-07 | Tagent Corporation | Trackable pills with electronic ID tags |
US7317378B2 (en) | 2004-08-17 | 2008-01-08 | Tagent Corporation | Product identification tag device and reader |
US20060058602A1 (en) | 2004-08-17 | 2006-03-16 | Kwiatkowski Krzysztof C | Interstitial fluid analyzer |
US8518022B2 (en) | 2004-08-27 | 2013-08-27 | Medimetrics Personalized Drug Delivery, Inc. | Electronically and remotely controlled pill and system for delivering at least one medicament |
US20070270672A1 (en) | 2004-08-31 | 2007-11-22 | Hayter Paul G | Wearable Sensor Device and System |
KR100727817B1 (en) | 2004-09-07 | 2007-06-13 | 한국전자통신연구원 | The communication apparatus using the human body with the medium and method for the same |
BRPI0514953A (en) | 2004-09-08 | 2008-07-01 | Alertis Medical As | physiological sensor device |
KR20060023228A (en) | 2004-09-09 | 2006-03-14 | 이기방 | Battery with porous material and fabrication method thereof |
GB2418144A (en) | 2004-09-17 | 2006-03-22 | Psimedica Ltd | Medical device for delivery of beneficial substance |
US20060065713A1 (en) | 2004-09-24 | 2006-03-30 | John Russell Kingery | System and method for monitored administration of medical products to patients |
US7618374B2 (en) | 2004-09-27 | 2009-11-17 | Siemens Medical Solutions Usa, Inc. | Image plane sensing methods and systems for intra-patient probes |
EP1812880A2 (en) | 2004-09-30 | 2007-08-01 | Koninklijke Philips Electronics N.V. | System for automatic continuous and reliable patient identification for association of wireless medical devices to patients |
US7341560B2 (en) | 2004-10-05 | 2008-03-11 | Rader, Fishman & Grauer Pllc | Apparatuses and methods for non-invasively monitoring blood parameters |
US9501949B2 (en) | 2004-10-07 | 2016-11-22 | Novo Nordisk A/S | Method and system for self-management of a disease |
US20060078765A1 (en) | 2004-10-12 | 2006-04-13 | Laixia Yang | Nano-structured ion-conducting inorganic membranes for fuel cell applications |
US20060089858A1 (en) | 2004-10-25 | 2006-04-27 | Tun Ling | Means and method of applying RFID and PKI technologies for patient safety |
JP2008011865A (en) | 2004-10-27 | 2008-01-24 | Sharp Corp | Healthcare apparatus and program for driving the same to function |
US7917199B2 (en) | 2004-11-02 | 2011-03-29 | Medtronic, Inc. | Patient event marking in combination with physiological signals |
WO2006050523A1 (en) | 2004-11-02 | 2006-05-11 | Medtronic, Inc. | Apparatus for data retention in an implantable medical device |
US20060095093A1 (en) | 2004-11-04 | 2006-05-04 | Ido Bettesh | Apparatus and method for receiving device selection and combining |
KR20060040500A (en) | 2004-11-06 | 2006-05-10 | 삼성전자주식회사 | Method and appratus for measuring bio signal |
US7414534B1 (en) | 2004-11-09 | 2008-08-19 | Pacesetter, Inc. | Method and apparatus for monitoring ingestion of medications using an implantable medical device |
US7930064B2 (en) | 2004-11-19 | 2011-04-19 | Parata Systems, Llc | Automated drug discrimination during dispensing |
US7214107B2 (en) | 2004-11-22 | 2007-05-08 | Cardiodynamics International Corporation | Electrical connector apparatus and methods |
WO2006059338A2 (en) | 2004-12-02 | 2006-06-08 | Given Imaging Ltd. | Device, system and method of in-vivo electro-stimulation |
US8374693B2 (en) | 2004-12-03 | 2013-02-12 | Cardiac Pacemakers, Inc. | Systems and methods for timing-based communication between implantable medical devices |
US7154071B2 (en) | 2004-12-07 | 2006-12-26 | Dräger Safety AG & Co. KGaA | Device for transmitting an electric signal detected by contact with the skin surface |
US7616710B2 (en) | 2004-12-08 | 2009-11-10 | Electronics And Telecommunications Research Institute | Frequency offset estimating method and receiver employing the same |
EP1821432B1 (en) | 2004-12-08 | 2011-07-06 | Seiko Instruments Inc. | Information transmission through-human-body system and transmitter/receiver |
US7449262B2 (en) | 2004-12-09 | 2008-11-11 | Praxair Technology, Inc. | Current collector to conduct an electrical current to or from an electrode layer |
US20100100237A1 (en) | 2004-12-11 | 2010-04-22 | Novation Science Holding, Llc | Smart Medicine Container |
ATE545361T1 (en) | 2004-12-13 | 2012-03-15 | Koninkl Philips Electronics Nv | MOBILE MONITORING |
WO2006064502A2 (en) | 2004-12-14 | 2006-06-22 | E-Pill Pharma, Ltd. | Local delivery of drugs or substances using electronic permeability increase |
US20060136266A1 (en) | 2004-12-20 | 2006-06-22 | E-San Limited | Medicinal product order processing system |
US7860731B2 (en) | 2004-12-20 | 2010-12-28 | Confidant Hawaii, Llc | Monitoring and feedback wireless medical system and method |
JP4432766B2 (en) | 2004-12-21 | 2010-03-17 | Jfeスチール株式会社 | Electrical resistance measurement method and apparatus |
US7249212B2 (en) | 2004-12-22 | 2007-07-24 | International Business Machines Corporation | Bluetooth association based on docking connection |
US7146449B2 (en) | 2004-12-22 | 2006-12-05 | International Business Machines Corporation | Bluetooth association with simple power connection |
CN2748032Y (en) | 2004-12-30 | 2005-12-28 | 雪红梅 | Portable multifunctional health status monitoring apparatus with multi-transmission path |
EP1676522B1 (en) | 2004-12-30 | 2008-07-02 | Given Imaging Ltd. | System for locating an in-vivo signal source |
US20060148254A1 (en) | 2005-01-05 | 2006-07-06 | Mclean George Y | Activated iridium oxide electrodes and methods for their fabrication |
WO2006075016A1 (en) | 2005-01-17 | 2006-07-20 | Novo Nordisk A/S | Fluide delivery device with integrated monitoring of physiological characteristics |
WO2006077528A2 (en) | 2005-01-18 | 2006-07-27 | Koninklijke Philips Electronics, N.V. | Electronically controlled capsule |
WO2006077527A2 (en) | 2005-01-18 | 2006-07-27 | Koninklijke Philips Electronics, N.V. | Electronically controlled capsule for releasing radiation |
US20080269664A1 (en) | 2005-01-18 | 2008-10-30 | Koninklijke Philips Electronics, N.V. | System and Method For Controlling Traversal of an Igested Capsule |
JP2008526419A (en) | 2005-01-18 | 2008-07-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electronically controlled ingestible capsule for sampling fluid in the digestive tract |
JP4099484B2 (en) | 2005-02-09 | 2008-06-11 | 株式会社カイザーテクノロジー | Communications system. |
JP4731936B2 (en) | 2005-02-09 | 2011-07-27 | 本田技研工業株式会社 | Rotary variable resistor |
JP2008529631A (en) | 2005-02-11 | 2008-08-07 | ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ グラスゴー | Inspection device, inspection apparatus, inspection system, and driving method thereof |
US7850645B2 (en) | 2005-02-11 | 2010-12-14 | Boston Scientific Scimed, Inc. | Internal medical devices for delivery of therapeutic agent in conjunction with a source of electrical power |
EP1871219A4 (en) | 2005-02-22 | 2011-06-01 | Health Smart Ltd | Methods and systems for physiological and psycho-physiological monitoring and uses thereof |
KR20060097523A (en) | 2005-03-10 | 2006-09-14 | 강성철 | Apparatus for automatic peeling and plating of lead wire |
US7504954B2 (en) | 2005-03-17 | 2009-03-17 | Spaeder Jeffrey A | Radio frequency identification pharmaceutical tracking system and method |
US20060224141A1 (en) | 2005-03-21 | 2006-10-05 | Abbott Diabetes Care, Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
WO2006100620A1 (en) | 2005-03-22 | 2006-09-28 | Koninklijke Philips Electronics, N.V. | Addressing scheme for smart wireless medical sensor networks |
US20060252999A1 (en) | 2005-05-03 | 2006-11-09 | Devaul Richard W | Method and system for wearable vital signs and physiology, activity, and environmental monitoring |
AU2006226742A1 (en) | 2005-03-24 | 2006-09-28 | E. I. Du Pont De Nemours & Company | Transponder overmolded with ethylene copolymers |
US20060216603A1 (en) | 2005-03-26 | 2006-09-28 | Enable Ipc | Lithium-ion rechargeable battery based on nanostructures |
JP2006278091A (en) | 2005-03-29 | 2006-10-12 | Hitachi Maxell Ltd | Coin-shaped silver-oxide battery |
US20060224326A1 (en) | 2005-03-31 | 2006-10-05 | St Ores John W | Integrated data collection and analysis for clinical study |
GB0506925D0 (en) | 2005-04-06 | 2005-05-11 | Zarlink Semiconductor Ab | Ultra low power wake-up solution for implantable RF telemetry devices |
IL174531A0 (en) * | 2005-04-06 | 2006-08-20 | Given Imaging Ltd | System and method for performing capsule endoscopy diagnosis in remote sites |
EP1893282A1 (en) | 2005-04-07 | 2008-03-05 | St. Jude Medical AB | System and method for radio communication between an implantable medical device and an external base unit |
CA2953847C (en) | 2005-04-07 | 2019-06-18 | Proteus Digital Health, Inc. | Pharma-informatics system |
AU2006235722A1 (en) | 2005-04-14 | 2006-10-19 | Hidalgo Limited | Apparatus and system for monitoring |
US7270633B1 (en) | 2005-04-22 | 2007-09-18 | Cardiac Pacemakers, Inc. | Ambulatory repeater for use in automated patient care and method thereof |
US8802183B2 (en) | 2005-04-28 | 2014-08-12 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US8730031B2 (en) | 2005-04-28 | 2014-05-20 | Proteus Digital Health, Inc. | Communication system using an implantable device |
US8912908B2 (en) | 2005-04-28 | 2014-12-16 | Proteus Digital Health, Inc. | Communication system with remote activation |
US9198608B2 (en) | 2005-04-28 | 2015-12-01 | Proteus Digital Health, Inc. | Communication system incorporated in a container |
US7414543B2 (en) | 2005-04-28 | 2008-08-19 | Honeywell International Inc. | Multiple miniature avionic displays |
US20120024889A1 (en) | 2005-04-28 | 2012-02-02 | Timothy Robertson | Polypharmacy Co-Packaged Medication Dosing Unit Including Communication System Therefor |
US8836513B2 (en) | 2006-04-28 | 2014-09-16 | Proteus Digital Health, Inc. | Communication system incorporated in an ingestible product |
US20060247505A1 (en) | 2005-04-28 | 2006-11-02 | Siddiqui Waqaas A | Wireless sensor system |
WO2006122180A2 (en) | 2005-05-10 | 2006-11-16 | Par Technologies Llc | Disposable fluid container with integrated pump motive assembly |
US7359674B2 (en) | 2005-05-10 | 2008-04-15 | Nokia Corporation | Content distribution & communication system for enhancing service distribution in short range radio environment |
EP2330524A3 (en) | 2005-05-10 | 2012-07-11 | CareFusion 303, Inc. | Medication safety system featuring a multiplexed RFID interrogator panel |
US20060262180A1 (en) | 2005-05-17 | 2006-11-23 | Robbins Gene A | Object processing assembly operable to form dynamically variable images in objects in single shot events |
US20070088194A1 (en) | 2005-05-19 | 2007-04-19 | Eliav Tahar | Bolus, method and system for monitoring health condition of ruminant animals |
AU2006248571A1 (en) | 2005-05-19 | 2006-11-23 | E-Pill Pharma, Ltd | Ingestible device for nitric oxide production in tissue |
WO2006127355A2 (en) | 2005-05-20 | 2006-11-30 | Dow Global Technologies Inc. | Oral drug compliance monitoring using radio frequency identification tags |
US8285205B2 (en) | 2005-05-26 | 2012-10-09 | Broadcom Corporation | Method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor |
US20060273882A1 (en) | 2005-06-01 | 2006-12-07 | Intel Corporation | RFID tag with separate transmit and receive clocks and related method |
US20060276702A1 (en) | 2005-06-03 | 2006-12-07 | Mcginnis William | Neurophysiological wireless bio-sensor |
US7387607B2 (en) | 2005-06-06 | 2008-06-17 | Intel Corporation | Wireless medical sensor system |
KR100695152B1 (en) | 2005-06-07 | 2007-03-14 | 삼성전자주식회사 | electrode for measuring electrocardiogram and device for measuring electrocardiogram comprising the same |
WO2006133444A2 (en) | 2005-06-09 | 2006-12-14 | Medtronic, Inc. | Implantable medical device with electrodes on multiple housing surfaces |
DE102005026739A1 (en) | 2005-06-09 | 2006-12-21 | Lucas Automotive Gmbh | Devices and methods for hydraulic brake systems for land vehicles |
US20060282001A1 (en) | 2005-06-09 | 2006-12-14 | Michel Noel | Physiologic sensor apparatus |
WO2006130988A1 (en) | 2005-06-10 | 2006-12-14 | Telecommunications Research Laboratories | Wireless communication system |
ITTO20050407A1 (en) | 2005-06-13 | 2006-12-14 | Ist Superiore Mario Boella | REMOTE MONITORING SYSTEM FOR PHYSIOLOGICAL PARAMETERS OF AN INDIVIDUAL, PROCEDURE AND IT PRODUCT |
JP2006346000A (en) | 2005-06-14 | 2006-12-28 | Aruze Corp | Game machine and server |
US20060285607A1 (en) | 2005-06-16 | 2006-12-21 | The Boeing Company | High availability narrowband channel for bandwidth efficient modulation applications |
US7616111B2 (en) | 2005-06-20 | 2009-11-10 | Carestream Health, Inc. | System to monitor the ingestion of medicines |
US7857766B2 (en) | 2005-06-20 | 2010-12-28 | Alfred E. Mann Foundation For Scientific Research | System of implantable ultrasonic emitters for preventing restenosis following a stent procedure |
US7782189B2 (en) | 2005-06-20 | 2010-08-24 | Carestream Health, Inc. | System to monitor the ingestion of medicines |
US7299034B2 (en) | 2005-06-21 | 2007-11-20 | Lawrence Kates | System and method for wearable electronics |
WO2007002697A2 (en) | 2005-06-28 | 2007-01-04 | Mayo Foundation For Medical Education And Research | System for monitoring a physical parameter of a subject |
FI20055366A0 (en) | 2005-06-30 | 2005-06-30 | Gen Electric | An electrode for obtaining a biopotential signal |
US20090134181A1 (en) | 2005-07-13 | 2009-05-28 | Vitality, Inc. | Medication dispenser with automatic refill |
US20070016089A1 (en) | 2005-07-15 | 2007-01-18 | Fischell David R | Implantable device for vital signs monitoring |
US9047746B1 (en) | 2005-07-20 | 2015-06-02 | Neil Euliano | Electronic medication compliance monitoring system and associated methods |
EP3424421A3 (en) | 2005-07-20 | 2019-03-06 | Neil R. Euliano | Electronic pill for monitoring medication compliance |
CA2616180A1 (en) | 2005-07-22 | 2007-02-01 | Paul Cranley | Oral drug compliance monitoring using sound detection |
CN100471445C (en) | 2005-08-01 | 2009-03-25 | 周常安 | Paster style physiological monitoring device, system and network |
JP4427014B2 (en) | 2005-08-02 | 2010-03-03 | セイコーインスツル株式会社 | Electronic equipment |
US20070072156A1 (en) | 2005-08-05 | 2007-03-29 | Abk Ventures | Lifestyle coach behavior modification system |
US20090142853A1 (en) | 2005-08-11 | 2009-06-04 | Eksigent Technologies, Llc | Microfluidic system and methods |
WO2007021496A2 (en) | 2005-08-18 | 2007-02-22 | Walker Digital, Llc | Systems and methods for improved health care compliance |
US20090124871A1 (en) | 2005-08-22 | 2009-05-14 | Khalil Arshak | Tracking system |
US7871734B2 (en) | 2005-08-23 | 2011-01-18 | Massachusetts Institute Of Technology | Micro fuel cell |
US8116809B2 (en) | 2005-08-29 | 2012-02-14 | Intel Corporation | Method and apparatus of multiple entity wireless communication adapter |
US8827904B2 (en) | 2005-08-31 | 2014-09-09 | Medtronic, Inc. | Automatic parameter status on an implantable medical device system |
US8547248B2 (en) | 2005-09-01 | 2013-10-01 | Proteus Digital Health, Inc. | Implantable zero-wire communications system |
JP2007068622A (en) | 2005-09-05 | 2007-03-22 | Olympus Corp | Acquisition system for biological information of subject |
US20070135803A1 (en) | 2005-09-14 | 2007-06-14 | Amir Belson | Methods and apparatus for performing transluminal and other procedures |
WO2007031973A2 (en) | 2005-09-15 | 2007-03-22 | Visible Assets, Inc. | Active low frequency radio tag and patch drug delivery system |
US7673679B2 (en) | 2005-09-19 | 2010-03-09 | Schlumberger Technology Corporation | Protective barriers for small devices |
US20080058614A1 (en) | 2005-09-20 | 2008-03-06 | Triage Wireless, Inc. | Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic |
GB0519837D0 (en) | 2005-09-29 | 2005-11-09 | Smartlife Technology Ltd | Knitting techniques |
GB0519836D0 (en) | 2005-09-29 | 2005-11-09 | Smartlife Technology Ltd | Contact sensors |
US20070078324A1 (en) | 2005-09-30 | 2007-04-05 | Textronics, Inc. | Physiological Monitoring Wearable Having Three Electrodes |
GB0519945D0 (en) | 2005-09-30 | 2005-11-09 | Cambridge Silicon Radio Ltd | Communication in dual protocol environments |
CN100466966C (en) | 2005-10-08 | 2009-03-11 | 周常安 | Physiological signal extracting and monitoring device and system |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
US9154616B2 (en) | 2005-10-18 | 2015-10-06 | Oia Intellectuals, Inc. | Wearable capture and communication |
US7720036B2 (en) | 2005-10-26 | 2010-05-18 | Intel Corporation | Communication within a wireless network using multiple frequency bands |
US7499739B2 (en) | 2005-10-27 | 2009-03-03 | Smiths Medical Pm, Inc. | Single use pulse oximeter |
US8515348B2 (en) | 2005-10-28 | 2013-08-20 | Electro Industries/Gauge Tech | Bluetooth-enable intelligent electronic device |
US9067047B2 (en) | 2005-11-09 | 2015-06-30 | The Invention Science Fund I, Llc | Injectable controlled release fluid delivery system |
GB0523447D0 (en) | 2005-11-17 | 2005-12-28 | E San Ltd | System and method for communicating environmentally-based medical support advice |
WO2007063436A1 (en) | 2005-11-30 | 2007-06-07 | Koninklijke Philips Electronics N.V. | Electro-mechanical connector for thin medical monitoring patch |
US8083128B2 (en) | 2005-12-02 | 2011-12-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US20070129769A1 (en) | 2005-12-02 | 2007-06-07 | Medtronic, Inc. | Wearable ambulatory data recorder |
JP4789607B2 (en) * | 2005-12-05 | 2011-10-12 | オリンパスメディカルシステムズ株式会社 | Receiver |
US8295932B2 (en) | 2005-12-05 | 2012-10-23 | Metacure Limited | Ingestible capsule for appetite regulation |
NL1030608C2 (en) | 2005-12-06 | 2007-06-07 | Patrick Antonius Hendri Meeren | Blister package, assembly of a blister package and a holder, and method for packaging objects. |
JP2007159631A (en) | 2005-12-09 | 2007-06-28 | Taito Corp | Game machine and game program |
US20070180047A1 (en) | 2005-12-12 | 2007-08-02 | Yanting Dong | System and method for providing authentication of remotely collected external sensor measures |
US20070135691A1 (en) | 2005-12-12 | 2007-06-14 | General Electric Company | Medicament compliance monitoring system, method, and medicament container |
CN1985752A (en) | 2005-12-19 | 2007-06-27 | 周常安 | Distributed physiological signal monitor |
WO2007073702A2 (en) | 2005-12-29 | 2007-07-05 | Osmotica Corp. | Multi-layered tablet with triple release combination |
US20070156016A1 (en) | 2005-12-29 | 2007-07-05 | Ido Betesh | Method and system for communication with an ingestible imaging device |
TWI306023B (en) | 2005-12-30 | 2009-02-11 | Ind Tech Res Inst | Monitoring apparatus for physical movements of a body organ and method for acouiring the same |
US8301254B2 (en) | 2006-01-09 | 2012-10-30 | Greatbatch Ltd. | Cross-band communications in an implantable device |
US20070162089A1 (en) | 2006-01-09 | 2007-07-12 | Transoma Medical, Inc. | Cross-band communications in an implantable device |
US8078278B2 (en) | 2006-01-10 | 2011-12-13 | Remon Medical Technologies Ltd. | Body attachable unit in wireless communication with implantable devices |
EP1992116B1 (en) | 2006-01-11 | 2014-02-26 | QUALCOMM Incorporated | Communication methods and apparatus relating to cooperative and non-cooperative modes of operation |
CN100571239C (en) | 2006-01-16 | 2009-12-16 | 华为技术有限公司 | Synchronizing pilot sequence generation system and method in the communication system |
US20100228113A1 (en) | 2006-01-23 | 2010-09-09 | Koninklijke Philips Electronics N.V. | Improved biomedical electrode for extended patient wear featuring a tap, or snap, which is isolated from the retentional seal |
JP2007200739A (en) | 2006-01-27 | 2007-08-09 | Keio Gijuku | Living body swallow-type power generating cell |
US8762733B2 (en) | 2006-01-30 | 2014-06-24 | Adidas Ag | System and method for identity confirmation using physiologic biometrics to determine a physiologic fingerprint |
US20070185393A1 (en) | 2006-02-03 | 2007-08-09 | Triage Wireless, Inc. | System for measuring vital signs using an optical module featuring a green light source |
US8150502B2 (en) | 2006-02-06 | 2012-04-03 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive cardiac monitor and methods of using continuously recorded cardiac data |
US7809399B2 (en) | 2006-02-10 | 2010-10-05 | Syntek International Holding Ltd. | Method and device for providing multiple communication protocols with a single transceiver |
WO2007096810A1 (en) | 2006-02-24 | 2007-08-30 | Koninklijke Philips Electronics N.V. | Wireless body sensor network |
US20100049006A1 (en) | 2006-02-24 | 2010-02-25 | Surendar Magar | Medical signal processing system with distributed wireless sensors |
US8781566B2 (en) | 2006-03-01 | 2014-07-15 | Angel Medical Systems, Inc. | System and methods for sliding-scale cardiac event detection |
US8200320B2 (en) | 2006-03-03 | 2012-06-12 | PhysioWave, Inc. | Integrated physiologic monitoring systems and methods |
US8209018B2 (en) | 2006-03-10 | 2012-06-26 | Medtronic, Inc. | Probabilistic neurological disorder treatment |
CA2643254C (en) | 2006-03-14 | 2014-02-11 | Jamie Hackett | Long-range radio frequency receiver-controller module and wireless control system comprising same |
US8920343B2 (en) | 2006-03-23 | 2014-12-30 | Michael Edward Sabatino | Apparatus for acquiring and processing of physiological auditory signals |
US20070244810A1 (en) | 2006-03-27 | 2007-10-18 | Altruism In Action Llc Dba Giving Corps | Enabling a selectable charitable donation as an incentive for a customer transaction |
US8389003B2 (en) | 2006-03-29 | 2013-03-05 | Eatlittle Inc. | Ingestible implement for weight control |
CA2645903A1 (en) | 2006-03-30 | 2007-10-11 | Dow Global Technologies Inc. | Method and system for monitoring and analyzing compliance with internal dosing regimen |
RU2008143010A (en) | 2006-03-30 | 2010-05-10 | Конинклейке Филипс Электроникс Н.В. (Nl) | INCREASING VOLUME OF THE GASTRIC TABLET AND METHOD OF ITS APPLICATION |
US7806852B1 (en) | 2006-04-03 | 2010-10-05 | Jurson Phillip A | Method and apparatus for patient-controlled medical therapeutics |
TW200738212A (en) | 2006-04-12 | 2007-10-16 | Guo Terry Bo Jau | Miniature wireless apparatus for collecting physiological signals of animals |
WO2007123923A2 (en) | 2006-04-18 | 2007-11-01 | Susan Mirow | Method and apparatus for analysis of psychiatric and physical conditions |
CA2649447A1 (en) | 2006-04-25 | 2007-11-08 | Dow Global Technologies Inc. | Oral drug compliance monitoring using magnetic-field sensors |
US7912537B2 (en) | 2006-04-27 | 2011-03-22 | Medtronic, Inc. | Telemetry-synchronized physiological monitoring and therapy delivery systems |
MY187397A (en) | 2006-04-28 | 2021-09-22 | Qualcomm Inc | Method and apparatus for enhanced paging |
US20070255125A1 (en) | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Monitor devices for networked fluid infusion systems |
CN101496042A (en) | 2006-05-02 | 2009-07-29 | 普罗秋斯生物医学公司 | Patient customized therapeutic regimens |
GB0608829D0 (en) | 2006-05-04 | 2006-06-14 | Husheer Shamus L G | In-situ measurement of physical parameters |
US9031853B2 (en) | 2006-05-06 | 2015-05-12 | Irody, Inc. | Apparatus and method for obtaining an identification of drugs for enhanced safety |
WO2007128165A1 (en) | 2006-05-09 | 2007-11-15 | Fangen Xiong | A short-range wireless networks system and erection method which allot time slots with multi-channel rf transceiver |
EP2027732A2 (en) | 2006-05-10 | 2009-02-25 | Interdigital Technology Corporation | Method and apparatus for battery management in a converged wireless transmit/receive unit |
US20080051647A1 (en) | 2006-05-11 | 2008-02-28 | Changwang Wu | Non-invasive acquisition of large nerve action potentials (NAPs) with closely spaced surface electrodes and reduced stimulus artifacts |
US7558622B2 (en) | 2006-05-24 | 2009-07-07 | Bao Tran | Mesh network stroke monitoring appliance |
KR101095589B1 (en) | 2006-05-15 | 2011-12-19 | 노키아 코포레이션 | Contactless programming and testing of memory elements |
US7539533B2 (en) | 2006-05-16 | 2009-05-26 | Bao Tran | Mesh network monitoring appliance |
US20080077015A1 (en) | 2006-05-17 | 2008-03-27 | Olga Boric-Lubecke | Determining presence and/or physiological motion of one or more subjects with multiple receiver Doppler radar systems |
CN101073494B (en) | 2006-05-18 | 2010-09-08 | 周常安 | Non-invasive life evidence monitor, monitor system and method |
WO2007136850A2 (en) | 2006-05-19 | 2007-11-29 | Cvrx, Inc. | Characterization and modulation of physiologic response using baroreflex activation in conjunction with drug therapy |
EP3616611B1 (en) | 2006-06-01 | 2020-12-30 | ResMed Sensor Technologies Limited | Apparatus, system, and method for monitoring physiological signs |
US20070279217A1 (en) | 2006-06-01 | 2007-12-06 | H-Micro, Inc. | Integrated mobile healthcare system for cardiac care |
FI120482B (en) | 2006-06-08 | 2009-11-13 | Suunto Oy | Anturointijärjestely |
US7462150B1 (en) | 2006-06-09 | 2008-12-09 | Pacesetter, Inc. | System and method for evaluating impaired glucose tolerance and diabetes mellitus within a patient using an implantable medical device |
US7346380B2 (en) | 2006-06-16 | 2008-03-18 | Axelgaard Manufacturing Co., Ltd. | Medical electrode |
JP2007330677A (en) | 2006-06-19 | 2007-12-27 | Nikon Corp | Chemical with built-in memory |
US20100131023A1 (en) | 2006-06-21 | 2010-05-27 | Benedict James Costello | Implantable medical devices comprising cathodic arc produced structures |
WO2008076464A2 (en) | 2006-06-21 | 2008-06-26 | Surgisense Corporation | Wireless medical telemetry system and methods using radio-frequency energized biosensors |
JP2009541018A (en) | 2006-06-23 | 2009-11-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Drug administration system |
US20080046038A1 (en) | 2006-06-26 | 2008-02-21 | Hill Gerard J | Local communications network for distributed sensing and therapy in biomedical applications |
US7949404B2 (en) | 2006-06-26 | 2011-05-24 | Medtronic, Inc. | Communications network for distributed sensing and therapy in biomedical applications |
ES2326333T3 (en) | 2006-06-29 | 2009-10-07 | Edwin Kohl | PERSONALIZED BLISTER CONTAINER AND AUTOMATIC PACKAGING PROCEDURE FOR AN INDIVIDUALLY ESTABLISHED PRODUCT COMBINATION. |
US20080004503A1 (en) | 2006-06-29 | 2008-01-03 | Micha Nisani | Data recorder and method for recording a data signal received from an in-vivo sensing device |
US8165896B2 (en) | 2006-06-29 | 2012-04-24 | The Invention Science Fund I, Llc | Compliance data for health-related procedures |
US8135596B2 (en) | 2006-06-29 | 2012-03-13 | The Invention Science Fund I, Llc | Generating output data based on patient monitoring |
IL176712A0 (en) | 2006-07-05 | 2007-10-31 | Michael Cohen Alloro | Medication dispenser |
WO2008008281A2 (en) | 2006-07-07 | 2008-01-17 | Proteus Biomedical, Inc. | Smart parenteral administration system |
EP2043728A2 (en) | 2006-07-11 | 2009-04-08 | Microchips, Inc. | Multi-reservoir pump device for dialysis, biosensing, or delivery of substances |
US20080020037A1 (en) | 2006-07-11 | 2008-01-24 | Robertson Timothy L | Acoustic Pharma-Informatics System |
US7962174B2 (en) | 2006-07-12 | 2011-06-14 | Andrew Llc | Transceiver architecture and method for wireless base-stations |
US20080015893A1 (en) | 2006-07-17 | 2008-01-17 | Walgreen Co. | Identification of Inappropriate Medications In A Medication Therapy Regimen |
US20080021521A1 (en) | 2006-07-18 | 2008-01-24 | Cardiac Pacemakers, Inc. | Implantable Medical Device Communication System |
DE102007020583B4 (en) | 2006-07-19 | 2012-10-11 | Erbe Elektromedizin Gmbh | Electrode device with an impedance measuring device and method for producing such an electrode device |
EP2051615A4 (en) | 2006-08-10 | 2011-03-23 | Given Imaging Ltd | System and method for in vivo imaging |
US20080097549A1 (en) | 2006-09-01 | 2008-04-24 | Colbaugh Michael E | Electrode Assembly and Method of Using Same |
US7756573B2 (en) | 2006-09-05 | 2010-07-13 | Cardiac Pacemakers, Inc. | Implantable medical device diagnostic data acquisition and storage |
EP2063766B1 (en) | 2006-09-06 | 2017-01-18 | Innurvation, Inc. | Ingestible low power sensor device and system for communicating with same |
US20080112885A1 (en) | 2006-09-06 | 2008-05-15 | Innurvation, Inc. | System and Method for Acoustic Data Transmission |
EP2066229A1 (en) | 2006-09-18 | 2009-06-10 | Koninklijke Philips Electronics N.V. | Ip based monitoring and alarming |
US20080077430A1 (en) | 2006-09-25 | 2008-03-27 | Singer Michael S | Systems and methods for improving medication adherence |
US20080077184A1 (en) | 2006-09-27 | 2008-03-27 | Stephen Denker | Intravascular Stimulation System With Wireless Power Supply |
US20080077028A1 (en) | 2006-09-27 | 2008-03-27 | Biotronic Crm Patent | Personal health monitoring and care system |
US9227011B2 (en) | 2006-09-29 | 2016-01-05 | MEDIMETRICS Personalized Drug Delivery B.V. | Miniaturized threshold sensor |
KR100770010B1 (en) | 2006-09-29 | 2007-10-25 | 한국전자통신연구원 | Intra-body communication system for high-speed data transmission |
US20080091114A1 (en) | 2006-10-11 | 2008-04-17 | Pacesetter, Inc. | Techniques for Correlating Thoracic Impedance with Physiological Status |
US20080091089A1 (en) | 2006-10-12 | 2008-04-17 | Kenneth Shane Guillory | Single use, self-contained surface physiological monitor |
WO2008066617A2 (en) | 2006-10-17 | 2008-06-05 | Proteus Biomedical, Inc. | Low voltage oscillator for medical devices |
US20080097917A1 (en) | 2006-10-24 | 2008-04-24 | Kent Dicks | Systems and methods for wireless processing and medical device monitoring via remote command execution |
EP2083680B1 (en) | 2006-10-25 | 2016-08-10 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US7764996B2 (en) | 2006-10-31 | 2010-07-27 | Cardiac Pacemakers, Inc. | Monitoring of chronobiological rhythms for disease and drug management using one or more implantable device |
US8214007B2 (en) | 2006-11-01 | 2012-07-03 | Welch Allyn, Inc. | Body worn physiological sensor device having a disposable electrode module |
KR20180066272A (en) | 2006-11-09 | 2018-06-18 | 오렉시젠 세러퓨틱스 인크. | Unit dosage packages |
GB2458049B (en) | 2006-11-14 | 2011-11-30 | Dean P Alderucci | Biometric access sensitivity |
US20080119705A1 (en) | 2006-11-17 | 2008-05-22 | Medtronic Minimed, Inc. | Systems and Methods for Diabetes Management Using Consumer Electronic Devices |
EP2069004A4 (en) | 2006-11-20 | 2014-07-09 | Proteus Digital Health Inc | Active signal processing personal health signal receivers |
JP5830222B2 (en) | 2006-11-21 | 2015-12-09 | メディメトリクス ペルソナリズド ドルグ デリヴェリー ベー ヴェ | Ingestible electronic capsule and in vivo drug delivery or diagnostic system |
US8060249B2 (en) | 2006-11-22 | 2011-11-15 | Senticare Inc. | Medication dispenser with integrated monitoring system |
US8600467B2 (en) | 2006-11-29 | 2013-12-03 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
GB0624085D0 (en) | 2006-12-01 | 2007-01-10 | Oxford Biosignals Ltd | Biomedical signal analysis method |
GB0624081D0 (en) | 2006-12-01 | 2007-01-10 | Oxford Biosignals Ltd | Biomedical signal analysis method |
US8180425B2 (en) | 2006-12-05 | 2012-05-15 | Tyco Healthcare Group Lp | ECG lead wire organizer and dispenser |
US20080137566A1 (en) | 2006-12-06 | 2008-06-12 | Bojko Marholev | Method and System for Shared High-Power Transmit Path for a Multi-Protocol Transceiver |
EP2091424B1 (en) | 2006-12-07 | 2016-05-04 | Koninklijke Philips N.V. | Handheld, repositionable ecg detector |
US20080146889A1 (en) | 2006-12-13 | 2008-06-19 | National Yang-Ming University | Method of monitoring human physiological parameters and safty conditions universally |
US8157730B2 (en) | 2006-12-19 | 2012-04-17 | Valencell, Inc. | Physiological and environmental monitoring systems and methods |
TWI334747B (en) | 2006-12-22 | 2010-12-11 | Unimicron Technology Corp | Circuit board structure having embedded electronic components |
WO2008085131A1 (en) | 2007-01-08 | 2008-07-17 | Freesystems Pte. Ltd. | A wireless network for personal computer human interface devices |
EP2127349A4 (en) | 2007-01-10 | 2011-03-30 | Camillo Ricordi | Mobile emergency alert system |
EP2115722A4 (en) | 2007-01-12 | 2011-12-07 | Healthhonors Corp | Behavior modification with intermittent reward |
CN101663014A (en) | 2007-01-16 | 2010-03-03 | 陶氏环球技术公司 | Oral drug capsule component incorporating a communication device |
JP5054984B2 (en) | 2007-01-17 | 2012-10-24 | 株式会社日立メディコ | Individual health guidance support system |
WO2008091838A2 (en) | 2007-01-22 | 2008-07-31 | Intelliject, Inc. | Medical injector with compliance tracking and monitoring |
US20080294020A1 (en) | 2007-01-25 | 2008-11-27 | Demetrios Sapounas | System and method for physlological data readings, transmission and presentation |
US20080183245A1 (en) | 2007-01-31 | 2008-07-31 | Van Oort Geeske | Telemetry of external physiological sensor data and implantable medical device data to a central processing system |
US20080214985A1 (en) | 2007-02-02 | 2008-09-04 | Activatek, Inc. | Active transdermal medicament patch |
JP2008191955A (en) | 2007-02-05 | 2008-08-21 | Rvision Corp | Payment charging office work representative system |
WO2008097652A2 (en) | 2007-02-08 | 2008-08-14 | Senior Vitals, Inc. | Body patch for none-invasive physiological data readings |
MY154556A (en) | 2007-02-14 | 2015-06-30 | Proteus Digital Health Inc | In-body power source having high surface area electrode |
EP2124725A1 (en) | 2007-03-09 | 2009-12-02 | Proteus Biomedical, Inc. | In-body device having a multi-directional transmitter |
US9270025B2 (en) | 2007-03-09 | 2016-02-23 | Proteus Digital Health, Inc. | In-body device having deployable antenna |
US8091790B2 (en) | 2007-03-16 | 2012-01-10 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Security for blister packs |
US20080303638A1 (en) | 2007-03-24 | 2008-12-11 | Hap Nguyen | Portable patient devices, systems, and methods for providing patient aid and preventing medical errors, for monitoring patient use of ingestible medications, and for preventing distribution of counterfeit drugs |
WO2008120128A2 (en) | 2007-03-30 | 2008-10-09 | Koninklijke Philips Electronics N.V. | System and method for pill communication and control |
US8810260B1 (en) | 2007-04-02 | 2014-08-19 | Cypress Semiconductor Corporation | Device and method for detecting characteristics of a material occupying a volume with capactive sensing of mirrored plates |
KR100895297B1 (en) | 2007-04-30 | 2009-05-07 | 한국전자통신연구원 | A multi channel electrode sensor apparatus for measuring a plurality of physiological signals |
WO2008131557A1 (en) | 2007-05-01 | 2008-11-06 | Urodynamix Technologies Ltd. | Apparatus and methods for evaluating physiological conditions of tissue |
GB0709248D0 (en) | 2007-05-14 | 2007-06-20 | T & Medical Ltd | System for monitoring chemotherapy associated adverse drug reactions |
US8412293B2 (en) | 2007-07-16 | 2013-04-02 | Optiscan Biomedical Corporation | Systems and methods for determining physiological parameters using measured analyte values |
US8115618B2 (en) | 2007-05-24 | 2012-02-14 | Proteus Biomedical, Inc. | RFID antenna for in-body device |
JP2008289724A (en) | 2007-05-25 | 2008-12-04 | Olympus Corp | Inspection device for capsule endoscope and capsule endoscope system using the same |
US7971414B1 (en) | 2007-05-30 | 2011-07-05 | Walgreen Co. | Multi-dose filling machine |
US20080300572A1 (en) | 2007-06-01 | 2008-12-04 | Medtronic Minimed, Inc. | Wireless monitor for a personal medical device system |
US20080306362A1 (en) | 2007-06-05 | 2008-12-11 | Owen Davis | Device and system for monitoring contents of perspiration |
US20080303665A1 (en) | 2007-06-08 | 2008-12-11 | Bilcare, Inc. | Package-companion-user interactive system and associated method |
US20080311968A1 (en) | 2007-06-13 | 2008-12-18 | Hunter Thomas C | Method for improving self-management of a disease |
US20080311852A1 (en) | 2007-06-15 | 2008-12-18 | Broadcom Corporation | Multiple communication link coordination for shared data transmissions |
US8060175B2 (en) | 2007-06-15 | 2011-11-15 | General Electric Company | System and apparatus for collecting physiological signals from a plurality of electrodes |
GB2450517A (en) | 2007-06-27 | 2008-12-31 | Smartlife Technology Ltd | Electrical resistance of yarn or fabric changes with temperature |
WO2009002622A2 (en) | 2007-06-27 | 2008-12-31 | F. Hoffman-La Roche Ag | Patient information input interface for a therapy system |
US8577835B2 (en) | 2007-06-28 | 2013-11-05 | Salesforce.Com, Inc. | Method and system for sharing data between subscribers of a multi-tenant database service |
CN201076456Y (en) | 2007-06-29 | 2008-06-25 | 洪金叶 | Clamp style wireless transmission pulse detection device |
US8404275B2 (en) | 2007-07-01 | 2013-03-26 | Vitalis Llc | Combination tablet with chewable outer layer |
US20090009332A1 (en) | 2007-07-03 | 2009-01-08 | Endotronix, Inc. | System and method for monitoring ingested medication via rf wireless telemetry |
JP5065780B2 (en) | 2007-07-03 | 2012-11-07 | 株式会社日立製作所 | RFID tag mounting board |
JP4520491B2 (en) | 2007-07-09 | 2010-08-04 | オリンパス株式会社 | Capsule medical system |
US8340750B2 (en) | 2007-07-19 | 2012-12-25 | Medtronic, Inc. | Mechanical function marker channel for cardiac monitoring and therapy control |
GB0714807D0 (en) | 2007-07-30 | 2007-09-12 | Oxford Biosignals Ltd | Method and apparatus for measuring breathing rate |
JP2009034345A (en) * | 2007-08-01 | 2009-02-19 | Hoya Corp | Receiver and medical equipment |
KR101080423B1 (en) | 2007-08-03 | 2011-11-04 | 삼성전자주식회사 | Multi module combination type portable electronic device |
KR100863064B1 (en) | 2007-08-03 | 2008-10-13 | 한국전자통신연구원 | Garment for measuring physiological signals and method of fabricating the same |
US20110130658A1 (en) | 2007-08-16 | 2011-06-02 | Rdc Ltd. | Ultrasonic capsule |
US20090048498A1 (en) | 2007-08-17 | 2009-02-19 | Frank Riskey | System and method of monitoring an animal |
US8926509B2 (en) | 2007-08-24 | 2015-01-06 | Hmicro, Inc. | Wireless physiological sensor patches and systems |
JP4914786B2 (en) * | 2007-08-28 | 2012-04-11 | オリンパス株式会社 | In-subject position detection system |
US20090062670A1 (en) | 2007-08-30 | 2009-03-05 | Gary James Sterling | Heart monitoring body patch and system |
US8070742B2 (en) | 2007-09-01 | 2011-12-06 | Sang Hoon Woo | Method for controlling body fluid condition using diuretics, based on weight measurement |
JP2009065726A (en) * | 2007-09-04 | 2009-03-26 | Fujifilm Corp | Rectenna device |
US20110160549A1 (en) | 2007-09-05 | 2011-06-30 | Saroka Amir | Method, system and apparatus for using electromagnetic radiation for monitoring a tissue of a user |
JP2009061236A (en) | 2007-09-07 | 2009-03-26 | Arimasa Nishida | Small terminal with functions of reading and inputting multi-data on personal medical information, of data management, analysis, and display, and of entertainment, game, and communication to facilitate self-management for health, having strong bio-feedback effect on life-style related disease, which allows unified management of measured personal data at first when developing medical information database at medical institute, or local/national government |
KR101562807B1 (en) | 2007-09-07 | 2015-11-02 | 플로레, 잉고 | Diagnostic sensor unit |
US20090069642A1 (en) | 2007-09-11 | 2009-03-12 | Aid Networks, Llc | Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device |
US20090076350A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Data Collection in a Multi-Sensor Patient Monitor |
WO2009036327A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent device for respiratory monitoring and sleep disordered breathing |
US20090076342A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Multi-Sensor Device with Empathic Monitoring |
US20090076397A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Emergency Patient Monitor |
US8116841B2 (en) | 2007-09-14 | 2012-02-14 | Corventis, Inc. | Adherent device with multiple physiological sensors |
EP3922171A1 (en) | 2007-09-14 | 2021-12-15 | Medtronic Monitoring, Inc. | Adherent cardiac monitor with advanced sensing capabilities |
WO2009036333A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Dynamic pairing of patients to data collection gateways |
EP4011289A1 (en) | 2007-09-25 | 2022-06-15 | Otsuka Pharmaceutical Co., Ltd. | In-body device with virtual dipole signal amplification |
US20090087483A1 (en) | 2007-09-27 | 2009-04-02 | Sison Raymundo A | Oral dosage combination pharmaceutical packaging |
US20100183199A1 (en) | 2007-09-28 | 2010-07-22 | Eye Controls, Llc | Systems and methods for biometric identification |
US20090088618A1 (en) | 2007-10-01 | 2009-04-02 | Arneson Michael R | System and Method for Manufacturing a Swallowable Sensor Device |
WO2009051965A1 (en) | 2007-10-14 | 2009-04-23 | Board Of Regents, The University Of Texas System | A wireless neural recording and stimulating system for pain management |
US20090105561A1 (en) | 2007-10-17 | 2009-04-23 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Medical or veterinary digestive tract utilization systems and methods |
US20090105567A1 (en) | 2007-10-19 | 2009-04-23 | Smiths Medical Pm, Inc. | Wireless telecommunications network adaptable for patient monitoring |
US8134459B2 (en) | 2007-10-19 | 2012-03-13 | Smiths Medical Asd, Inc. | Wireless telecommunications system adaptable for patient monitoring |
US8139225B2 (en) | 2007-10-24 | 2012-03-20 | Siemens Medical Solutions Usa, Inc. | System for processing patient monitoring power and data signals |
GB0721117D0 (en) | 2007-10-26 | 2007-12-05 | T & Medical Ltd | system for assisting in drug dose optimisaion |
US20090112626A1 (en) | 2007-10-30 | 2009-04-30 | Cary Talbot | Remote wireless monitoring, processing, and communication of patient data |
WO2009063377A1 (en) | 2007-11-13 | 2009-05-22 | Koninklijke Philips Electronics N.V. | Ingestible electronic capsule |
US20090135886A1 (en) | 2007-11-27 | 2009-05-28 | Proteus Biomedical, Inc. | Transbody communication systems employing communication channels |
EP2217138A4 (en) | 2007-11-29 | 2013-05-01 | Integrated Sensing Systems Inc | Sensor unit and procedure for monitoring intracranial physiological properties |
US20090149839A1 (en) | 2007-12-11 | 2009-06-11 | Hyde Roderick A | Treatment techniques using ingestible device |
US20100036269A1 (en) | 2008-08-07 | 2010-02-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US20090157113A1 (en) | 2007-12-18 | 2009-06-18 | Ethicon Endo-Surgery, Inc. | Wearable elements for implantable restriction systems |
US20090287109A1 (en) | 2008-05-14 | 2009-11-19 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
WO2009081348A1 (en) | 2007-12-20 | 2009-07-02 | Koninklijke Philips Electronics N.V. | Capacitive sensing and communicating |
JP5091657B2 (en) | 2007-12-21 | 2012-12-05 | 株式会社東芝 | Wireless communication apparatus and wireless communication method |
EP2229672A4 (en) | 2007-12-21 | 2014-01-22 | Sony Comp Entertainment Us | Scheme for inserting a mimicked performance into a scene and providing an evaluation of same |
US20090171180A1 (en) | 2007-12-28 | 2009-07-02 | Trevor Pering | Method and apparatus for configuring wearable sensors |
WO2009091910A1 (en) | 2008-01-15 | 2009-07-23 | Cardiac Pacemakers, Inc. | Implantable medical device with wireless communications |
JP5052679B2 (en) | 2008-01-15 | 2012-10-17 | カーディアック ペースメイカーズ, インコーポレイテッド | Implantable medical device with antenna |
US20090182207A1 (en) | 2008-01-16 | 2009-07-16 | Tenxsys Inc. | Ingestible animal health sensor |
GB2456567B (en) | 2008-01-18 | 2010-05-05 | Oxford Biosignals Ltd | Novelty detection |
JP5132335B2 (en) | 2008-01-29 | 2013-01-30 | 富士フイルム株式会社 | Capsule endoscope and capsule endoscope system |
US20090247836A1 (en) | 2008-02-28 | 2009-10-01 | Confidant Inc. | Medical System and Method for Serving Users with a Chronic Disease or Health State |
CN101524267A (en) | 2008-03-04 | 2009-09-09 | 黄林 | Comprehensive evaluating system and proposal for checking personal physical and psychological health |
EP2268261B1 (en) | 2008-03-05 | 2017-05-10 | Proteus Digital Health, Inc. | Multi-mode communication ingestible event markers and systems, and methods of using the same |
WO2009111142A2 (en) | 2008-03-06 | 2009-09-11 | Stryker Corporation | Foldable, implantable electrode array assembly and tool for implanting same |
JP2011519583A (en) * | 2008-03-10 | 2011-07-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Mobile phone terminal with cover for ECG monitoring system |
EP2262419B1 (en) | 2008-03-10 | 2019-06-26 | Koninklijke Philips N.V. | Wireless outpatient ecg monitoring system |
US8290574B2 (en) | 2008-03-10 | 2012-10-16 | Koninklijke Philips Electronics N.V. | ECG monitoring system with configurable alarm limits |
US20090243833A1 (en) | 2008-03-31 | 2009-10-01 | Ching Ching Huang | Monitoring system and method for patient care |
US20110163871A1 (en) | 2008-04-01 | 2011-07-07 | Shmuel Einav | Rfid monitoring of drug regimen compliance |
ATE542468T1 (en) | 2008-04-03 | 2012-02-15 | Olympus Medical Systems Corp | ANTENNA UNIT AND RECEIVING DEVICE FOR MEDICAL CAPSULE DEVICE |
EP2265169A4 (en) | 2008-04-03 | 2013-01-09 | Kai Medical Inc | Non-contact physiologic motion sensors and methods for use |
JP2011519592A (en) | 2008-04-21 | 2011-07-14 | フィロメトロン,インコーポレイティド | Metabolic energy monitoring system |
US20090292194A1 (en) | 2008-05-23 | 2009-11-26 | Corventis, Inc. | Chiropractic Care Management Systems and Methods |
US8989837B2 (en) | 2009-12-01 | 2015-03-24 | Kyma Medical Technologies Ltd. | Methods and systems for determining fluid content of tissue |
US9538937B2 (en) | 2008-06-18 | 2017-01-10 | Covidien Lp | System and method of evaluating a subject with an ingestible capsule |
US20090318303A1 (en) | 2008-06-20 | 2009-12-24 | International Business Machines Corporation | Microfluidic selection of library elements |
US9014778B2 (en) | 2008-06-24 | 2015-04-21 | Biosense Webster, Inc. | Disposable patch and reusable sensor assembly for use in medical device localization and mapping systems |
US20100001841A1 (en) | 2008-07-07 | 2010-01-07 | Cardullo Mario W | Dynamically distributable nano rfid device and related method |
CA3039236C (en) | 2008-07-08 | 2022-05-17 | Proteus Digital Health, Inc. | Ingestible event marker data framework |
US8152020B2 (en) | 2008-07-09 | 2012-04-10 | Flowers Mary E | Dosage dispensing and tracking container |
WO2010011833A1 (en) | 2008-07-23 | 2010-01-28 | Alexander Stuck | Secure tracking of tablets |
CN102176862B (en) | 2008-08-13 | 2014-10-22 | 普罗透斯数字保健公司 | Ingestible circuitry |
KR101028584B1 (en) | 2008-08-27 | 2011-04-12 | 주식회사 바이오프로테크 | Tab electrode and wire leading to the same |
US20100056878A1 (en) | 2008-08-28 | 2010-03-04 | Partin Dale L | Indirectly coupled personal monitor for obtaining at least one physiological parameter of a subject |
GB2463054A (en) | 2008-08-30 | 2010-03-03 | Adavanced Telecare Solutions L | Device for monitoring the removal of items placed in compartments of a blister package using ambient light |
US9943644B2 (en) | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US20100063841A1 (en) | 2008-09-05 | 2010-03-11 | Vital Data Technology, Llc | System and method of notifying designated entities of access to personal medical records |
US20100069002A1 (en) | 2008-09-16 | 2010-03-18 | Vcan Sports, Inc. | Method and apparatus for a wireless communication device utilizing bluetooth technology |
CA2680952A1 (en) | 2008-10-01 | 2010-04-01 | Loyaltyone Us, Inc. | System and method for providing a health management program |
AU2009305770A1 (en) | 2008-10-14 | 2010-04-22 | Proteus Digital Health, Inc. | Method and system for incorporating physiologic data in a gaming environment |
EP2353125A4 (en) | 2008-11-03 | 2013-06-12 | Veritrix Inc | User authentication for social networks |
JP5411943B2 (en) | 2008-11-13 | 2014-02-12 | プロテウス デジタル ヘルス, インコーポレイテッド | Ingestible therapy activation system and method |
US20100131434A1 (en) | 2008-11-24 | 2010-05-27 | Air Products And Chemicals, Inc. | Automated patient-management system for presenting patient-health data to clinicians, and methods of operation thereor |
JP2012511961A (en) | 2008-12-11 | 2012-05-31 | プロテウス バイオメディカル インコーポレイテッド | Judgment of digestive tract function using portable visceral electrical recording system and method using the same |
TWI424832B (en) | 2008-12-15 | 2014-02-01 | Proteus Digital Health Inc | Body-associated receiver and method |
US20100160742A1 (en) | 2008-12-18 | 2010-06-24 | General Electric Company | Telemetry system and method |
WO2010080843A2 (en) | 2009-01-06 | 2010-07-15 | Proteus Biomedical, Inc. | Ingestion-related biofeedback and personalized medical therapy method and system |
JP5785097B2 (en) | 2009-01-06 | 2015-09-24 | プロテウス デジタル ヘルス, インコーポレイテッド | Pharmaceutical dosage delivery system |
WO2010080765A2 (en) | 2009-01-06 | 2010-07-15 | Proteus Biomedical, Inc. | High-throughput production of ingestible event markers |
KR100927471B1 (en) | 2009-01-07 | 2009-11-19 | 주식회사 두성기술 | The breast attachment type wireless heart rate apparatus |
EP2208458A1 (en) | 2009-01-14 | 2010-07-21 | Roche Diagnostics GmbH | Medical monitoring network |
US20100203394A1 (en) | 2009-02-06 | 2010-08-12 | In Tae Bae | Thin metal-air batteries |
US8395521B2 (en) | 2009-02-06 | 2013-03-12 | University Of Dayton | Smart aerospace structures |
US8224667B1 (en) | 2009-02-06 | 2012-07-17 | Sprint Communications Company L.P. | Therapy adherence methods and architecture |
US8078119B2 (en) | 2009-02-17 | 2011-12-13 | Rfaxis, Inc. | Multi mode radio frequency transceiver front end circuit with inter-stage power divider |
CA2789521A1 (en) | 2009-02-25 | 2010-09-02 | Xanthia Global Limited | Wireless physiology monitor |
US8452366B2 (en) | 2009-03-16 | 2013-05-28 | Covidien Lp | Medical monitoring device with flexible circuitry |
WO2010107980A2 (en) | 2009-03-19 | 2010-09-23 | University Of Florida Research Foundation, Inc. | A miniaturized electronic device ingestible by a subject or implantable inside a body of the subject |
US20100249541A1 (en) | 2009-03-27 | 2010-09-30 | LifeWatch Corp. | Methods and Apparatus for Processing Physiological Data Acquired from an Ambulatory Physiological Monitoring Unit |
US8805528B2 (en) | 2009-03-31 | 2014-08-12 | Medtronic, Inc. | Channel assessment and selection for wireless communication between medical devices |
AU2010232407B2 (en) | 2009-04-03 | 2014-10-30 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US8271106B2 (en) | 2009-04-17 | 2012-09-18 | Hospira, Inc. | System and method for configuring a rule set for medical event management and responses |
US8253586B1 (en) | 2009-04-24 | 2012-08-28 | Mayfonk Art, Inc. | Athletic-wear having integral measuring sensors |
BRPI1015298A2 (en) * | 2009-04-28 | 2018-05-22 | Proteus Biomedical Inc | highly reliable ingestible event markers and methods for using them |
US9149423B2 (en) | 2009-05-12 | 2015-10-06 | Proteus Digital Health, Inc. | Ingestible event markers comprising an ingestible component |
US20100299155A1 (en) | 2009-05-19 | 2010-11-25 | Myca Health, Inc. | System and method for providing a multi-dimensional contextual platform for managing a medical practice |
US8738118B2 (en) | 2009-05-20 | 2014-05-27 | Sotera Wireless, Inc. | Cable system for generating signals for detecting motion and measuring vital signs |
US8440274B2 (en) | 2009-05-26 | 2013-05-14 | Apple Inc. | Electronic device moisture indicators |
US20110029622A1 (en) | 2009-06-24 | 2011-02-03 | Walker Jay S | Systems and methods for group communications |
US8468115B2 (en) | 2009-06-25 | 2013-06-18 | George Mason Intellectual Properties, Inc. | Cyclical behavior modification |
JP5305396B2 (en) * | 2009-07-09 | 2013-10-02 | 国立大学法人大阪大学 | Multi electrode fabric |
BR112012003294B1 (en) | 2009-08-14 | 2021-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | METHOD FOR ESTABLISHING A CONNECTION BETWEEN A SOURCE TERMINAL AND A DESTINATION TERMINAL, NETWORK NODE TO A CORE NETWORK, ACCESS CONNECTION POINT OF A CORE NETWORK, HOLDER OF ELECTRONICALLY LEGIBLE DATA, AND, COMPUTING STORAGE MEANS |
US9024766B2 (en) | 2009-08-28 | 2015-05-05 | The Invention Science Fund, Llc | Beverage containers with detection capability |
JP5006474B2 (en) * | 2009-08-28 | 2012-08-22 | オリンパスメディカルシステムズ株式会社 | Receiving system |
WO2011026053A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Displays for a medical device |
US20110230732A1 (en) | 2009-09-14 | 2011-09-22 | Philometron, Inc. | System utilizing physiological monitoring and electronic media for health improvement |
US20110077719A1 (en) | 2009-09-30 | 2011-03-31 | Broadcom Corporation | Electromagnetic power bio-medical unit |
JP2011076034A (en) | 2009-10-02 | 2011-04-14 | Sony Corp | Image display device and method for driving the same |
US8879994B2 (en) | 2009-10-02 | 2014-11-04 | Blackberry Limited | Methods and devices for facilitating Bluetooth pairing using a camera as a barcode scanner |
JP5471294B2 (en) * | 2009-10-23 | 2014-04-16 | 株式会社デンソー | Communication device for human body communication |
TWI517050B (en) | 2009-11-04 | 2016-01-11 | 普羅托斯數位健康公司 | System for supply chain management |
US8838217B2 (en) | 2009-11-10 | 2014-09-16 | Makor Issues And Rights Ltd. | System and apparatus for providing diagnosis and personalized abnormalities alerts and for providing adaptive responses in clinical trials |
US20110112686A1 (en) | 2009-11-10 | 2011-05-12 | Nolan James S | Devices and methods and systems for determining and/or indicating a medicament dosage regime |
US20110270135A1 (en) | 2009-11-30 | 2011-11-03 | Christopher John Dooley | Augmented reality for testing and training of human performance |
UA109424C2 (en) | 2009-12-02 | 2015-08-25 | PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS | |
TW201120673A (en) | 2009-12-11 | 2011-06-16 | Univ Ling Tung | Medication reminder and physiological information transmission system, and follow-up visit reminder and physiological information transmission system. |
US9451897B2 (en) | 2009-12-14 | 2016-09-27 | Medtronic Monitoring, Inc. | Body adherent patch with electronics for physiologic monitoring |
US20130030259A1 (en) | 2009-12-23 | 2013-01-31 | Delta, Dansk Elektronik, Lys Og Akustik | Monitoring system |
US8560040B2 (en) | 2010-01-04 | 2013-10-15 | Koninklijke Philips N.V. | Shielded biomedical electrode patch |
KR101034998B1 (en) | 2010-02-18 | 2011-05-17 | 대한메디칼시스템(주) | Connecting structure for snap electrode and electric wire |
US9075910B2 (en) | 2010-03-11 | 2015-07-07 | Philometron, Inc. | Physiological monitor system for determining medication delivery and outcome |
WO2011133799A1 (en) | 2010-04-21 | 2011-10-27 | Northwestern University | Medical evaluation system and method using sensors in mobile devices |
ES2692658T3 (en) | 2010-05-12 | 2018-12-04 | Irhythm Technologies, Inc. | Device features and design elements for long-term adhesion |
TWI557672B (en) | 2010-05-19 | 2016-11-11 | 波提亞斯數位康健公司 | Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device |
CA2973994C (en) | 2010-05-21 | 2019-05-21 | Medicomp, Inc. | Method of determining optimum electrode vector length between two sensing connectors of a cardiac monitor |
US20110301439A1 (en) | 2010-06-08 | 2011-12-08 | AliveUSA LLC | Wireless, ultrasonic personal health monitoring system |
US8301232B2 (en) | 2010-06-08 | 2012-10-30 | Alivecor, Inc. | Wireless, ultrasonic personal health monitoring system |
US8881972B2 (en) | 2010-06-14 | 2014-11-11 | Trutag Technologies, Inc. | System for verifying an item in a package using a database |
CN103124976B (en) | 2010-06-14 | 2016-06-08 | 特鲁塔格科技公司 | For the system that the article of packaging are verified |
US20110304131A1 (en) | 2010-06-14 | 2011-12-15 | Trutag Technologies, Inc. | Labeling and verifying an item with an identifier |
CN103154929A (en) | 2010-06-14 | 2013-06-12 | 特鲁塔格科技公司 | System for producing a packaged item with an identifier |
KR20110137001A (en) | 2010-06-16 | 2011-12-22 | (주)유카이트 | Health risk warning system |
US20130196012A1 (en) | 2010-11-30 | 2013-08-01 | Wellesley Pharmaceuticals, Llc | Extended-release formulation for reducing the frequency of urination and method of use thereof |
US9585620B2 (en) | 2010-07-27 | 2017-03-07 | Carefusion 303, Inc. | Vital-signs patch having a flexible attachment to electrodes |
US20120032816A1 (en) | 2010-08-06 | 2012-02-09 | Cho Jeffrey C | System And Method For Controlling Sport Event Transducers |
CN103180801B (en) | 2010-09-13 | 2016-08-03 | 诺基亚技术有限公司 | Haptics communications |
WO2012040390A2 (en) | 2010-09-21 | 2012-03-29 | Somaxis Incorporated | Methods for assessing and optimizing muscular performance |
US9167991B2 (en) | 2010-09-30 | 2015-10-27 | Fitbit, Inc. | Portable monitoring devices and methods of operating same |
US20120089000A1 (en) | 2010-10-08 | 2012-04-12 | Jon Mikalson Bishay | Ambulatory Electrocardiographic Monitor For Providing Ease Of Use In Women And Method Of Use |
USD639437S1 (en) | 2010-10-08 | 2011-06-07 | Cardiac Science Corporation | Wearable ambulatory electrocardiographic monitor |
US8823510B2 (en) | 2010-12-23 | 2014-09-02 | Klindown, Llc | Systems and methods for wirelessly programming a prescription bottle cap |
CA2823254A1 (en) | 2010-12-29 | 2012-07-05 | Proteus Digital Health, Inc. | Wirelesss energy sources for integrated circuits |
EP2663962A4 (en) | 2011-01-10 | 2014-07-30 | Proteus Digital Health Inc | System, method, and article to prompt behavior change |
US20120316413A1 (en) | 2011-01-18 | 2012-12-13 | Beijing Choice Electronic Technology Co., Ltd. | Measurement apparatus |
US20120197144A1 (en) | 2011-01-27 | 2012-08-02 | Koninklijke Philips Electronics N.V. | Exchangeable electrode and ecg cable snap connector |
GB2487758A (en) | 2011-02-03 | 2012-08-08 | Isansys Lifecare Ltd | Health monitoring electrode assembly |
US8966973B1 (en) | 2011-02-15 | 2015-03-03 | Christopher J. Milone | Low cost capacitive liquid level sensor |
KR101836876B1 (en) | 2011-03-02 | 2018-03-09 | 삼성전자주식회사 | Apparatus and method for performing network connection in portable terminal |
WO2012125425A2 (en) | 2011-03-11 | 2012-09-20 | Proteus Biomedical, Inc. | Wearable personal body associated device with various physical configurations |
EP2696746B1 (en) | 2011-04-14 | 2017-06-14 | Koninklijke Philips N.V. | Stepped alarm method for patient monitors |
US9626650B2 (en) | 2011-04-14 | 2017-04-18 | Elwha Llc | Cost-effective resource apportionment technologies suitable for facilitating therapies |
WO2015112603A1 (en) | 2014-01-21 | 2015-07-30 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
US9756874B2 (en) | 2011-07-11 | 2017-09-12 | Proteus Digital Health, Inc. | Masticable ingestible product and communication system therefor |
CN103827914A (en) | 2011-07-21 | 2014-05-28 | 普罗秋斯数字健康公司 | Mobile communication device, system, and method |
US9235683B2 (en) | 2011-11-09 | 2016-01-12 | Proteus Digital Health, Inc. | Apparatus, system, and method for managing adherence to a regimen |
JP2015504563A (en) | 2011-11-23 | 2015-02-12 | プロテウス デジタル ヘルス, インコーポレイテッド | Devices, systems, and methods that facilitate behavioral transformation based on mindfulness techniques |
US20130171596A1 (en) | 2012-01-04 | 2013-07-04 | Barry J. French | Augmented reality neurological evaluation method |
WO2013102908A1 (en) | 2012-01-08 | 2013-07-11 | Powermat Technologies Ltd | System and method for providing and controlling inductive power charging |
US20130185228A1 (en) | 2012-01-18 | 2013-07-18 | Steven Dresner | System and Method of Data Collection, Analysis and Distribution |
US20130275296A1 (en) | 2012-03-16 | 2013-10-17 | esdatanetworks INC | Proximal Customer Transaction Incented By Donation of Auto-Boarded Merchant |
US8908943B2 (en) | 2012-05-22 | 2014-12-09 | Orca Health, Inc. | Personalized anatomical diagnostics and simulations |
US9277864B2 (en) | 2012-05-24 | 2016-03-08 | Vital Connect, Inc. | Modular wearable sensor device |
US20140039445A1 (en) | 2012-08-06 | 2014-02-06 | Xerox Corporation | Computer-based reusable bidirectional medical adherence system and method for personalized medication packaging |
US20140280125A1 (en) | 2013-03-14 | 2014-09-18 | Ebay Inc. | Method and system to build a time-sensitive profile |
US20140308930A1 (en) | 2013-04-12 | 2014-10-16 | Bao Tran | Timely, glanceable information on a wearable device |
US9529385B2 (en) | 2013-05-23 | 2016-12-27 | Medibotics Llc | Smart watch and human-to-computer interface for monitoring food consumption |
EP3968263A1 (en) | 2013-06-04 | 2022-03-16 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US10545132B2 (en) | 2013-06-25 | 2020-01-28 | Lifescan Ip Holdings, Llc | Physiological monitoring system communicating with at least a social network |
US9517012B2 (en) | 2013-09-13 | 2016-12-13 | Welch Allyn, Inc. | Continuous patient monitoring |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US20150127738A1 (en) | 2013-11-05 | 2015-05-07 | Proteus Digital Health, Inc. | Bio-language based communication system |
US20150149375A1 (en) | 2013-11-22 | 2015-05-28 | Proteus Digital Health, Inc. | Crowd endorsement system |
US9226663B2 (en) | 2014-04-07 | 2016-01-05 | Physical Enterprises, Inc. | Systems and methods for optical isolation in measuring physiological parameters |
EP3487393A4 (en) | 2016-07-22 | 2020-01-15 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
-
2012
- 2012-07-17 CN CN201280044565.9A patent/CN103827914A/en active Pending
- 2012-07-17 RU RU2014106126/08A patent/RU2014106126A/en unknown
- 2012-07-17 WO PCT/US2012/047076 patent/WO2013012869A1/en active Application Filing
- 2012-07-17 CA CA2842952A patent/CA2842952C/en active Active
- 2012-07-17 JP JP2014521718A patent/JP6144678B2/en active Active
- 2012-07-17 AU AU2012284125A patent/AU2012284125A1/en not_active Abandoned
- 2012-07-17 KR KR1020147004289A patent/KR101898964B1/en active IP Right Grant
- 2012-07-17 IN IN183MUN2014 patent/IN2014MN00183A/en unknown
- 2012-07-17 MX MX2014000805A patent/MX340001B/en active IP Right Grant
- 2012-07-17 BR BR112014001397A patent/BR112014001397A2/en not_active IP Right Cessation
- 2012-07-17 EP EP12815412.7A patent/EP2734973A4/en not_active Withdrawn
- 2012-07-17 US US14/234,069 patent/US20140203950A1/en not_active Abandoned
- 2012-07-17 UA UAA201401670A patent/UA118745C2/en unknown
- 2012-07-20 TW TW101126301A patent/TW201320964A/en unknown
-
2014
- 2014-01-16 IL IL230497A patent/IL230497A0/en unknown
- 2014-01-21 ZA ZA2014/00451A patent/ZA201400451B/en unknown
-
2017
- 2017-05-11 JP JP2017094805A patent/JP2017188914A/en active Pending
- 2017-06-02 US US15/612,955 patent/US10223905B2/en active Active
-
2019
- 2019-01-24 US US16/256,341 patent/US10720044B2/en active Active
-
2020
- 2020-04-30 JP JP2020080582A patent/JP2020127235A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050261559A1 (en) * | 2004-05-18 | 2005-11-24 | Mumford John R | Wireless physiological monitoring system |
US20100081894A1 (en) * | 2005-04-28 | 2010-04-01 | Proteus Biomedical, Inc. | Communication system with partial power source |
US7978064B2 (en) * | 2005-04-28 | 2011-07-12 | Proteus Biomedical, Inc. | Communication system with partial power source |
US20060287693A1 (en) * | 2005-06-08 | 2006-12-21 | Clifford Kraft | Implanted telephone system |
US20070156015A1 (en) * | 2005-12-29 | 2007-07-05 | Zvika Gilad | Device, system and method for in-vivo sensing of a body lumen |
US7678043B2 (en) * | 2005-12-29 | 2010-03-16 | Given Imaging, Ltd. | Device, system and method for in-vivo sensing of a body lumen |
US20100185055A1 (en) * | 2007-02-01 | 2010-07-22 | Timothy Robertson | Ingestible event marker systems |
US20090203964A1 (en) * | 2008-02-13 | 2009-08-13 | Fujifilm Corporation | Capsule endoscope system and endoscopic image filing method |
US20100217100A1 (en) * | 2009-02-25 | 2010-08-26 | Leboeuf Steven Francis | Methods and Apparatus for Measuring Physiological Conditions |
US20110270112A1 (en) * | 2009-11-02 | 2011-11-03 | Applied Cardiac Systems, Inc. | Multi-Function Health Monitor |
US20120116184A1 (en) * | 2010-11-05 | 2012-05-10 | National Cheng Kung University | Peripheral physiology inspection apparatus and peripheral auxiliary apparatus of smart phone |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11357730B2 (en) | 2006-10-25 | 2022-06-14 | Otsuka Pharmaceutical Co., Ltd. | Controlled activation ingestible identifier |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US11217342B2 (en) | 2008-07-08 | 2022-01-04 | Otsuka Pharmaceutical Co., Ltd. | Ingestible event marker data framework |
US10682071B2 (en) | 2008-07-08 | 2020-06-16 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US10305544B2 (en) | 2009-11-04 | 2019-05-28 | Proteus Digital Health, Inc. | System for supply chain management |
US20220053169A1 (en) * | 2009-11-25 | 2022-02-17 | Oliver Koemmerling | Methods for the covert transmission of data |
US10529044B2 (en) | 2010-05-19 | 2020-01-07 | Proteus Digital Health, Inc. | Tracking and delivery confirmation of pharmaceutical products |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US11271608B2 (en) | 2012-02-23 | 2022-03-08 | Cypress Semiconductor Corporation | Method and apparatus for data transmission via capacitance sensing device |
US20180188854A1 (en) * | 2012-02-23 | 2018-07-05 | Cypress Semiconductor Corporation | Method and apparatus for data transmission via capacitance sensing device |
US10891007B2 (en) * | 2012-02-23 | 2021-01-12 | Cypress Semiconductor Corporation | Method and apparatus for data transmission via capacitance sensing device |
US20140283017A1 (en) * | 2013-03-13 | 2014-09-18 | Motorola Mobility Llc | Communicating via a body-area network |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US11950615B2 (en) | 2014-01-21 | 2024-04-09 | Otsuka Pharmaceutical Co., Ltd. | Masticable ingestible product and communication system therefor |
US20160005299A1 (en) * | 2014-07-07 | 2016-01-07 | Google Inc. | Meal-based medication reminder system |
US9847012B2 (en) * | 2014-07-07 | 2017-12-19 | Google Llc | Meal-based medication reminder system |
US11277728B2 (en) * | 2014-08-25 | 2022-03-15 | Phyzio, Inc. | Physiologic sensors for sensing, measuring, transmitting, and processing signals |
US11706601B2 (en) | 2014-08-25 | 2023-07-18 | Phyzio, Inc | Physiologic sensors for sensing, measuring, transmitting, and processing signals |
US12035217B2 (en) | 2014-08-25 | 2024-07-09 | Phyzio, Inc. | Physiologic sensors for sensing, measuring, transmitting, and processing signals |
TWI551995B (en) * | 2015-03-06 | 2016-10-01 | 拓連科技股份有限公司 | Methods and systems for data transmission and acknowledgement between electronic devices, and related computer program products |
US11259758B2 (en) * | 2015-03-30 | 2022-03-01 | Avaya, Inc. | Enhanced communication with an application service provider based on medical telemetry collected by a user device |
CN104867309A (en) * | 2015-04-30 | 2015-08-26 | 深圳市全球锁安防系统工程有限公司 | Middle aged and elderly people good health service intelligent wearing device and deep learning method |
US11426592B2 (en) * | 2015-05-14 | 2022-08-30 | Cochlear Limited | Functionality migration |
US20160331964A1 (en) * | 2015-05-14 | 2016-11-17 | Cochlear Limited | Functionality migration |
CN105005059A (en) * | 2015-06-26 | 2015-10-28 | 泰斗微电子科技有限公司 | Transmission method for original observed quantity data in ANDROID terminal, and corresponding terminal |
US9692868B2 (en) * | 2015-09-01 | 2017-06-27 | Lg Electronics Inc. | Mobile terminal and control method for the mobile terminal |
US10405745B2 (en) * | 2015-09-27 | 2019-09-10 | Gnana Haranth | Human socializable entity for improving digital health care delivery |
EP3236674A1 (en) * | 2016-04-19 | 2017-10-25 | Sonova AG | Hearing aid with public key security features and various systems comprising such |
US10797758B2 (en) | 2016-07-22 | 2020-10-06 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US20190307363A1 (en) * | 2016-10-13 | 2019-10-10 | Etectrx, Inc. | System for ingestion event monitoring and method for detecting ingestion events with high accuracy |
US20180103871A1 (en) * | 2016-10-13 | 2018-04-19 | Etectrx, Inc. | System for ingestion event monitoring and method for detecting ingestion events with high accuracy |
US10321849B2 (en) * | 2016-10-13 | 2019-06-18 | Etectrx, Inc. | System for ingestion event monitoring and method for detecting ingestion events with high accuracy |
US10405374B2 (en) * | 2017-03-17 | 2019-09-03 | Google Llc | Antenna system for head mounted display device |
US11017892B1 (en) * | 2017-09-11 | 2021-05-25 | Massachusetts Mutual Life Insurance Company | System and method for ingestible drug delivery |
US11571165B1 (en) | 2017-09-11 | 2023-02-07 | Massachusetts Mutual Life Insurance Company | System and method for ingestible drug delivery |
US11985244B2 (en) * | 2017-12-01 | 2024-05-14 | Fasetto, Inc. | Systems and methods for improved data encryption |
US11388207B2 (en) | 2018-04-17 | 2022-07-12 | Fasetto, Inc. | Device presentation with real-time feedback |
US10868618B2 (en) * | 2018-09-13 | 2020-12-15 | Kristin Renee Little | Device and method for providing a synchronized pattern sequence on multiple devices |
US20220059205A1 (en) * | 2018-12-31 | 2022-02-24 | Becton, Dickinson And Company | Systems, apparatuses and methods for medical device communication with one or more remote devices |
US11935638B2 (en) * | 2018-12-31 | 2024-03-19 | Becton, Dickinson And Company | Systems, apparatuses and methods for medical device communication with one or more remote devices |
US11089646B2 (en) * | 2019-03-26 | 2021-08-10 | Canon Kabushiki Kaisha | Communication apparatus, method for controlling communication apparatus and non-transitory computer-readable storage medium |
US20230284305A1 (en) * | 2019-03-26 | 2023-09-07 | Canon Kabushiki Kaisha | Communication apparatus, method for controlling communication apparatus and non-transitory computer-readable storage medium |
US11310703B2 (en) | 2019-03-26 | 2022-04-19 | Canon Kabushiki Kai Sha | Communication apparatus, control method, and storage medium |
US11690119B2 (en) * | 2019-03-26 | 2023-06-27 | Canon Kabushiki Kaisha | Communication apparatus, method for controlling communication apparatus and non-transitory computer-readable storage medium |
US11991567B2 (en) | 2019-03-26 | 2024-05-21 | Canon Kabushiki Kaisha | Communication apparatus, control method, and storage medium |
US20210337614A1 (en) * | 2019-03-26 | 2021-10-28 | Canon Kabushiki Kaisha | Communication apparatus, method for controlling communication apparatus and non-transitory computer-readable storage medium |
US12048041B2 (en) * | 2019-03-26 | 2024-07-23 | Canon Kabushiki Kaisha | Communication apparatus, method for controlling communication apparatus and non-transitory computer-readable storage medium |
US20220076816A1 (en) * | 2020-09-04 | 2022-03-10 | Micron Technology, Inc. | Wearable monitor with memory |
Also Published As
Publication number | Publication date |
---|---|
MX2014000805A (en) | 2014-09-04 |
IN2014MN00183A (en) | 2015-06-19 |
EP2734973A4 (en) | 2015-07-01 |
CN103827914A (en) | 2014-05-28 |
CA2842952C (en) | 2019-01-08 |
JP2014529207A (en) | 2014-10-30 |
BR112014001397A2 (en) | 2017-02-21 |
EP2734973A1 (en) | 2014-05-28 |
US10223905B2 (en) | 2019-03-05 |
US20190325734A1 (en) | 2019-10-24 |
JP6144678B2 (en) | 2017-06-07 |
WO2013012869A1 (en) | 2013-01-24 |
KR20140054098A (en) | 2014-05-08 |
UA118745C2 (en) | 2019-03-11 |
JP2017188914A (en) | 2017-10-12 |
IL230497A0 (en) | 2014-03-31 |
MX340001B (en) | 2016-06-20 |
JP2020127235A (en) | 2020-08-20 |
ZA201400451B (en) | 2017-04-26 |
US20170270779A1 (en) | 2017-09-21 |
RU2014106126A (en) | 2015-08-27 |
CA2842952A1 (en) | 2013-01-24 |
US10720044B2 (en) | 2020-07-21 |
AU2012284125A1 (en) | 2014-02-06 |
KR101898964B1 (en) | 2018-09-14 |
TW201320964A (en) | 2013-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10720044B2 (en) | Headwear device for detection and communication of information received from an ingestible device | |
CA2855212C (en) | Apparatus, system, and method for managing adherence to a regimen | |
US11741771B2 (en) | Personal authentication apparatus system and method | |
US9439566B2 (en) | Re-wearable wireless device | |
JP2021072907A (en) | Re-attachment type wireless device | |
AU2008210291B2 (en) | Ingestible event marker systems | |
TW201034625A (en) | Body-associated receiver and method | |
AU2012247015B2 (en) | Ingestible event marker systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PROTEUS DIGITAL HEALTH, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZDEBLICK, MARK;IONESCU, ARNA;MCALLISTER, WILLIAM H.;AND OTHERS;SIGNING DATES FROM 20140128 TO 20140204;REEL/FRAME:032280/0970 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |