US20120316411A1 - Remote oximetry monitoring system and method - Google Patents
Remote oximetry monitoring system and method Download PDFInfo
- Publication number
- US20120316411A1 US20120316411A1 US13/591,629 US201213591629A US2012316411A1 US 20120316411 A1 US20120316411 A1 US 20120316411A1 US 201213591629 A US201213591629 A US 201213591629A US 2012316411 A1 US2012316411 A1 US 2012316411A1
- Authority
- US
- United States
- Prior art keywords
- ischemia
- tissue
- oxygenation
- measure
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 9
- 238000002496 oximetry Methods 0.000 title 1
- 208000028867 ischemia Diseases 0.000 claims abstract description 98
- 238000006213 oxygenation reaction Methods 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000000287 tissue oxygenation Effects 0.000 claims description 7
- 238000012806 monitoring device Methods 0.000 claims 1
- 238000002513 implantation Methods 0.000 abstract description 8
- 210000001519 tissue Anatomy 0.000 description 66
- 239000008280 blood Substances 0.000 description 23
- 210000004369 blood Anatomy 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 230000008901 benefit Effects 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 238000001514 detection method Methods 0.000 description 10
- 210000002216 heart Anatomy 0.000 description 10
- 102000001554 Hemoglobins Human genes 0.000 description 9
- 108010054147 Hemoglobins Proteins 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 230000017531 blood circulation Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000004611 spectroscopical analysis Methods 0.000 description 7
- 102000036675 Myoglobin Human genes 0.000 description 6
- 108010062374 Myoglobin Proteins 0.000 description 6
- 210000001072 colon Anatomy 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 230000000302 ischemic effect Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 102000018832 Cytochromes Human genes 0.000 description 4
- 108010052832 Cytochromes Proteins 0.000 description 4
- 210000004165 myocardium Anatomy 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000000779 thoracic wall Anatomy 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 208000010125 myocardial infarction Diseases 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000002266 amputation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 210000003754 fetus Anatomy 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000000968 medical method and process Methods 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 208000032064 Chronic Limb-Threatening Ischemia Diseases 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 206010059028 Gastrointestinal ischaemia Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000035901 Ischaemic ulcer Diseases 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 206010034576 Peripheral ischaemia Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000006266 hibernation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 238000011542 limb amputation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 210000001700 mitochondrial membrane Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000811 surgical stainless steel Inorganic materials 0.000 description 1
- 230000008337 systemic blood flow Effects 0.000 description 1
- 230000019432 tissue death Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14542—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/1459—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/412—Detecting or monitoring sepsis
Definitions
- the present invention relates to implantable devices and methods for providing localized measurements of tissue ischemia, and more particularly relates to the embedding of a visible light source, a sensor, a power source, and a transmitter into a long-term implantable shell for the purpose of performing real-time spectroscopic analysis of in vivo tissue perfusion sensitive to local tissue ischemia.
- Ischemia an insufficient delivery of oxygen to meet a tissue's metabolic needs—is unreliable. Ischemia is especially difficult to detect when the ischemia is due to a localized interruption of blood flow—such as during a heart attack or stroke.
- Existing laboratory tests for ischemia such as serum enzyme-leakage tests (e.g., for tests for cardiac isoenzymes after a heart attack) or EKG electrical tests, are insensitive indicators of such local tissue ischemia, especially during the early stages.
- ischemia is a result of low oxygenation in a local tissue, which is reflected in the local capillary oxygenation, not in the oxygenation of the arterial or venous blood when measured in the large central arteries and veins.
- Noninvasive imaging of ischemia lacks the immediacy that allows for early intervention or real-time feedback to other devices such as pacemakers.
- Non-implantable ischemia sensors are known.
- U.S. Pat. No. 6,532,381 teaches the detection of ischemia using externally measured electrical (EKG) monitoring and microprocessor control.
- EKG externally measured electrical
- such devices monitoring multiple external sites using wire leads placed upon the chest wall are not designed for implantability, which requires that issues of size, power consumption, biocompatibility, and robustness over time be optimized alongside sensing performance, a non-trivial task.
- Implantable sensors are also well known. However, implantable sensors designed to detect ischemia are rare in the art, and none of these detect tissue ischemia directly.
- U.S. Pat. No. 5,135,004, US Appn 2004/0122478, and WO 00/64534 predict the presence of ischemia based upon the electrical (EKG), blood pressure, local pH, and/or physical (acceleration during contraction) characteristics of the heart, while U.S. Pat. No. 6,527,729 discloses an implantable acoustic sensor that responds to heart failure by changes in the sound of the heartbeat.
- 2004/0220460 teach implantable devices to monitor blood oxygenation (venous blood and arterial blood, respectively), in the latter case specifically rejecting local tissue saturation from encapsulation, thus teaching away from direct tissue monitoring.
- blood oxygenation venous blood and arterial blood, respectively
- ischemia is measured only by indirect and unreliable indicators of ischemia, such as by indicators of cardiac electrical, mechanical, and acoustic dysfunction.
- organs other than the heart are frequent sites of ischemia (such as in the kidney, liver, or gut), and the prior art is not directed to these other organs at all. Therefore, none of the above devices detect local tissue ischemia directly, nor can they be applied generally to any organ without regard to site.
- All of the above devices are limited by being either non-implantable, by being at best an indirect measures of local tissue ischemia, or by being restricted to use in just one organ such as the heart due to the indirect measures of ischemia (such as sound or movement) which they employ.
- None of the prior devices or methods allow for a direct detection of local tissue ischemia in a broad array of target sites using a long-term or short-term implantable system sensitive to local ischemia,
- the inventors have discovered that the site at which tissue ischemia occurs is always local, and that local tissue physiology in nearly every case will attempt to compensate for this local ischemia, producing a direct depression then partial compensation on the capillary hemoglobin saturation. This local effect is often not measurable using standard blood monitoring, and capitalizing on this local capillary effect allows for the design a highly localized, fully-implantable ischemia detector.
- a salient feature of the present invention is that the detection and treatment of ischemia is aided by use of an implantable ischemia sensor.
- an object of the present invention is to provide a fully-implantable ischemia detector.
- the invention provides a direct, quantitative measure or index of local tissue ischemia.
- the invention provides a short-term implantation, such as optical fibers within the heart muscle after bypass surgery, or an implant in the lung tissue for short-term monitoring after a transplant, or even a swallowable device for detecting ischemia in the gut as it passes through the enteric system.
- a short-term implantation such as optical fibers within the heart muscle after bypass surgery, or an implant in the lung tissue for short-term monitoring after a transplant, or even a swallowable device for detecting ischemia in the gut as it passes through the enteric system.
- the improved ischemia detection system as described has many advantages one or more of which are descipled below. While a number of advantages are set forth for illustrative purposes only, these advantages are not intended to limit the scope of the claims in any way.
- One advantage is that a physician or surgeon can obtain real-time feedback regarding local tissue ischemia in high-risk patients, and to respond accordingly, while any injury remains reversible.
- Another advantage is that this system may be safely deployed within a living body.
- the system can be actively coupled to a therapeutic device, such as a pacemaker, to provide feedback to the pacing function, or passively coupled to a therapeutic device, such as applied to a stent to monitor stent performance over time.
- a therapeutic device such as a pacemaker
- the system may be constructed to detect ischemia using light, which allows for simple, safe, and non-electrical transmission of the measuring photons as required.
- Sources of local tissue signals include but are not limited to capillary hemoglobin (not in the arterial or venous circulation but locally in the capillaries in the tissue), myoglobin (which is extravascular and within muscle cells in the tissue itself) and cytochrome (which is intracellular within the mitochondria of the cells of the tissue itself).
- Another advantage is that use of broadband light can allow for determination of tissue ischemia using spectroscopy, and in particular differential spectroscopy, which allows for compensation of light scattering by tissues.
- ischemia sensing may be used to enable detection of many types of disease, such as tissue rejection, tissue infection, vessel leakage, vessel occlusion, and the like, many of which produce ischemia as an aspect of the disease.
- an implantable device or system with broadband light source for generating light, and for delivering this light to a sample for the purpose of enabling spectroscopic ischemia detection.
- the system uses a phosphor-coated white LED to produce continuous, broadband light from 400 nm to 700 nm, which is transmitted directly to a target site. Scattered light returning from the target is detected by a wavelength-sensitive detector, and a signal related to ischemia is generated using this wavelength-sensitive information via spectroscopic analysis. Finally, this signal is sent out from the device using radiofrequency (RF) transmission.
- RF radiofrequency
- FIG. 1 is a schematic diagram of an implantable tissue ischemia detector incorporating a white LED and constructed in accordance with embodiments of the invention.
- FIG. 2 is a schematic of an external coil, for powering the implantable device and for receiving a signal related to the presence or degree of tissue ischemia, attached to an external monitor system.
- FIGS. 3A to 3E shows five exemplary schematics of the optical sensor unit.
- FIG. 4 shows data from the colon of a live subject during periods of low systemic blood flow, which led to local ischemia, as collected and analyzed in real time by a medical monitor constructed in accordance with embodiments of the invention.
- Implantable Intended for implantation internally in a living body, such as into or between internal tissues. Implantable devices typically must be biocompatible (i.e., have a biocompatible exterior), or else the host subject's immune system will attack the implanted object or the device will have a toxic effect upon the host.
- Implantable does not require any fixed duration.
- Implantable as used herein can mean short-term implantation, such as removable fibers inserted in the heart or lung, or a swallowable device such as an gastrointestinal ischemia monitor.
- Implantable as used herein may also be a long-term implantation, such as a pacemaker feedback system which monitors the heart or muscle, or a liver-based MEMS device that monitors for rejection.
- Fully-Implantable Complete implantation into a living body, without a physical connection to the external body.
- Fully-implantable devices may contain an embedded power supply, receive power from another implanted device (such as a pacemaker), or receive power from an external source such as via transcutaneous inductive coupling.
- Fully-implantable devices may still communicate with receivers external to the body via non-physical means, such as electromagnetic waves from RFID chips.
- An implantable system may be embedded long-term, such as buried deep within a body to monitor for organ rejection or cardiac ischemia.
- An implantable system may also be used short-term only, such as a swallowable pill that monitors for ischemic ulcers or polyps in the esophagus, stomach, intestines, and colon, and is passed via the rectum when the scanning is complete in a few hours to a few days.
- Tissue Material from a living animal, plant, viral, or bacterial subject, with an emphasis on mammals, especially humans.
- Perfusion The flow of blood to a tissue or region, which differs from tissue ischemia in that low flow does not guarantee ischemia.
- Blood Oxygenation The saturation of the hemoglobin in arterial and venous blood, which differs from tissue ischemia. Arterial blood can be 100% oxygenated, yet a blood clot in the coronary artery will produce severe ischemia despite the 100% arterial saturation. Similarly, a local occlusion may produce lethal local ischemia, while the average venous oxygenation is not lowered detectably due to the small contribution of that local tissue to the overall venous blood oxygenation.
- Ischemia A local condition of tissue in which the delivery of oxygen to the tissue is locally inadequate to meet its metabolic needs. Such conditions vary from tissue to tissue.
- the brain has a high metabolic rate and is easily made ischemic, even during simple tasks such as deep thought and insight, unless there is a local and rapid increase in the baseline blood flow and oxygen delivery to the metabolizing cortical tissues.
- the growing fetus is in a relative hibernation state, with very low oxygen needs in most tissues, and is more difficult to make ischemic.
- Early and mild ischemia is often evidenced by increases in the amount of oxygen extracted from the blood being delivered to the capillary bed, resulting in decreased tissue oxygenation.
- Ischemia is therefore distinguished from perfusion (i.e., blood flow) in that low blood flow does not guarantee ischemia (such as during tissue cooling or in the fetus), nor does high flow rule out ischemia (such as during sepsis, fever, or intense work). Ischemia is a co-existing condition in many different types of illnesses, including sepsis, tissue rejection, heart attack, stroke, organ failure, diabetic disease, and other conditions.
- Target A material to be detected, imaged, or studied.
- one target site is the intestine.
- Target Signal A sensed signal specific to the target. This signal may be enhanced through use of a contrast agent. This signal may be produced by scattering, absorbance, phosphorescence, fluorescence, Raman effects, or other known spectroscopy techniques.
- Visible Light Electromagnetic radiation from blue to yellow, namely with wavelengths between 400 nm and 625 microns, but especially those green to orange wavelengths between 475 and 600 nm where the absorbance by capillary hemoglobin (not in the arterial or venous circulation but locally in the capillaries in the tissue), myoglobin (which is extravascular and within muscle cells in the tissue itself) and cytochrome (which is intracellular within the mitochondria of the tissue itself) is the strongest.
- Broadband Light Light produced over a wide range of wavelengths sufficient to perform solution of multiple simultaneous spectroscopic equations. For tissue, a width of at least 40 nm is likely to be needed, while in the preferred embodiment a broadband white LED produces light from 400 nm to beyond 700 nm.
- LED A light emitting diode.
- White LED A broadband, visible wavelength LED, often comprised of a blue LED and a blue-absorbing broad-emitting phosphor that emits over a wide range of visible wavelengths. Other phosphors can be substituted. As used in the examples herein, any broadband LED could be used, even if not emitting over a full (white) spectrum. For example, a green LED emitting over a FWHM range of 100 nm would be considered to be broadband.
- a source of illuminating photons may be composed of a simple light bulb, a laser, a flash lamp, an LED, a white LED, or another light source or combination of sources, or it may be a complex form including but not limited to, a light emitter such as a bulb or light emitting diode, one or more filter elements, a transmission element such as an integrated optical fiber, a guidance element such as a reflective prism or internal lens, and other elements intended to enhance the optical coupling of the light from the source to the tissue or sample under study.
- the light may be generated using electrical input (such as with an LED), optical input (such as a fluorescent dye in a fiber responding to light), or any other source of energy, internal or external to the source.
- the light source may be continuously on, pulsed, or even analyzed as time-, frequency-, or spatially-resolved.
- the light emitter may comprise a single or multiple light emitting elements, such as a combination of different light emitting diodes to produce a spectrum of light.
- Light Detector or Light Sensor A detector that generates a measurable signal in response to the light incident on the detector.
- Optical Coupling The arrangement of two elements such that light exiting the first element interacts, at least in part, with the second element. This may be free-space (unaided) transmission through air or space, or may require use of intervening optical elements such as lenses, filters, fused fiber expanders, collimators, concentrators, collectors, optical fibers, prisms, mirrors, or mirrored surfaces and the like.
- FIG. 1 shows device 101 implanted into the chest wall of patient 98 .
- patient 98 is shown for illustrative purposes, and is not considered a part of the invention.
- a cut-away schematic of device 101 showing the interior of implantable device 101 is shown at the top of FIG. 1 .
- Device 101 is surrounded by biocompatible exterior 102 .
- exterior 102 is constructed from approved Class VI materials as recognized by the U.S. FDA or other medical device regulatory agencies, such as polyethylene or surgical steel. Portions of the sensor, power supply, light source, or transmitter may protrude as needed from this shell within the spirit of this invention, provided that the protruding parts themselves are biocompatible.
- light source 103 is illustrated in its component parts.
- broad spectrum white light is emitted by a high conversion-efficiency white LED source 105 (in this case, The LED Light, model T1-3/4-20W-a, Fallon, Nev.).
- diode source 105 is embedded into a plastic beam-shaping mount using optical clear epoxy 111 to allow light generated in LED 105 to be collimated, thus remaining at a near-constant diameter after passing through optical window 115 to leave device 101 .
- Light then is able to pass forward as shown by light path vectors 119 , with at least a portion of this light optically coupled to target region 125 .
- target region 125 may be in some instances a living tissue, the tissue itself is not considered to be a claimed part of this invention.
- Collection window 141 in this embodiment is a glass, plastic, or quartz window, but can alternatively be merely an aperture, or even be a lens, as required.
- Light then strikes sensor 155 , where it is sensed and detected.
- Sensor 155 may comprise a number of discrete detectors configured to be wavelength-sensitive, or may be a continuous CCD spectrometer, with entry of light by wavelength controlled by gratings, filters, or wavelength-specific optical fibers. In any event, sensor 155 transmits an ischemia signal related to the detected light backscattered from target 125 , producing an electrical signal sent via wires 161 and 163 a sending unit 167 , such as a transmitter chip. The signal transmitted by the sending unit 167 is received by the receiver 183 where it can be further processed to provide a display.
- light source 103 also has two electrical connections 175 and 176 , connecting light source 103 to power source 179 .
- power source 179 is an inductive power supply, capable of receiving an inductive field from externally powered coil and RFID receiver 183 ( FIG. 2 ) placed outside of the body, in order to produce power for device 101 as required.
- external powered coil 183 is shown for the purposes of example and illustration, but is not considered a required part of this invention.
- source 179 could merely be a long-lived implantable battery, in which case an external powered coil may not be required at all.
- Device 101 is implanted in a patient, for example in the chest wall of a patient undergoing coronary artery repair for heart disease.
- the device may measure the muscle directly, or it can be placed at a distance.
- vectors 119 are fiber optics extended from device 101 and into close proximity to the target heart muscle, sufficient for optical coupling. Then the patient is allowed to heal after surgery, and the implantable device is left inside the patient's body, without a direct physical connection to the outside world.
- device 101 is normally powered down and in a resting (off) state. At some point, it is desired to test the target heart muscle for the presence of ischemia.
- external inductive coil 183 is connected to external monitor is brought into close proximity to the chest wall over the site of implantation of device 101 . Referring back to FIG. 1 , through inductive coupling external coil 183 induces a current in inductive power source 179 located within device 101 , producing sufficient power for device 101 to power up and turn on.
- Light source 103 begins to illuminate the target 125 , in this case heart muscle.
- Sensor 155 which is an embedded spectrophotometer in some embodiments, receives backscattered light, resolves the incoming light by wavelength, a marker of ischemia.
- the result of this determination is sent to sending unit 167 , which in the exemplary embodiment is an RF transmitter that sends the sensed signals to external RFID receiver 184 .
- the signal received by receiver 184 may be processed for the oxygenation of the hemoglobin in the terminal capillary beds, a marker of ischemia, by external monitor 313 , as shown in the data collected and plotted under the Example section, below.
- An example of a system for indicating oxygenation is described in U.S. Pat. No. 5,987,346, incorporated herein by reference.
- external coil 183 is moved away from device 101 , and device 101 powers down and returns to a resting state.
- power source 179 may be charged during proximity to external coil, or have an internal battery source, allowing device 101 to operate when external coil 179 is not present.
- Sending unit 167 may then transmit without being directly queried, such as in response to a dangerous level of ischemia.
- the sensor 155 is merely single photodiode 411 and processing electronics 413 .
- Photodiode 411 is made wavelength sensitive through the design of LED 105 as a cluster of LEDs of different wavelengths, each emitting at a different time or modulation frequency to allow decoding of the illuminating wavelength by photodiode 411 and processing unit electronics 413 .
- sensor 155 may comprise a set of different photodiodes 421 A through 421 N, FIG.
- sensor 155 may be single photodiode 431 with electronically variable filter 433 , FIG. 3C , allowing the wavelength transmitted to be selected and processed by processing unit electronics 435 .
- sensor 155 may be CCD chip 441 with filter window 443 , FIG. 3D , that varies over its length, allowing only certain wavelengths to reach each portion of CCD 441 , allowing decoding of the illuminating wavelength by processing unit electronics 447 .
- sensor 155 comprises CCD chip 451 with optical fibers 453 attached to CCD 451 in a linear array. Fibers 453 are manufactured such that each fiber has a different interference coating on end 454 , allowing each fiber to transmit a different narrow wavelength range, allowing decoding of the illuminating wavelength by processing unit electronics 457 . Fibers 453 are biocompatible and can extend outside of device case 102 , allowing device 101 to be placed remotely the target to be monitored, and for the free end of fibers 453 to be placed in proximity to target 125 .
- an optical sensor similar in basis of operation to device 101 , is implanted into abdomen of a patient undergoing colon surgery.
- the animal receives heart-lung bypass, such that the blood flow and oxygen content of the blood is exactly controlled by a bypass specialist rather than by the animal's own heart and lungs, affording the ability to create and resolve ischemia at will.
- An aortic Doppler probe is placed, which measures the delivery of blood to tissue. In this case, when the rate of the pump is lowered to zero flow, ischemia must exist in the tissues being monitored.
- Analysis of the tissue ischemia is performed by broadband, visible light, differential spectroscopy.
- the first differential (for example) of the wavelength vs. intensity curve sent from the sending unit is processed to remove many of the effects caused by light scattering by the local tissue, and the resultant signal is analyzed using a least-squares minimization of the fitting error to known components of the tissue (such as myoglobin, capillary hemoglobin, or cytochromes).
- the signal that is measured is a function of the presence, absence, or risk, or degree of ischemia. This can have clinical implications and applications in many different medical areas, such as impending risk of tissue death (as seen in the colon study above), impending risk of organ rejection (as inflammation results in increased total blood content, while potentially reducing oxygenation) cardiac function (as improved cardiac function is associated with a body-wide improvement in tissue ischemia as well as a likely improvement in myocardial ischemia), treatment efficacy for arterial or venous vascular disease (as the real-time effects of such interventions on tissue oxygenation adequacy can be used as a treatment signal to guide chemical and physical interventions), risk of renal damage (as kidney failure is often the result of acute or chronic reduced oxygen delivery), risk of brain injury (as stroke is often the result of acute and chronic reduced oxygen delivery), risk of colon death (as the colon does not have a large capacity to increase blood and oxygen delivery in times of stress over baseline), risk of limb amputation (as limbs with good capillary
- the creation of graded ischemia is detected by the present invention.
- graph 601 the flow detected by the Doppler probe is plotted on horizontal axis 603 versus the presence of ischemia as detected by the present invention using optical spectroscopy plotted on vertical axis 607 . Data are plotted as means with standard error bars 613 .
- graph 601 when the blood flow to the gut is reduced to zero, the detection of the presence of ischemia rises to 100%, shown at data point 617 .
- Ischemia is diagnosed by low local tissue oxygenation, not blood oxygenation or flow.
- arterial blood may be well oxygenated, but the delivery of this arterial blood to the tissue is insufficient (such as with a blood clot); in this case the tissue is indeed ischemia while the arterial blood oxygenation is normal.
- Blood flow also differs from a direct measure of ischemia. For example, in a cooled patient on heart-lung bypass, blood flow may be very, very low; however, the cooled tissues, whose oxygen need has been reduced by the low temperature, are not ischemic.
- ischemic heart “hibernates” in order to reduce its own oxygen need, and may not be ischemic at reduced flow.
- flow was controlled sufficiently to allow for a low or zero flow to be consistent with ischemia, but such conclusions cannot be always made so clearly in the living non-experimental subject.
- the signal detected from the tissue was a hemoglobin absorbance signal derived from the capillary bed. While absorbance is ideal for hemoglobin analysis, as described in the preferred embodiment, other interactions may be preferable for other measurements.
- the interaction with the illuminating light that provides the contrast can include absorbance, polarization, optical rotation, scattering, fluorescence, Raman effects, phosphorescence, or fluorescence decay, and measures of a contrast effect may reasonably include one or more of these effects.
- Other tissue components could be measured, including NADH, NADPH, cytochromes in their oxidized and reduced forms, or even ischemia or oxygen sensitive dyes.
- myoglobin is another protein whose saturation is related to the presence or absence of ischemia.
- a combination of hemoglobin in the capillaries as well as myoglobin in the heart, or just myoglobin in the heart myocytes can serve as a marker of ischemia.
- an injectable dye, sensitive to local ischemia can be used to generate an optical signal directly related to the presence of ischemia, such as by changing color in response to mitochondrial membrane charge or in response to intracellular pH.
- Such use of dyes to label cells in vivo with optical dyes has been demonstrated in vivo by several groups, and the coupling of an ischemia sensitive dye to use of the present invention to detect ischemia (and conditions which are a function of ischemia) would fall within the spirit of the present invention.
- a device comprising a phosphor-coated white LED and integrated collimating optics conFig.d to produce continuous, broadband light from 400 nm to 700 nm in a collimated beam, which is then directly transmitted to a target site.
- Light backscattered by the target site is collected by a sensor, allowing for a direct measure of ischemia to be determined, and subsequently transmitted by a sending unit.
- Power is provided by an internal power source, which may in turn be itself powered by an external inductive coil that is brought in proximity to the implanted device in order to provide energy as needed.
- the entire implantable device is encapsulated by a biocompatible shell to add long-term safety while implanted. Used alone, or in combination with an estimate of arterial oxygenation, venous oxygenation, or even of blood flow, this device allows for an index of ischemia to be determined without additional invasiveness beyond the initial implantation.
- the present device may be interrogated using inductive technology and RF coupling. Implantable devices incorporating the ischemia system, and medical methods of use, are described. This device has immediate application to several important problems, both medical and industrial, and thus constitutes an important advance in the art.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
- The present invention relates to implantable devices and methods for providing localized measurements of tissue ischemia, and more particularly relates to the embedding of a visible light source, a sensor, a power source, and a transmitter into a long-term implantable shell for the purpose of performing real-time spectroscopic analysis of in vivo tissue perfusion sensitive to local tissue ischemia.
- The clinical detection of ischemia—an insufficient delivery of oxygen to meet a tissue's metabolic needs—is unreliable. Ischemia is especially difficult to detect when the ischemia is due to a localized interruption of blood flow—such as during a heart attack or stroke. Existing laboratory tests for ischemia, such as serum enzyme-leakage tests (e.g., for tests for cardiac isoenzymes after a heart attack) or EKG electrical tests, are insensitive indicators of such local tissue ischemia, especially during the early stages. Similarly, blood tests are also insensitive to local ischemia, as the ischemia is a result of low oxygenation in a local tissue, which is reflected in the local capillary oxygenation, not in the oxygenation of the arterial or venous blood when measured in the large central arteries and veins. Noninvasive imaging of ischemia lacks the immediacy that allows for early intervention or real-time feedback to other devices such as pacemakers.
- Non-implantable ischemia sensors are known. For example, U.S. Pat. No. 6,532,381 teaches the detection of ischemia using externally measured electrical (EKG) monitoring and microprocessor control. However, such devices monitoring multiple external sites using wire leads placed upon the chest wall are not designed for implantability, which requires that issues of size, power consumption, biocompatibility, and robustness over time be optimized alongside sensing performance, a non-trivial task.
- Implantable sensors are also well known. However, implantable sensors designed to detect ischemia are rare in the art, and none of these detect tissue ischemia directly. For example, U.S. Pat. No. 5,135,004, US Appn 2004/0122478, and WO 00/64534 predict the presence of ischemia based upon the electrical (EKG), blood pressure, local pH, and/or physical (acceleration during contraction) characteristics of the heart, while U.S. Pat. No. 6,527,729 discloses an implantable acoustic sensor that responds to heart failure by changes in the sound of the heartbeat. Further, U.S. Pat. No. 5,199,428 and US Appn. 2004/0220460 teach implantable devices to monitor blood oxygenation (venous blood and arterial blood, respectively), in the latter case specifically rejecting local tissue saturation from encapsulation, thus teaching away from direct tissue monitoring. For reasons to be outlined in more detail later, such non-tissue blood oxygenation (whether arterial or venous) is insensitive to tissue ischemia, and is at best an indirect measure of tissue ischemia. For each of the devices above, then, ischemia is measured only by indirect and unreliable indicators of ischemia, such as by indicators of cardiac electrical, mechanical, and acoustic dysfunction. Another point to consider is that organs other than the heart are frequent sites of ischemia (such as in the kidney, liver, or gut), and the prior art is not directed to these other organs at all. Therefore, none of the above devices detect local tissue ischemia directly, nor can they be applied generally to any organ without regard to site.
- All of the above devices are limited by being either non-implantable, by being at best an indirect measures of local tissue ischemia, or by being restricted to use in just one organ such as the heart due to the indirect measures of ischemia (such as sound or movement) which they employ.
- None of the prior devices or methods allow for a direct detection of local tissue ischemia in a broad array of target sites using a long-term or short-term implantable system sensitive to local ischemia,
- Such a system has not been previously described, nor successfully commercialized.
- The inventors have discovered that the site at which tissue ischemia occurs is always local, and that local tissue physiology in nearly every case will attempt to compensate for this local ischemia, producing a direct depression then partial compensation on the capillary hemoglobin saturation. This local effect is often not measurable using standard blood monitoring, and capitalizing on this local capillary effect allows for the design a highly localized, fully-implantable ischemia detector.
- A salient feature of the present invention is that the detection and treatment of ischemia is aided by use of an implantable ischemia sensor.
- Accordingly, an object of the present invention is to provide a fully-implantable ischemia detector.
- In one aspect the invention provides a direct, quantitative measure or index of local tissue ischemia.
- In another aspect the invention provides a short-term implantation, such as optical fibers within the heart muscle after bypass surgery, or an implant in the lung tissue for short-term monitoring after a transplant, or even a swallowable device for detecting ischemia in the gut as it passes through the enteric system.
- The improved ischemia detection system as described has many advantages one or more of which are descipled below. While a number of advantages are set forth for illustrative purposes only, these advantages are not intended to limit the scope of the claims in any way.
- One advantage is that a physician or surgeon can obtain real-time feedback regarding local tissue ischemia in high-risk patients, and to respond accordingly, while any injury remains reversible.
- Another advantage is that this system may be safely deployed within a living body.
- Another advantage is that the system can be actively coupled to a therapeutic device, such as a pacemaker, to provide feedback to the pacing function, or passively coupled to a therapeutic device, such as applied to a stent to monitor stent performance over time.
- Another advantage is that the system may be constructed to detect ischemia using light, which allows for simple, safe, and non-electrical transmission of the measuring photons as required.
- Another advantage is that the detection can be in the tissue itself, rather than removed from the site of ischemia. Sources of local tissue signals include but are not limited to capillary hemoglobin (not in the arterial or venous circulation but locally in the capillaries in the tissue), myoglobin (which is extravascular and within muscle cells in the tissue itself) and cytochrome (which is intracellular within the mitochondria of the cells of the tissue itself).
- Another advantage is that use of broadband light can allow for determination of tissue ischemia using spectroscopy, and in particular differential spectroscopy, which allows for compensation of light scattering by tissues.
- A final advantage is that ischemia sensing may be used to enable detection of many types of disease, such as tissue rejection, tissue infection, vessel leakage, vessel occlusion, and the like, many of which produce ischemia as an aspect of the disease.
- There is provided an implantable device or system with broadband light source for generating light, and for delivering this light to a sample for the purpose of enabling spectroscopic ischemia detection. In some embodiments, the system uses a phosphor-coated white LED to produce continuous, broadband light from 400 nm to 700 nm, which is transmitted directly to a target site. Scattered light returning from the target is detected by a wavelength-sensitive detector, and a signal related to ischemia is generated using this wavelength-sensitive information via spectroscopic analysis. Finally, this signal is sent out from the device using radiofrequency (RF) transmission. Implantable systems incorporating the ischemia detection system and medical methods of use are described.
- The breadth of uses and advantages of the present invention are best understood by example, and by a detailed explanation of the workings of a constructed apparatus, now in operation and tested in animals. These and other advantages of the invention will become apparent when viewed in light of the accompanying drawings, examples, and detailed description.
- The following drawings are provided:
-
FIG. 1 is a schematic diagram of an implantable tissue ischemia detector incorporating a white LED and constructed in accordance with embodiments of the invention. -
FIG. 2 is a schematic of an external coil, for powering the implantable device and for receiving a signal related to the presence or degree of tissue ischemia, attached to an external monitor system. -
FIGS. 3A to 3E shows five exemplary schematics of the optical sensor unit. -
FIG. 4 shows data from the colon of a live subject during periods of low systemic blood flow, which led to local ischemia, as collected and analyzed in real time by a medical monitor constructed in accordance with embodiments of the invention. - For the purposes of this invention, the following definitions are provided. These definitions are intended to be illustrative and exemplary. They are not intended to restrictively limit, by the absence of any specific illustrative example, the common-sense breadth of meaning of the terms to those skilled in the art. These definitions are as follows:
- Implantable: Intended for implantation internally in a living body, such as into or between internal tissues. Implantable devices typically must be biocompatible (i.e., have a biocompatible exterior), or else the host subject's immune system will attack the implanted object or the device will have a toxic effect upon the host.
- Implantable does not require any fixed duration. Implantable as used herein can mean short-term implantation, such as removable fibers inserted in the heart or lung, or a swallowable device such as an gastrointestinal ischemia monitor. Implantable as used herein may also be a long-term implantation, such as a pacemaker feedback system which monitors the heart or muscle, or a liver-based MEMS device that monitors for rejection.
- Fully-Implantable: Complete implantation into a living body, without a physical connection to the external body. Fully-implantable devices may contain an embedded power supply, receive power from another implanted device (such as a pacemaker), or receive power from an external source such as via transcutaneous inductive coupling. Fully-implantable devices may still communicate with receivers external to the body via non-physical means, such as electromagnetic waves from RFID chips. An implantable system may be embedded long-term, such as buried deep within a body to monitor for organ rejection or cardiac ischemia. An implantable system may also be used short-term only, such as a swallowable pill that monitors for ischemic ulcers or polyps in the esophagus, stomach, intestines, and colon, and is passed via the rectum when the scanning is complete in a few hours to a few days.
- Tissue: Material from a living animal, plant, viral, or bacterial subject, with an emphasis on mammals, especially humans.
- Perfusion: The flow of blood to a tissue or region, which differs from tissue ischemia in that low flow does not guarantee ischemia.
- Blood Oxygenation: The saturation of the hemoglobin in arterial and venous blood, which differs from tissue ischemia. Arterial blood can be 100% oxygenated, yet a blood clot in the coronary artery will produce severe ischemia despite the 100% arterial saturation. Similarly, a local occlusion may produce lethal local ischemia, while the average venous oxygenation is not lowered detectably due to the small contribution of that local tissue to the overall venous blood oxygenation.
- Ischemia: A local condition of tissue in which the delivery of oxygen to the tissue is locally inadequate to meet its metabolic needs. Such conditions vary from tissue to tissue. For example, the brain has a high metabolic rate and is easily made ischemic, even during simple tasks such as deep thought and insight, unless there is a local and rapid increase in the baseline blood flow and oxygen delivery to the metabolizing cortical tissues. In contrast, the growing fetus is in a relative hibernation state, with very low oxygen needs in most tissues, and is more difficult to make ischemic. Early and mild ischemia is often evidenced by increases in the amount of oxygen extracted from the blood being delivered to the capillary bed, resulting in decreased tissue oxygenation. Later stage ischemia is evidenced by lactic acid formation and disturbed cellular metabolism that occurs when the simple compensatory mechanisms of the tissue (increase oxygen extraction, increase flow) are no longer sufficient to protect the tissue from the rising ischemia. Ischemia is therefore distinguished from perfusion (i.e., blood flow) in that low blood flow does not guarantee ischemia (such as during tissue cooling or in the fetus), nor does high flow rule out ischemia (such as during sepsis, fever, or intense work). Ischemia is a co-existing condition in many different types of illnesses, including sepsis, tissue rejection, heart attack, stroke, organ failure, diabetic disease, and other conditions.
- Target: A material to be detected, imaged, or studied. In the accompanying examples, one target site is the intestine.
- Target Signal: A sensed signal specific to the target. This signal may be enhanced through use of a contrast agent. This signal may be produced by scattering, absorbance, phosphorescence, fluorescence, Raman effects, or other known spectroscopy techniques.
- Visible Light: Electromagnetic radiation from blue to yellow, namely with wavelengths between 400 nm and 625 microns, but especially those green to orange wavelengths between 475 and 600 nm where the absorbance by capillary hemoglobin (not in the arterial or venous circulation but locally in the capillaries in the tissue), myoglobin (which is extravascular and within muscle cells in the tissue itself) and cytochrome (which is intracellular within the mitochondria of the tissue itself) is the strongest.
- Broadband Light: Light produced over a wide range of wavelengths sufficient to perform solution of multiple simultaneous spectroscopic equations. For tissue, a width of at least 40 nm is likely to be needed, while in the preferred embodiment a broadband white LED produces light from 400 nm to beyond 700 nm.
- LED: A light emitting diode.
- White LED: A broadband, visible wavelength LED, often comprised of a blue LED and a blue-absorbing broad-emitting phosphor that emits over a wide range of visible wavelengths. Other phosphors can be substituted. As used in the examples herein, any broadband LED could be used, even if not emitting over a full (white) spectrum. For example, a green LED emitting over a FWHM range of 100 nm would be considered to be broadband.
- Light Source: A source of illuminating photons. It may be composed of a simple light bulb, a laser, a flash lamp, an LED, a white LED, or another light source or combination of sources, or it may be a complex form including but not limited to, a light emitter such as a bulb or light emitting diode, one or more filter elements, a transmission element such as an integrated optical fiber, a guidance element such as a reflective prism or internal lens, and other elements intended to enhance the optical coupling of the light from the source to the tissue or sample under study. The light may be generated using electrical input (such as with an LED), optical input (such as a fluorescent dye in a fiber responding to light), or any other source of energy, internal or external to the source. The light source may be continuously on, pulsed, or even analyzed as time-, frequency-, or spatially-resolved. The light emitter may comprise a single or multiple light emitting elements, such as a combination of different light emitting diodes to produce a spectrum of light.
- Light Detector or Light Sensor: A detector that generates a measurable signal in response to the light incident on the detector.
- Optical Coupling: The arrangement of two elements such that light exiting the first element interacts, at least in part, with the second element. This may be free-space (unaided) transmission through air or space, or may require use of intervening optical elements such as lenses, filters, fused fiber expanders, collimators, concentrators, collectors, optical fibers, prisms, mirrors, or mirrored surfaces and the like.
- Embodiments of the device and system will now be described.
-
FIG. 1 showsdevice 101 implanted into the chest wall ofpatient 98. Of note,patient 98 is shown for illustrative purposes, and is not considered a part of the invention. A cut-away schematic ofdevice 101 showing the interior ofimplantable device 101 is shown at the top ofFIG. 1 .Device 101 is surrounded bybiocompatible exterior 102. Typically,exterior 102 is constructed from approved Class VI materials as recognized by the U.S. FDA or other medical device regulatory agencies, such as polyethylene or surgical steel. Portions of the sensor, power supply, light source, or transmitter may protrude as needed from this shell within the spirit of this invention, provided that the protruding parts themselves are biocompatible. - Within
device 101,light source 103 is illustrated in its component parts. In some embodiments, broad spectrum white light is emitted by a high conversion-efficiency white LED source 105 (in this case, The LED Light, model T1-3/4-20W-a, Fallon, Nev.). In the exemplary embodiments,diode source 105 is embedded into a plastic beam-shaping mount using opticalclear epoxy 111 to allow light generated inLED 105 to be collimated, thus remaining at a near-constant diameter after passing throughoptical window 115 to leavedevice 101. Light then is able to pass forward as shown bylight path vectors 119, with at least a portion of this light optically coupled to targetregion 125. Note that whiletarget region 125 may be in some instances a living tissue, the tissue itself is not considered to be a claimed part of this invention. - A portion of the
light reaching target 125 is absorbed by ischemia in the tissue and another portion is backscattered and returns as todevice 101, as shown bylight path vectors 128, tooptical collection window 141.Collection window 141 in this embodiment is a glass, plastic, or quartz window, but can alternatively be merely an aperture, or even be a lens, as required. Light then strikessensor 155, where it is sensed and detected. -
Sensor 155 may comprise a number of discrete detectors configured to be wavelength-sensitive, or may be a continuous CCD spectrometer, with entry of light by wavelength controlled by gratings, filters, or wavelength-specific optical fibers. In any event,sensor 155 transmits an ischemia signal related to the detected light backscattered fromtarget 125, producing an electrical signal sent viawires 161 and 163 a sendingunit 167, such as a transmitter chip. The signal transmitted by the sendingunit 167 is received by thereceiver 183 where it can be further processed to provide a display. - In one embodiment,
light source 103 also has twoelectrical connections light source 103 topower source 179. In one embodiment,power source 179 is an inductive power supply, capable of receiving an inductive field from externally powered coil and RFID receiver 183 (FIG. 2 ) placed outside of the body, in order to produce power fordevice 101 as required. Note that externalpowered coil 183 is shown for the purposes of example and illustration, but is not considered a required part of this invention. Alternatively,source 179 could merely be a long-lived implantable battery, in which case an external powered coil may not be required at all. - Operation of the device may now be described.
-
Device 101 is implanted in a patient, for example in the chest wall of a patient undergoing coronary artery repair for heart disease. The device may measure the muscle directly, or it can be placed at a distance. In the latter case,vectors 119 are fiber optics extended fromdevice 101 and into close proximity to the target heart muscle, sufficient for optical coupling. Then the patient is allowed to heal after surgery, and the implantable device is left inside the patient's body, without a direct physical connection to the outside world. - In this example,
device 101 is normally powered down and in a resting (off) state. At some point, it is desired to test the target heart muscle for the presence of ischemia. As shown inFIG. 2 , externalinductive coil 183 is connected to external monitor is brought into close proximity to the chest wall over the site of implantation ofdevice 101. Referring back toFIG. 1 , through inductive couplingexternal coil 183 induces a current ininductive power source 179 located withindevice 101, producing sufficient power fordevice 101 to power up and turn on.Light source 103 begins to illuminate thetarget 125, in this case heart muscle.Sensor 155, which is an embedded spectrophotometer in some embodiments, receives backscattered light, resolves the incoming light by wavelength, a marker of ischemia. The result of this determination is sent to sendingunit 167, which in the exemplary embodiment is an RF transmitter that sends the sensed signals to external RFID receiver 184. There, the signal received by receiver 184 may be processed for the oxygenation of the hemoglobin in the terminal capillary beds, a marker of ischemia, byexternal monitor 313, as shown in the data collected and plotted under the Example section, below. An example of a system for indicating oxygenation is described in U.S. Pat. No. 5,987,346, incorporated herein by reference. - Once the measurement is completed,
external coil 183 is moved away fromdevice 101, anddevice 101 powers down and returns to a resting state. - In an alternative embodiment,
power source 179 may be charged during proximity to external coil, or have an internal battery source, allowingdevice 101 to operate whenexternal coil 179 is not present. Sendingunit 167 may then transmit without being directly queried, such as in response to a dangerous level of ischemia. - The light sensor which resolves the incoming light by wavelength and sends a signal to the sending unit has been mentioned, and will now be more fully described with reference to
FIGS. 3A to 3E . In one form,FIG. 3A , thesensor 155 is merelysingle photodiode 411 andprocessing electronics 413.Photodiode 411 is made wavelength sensitive through the design ofLED 105 as a cluster of LEDs of different wavelengths, each emitting at a different time or modulation frequency to allow decoding of the illuminating wavelength byphotodiode 411 andprocessing unit electronics 413. Alternatively,sensor 155 may comprise a set ofdifferent photodiodes 421A through 421N,FIG. 3B , each withfilters 425A through 425N, allowing each photodiode to be sensitive to only one wavelength range, again allowing decoding of the sensed light by wavelength by processingunit electronics 427. Alternatively again,sensor 155 may besingle photodiode 431 with electronicallyvariable filter 433,FIG. 3C , allowing the wavelength transmitted to be selected and processed by processing unit electronics 435. - Still referring to
FIGS. 3A to 3E , in other configurations,sensor 155 may beCCD chip 441 withfilter window 443,FIG. 3D , that varies over its length, allowing only certain wavelengths to reach each portion ofCCD 441, allowing decoding of the illuminating wavelength by processingunit electronics 447. Finally, in the preferred embodiment,FIG. 3E ,sensor 155 comprisesCCD chip 451 withoptical fibers 453 attached toCCD 451 in a linear array.Fibers 453 are manufactured such that each fiber has a different interference coating on end 454, allowing each fiber to transmit a different narrow wavelength range, allowing decoding of the illuminating wavelength by processingunit electronics 457.Fibers 453 are biocompatible and can extend outside ofdevice case 102, allowingdevice 101 to be placed remotely the target to be monitored, and for the free end offibers 453 to be placed in proximity to target 125. - The breadth of uses of the present invention is best understood by example. This example is by no means intended to be inclusive of all uses and applications of the apparatus, merely to serve as a case study by which a person, skilled in the art, can better appreciate the methods of utilizing, and the scope of, such a device.
- In this example, an optical sensor, similar in basis of operation to
device 101, is implanted into abdomen of a patient undergoing colon surgery. In this case, the animal receives heart-lung bypass, such that the blood flow and oxygen content of the blood is exactly controlled by a bypass specialist rather than by the animal's own heart and lungs, affording the ability to create and resolve ischemia at will. An aortic Doppler probe is placed, which measures the delivery of blood to tissue. In this case, when the rate of the pump is lowered to zero flow, ischemia must exist in the tissues being monitored. - Analysis of the tissue ischemia is performed by broadband, visible light, differential spectroscopy. In this technique, the first differential (for example) of the wavelength vs. intensity curve sent from the sending unit is processed to remove many of the effects caused by light scattering by the local tissue, and the resultant signal is analyzed using a least-squares minimization of the fitting error to known components of the tissue (such as myoglobin, capillary hemoglobin, or cytochromes).
- The signal that is measured is a function of the presence, absence, or risk, or degree of ischemia. This can have clinical implications and applications in many different medical areas, such as impending risk of tissue death (as seen in the colon study above), impending risk of organ rejection (as inflammation results in increased total blood content, while potentially reducing oxygenation) cardiac function (as improved cardiac function is associated with a body-wide improvement in tissue ischemia as well as a likely improvement in myocardial ischemia), treatment efficacy for arterial or venous vascular disease (as the real-time effects of such interventions on tissue oxygenation adequacy can be used as a treatment signal to guide chemical and physical interventions), risk of renal damage (as kidney failure is often the result of acute or chronic reduced oxygen delivery), risk of brain injury (as stroke is often the result of acute and chronic reduced oxygen delivery), risk of colon death (as the colon does not have a large capacity to increase blood and oxygen delivery in times of stress over baseline), risk of limb amputation (as limbs with good capillary saturation are more likely to heal and not require amputation), risk of ulcer healing (as G.I. and diabetic ulcers are more likely to heal if ischemia is not the only ongoing problem), and risk of critical limb ischemia (as limb salvage is always better if possible, but delays resolution of ischemia and presents a risk to the patient if delayed when amputation is required).
- As shown in
FIG. 4 , the creation of graded ischemia is detected by the present invention. Ingraph 601, the flow detected by the Doppler probe is plotted onhorizontal axis 603 versus the presence of ischemia as detected by the present invention using optical spectroscopy plotted onvertical axis 607. Data are plotted as means with standard error bars 613. As can be seen ongraph 601, when the blood flow to the gut is reduced to zero, the detection of the presence of ischemia rises to 100%, shown atdata point 617. - It is important to note that the measurement of flow/perfusion alone, or the measurement of blood oxygenation (not tissue oxygenation, but oxygenation of the arterial blood) alone are not sufficient to detect the condition of ischemia. Ischemia is diagnosed by low local tissue oxygenation, not blood oxygenation or flow. In some cases, arterial blood may be well oxygenated, but the delivery of this arterial blood to the tissue is insufficient (such as with a blood clot); in this case the tissue is indeed ischemia while the arterial blood oxygenation is normal. Blood flow also differs from a direct measure of ischemia. For example, in a cooled patient on heart-lung bypass, blood flow may be very, very low; however, the cooled tissues, whose oxygen need has been reduced by the low temperature, are not ischemic. Similarly, a chronically ischemic heart “hibernates” in order to reduce its own oxygen need, and may not be ischemic at reduced flow. In the above animal study example, flow was controlled sufficiently to allow for a low or zero flow to be consistent with ischemia, but such conclusions cannot be always made so clearly in the living non-experimental subject.
- Also, in the example above, power was provided to the device externally. However, as noted earlier, an integrated battery or set of batteries can provide power from within the device, reducing cost of the connection tip. An added advantage of this battery-based approach is that it removes the need for electrical connection to the light source, as an added safety feature.
- In this example, the signal detected from the tissue was a hemoglobin absorbance signal derived from the capillary bed. While absorbance is ideal for hemoglobin analysis, as described in the preferred embodiment, other interactions may be preferable for other measurements. The interaction with the illuminating light that provides the contrast can include absorbance, polarization, optical rotation, scattering, fluorescence, Raman effects, phosphorescence, or fluorescence decay, and measures of a contrast effect may reasonably include one or more of these effects. Other tissue components could be measured, including NADH, NADPH, cytochromes in their oxidized and reduced forms, or even ischemia or oxygen sensitive dyes. Next, when monitoring muscle such as the heart, myoglobin is another protein whose saturation is related to the presence or absence of ischemia. In such cases, a combination of hemoglobin in the capillaries as well as myoglobin in the heart, or just myoglobin in the heart myocytes, can serve as a marker of ischemia. Last, an injectable dye, sensitive to local ischemia, can be used to generate an optical signal directly related to the presence of ischemia, such as by changing color in response to mitochondrial membrane charge or in response to intracellular pH. Such use of dyes to label cells in vivo with optical dyes has been demonstrated in vivo by several groups, and the coupling of an ischemia sensitive dye to use of the present invention to detect ischemia (and conditions which are a function of ischemia) would fall within the spirit of the present invention.
- We have discovered an implantable ischemia detector for detecting local tissue ischemia in a quantitative and enabling manner in a broad array of target sites. In some embodiments a device is provided comprising a phosphor-coated white LED and integrated collimating optics conFig.d to produce continuous, broadband light from 400 nm to 700 nm in a collimated beam, which is then directly transmitted to a target site. Light backscattered by the target site is collected by a sensor, allowing for a direct measure of ischemia to be determined, and subsequently transmitted by a sending unit. Power is provided by an internal power source, which may in turn be itself powered by an external inductive coil that is brought in proximity to the implanted device in order to provide energy as needed. The entire implantable device is encapsulated by a biocompatible shell to add long-term safety while implanted. Used alone, or in combination with an estimate of arterial oxygenation, venous oxygenation, or even of blood flow, this device allows for an index of ischemia to be determined without additional invasiveness beyond the initial implantation. The present device may be interrogated using inductive technology and RF coupling. Implantable devices incorporating the ischemia system, and medical methods of use, are described. This device has immediate application to several important problems, both medical and industrial, and thus constitutes an important advance in the art.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/591,629 US20120316411A1 (en) | 2005-07-29 | 2012-08-22 | Remote oximetry monitoring system and method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/193,071 US7813778B2 (en) | 2005-07-29 | 2005-07-29 | Implantable tissue ischemia sensor |
US12/858,396 US20100312081A1 (en) | 2005-07-29 | 2010-08-17 | Implantable Tissue Ischemia Sensor |
US13/591,629 US20120316411A1 (en) | 2005-07-29 | 2012-08-22 | Remote oximetry monitoring system and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/858,396 Continuation US20100312081A1 (en) | 2005-07-29 | 2010-08-17 | Implantable Tissue Ischemia Sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120316411A1 true US20120316411A1 (en) | 2012-12-13 |
Family
ID=37695273
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/193,071 Expired - Fee Related US7813778B2 (en) | 2005-07-29 | 2005-07-29 | Implantable tissue ischemia sensor |
US12/858,396 Abandoned US20100312081A1 (en) | 2005-07-29 | 2010-08-17 | Implantable Tissue Ischemia Sensor |
US13/591,629 Abandoned US20120316411A1 (en) | 2005-07-29 | 2012-08-22 | Remote oximetry monitoring system and method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/193,071 Expired - Fee Related US7813778B2 (en) | 2005-07-29 | 2005-07-29 | Implantable tissue ischemia sensor |
US12/858,396 Abandoned US20100312081A1 (en) | 2005-07-29 | 2010-08-17 | Implantable Tissue Ischemia Sensor |
Country Status (4)
Country | Link |
---|---|
US (3) | US7813778B2 (en) |
EP (1) | EP1912559A4 (en) |
JP (1) | JP2009502360A (en) |
WO (1) | WO2007016437A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10265013B2 (en) | 2013-09-06 | 2019-04-23 | Somnology, Inc. | System and method for sleep disorder diagnosis and treatment |
US10265014B2 (en) | 2013-09-06 | 2019-04-23 | Somnology, Inc. | System and method for sleep disorder diagnosis and treatment |
US10674947B1 (en) * | 2009-03-24 | 2020-06-09 | Vioptix, Inc. | Diagnosing intestinal ischemia based on oxygen saturation measurements |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6711426B2 (en) * | 2002-04-09 | 2004-03-23 | Spectros Corporation | Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load |
US20070015981A1 (en) * | 2003-08-29 | 2007-01-18 | Benaron David A | Device and methods for the detection of locally-weighted tissue ischemia |
US20080009689A1 (en) * | 2002-04-09 | 2008-01-10 | Benaron David A | Difference-weighted somatic spectroscopy |
US7813778B2 (en) * | 2005-07-29 | 2010-10-12 | Spectros Corporation | Implantable tissue ischemia sensor |
WO2007149971A2 (en) * | 2006-06-22 | 2007-12-27 | General Hospital Corporation | Cancer detection by optical measurement of compression-induced transients |
US20080018424A1 (en) * | 2006-07-10 | 2008-01-24 | 3M Innovative Properties Company | Inductive sensor |
US7948380B2 (en) * | 2006-09-06 | 2011-05-24 | 3M Innovative Properties Company | Spatially distributed remote sensor |
EP2036491B1 (en) * | 2007-04-18 | 2018-03-28 | Weinmann Emergency Medical Technology GmbH + Co. KG | Lung ventilator and method for updating a lung ventilator |
EP3922171A1 (en) | 2007-09-14 | 2021-12-15 | Medtronic Monitoring, Inc. | Adherent cardiac monitor with advanced sensing capabilities |
US8374688B2 (en) | 2007-09-14 | 2013-02-12 | Corventis, Inc. | System and methods for wireless body fluid monitoring |
WO2009036256A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Injectable physiological monitoring system |
WO2009036333A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Dynamic pairing of patients to data collection gateways |
US8116841B2 (en) | 2007-09-14 | 2012-02-14 | Corventis, Inc. | Adherent device with multiple physiological sensors |
EP2194858B1 (en) | 2007-09-14 | 2017-11-22 | Corventis, Inc. | Medical device automatic start-up upon contact to patient tissue |
JP5405500B2 (en) | 2008-03-12 | 2014-02-05 | コーヴェンティス,インク. | Predicting cardiac decompensation based on cardiac rhythm |
US20090246797A1 (en) * | 2008-03-28 | 2009-10-01 | Nellcor Puritan Bennett Llc | Medical device for the assessment of internal organ tissue and technique for using the same |
WO2009124114A2 (en) * | 2008-04-02 | 2009-10-08 | The Trustees Of The University Of Pennsylvania | In vivo measurement of mitochondrial function |
WO2009146214A1 (en) | 2008-04-18 | 2009-12-03 | Corventis, Inc. | Method and apparatus to measure bioelectric impedance of patient tissue |
US20100022856A1 (en) * | 2008-07-28 | 2010-01-28 | Medtronic, Inc. | Implantable optical hemodynamic sensor including light transmission member |
US20100022861A1 (en) * | 2008-07-28 | 2010-01-28 | Medtronic, Inc. | Implantable optical hemodynamic sensor including an extension member |
WO2010014053A1 (en) | 2008-07-28 | 2010-02-04 | Medtronic, Inc. | Implantable optical hemodynamic sensor including light transmission member |
US9545215B2 (en) * | 2008-07-31 | 2017-01-17 | Medtronic, Inc. | Apparatus and method for detecting cardiac events |
US9737213B1 (en) * | 2009-03-24 | 2017-08-22 | Vioptix, Inc. | Using an oximeter probe to detect intestinal ischemia |
US8463346B2 (en) * | 2009-06-10 | 2013-06-11 | Medtronic, Inc. | Absolute calibrated tissue oxygen saturation and total hemoglobin volume fraction |
WO2011058604A1 (en) * | 2009-11-12 | 2011-05-19 | トヨタ自動車株式会社 | Fuel cell |
US10852069B2 (en) | 2010-05-04 | 2020-12-01 | Fractal Heatsink Technologies, LLC | System and method for maintaining efficiency of a fractal heat sink |
US20120130203A1 (en) * | 2010-11-24 | 2012-05-24 | Fujitsu Limited | Inductively-Powered Ring-Based Sensor |
US8602983B2 (en) | 2010-12-20 | 2013-12-10 | Covidien Lp | Access assembly having undercut structure |
US8641610B2 (en) | 2010-12-20 | 2014-02-04 | Covidien Lp | Access assembly with translating lumens |
US8696557B2 (en) | 2010-12-21 | 2014-04-15 | Covidien Lp | Access assembly including inflatable seal member |
US9649113B2 (en) | 2011-04-27 | 2017-05-16 | Covidien Lp | Device for monitoring physiological parameters in vivo |
US20140081154A1 (en) * | 2011-05-17 | 2014-03-20 | Landy Toth | Devices, systems, and methods for assessing implants, organs, transplants, tissues, synthetic constructs, vascular grafts, and the like |
US20130030255A1 (en) * | 2011-07-26 | 2013-01-31 | Embry Ii William Ben | Biocompatible implant device |
WO2013059673A1 (en) * | 2011-10-20 | 2013-04-25 | The General Hospital Corporation | Implantable imaging arrangement and method for using the same |
EP2768390A4 (en) * | 2011-10-21 | 2015-09-23 | Incube Labs Llc | Implantable oximetric measurement apparatus and method of use |
EP2586369B1 (en) * | 2011-10-27 | 2017-07-26 | St. Jude Medical AB | Ischemia detection |
JP2015516826A (en) | 2012-03-16 | 2015-06-18 | バイタル センサーズ ホールディング カンパニー, インク.Vital Sensors Holding Company, Inc. | Dielectric constant shielding |
WO2013148182A1 (en) | 2012-03-27 | 2013-10-03 | The University Of Vermont And State Agricultural College | Cardiac pacemaker and uses thereof |
US9936951B2 (en) * | 2013-03-12 | 2018-04-10 | Covidien Lp | Interchangeable tip reload |
EP2999419B1 (en) | 2013-05-22 | 2020-12-23 | Covidien LP | Apparatus for controlling surgical instruments using a port assembly |
US9496733B2 (en) | 2013-09-13 | 2016-11-15 | Boston Scientific Neuromodulation Corporation | Optical communications between an implantable medical device and external charger |
JP6357285B2 (en) | 2015-04-17 | 2018-07-11 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | System with optical fiber and continuous calibration |
US10835184B2 (en) * | 2015-04-22 | 2020-11-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Device for neuroprosthetics with autonomous tunable actuators |
US11324430B2 (en) * | 2018-01-15 | 2022-05-10 | The Johns Hopkins University | Sensor-based ischemia detection |
US11864906B2 (en) | 2019-06-20 | 2024-01-09 | International Business Machines Corporation | LIDAR implantable biosensor for imaging biological tissue |
US11883028B2 (en) | 2021-09-08 | 2024-01-30 | Covidien Lp | Systems and methods for post-operative anastomotic leak detection |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3872455A (en) * | 1971-11-17 | 1975-03-18 | Monitron Ind | Physiological measurement display system |
US20010016729A1 (en) * | 1999-09-30 | 2001-08-23 | Vincent Divino | Apparatus and method for blood oxygenation |
US20010044588A1 (en) * | 1996-02-22 | 2001-11-22 | Mault James R. | Monitoring system |
US20010056226A1 (en) * | 2000-04-18 | 2001-12-27 | Richard Zodnik | Integrated telemedicine computer system |
US6415166B1 (en) * | 1997-09-26 | 2002-07-02 | Datex-Ohmeda, Inc. | Photoplethysmographic device with remote facsimile |
US6423001B1 (en) * | 1996-09-04 | 2002-07-23 | Marcio Marc Abreu | Method and apparatus for signal transmission and detection using a contact device |
US20030097158A1 (en) * | 2001-11-16 | 2003-05-22 | Belalcazar Hugo Andres | Non-invasive method and apparatus for cardiac pacemaker pacing parameter optimization and monitoring of cardiac dysfunction |
US6790178B1 (en) * | 1999-09-24 | 2004-09-14 | Healthetech, Inc. | Physiological monitor and associated computation, display and communication unit |
US20050187488A1 (en) * | 2004-02-25 | 2005-08-25 | Wolf Erich W. | System for transcutaneous monitoring of intracranial pressure (ICP) using near infrared (NIR) telemetry |
US20060142634A1 (en) * | 2003-06-26 | 2006-06-29 | Advanced Resuscitation, Llc | Sensor-equipped and algorithm controlled direct mechanical ventricular assist device |
US20060167334A1 (en) * | 2003-06-26 | 2006-07-27 | Anstadt Mark P | Method and apparatus for direct mechanical ventricular actuation with favorable conditioning and minimal heart stress |
US20070123783A1 (en) * | 2005-11-30 | 2007-05-31 | Kuo-Yuan Chang | Simplified physiological measurement device |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE29304E (en) * | 1963-10-21 | 1977-07-12 | Raydne Limited | Plasma light source for spectroscopic investigation |
JPS6043134B2 (en) * | 1977-08-25 | 1985-09-26 | 信紘 佐藤 | Device for measuring reflection characteristics of biological organs and tissues |
US4164374A (en) * | 1977-09-26 | 1979-08-14 | Ford Motor Company | Spectrophotometer utilizing a solid state source of radiant energy having a controllable frequency spectra characteristic |
JPS55118738A (en) * | 1979-03-07 | 1980-09-11 | Sumitomo Electric Industries | Measuring device for breathing function of internal organ and tissue of living body |
DE2934190A1 (en) * | 1979-08-23 | 1981-03-19 | Müller, Gerhard, Prof. Dr.-Ing., 7080 Aalen | METHOD AND DEVICE FOR MOLECULAR SPECTROSCOPY, ESPECIALLY FOR DETERMINING METABOLISM PRODUCTS |
GB8416219D0 (en) * | 1984-06-26 | 1984-08-01 | Antec Systems | Patient monitoring apparatus |
DE3414261A1 (en) * | 1984-04-14 | 1985-10-24 | Fa. Carl Zeiss, 7920 Heidenheim | INTERFERENCE REFRACTOMETER |
US5259052A (en) * | 1984-06-08 | 1993-11-02 | Amp Incorporated | High precision optical fiber connectors |
US5190040A (en) * | 1986-12-26 | 1993-03-02 | Nihon Kohden Corporation | Apparatus for measuring the change in the concentration of a pigment in blood |
CA1327838C (en) * | 1988-06-13 | 1994-03-15 | Fred Zacouto | Implantable device to prevent blood clotting disorders |
FR2637807B1 (en) * | 1988-10-14 | 1997-10-31 | Zacouto Fred | DEVICE FOR PROTECTION AGAINST BLOOD-RELATED CONDITIONS, IN PARTICULAR THROMBOSIS, EMBOLIES, HEMORRHAGIA, HEMOPATHIES AND PRESENCE OF ABNORMAL ELEMENTS IN THE BLOOD |
US5873821A (en) * | 1992-05-18 | 1999-02-23 | Non-Invasive Technology, Inc. | Lateralization spectrophotometer |
US5564417A (en) * | 1991-01-24 | 1996-10-15 | Non-Invasive Technology, Inc. | Pathlength corrected oximeter and the like |
US5902235A (en) * | 1989-03-29 | 1999-05-11 | Somanetics Corporation | Optical cerebral oximeter |
US5040538A (en) * | 1989-09-05 | 1991-08-20 | Siemens-Pacesetter, Inc. | Pulsed light blood oxygen content sensor system and method of using same |
US5040533A (en) * | 1989-12-29 | 1991-08-20 | Medical Engineering And Development Institute Incorporated | Implantable cardiovascular treatment device container for sensing a physiological parameter |
US5280788A (en) * | 1991-02-26 | 1994-01-25 | Massachusetts Institute Of Technology | Devices and methods for optical diagnosis of tissue |
US5318022A (en) * | 1991-03-01 | 1994-06-07 | John Taboada | Method and apparatus for determining hemoglobin oxygenation such as in ocular and other vascular beds |
US5135004A (en) * | 1991-03-12 | 1992-08-04 | Incontrol, Inc. | Implantable myocardial ischemia monitor and related method |
US5199428A (en) * | 1991-03-22 | 1993-04-06 | Medtronic, Inc. | Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload |
US6785568B2 (en) * | 1992-05-18 | 2004-08-31 | Non-Invasive Technology Inc. | Transcranial examination of the brain |
US5853370A (en) | 1996-09-13 | 1998-12-29 | Non-Invasive Technology, Inc. | Optical system and method for non-invasive imaging of biological tissue |
US5672875A (en) * | 1992-07-15 | 1997-09-30 | Optix Lp | Methods of minimizing scattering and improving tissue sampling in non-invasive testing and imaging |
US5355425A (en) * | 1992-09-04 | 1994-10-11 | Braiman Mark S | Light coupling device for optical fibers |
US5772597A (en) * | 1992-09-14 | 1998-06-30 | Sextant Medical Corporation | Surgical tool end effector |
US5329922A (en) * | 1992-10-19 | 1994-07-19 | Atlee Iii John L | Oximetric esophageal probe |
US5357954A (en) * | 1993-01-04 | 1994-10-25 | Respiratory Support Products, Inc. | Optical blood oxygen saturation probe for insertion into the esophagus |
US5987346A (en) * | 1993-02-26 | 1999-11-16 | Benaron; David A. | Device and method for classification of tissue |
AU7828694A (en) * | 1993-08-24 | 1995-03-22 | Mark R. Robinson | A robust accurate non-invasive analyte monitor |
US5417207A (en) * | 1993-12-06 | 1995-05-23 | Sensor Devices, Inc. | Apparatus for the invasive use of oximeter probes |
US5743261A (en) * | 1993-12-06 | 1998-04-28 | Sensor Devices, Inc. | Methods and apparatus for the invasive use of oximeter probes |
US5645059A (en) * | 1993-12-17 | 1997-07-08 | Nellcor Incorporated | Medical sensor with modulated encoding scheme |
US6662033B2 (en) * | 1994-04-01 | 2003-12-09 | Nellcor Incorporated | Pulse oximeter and sensor optimized for low saturation |
US5520190A (en) * | 1994-10-31 | 1996-05-28 | Ventritex, Inc. | Cardiac blood flow sensor and method |
US5777350A (en) * | 1994-12-02 | 1998-07-07 | Nichia Chemical Industries, Ltd. | Nitride semiconductor light-emitting device |
US5995860A (en) * | 1995-07-06 | 1999-11-30 | Thomas Jefferson University | Implantable sensor and system for measurement and control of blood constituent levels |
EP0762109A3 (en) * | 1995-08-30 | 1997-09-17 | Kyoto Daiichi Kagaku Kk | Method of and apparatus for measuring lactic acid in organism |
CA2242596C (en) * | 1996-01-11 | 2012-06-19 | Mrj, Inc. | System for controlling access and distribution of digital property |
US5833603A (en) * | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US5931779A (en) * | 1996-06-06 | 1999-08-03 | Wisconsin Alumni Research Foundation | Real-time in-vivo measurement of myoglobin oxygen saturation |
US5879294A (en) * | 1996-06-28 | 1999-03-09 | Hutchinson Technology Inc. | Tissue chromophore measurement system |
US5733313A (en) * | 1996-08-01 | 1998-03-31 | Exonix Corporation | RF coupled, implantable medical device with rechargeable back-up power source |
US5696861A (en) * | 1996-08-13 | 1997-12-09 | Schimmeyer; Werner K. | Method and apparatus for simultaneously connecting data/signal communication lines and power lines to a data/RF receiver/transmitter |
US5782756A (en) * | 1996-09-19 | 1998-07-21 | Nellcor Puritan Bennett Incorporated | Method and apparatus for in vivo blood constituent analysis |
US5830137A (en) * | 1996-11-18 | 1998-11-03 | University Of South Florida | Green light pulse oximeter |
US6119031A (en) * | 1996-11-21 | 2000-09-12 | Boston Scientific Corporation | Miniature spectrometer |
GB9700686D0 (en) * | 1997-01-15 | 1997-03-05 | Perkin Elmer Ltd | Probe for spectroscopic analysis |
US5941822A (en) * | 1997-03-17 | 1999-08-24 | Polartechnics Limited | Apparatus for tissue type recognition within a body canal |
US5901261A (en) * | 1997-06-19 | 1999-05-04 | Visionex, Inc. | Fiber optic interface for optical probes with enhanced photonic efficiency, light manipulation, and stray light rejection |
US6324418B1 (en) * | 1997-09-29 | 2001-11-27 | Boston Scientific Corporation | Portable tissue spectroscopy apparatus and method |
US6252254B1 (en) * | 1998-02-06 | 2001-06-26 | General Electric Company | Light emitting device with phosphor composition |
DE19810561A1 (en) * | 1998-03-11 | 1999-09-16 | Siemens Ag | Hybrid data plug |
US6251068B1 (en) * | 1998-05-18 | 2001-06-26 | Fuji Photo Optical Co., Ltd. | Endoscopic observation system |
ATE521277T1 (en) * | 1998-06-03 | 2011-09-15 | Masimo Corp | STEREO PULSE OXIMETER |
US6226082B1 (en) * | 1998-06-25 | 2001-05-01 | Amira Medical | Method and apparatus for the quantitative analysis of a liquid sample with surface enhanced spectroscopy |
US6432364B1 (en) * | 1998-07-06 | 2002-08-13 | Suzuki Motor Corporation | SPR sensor cell and immunoassay apparatus using the same |
JP4486253B2 (en) | 1998-07-07 | 2010-06-23 | ライタッチ メディカル インコーポレイテッド | Sample concentration determination device |
US6381018B1 (en) * | 1998-07-28 | 2002-04-30 | The Regents Of The University Of California | Method for measuring changes in light absorption of highly scattering media |
CA2339506C (en) * | 1998-08-07 | 2011-05-31 | Infinite Biomedical Technologies, Incorporated | Implantable myocardial ischemia detection, indication and action technology |
EP1104254A2 (en) * | 1998-08-13 | 2001-06-06 | Whitland Research Limited | Optical device |
JP2002524123A (en) * | 1998-09-09 | 2002-08-06 | ユー.エス. アーミー インスティテュート オブ サージカル リサーチ | Pulse oximeter sensor combined with oropharyngeal tracheal airway and bite block |
US6043893A (en) * | 1998-10-09 | 2000-03-28 | Universities Space Research Association | Manually portable reflectance spectrometer |
JP2002527134A (en) * | 1998-10-13 | 2002-08-27 | ソマネティクス コーポレイション | Multi-channel non-invasive tissue oximeter |
JP4490587B2 (en) * | 1998-11-18 | 2010-06-30 | エルエーアー メディツィンテクニック ゲーエムベーハー | Device for noninvasive detection of oxygen metabolism in tissues |
US6353226B1 (en) * | 1998-11-23 | 2002-03-05 | Abbott Laboratories | Non-invasive sensor capable of determining optical parameters in a sample having multiple layers |
US6127783A (en) * | 1998-12-18 | 2000-10-03 | Philips Electronics North America Corp. | LED luminaire with electronically adjusted color balance |
US6438399B1 (en) * | 1999-02-16 | 2002-08-20 | The Children's Hospital Of Philadelphia | Multi-wavelength frequency domain near-infrared cerebral oximeter |
US6108577A (en) | 1999-04-26 | 2000-08-22 | Cardiac Pacemakers, Inc. | Method and apparatus for detecting changes in electrocardiogram signals |
US6167297A (en) * | 1999-05-05 | 2000-12-26 | Benaron; David A. | Detecting, localizing, and targeting internal sites in vivo using optical contrast agents |
US6216021B1 (en) * | 1999-06-04 | 2001-04-10 | The Board Of Trustees Of The University Of Illinois | Method for measuring absolute saturation of time-varying and other hemoglobin compartments |
WO2001001070A1 (en) | 1999-06-29 | 2001-01-04 | Omron Corporation | Light source device, spectroscope comprising the light source device, and film thickness sensor |
US6515273B2 (en) * | 1999-08-26 | 2003-02-04 | Masimo Corporation | System for indicating the expiration of the useful operating life of a pulse oximetry sensor |
US6527729B1 (en) * | 1999-11-10 | 2003-03-04 | Pacesetter, Inc. | Method for monitoring patient using acoustic sensor |
US6277078B1 (en) * | 1999-11-19 | 2001-08-21 | Remon Medical Technologies, Ltd. | System and method for monitoring a parameter associated with the performance of a heart |
WO2001073407A2 (en) * | 2000-03-29 | 2001-10-04 | The Dow Chemical Company | Method for the determination of an acid or a base in a non-aqueous liquid |
DE10016349B4 (en) * | 2000-04-03 | 2007-09-27 | Sensopart Industriesensorik Gmbh | Method and arrangement for detecting and / or detecting an object |
US6533466B1 (en) * | 2000-09-07 | 2003-03-18 | International Business Machines Corporation | Hybrid connector assembly for electrical conductors and fiber optic data conductors |
US6678398B2 (en) * | 2000-09-18 | 2004-01-13 | Sti Medical Systems, Inc. | Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process |
US6798517B2 (en) * | 2000-09-28 | 2004-09-28 | Color-Spec Technologies, Inc. | Handheld, portable color measuring device with display |
US6588938B1 (en) * | 2000-10-18 | 2003-07-08 | Fitel Usa Corp. | Optical/electrical plug connector |
US6532381B2 (en) * | 2001-01-11 | 2003-03-11 | Ge Medical Systems Information Technologies, Inc. | Patient monitor for determining a probability that a patient has acute cardiac ischemia |
CA2435205A1 (en) * | 2001-01-22 | 2002-08-01 | V-Target Technologies Ltd. | Ingestible device |
CN1966106A (en) * | 2001-03-02 | 2007-05-23 | 帕洛玛医疗技术公司 | Apparatus and method for photocosmetic and photodermatological treatment |
US6697658B2 (en) | 2001-07-02 | 2004-02-24 | Masimo Corporation | Low power pulse oximeter |
US6612857B2 (en) * | 2001-07-05 | 2003-09-02 | Bernard R. Tolmie | Electrical connector system and method having optical and/or cooling capability |
US6694159B2 (en) * | 2001-07-16 | 2004-02-17 | Art, Advanced Research Technologies Inc. | Choice of wavelengths for multiwavelength optical imaging |
US20030036031A1 (en) * | 2001-08-20 | 2003-02-20 | Lieb Joseph Alexander | Light-emitting handpiece for curing photopolymerizable resins |
JP2005501618A (en) * | 2001-08-30 | 2005-01-20 | メドトロニック・インコーポレーテッド | System and method for detecting myocardial ischemia |
US6921920B2 (en) * | 2001-08-31 | 2005-07-26 | Smith & Nephew, Inc. | Solid-state light source |
US20030073889A1 (en) * | 2001-10-11 | 2003-04-17 | Keilbach Kevin A. | Monitoring led wavelength shift in photoplethysmography |
US6550979B1 (en) * | 2001-10-19 | 2003-04-22 | Corning Cable Systems Llc | Floating connector subassembly and connector including same |
US20030111533A1 (en) * | 2001-12-19 | 2003-06-19 | Koninklijke Philips Electronics N.V. | RGB led based white light control system with quasi-uniform color metric |
US6711426B2 (en) * | 2002-04-09 | 2004-03-23 | Spectros Corporation | Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load |
US20070015981A1 (en) * | 2003-08-29 | 2007-01-18 | Benaron David A | Device and methods for the detection of locally-weighted tissue ischemia |
JP4541887B2 (en) * | 2002-07-26 | 2010-09-08 | オーベーイー アンパーツゼルスカブ | Method, system and device for converting venous blood values to arterial blood values |
US7066891B2 (en) * | 2002-12-20 | 2006-06-27 | Medtronic, Inc. | Method and apparatus for gauging severity of myocardial ischemic episodes |
EP1592344A4 (en) * | 2003-01-31 | 2006-08-16 | Univ Leland Stanford Junior | Detection of apex motion for monitoring cardiac dysfunction |
JP2004325783A (en) * | 2003-04-24 | 2004-11-18 | Sony Corp | Optical-electrical composite connector, and optical-electrical composite cable and network equipment using the same |
US6944488B2 (en) * | 2003-04-30 | 2005-09-13 | Medtronic, Inc. | Normalization method for a chronically implanted optical sensor |
WO2006116701A2 (en) * | 2005-04-28 | 2006-11-02 | Research Foundation Of The City University Of New York | Imaging systems and methods to improve backscattering imaging using circular polarization memory |
US7813778B2 (en) * | 2005-07-29 | 2010-10-12 | Spectros Corporation | Implantable tissue ischemia sensor |
-
2005
- 2005-07-29 US US11/193,071 patent/US7813778B2/en not_active Expired - Fee Related
-
2006
- 2006-07-27 EP EP06788915A patent/EP1912559A4/en not_active Withdrawn
- 2006-07-27 WO PCT/US2006/029615 patent/WO2007016437A2/en active Application Filing
- 2006-07-27 JP JP2008524234A patent/JP2009502360A/en active Pending
-
2010
- 2010-08-17 US US12/858,396 patent/US20100312081A1/en not_active Abandoned
-
2012
- 2012-08-22 US US13/591,629 patent/US20120316411A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3872455A (en) * | 1971-11-17 | 1975-03-18 | Monitron Ind | Physiological measurement display system |
US20010044588A1 (en) * | 1996-02-22 | 2001-11-22 | Mault James R. | Monitoring system |
US6423001B1 (en) * | 1996-09-04 | 2002-07-23 | Marcio Marc Abreu | Method and apparatus for signal transmission and detection using a contact device |
US6415166B1 (en) * | 1997-09-26 | 2002-07-02 | Datex-Ohmeda, Inc. | Photoplethysmographic device with remote facsimile |
US6790178B1 (en) * | 1999-09-24 | 2004-09-14 | Healthetech, Inc. | Physiological monitor and associated computation, display and communication unit |
US20010016729A1 (en) * | 1999-09-30 | 2001-08-23 | Vincent Divino | Apparatus and method for blood oxygenation |
US20010056226A1 (en) * | 2000-04-18 | 2001-12-27 | Richard Zodnik | Integrated telemedicine computer system |
US20030097158A1 (en) * | 2001-11-16 | 2003-05-22 | Belalcazar Hugo Andres | Non-invasive method and apparatus for cardiac pacemaker pacing parameter optimization and monitoring of cardiac dysfunction |
US20060142634A1 (en) * | 2003-06-26 | 2006-06-29 | Advanced Resuscitation, Llc | Sensor-equipped and algorithm controlled direct mechanical ventricular assist device |
US20060167334A1 (en) * | 2003-06-26 | 2006-07-27 | Anstadt Mark P | Method and apparatus for direct mechanical ventricular actuation with favorable conditioning and minimal heart stress |
US20050187488A1 (en) * | 2004-02-25 | 2005-08-25 | Wolf Erich W. | System for transcutaneous monitoring of intracranial pressure (ICP) using near infrared (NIR) telemetry |
US20070123783A1 (en) * | 2005-11-30 | 2007-05-31 | Kuo-Yuan Chang | Simplified physiological measurement device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10674947B1 (en) * | 2009-03-24 | 2020-06-09 | Vioptix, Inc. | Diagnosing intestinal ischemia based on oxygen saturation measurements |
US10265013B2 (en) | 2013-09-06 | 2019-04-23 | Somnology, Inc. | System and method for sleep disorder diagnosis and treatment |
US10265014B2 (en) | 2013-09-06 | 2019-04-23 | Somnology, Inc. | System and method for sleep disorder diagnosis and treatment |
Also Published As
Publication number | Publication date |
---|---|
US20070027371A1 (en) | 2007-02-01 |
EP1912559A4 (en) | 2012-02-08 |
WO2007016437A2 (en) | 2007-02-08 |
US20100312081A1 (en) | 2010-12-09 |
US7813778B2 (en) | 2010-10-12 |
EP1912559A2 (en) | 2008-04-23 |
JP2009502360A (en) | 2009-01-29 |
WO2007016437A3 (en) | 2007-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7813778B2 (en) | Implantable tissue ischemia sensor | |
US20070015981A1 (en) | Device and methods for the detection of locally-weighted tissue ischemia | |
US7252659B2 (en) | Implanted surgical drain with sensing and transmitting elements for monitoring internal tissue condition | |
US7534207B2 (en) | Implantable device with sensors for differential monitoring of internal condition | |
US20090048502A1 (en) | Broadband illuminator for oximetry, hemoglobin, met-hemoglobin, carboxy-hemoglobin, and other blood component monitoring | |
US20080287758A1 (en) | Illuminator probe with memory device and method | |
JP2009502360A5 (en) | ||
US20100312128A1 (en) | Systems and methods for monitoring blood partitioning and organ function | |
US8781547B2 (en) | Method and apparatus for calibrating an absolute oxygen saturation sensor | |
Theodor et al. | Implantable pulse oximetry on subcutaneous tissue | |
CN103249361A (en) | Coefficent determination for blood oxygen saturation and total hemoglobin concentration indices | |
Baldini et al. | Optical-fiber medical sensors | |
Ruh et al. | Determination of vessel wall dynamics by optical microsensors | |
Deutsch et al. | Real-time evaluation of tissue vitality by monitoring of microcirculatory blood flow, HbO2, and mitochondrial NADH redox state | |
EP1087694A1 (en) | Apparatus for spectrophotometry and method of obtaining spectrophotometrical information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELLNUMERATE CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECTROS CORPORATION;REEL/FRAME:030800/0957 Effective date: 20120109 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SPECTROS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELLNUMERATE CORPORATION;REEL/FRAME:036513/0679 Effective date: 20150828 |
|
AS | Assignment |
Owner name: ALIPHCOM, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECTROS CORPORATION;REEL/FRAME:036630/0699 Effective date: 20150917 |
|
AS | Assignment |
Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:ALIPHCOM;REEL/FRAME:037196/0229 Effective date: 20150917 |
|
AS | Assignment |
Owner name: JB IP ACQUISITION LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALIPHCOM, LLC;BODYMEDIA, INC.;REEL/FRAME:049805/0582 Effective date: 20180205 |
|
AS | Assignment |
Owner name: J FITNESS LLC, NEW YORK Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JAWBONE HEALTH HUB, INC.;REEL/FRAME:049825/0659 Effective date: 20180205 Owner name: J FITNESS LLC, NEW YORK Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0718 Effective date: 20180205 Owner name: J FITNESS LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0907 Effective date: 20180205 |
|
AS | Assignment |
Owner name: ALIPHCOM LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BLACKROCK ADVISORS, LLC;REEL/FRAME:050005/0095 Effective date: 20190529 |
|
AS | Assignment |
Owner name: J FITNESS LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:JAWBONE HEALTH HUB, INC.;JB IP ACQUISITION, LLC;REEL/FRAME:050067/0286 Effective date: 20190808 |