Nothing Special   »   [go: up one dir, main page]

US20130213643A1 - Consolidating Spacer Fluids and Methods of Use - Google Patents

Consolidating Spacer Fluids and Methods of Use Download PDF

Info

Publication number
US20130213643A1
US20130213643A1 US13/851,475 US201313851475A US2013213643A1 US 20130213643 A1 US20130213643 A1 US 20130213643A1 US 201313851475 A US201313851475 A US 201313851475A US 2013213643 A1 US2013213643 A1 US 2013213643A1
Authority
US
United States
Prior art keywords
spacer
fluid
spacer fluid
cement
ckd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/851,475
Inventor
Jiten Chatterji
D. Chad Brenneis
Crystal L. Keys
James R. Benkley
Craig W. Roddy
Ronnie G. Morgan
Rickey L. Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/223,669 external-priority patent/US7445669B2/en
Priority claimed from US12/264,010 external-priority patent/US8333240B2/en
Priority claimed from US12/895,436 external-priority patent/US8522873B2/en
Priority claimed from US13/535,145 external-priority patent/US8505629B2/en
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US13/851,475 priority Critical patent/US20130213643A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEYS, Crystal L., MORGAN, RICKEY L., BENKLEY, JAMES R., BRENNEIS, D. CHAD, CHATTERJI, JITEN, MORGAN, RONNIE G., RODDY, CRAIG W.
Publication of US20130213643A1 publication Critical patent/US20130213643A1/en
Priority to US14/585,931 priority patent/US20150107838A1/en
Priority to US14/713,752 priority patent/US9903184B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • E21B41/0092
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/40Spacer compositions, e.g. compositions used to separate well-drilling from cementing masses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/424Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells using "spacer" compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/473Density reducing additives, e.g. for obtaining foamed cement compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/48Density increasing or weighting additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/487Fluid loss control additives; Additives for reducing or preventing circulation loss
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/601Compositions for stimulating production by acting on the underground formation using spacer compositions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/002Down-hole drilling fluid separation systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to consolidating spacer fluids and methods of use in subterranean formations.
  • Spacer fluids are often used in subterranean operations to facilitate improved displacement efficiency when introducing new fluids into a well bore.
  • a spacer fluid can be used to displace a fluid in a well bore before introduction of another fluid.
  • spacer fluids can enhance solids removal as well as separate the drilling fluid from a physically incompatible fluid.
  • the spacer fluid may be placed into the well bore to separate the cement composition from the drilling fluid.
  • Spacer fluids may also be placed between different drilling fluids during drilling change outs or between a drilling fluid and completion brine. Spacer fluids typically do not consolidate in that the spacer fluids typically do not develop significant gel or compressive strength.
  • the spacer fluid can have certain characteristics.
  • the spacer fluid may be compatible with the displaced fluid and the cement composition. This compatibility may also be present at downhole temperatures and pressures. In some instances, it is also desirable for the spacer fluid to leave surfaces in the well bore water wet, thus facilitating bonding with the cement composition.
  • Rheology of the spacer fluid can also be important. A number of different rheological properties may be important in the design of a spacer fluid, including yield point, plastic viscosity, gel strength, and shear stress, among others. While rheology can be important in spacer fluid design, conventional spacer fluids may not have the desired rheology at downhole temperatures. For instance, conventional spacer fluids may experience undesired thermal thinning at elevated temperatures. As a result, conventional spacer fluids may not provide the desired displacement in some instances.
  • the present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to consolidating spacer fluids and methods of use in subterranean formations.
  • An embodiment may comprise displacing a drilling fluid disposed in a well bore annulus, comprising: designing a spacer fluid to meet at least one property under predetermined well bore conditions, wherein the property is selected from the group consisting of: (i) a yield point of from about 25 Pascals to about 250 Pascals, (ii) a static gel strength of from about 70 lbf/100 ft 2 to about 500 lbf/100 ft 2 , (iii) a yield limit in compression from about 1 psi to about 2,000 psi, and (iv) an unconfined uniaxial compressive strength of from about 5 psi to about 10,000 psi; using the spacer fluid to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the spacer fluid to consolidate in the well bore, and wherein the portion of the spacer fluid consolidates in the well bore to meet the property.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: using a consolidating spacer fluid to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus, wherein the portion of the consolidating spacer fluid has a zero gel time of about 4 hours or less.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: using a consolidating spacer fluid to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus, wherein the portion of the consolidating spacer fluid has a transition time of about 45 minutes or less.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: introducing a consolidating spacer fluid into the well bore annulus to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus; wherein the consolidating spacer fluid comprises water and at least one additive selected from the group consisting of kiln dust, gypsum, fly ash, bentonite, hydroxyethyl cellulose, sodium silicate, a hollow microsphere, gilsonite, perlite, a gas, an organic polymer, a biopolymer, latex, ground rubber, a surfactant, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clay, salt, fiber, hydratable clay, rice husk ash, micro-fine cement, metakaolin, zeolite, shale, pumic
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: introducing a consolidating spacer fluid into the well bore annulus to displace at least a portion of the drilling fluid from the well bore annulus; allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus; and measuring consolidation properties of the portion of the consolidating spacer fluid in the well bore annulus.
  • Another embodiment of a method of may comprise a method of evaluating a spacer fluid for use in separating a drilling fluid and a cement composition in a well bore comprising: providing the spacer fluid; and measuring a transition time of the spacer fluid.
  • Another embodiment may comprise a method of evaluating a spacer fluid for use in separating a drilling fluid and a cement composition in a well bore comprising: providing the spacer fluid; and measuring a zero gel time of the spacer fluid.
  • Another embodiment may comprise a consolidating spacer fluid that separates a drilling fluid and a cement composition in a well bore, comprising: water; and at least one additive selected from the group consisting of kiln dust, gypsum, fly ash, bentonite, hydroxyethyl cellulose, sodium silicate, a hollow microsphere, gilsonite, perlite, a gas, an organic polymer, a biopolymer, latex, ground rubber, a surfactant, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clay, salt, fiber, hydratable clay, rice husk ash, micro-fine cement, metakaolin, zeolite, shale, pumicite, Portland cement, Portland cement interground with pumice, barite, slag, lime, and any combination thereof; and wherein the portion of the consolidating spacer fluid has a zero gel time of about 4 hours or less.
  • FIG. 1 is a graph showing measured static gel strength values at various temperature and pressure readings as a factor of time for an example consolidating spacer fluid.
  • FIG. 2 is a graph showing measured static gel strength values at various temperature and pressure readings as a factor of time for an example consolidating spacer fluid.
  • the present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to spacer fluids that comprise cement kiln dust (“CKD”) and methods that use CKD for enhancing one or more rheological properties of a spacer fluid.
  • the spacer fluids may improve the efficiency of well bore cleaning and well bore fluid removal.
  • Embodiments of the spacer fluids may be foamed.
  • Embodiments of the spacer fluids may be consolidating. For example, the spacer fluids may develop gel strength and/or compressive strength when left in a well bore.
  • the CKD may be used in spacer fluids as a rheology modifier allowing formulation of a spacer fluid with desirable rheological properties.
  • Another potential advantage of the methods and compositions of the present invention is that inclusion of the CKD in the spacer fluids may result in a spacer fluid without undesired thermal thinning.
  • spacer fluids comprising CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives.
  • foamed spacer fluids comprising CKD may be used for displacement of lightweight drilling fluids.
  • the consolidating spacer fluids may possess additional physical characteristics that can provide additional benefits to the well bore operations.
  • the consolidating spacer fluids may develop gel and/or compressive strength in a well bore annulus.
  • the consolidating spacer fluid left in the well bore may function to provide a substantially impermeable barrier to seal off formation fluids and gases and consequently serve to mitigate potential fluid migration.
  • the consolidating spacer fluid in the well bore annulus may also protect the pipe string or other conduit from corrosion. Consolidating spacer fluids may also serve to protect the erosion of the cement sheath formed by subsequently introduced cement compositions.
  • Embodiments of the spacer fluids of the present invention may comprise water and CKD.
  • the spacer fluids may consolidate when left in a well bore.
  • the spacer fluid may set and harden by reaction of the CKD in the water.
  • the spacer fluids may be foamed.
  • the foamed spacer fluids may comprise water, CKD, a foaming agent, and a gas.
  • a foamed spacer fluid may be used, for example, where it is desired for the spacer fluid to be lightweight.
  • the spacer fluid may be used to displace a first fluid from a well bore with the spacer fluid having a higher yield point than the first fluid.
  • the spacer fluid may be used to displace at least a portion of a drilling fluid from the well bore.
  • Other optional additives may also be included in embodiments of the spacer fluids as desired for a particular application.
  • the spacer fluids may further comprise viscosifying agents, organic polymers, dispersants, surfactants, weighting agents, and any combination thereof.
  • the spacer fluids generally should have a density suitable for a particular application as desired by those of ordinary skill in the art, with the benefit of this disclosure.
  • the spacer fluids may have a density in the range of from about 4 pounds per gallon (“ppg”) to about 24 ppg.
  • the spacer fluids may have a density in the range of about 4 ppg to about 17 ppg.
  • the spacer fluids may have a density in the range of about 8 ppg to about 13 ppg.
  • Embodiments of the spacer fluids may be foamed or unfoamed or comprise other means to reduce their densities known in the art, such as lightweight additives. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate density for a particular application.
  • the water used in an embodiment of the spacer fluids may include, for example, freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), seawater, or any combination thereof.
  • the water may be from any source, provided that the water does not contain an excess of compounds that may undesirably affect other components in the spacer fluid.
  • the water is included in an amount sufficient to form a pumpable spacer fluid.
  • the water may be included in the spacer fluids in an amount in the range of from about 15% to about 95% by weight of the spacer fluid.
  • the water may be included in the spacer fluids of the present invention in an amount in the range of from about 25% to about 85% by weight of the spacer fluid.
  • the appropriate amount of water to include for a chosen application will recognize the appropriate amount of water to include for a chosen application.
  • the CKD may be included in embodiments of the spacer fluids as a rheology modifier.
  • using CKD in embodiments of the present invention can provide spacer fluids having rheology suitable for a particular application. Desirable rheology may be advantageous to provide a spacer fluid that is effective for drilling fluid displacement, for example.
  • the CKD can be used to provide a spacer fluid with a low degree of thermal thinning.
  • the spacer fluid may even have a yield point that increases at elevated temperatures, such as those encountered downhole.
  • CKD is a material generated during the manufacture of cement that is commonly referred to as cement kiln dust.
  • CKD is used herein to mean cement kiln dust as described herein and equivalent forms of cement kiln dust made in other ways.
  • the term “CKD” typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of cement.
  • large quantities of CKD are collected in the production of cement that are commonly disposed of as waste. Disposal of the waste CKD can add undesirable costs to the manufacture of the cement, as well as the environmental concerns associated with its disposal.
  • CKD is commonly disposed as a waste material
  • spacer fluids prepared with CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives.
  • the chemical analysis of CKD from various cement manufactures varies depending on a number of factors, including the particular kiln feed, the efficiencies of the cement production operation, and the associated dust collection systems.
  • CKD generally may comprise a variety of oxides, such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O.
  • the CKD may be included in the spacer fluids in an amount sufficient to provide, for example, the desired rheological properties.
  • the CKD may be present in the spacer fluids in an amount in the range of from about 1% to about 65% by weight of the spacer fluid (e.g., about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, etc.).
  • the CKD may be present in the spacer fluids in an amount in the range of from about 5% to about 60% by weight of the spacer fluid.
  • the CKD may be present in an amount in the range of from about 20% to about 35% by weight of the spacer fluid.
  • the amount of CKD may be expressed by weight of dry solids.
  • the term “by weight dry solids” refers to the amount of a component, such as CKD, relative to the overall amount of dry solids used in preparation of the spacer fluid.
  • the CKD may be present in an amount in a range of from about 1% to 100% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, 100%, etc.).
  • the CKD may be present in an amount in the range of from about 50% to 100% and, alternatively, from about 80% to 100% by weight of dry solids.
  • One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of CKD to include for a chosen application.
  • embodiments of the spacer fluids may comprise lime kiln dust, which is a material that is generated during the manufacture of lime.
  • lime kiln dust typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of lime.
  • the chemical analysis of lime kiln dust from various lime manufacturers varies depending on a number of factors, including the particular limestone or dolomitic limestone feed, the type of kiln, the mode of operation of the kiln, the efficiencies of the lime production operation, and the associated dust collection systems.
  • Lime kiln dust generally may comprise varying amounts of free lime and free magnesium, lime stone, and/or dolomitic limestone and a variety of oxides, such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O, and other components, such as chlorides.
  • oxides such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O, and other components, such as chlorides.
  • embodiments of the spacer fluids may further comprise fly ash.
  • fly ashes may be suitable, including fly ash classified as Class C or Class F fly ash according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990.
  • Suitable examples of fly ash include, but are not limited to, POZMIX® A cement additive, commercially available from Halliburton Energy Services, Inc., Duncan, Okla. Where used, the fly ash generally may be included in the spacer fluids in an amount desired for a particular application.
  • the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of fly ash may be expressed by weight of dry solids.
  • the fly ash may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the fly ash may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • dry solids e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.
  • the fly ash may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • embodiments of the spacer fluids may further comprise barite.
  • the barite may be sized barite. Sized barite generally refers to barite that has been separated, sieved, ground, or otherwise sized to produce barite having a desired particle size.
  • the barite may be sized to produce barite having a particle size less than about 200 microns in size.
  • the barite generally may be included in the spacer fluids in an amount desired for a particular application.
  • the barite may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the consolidating spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the barite may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the barite may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of barite may be expressed by weight of dry solids.
  • the barite may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the barite may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • dry solids e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.
  • the barite may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • embodiments of the spacer fluids may further comprise pumicite.
  • the pumicite generally may be included in the spacer fluids in an amount desired for a particular application.
  • the pumicite may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.).
  • the pumicite may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid.
  • the pumicite may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid.
  • the amount of pumicite may be expressed by weight of dry solids.
  • the pumicite may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.).
  • the pumicite may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the pumicite to include for a chosen application.
  • embodiments of the spacer fluids may further comprise a free water control additive.
  • a free water control additive refers to an additive included in a liquid for, among other things, reducing (or preventing) the presence of free water in the liquid. Free water control additive may also reduce (or prevent) the settling of solids.
  • suitable free water control additives include, but are not limited to, bentonite, amorphous silica, hydroxyethyl cellulose, and combinations thereof.
  • An example of a suitable free water control additive is SA-1015TM suspending agent, available from Halliburton Energy Services, Inc.
  • Another example of a suitable free water control additive is WG-17TM solid additive, available from Halliburton Energy Services, Inc.
  • the free water control additive may be provided as a dry solid in some embodiments. Where used, the free water control additive may be present in an amount in the range of from about 0.1% to about 16% by weight of dry solids, for example. In alternative embodiments, the free water control additive may be present in an amount in the range of from about 0.1% to about 2% by weight of dry solids.
  • the spacer fluids may further comprise a lightweight additive.
  • the lightweight additive may be included to reduce the density of embodiments of the spacer fluids.
  • the lightweight additive may be used to form a lightweight spacer fluid, for example, having a density of less than about 13 ppg.
  • the lightweight additive typically may have a specific gravity of less than about 2.0.
  • suitable lightweight additives may include sodium silicate, hollow microspheres, gilsonite, perlite, and combinations thereof.
  • An example of a suitable sodium silicate is ECONOLITETM additive, available from Halliburton Energy Services, Inc.
  • the lightweight additive may be present in an amount in the range of from about 0.1% to about 20% by weight of dry solids, for example. In alternative embodiments, the lightweight additive may be present in an amount in the range of from about 1% to about 10% by weight of dry solids.
  • embodiments of the spacer fluids may be foamed with a gas, for example, to provide a spacer fluid with a reduced density. It should be understood that reduced densities may be needed for embodiments of the spacer fluids to more approximately match the density of a particular drilling fluid, for example, where lightweight drilling fluids are being used.
  • a drilling fluid may be considered lightweight if it has a density of less than about 13 ppg, alternatively, less than about 10 ppg, and alternatively less than about 9 ppg.
  • the spacer fluids may be foamed to have a density within about 10% of the density of the drilling fluid and, alternatively, within about 5% of the density of the drilling fluid.
  • While techniques such as lightweight additives, may be used to reduce the density of the spacer fluids comprising CKD without foaming, these techniques may have drawbacks. For example, reduction of the spacer fluid's density to below about 13 ppg using lightweight additives may produce unstable slurries, which can have problems with settling of solids, floating of lightweight additives, and free water, among others. Accordingly, the spacer fluid may be foamed to provide a spacer fluid having a reduced density that is more stable.
  • the spacer fluids may be foamed and comprise water, CKD, a foaming agent, and a gas.
  • the foamed spacer fluid may further comprise a lightweight additive, for example. With the lightweight additive, a base slurry may be prepared that may then be foamed to provide an even lower density.
  • the foamed spacer fluid may have a density in the range of from about 4 ppg to about 13 ppg and, alternatively, about 7 ppg to about 9 ppg.
  • a base slurry may be foamed from a density of in the range of from about 9 ppg to about 13 ppg to a lower density, for example, in a range of from about 7 ppg to about 9 ppg.
  • the gas used in embodiments of the foamed spacer fluids may be any suitable gas for foaming the spacer fluid, including, but not limited to air, nitrogen, and combinations thereof.
  • the gas should be present in embodiments of the foamed spacer fluids in an amount sufficient to form the desired foam.
  • the gas may be present in an amount in the range of from about 5% to about 80% by volume of the foamed spacer fluid at atmospheric pressure, alternatively, about 5% to about 55% by volume, and, alternatively, about 15% to about 30% by volume.
  • embodiments of the spacer fluids may comprise a foaming agent for providing a suitable foam.
  • the “foaming agent” refers to a material or combination of materials that facilitate the formation of a foam in a liquid. Any suitable foaming agent for forming a foam in an aqueous liquid may be used in embodiments of the spacer fluids.
  • suitable foaming agents may include, but are not limited to: mixtures of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl, betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; mixtures of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof.
  • Suitable foaming agent is FOAMERTM 760 foamer/stabilizer, available from Halliburton Energy Services, Inc. Suitable foaming agents are described in U.S. Pat. Nos. 6,797,054, 6,547,871, 6,367,550, 6,063,738, and 5,897,699, the entire disclosures of which are incorporated herein by reference.
  • the foaming agent may be present in embodiments of the foamed spacer fluids in an amount sufficient to provide a suitable foam. In some embodiments, the foaming agent may be present in an amount in the range of from about 0.8% to about 5% by volume of the water (“bvow”).
  • additives may be included in the spacer fluids as deemed appropriate by one skilled in the art, with the benefit of this disclosure.
  • additional additives include, but are not limited to: supplementary cementitious materials, weighting agents, viscosifying agents (e.g., clays, hydratable polymers, guar gum), fluid loss control additives, lost circulation materials, filtration control additives, dispersants, defoamers, corrosion inhibitors, scale inhibitors, formation conditioning agents, and a water-wetting surfactants.
  • Water-wetting surfactants may be used to aid in removal of oil from surfaces in the well bore (e.g., the casing) to enhance cement and consolidating spacer fluid bonding.
  • suitable weighting agents include, for example, materials having a specific gravity of 3 or greater, such as barite.
  • suitable weighting agents include, for example, materials having a specific gravity of 3 or greater, such as barite.
  • additives include: organic polymers, biopolymers, latex, ground rubber, surfactants, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clays (e.g., clays having at least one dimension less than 100 nm), salts, fibers, hydratable clays, microspheres, rice husk ash, micro-fine cement (e.g., cement having an average particle size of from about 5 microns to about 10 microns), metakaolin, zeolite, shale, Portland cement, Portland cement interground with pumice, perlite, barite, slag, lime (e.g., hydrated lime), gypsum, and any combinations thereof, and the like.
  • a supplementary cementitious material may be included in the spacer fluid in addition to or in place of all or a portion of the CKD.
  • suitable supplementary cementitious materials include, without limitation, Portland cement, Portland cement interground with pumice, micro-fine cement, fly ash, slag, pumicite, gypsum and any combination thereof.
  • embodiments of the spacer fluids may be consolidating in that the spacer fluids may develop gel strength and/or compressive strength in the well bore.
  • Consolidation is defined herein as one of three types of material behavior: Type 1 consolidation is identifiable as a gelled fluid that can be moved and/or pumped when the hydraulic shear stress exceeds the yield point (YP) of the gel. Type 2 consolidation is identifiable as a plastic semi-solid that can experience “plastic deformation” if the shear stress, compressive stress, or tensile stress exceeds the “plastic yield limit.”
  • Type 3 consolidation is identifiable as a rigid solid similar to regular set cement.
  • Type 3 consolidated material During a steady progressive strain rate during conventional compressive testing, both confined and unconfined, a Type 3 consolidated material would exhibit linear elastic Hookean stress-strain behavior, followed by some plastic yield and/or mechanical failure.
  • This novel consolidating spacer fluid may transform from the pumpable fluid that was placed during the normal displacement operation to Type 1 and/or further progress to Type 2 and/or further progress to Type 3. It should be understood that the consolidation of the spacer fluid is at well bore conditions and, as will be appreciated by those of ordinary skill in the art, well bore conditions may vary. However, embodiments of the spacer fluids may be characterized by exhibiting Type 1, Type 2, or Type 3 consolidation under specific well bore conditions.
  • Type 1 consolidation exhibits a YP from about 25 Pascals to about 250 Pascals, where YP is measured by one of the methods described in U.S. Pat. No. 6,874,353, namely: using a series of parallel vertical blades on a rotor shaft, referred to by those skilled in the art as the “Vane Method”; or using the new device and method also described in U.S. Pat. No. 6,874,353.
  • Another method used to define the YP of Type 1 consolidation is defined in Morgan, R. G., Suter, D. A., and Sweat, V. A., Mathematical Analysis of a Simple Back Extrusion Rheometer , ASAE Paper No.
  • Type 1 consolidation includes measuring the gelled strength of the material, which may be defined as “Static Gel Strength” (SGS) as is defined and measured in accordance with the API Recommended Practice on Determining the Static Gel Strength of Cement Formations , ANSI/API Recommended Practice 10B-6.
  • SGS Static Gel Strength
  • a Type 1 consolidation may exhibit SGS values from about 70 lbf/100 ft 2 up to about 500 lbf/100 ft 2 .
  • YL-C is simply the uniaxial compressive stress at which the material experiences a permanent deformation. Permanent deformation refers to a measurable deformation strain that does not return to zero over a period of time that is on the same order of magnitude as the total time required to conduct the measurement.
  • YL-C may range from 1 psi (lbf/sq.in.) to 2,000 psi, with the most common values ranging from 5 psi to 500 psi.
  • Type 3 consolidation will exhibit unconfined uniaxial compressive strengths ranging from about 5 psi to about 10,000 psi, while the most common values will range from about 10 psi to about 2,500 psi. These values are achieved in 7 days or less. Some formulations may be designed so as to provide significant compressive strengths with 24 hours to 48 hours. Typical sample geometry and sizes for measurement are similar to, but not limited to, those used for characterizing oil well cements: 2 inch cubes; or 2 inch diameter cylinders that are 4 inches in length; or 1 inch diameter cylinders that are 2 inches in length; and other methods known to those skilled in the art of measuring “mechanical properties” of oil well cements.
  • the compressive strength may be determined by crushing the samples in a compression-testing machine.
  • the compressive strength is calculated from the failure load divided by the cross-sectional area resisting the load and is reported in units of pound-force per square inch (psi).
  • Compressive strengths may be determined in accordance with API RP 10B-2, Recommended Practice for Testing Well Cements, First Edition, July 2005.
  • the spacer fluid when left in a well bore annulus (e.g., between a subterranean formation and the pipe string disposed in the subterranean formation or between the pipe string and a larger conduit disposed in the subterranean formation), the spacer fluid may consolidate to develop static gel strength and/or compressive strength.
  • the consolidated mass formed in the well bore annulus may act to support and position the pipe string in the well bore and bond the exterior surface of the pipe string to the walls of the well bore or to the larger conduit.
  • the consolidated mass formed in the well bore annulus may also provide a substantially impermeable barrier to seal off formation fluids and gases and consequently also serve to mitigate potential fluid migration.
  • the consolidated mass formed in the well bore annulus may also protect the pipe string or other conduit from corrosion.
  • Embodiments of the spacer fluids of the present invention may have a transition time that is shorter than the transition time of cement compositions subsequently introduced into the well bore.
  • transition time refers to the time for a fluid to progress from a static gel strength of about 100 lbf/100 ft 2 to about 500 lbf/100 ft 2 .
  • the consolidating spacer fluid can reduce or even prevent migration of gas in the well bore, even if gas migrates through a subsequently introduced cement composition before it has developed sufficient gel strength to prevent such migration. Gas and liquid migration can typically be prevented at a static gel strength of 500 lbf/100 ft 2 .
  • Some embodiments of the consolidating spacer fluids may have a transition time (i.e., the time to progress from a static gel strength of about 100 lbf/100 ft 2 to about 500 lbf/100 ft 2 ) at well bore conditions of about 45 minutes or less, about 30 minutes or less, about 20 minutes or less, or about 10 minutes or less.
  • Embodiments of the consolidating spacer fluids also quickly develop static gel strengths of about 100 lbf/100 ft 2 and about 500 lbf/100 ft 2 , respectively, at well bore conditions.
  • the time for a fluid to a develop a static gel strength of about 100 lbf/100 ft 2 is also referred to as the “zero gel time.”
  • the consolidating spacer fluids may have a zero gel time at well bore condition of about 8 hours or less, and, alternatively, about 4 hours or less.
  • the consolidating spacer fluids may have a zero gel time in a range of from about 0 minutes to about 4 hours or longer.
  • the consolidating spacer fluids may develop static gel strengths of about 500 lbf/100 ft 2 or more at well bore conditions in a time of from about 10 minutes to about 8 hours or longer. The preceding time for development of static gel strengths are listed as being at well bore conditions.
  • Static gel strength may be measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations , ANSI/API Recommended Practice 10B-6.
  • Embodiments of the spacer fluids of the present invention may be prepared in accordance with any suitable technique.
  • the desired quantity of water may be introduced into a mixer (e.g., a cement blender) followed by the dry blend.
  • the dry blend may comprise the CKD and additional solid additives, for example. Additional liquid additives, if any, may be added to the water as desired prior to, or after, combination with the dry blend.
  • This mixture may be agitated for a sufficient period of time to form a base slurry.
  • This base slurry may then be introduced into the well bore via pumps, for example.
  • the base slurry may be pumped into the well bore, and a foaming agent may be metered into the base slurry followed by injection of a gas, e.g., at a foam mixing “T,” in an amount sufficient to foam the base slurry thereby forming a foamed spacer fluid, in accordance with embodiments of the present invention.
  • a foaming agent may be metered into the base slurry followed by injection of a gas, e.g., at a foam mixing “T,” in an amount sufficient to foam the base slurry thereby forming a foamed spacer fluid, in accordance with embodiments of the present invention.
  • the foamed spacer fluid may be introduced into a well bore.
  • other suitable techniques for preparing spacer fluids may be used in accordance with embodiments of the present invention.
  • An example method of the present invention includes a method for evaluating a spacer fluid.
  • the example method may comprise providing the spacer fluid for use in separating a drilling fluid and a cement composition in a well bore. Properties of the spacer fluid may then be measured to determine, for example, the consolidation efficiency for the particular fluid.
  • the transition time and/or zero gel time of the spacer fluid may be measured. As previously described, the transition time is the time for the fluid to progress from a static gel strength of about 100 lbf/100 ft 2 to about 500 lbf/100 ft 2 , and the zero gel time is the time for the fluid to develop a static gel strength of about 100 lbf/100 ft 2 .
  • Static gel strength may be measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations , ANSI/API Recommended Practice 10B-6.
  • the compressive strength may be measured, which may be the unconfined uniaxial compressive strength. Techniques for testing of compressive strength testing are described in more detail above. These measurements may be performed at a range of conditions, for example, to simulate well bore conditions.
  • the transition time may be measured at a temperature of from about 40° F. to about 300° F. and a pressure of from about 2,000 psi to about 10,000 psi.
  • the compressive strengths may be determined, for example, at atmospheric conditions after the spacer fluid has been allowed to set in a water bath at temperatures of from about 40° F.
  • the preceding evaluation may be performed for a set of sample spacer fluids, wherein embodiments further comprises selecting one of the sample spacer fluids from the set based on the measured properties.
  • embodiments may further comprise preparing a spacer fluid based on the selected spacer fluid and using the prepared spacer fluid in displacement of a drilling fluid from a well bore annulus.
  • An example method of the present invention includes a method of enhancing rheological properties of a spacer fluid.
  • the method may comprise including CKD in a spacer fluid.
  • the CKD may be included in the spacer fluid in an amount sufficient to provide a higher yield point than a first fluid.
  • the higher yield point may be desirable, for example, to effectively displace the first fluid from the well bore.
  • yield point refers to the resistance of a fluid to initial flow, or representing the stress required to start fluid movement.
  • the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 5 lb/100 ft 2 .
  • the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 10 lb/100 ft 2 . In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 20 lb/100 ft 2 . It may be desirable for the spacer fluid to not thermally thin to a yield point below the first fluid at elevated temperatures. Accordingly, the spacer fluid may have a higher yield point than the first fluid at elevated temperatures, such as 180° F. or bottom hole static temperature (“BHST”). In one embodiment, the spacer fluid may have a yield point that increases at elevated temperatures. For example, the spacer fluid may have a yield point that is higher at 180° F. than at 80° F. By way of further example. The spacer fluid may have a yield point that is higher at BHST than at 80° F.
  • BHST bottom hole static temperature
  • Another example method of the present invention includes a method of displacing a first fluid from a well bore, the well bore penetrating a subterranean formation.
  • the method may comprise providing a spacer fluid that comprises CKD and water.
  • the method may further comprise introducing the spacer fluid into the well bore to displace at least a portion of the first fluid from the well bore.
  • the spacer fluid may displace the first fluid from a well bore annulus, such as the annulus between a pipe string and the subterranean formation or between the pipe string and a larger conduit.
  • the spacer fluid may be characterized by having a higher yield point than the first fluid at 80° F.
  • the spacer fluid may be characterized by having a higher yield point than the first fluid at 130° F.
  • the spacer fluid may be characterized by having a higher yield point than the first fluid at 180° F.
  • the first fluid displaced by the spacer fluid comprises a drilling fluid.
  • the spacer fluid may be used to displace the drilling fluid from the well bore.
  • the spacer fluid may also remove the drilling fluid from the walls of the well bore.
  • the drilling fluid may include, for example, any number of fluids, such as solid suspensions, mixtures, and emulsions.
  • the drilling fluid may comprise an oil-based drilling fluid.
  • An example of a suitable oil-based drilling fluid comprises an invert emulsion.
  • the oil-based drilling fluid may comprise an oleaginous fluid.
  • Suitable oleaginous fluids that may be included in the oil-based drilling fluids include, but are not limited to, ⁇ -olefins, internal olefins, alkanes, aromatic solvents, cycloalkanes, liquefied petroleum gas, kerosene, diesel oils, crude oils, gas oils, fuel oils, paraffin oils, mineral oils, low-toxicity mineral oils, olefins, esters, amides, synthetic oils (e.g., polyolefins), polydiorganosiloxanes, siloxanes, organosiloxanes, ethers, acetals, dialkylcarbonates, hydrocarbons, and combinations thereof.
  • Additional steps in embodiments of the method may comprise introducing a pipe string into the well bore, introducing a cement composition into the well bore with the spacer fluid separating the cement composition and the first fluid.
  • the cement composition may be allowed to set in the well bore.
  • the cement composition may include, for example, cement and water.
  • Another example method of the present invention includes a method of separating fluids in a well bore, the well bore penetrating a subterranean formation.
  • the method may comprise introducing a spacer fluid into the well bore, the well bore having a first fluid disposed therein.
  • the spacer fluid may comprise, for example, CKD and water.
  • the method may further comprise introducing a second fluid into the well bore with the spacer fluid separating the first fluid and the second fluid.
  • the first fluid comprises a drilling fluid and the second fluid comprises a cement composition.
  • the spacer fluid may prevent the cement composition from contacting the drilling fluid.
  • the cement composition may be foamed or unfoamed as desired for a particular application.
  • the cement composition comprises cement kiln dust, water, and optionally a hydraulic cementitious material.
  • hydraulic cements may be utilized in accordance with the present invention, including, but not limited to, those comprising calcium, aluminum, silicon, oxygen, iron, and/or sulfur, which set and harden by reaction with water.
  • Suitable hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, silica cements, and combinations thereof.
  • the hydraulic cement may comprise a Portland cement.
  • the Portland cements that are suited for use in the present invention are classified as Classes A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990.
  • the spacer fluid may also remove the drilling fluid, dehydrated/gelled drilling fluid, and/or filter cake solids from the well bore in advance of the cement composition. Embodiments of the spacer fluid may improve the efficiency of the removal of these and other compositions from the well bore. Removal of these compositions from the well bore may enhance bonding of the cement composition to surfaces in the well bore.
  • at least a portion of used and/or unused CKD containing spacer fluid are included in the cement composition that is placed into the well and allowed to set.
  • the spacer fluid may be left in the well bore such that the spacer fluid consolidates in the well bore.
  • the spacer fluid may consolidate to foini an annular sheath of a rigid solid.
  • the annular sheath of may bond the exterior surface of the pipe string to the walls of the well bore or to the larger conduit.
  • An example method of the present invention may further include measuring the consolidation of the spacer fluid. This measurement may also include a measurement of the integrity of the bond foimed between the consolidated spacer fluid and the exterior wall of the pipe string and/or between the consolidated spacer fluid and the formation or larger conduit disposed in the well bore.
  • data may be collected corresponding to the integrity of this bond, and the data may be recorded on a log, commonly referred to as a “bond long.”
  • the bond log may be used to, for example, analyze the consolidation properties of the spacer fluid in the well bore.
  • embodiments may include running a cement bond log on at least the portion of the well bore containing the consolidated spacer fluid.
  • the cement bond log for the settable spacer fluid may be obtained by any method used to measure cement integrity without limitation.
  • a tool may be run into the well bore on a wireline that can detect the bond of the set spacer fluid to the pipe string and/or the formation (or larger conduit).
  • An example of a suitable tool includes a sonic tool.
  • Sample spacer fluids were prepared to evaluate the rheological properties of spacer fluids containing CKD.
  • the sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, FWCA, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • dry components e.g., CKD, fly ash, bentonite, FWCA, etc.
  • Sample Spacer Fluid No. 1 was an 11 pound per gallon slurry that comprised 60.62% water, 34.17% CKD, 4.63% fly ash, and 0.58% free water control additive (WG-17TM solid additive).
  • Sample Spacer Fluid No. 2 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17TM solid additive), 3.45% bentonite, and 1.04% EconoliteTM additive.
  • the thickening time of the Sample Spacer Fluid No. 1 was also determined in accordance with API Recommended Practice 10B at 205° F. Sample Spacer Fluid No. 1 had a thickening time of more than 6:00+ hours.
  • the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications.
  • the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature.
  • Sample Spacer Fluid No. 2 had a higher yield point at 180° F. than at 80° F.
  • the yield point of Sample Spacer Fluid No. 1 had only a slight decrease at 180° F. as compared to 80° F.
  • addition of CKD to a spacer fluid may provide a plastic viscosity that increases with temperature.
  • sample spacer fluids were prepared to further evaluate the rheological properties of spacer fluids containing CKD.
  • the sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • dry components e.g., CKD, fly ash
  • Sample Fluid No. 3 was a 12.5 pound per gallon fluid that comprised 47.29% water and 52.71% CKD.
  • Sample Fluid No. 4 was a 12.5 pound per gallon fluid that comprised 46.47% water, 40.15% CKD, and 13.38% fly ash.
  • Sample Fluid No. 5 was a 12.5 pound per gallon fluid that comprised 45.62% water, 27.19% CKD, and 27.19% fly ash.
  • Sample Fluid No. 6 was a 12.5 pound per gallon fluid that comprised 44.75% water, 13.81% CKD, and 41.44% fly ash.
  • Sample Fluid No. 7 (comparative) was a 12.5 pound per gallon fluid that comprised 43.85% water, and 56.15% fly ash.
  • the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications.
  • the above example illustrates, inter alfa, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature.
  • CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature.
  • higher yield points were observed for spacer fluids with higher concentrations of CKD.
  • a sample spacer fluid containing CKD was prepared to compare the rheological properties of a spacer fluid containing CKD with an oil-based drilling fluid.
  • the sample spacer fluid was prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • dry components e.g., CKD, fly ash, bentonite, etc.
  • Sample Spacer Fluid No. 8 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17TM solid additive), 3.45% bentonite, and 1.04% EconoliteTM additive.
  • the oil-based drilling fluid was a 9.1 pound per gallon oil-based mud.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 100, 200, and 300 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluid and drilling fluid were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below.
  • the abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point.
  • OBM refers to oil-based mud.
  • the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications.
  • the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid with a yield point that is greater than a drilling fluid even at elevated temperatures.
  • Sample Spacer Fluid No. 8 has a higher yield point at 180° F. than the oil-based mud.
  • a foamed spacer fluid (Sample Fluid 9) was prepared that comprised CKD.
  • a base slurry was prepared that had a density of 10 ppg and comprised CKD, a free water control additive (0.7% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (32.16 gallons per 94-pound sack of CKD).
  • the free water control additive was SA-1015TM suspending aid.
  • the lightweight additive was ECONOLITETM additive.
  • a foaming agent (FOAMERTM 760 foamer/stabilizer) in an amount of 2% bvow was added, and the base slurry was then mixed in a foam blending jar for 4 seconds at 12,000 rpm.
  • the resulting foamed spacer fluid had a density of 8.4 ppg.
  • the “sink” of the resultant foamed spacer fluid was then measured using a free fluid test procedure as specified in API Recommended Practice 10B. However, rather than measuring the free fluid, the amount of “sink” was measured after the foamed spacer fluid remained static for a period of 2 hours. The foamed spacer fluid was initially at 200° and cooled to ambient temperature over the 2-hour period. The measured sink for this foamed spacer fluid was 5 millimeters.
  • Example Fluid 10 Another foamed spacer fluid (Sample Fluid 10) was prepared that comprised CKD.
  • a base slurry was prepared that had a density of 10.5 ppg and comprised CKD, a free water control additive (0.6% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (23.7 gallons per 94-pound sack of CKD).
  • the free water control additive was SA-1015TM suspending aid.
  • the lightweight additive was ECONOLITETM additive.
  • a foaming agent a hexylene glycol/cocobetaine blended surfactant
  • the resulting foamed spacer fluid had a density of 8.304 ppg.
  • the resultant foamed spacer fluid had a sink of 0 millimeters, measured as described above for Example 4.
  • sample fluids 11-32 in the table below were prepared having a density of 12.5 ppg using various concentrations of additives. The amount of these additives in each sample fluid are indicated in the table below with “% by weight” indicating the amount of the particular component by weight of Additive 1+Additive 2. The abbreviation “gal/sk” in the table below indicates gallons of the particular component per 94-pound sack of Additive 1 and Additive 2.
  • the CKD used was supplied by Holcim (US) Inc., from Ada, Okla.
  • the shale used was supplied by Texas Industries, Inc., from Midlothian, Tex.
  • the pumice used was either DS-200 or DS-300 lightweight aggregate available from Hess Pumice Products, Inc.
  • the silica flour used was SSA-1TM cement additive, from Halliburton Energy Services, Inc.
  • the course silica flour used was SSA-2TM course silica flour, from Halliburton Energy Services, Inc.
  • the metakaolin used was MetaMax® metakaolin, from BASF.
  • the amorphous silica used was SILICALITETM cement additive, from Halliburton Energy Services, Inc.
  • the perlite used was supplied by Hess Pumice Products, Inc.
  • the slag used was supplied by LaFarge North America.
  • the Portland cement Interground with pumice was FineCemTM cement, from Halliburton Energy Services, Inc.
  • the fly ash used was POZMIX® cement additive, from Halliburton Energy Services, Inc.
  • the micro-fine cement used was MICRO MATRIX® having an average particle size of 7.5 microns, from Halliburton Energy Services, Inc.
  • the rice husk ash used was supplied by Rice Hull Specialty Products, Stuttgart, Ark.
  • the biopolymer used was supplied by CP Kelco, San Diego, Calif.
  • the barite used was supplied by Baroid Industrial Drilling Products.
  • the latex used was Latex 3000TM cement additive from Halliburton Energy Services, Inc.
  • the ground rubber used was LIFECEMTM 100 from Halliburton Energy Services, Inc.
  • the nano-clay used was supplied by Nanocor Inc.
  • the set retarder used was SCR-100TM cement retarder, from Halliburton Energy Services, Inc.
  • SCR-100TH cement retarder is a copolymer of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid.
  • sample fluids were allowed to cure for seven days in a 2′′ by 4′′ metal cylinder that was placed in a water bath at 180° F. to form set cylinders.
  • destructive compressive strengths were determined using a mechanical press in accordance with API RP 10B-2. The results of this test are set forth below.
  • a consolidating spacer fluid comprising CKD may be capable of consolidation.
  • 7-day compressive strengths of 1000 psi or even higher were observed for certain sample slurries.
  • the following series of tests were performed to evaluate the thickening times of consolidating spacer fluids.
  • the thickening times for Sample Fluids 11-32 from Example 6 were determined.
  • the compositions for Samples Fluids 11-32 were the same as from Example 6 except the concentration of the cement set retarder was adjusted for certain samples.
  • the thickening time which is the time required for the compositions to reach 70 Bearden units of consistency, was determined for each fluid at 230° F. in accordance with API RP 10B-2. The results of this test are set forth below.
  • a settable spacer fluid may have acceptable thickening times for certain applications.
  • Sample Fluids 11-32 were determined. The rheological values were determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 30, 60, 100, 200, 300, and 600 with a B1 bob, an R1 rotor, and a 1.0 spring. An additional sample was used for this specific test. It is Sample Fluid 33 and comprised barite and 0.5% of a suspending agent by weight of the barite. The suspending agent was SATM-1015, available from Halliburton Energy Services, Inc. The water was included in an amount sufficient to provide a density of 12.5 ppg. Sample 33's rheological properties were measured twice at two different temperatures and the values per temperature were averaged to present the data shown below. Temperature is measured in degrees Fahrenheit. The results of this test are set forth below.
  • a consolidating spacer fluid may have acceptable rheological properties for a particular application.
  • the CKD used was Mountain CKD from Laramie Wyo., except for Sample Fluid 43 which used CKD from Holcim (US) Inc., Ada, Okla.
  • the Portland cement used in Sample Fluids 34 and 35 was CEMEX Type 3 Portland cement, from CEMEX USA.
  • the cement accelerator used in Sample Fluid 34 was CAL-SEALTM accelerator, from Halliburton Energy Services Inc. CAL-SEALTM Accelerator is gypsum.
  • the Class F fly ash used in Slurries 37-41 was from Coal Creek Station.
  • the Class C fly ash used in Slurries 36 was from LaFarge North America.
  • a consolidating spacer fluid may have acceptable compressive strengths for certain applications.
  • Sample Fluids 44 and 45 were prepared having a density of 11 and 13.5 ppg respectively using various concentrations of additives.
  • the component concentrations of each sample are as follows:
  • the sample comprised a blend of CKD (80% by weight), fly ash (16% by weight) and hydrated lime (4% by weight).
  • the sample also comprised a suspending aid in an amount of 0.4% by weight of the blend. Sufficient water was included in the sample to provide a density of 11 ppg.
  • the CKD used was from Holcim (US) Inc., Ada, Okla.
  • the fly ash used was POZMIX® cement additive, from Halliburton Energy Services, Inc.
  • the suspending agent was SATM-1015, available from Halliburton Energy Services, Inc.
  • Sample Fluid 45 the sample comprised a mixture of CKD (80% by weight), fly ash (16% by weight), and hydrate lime (4% by weight). Sufficient water was included in the sample to provide a density of 13.5 ppg.
  • the CKD used was from Holcim (US) Inc., Ada, Okla.
  • the fly ash used was POZMIX® cement additive, from Halliburton Energy Services, Inc.
  • FIGS. 1 and 2 show the static gel strength measurements for Sample Fluids 44 and 45, respectively, as a function of time. As seen in the figures, the samples progress through the transition time, defined as the time between 100 SGS and 500 SGS, very quickly with a total transition time of 19 minutes for the sample 34 and 6 minutes for sample 35. These short transition times are faster than most cement compositions.
  • Samples Fluids 46 and 47 were prepared having a density of 13.002 and 10.999 ppg respectively using various concentrations of additives.
  • the component concentrations of each sample are as follows:
  • the sample comprised a blend of CKD (100% by weight), POZMIX® (50% by weight of the CKD), HR®-601 (1% by weight of the CKD), HR®-25 (PB) (0.6% by weight of the CKD), and D-Air 5000 (0.5% by weight of the CKD). Sufficient water was included in the sample to provide a density of 13.002 ppg.
  • the CKD used was from Holcim (US) Inc., Ada, Okla.
  • POZMIX® cement additive is from Halliburton Energy Services, Inc.
  • HR®-601 is a cement retarder available from Halliburton Energy Services, Inc.
  • HR®-25 is a cement retarder available from Halliburton Energy Services, Inc.
  • D-AirTM 5000 is a defoamer available from Halliburton Energy Services, Inc.
  • the sample comprised a blend of CKD (100% by weight), SA-1015 (0.4% by weight of the CKD), and D-Air 5000 (0.5% by weight of the CKD). Sufficient water was included in the sample to provide a density of 10.999 ppg.
  • the CKD used was from Holcim (US) Inc., Ada, Okla.
  • SATM-1015 is a suspending agent available from Halliburton Energy Services, Inc.
  • D-AirTM 5000 is a defoamer available from Halliburton Energy Services, Inc.
  • the static gel strength of the samples was measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations , ANSI/API Recommended Practice 10B-6.
  • Table 8 shows the static gel strength measurements for samples 36 and 37, respectively.
  • compositions and methods are described in temis of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps.
  • indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces.
  • ranges from any lower limit may be combined with any upper limit to recite a range not explicitly recited, as well as, ranges from any lower limit may be combined with any other lower limit to recite a range not explicitly recited, in the same way, ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited.
  • any numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed.
  • every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values even if not explicitly recited.
  • every point or individual value may serve as its own lower or upper limit combined with any other point or individual value or any other lower or upper limit, to recite a range not explicitly recited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Dispersion Chemistry (AREA)

Abstract

Disclosed are spacer fluids and methods of use in subterranean formations. Embodiments may include use of consolidating spacer fluids in displacement of drilling fluids from a well bore annulus.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 13/725,833, entitled “Consolidating Spacer Fluids and Methods of Use,” filed on Dec. 21, 2012, which is a continuation-in-part of U.S. application Ser. No. 13/535,145, entitled “Foamed Spacer Fluids Containing Cement Kiln Dust and Methods of Use,” filed on Jun. 27, 2012, which is a continuation-in-part of U.S. application Ser. No. 12/895,436, entitled “Spacer Fluids Containing Cement Kiln Dust and Methods of Use,” filed on Sep. 30, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/264,010, now U.S. Pat. No. 8,333,240, entitled “Reduced Carbon Footprint Sealing Compositions for Use in Subterranean Formations,” filed on Nov. 3, 2008, which is a continuation-in-part of U.S. application Ser. No. 11/223,669, now U.S. Pat. No. 7,445,669, entitled “Settable Compositions Comprising Cement Kiln Dust and Additive(s),” filed Sep. 9, 2005, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND
  • The present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to consolidating spacer fluids and methods of use in subterranean formations.
  • Spacer fluids are often used in subterranean operations to facilitate improved displacement efficiency when introducing new fluids into a well bore. For example, a spacer fluid can be used to displace a fluid in a well bore before introduction of another fluid. When used for drilling fluid displacement, spacer fluids can enhance solids removal as well as separate the drilling fluid from a physically incompatible fluid. For instance, in primary cementing operations, the spacer fluid may be placed into the well bore to separate the cement composition from the drilling fluid. Spacer fluids may also be placed between different drilling fluids during drilling change outs or between a drilling fluid and completion brine. Spacer fluids typically do not consolidate in that the spacer fluids typically do not develop significant gel or compressive strength.
  • To be effective, the spacer fluid can have certain characteristics. For example, the spacer fluid may be compatible with the displaced fluid and the cement composition. This compatibility may also be present at downhole temperatures and pressures. In some instances, it is also desirable for the spacer fluid to leave surfaces in the well bore water wet, thus facilitating bonding with the cement composition. Rheology of the spacer fluid can also be important. A number of different rheological properties may be important in the design of a spacer fluid, including yield point, plastic viscosity, gel strength, and shear stress, among others. While rheology can be important in spacer fluid design, conventional spacer fluids may not have the desired rheology at downhole temperatures. For instance, conventional spacer fluids may experience undesired thermal thinning at elevated temperatures. As a result, conventional spacer fluids may not provide the desired displacement in some instances.
  • SUMMARY
  • The present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to consolidating spacer fluids and methods of use in subterranean formations.
  • An embodiment may comprise displacing a drilling fluid disposed in a well bore annulus, comprising: designing a spacer fluid to meet at least one property under predetermined well bore conditions, wherein the property is selected from the group consisting of: (i) a yield point of from about 25 Pascals to about 250 Pascals, (ii) a static gel strength of from about 70 lbf/100 ft2 to about 500 lbf/100 ft2, (iii) a yield limit in compression from about 1 psi to about 2,000 psi, and (iv) an unconfined uniaxial compressive strength of from about 5 psi to about 10,000 psi; using the spacer fluid to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the spacer fluid to consolidate in the well bore, and wherein the portion of the spacer fluid consolidates in the well bore to meet the property.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: using a consolidating spacer fluid to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus, wherein the portion of the consolidating spacer fluid has a zero gel time of about 4 hours or less.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: using a consolidating spacer fluid to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus, wherein the portion of the consolidating spacer fluid has a transition time of about 45 minutes or less.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: introducing a consolidating spacer fluid into the well bore annulus to displace at least a portion of the drilling fluid from the well bore annulus; and allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus; wherein the consolidating spacer fluid comprises water and at least one additive selected from the group consisting of kiln dust, gypsum, fly ash, bentonite, hydroxyethyl cellulose, sodium silicate, a hollow microsphere, gilsonite, perlite, a gas, an organic polymer, a biopolymer, latex, ground rubber, a surfactant, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clay, salt, fiber, hydratable clay, rice husk ash, micro-fine cement, metakaolin, zeolite, shale, pumicite, Portland cement, Portland cement interground with pumice, barite, slag, lime, and any combination thereof; and wherein the portion of the consolidating spacer fluid has a zero gel time of about 8 hours or less.
  • Another embodiment may comprise a method of displacing a drilling fluid disposed in a well bore annulus, comprising: introducing a consolidating spacer fluid into the well bore annulus to displace at least a portion of the drilling fluid from the well bore annulus; allowing at least a portion of the consolidating spacer fluid to consolidate in the well bore annulus; and measuring consolidation properties of the portion of the consolidating spacer fluid in the well bore annulus.
  • Another embodiment of a method of may comprise a method of evaluating a spacer fluid for use in separating a drilling fluid and a cement composition in a well bore comprising: providing the spacer fluid; and measuring a transition time of the spacer fluid.
  • Another embodiment may comprise a method of evaluating a spacer fluid for use in separating a drilling fluid and a cement composition in a well bore comprising: providing the spacer fluid; and measuring a zero gel time of the spacer fluid.
  • Another embodiment may comprise a consolidating spacer fluid that separates a drilling fluid and a cement composition in a well bore, comprising: water; and at least one additive selected from the group consisting of kiln dust, gypsum, fly ash, bentonite, hydroxyethyl cellulose, sodium silicate, a hollow microsphere, gilsonite, perlite, a gas, an organic polymer, a biopolymer, latex, ground rubber, a surfactant, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clay, salt, fiber, hydratable clay, rice husk ash, micro-fine cement, metakaolin, zeolite, shale, pumicite, Portland cement, Portland cement interground with pumice, barite, slag, lime, and any combination thereof; and wherein the portion of the consolidating spacer fluid has a zero gel time of about 4 hours or less.
  • The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.
  • FIG. 1 is a graph showing measured static gel strength values at various temperature and pressure readings as a factor of time for an example consolidating spacer fluid.
  • FIG. 2 is a graph showing measured static gel strength values at various temperature and pressure readings as a factor of time for an example consolidating spacer fluid.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to spacer fluids that comprise cement kiln dust (“CKD”) and methods that use CKD for enhancing one or more rheological properties of a spacer fluid. In accordance with present embodiments, the spacer fluids may improve the efficiency of well bore cleaning and well bore fluid removal. Embodiments of the spacer fluids may be foamed. Embodiments of the spacer fluids may be consolidating. For example, the spacer fluids may develop gel strength and/or compressive strength when left in a well bore.
  • There may be several potential advantages to the methods and compositions of the present invention, only some of which may be alluded to herein. One of the many potential advantages of the methods and compositions of the present invention is that the CKD may be used in spacer fluids as a rheology modifier allowing formulation of a spacer fluid with desirable rheological properties. Another potential advantage of the methods and compositions of the present invention is that inclusion of the CKD in the spacer fluids may result in a spacer fluid without undesired thermal thinning. Yet another potential advantage of the present invention is that spacer fluids comprising CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives. Yet another potential advantage of the present invention is that foamed spacer fluids comprising CKD may be used for displacement of lightweight drilling fluids. Yet another potential advantage is that the consolidating spacer fluids may possess additional physical characteristics that can provide additional benefits to the well bore operations. For example, the consolidating spacer fluids may develop gel and/or compressive strength in a well bore annulus. Accordingly, the consolidating spacer fluid left in the well bore may function to provide a substantially impermeable barrier to seal off formation fluids and gases and consequently serve to mitigate potential fluid migration. The consolidating spacer fluid in the well bore annulus may also protect the pipe string or other conduit from corrosion. Consolidating spacer fluids may also serve to protect the erosion of the cement sheath formed by subsequently introduced cement compositions.
  • Embodiments of the spacer fluids of the present invention may comprise water and CKD. In some embodiments, the spacer fluids may consolidate when left in a well bore. For example, the spacer fluid may set and harden by reaction of the CKD in the water. In some embodiments, the spacer fluids may be foamed. For example, the foamed spacer fluids may comprise water, CKD, a foaming agent, and a gas. A foamed spacer fluid may be used, for example, where it is desired for the spacer fluid to be lightweight. In accordance with present embodiments, the spacer fluid may be used to displace a first fluid from a well bore with the spacer fluid having a higher yield point than the first fluid. For example, the spacer fluid may be used to displace at least a portion of a drilling fluid from the well bore. Other optional additives may also be included in embodiments of the spacer fluids as desired for a particular application. For example, the spacer fluids may further comprise viscosifying agents, organic polymers, dispersants, surfactants, weighting agents, and any combination thereof.
  • The spacer fluids generally should have a density suitable for a particular application as desired by those of ordinary skill in the art, with the benefit of this disclosure. In some embodiments, the spacer fluids may have a density in the range of from about 4 pounds per gallon (“ppg”) to about 24 ppg. In other embodiments, the spacer fluids may have a density in the range of about 4 ppg to about 17 ppg. In yet other embodiments, the spacer fluids may have a density in the range of about 8 ppg to about 13 ppg. Embodiments of the spacer fluids may be foamed or unfoamed or comprise other means to reduce their densities known in the art, such as lightweight additives. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate density for a particular application.
  • The water used in an embodiment of the spacer fluids may include, for example, freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), seawater, or any combination thereof. Generally, the water may be from any source, provided that the water does not contain an excess of compounds that may undesirably affect other components in the spacer fluid. The water is included in an amount sufficient to form a pumpable spacer fluid. In some embodiments, the water may be included in the spacer fluids in an amount in the range of from about 15% to about 95% by weight of the spacer fluid. In other embodiments, the water may be included in the spacer fluids of the present invention in an amount in the range of from about 25% to about 85% by weight of the spacer fluid. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of water to include for a chosen application.
  • The CKD may be included in embodiments of the spacer fluids as a rheology modifier. Among other things, using CKD in embodiments of the present invention can provide spacer fluids having rheology suitable for a particular application. Desirable rheology may be advantageous to provide a spacer fluid that is effective for drilling fluid displacement, for example. In some instances, the CKD can be used to provide a spacer fluid with a low degree of thermal thinning. For example, the spacer fluid may even have a yield point that increases at elevated temperatures, such as those encountered downhole.
  • CKD is a material generated during the manufacture of cement that is commonly referred to as cement kiln dust. The tem). “CKD” is used herein to mean cement kiln dust as described herein and equivalent forms of cement kiln dust made in other ways. The term “CKD” typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of cement. Usually, large quantities of CKD are collected in the production of cement that are commonly disposed of as waste. Disposal of the waste CKD can add undesirable costs to the manufacture of the cement, as well as the environmental concerns associated with its disposal. Because the CKD is commonly disposed as a waste material, spacer fluids prepared with CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives. The chemical analysis of CKD from various cement manufactures varies depending on a number of factors, including the particular kiln feed, the efficiencies of the cement production operation, and the associated dust collection systems. CKD generally may comprise a variety of oxides, such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O.
  • The CKD may be included in the spacer fluids in an amount sufficient to provide, for example, the desired rheological properties. In some embodiments, the CKD may be present in the spacer fluids in an amount in the range of from about 1% to about 65% by weight of the spacer fluid (e.g., about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, etc.). In some embodiments, the CKD may be present in the spacer fluids in an amount in the range of from about 5% to about 60% by weight of the spacer fluid. In some embodiments, the CKD may be present in an amount in the range of from about 20% to about 35% by weight of the spacer fluid. Alternatively, the amount of CKD may be expressed by weight of dry solids. As used herein, the term “by weight dry solids” refers to the amount of a component, such as CKD, relative to the overall amount of dry solids used in preparation of the spacer fluid. For example, the CKD may be present in an amount in a range of from about 1% to 100% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, 100%, etc.). In some embodiments, the CKD may be present in an amount in the range of from about 50% to 100% and, alternatively, from about 80% to 100% by weight of dry solids. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of CKD to include for a chosen application.
  • While the preceding description describes CKD, the present invention is broad enough to encompass the use of other partially calcined kiln feeds. For example, embodiments of the spacer fluids may comprise lime kiln dust, which is a material that is generated during the manufacture of lime. The term lime kiln dust typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of lime. The chemical analysis of lime kiln dust from various lime manufacturers varies depending on a number of factors, including the particular limestone or dolomitic limestone feed, the type of kiln, the mode of operation of the kiln, the efficiencies of the lime production operation, and the associated dust collection systems. Lime kiln dust generally may comprise varying amounts of free lime and free magnesium, lime stone, and/or dolomitic limestone and a variety of oxides, such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O, and other components, such as chlorides.
  • Optionally, embodiments of the spacer fluids may further comprise fly ash. A variety of fly ashes may be suitable, including fly ash classified as Class C or Class F fly ash according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. Suitable examples of fly ash include, but are not limited to, POZMIX® A cement additive, commercially available from Halliburton Energy Services, Inc., Duncan, Okla. Where used, the fly ash generally may be included in the spacer fluids in an amount desired for a particular application. In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of fly ash may be expressed by weight of dry solids. For example, the fly ash may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the fly ash may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the fly ash to include for a chosen application.
  • Optionally, embodiments of the spacer fluids may further comprise barite. In some embodiments, the barite may be sized barite. Sized barite generally refers to barite that has been separated, sieved, ground, or otherwise sized to produce barite having a desired particle size. For example, the barite may be sized to produce barite having a particle size less than about 200 microns in size. Where used, the barite generally may be included in the spacer fluids in an amount desired for a particular application. In some embodiments, the barite may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the consolidating spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the barite may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the barite may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of barite may be expressed by weight of dry solids. For example, the barite may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the barite may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the barite to include for a chosen application.
  • Optionally, embodiments of the spacer fluids may further comprise pumicite. Where used, the pumicite generally may be included in the spacer fluids in an amount desired for a particular application. In some embodiments, the pumicite may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the pumicite may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the pumicite may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of pumicite may be expressed by weight of dry solids. For example, the pumicite may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the pumicite may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the pumicite to include for a chosen application.
  • Optionally, embodiments of the spacer fluids may further comprise a free water control additive. As used herein, the term “free water control additive” refers to an additive included in a liquid for, among other things, reducing (or preventing) the presence of free water in the liquid. Free water control additive may also reduce (or prevent) the settling of solids. Examples of suitable free water control additives include, but are not limited to, bentonite, amorphous silica, hydroxyethyl cellulose, and combinations thereof. An example of a suitable free water control additive is SA-1015™ suspending agent, available from Halliburton Energy Services, Inc. Another example of a suitable free water control additive is WG-17™ solid additive, available from Halliburton Energy Services, Inc. The free water control additive may be provided as a dry solid in some embodiments. Where used, the free water control additive may be present in an amount in the range of from about 0.1% to about 16% by weight of dry solids, for example. In alternative embodiments, the free water control additive may be present in an amount in the range of from about 0.1% to about 2% by weight of dry solids.
  • In some embodiments, the spacer fluids may further comprise a lightweight additive. The lightweight additive may be included to reduce the density of embodiments of the spacer fluids. For example, the lightweight additive may be used to form a lightweight spacer fluid, for example, having a density of less than about 13 ppg. The lightweight additive typically may have a specific gravity of less than about 2.0. Examples of suitable lightweight additives may include sodium silicate, hollow microspheres, gilsonite, perlite, and combinations thereof. An example of a suitable sodium silicate is ECONOLITE™ additive, available from Halliburton Energy Services, Inc. Where used, the lightweight additive may be present in an amount in the range of from about 0.1% to about 20% by weight of dry solids, for example. In alternative embodiments, the lightweight additive may be present in an amount in the range of from about 1% to about 10% by weight of dry solids.
  • As previously mentioned, embodiments of the spacer fluids may be foamed with a gas, for example, to provide a spacer fluid with a reduced density. It should be understood that reduced densities may be needed for embodiments of the spacer fluids to more approximately match the density of a particular drilling fluid, for example, where lightweight drilling fluids are being used. A drilling fluid may be considered lightweight if it has a density of less than about 13 ppg, alternatively, less than about 10 ppg, and alternatively less than about 9 ppg. In some embodiments, the spacer fluids may be foamed to have a density within about 10% of the density of the drilling fluid and, alternatively, within about 5% of the density of the drilling fluid. While techniques, such as lightweight additives, may be used to reduce the density of the spacer fluids comprising CKD without foaming, these techniques may have drawbacks. For example, reduction of the spacer fluid's density to below about 13 ppg using lightweight additives may produce unstable slurries, which can have problems with settling of solids, floating of lightweight additives, and free water, among others. Accordingly, the spacer fluid may be foamed to provide a spacer fluid having a reduced density that is more stable.
  • Therefore, in some embodiments, the spacer fluids may be foamed and comprise water, CKD, a foaming agent, and a gas. Optionally, to provide a spacer fluid with a lower density and more stable foam, the foamed spacer fluid may further comprise a lightweight additive, for example. With the lightweight additive, a base slurry may be prepared that may then be foamed to provide an even lower density. In some embodiments, the foamed spacer fluid may have a density in the range of from about 4 ppg to about 13 ppg and, alternatively, about 7 ppg to about 9 ppg. In one particular embodiment, a base slurry may be foamed from a density of in the range of from about 9 ppg to about 13 ppg to a lower density, for example, in a range of from about 7 ppg to about 9 ppg.
  • The gas used in embodiments of the foamed spacer fluids may be any suitable gas for foaming the spacer fluid, including, but not limited to air, nitrogen, and combinations thereof. Generally, the gas should be present in embodiments of the foamed spacer fluids in an amount sufficient to form the desired foam. In certain embodiments, the gas may be present in an amount in the range of from about 5% to about 80% by volume of the foamed spacer fluid at atmospheric pressure, alternatively, about 5% to about 55% by volume, and, alternatively, about 15% to about 30% by volume.
  • Where foamed, embodiments of the spacer fluids may comprise a foaming agent for providing a suitable foam. As used herein, the “foaming agent” refers to a material or combination of materials that facilitate the formation of a foam in a liquid. Any suitable foaming agent for forming a foam in an aqueous liquid may be used in embodiments of the spacer fluids. Examples of suitable foaming agents may include, but are not limited to: mixtures of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl, betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; mixtures of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof. An example of a suitable foaming agent is FOAMER™ 760 foamer/stabilizer, available from Halliburton Energy Services, Inc. Suitable foaming agents are described in U.S. Pat. Nos. 6,797,054, 6,547,871, 6,367,550, 6,063,738, and 5,897,699, the entire disclosures of which are incorporated herein by reference.
  • Generally, the foaming agent may be present in embodiments of the foamed spacer fluids in an amount sufficient to provide a suitable foam. In some embodiments, the foaming agent may be present in an amount in the range of from about 0.8% to about 5% by volume of the water (“bvow”).
  • A wide variety of additional additives may be included in the spacer fluids as deemed appropriate by one skilled in the art, with the benefit of this disclosure. Examples of such additives include, but are not limited to: supplementary cementitious materials, weighting agents, viscosifying agents (e.g., clays, hydratable polymers, guar gum), fluid loss control additives, lost circulation materials, filtration control additives, dispersants, defoamers, corrosion inhibitors, scale inhibitors, formation conditioning agents, and a water-wetting surfactants. Water-wetting surfactants may be used to aid in removal of oil from surfaces in the well bore (e.g., the casing) to enhance cement and consolidating spacer fluid bonding. Examples of suitable weighting agents include, for example, materials having a specific gravity of 3 or greater, such as barite. Specific examples of these, and other, additives include: organic polymers, biopolymers, latex, ground rubber, surfactants, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clays (e.g., clays having at least one dimension less than 100 nm), salts, fibers, hydratable clays, microspheres, rice husk ash, micro-fine cement (e.g., cement having an average particle size of from about 5 microns to about 10 microns), metakaolin, zeolite, shale, Portland cement, Portland cement interground with pumice, perlite, barite, slag, lime (e.g., hydrated lime), gypsum, and any combinations thereof, and the like. In some embodiments, a supplementary cementitious material may be included in the spacer fluid in addition to or in place of all or a portion of the CKD. Examples of suitable supplementary cementitious materials include, without limitation, Portland cement, Portland cement interground with pumice, micro-fine cement, fly ash, slag, pumicite, gypsum and any combination thereof. A person having ordinary skill in the art, with the benefit of this disclosure, will readily be able to determine the type and amount of additive useful for a particular application and desired result.
  • As previously mentioned, embodiments of the spacer fluids may be consolidating in that the spacer fluids may develop gel strength and/or compressive strength in the well bore. Consolidation is defined herein as one of three types of material behavior: Type 1 consolidation is identifiable as a gelled fluid that can be moved and/or pumped when the hydraulic shear stress exceeds the yield point (YP) of the gel. Type 2 consolidation is identifiable as a plastic semi-solid that can experience “plastic deformation” if the shear stress, compressive stress, or tensile stress exceeds the “plastic yield limit.” Type 3 consolidation is identifiable as a rigid solid similar to regular set cement. During a steady progressive strain rate during conventional compressive testing, both confined and unconfined, a Type 3 consolidated material would exhibit linear elastic Hookean stress-strain behavior, followed by some plastic yield and/or mechanical failure. This novel consolidating spacer fluid may transform from the pumpable fluid that was placed during the normal displacement operation to Type 1 and/or further progress to Type 2 and/or further progress to Type 3. It should be understood that the consolidation of the spacer fluid is at well bore conditions and, as will be appreciated by those of ordinary skill in the art, well bore conditions may vary. However, embodiments of the spacer fluids may be characterized by exhibiting Type 1, Type 2, or Type 3 consolidation under specific well bore conditions.
  • Specific examples of how to characterize a Type 1 consolidation include measuring the yield stress. Type 1 consolidation exhibits a YP from about 25 Pascals to about 250 Pascals, where YP is measured by one of the methods described in U.S. Pat. No. 6,874,353, namely: using a series of parallel vertical blades on a rotor shaft, referred to by those skilled in the art as the “Vane Method”; or using the new device and method also described in U.S. Pat. No. 6,874,353. Another method used to define the YP of Type 1 consolidation is defined in Morgan, R. G., Suter, D. A., and Sweat, V. A., Mathematical Analysis of a Simple Back Extrusion Rheometer, ASAE Paper No. 79-6001. Additionally, other methods commonly known to those skilled in the art may be used to define the YP of Type 1 consolidated spacer fluids. Alternatively, another method of characterizing a Type 1 consolidation includes measuring the gelled strength of the material, which may be defined as “Static Gel Strength” (SGS) as is defined and measured in accordance with the API Recommended Practice on Determining the Static Gel Strength of Cement Formations, ANSI/API Recommended Practice 10B-6. A Type 1 consolidation may exhibit SGS values from about 70 lbf/100 ft2 up to about 500 lbf/100 ft2.
  • Specific examples of how to characterize a Type 2 consolidation include measuring the yield limit in compression (YL-C). The YL-C is simply the uniaxial compressive stress at which the material experiences a permanent deformation. Permanent deformation refers to a measurable deformation strain that does not return to zero over a period of time that is on the same order of magnitude as the total time required to conduct the measurement. YL-C may range from 1 psi (lbf/sq.in.) to 2,000 psi, with the most common values ranging from 5 psi to 500 psi.
  • Specific examples of how to characterize a Type 3 consolidation include measuring the compressive strength. Type 3 consolidation will exhibit unconfined uniaxial compressive strengths ranging from about 5 psi to about 10,000 psi, while the most common values will range from about 10 psi to about 2,500 psi. These values are achieved in 7 days or less. Some formulations may be designed so as to provide significant compressive strengths with 24 hours to 48 hours. Typical sample geometry and sizes for measurement are similar to, but not limited to, those used for characterizing oil well cements: 2 inch cubes; or 2 inch diameter cylinders that are 4 inches in length; or 1 inch diameter cylinders that are 2 inches in length; and other methods known to those skilled in the art of measuring “mechanical properties” of oil well cements. For example, the compressive strength may be determined by crushing the samples in a compression-testing machine. The compressive strength is calculated from the failure load divided by the cross-sectional area resisting the load and is reported in units of pound-force per square inch (psi). Compressive strengths may be determined in accordance with API RP 10B-2, Recommended Practice for Testing Well Cements, First Edition, July 2005.
  • As a specific example of a consolidation, when left in a well bore annulus (e.g., between a subterranean formation and the pipe string disposed in the subterranean formation or between the pipe string and a larger conduit disposed in the subterranean formation), the spacer fluid may consolidate to develop static gel strength and/or compressive strength. The consolidated mass formed in the well bore annulus may act to support and position the pipe string in the well bore and bond the exterior surface of the pipe string to the walls of the well bore or to the larger conduit. The consolidated mass formed in the well bore annulus may also provide a substantially impermeable barrier to seal off formation fluids and gases and consequently also serve to mitigate potential fluid migration. The consolidated mass formed in the well bore annulus may also protect the pipe string or other conduit from corrosion.
  • Embodiments of the spacer fluids of the present invention may have a transition time that is shorter than the transition time of cement compositions subsequently introduced into the well bore. The term “transition time,” as used herein, refers to the time for a fluid to progress from a static gel strength of about 100 lbf/100 ft2 to about 500 lbf/100 ft2. By having a shorter transition time, the consolidating spacer fluid can reduce or even prevent migration of gas in the well bore, even if gas migrates through a subsequently introduced cement composition before it has developed sufficient gel strength to prevent such migration. Gas and liquid migration can typically be prevented at a static gel strength of 500 lbf/100 ft2. By reducing the amount of gas that can migrate through the well bore, the subsequently added cement compositions can progress through its slower transition period without gas migration being as significant factor as the cement develops static gel strength. Some embodiments of the consolidating spacer fluids may have a transition time (i.e., the time to progress from a static gel strength of about 100 lbf/100 ft2 to about 500 lbf/100 ft2) at well bore conditions of about 45 minutes or less, about 30 minutes or less, about 20 minutes or less, or about 10 minutes or less. Embodiments of the consolidating spacer fluids also quickly develop static gel strengths of about 100 lbf/100 ft2 and about 500 lbf/100 ft2, respectively, at well bore conditions. The time for a fluid to a develop a static gel strength of about 100 lbf/100 ft2 is also referred to as the “zero gel time.” For example, the consolidating spacer fluids may have a zero gel time at well bore condition of about 8 hours or less, and, alternatively, about 4 hours or less. In some embodiments, the consolidating spacer fluids may have a zero gel time in a range of from about 0 minutes to about 4 hours or longer. By way of further example, the consolidating spacer fluids may develop static gel strengths of about 500 lbf/100 ft2 or more at well bore conditions in a time of from about 10 minutes to about 8 hours or longer. The preceding time for development of static gel strengths are listed as being at well bore conditions. Those of ordinary skill in the art will understand that particular well bore conditions (e.g., temperature, pressure, depth, etc.) will vary; however, embodiments of the spacer should meet these specific requirements at well bore conditions. Static gel strength may be measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations, ANSI/API Recommended Practice 10B-6.
  • Embodiments of the spacer fluids of the present invention may be prepared in accordance with any suitable technique. In some embodiments, the desired quantity of water may be introduced into a mixer (e.g., a cement blender) followed by the dry blend. The dry blend may comprise the CKD and additional solid additives, for example. Additional liquid additives, if any, may be added to the water as desired prior to, or after, combination with the dry blend. This mixture may be agitated for a sufficient period of time to form a base slurry. This base slurry may then be introduced into the well bore via pumps, for example. In the foamed embodiments, the base slurry may be pumped into the well bore, and a foaming agent may be metered into the base slurry followed by injection of a gas, e.g., at a foam mixing “T,” in an amount sufficient to foam the base slurry thereby forming a foamed spacer fluid, in accordance with embodiments of the present invention. After foaming, the foamed spacer fluid may be introduced into a well bore. As will be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, other suitable techniques for preparing spacer fluids may be used in accordance with embodiments of the present invention.
  • An example method of the present invention includes a method for evaluating a spacer fluid. The example method may comprise providing the spacer fluid for use in separating a drilling fluid and a cement composition in a well bore. Properties of the spacer fluid may then be measured to determine, for example, the consolidation efficiency for the particular fluid. In some embodiments, the transition time and/or zero gel time of the spacer fluid may be measured. As previously described, the transition time is the time for the fluid to progress from a static gel strength of about 100 lbf/100 ft2 to about 500 lbf/100 ft2, and the zero gel time is the time for the fluid to develop a static gel strength of about 100 lbf/100 ft2. Static gel strength may be measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations, ANSI/API Recommended Practice 10B-6. In some embodiments, the compressive strength may be measured, which may be the unconfined uniaxial compressive strength. Techniques for testing of compressive strength testing are described in more detail above. These measurements may be performed at a range of conditions, for example, to simulate well bore conditions. In some embodiments, the transition time may be measured at a temperature of from about 40° F. to about 300° F. and a pressure of from about 2,000 psi to about 10,000 psi. The compressive strengths may be determined, for example, at atmospheric conditions after the spacer fluid has been allowed to set in a water bath at temperatures of from about 40° F. to 300° F. for a time of from about 24 hours to about 7 days. In some embodiments, the preceding evaluation may be performed for a set of sample spacer fluids, wherein embodiments further comprises selecting one of the sample spacer fluids from the set based on the measured properties. Embodiments may further comprise preparing a spacer fluid based on the selected spacer fluid and using the prepared spacer fluid in displacement of a drilling fluid from a well bore annulus.
  • An example method of the present invention includes a method of enhancing rheological properties of a spacer fluid. The method may comprise including CKD in a spacer fluid. The CKD may be included in the spacer fluid in an amount sufficient to provide a higher yield point than a first fluid. The higher yield point may be desirable, for example, to effectively displace the first fluid from the well bore. As used herein, the term “yield point” refers to the resistance of a fluid to initial flow, or representing the stress required to start fluid movement. In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 5 lb/100 ft2. In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 10 lb/100 ft2. In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 20 lb/100 ft2. It may be desirable for the spacer fluid to not thermally thin to a yield point below the first fluid at elevated temperatures. Accordingly, the spacer fluid may have a higher yield point than the first fluid at elevated temperatures, such as 180° F. or bottom hole static temperature (“BHST”). In one embodiment, the spacer fluid may have a yield point that increases at elevated temperatures. For example, the spacer fluid may have a yield point that is higher at 180° F. than at 80° F. By way of further example. The spacer fluid may have a yield point that is higher at BHST than at 80° F.
  • Another example method of the present invention includes a method of displacing a first fluid from a well bore, the well bore penetrating a subterranean formation. The method may comprise providing a spacer fluid that comprises CKD and water. The method may further comprise introducing the spacer fluid into the well bore to displace at least a portion of the first fluid from the well bore. In some embodiments, the spacer fluid may displace the first fluid from a well bore annulus, such as the annulus between a pipe string and the subterranean formation or between the pipe string and a larger conduit. In some embodiments, the spacer fluid may be characterized by having a higher yield point than the first fluid at 80° F. In some embodiments, the spacer fluid may be characterized by having a higher yield point than the first fluid at 130° F. In some embodiments, the spacer fluid may be characterized by having a higher yield point than the first fluid at 180° F.
  • In an embodiment, the first fluid displaced by the spacer fluid comprises a drilling fluid. By way of example, the spacer fluid may be used to displace the drilling fluid from the well bore. In addition to displacement of the drilling fluid from the well bore, the spacer fluid may also remove the drilling fluid from the walls of the well bore. The drilling fluid may include, for example, any number of fluids, such as solid suspensions, mixtures, and emulsions. In some embodiments, the drilling fluid may comprise an oil-based drilling fluid. An example of a suitable oil-based drilling fluid comprises an invert emulsion. In some embodiments, the oil-based drilling fluid may comprise an oleaginous fluid. Examples of suitable oleaginous fluids that may be included in the oil-based drilling fluids include, but are not limited to, α-olefins, internal olefins, alkanes, aromatic solvents, cycloalkanes, liquefied petroleum gas, kerosene, diesel oils, crude oils, gas oils, fuel oils, paraffin oils, mineral oils, low-toxicity mineral oils, olefins, esters, amides, synthetic oils (e.g., polyolefins), polydiorganosiloxanes, siloxanes, organosiloxanes, ethers, acetals, dialkylcarbonates, hydrocarbons, and combinations thereof. Additional steps in embodiments of the method may comprise introducing a pipe string into the well bore, introducing a cement composition into the well bore with the spacer fluid separating the cement composition and the first fluid. In an embodiment, the cement composition may be allowed to set in the well bore. The cement composition may include, for example, cement and water.
  • Another example method of the present invention includes a method of separating fluids in a well bore, the well bore penetrating a subterranean formation. The method may comprise introducing a spacer fluid into the well bore, the well bore having a first fluid disposed therein. The spacer fluid may comprise, for example, CKD and water. The method may further comprise introducing a second fluid into the well bore with the spacer fluid separating the first fluid and the second fluid. In an embodiment, the first fluid comprises a drilling fluid and the second fluid comprises a cement composition. By way of example, the spacer fluid may prevent the cement composition from contacting the drilling fluid. The cement composition may be foamed or unfoamed as desired for a particular application. In an embodiment, the cement composition comprises cement kiln dust, water, and optionally a hydraulic cementitious material. A variety of hydraulic cements may be utilized in accordance with the present invention, including, but not limited to, those comprising calcium, aluminum, silicon, oxygen, iron, and/or sulfur, which set and harden by reaction with water. Suitable hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, silica cements, and combinations thereof. In certain embodiments, the hydraulic cement may comprise a Portland cement. In some embodiments, the Portland cements that are suited for use in the present invention are classified as Classes A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. The spacer fluid may also remove the drilling fluid, dehydrated/gelled drilling fluid, and/or filter cake solids from the well bore in advance of the cement composition. Embodiments of the spacer fluid may improve the efficiency of the removal of these and other compositions from the well bore. Removal of these compositions from the well bore may enhance bonding of the cement composition to surfaces in the well bore. In an additional embodiment, at least a portion of used and/or unused CKD containing spacer fluid are included in the cement composition that is placed into the well and allowed to set.
  • In some embodiments, at least a portion of the spacer fluid may be left in the well bore such that the spacer fluid consolidates in the well bore. In some embodiments, the spacer fluid may consolidate to foini an annular sheath of a rigid solid. The annular sheath of may bond the exterior surface of the pipe string to the walls of the well bore or to the larger conduit. An example method of the present invention may further include measuring the consolidation of the spacer fluid. This measurement may also include a measurement of the integrity of the bond foimed between the consolidated spacer fluid and the exterior wall of the pipe string and/or between the consolidated spacer fluid and the formation or larger conduit disposed in the well bore. In some embodiments, data may be collected corresponding to the integrity of this bond, and the data may be recorded on a log, commonly referred to as a “bond long.” The bond log may be used to, for example, analyze the consolidation properties of the spacer fluid in the well bore. Accordingly, embodiments may include running a cement bond log on at least the portion of the well bore containing the consolidated spacer fluid. The cement bond log for the settable spacer fluid may be obtained by any method used to measure cement integrity without limitation. In some embodiments, a tool may be run into the well bore on a wireline that can detect the bond of the set spacer fluid to the pipe string and/or the formation (or larger conduit). An example of a suitable tool includes a sonic tool.
  • To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention. In the following examples, concentrations are given in weight percent of the overall composition.
  • Example 1
  • Sample spacer fluids were prepared to evaluate the rheological properties of spacer fluids containing CKD. The sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, FWCA, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • Sample Spacer Fluid No. 1 was an 11 pound per gallon slurry that comprised 60.62% water, 34.17% CKD, 4.63% fly ash, and 0.58% free water control additive (WG-17™ solid additive).
  • Sample Spacer Fluid No. 2 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17™ solid additive), 3.45% bentonite, and 1.04% Econolite™ additive.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 100, 200, and 300 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluids were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below. The abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point.
  • TABLE 1
    YP (lb/
    Sample Temp. Viscometer RPM PV 100
    Fluid (° F.) 300 200 100 6 3 (cP) ft2)
    1 80 145 127 90 24 14 113.3 27.4
    180 168 143 105 26 15 154.5 30.3
    2 80 65 53 43 27 22 41.1 26.9
    180 70 61 55 22 18 51.6 25.8
  • The thickening time of the Sample Spacer Fluid No. 1 was also determined in accordance with API Recommended Practice 10B at 205° F. Sample Spacer Fluid No. 1 had a thickening time of more than 6:00+ hours.
  • Accordingly, the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications. In particular, the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature. For example, Sample Spacer Fluid No. 2 had a higher yield point at 180° F. than at 80° F. In addition, the yield point of Sample Spacer Fluid No. 1 had only a slight decrease at 180° F. as compared to 80° F. Even further, the example illustrates that addition of CKD to a spacer fluid may provide a plastic viscosity that increases with temperature.
  • Example 2
  • Additional sample spacer fluids were prepared to further evaluate the rheological properties of spacer fluids containing CKD. The sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • Sample Fluid No. 3 was a 12.5 pound per gallon fluid that comprised 47.29% water and 52.71% CKD.
  • Sample Fluid No. 4 was a 12.5 pound per gallon fluid that comprised 46.47% water, 40.15% CKD, and 13.38% fly ash.
  • Sample Fluid No. 5 was a 12.5 pound per gallon fluid that comprised 45.62% water, 27.19% CKD, and 27.19% fly ash.
  • Sample Fluid No. 6 was a 12.5 pound per gallon fluid that comprised 44.75% water, 13.81% CKD, and 41.44% fly ash.
  • Sample Fluid No. 7 (comparative) was a 12.5 pound per gallon fluid that comprised 43.85% water, and 56.15% fly ash.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 30, 60, 100, 200, 300, and 600 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluids were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below. The abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point.
  • TABLE 2
    Sample CKD- YP (lb/
    Spacer Fly Ash Temp. Viscometer RPM PV 100
    Fluid Ratio (° F.) 600 300 200 100 60 30 6 3 (cP) ft2)
    3 100:0  80 33 23 20 15 13 12 8 6 12 11
    130 39 31 27 23 22 19 16 11 12 19
    180 66 58 51 47 40 38 21 18 16.5 41.5
    4 75:25 80 28 22 19 15 14 11 8 6 10.5 11.5
    130 39 28 25 21 19 16 14 11 10.5 17.5
    180 51 39 36 35 31 26 16 11 6 33
    5 50:50 80 20 11 8 6 5 4 4 3 7.5 3.5
    130 21 15 13 10 9 8 6 5 7.5 7.5
    180 25 20 17 14 13 12 7 5 9 11
    6 25:75 80 16 8 6 3 2 1 0 0 7.5 0.5
    130 15 8 6 4 3 2 1 1 6 2
    180 15 9 7 5 4 4 2 2 6 3
    7  0:100 80 16 7 5 3 1 0 0 0 6 1
    (Comp.) 130 11 4 3 1 0 0 0 0 4.5 −0.5
    180 8 3 2 0 0 0 0 0 4.5 −1.5
  • Accordingly, the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications. In particular, the above example illustrates, inter alfa, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature. In addition, as illustrated in Table 2 above, higher yield points were observed for spacer fluids with higher concentrations of CKD.
  • Example 3
  • A sample spacer fluid containing CKD was prepared to compare the rheological properties of a spacer fluid containing CKD with an oil-based drilling fluid. The sample spacer fluid was prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • Sample Spacer Fluid No. 8 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17™ solid additive), 3.45% bentonite, and 1.04% Econolite™ additive.
  • The oil-based drilling fluid was a 9.1 pound per gallon oil-based mud.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 100, 200, and 300 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluid and drilling fluid were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below. The abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point. The abbreviation “OBM” refers to oil-based mud.
  • TABLE 3
    YP (lb/
    Sample Temp. Viscometer RPM PV 100
    Fluid (° F.) 300 200 100 6 3 (cP) ft2)
    8 80 59 50 39 22 15 42 21.2
    180 82 54 48 16 13 65.3 17
    OBM 80 83 64 41 11 10 74.6 12.1
    180 46 35 23 10 10 36.7 10.5
  • Accordingly, the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications. In particular, the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid with a yield point that is greater than a drilling fluid even at elevated temperatures. For example, Sample Spacer Fluid No. 8 has a higher yield point at 180° F. than the oil-based mud.
  • Example 4
  • A foamed spacer fluid (Sample Fluid 9) was prepared that comprised CKD. First, a base slurry was prepared that had a density of 10 ppg and comprised CKD, a free water control additive (0.7% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (32.16 gallons per 94-pound sack of CKD). The free water control additive was SA-1015™ suspending aid. The lightweight additive was ECONOLITE™ additive. Next, a foaming agent (FOAMER™ 760 foamer/stabilizer) in an amount of 2% bvow was added, and the base slurry was then mixed in a foam blending jar for 4 seconds at 12,000 rpm. The resulting foamed spacer fluid had a density of 8.4 ppg. The “sink” of the resultant foamed spacer fluid was then measured using a free fluid test procedure as specified in API Recommended Practice 10B. However, rather than measuring the free fluid, the amount of “sink” was measured after the foamed spacer fluid remained static for a period of 2 hours. The foamed spacer fluid was initially at 200° and cooled to ambient temperature over the 2-hour period. The measured sink for this foamed spacer fluid was 5 millimeters.
  • Example 5
  • Another foamed spacer fluid (Sample Fluid 10) was prepared that comprised CKD. First, a base slurry was prepared that had a density of 10.5 ppg and comprised CKD, a free water control additive (0.6% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (23.7 gallons per 94-pound sack of CKD). The free water control additive was SA-1015™ suspending aid. The lightweight additive was ECONOLITE™ additive. Next, a foaming agent (a hexylene glycol/cocobetaine blended surfactant) in an amount of 2% bvow was added, and the base slurry was then mixed in a foam blending jar for 6 seconds at 12,000 rpm. The resulting foamed spacer fluid had a density of 8.304 ppg. The resultant foamed spacer fluid had a sink of 0 millimeters, measured as described above for Example 4.
  • Example 6
  • The following series of tests were performed to determine the compressive strength of consolidating spacer fluids. Twenty-two samples, labeled sample fluids 11-32 in the table below, were prepared having a density of 12.5 ppg using various concentrations of additives. The amount of these additives in each sample fluid are indicated in the table below with “% by weight” indicating the amount of the particular component by weight of Additive 1+Additive 2. The abbreviation “gal/sk” in the table below indicates gallons of the particular component per 94-pound sack of Additive 1 and Additive 2.
  • The CKD used was supplied by Holcim (US) Inc., from Ada, Okla. The shale used was supplied by Texas Industries, Inc., from Midlothian, Tex. The pumice used was either DS-200 or DS-300 lightweight aggregate available from Hess Pumice Products, Inc. The silica flour used was SSA-1™ cement additive, from Halliburton Energy Services, Inc. The course silica flour used was SSA-2™ course silica flour, from Halliburton Energy Services, Inc. The metakaolin used was MetaMax® metakaolin, from BASF. The amorphous silica used was SILICALITE™ cement additive, from Halliburton Energy Services, Inc. The perlite used was supplied by Hess Pumice Products, Inc. The slag used was supplied by LaFarge North America. The Portland cement Interground with pumice was FineCem™ cement, from Halliburton Energy Services, Inc. The fly ash used was POZMIX® cement additive, from Halliburton Energy Services, Inc. The micro-fine cement used was MICRO MATRIX® having an average particle size of 7.5 microns, from Halliburton Energy Services, Inc. The rice husk ash used was supplied by Rice Hull Specialty Products, Stuttgart, Ark. The biopolymer used was supplied by CP Kelco, San Diego, Calif. The barite used was supplied by Baroid Industrial Drilling Products. The latex used was Latex 3000™ cement additive from Halliburton Energy Services, Inc. The ground rubber used was LIFECEM™ 100 from Halliburton Energy Services, Inc. The nano-clay used was supplied by Nanocor Inc. The set retarder used was SCR-100™ cement retarder, from Halliburton Energy Services, Inc. SCR-100TH cement retarder is a copolymer of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid.
  • After preparation, the sample fluids were allowed to cure for seven days in a 2″ by 4″ metal cylinder that was placed in a water bath at 180° F. to form set cylinders. Immediately after removal from the water bath, destructive compressive strengths were determined using a mechanical press in accordance with API RP 10B-2. The results of this test are set forth below.
  • TABLE 4
    Cement 7-Day
    Additive #1 Additive #2 Additive #3 Set Comp.
    Sample Water % by % by % by Retarder Strength
    Fluid gal/sk Type wt Type wt Type Wt % by wt PSI
    11 5.72 CKD 50 Shale 50 0 510
    12 4.91 Pumice DS- 50 Lime 50 1 646
    200
    13 5.88 CKD 50 Silica Flour 50 0 288
    14 6.05 CKD 50 Metakaolin 50 0 104
    15 5.71 CKD 50 Amorphous 50 1 251
    Silica
    16 5.13 CKD 50 Perlite 50 0 1031
    17 5.4 CKD 50 Lime 50 0 58
    18 5.49 CKD 50 Pumice DS- 50 0 624
    200
    19 6.23 CKD 50 Slag 50 0 587
    20 5.88 CKD 50 Course 50 0 1018
    Silica Flour
    21 6.04 CKD 50 Portland 50 1 1655
    Cement
    Interground
    with Pumice
    22 5.63 CKD 50 Fly Ash 50 0 870
    23 5.49 CKD 50 Pumice DS- 50 0 680
    325
    24 5.03 FlyAsh 50 Lime 50 1 170
    25 5.65 Slag 50 Lime 50 1 395
    26 6.36 CKD 50 Micro-fine 50 2 788
    cement
    27 6.08 CKD 80 Rice Husk 20 1 203
    Ash
    28 5.42 CKD 50 Biopolymer 50 1 265
    29 7.34 CKD 50 Barite 50 0 21
    30 4.02 CKD 100 Latex 2 1 164.6
    31 2.71 CKD 100 Ground 10 1 167.6
    Rubber
    32 6.15 CKD 100 Nano- 2 0 102.5
    Clay
  • Accordingly, the above example illustrates that a consolidating spacer fluid comprising CKD may be capable of consolidation. For example, 7-day compressive strengths of 1000 psi or even higher were observed for certain sample slurries.
  • Example 7
  • The following series of tests were performed to evaluate the thickening times of consolidating spacer fluids. For this example, the thickening times for Sample Fluids 11-32 from Example 6 were determined. As indicated below, the compositions for Samples Fluids 11-32 were the same as from Example 6 except the concentration of the cement set retarder was adjusted for certain samples. The thickening time, which is the time required for the compositions to reach 70 Bearden units of consistency, was determined for each fluid at 230° F. in accordance with API RP 10B-2. The results of this test are set forth below.
  • TABLE 5
    Cement
    Additive #1 Additive #2 Additive #3 Set Thickening
    Sample Water % by % by % by Retarder Time
    Fluid gal/sk Type wt Type wt Type Wt % by wt hr:min
    11 5.72 CKD 50 Shale 50 1 11:04 
    12 4.91 Pumice DS- 50 Lime 50 1 0:30
    200
    13 5.88 CKD 50 Silica Flour 50 1 3:31
    14 6.05 CKD 50 Metakaolin 50 1 3:13
    15 5.71 CKD 50 Amorphous 50 1 2:15
    Silica
    16 5.13 CKD 50 Perlite 50 1 7:30
    17 5.4 CKD 50 Lime 50 1 2:42
    18 5.49 CKD 50 Pumice DS- 50 1 10:00 
    200
    19 6.23 CKD 50 Slag 50 1 8:08
    20 5.88 CKD 50 Course 50 1 20 hr+
    Silica Flour
    21 6.04 CKD 50 Portland 50 1 5:58
    Cement
    Interground
    with Pumice
    22 5.63 CKD 50 Fly Ash 50 1 12 hr+
    23 5.49 CKD 50 Pumice DS- 50 1 7:30
    325
    24 5.03 Fly Ash 50 Lime 50 1 3:32
    25 5.65 Slag 50 Lime 50 1 4:05
    26 6.36 CKD 50 Micro-fine 50 2 1:30
    cement
    27 6.08 CKD 80 Rice Husk 20 1 30 hr+
    Ash
    28 5.42 CKD 50 Biopolymer 50 1 1:35
    29 7.34 CKD 50 Barite 50 1 18 hr+
    30 4.02 CKD 100 Latex 2 1 1:10
    31 2.71 CKD 100 Ground 10 1 20 hr+
    Rubber
    32 6.15 CKD 100 Nano- 2 0 54:00 
    Clay
  • Accordingly, the above example illustrates that a settable spacer fluid may have acceptable thickening times for certain applications.
  • Example 8
  • The following series of tests were performed to evaluate the rheological properties of consolidating spacer fluids. For this example, the rheological properties of Sample Fluids 11-32 were determined. The rheological values were determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 30, 60, 100, 200, 300, and 600 with a B1 bob, an R1 rotor, and a 1.0 spring. An additional sample was used for this specific test. It is Sample Fluid 33 and comprised barite and 0.5% of a suspending agent by weight of the barite. The suspending agent was SA™-1015, available from Halliburton Energy Services, Inc. The water was included in an amount sufficient to provide a density of 12.5 ppg. Sample 33's rheological properties were measured twice at two different temperatures and the values per temperature were averaged to present the data shown below. Temperature is measured in degrees Fahrenheit. The results of this test are set forth below.
  • TABLE 6
    Additive #1 Additive #2 Additive #3
    Sample % by % by % by Viscometer RPM
    Fluid Type wt Type wt Type wt Temp. 300 200 100 60 30 6 3 600
    11 CKD 50 Shale 50 80 29 21 14 11 9 6 5 39
    12 Pumice DS- 50 Lime 50 80 24 17 9 6 5 2 1 48
    200
    13 CKD 50 Silica Flour 50 80 16 12 8 6 5 4 3 24
    14 CKD 50 Metakaolin 50 80 36 28 19 15 12 9 8 64
    15 CKD 50 Amorphous 50 80 31 24 18 14 12 10 9 49
    Silica
    16 CKD 50 Perlite 50 80 40 34 27 23 20 15 9 61
    17 CKD 50 Lime 50 80 46 41 34 30 27 16 11 65
    18 CKD 50 Pumice DS- 50 80 23 19 14 11 9 7 6 40
    200
    19 CKD 50 Slag 50 80 23 20 14 11 9 6 5 41
    20 CKD 50 Course 50 80 27 19 12 9 7 4 3 64
    Silica Flour
    21 CKD 50 Portland 50 80 15 10 7 5 3 2 1 18
    Cement
    Interground
    with Pumice
    22 CKD 50 Fly Ash 50 80 12 9 6 4 3 2 1 21
    23 CKD 50 Pumice DS- 50 80 39 32 24 21 17 12 7 57
    325
    24 Fly Ash 50 Lime 50 80 12 9 6 4 3 2 2 24
    25 Slag 50 Lime 50 80 15 10 5 3 2 1 1 23
    26 CKD 50 Micro-fine 50 80 10 7 4 3 2 1 0 14
    cement
    27 CKD 80 Rice Husk 20 80 24 15 9 7 5 3 2 41
    Ash
    28 CKD 50 Biopolymer 50 80 175 111 53 31 15 4 3 220
    29 CKD 50 Barite 50 80 48 40 30 26 22 15 13 2
    30 CKD 100 Latex 2 80 48 39 28 23 19 17 15 82
    31 CKD 100 Ground 10 80 65 56 42 40 39 30 22 105
    Rubber
    32 CKD 100 Nano- 2 80 22 18 12 10 8 6 5 37
    Clay
    33 Barite 100 SA ™- 0.5 80 41 36.5 30.5 28 25.5 20.5 18.5 NA
    1015
    33 Barite 100 SA ™- 0.5 180 38 35.5 32 30 28 23.5 22 NA
    1015
  • Accordingly, the above example indicates that a consolidating spacer fluid may have acceptable rheological properties for a particular application.
  • Example 9
  • The following series of tests were performed to further evaluate the compressive strength of consolidating spacer fluids. Ten samples, labeled Sample Fluids 34-43 in the table below were prepared, having a density of 13 ppg using various concentrations of additives. The amount of these additives in each sample are indicated in the table below with “% by weight” indicating the amount of the particular component by weight of the dry solids, which is the CKD, the Portland cement, the cement accelerator, the fly ash, and/or the lime. The abbreviation “gal/sk” in the table below indicates gallons of the particular component per 94-pound sack of the dry solids.
  • The CKD used was Mountain CKD from Laramie Wyo., except for Sample Fluid 43 which used CKD from Holcim (US) Inc., Ada, Okla. The Portland cement used in Sample Fluids 34 and 35 was CEMEX Type 3 Portland cement, from CEMEX USA. The cement accelerator used in Sample Fluid 34 was CAL-SEAL™ accelerator, from Halliburton Energy Services Inc. CAL-SEAL™ Accelerator is gypsum. The Class F fly ash used in Slurries 37-41 was from Coal Creek Station. The Class C fly ash used in Slurries 36 was from LaFarge North America.
  • After preparation, the samples were allowed to cure for twenty-four or forty-eight hours in a 2″ by 4″ metal cylinder that was placed in a water bath at 160° F. to form set cylinders. For certain samples, separate cylinders were cured for twenty-tour hours and forty-eight hours. Immediately after removal from the water bath, destructive compressive strengths were determined using a mechanical press in accordance with API RP 10B-2. The results of this test are set forth below.
  • TABLE 7
    Portland Cement Class F Class C 24-Hr 48-Hr
    CKD Cement Accel. Fly Ash Fly Ash Lime Comp. Comp.
    Sample Water % by % by % by % by % by % by Strength Strength
    Fluid gal/sk wt wt wt wt wt wt PSI PSI
    34 8.75 85 10 5 0 0 0 73.4
    35 8.75 90 10 0 0 0 0 99.8
    36 8.14 70 0 0 0 30 0 210
    37 8.25 70 0 0 25 0 5 388
    38 8.20 75 0 0 21 0 4 300 784
    39 8.27 80 0 0 17.5 0 2.5 224 641
    40 9.61 70 0 0 25 0 5 219 567
    41 11.5 70 0 0 25 0 5 165 369
    42 5.12 100 0 0 0 0 0 36.2
    43 5.12 100 0 0 0 0 0 60.8
  • Accordingly, the above example illustrates that a consolidating spacer fluid may have acceptable compressive strengths for certain applications.
  • Example 10
  • The following series of tests were performed to evaluate the static gel strength development of consolidating spacer fluids. Two samples, labeled Sample Fluids 44 and 45 were prepared having a density of 11 and 13.5 ppg respectively using various concentrations of additives. The component concentrations of each sample are as follows:
  • For Sample Fluid 44, the sample comprised a blend of CKD (80% by weight), fly ash (16% by weight) and hydrated lime (4% by weight). The sample also comprised a suspending aid in an amount of 0.4% by weight of the blend. Sufficient water was included in the sample to provide a density of 11 ppg. The CKD used was from Holcim (US) Inc., Ada, Okla. The fly ash used was POZMIX® cement additive, from Halliburton Energy Services, Inc. The suspending agent was SA™-1015, available from Halliburton Energy Services, Inc.
  • For Sample Fluid 45, the sample comprised a mixture of CKD (80% by weight), fly ash (16% by weight), and hydrate lime (4% by weight). Sufficient water was included in the sample to provide a density of 13.5 ppg. The CKD used was from Holcim (US) Inc., Ada, Okla. The fly ash used was POZMIX® cement additive, from Halliburton Energy Services, Inc.
  • The static gel strength of the samples was measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations, ANSI/API Recommended Practice 10B-6. FIGS. 1 and 2 show the static gel strength measurements for Sample Fluids 44 and 45, respectively, as a function of time. As seen in the figures, the samples progress through the transition time, defined as the time between 100 SGS and 500 SGS, very quickly with a total transition time of 19 minutes for the sample 34 and 6 minutes for sample 35. These short transition times are faster than most cement compositions.
  • Example 11
  • The following tests were performed to evaluate the static gel strength development of consolidating spacer fluids. Two samples, labeled Samples Fluids 46 and 47 were prepared having a density of 13.002 and 10.999 ppg respectively using various concentrations of additives. The component concentrations of each sample are as follows:
  • For Sample Fluid 46, the sample comprised a blend of CKD (100% by weight), POZMIX® (50% by weight of the CKD), HR®-601 (1% by weight of the CKD), HR®-25 (PB) (0.6% by weight of the CKD), and D-Air 5000 (0.5% by weight of the CKD). Sufficient water was included in the sample to provide a density of 13.002 ppg. The CKD used was from Holcim (US) Inc., Ada, Okla. POZMIX® cement additive is from Halliburton Energy Services, Inc. HR®-601 is a cement retarder available from Halliburton Energy Services, Inc. HR®-25 is a cement retarder available from Halliburton Energy Services, Inc. D-Air™ 5000 is a defoamer available from Halliburton Energy Services, Inc.
  • For Sample Fluid 47, the sample comprised a blend of CKD (100% by weight), SA-1015 (0.4% by weight of the CKD), and D-Air 5000 (0.5% by weight of the CKD). Sufficient water was included in the sample to provide a density of 10.999 ppg. The CKD used was from Holcim (US) Inc., Ada, Okla. SA™-1015 is a suspending agent available from Halliburton Energy Services, Inc. D-Air™ 5000 is a defoamer available from Halliburton Energy Services, Inc.
  • The static gel strength of the samples was measured in accordance with API Recommended Practice on Determining the Static Gel Strength of Cement Formations, ANSI/API Recommended Practice 10B-6. Table 8 shows the static gel strength measurements for samples 36 and 37, respectively.
  • TABLE 8
    Difference
    between 100 lbf/
    Time to reach Time to reach 100 fts and
    Sample Temp 100 lbf/100 ft s 500 lbf/100 ft s 500 lbf/100 fts
    Fluid (° F.) (hr:min) (hr:min) (hr:min)
    46 220 3:25 5:04  1:39
    47 220 3:07 3:17 00:10

    As seen in the table, Sample Fluid 47 progresses through the transition time, defined as the time between 100 SGS and 500 SGS, very quickly with a total transition time of 10 minutes. Sample Fluid 46 is much slower taking over an hour to progress through the transition time. The short transition time of Sample Fluid 47 is faster than most cement compositions.
  • It should be understood that the compositions and methods are described in temis of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces.
  • For the sake of brevity, only certain ranges are explicitly disclosed herein. However, ranges from any lower limit may be combined with any upper limit to recite a range not explicitly recited, as well as, ranges from any lower limit may be combined with any other lower limit to recite a range not explicitly recited, in the same way, ranges from any upper limit may be combined with any other upper limit to recite a range not explicitly recited. Additionally, whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values even if not explicitly recited. Thus, every point or individual value may serve as its own lower or upper limit combined with any other point or individual value or any other lower or upper limit, to recite a range not explicitly recited.
  • Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Although individual embodiments are discussed, the invention covers all combinations of all those embodiments. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. If there is any conflict in the usages of a word or term in this specification and one or more patent(s) or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.

Claims (28)

What is claimed is:
1. A method of evaluating a spacer fluid for use in separating a drilling fluid and a cement composition in a well bore comprising:
providing the spacer fluid; and
measuring a transition time and/or zero gel time of the spacer fluid.
2. The method of claim 1 wherein the transition time of the spacer fluid is about 45 minutes or less at well bore conditions.
3. The method of claim 1 wherein the transition time of the spacer fluid is about 20 minutes or less at a temperature in a range of from about 40° F. to about 300° F. and a pressure in a range of from about 2,000 psi to about 10,000 psi.
4. The method of claim 1 further comprising measuring a compressive strength of the spacer fluid.
5. The method of claim 1 further comprising: providing a cement composition, measuring a transition time of the cement composition, and comparing the transition time of the cement composition and the transition time of the spacer fluid.
6. The method of claim 5 wherein the transition time of the spacer fluid is shorter than the transition time of the cement composition.
7. The method of claim 1 wherein the zero gel time of the spacer fluid is about 4 hours or less at well bore conditions.
8. The method of claim 1 further comprising: providing a cement composition, measuring a zero gel time of the cement composition, and comparing the zero gel time of the cement composition and the zero gel time of the spacer fluid.
9. The method of claim 1 wherein the zero gel time of the spacer fluid is longer than the zero time of the cement composition.
10. The method of claim 1 wherein the spacer fluid is foamed and has a density in a range of from about 4 pounds per gallon to about 13 pounds per gallon.
11. The method of claim 1 wherein the spacer fluid comprises cement kiln dust.
12. The method of claim 1 wherein the spacer fluid comprises lime kiln dust.
13. The method of claim 1 wherein the spacer fluid comprises kiln dust in an amount in a range of from about 1% to about 60% by weight of the spacer fluid.
14. The method of claim 1 wherein the spacer fluid comprises at least one additive selected from the group consisting of a free water control additive, a lightweight additive, a foaming agent, a supplementary cementitious material, a weighting agent of any suitable size, a viscosifying agent, a fluid loss control agent, a lost circulation material, a filtration control additive, a dispersant, a defoamer, a corrosion inhibitor, a scale inhibitor, a formation conditioning agent, a water-wetting surfactant, and any combination thereof.
15. The method of claim 1 wherein the spacer fluid comprises at least one additive selected from the group consisting of kiln dust, gypsum, fly ash, bentonite, hydroxyethyl cellulose, sodium silicate, a hollow microsphere, gilsonite, perlite, a gas, an organic polymer, a biopolymer, latex, ground rubber, a surfactant, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clay, salt, fiber, hydratable clay, rice husk ash, micro-fine cement, metakaolin, zeolite, shale, pumicite, Portland cement, Portland cement interground with pumice, barite, slag, lime, and any combination thereof.
16. The method of claim 1 wherein the spacer fluid comprises at least one cementitious material selected from the group consisting of Portland cement, Portland cement interground with pumice, micro-fine cement, slag, fly ash, rice husk ash, pumicite, gypsum, and any combination thereof.
17. A method of evaluating a plurality of spacer fluids for use in separating a drilling fluid and a cement composition in a well bore comprising:
providing the plurality of spacer fluids;
measuring a transition time, zero gel time and/or compressive strength of each of the spacer fluids;
selecting one spacer fluid from the plurality of spacer fluids; and
using the selected spacer fluid to separate the drilling fluid and a cement composition in a well bore.
18. The method of claim 17 wherein the transition time of the selected one of the spacer fluids is about 45 minutes or less at well bore conditions.
19. The method of claim 17 wherein the transition time of the selected one of the spacer fluids is about 20 minutes or less at a temperature in a range of from about 40° F. to about 300° F. and a pressure in a range of from about 2,000 psi to about 10,000 psi.
20. The method of claim 17 wherein the zero gel time of the selected one of the spacer fluids is about 4 hours or less at well bore conditions.
21. The method of claim 17 wherein the selected one of the spacer fluids comprises at least one kiln dust selected from the group consisting of cement kiln dust and lime kiln dust.
22. The method of claim 17 wherein at least one of the spacer fluids comprises at least one additive selected from the group consisting of a free water control additive, a lightweight additive, a foaming agent, a supplementary cementitious material, a weighting agent of any suitable size, a viscosifying agent, a fluid loss control agent, a lost circulation material, a filtration control additive, a dispersant, a defoamer, a corrosion inhibitor, a scale inhibitor, a formation conditioning agent, a water-wetting surfactant, and any combination thereof.
23. The method of claim 17 wherein at least one of the spacer fluids comprises at least one additive selected from the group consisting of kiln dust, gypsum, fly ash, bentonite, hydroxyethyl cellulose, sodium silicate, a hollow microsphere, gilsonite, perlite, a gas, an organic polymer, a biopolymer, latex, ground rubber, a surfactant, crystalline silica, amorphous silica, silica flour, fumed silica, nano-clay, salt, fiber, hydratable clay, rice husk ash, micro-fine cement, metakaolin, zeolite, shale, pumicite, Portland cement, Portland cement interground with pumice, barite, slag, lime, and any combination thereof.
24. The method of claim 17 wherein at least one of the spacer fluids comprises at least one cementitious material selected from the group consisting of Portland cement, Portland cement interground with pumice, micro-fine cement, slag, fly ash, rice husk ash, pumicite, gypsum, and any combination thereof.
25. A method of evaluating a spacer fluid for use in separating a drilling fluid and a cement composition in a well bore comprising:
providing the spacer fluid, and
measuring a transition time, zero gel time and/or compressive strength of the spacer fluid.
26. The method of claim 25 wherein the spacer fluid comprises a kiln dust.
27. The method of claim 26 wherein the kiln dust comprises SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O.
28. The method of claim 25 where the spacer fluid comprises cement kiln dust.
US13/851,475 2005-09-09 2013-03-27 Consolidating Spacer Fluids and Methods of Use Abandoned US20130213643A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/851,475 US20130213643A1 (en) 2005-09-09 2013-03-27 Consolidating Spacer Fluids and Methods of Use
US14/585,931 US20150107838A1 (en) 2005-09-09 2014-12-30 Consolidating Spacer Fluids and Methods of Use
US14/713,752 US9903184B2 (en) 2005-09-09 2015-05-15 Consolidating spacer fluids and methods of use

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11/223,669 US7445669B2 (en) 2005-09-09 2005-09-09 Settable compositions comprising cement kiln dust and additive(s)
US12/264,010 US8333240B2 (en) 2005-09-09 2008-11-03 Reduced carbon footprint settable compositions for use in subterranean formations
US12/895,436 US8522873B2 (en) 2005-09-09 2010-09-30 Spacer fluids containing cement kiln dust and methods of use
US13/535,145 US8505629B2 (en) 2005-09-09 2012-06-27 Foamed spacer fluids containing cement kiln dust and methods of use
US13/725,833 US8505630B2 (en) 2005-09-09 2012-12-21 Consolidating spacer fluids and methods of use
US13/851,475 US20130213643A1 (en) 2005-09-09 2013-03-27 Consolidating Spacer Fluids and Methods of Use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/725,833 Division US8505630B2 (en) 2005-09-09 2012-12-21 Consolidating spacer fluids and methods of use

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/585,931 Continuation US20150107838A1 (en) 2005-09-09 2014-12-30 Consolidating Spacer Fluids and Methods of Use
US14/713,752 Continuation US9903184B2 (en) 2005-09-09 2015-05-15 Consolidating spacer fluids and methods of use

Publications (1)

Publication Number Publication Date
US20130213643A1 true US20130213643A1 (en) 2013-08-22

Family

ID=48222918

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/725,833 Active US8505630B2 (en) 2005-09-09 2012-12-21 Consolidating spacer fluids and methods of use
US13/851,391 Active US8544543B2 (en) 2005-09-09 2013-03-27 Consolidating spacer fluids and methods of use
US13/851,475 Abandoned US20130213643A1 (en) 2005-09-09 2013-03-27 Consolidating Spacer Fluids and Methods of Use
US13/851,925 Active US8691737B2 (en) 2005-09-09 2013-03-27 Consolidating spacer fluids and methods of use
US14/585,931 Abandoned US20150107838A1 (en) 2005-09-09 2014-12-30 Consolidating Spacer Fluids and Methods of Use
US14/713,752 Active 2025-09-28 US9903184B2 (en) 2005-09-09 2015-05-15 Consolidating spacer fluids and methods of use

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/725,833 Active US8505630B2 (en) 2005-09-09 2012-12-21 Consolidating spacer fluids and methods of use
US13/851,391 Active US8544543B2 (en) 2005-09-09 2013-03-27 Consolidating spacer fluids and methods of use

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/851,925 Active US8691737B2 (en) 2005-09-09 2013-03-27 Consolidating spacer fluids and methods of use
US14/585,931 Abandoned US20150107838A1 (en) 2005-09-09 2014-12-30 Consolidating Spacer Fluids and Methods of Use
US14/713,752 Active 2025-09-28 US9903184B2 (en) 2005-09-09 2015-05-15 Consolidating spacer fluids and methods of use

Country Status (1)

Country Link
US (6) US8505630B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8895486B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US9903184B2 (en) 2005-09-09 2018-02-27 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US10752823B1 (en) 2019-09-06 2020-08-25 Halliburton Energy Services, Inc. Wellbore servicing composition with controlled gelation of cement kiln dust and methods of making and using same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8851173B2 (en) 2012-03-09 2014-10-07 Halliburton Energy Services, Inc. Set-delayed cement compositions comprising pumice and associated methods
US9790132B2 (en) 2012-03-09 2017-10-17 Halliburton Energy Services, Inc. Set-delayed cement compositions comprising pumice and associated methods
US10195764B2 (en) 2012-03-09 2019-02-05 Halliburton Energy Services, Inc. Set-delayed cement compositions comprising pumice and associated methods
US9328583B2 (en) 2012-03-09 2016-05-03 Halliburton Energy Services, Inc. Set-delayed cement compositions comprising pumice and associated methods
US10202751B2 (en) 2012-03-09 2019-02-12 Halliburton Energy Services, Inc. Set-delayed cement compositions comprising pumice and associated methods
US9227872B2 (en) 2012-03-09 2016-01-05 Halliburton Energy Services, Inc. Cement set activators for set-delayed cement compositions and associated methods
US9657218B2 (en) 2013-07-18 2017-05-23 Halliburton Energy Services, Inc. Predicting properties of well bore treatment fluids
WO2015034543A1 (en) 2013-09-09 2015-03-12 Halliburton Energy Services, Inc. Activation of set-delayed cement compositions by retarder exchange
CN103740344A (en) * 2013-12-06 2014-04-23 中国石油集团渤海钻探工程有限公司 Well cementation displacement efficiency enhancement spacer fluid
US10233374B2 (en) 2014-08-05 2019-03-19 Halliburton Energy Services, Inc. Polymer-based drilling fluids containing non-biodegradable materials and methods for use thereof
US10030187B2 (en) 2014-08-05 2018-07-24 Halliburton Energy Services, Inc. Polymer-based drilling fluids containing non-biodegradable particulates and methods for use thereof
EP3204340A1 (en) * 2014-10-06 2017-08-16 Sika Technology AG Additive for grinding on rolling mills
CA2969895C (en) 2015-01-29 2019-06-04 Halliburton Energy Services, Inc. Extended-life settable compositions comprising a bauxite refinery residue red mud
US10053611B2 (en) 2016-03-22 2018-08-21 Saudi Arabian Oil Company In situ generation of nano-clay drilling fluid
AU2016401236B2 (en) * 2016-03-31 2020-08-27 Halliburton Energy Services, Inc. Co-grinding slag with other material for hydraulic binders
CN107162468A (en) * 2017-06-14 2017-09-15 合肥易美特建材有限公司 A kind of concrete waterproofer and preparation method thereof
WO2018232076A1 (en) 2017-06-16 2018-12-20 TenEx Technologies, LLC Compositions and methods for treating subterranean formations
US10450494B2 (en) 2018-01-17 2019-10-22 Bj Services, Llc Cement slurries for well bores
WO2019194846A1 (en) * 2018-04-05 2019-10-10 Halliburton Energy Services, Inc. Mitigating annular pressure buildup with nanoporous metal oxides
CN108821705A (en) * 2018-09-12 2018-11-16 东南大学 A kind of Portland cement base pavement patching material and preparation method thereof
RU2770100C1 (en) 2019-02-01 2022-04-14 Халлибертон Энерджи Сервисез, Инк. Compatible buffer liquids made of low-crystalline silicon dioxide
US11760913B2 (en) 2019-06-14 2023-09-19 King Fahd University Of Petroleum And Minerals Perlite containing drilling fluids and uses thereof
WO2021046294A1 (en) 2019-09-05 2021-03-11 Saudi Arabian Oil Company Propping open hydraulic fractures
US11098234B2 (en) * 2019-09-05 2021-08-24 Halliburton Energy Services, Inc. Agglomerated zeolite catalyst for spacers and efficiency fluids
CN112052592B (en) * 2020-09-07 2021-03-09 西南石油大学 Method for establishing chart for mechanical property design of large-scale fracturing oil well set cement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423781A (en) * 1980-04-01 1984-01-03 Standard Oil Company Method of using a spacer system in brine completion of wellbores
US5484019A (en) * 1994-11-21 1996-01-16 Halliburton Company Method for cementing in a formation subject to water influx
US5866517A (en) * 1996-06-19 1999-02-02 Atlantic Richfield Company Method and spacer fluid composition for displacing drilling fluid from a wellbore
US7143827B2 (en) * 2003-03-21 2006-12-05 Halliburton Energy Services, Inc. Well completion spacer fluids containing fibers and methods
US20070209796A1 (en) * 2006-03-09 2007-09-13 Halliburton Energy Services, Inc. Cement compositions for reducing gas or water migration and methods of using the same
US7438758B2 (en) * 2004-10-15 2008-10-21 Halliburton Energy Services, Inc. Cement compositions comprising aromatic sulfonated polymers and methods of using the same

Family Cites Families (400)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2021956A (en) 1932-07-25 1935-11-26 Marshall S Hanrahan Cellular aggregate and process
US1931921A (en) 1932-12-01 1933-10-24 Valley Forge Cement Company Manufacture of cement
US2133622A (en) 1934-06-12 1938-10-18 Yosemite Portland Cement Corp Cement process and product
US2045899A (en) 1935-04-30 1936-06-30 Texas Co Method of increasing production from wells
US2094316A (en) 1936-03-06 1937-09-28 Kansas City Testing Lab Method of improving oil well drilling muds
US2144254A (en) 1936-09-24 1939-01-17 Separation Process Company Cement manufacture
US2193807A (en) 1938-01-04 1940-03-19 Dow Chemical Co Cementing practice for earth wells
US2193775A (en) 1938-06-18 1940-03-12 Texaco Development Corp Method of treating a well
US2214715A (en) 1938-06-30 1940-09-10 Separation Process Company Cement manufacture
US2329940A (en) 1940-12-12 1943-09-21 Missouri Portland Cement Co Manufacture of cement
US2592468A (en) 1947-12-06 1952-04-08 Standard Oil Dev Co Manufacture of cement
US2848051A (en) 1954-03-22 1958-08-19 Atlantic Refining Co Method for improving well cementing jobs
US2772739A (en) 1954-09-24 1956-12-04 Shell Dev Method of temporarily closing portion of well and composition therefor
US2880096A (en) 1954-12-06 1959-03-31 Phillips Petroleum Co Cement compositions and process of cementing wells
US2844361A (en) 1955-06-28 1958-07-22 Fuller Co Method and apparatus for blending pulverulent material
US2805719A (en) 1955-09-15 1957-09-10 Halliburton Oil Well Cementing High temperature well cementing
US2871133A (en) 1956-12-10 1959-01-27 Peerless Cement Corp Inorganic dust treatment process
US2842205A (en) 1956-12-24 1958-07-08 Exxon Research Engineering Co Method of servicing wells
US2945769A (en) 1957-08-08 1960-07-19 Bj Service Inc Cement composition
US3024125A (en) 1959-02-13 1962-03-06 Pennsalt Chemicals Corp Cement composition
US3066031A (en) 1959-10-21 1962-11-27 Joseph J Coney Cementitious material and method of preparation thereof
US3168139A (en) 1961-05-08 1965-02-02 Great Lakes Carbon Corp Converting drilling muds to slurries suitable for cementing oil and gas wells
US3320077A (en) 1966-01-19 1967-05-16 William L Prior Inorganic plastic cements and process for the preparation thereof
US3467193A (en) 1966-04-04 1969-09-16 Mobil Oil Corp Method for achieving turbulence in cementing wells
US3411580A (en) * 1966-09-28 1968-11-19 Byron Jackson Inc Mud removal method
US3473939A (en) 1967-04-10 1969-10-21 Kaiser Aluminium Chem Corp Direct-bonded periclase refractories and process of preparing same
FR1535495A (en) 1967-04-28 1968-08-09 Rice husk treatment process and material obtained by this process
US3454095A (en) 1968-01-08 1969-07-08 Mobil Oil Corp Oil recovery method using steam stimulation of subterranean formation
US3421703A (en) 1968-04-04 1969-01-14 Nat Gypsum Co Kiln feed control
US3574113A (en) 1968-04-18 1971-04-06 Owens Corning Fiberglass Corp Method of producing calcium silicate type high temperature thermal insulation materials
US3499491A (en) 1968-06-28 1970-03-10 Dresser Ind Method and composition for cementing oil well casing
US3557876A (en) 1969-04-10 1971-01-26 Western Co Of North America Method and composition for drilling and cementing of wells
US3628973A (en) 1970-11-20 1971-12-21 Ass Portland Cement Modified portland cement and process
US3876005A (en) 1972-01-24 1975-04-08 Halliburton Co High temperature, low density cementing method
US3748159A (en) 1972-04-20 1973-07-24 Halliburton Co High temperature cementing compositions containing a lignosulfonic acid salt and a pentaboric acid salt
US3749173A (en) * 1972-05-30 1973-07-31 Dow Chemical Co Displacement of drilling fluids from boreholes
US3959007A (en) 1972-07-28 1976-05-25 Structural Materials Process for the preparation of siliceous ashes
NL7306868A (en) 1973-05-17 1974-11-19
US3921717A (en) 1973-07-12 1975-11-25 Solomon Isaakovic Danjushevsky Method for cementing wells
US4105459A (en) 1974-01-28 1978-08-08 The Regents Of The University Of California Siliceous ashes and hydraulic cements prepared therefrom
US3863718A (en) * 1974-03-27 1975-02-04 Shell Oil Co Cementing procedure for avoiding mud channeling
US3887009A (en) 1974-04-25 1975-06-03 Oil Base Drilling mud-cement compositions for well cementing operations
US4018619A (en) 1974-09-23 1977-04-19 Iu Technology Corporation Highly activated mixtures for constructing load bearing surfaces and method of making the same
US4036301A (en) 1974-10-29 1977-07-19 Standard Oil Company (Indiana) Process and composition for cementing casing in a well
US4031184A (en) 1976-01-14 1977-06-21 Donald L. Christensen Process for reclaiming cement kiln dust and recovering chemical values therefrom
USRE31190E (en) 1976-02-02 1983-03-29 Halliburton Company Oil well cementing process
US4018617A (en) 1976-02-02 1977-04-19 Nicholson Realty Ltd. Mixture for pavement bases and the like
US4101332A (en) 1976-02-02 1978-07-18 Nicholson Realty Ltd. Stabilized mixture
JPS542984Y2 (en) 1976-03-02 1979-02-09
JPS52117316A (en) 1976-03-29 1977-10-01 Matsushita Electric Works Ltd Method of manufacturing hardened cement products
US4141843A (en) * 1976-09-20 1979-02-27 Halliburton Company Oil well spacer fluids
US4083407A (en) 1977-02-07 1978-04-11 The Dow Chemical Company Spacer composition and method of use
US4160674A (en) 1978-01-30 1979-07-10 Lone Star Industries Early high-strength portland cement and method of manufacture
US4176720A (en) 1978-07-27 1979-12-04 Atlantic Richfield Company Well cementing in permafrost
US4268316A (en) 1979-07-27 1981-05-19 Martin Marietta Corporation Masonry cement composition
US4304300A (en) * 1979-08-09 1981-12-08 Halliburton Company Method of using gelled aqueous well treating fluids
US4274881A (en) 1980-01-14 1981-06-23 Langton Christine A High temperature cement
US4341562A (en) 1980-03-21 1982-07-27 N-Viro Energy Systems, Ltd. Lightweight aggregate
US4333764A (en) 1981-01-21 1982-06-08 Shell Oil Company Nitrogen-gas-stabilized cement and a process for making and using it
DE3131548A1 (en) 1981-08-08 1983-02-24 Otavi Minen Ag, 6000 Frankfurt "LIGHTWEIGHT MATERIAL AND METHOD FOR THE PRODUCTION THEREOF"
DE3132928C1 (en) 1981-08-20 1983-01-13 Degussa Ag, 6000 Frankfurt Process for accelerating the setting of hydraulic cement mixtures
US4436850A (en) 1981-10-19 1984-03-13 Allied Corporation Stabilizing SBR latex in cement formulations with low molecular weight polymers
EP0092572A1 (en) 1981-10-26 1983-11-02 Standard Concrete Material Inc. Improvements in cements, mortars and concretes
US4407677A (en) 1982-04-05 1983-10-04 Martin Marietta Corporation Concrete masonry units incorporating cement kiln dust
US4400474A (en) 1982-04-26 1983-08-23 Uss Engineers & Consultants, Inc. Basic refractory cementitious material and components thereof
US4460292A (en) 1982-07-15 1984-07-17 Agritec, Inc. Process for containment of liquids as solids or semisolids
US4432800A (en) 1982-08-16 1984-02-21 N-Viro Energy Systems Ltd. Beneficiating kiln dusts utilized in pozzolanic reactions
US4440576A (en) 1982-09-27 1984-04-03 Corning Glass Works Hydraulic cements prepared from glass powders
US4470463A (en) * 1983-01-27 1984-09-11 The Dow Chemical Company Well treating process and composition
US4494990A (en) 1983-07-05 1985-01-22 Ash Grove Cement Company Cementitious composition
US4555269A (en) 1984-03-23 1985-11-26 Halliburton Company Hydrolytically stable polymers for use in oil field cementing methods and compositions
US4515635A (en) 1984-03-23 1985-05-07 Halliburton Company Hydrolytically stable polymers for use in oil field cementing methods and compositions
US4519452A (en) 1984-05-31 1985-05-28 Exxon Production Research Co. Method of drilling and cementing a well using a drilling fluid convertible in place into a settable cement slurry
US4668128A (en) 1984-07-05 1987-05-26 Soli-Tech, Inc. Rigidification of semi-solid agglomerations
US4676832A (en) 1984-10-26 1987-06-30 Halliburton Company Set delayed cement compositions and methods of using the same
US4624711A (en) 1984-11-07 1986-11-25 Resource Technology, Inc. Light-weight aggregate
US4741782A (en) 1984-11-07 1988-05-03 Resource Technology, Inc. Process for forming a light-weight aggregate
US4614599A (en) 1985-04-01 1986-09-30 Texaco Inc. Encapsulated lime as a lost circulation additive for aqueous drilling fluids
US4633950A (en) 1985-05-28 1987-01-06 Texaco Inc. Method for controlling lost circulation of drilling fluids with hydrocarbon absorbent polymers
GB8531866D0 (en) 1985-12-30 1986-02-05 Shell Int Research Forming impermeable coating on borehole wall
US4676317A (en) 1986-05-13 1987-06-30 Halliburton Company Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations
SU1373781A1 (en) 1986-05-15 1988-02-15 Брянский технологический институт Method of producing prestrained ferroconcrete articles
US5183506A (en) 1987-08-19 1993-02-02 Zhang Zhong M Modified flux composition for cement
US4883125A (en) 1987-12-11 1989-11-28 Atlantic Richfield Company Cementing oil and gas wells using converted drilling fluid
US4829107A (en) 1988-02-24 1989-05-09 W. R. Grace & Co.-Conn. Rice hull ash concrete admixture
US5266111A (en) 1988-08-08 1993-11-30 Barbour Ronald L Class F. fly ash containing settable composition for general purpose concrete having high early strength and method of making same
US4992102A (en) 1988-08-08 1991-02-12 Barbour Ronald L Synthetic class C fly ash and use thereof as partial cement replacement in general purpose concrete
US5520730A (en) 1988-08-08 1996-05-28 Barbour; Ronald L. Settable composition for general purpose concrete and method of making same
US4941536A (en) 1989-06-27 1990-07-17 Halliburton Company Set retarded cement compositions and methods for well cementing
US5049288A (en) 1989-06-27 1991-09-17 Halliburton Company Set retarded cement compositions and methods for well cementing
US4967839A (en) 1989-10-23 1990-11-06 Atlantic Richfield Company Method and composition for cementing in a wellbore
US5113943A (en) * 1989-11-27 1992-05-19 Atlantic Richfield Company Spacer fluids
US5030366A (en) 1989-11-27 1991-07-09 Atlantic Richfield Company Spacer fluids
US5423379A (en) 1989-12-27 1995-06-13 Shell Oil Company Solidification of water based muds
US5673753A (en) 1989-12-27 1997-10-07 Shell Oil Company Solidification of water based muds
US5464060A (en) 1989-12-27 1995-11-07 Shell Oil Company Universal fluids for drilling and cementing wells
US5058679A (en) 1991-01-16 1991-10-22 Shell Oil Company Solidification of water based muds
US5515921A (en) 1989-12-27 1996-05-14 Shell Oil Company Water-base mud conversion for high tempratice cementing
US5133943A (en) 1990-03-28 1992-07-28 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having a multicompartment external recycle heat exchanger
US5346548A (en) 1990-06-25 1994-09-13 The Regents Of The University Of California Highly durable cement products containing siliceous ashes
US5121795A (en) 1991-01-08 1992-06-16 Halliburton Company Squeeze cementing
US5086850A (en) 1991-01-08 1992-02-11 Halliburton Company Well bore drilling direction changing method
US5125455A (en) 1991-01-08 1992-06-30 Halliburton Services Primary cementing
US5127473A (en) 1991-01-08 1992-07-07 Halliburton Services Repair of microannuli and cement sheath
US5123487A (en) 1991-01-08 1992-06-23 Halliburton Services Repairing leaks in casings
US5238064A (en) 1991-01-08 1993-08-24 Halliburton Company Squeeze cementing
WO1992017413A1 (en) 1991-03-29 1992-10-15 Chase Raymond S Silica-containing cement and concrete composition
CA2064682A1 (en) 1991-04-02 1992-10-03 Kirk L. Harris Well bore drilling direction changing method
US5213160A (en) 1991-04-26 1993-05-25 Shell Oil Company Method for conversion of oil-base mud to oil mud-cement
US5382290A (en) 1991-04-26 1995-01-17 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5542782A (en) 1991-06-24 1996-08-06 Halliburton Nus Environmental Corp. Method and apparatus for in situ installation of underground containment barriers under contaminated lands
NL9101655A (en) 1991-10-01 1993-05-03 Pelt & Hooykaas FIXING AGENT FOR MIXED ORGANIC AND INORGANICALLY CONTAMINATED MATERIALS AND METHOD FOR PREPARING AND USING THE SAME
US5215585A (en) 1991-10-25 1993-06-01 W. R. Grace & Co.-Conn. Hydration retarder
DK49592D0 (en) 1992-04-13 1992-04-13 Aalborg Portland As CEMENT COMPOSITION
US5290355A (en) 1992-04-16 1994-03-01 Jakel Karl W Roofing shingle composition, method of formulation, and structure
US5183505A (en) 1992-05-27 1993-02-02 Concrete Technology, Inc. Cellular concrete
US5641584A (en) 1992-08-11 1997-06-24 E. Khashoggi Industries Highly insulative cementitious matrices and methods for their manufacture
RU2026959C1 (en) 1992-08-19 1995-01-20 Волго-Уральский научно-исследовательский и проектный институт по добыче и переработке сероводородсодержащих газов Grouting mortar for cementing oil and gas wells
US5252128A (en) 1992-09-04 1993-10-12 Basf Corporation Additive composition for oil well cementing formulations
EP0587383A1 (en) 1992-09-10 1994-03-16 Halliburton Company A method of making a cement agglomeration.
US5536311A (en) 1992-10-02 1996-07-16 Halliburton Company Set retarded cement compositions, additives and methods
US5476144A (en) 1992-10-15 1995-12-19 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5314022A (en) 1992-10-22 1994-05-24 Shell Oil Company Dilution of drilling fluid in forming cement slurries
MY112090A (en) 1992-10-22 2001-04-30 Shell Int Research Method for drilling and cementing a well
US5327968A (en) 1992-12-30 1994-07-12 Halliburton Company Utilizing drilling fluid in well cementing operations
US5316083A (en) * 1992-12-31 1994-05-31 Shell Oil Company Blast furnace slag spacer
US5305831A (en) 1993-02-25 1994-04-26 Shell Oil Company Blast furnace slag transition fluid
US5478391A (en) 1993-03-26 1995-12-26 Cement Technology Corporation Cementitious materials and method of making the same
US5383521A (en) 1993-04-01 1995-01-24 Halliburton Company Fly ash cementing compositions and methods
US5339902A (en) 1993-04-02 1994-08-23 Halliburton Company Well cementing using permeable cement
US5372641A (en) 1993-05-17 1994-12-13 Atlantic Richfield Company Cement slurries for wells
US5361841A (en) 1993-05-27 1994-11-08 Shell Oil Company Drilling and cementing with blast furnace slag/polyalcohol fluid
US5361842A (en) 1993-05-27 1994-11-08 Shell Oil Company Drilling and cementing with blast furnace slag/silicate fluid
US5358044A (en) 1993-05-27 1994-10-25 Shell Oil Company Drilling and cementing with blast furnace slag/soluble/insoluble alcohol
US5352288A (en) 1993-06-07 1994-10-04 Dynastone Lc Low-cost, high early strength, acid-resistant pozzolanic cement
US5337824A (en) 1993-06-28 1994-08-16 Shell Oil Company Coal slag universal fluid
US5439056A (en) 1993-06-28 1995-08-08 Shell Oil Company Coal slag solidification of drilling fluid
US5866516A (en) 1993-08-17 1999-02-02 Costin; C. Richard Compositions and methods for solidifying drilling fluids
US5456751A (en) 1993-09-03 1995-10-10 Trustees Of The University Of Pennsylvania Particulate rubber included concrete compositions
US5370185A (en) 1993-09-08 1994-12-06 Shell Oil Company Mud solidification with slurry of portland cement in oil
US5368103A (en) 1993-09-28 1994-11-29 Halliburton Company Method of setting a balanced cement plug in a borehole
US5398758A (en) 1993-11-02 1995-03-21 Halliburton Company Utilizing drilling fluid in well cementing operations
US5421409A (en) 1994-03-30 1995-06-06 Bj Services Company Slag-based well cementing compositions and methods
US5518996A (en) 1994-04-11 1996-05-21 Dowell, A Division Of Schlumberger Technology Corporation Fluids for oilfield use having high-solids content
US5529624A (en) 1994-04-12 1996-06-25 Riegler; Norbert Insulation material
US5417759A (en) 1994-06-23 1995-05-23 Nalco Chemical Company Set retarding additive for cement slurries
CA2153372A1 (en) 1994-07-08 1996-01-09 Patrick Brown Zeolite-hydraulic cement containment medium
US5458195A (en) 1994-09-28 1995-10-17 Halliburton Company Cementitious compositions and methods
US5585333A (en) 1994-10-12 1996-12-17 Halliburton Company Hydrocarbon base cementitious drilling fluids and methods
US5626665A (en) 1994-11-04 1997-05-06 Ash Grove Cement Company Cementitious systems and novel methods of making the same
US5472051A (en) 1994-11-18 1995-12-05 Halliburton Company Low temperature set retarded well cement compositions and methods
US5499677A (en) 1994-12-23 1996-03-19 Shell Oil Company Emulsion in blast furnace slag mud solidification
US5529123A (en) 1995-04-10 1996-06-25 Atlantic Richfield Company Method for controlling fluid loss from wells into high conductivity earth formations
US5681384A (en) 1995-04-24 1997-10-28 New Jersey Institute Of Technology Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash
US5554352A (en) 1995-05-09 1996-09-10 Construction Material Resources Processed silica as a natural pozzolan for use as a cementitious component in concrete and concrete products
FR2735465B1 (en) 1995-06-13 1997-08-29 Schlumberger Cie Dowell CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
US5494513A (en) 1995-07-07 1996-02-27 National Research Council Of Canada Zeolite-based lightweight concrete products
US5728654A (en) 1995-08-25 1998-03-17 Texas United Chemical Company, Llc. Stabilized fluids containing soluble zinc
US5571318A (en) 1995-08-31 1996-11-05 Halliburton Company Well cementing methods and compositions for use in cold environments
US5716910A (en) 1995-09-08 1998-02-10 Halliburton Company Foamable drilling fluid and methods of use in well drilling operations
EP0848689A1 (en) 1995-09-08 1998-06-24 Fmc Corporation Cement compositions for controlling alkali-silica reactions in concrete and processes for making same
US5588489A (en) 1995-10-31 1996-12-31 Halliburton Company Lightweight well cement compositions and methods
DE19540996A1 (en) 1995-11-03 1997-05-15 Paul Loerke Process for the thermal treatment of fine-grained material, in particular for the production of cement clinker
WO1997021637A1 (en) 1995-12-13 1997-06-19 Henkel Corporation Method of making blended cement compositons
US5711383A (en) 1996-04-19 1998-01-27 Halliburton Company Cementitious well drilling fluids and methods
MY119906A (en) 1996-06-18 2005-08-30 Sofitech Nv Cementing compositions and applications of such compositions to cementing oil (or similar) wells.
FR2749844B1 (en) 1996-06-18 1998-10-30 Schlumberger Cie Dowell CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
US5874387A (en) 1996-06-19 1999-02-23 Atlantic Richfield Company Method and cement-drilling fluid cement composition for cementing a wellbore
US5789352A (en) 1996-06-19 1998-08-04 Halliburton Company Well completion spacer fluids and methods
US5795924A (en) 1996-07-01 1998-08-18 Halliburton Company Resilient well cement compositions and methods
US5688844A (en) 1996-07-01 1997-11-18 Halliburton Company Resilient well cement compositions and methods
FR2753963B1 (en) 1996-09-30 1998-12-24 Schlumberger Cie Dowell GROUT CEMENT AND METHOD OF DESIGNING A FORMULATION
JPH10110487A (en) 1996-10-07 1998-04-28 Nishikawa Norimichi Block
US6258757B1 (en) 1997-03-14 2001-07-10 Halliburton Energy Services, Inc. Water based compositions for sealing subterranean zones and methods
US6060434A (en) 1997-03-14 2000-05-09 Halliburton Energy Services, Inc. Oil based compositions for sealing subterranean zones and methods
US5913364A (en) 1997-03-14 1999-06-22 Halliburton Energy Services, Inc. Methods of sealing subterranean zones
US5968255A (en) 1997-04-14 1999-10-19 Halliburton Energy Services, Inc. Universal well cement additives and methods
CN1054620C (en) 1997-04-29 2000-07-19 枣庄矿务局水泥厂 Fire-fighting soaking prevention and leaking stoppage expansion powder for grouting coal abscission layer zone
AU7795298A (en) 1997-05-26 1998-12-30 Konstantin Sobolev Complex admixture and method of cement based materials production
EP0881559B1 (en) 1997-05-28 2003-08-20 Siemens Aktiengesellschaft Computer system for protecting software and a method for protecting software
US5897699A (en) 1997-07-23 1999-04-27 Halliburton Energy Services, Inc. Foamed well cement compositions, additives and methods
AU738096B2 (en) 1997-08-15 2001-09-06 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US5900053A (en) 1997-08-15 1999-05-04 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US6796378B2 (en) 1997-08-15 2004-09-28 Halliburton Energy Services, Inc. Methods of cementing high temperature wells and cement compositions therefor
US5988279A (en) 1997-11-05 1999-11-23 Fritz Industries, Inc. Method for control of fluid loss and gas migration in well cementing
CN1182062A (en) 1997-11-25 1998-05-20 揣玉成 Floatstone-flyash haydite and its production process
US6145591A (en) 1997-12-12 2000-11-14 Bj Services Company Method and compositions for use in cementing
US6230804B1 (en) 1997-12-19 2001-05-15 Bj Services Company Stress resistant cement compositions and methods for using same
US6555307B2 (en) 1997-12-24 2003-04-29 Fuji Photo Film, Co., Ltd. Silver halide photographic emulsion and silver halide photographic light-sensitive material containing the emulsion
US5904208A (en) * 1998-01-21 1999-05-18 Deep South Chemical Method of cleaning a well bore prior to cementing
US6409819B1 (en) 1998-06-30 2002-06-25 International Mineral Technology Ag Alkali activated supersulphated binder
US6098711A (en) 1998-08-18 2000-08-08 Halliburton Energy Services, Inc. Compositions and methods for sealing pipe in well bores
FR2784095B1 (en) 1998-10-06 2001-09-21 Dowell Schlumberger Services CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
EA002938B1 (en) 1998-11-13 2002-10-31 Софитек Н.В. Cementation product and use for cementing oil wells or the like
US6379456B1 (en) 1999-01-12 2002-04-30 Halliburton Energy Services, Inc. Flow properties of dry cementitious and non-cementitious materials
US6170575B1 (en) 1999-01-12 2001-01-09 Halliburton Energy Services, Inc. Cementing methods using dry cementitious materials having improved flow properties
US6660080B2 (en) 1999-01-12 2003-12-09 Halliburton Energy Services, Inc. Particulate flow enhancing additives
US6245142B1 (en) 1999-01-12 2001-06-12 Halliburton Energy Services, Inc. Flow properties of dry cementitious materials
US6184287B1 (en) 1999-01-26 2001-02-06 Omnova Solutions Inc. Polymeric latexes prepared in the presence of 2-acrylamido-2-methylpropanesulfonate
US6328106B1 (en) 1999-02-04 2001-12-11 Halliburton Energy Services, Inc. Sealing subterranean zones
FR2790258B1 (en) 1999-02-25 2001-05-04 Dowell Schlumberger Services CEMENTING PROCESS AND APPLICATION OF THIS METHOD TO REPAIR CEMENTINGS
US6063738A (en) 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods
GB2351986B (en) 1999-07-13 2002-12-24 Sofitech Nv Latex additive for water-based drilling fluids
CA2316059A1 (en) 1999-08-24 2001-02-24 Virgilio C. Go Boncan Methods and compositions for use in cementing in cold environments
US6277189B1 (en) 1999-08-31 2001-08-21 The Board Of Trustees Of Southern Illinois University Coal combustion by-products-based lightweight structural materials and processes for making them
CA2318703A1 (en) 1999-09-16 2001-03-16 Bj Services Company Compositions and methods for cementing using elastic particles
US6308777B2 (en) 1999-10-13 2001-10-30 Halliburton Energy Services, Inc. Cementing wells with crack and shatter resistant cement
US6138759A (en) 1999-12-16 2000-10-31 Halliburton Energy Services, Inc. Settable spotting fluid compositions and methods
JP2001226155A (en) 2000-01-27 2001-08-21 Dow Corning Corp Method for manufacturing fluid clay slurry
WO2001058823A1 (en) 2000-02-08 2001-08-16 Rha Technology, Inc. Method for producing a blended cementitious composition
SE522352C2 (en) 2000-02-16 2004-02-03 Sandvik Ab Elongated element for striking rock drilling and use of steel for this
US6244343B1 (en) 2000-03-09 2001-06-12 Halliburton Energy Services, Inc. Cementing in deep water offshore wells
US6572697B2 (en) 2000-03-14 2003-06-03 James Hardie Research Pty Limited Fiber cement building materials with low density additives
US6502634B1 (en) 2000-03-17 2003-01-07 Halliburton Energy Services, Inc. Interface monitoring placement system
FR2806717B1 (en) 2000-03-23 2002-05-24 Dowell Schlumberger Services CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
FR2808794B1 (en) 2000-05-15 2002-06-28 Dowell Schlumberger Services PERMEABLE CEMENT, PROCESS FOR OBTAINING SAME AND APPLICATION OF SAME IN OIL WELLS OR THE LIKE
ATE444077T1 (en) 2000-06-30 2009-10-15 Tokyo Metropolitan Inst Of Ger PREVENTIVES AND THERAPEUTICS FOR DEMYELINIZATION-ASSOCIATED DISEASES
US6416574B1 (en) 2000-07-12 2002-07-09 Southern Ionica Incorporated Method and apparatus for recycling cement kiln dust
US6402833B1 (en) 2000-07-13 2002-06-11 Lafarge Canada Inc. Binder for mine tailings
US6716282B2 (en) 2000-07-26 2004-04-06 Halliburton Energy Services, Inc. Methods and oil-based settable spotting fluid compositions for cementing wells
US6668929B2 (en) 2000-07-26 2003-12-30 Halliburton Energy Services, Inc. Methods and oil-based settable spotting fluid compositions for cementing wells
US6315042B1 (en) 2000-07-26 2001-11-13 Halliburton Energy Services, Inc. Oil-based settable spotting fluid
US6666268B2 (en) 2000-07-26 2003-12-23 Halliburton Energy Services, Inc. Methods and oil-based settable drilling fluid compositions for drilling and cementing wells
JP5080714B2 (en) 2000-09-13 2012-11-21 電気化学工業株式会社 Cement composition
US6457524B1 (en) 2000-09-15 2002-10-01 Halliburton Energy Services, Inc. Well cementing compositions and methods
US6562122B2 (en) 2000-09-18 2003-05-13 Halliburton Energy Services, Inc. Lightweight well cement compositions and methods
FR2814459B1 (en) 2000-09-22 2002-12-06 Lafarge Platres SURFACTANT COMPOSITION FOR PLASTERBOARDS
US6220354B1 (en) 2000-10-24 2001-04-24 Halliburton Energy Services, Inc. High strength foamed well cement compositions and methods
US6367550B1 (en) 2000-10-25 2002-04-09 Halliburton Energy Service, Inc. Foamed well cement slurries, additives and methods
US6767398B2 (en) 2000-10-30 2004-07-27 James H. Trato Cementitious compositions and cementitious slurries for permanently plugging abandoned wells and processes and methods therefor
NL1016892C2 (en) 2000-12-15 2002-06-19 Mega Tech Holding Bv Composition intended as an additive for cement.
EP1236701A1 (en) 2001-02-15 2002-09-04 Schlumberger Technology B.V. Very low-density cement slurry
US6729405B2 (en) 2001-02-15 2004-05-04 Bj Services Company High temperature flexible cementing compositions and methods for using same
US20020117090A1 (en) 2001-02-20 2002-08-29 Richard Ku Super high strength concrete
WO2002083591A1 (en) 2001-04-13 2002-10-24 Co2 Solution Inc. A process and a plant for the production of portland cement clinker
US7627870B1 (en) 2001-04-28 2009-12-01 Cisco Technology, Inc. Method and apparatus for a data structure comprising a hierarchy of queues or linked list data structures
US6561273B2 (en) 2001-06-19 2003-05-13 Halliburton Energy Services, Inc. Oil based compositions and method for temporarily sealing subterranean zones
US6706108B2 (en) 2001-06-19 2004-03-16 David L. Polston Method for making a road base material using treated oil and gas waste material
US20030116887A1 (en) 2001-08-10 2003-06-26 Scott J. Blake Incorporation of drilling cuttings into stable load-bearing structures
US6645290B1 (en) 2001-10-09 2003-11-11 Ronald Lee Barbour Settable composition containing cement kiln dust
US6749679B2 (en) 2002-01-23 2004-06-15 Advanced Materials Technologies, Llc Composition of materials for production of acid resistant cement and concrete and methods thereof
US6755905B2 (en) 2002-02-15 2004-06-29 Lafarge Canada Inc. Use of high carbon coal ash
US6644405B2 (en) 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
US6702044B2 (en) 2002-06-13 2004-03-09 Halliburton Energy Services, Inc. Methods of consolidating formations or forming chemical casing or both while drilling
US6565647B1 (en) 2002-06-13 2003-05-20 Shieldcrete Ltd. Cementitious shotcrete composition
US6840318B2 (en) 2002-06-20 2005-01-11 Schlumberger Technology Corporation Method for treating subterranean formation
US6641658B1 (en) 2002-07-03 2003-11-04 United States Gypsum Company Rapid setting cementitious composition
US6516884B1 (en) 2002-07-23 2003-02-11 Halliburton Energy Services, Inc. Stable well cementing methods and compositions
US6516883B1 (en) 2002-07-25 2003-02-11 Halliburton Energy Services, Inc. Methods of cementing pipe in well bores and low density cement compositions therefor
US6675895B1 (en) * 2002-07-31 2004-01-13 Schlumberger Technology Corporation Well cementing
EP1549427B1 (en) 2002-08-23 2017-11-01 James Hardie Technology Limited Method for producing synthetic hollow microspheres
US6869474B2 (en) 2002-08-29 2005-03-22 United States Gypsum Company Very fast setting cementitious composition
US7156173B2 (en) 2002-11-08 2007-01-02 Bj Services Company Cement compositions useful in oil and gas wells
US6708760B1 (en) 2002-11-19 2004-03-23 Halliburton Energy Services, Inc. Methods and cement compositions for cementing in subterranean zones
US7140440B2 (en) 2002-12-10 2006-11-28 Halliburton Energy Services, Inc. Fluid loss additives for cement slurries
US6964302B2 (en) 2002-12-10 2005-11-15 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7140439B2 (en) 2002-12-10 2006-11-28 Halliburton Energy Services, Inc. Zeolite-containing remedial compositions
US7150321B2 (en) 2002-12-10 2006-12-19 Halliburton Energy Services, Inc. Zeolite-containing settable spotting fluids
US7544640B2 (en) 2002-12-10 2009-06-09 Halliburton Energy Services, Inc. Zeolite-containing treating fluid
US7048053B2 (en) 2002-12-10 2006-05-23 Halliburton Energy Services, Inc. Zeolite compositions having enhanced compressive strength
US7147067B2 (en) 2002-12-10 2006-12-12 Halliburton Energy Services, Inc. Zeolite-containing drilling fluids
US6989057B2 (en) 2002-12-10 2006-01-24 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US8299885B2 (en) 2002-12-13 2012-10-30 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
EP1431368A1 (en) 2002-12-18 2004-06-23 Eliokem Fluid loss reducer for high temperature high pressure water-based mud application
US20040171499A1 (en) 2003-01-24 2004-09-02 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US6874353B2 (en) 2003-01-30 2005-04-05 Halliburton Energy Services, Inc. Yield point adaptation for rotating viscometers
US6962201B2 (en) 2003-02-25 2005-11-08 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in subterranean formations
US6889767B2 (en) 2003-02-28 2005-05-10 Halliburton E{umlaut over (n)}ergy Services, Inc. Cementing compositions and methods of cementing in a subterranean formation using an additive for preventing the segregation of lightweight beads.
US6668927B1 (en) * 2003-03-21 2003-12-30 Halliburton Energy Services, Inc. Well completion foamed spacer fluids and methods
US20040187740A1 (en) 2003-03-27 2004-09-30 Research Incubator, Ltd. Cementitious composition
US7217441B2 (en) 2003-03-28 2007-05-15 Halliburton Energy Services, Inc. Methods for coating pipe comprising using cement compositions comprising high tensile strength fibers and/or a multi-purpose cement additive
US7147055B2 (en) 2003-04-24 2006-12-12 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6904971B2 (en) 2003-04-24 2005-06-14 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
GB2401281B (en) 2003-04-29 2006-02-08 Hewlett Packard Development Co Propagation of viruses through an information technology network
CA2524966C (en) 2003-05-14 2012-09-11 Schlumberger Canada Limited Compositions and methods for treating lost circulation
US20070137528A1 (en) 2003-05-14 2007-06-21 Sylvaine Le Roy-Delage Self adaptive cement systems
US6908508B2 (en) 2003-06-04 2005-06-21 Halliburton Energy Services, Inc. Settable fluids and methods for use in subterranean formations
WO2004108627A1 (en) 2003-06-04 2004-12-16 Isg Resources, Inc. Cementitious mixtures and methods of use thereof
US6689208B1 (en) 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations
US20050034864A1 (en) 2003-06-27 2005-02-17 Caveny William J. Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications
US7073585B2 (en) 2003-06-27 2006-07-11 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications
US7198104B2 (en) 2003-08-12 2007-04-03 Halliburton Energy Services, Inc. Subterranean fluids and methods of cementing in subterranean formations
US6832652B1 (en) 2003-08-22 2004-12-21 Bj Services Company Ultra low density cementitious slurries for use in cementing of oil and gas wells
US7055603B2 (en) 2003-09-24 2006-06-06 Halliburton Energy Services, Inc. Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations
US6899177B2 (en) 2003-10-10 2005-05-31 Halliburton Energy Services, Inc. Methods of cementing subterranean zones with cement compositions having enhanced compressive strengths
US7284930B2 (en) 2003-10-20 2007-10-23 Cjs Technology, Inc. Composition and method for forming a sprayable materials cover
US6869475B1 (en) 2003-10-28 2005-03-22 Bnz Materials, Inc. Calcium silicate insulating material containing blast furnace slag cement
US7073584B2 (en) 2003-11-12 2006-07-11 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
RU2262497C2 (en) 2003-12-15 2005-10-20 Зубехин Сергей Алексеевич Method of manufacture of foam concrete and installation for its realization
US7413014B2 (en) 2003-12-19 2008-08-19 Halliburton Energy Services, Inc. Foamed fly ash cement compositions and methods of cementing
US7341104B2 (en) 2004-02-10 2008-03-11 Halliburton Energy Services, Inc. Methods of using substantially hydrated cement particulates in subterranean applications
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US7445669B2 (en) 2005-09-09 2008-11-04 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
US7607482B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US20060166834A1 (en) 2004-02-10 2006-07-27 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising substantially hydrated cement particulates
US7096944B2 (en) 2004-03-02 2006-08-29 Halliburton Energy Services, Inc. Well fluids and methods of use in subterranean formations
US7137446B2 (en) 2004-03-22 2006-11-21 Halliburton Energy Services Inc. Fluids comprising reflective particles and methods of using the same to determine the size of a wellbore annulus
US7607483B2 (en) 2004-04-19 2009-10-27 Halliburton Energy Services, Inc. Sealant compositions comprising colloidally stabilized latex and methods of using the same
US7090721B2 (en) 2004-05-17 2006-08-15 3M Innovative Properties Company Use of nanoparticles to adjust refractive index of dental compositions
US7297664B2 (en) 2004-07-28 2007-11-20 Halliburton Energy Services, Inc. Cement-free zeolite and fly ash settable fluids and methods therefor
US7409990B1 (en) 2004-09-09 2008-08-12 Burts Jr Boyce D Downhole mixing of encapsulated plug components for abandoning a well
US7182137B2 (en) 2004-09-13 2007-02-27 Halliburton Energy Services, Inc. Cementitious compositions containing interground cement clinker and zeolite
US8029618B2 (en) 2004-09-21 2011-10-04 Saudi Arabian Oil Company Manufacture of Portland cement using spent claus catalyst
US7219733B2 (en) 2004-09-29 2007-05-22 Halliburton Energy Services, Inc. Zeolite compositions for lowering maximum cementing temperature
US20100044057A1 (en) 2004-10-20 2010-02-25 Dealy Sears T Treatment Fluids Comprising Pumicite and Methods of Using Such Fluids in Subterranean Formations
US7293609B2 (en) 2004-10-20 2007-11-13 Halliburton Energy Services, Inc. Treatment fluids comprising vitrified shale and methods of using such fluids in subterranean formations
US7303008B2 (en) 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Methods and systems for reverse-circulation cementing in subterranean formations
US7655088B2 (en) 2005-01-14 2010-02-02 Alkemy, Ltd. Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
WO2006074946A2 (en) 2005-01-14 2006-07-20 Alkemy, Ltd. Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US7022755B1 (en) 2005-02-04 2006-04-04 Halliburton Energy Services, Inc. Resilient cement compositions and methods of cementing
US7404855B2 (en) 2005-02-04 2008-07-29 Halliburton Energy Services, Inc. Resilient cement compositions and methods of cementing
US7350573B2 (en) 2005-02-09 2008-04-01 Halliburton Energy Services, Inc. Servicing a wellbore with wellbore fluids comprising perlite
JP4794201B2 (en) 2005-04-25 2011-10-19 株式会社松風 2 paste type glass ionomer cement
US7174962B1 (en) 2005-09-09 2007-02-13 Halliburton Energy Services, Inc. Methods of using lightweight settable compositions comprising cement kiln dust
US7607484B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles and methods of use
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US7335252B2 (en) 2005-09-09 2008-02-26 Halliburton Energy Services, Inc. Lightweight settable compositions comprising cement kiln dust
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US7387675B2 (en) 2005-09-09 2008-06-17 Halliburton Energy Services, Inc. Foamed settable compositions comprising cement kiln dust
US7478675B2 (en) 2005-09-09 2009-01-20 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US20120328377A1 (en) 2005-09-09 2012-12-27 Halliburton Energy Services, Inc. Resin-Based Sealant Compositions Comprising Cement Kiln Dust and Methods of Use
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8733440B2 (en) 2009-07-02 2014-05-27 Halliburton Energy Services, Inc. Well cement compositions comprising biowaste ash and methods of use
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US7213646B2 (en) 2005-09-09 2007-05-08 Halliburton Energy Services, Inc. Cementing compositions comprising cement kiln dust, vitrified shale, zeolite, and/or amorphous silica utilizing a packing volume fraction, and associated methods
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
RU2404143C2 (en) 2005-09-09 2010-11-20 Хэллибертон Энерджи Сервисиз, Инк. Method of borehole cementation
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US7353870B2 (en) 2005-09-09 2008-04-08 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US7631692B2 (en) 2005-09-09 2009-12-15 Halliburton Energy Services, Inc. Settable compositions comprising a natural pozzolan and associated methods
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US7077203B1 (en) 2005-09-09 2006-07-18 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US20070056479A1 (en) 2005-09-09 2007-03-15 Gray Lonnie J Concrete mixtures incorporating high carbon pozzolans and foam admixtures
US7789150B2 (en) 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US7617870B1 (en) 2008-05-14 2009-11-17 Halliburton Energy Services, Inc. Extended cement compositions comprising oil-swellable particles and associated methods
FR2891270B1 (en) 2005-09-28 2007-11-09 Lafarge Sa HYDRAULIC BINDER COMPRISING A TERNAIRE ACCELERATION SYSTEM, MORTARS AND CONCRETES COMPRISING SUCH A BINDER
WO2007041841A1 (en) 2005-10-11 2007-04-19 Mud King Drilling Fluids (2001) Ltd. Water-based polymer drilling fluid and method of use
WO2007048999A1 (en) 2005-10-24 2007-05-03 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust and method of using them
US7381263B2 (en) 2005-10-24 2008-06-03 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
US7337842B2 (en) 2005-10-24 2008-03-04 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US7199086B1 (en) 2005-11-10 2007-04-03 Halliburton Energy Services, Inc. Settable spotting compositions comprising cement kiln dust
US7284609B2 (en) 2005-11-10 2007-10-23 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
CA2577564C (en) 2006-02-15 2011-07-12 Lafarge Canada Inc. Binder for mine tailings, alluvial sand and rock fill, or combinations thereof
US7204310B1 (en) 2006-04-11 2007-04-17 Halliburton Energy Services, Inc. Methods of use settable drilling fluids comprising cement kiln dust
US7338923B2 (en) 2006-04-11 2008-03-04 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
BRPI0621592A2 (en) 2006-05-03 2011-12-13 Halliburton Energy Serv Inc lightweight curable composition and cementation method
US7341105B2 (en) 2006-06-20 2008-03-11 Holcim (Us) Inc. Cementitious compositions for oil well cementing applications
WO2008021096A2 (en) 2006-08-07 2008-02-21 Aquablok, Ltd. Subsurface reactive sealant product
US20080066652A1 (en) 2006-09-14 2008-03-20 Michael Fraser Low density cements for use in cementing operations
US20080087472A1 (en) 2006-10-13 2008-04-17 M-I Llc Cuttings impoundment
US9096466B2 (en) 2007-03-22 2015-08-04 Halliburton Energy Services, Inc. Particulate flow enhancing additives and associated methods
US8342242B2 (en) 2007-04-02 2013-01-01 Halliburton Energy Services, Inc. Use of micro-electro-mechanical systems MEMS in well treatments
US8162055B2 (en) 2007-04-02 2012-04-24 Halliburton Energy Services Inc. Methods of activating compositions in subterranean zones
US7712527B2 (en) 2007-04-02 2010-05-11 Halliburton Energy Services, Inc. Use of micro-electro-mechanical systems (MEMS) in well treatments
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US7784542B2 (en) 2007-05-10 2010-08-31 Halliburton Energy Services, Inc. Cement compositions comprising latex and a nano-particle and associated methods
US8586508B2 (en) 2007-05-30 2013-11-19 Halliburton Energy Services, Inc. Polysaccharide based cement additives
US8569214B2 (en) * 2007-05-30 2013-10-29 Halliburton Energy Services, Inc. Methods of using polysaccharide based cement additives
US8276666B2 (en) 2007-08-08 2012-10-02 Halliburton Energy Services Inc. Sealant compositions and methods of use
US20090038801A1 (en) 2007-08-08 2009-02-12 Ravi Krishna M Sealant Compositions and Methods of Use
US7993451B2 (en) 2007-08-13 2011-08-09 Texas Industries, Inc. Cement stabilization of soils using a proportional cement slurry
US7665523B2 (en) 2007-10-16 2010-02-23 Halliburton Energy Services, Inc. Compositions and methods for treatment of well bore tar
US7867954B2 (en) 2007-10-22 2011-01-11 Sanjel Limited Partnership Pumice containing compositions for cementing a well
WO2009071962A2 (en) 2007-12-04 2009-06-11 Holcim Technology Ltd. Cementitious compositions for oilwell cementing applications
US7963323B2 (en) 2007-12-06 2011-06-21 Schlumberger Technology Corporation Technique and apparatus to deploy a cement plug in a well
EP2075303A1 (en) 2007-12-18 2009-07-01 PRAD Research and Development N.V. Spacer fluid additive
US7741841B2 (en) * 2007-12-28 2010-06-22 Schlumberger Technology Corporation Time-lapsed diffusivity logging for monitoring enhanced oil recovery
AU2008278301B2 (en) 2007-12-28 2010-01-21 Arelac, Inc. Methods of sequestering CO2
US7919064B2 (en) 2008-02-12 2011-04-05 Michigan Technological University Capture and sequestration of carbon dioxide in flue gases
US7748454B2 (en) 2008-04-28 2010-07-06 Halliburton Energy Services, Inc. Gelation inhibiting retarders for highly reactive calcium silicate based binder compositions and methods of making and using same
CA2632319C (en) 2008-05-26 2013-02-12 Donald Getzlaf Method for applying remedial cement to a wellbore
US7740070B2 (en) 2008-06-16 2010-06-22 Halliburton Energy Services, Inc. Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same
US7708071B2 (en) 2008-08-14 2010-05-04 Halliburton Energy Services, Inc. Cement compositions comprising aluminum chloride and associated methods
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US7771684B2 (en) 2008-09-30 2010-08-10 Calera Corporation CO2-sequestering formed building materials
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US7757766B2 (en) 2008-11-19 2010-07-20 Halliburton Energy Services, Inc. Density-matched suspensions and associated methods
US20100258035A1 (en) 2008-12-24 2010-10-14 Brent Constantz Compositions and methods using substances containing carbon
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
AU2010200978A1 (en) 2009-02-03 2010-08-19 Calera Corporation CO2 sequestering soil stabilization composition
CA2703604C (en) 2009-05-22 2017-06-20 Lafarge Low density cementitious compositions
CA2769009C (en) 2009-07-29 2016-11-08 Schlumberger Canada Limited Compositions and methods for servicing subterranean wells
US8143198B2 (en) 2009-08-25 2012-03-27 Hallilburton Energy Services Inc. Radiation-induced triggering for set-on-command compositions
WO2011056086A2 (en) 2009-11-05 2011-05-12 Google Inc. Statistical stemming
CN102712548B (en) 2009-12-31 2014-03-26 卡勒拉公司 Methods and compositions using calcium carbonate
US8540025B2 (en) 2010-06-08 2013-09-24 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
US8627888B2 (en) 2011-05-13 2014-01-14 Halliburton Energy Services, Inc. Settable compositions containing metakaolin having reduced portland cement content
US9249646B2 (en) 2011-11-16 2016-02-02 Weatherford Technology Holdings, Llc Managed pressure cementing
CA2795883A1 (en) 2011-11-18 2013-05-18 Devon Nec Corporation Method and composition for cementing a casing in a wellbore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423781A (en) * 1980-04-01 1984-01-03 Standard Oil Company Method of using a spacer system in brine completion of wellbores
US5484019A (en) * 1994-11-21 1996-01-16 Halliburton Company Method for cementing in a formation subject to water influx
US5866517A (en) * 1996-06-19 1999-02-02 Atlantic Richfield Company Method and spacer fluid composition for displacing drilling fluid from a wellbore
US7143827B2 (en) * 2003-03-21 2006-12-05 Halliburton Energy Services, Inc. Well completion spacer fluids containing fibers and methods
US7438758B2 (en) * 2004-10-15 2008-10-21 Halliburton Energy Services, Inc. Cement compositions comprising aromatic sulfonated polymers and methods of using the same
US20070209796A1 (en) * 2006-03-09 2007-09-13 Halliburton Energy Services, Inc. Cement compositions for reducing gas or water migration and methods of using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. R. Reddy et al., "Versatile Additive Technology and Innovation for Zonal Isolation in Deepwater Environments", CIPM E-Exihibition, 20-23 February 2005. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US8895486B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9157020B2 (en) 2005-09-09 2015-10-13 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9006154B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions and methods of use
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US9903184B2 (en) 2005-09-09 2018-02-27 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8895485B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US9644132B2 (en) 2005-09-09 2017-05-09 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9376609B2 (en) 2010-12-21 2016-06-28 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US10752823B1 (en) 2019-09-06 2020-08-25 Halliburton Energy Services, Inc. Wellbore servicing composition with controlled gelation of cement kiln dust and methods of making and using same
US11072737B2 (en) 2019-09-06 2021-07-27 Halliburton Energy Services, Inc. Wellbore servicing composition with controlled gelation of cement kiln dust and methods of making and using same

Also Published As

Publication number Publication date
US20150247383A1 (en) 2015-09-03
US8691737B2 (en) 2014-04-08
US8505630B2 (en) 2013-08-13
US20130210685A1 (en) 2013-08-15
US9903184B2 (en) 2018-02-27
US8544543B2 (en) 2013-10-01
US20130112405A1 (en) 2013-05-09
US20150107838A1 (en) 2015-04-23
US20130213642A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
US9903184B2 (en) Consolidating spacer fluids and methods of use
US8555967B2 (en) Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US9809737B2 (en) Compositions containing kiln dust and/or biowaste ash and methods of use
AU2013361111B2 (en) Consolidating spacer fluids and methods of use
US8505629B2 (en) Foamed spacer fluids containing cement kiln dust and methods of use
US9051505B2 (en) Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9006155B2 (en) Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
WO2014127334A1 (en) Compositions containing kiln dust and/or biowaste ash and methods of use
CA2927154C (en) Cement with resilient latex polymer
AU2014256987B2 (en) Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
AU2014354985B2 (en) Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
EP2867326B1 (en) Foamed spacer fluids containing cement kiln dust and methods of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHATTERJI, JITEN;BRENNEIS, D. CHAD;KEYS, CRYSTAL L.;AND OTHERS;SIGNING DATES FROM 20130103 TO 20130107;REEL/FRAME:030096/0777

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION