US20120258046A1 - Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids - Google Patents
Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids Download PDFInfo
- Publication number
- US20120258046A1 US20120258046A1 US13/509,564 US201013509564A US2012258046A1 US 20120258046 A1 US20120258046 A1 US 20120258046A1 US 201013509564 A US201013509564 A US 201013509564A US 2012258046 A1 US2012258046 A1 US 2012258046A1
- Authority
- US
- United States
- Prior art keywords
- mage
- nucleic acid
- rna
- solution
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 144
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 122
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 122
- 239000000243 solution Substances 0.000 title claims abstract description 113
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 title claims abstract description 82
- 238000001890 transfection Methods 0.000 title claims abstract description 79
- 238000004108 freeze drying Methods 0.000 title claims abstract description 78
- 239000007924 injection Substances 0.000 title claims abstract description 44
- 238000002347 injection Methods 0.000 title claims abstract description 44
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 87
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 74
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 69
- 108020004999 messenger RNA Proteins 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000014509 gene expression Effects 0.000 claims abstract description 19
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 7
- 229960005486 vaccine Drugs 0.000 claims abstract description 7
- 108020004414 DNA Proteins 0.000 claims description 70
- 206010028980 Neoplasm Diseases 0.000 claims description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 22
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 19
- 201000011510 cancer Diseases 0.000 claims description 18
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 15
- 150000001720 carbohydrates Chemical class 0.000 claims description 14
- 235000014633 carbohydrates Nutrition 0.000 claims description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 13
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 12
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 12
- 102000053602 DNA Human genes 0.000 claims description 11
- 230000001580 bacterial effect Effects 0.000 claims description 11
- 239000008156 Ringer's lactate solution Substances 0.000 claims description 10
- 239000000872 buffer Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- 239000008103 glucose Substances 0.000 claims description 9
- 230000003308 immunostimulating effect Effects 0.000 claims description 9
- 108091034117 Oligonucleotide Proteins 0.000 claims description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 8
- 108020004566 Transfer RNA Proteins 0.000 claims description 8
- 108020000999 Viral RNA Proteins 0.000 claims description 8
- ZEWYCNBZMPELPF-UHFFFAOYSA-J calcium;potassium;sodium;2-hydroxypropanoic acid;sodium;tetrachloride Chemical group [Na].[Na+].[Cl-].[Cl-].[Cl-].[Cl-].[K+].[Ca+2].CC(O)C(O)=O ZEWYCNBZMPELPF-UHFFFAOYSA-J 0.000 claims description 8
- 108020004418 ribosomal RNA Proteins 0.000 claims description 8
- WQZGKKKJIJFFOK-PQMKYFCFSA-N alpha-D-mannose Chemical compound OC[C@H]1O[C@H](O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-PQMKYFCFSA-N 0.000 claims description 7
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 6
- 108020004682 Single-Stranded DNA Proteins 0.000 claims description 6
- AVVWPBAENSWJCB-DVKNGEFBSA-N alpha-D-mannofuranose Chemical group OC[C@@H](O)[C@H]1O[C@H](O)[C@@H](O)[C@H]1O AVVWPBAENSWJCB-DVKNGEFBSA-N 0.000 claims description 6
- AVVWPBAENSWJCB-VFUOTHLCSA-N beta-D-mannofuranose Chemical compound OC[C@@H](O)[C@H]1O[C@@H](O)[C@@H](O)[C@H]1O AVVWPBAENSWJCB-VFUOTHLCSA-N 0.000 claims description 6
- WQZGKKKJIJFFOK-RWOPYEJCSA-N beta-D-mannose Chemical compound OC[C@H]1O[C@@H](O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-RWOPYEJCSA-N 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 238000007710 freezing Methods 0.000 claims description 6
- 230000008014 freezing Effects 0.000 claims description 6
- 235000010355 mannitol Nutrition 0.000 claims description 6
- 108020005544 Antisense RNA Proteins 0.000 claims description 5
- 206010020751 Hypersensitivity Diseases 0.000 claims description 5
- 208000026935 allergic disease Diseases 0.000 claims description 5
- 230000007815 allergy Effects 0.000 claims description 5
- 108091023037 Aptamer Proteins 0.000 claims description 4
- 108090000994 Catalytic RNA Proteins 0.000 claims description 4
- 102000053642 Catalytic RNA Human genes 0.000 claims description 4
- 108020001019 DNA Primers Proteins 0.000 claims description 4
- 239000003155 DNA primer Substances 0.000 claims description 4
- 239000003298 DNA probe Substances 0.000 claims description 4
- 108020004422 Riboswitch Proteins 0.000 claims description 4
- 108020004459 Small interfering RNA Proteins 0.000 claims description 4
- 239000003184 complementary RNA Substances 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 4
- 108091070501 miRNA Proteins 0.000 claims description 4
- 239000002679 microRNA Substances 0.000 claims description 4
- 108091092562 ribozyme Proteins 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 230000003612 virological effect Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000002068 genetic effect Effects 0.000 claims description 2
- 230000002829 reductive effect Effects 0.000 claims description 2
- 238000000859 sublimation Methods 0.000 claims description 2
- 230000008022 sublimation Effects 0.000 claims description 2
- 238000011282 treatment Methods 0.000 claims description 2
- 229940001447 lactate Drugs 0.000 claims 18
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims 12
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims 6
- 235000014655 lactic acid Nutrition 0.000 claims 6
- 239000011780 sodium chloride Substances 0.000 claims 6
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 claims 4
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 claims 4
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 claims 4
- 239000012981 Hank's balanced salt solution Substances 0.000 claims 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 claims 4
- 239000004310 lactic acid Substances 0.000 claims 4
- 230000003287 optical effect Effects 0.000 claims 4
- 239000002953 phosphate buffered saline Substances 0.000 claims 4
- 239000001540 sodium lactate Substances 0.000 claims 4
- 235000011088 sodium lactate Nutrition 0.000 claims 4
- 229940005581 sodium lactate Drugs 0.000 claims 4
- 239000003656 tris buffered saline Substances 0.000 claims 4
- 208000026350 Inborn Genetic disease Diseases 0.000 claims 3
- 239000000654 additive Substances 0.000 claims 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims 2
- 208000035473 Communicable disease Diseases 0.000 claims 2
- 229930182843 D-Lactic acid Natural products 0.000 claims 2
- 239000007995 HEPES buffer Substances 0.000 claims 2
- 230000000996 additive effect Effects 0.000 claims 2
- 150000001298 alcohols Chemical class 0.000 claims 2
- 150000001450 anions Chemical class 0.000 claims 2
- 239000003855 balanced salt solution Substances 0.000 claims 2
- 239000007975 buffered saline Substances 0.000 claims 2
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 claims 2
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 claims 2
- 239000008139 complexing agent Substances 0.000 claims 2
- GSQKXUNYYCYYKT-UHFFFAOYSA-N cyclo-trialuminium Chemical compound [Al]1[Al]=[Al]1 GSQKXUNYYCYYKT-UHFFFAOYSA-N 0.000 claims 2
- 239000008121 dextrose Substances 0.000 claims 2
- 150000003893 lactate salts Chemical group 0.000 claims 2
- 229910021645 metal ion Inorganic materials 0.000 claims 2
- 229920000642 polymer Polymers 0.000 claims 2
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 claims 2
- 239000001521 potassium lactate Substances 0.000 claims 2
- 235000011085 potassium lactate Nutrition 0.000 claims 2
- 229960001304 potassium lactate Drugs 0.000 claims 2
- 239000004094 surface-active agent Substances 0.000 claims 2
- 230000009897 systematic effect Effects 0.000 claims 2
- 208000023275 Autoimmune disease Diseases 0.000 claims 1
- 208000024172 Cardiovascular disease Diseases 0.000 claims 1
- 208000024556 Mendelian disease Diseases 0.000 claims 1
- 229910052786 argon Inorganic materials 0.000 claims 1
- 239000003937 drug carrier Substances 0.000 claims 1
- 208000016361 genetic disease Diseases 0.000 claims 1
- 229910052734 helium Inorganic materials 0.000 claims 1
- 239000001307 helium Substances 0.000 claims 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 1
- 239000011261 inert gas Substances 0.000 claims 1
- 229910052743 krypton Inorganic materials 0.000 claims 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 229910052754 neon Inorganic materials 0.000 claims 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims 1
- 230000001537 neural effect Effects 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229910052756 noble gas Inorganic materials 0.000 claims 1
- 238000011321 prophylaxis Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000003981 vehicle Substances 0.000 claims 1
- 229910052724 xenon Inorganic materials 0.000 claims 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 16
- 238000001727 in vivo Methods 0.000 abstract description 13
- 230000006641 stabilisation Effects 0.000 abstract description 10
- 238000011105 stabilization Methods 0.000 abstract description 10
- 230000001965 increasing effect Effects 0.000 abstract description 8
- 230000008092 positive effect Effects 0.000 abstract description 4
- -1 e.g. Proteins 0.000 description 192
- 201000001441 melanoma Diseases 0.000 description 133
- 239000000427 antigen Substances 0.000 description 99
- 102000036639 antigens Human genes 0.000 description 93
- 108091007433 antigens Proteins 0.000 description 93
- 235000018102 proteins Nutrition 0.000 description 68
- 210000004027 cell Anatomy 0.000 description 44
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 38
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 38
- 206010005003 Bladder cancer Diseases 0.000 description 37
- 201000005202 lung cancer Diseases 0.000 description 37
- 208000020816 lung neoplasm Diseases 0.000 description 37
- 201000005112 urinary bladder cancer Diseases 0.000 description 37
- 206010006187 Breast cancer Diseases 0.000 description 35
- 208000026310 Breast neoplasm Diseases 0.000 description 35
- 206010060862 Prostate cancer Diseases 0.000 description 34
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 33
- 206010009944 Colon cancer Diseases 0.000 description 30
- 208000014829 head and neck neoplasm Diseases 0.000 description 28
- 201000010536 head and neck cancer Diseases 0.000 description 27
- 206010039491 Sarcoma Diseases 0.000 description 25
- 239000002671 adjuvant Substances 0.000 description 25
- 208000032839 leukemia Diseases 0.000 description 24
- 206010033128 Ovarian cancer Diseases 0.000 description 23
- 206010061535 Ovarian neoplasm Diseases 0.000 description 23
- 208000029742 colonic neoplasm Diseases 0.000 description 19
- 230000000694 effects Effects 0.000 description 17
- 102000004127 Cytokines Human genes 0.000 description 15
- 108090000695 Cytokines Proteins 0.000 description 15
- 241000282414 Homo sapiens Species 0.000 description 14
- 210000001744 T-lymphocyte Anatomy 0.000 description 14
- 208000006265 Renal cell carcinoma Diseases 0.000 description 12
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 11
- 210000002540 macrophage Anatomy 0.000 description 11
- 208000008443 pancreatic carcinoma Diseases 0.000 description 11
- 230000001717 pathogenic effect Effects 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 101100281119 Brachyspira hyodysenteriae flaA1 gene Proteins 0.000 description 10
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 10
- 101100120228 Pseudomonas aeruginosa fliC gene Proteins 0.000 description 10
- 210000004443 dendritic cell Anatomy 0.000 description 10
- 101150071682 flaA gene Proteins 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 10
- 244000052769 pathogen Species 0.000 description 10
- 102000005962 receptors Human genes 0.000 description 10
- 108020003175 receptors Proteins 0.000 description 10
- 108010031099 Mannose Receptor Proteins 0.000 description 9
- 208000005718 Stomach Neoplasms Diseases 0.000 description 9
- 229930006000 Sucrose Natural products 0.000 description 9
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 9
- 210000003719 b-lymphocyte Anatomy 0.000 description 9
- 206010017758 gastric cancer Diseases 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 201000011549 stomach cancer Diseases 0.000 description 9
- 239000005720 sucrose Substances 0.000 description 9
- 235000000346 sugar Nutrition 0.000 description 9
- 108090000538 Caspase-8 Proteins 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 201000002528 pancreatic cancer Diseases 0.000 description 8
- 239000008215 water for injection Substances 0.000 description 8
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 7
- 108010049048 Cholera Toxin Proteins 0.000 description 7
- 102000009016 Cholera Toxin Human genes 0.000 description 7
- 101001131990 Homo sapiens Peroxidasin homolog Proteins 0.000 description 7
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 7
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 7
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 7
- 102000043129 MHC class I family Human genes 0.000 description 7
- 108091054437 MHC class I family Proteins 0.000 description 7
- 102100034601 Peroxidasin homolog Human genes 0.000 description 7
- 102100036234 Synaptonemal complex protein 1 Human genes 0.000 description 7
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 230000015788 innate immune response Effects 0.000 description 7
- 210000002307 prostate Anatomy 0.000 description 7
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 6
- 102100021305 Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Human genes 0.000 description 6
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 6
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 6
- 102100037362 Fibronectin Human genes 0.000 description 6
- 101001042227 Homo sapiens Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Proteins 0.000 description 6
- 101000842302 Homo sapiens Protein-cysteine N-palmitoyltransferase HHAT Proteins 0.000 description 6
- 102000043131 MHC class II family Human genes 0.000 description 6
- 108091054438 MHC class II family Proteins 0.000 description 6
- 102100034256 Mucin-1 Human genes 0.000 description 6
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 6
- 102000002689 Toll-like receptor Human genes 0.000 description 6
- 108020000411 Toll-like receptor Proteins 0.000 description 6
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 6
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 description 5
- 102100026548 Caspase-8 Human genes 0.000 description 5
- 102100034929 Cell division cycle protein 27 homolog Human genes 0.000 description 5
- 206010008342 Cervix carcinoma Diseases 0.000 description 5
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 5
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 5
- 101000889345 Homo sapiens Cancer/testis antigen 2 Proteins 0.000 description 5
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 5
- WQZGKKKJIJFFOK-JFNONXLTSA-N L-mannopyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-JFNONXLTSA-N 0.000 description 5
- 108060001084 Luciferase Proteins 0.000 description 5
- 239000005089 Luciferase Substances 0.000 description 5
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 5
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 5
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 5
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 201000010881 cervical cancer Diseases 0.000 description 5
- 101150038062 fliC gene Proteins 0.000 description 5
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 5
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 206010042863 synovial sarcoma Diseases 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 108700004606 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Proteins 0.000 description 4
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 4
- 102000036365 BRCA1 Human genes 0.000 description 4
- 108700020463 BRCA1 Proteins 0.000 description 4
- 101150072950 BRCA1 gene Proteins 0.000 description 4
- 108700020462 BRCA2 Proteins 0.000 description 4
- 102000015735 Beta-catenin Human genes 0.000 description 4
- 108060000903 Beta-catenin Proteins 0.000 description 4
- 101150008921 Brca2 gene Proteins 0.000 description 4
- 102100025399 Breast cancer type 2 susceptibility protein Human genes 0.000 description 4
- 102100029894 Bromodomain testis-specific protein Human genes 0.000 description 4
- 101150108242 CDC27 gene Proteins 0.000 description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 4
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 4
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 4
- 101100216227 Dictyostelium discoideum anapc3 gene Proteins 0.000 description 4
- 101150084967 EPCAM gene Proteins 0.000 description 4
- 101710146739 Enterotoxin Proteins 0.000 description 4
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 4
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 4
- 108010040721 Flagellin Proteins 0.000 description 4
- 102100032530 Glypican-3 Human genes 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 4
- 108010075704 HLA-A Antigens Proteins 0.000 description 4
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 4
- 102100038970 Histone-lysine N-methyltransferase EZH2 Human genes 0.000 description 4
- 101000794028 Homo sapiens Bromodomain testis-specific protein Proteins 0.000 description 4
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 4
- 101001014668 Homo sapiens Glypican-3 Proteins 0.000 description 4
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 description 4
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 4
- 101001036406 Homo sapiens Melanoma-associated antigen C1 Proteins 0.000 description 4
- 101000851058 Homo sapiens Neutrophil elastase Proteins 0.000 description 4
- 101000610208 Homo sapiens Poly(A) polymerase gamma Proteins 0.000 description 4
- 101001130763 Homo sapiens Protein OS-9 Proteins 0.000 description 4
- 101000880770 Homo sapiens Protein SSX2 Proteins 0.000 description 4
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 4
- 101000763579 Homo sapiens Toll-like receptor 1 Proteins 0.000 description 4
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 description 4
- 102100040019 Interferon alpha-1/13 Human genes 0.000 description 4
- 102000013462 Interleukin-12 Human genes 0.000 description 4
- 108010065805 Interleukin-12 Proteins 0.000 description 4
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 4
- 108010002616 Interleukin-5 Proteins 0.000 description 4
- 102000000743 Interleukin-5 Human genes 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 102100022430 Melanocyte protein PMEL Human genes 0.000 description 4
- 102100039447 Melanoma-associated antigen C1 Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 4
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 4
- 102100034640 PWWP domain-containing DNA repair factor 3A Human genes 0.000 description 4
- 102100038124 Plasminogen Human genes 0.000 description 4
- 102100040153 Poly(A) polymerase gamma Human genes 0.000 description 4
- 102100031492 Protein OS-9 Human genes 0.000 description 4
- 102100037686 Protein SSX2 Human genes 0.000 description 4
- 241000589516 Pseudomonas Species 0.000 description 4
- 206010038389 Renal cancer Diseases 0.000 description 4
- 241000607142 Salmonella Species 0.000 description 4
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 4
- 102100033579 Trophoblast glycoprotein Human genes 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 241000607598 Vibrio Species 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 210000000612 antigen-presenting cell Anatomy 0.000 description 4
- 239000002577 cryoprotective agent Substances 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 239000000147 enterotoxin Substances 0.000 description 4
- 231100000655 enterotoxin Toxicity 0.000 description 4
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 4
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 4
- 201000004101 esophageal cancer Diseases 0.000 description 4
- 101150001984 flaB gene Proteins 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 208000005017 glioblastoma Diseases 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 201000010982 kidney cancer Diseases 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 208000014018 liver neoplasm Diseases 0.000 description 4
- PUPNJSIFIXXJCH-UHFFFAOYSA-N n-(4-hydroxyphenyl)-2-(1,1,3-trioxo-1,2-benzothiazol-2-yl)acetamide Chemical compound C1=CC(O)=CC=C1NC(=O)CN1S(=O)(=O)C2=CC=CC=C2C1=O PUPNJSIFIXXJCH-UHFFFAOYSA-N 0.000 description 4
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 description 4
- WMLBMYGMIFJTCS-HUROMRQRSA-N (2r,3s,5r)-2-[(9-phenylxanthen-9-yl)oxymethyl]-5-purin-9-yloxolan-3-ol Chemical compound C([C@H]1O[C@H](C[C@@H]1O)N1C2=NC=NC=C2N=C1)OC1(C2=CC=CC=C2OC2=CC=CC=C21)C1=CC=CC=C1 WMLBMYGMIFJTCS-HUROMRQRSA-N 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- SSOORFWOBGFTHL-OTEJMHTDSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-4-carbamimidamido-1-carboxybutyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SSOORFWOBGFTHL-OTEJMHTDSA-N 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 3
- 102100039583 116 kDa U5 small nuclear ribonucleoprotein component Human genes 0.000 description 3
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 102100037982 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Human genes 0.000 description 3
- 102100032959 Alpha-actinin-4 Human genes 0.000 description 3
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 3
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 3
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 3
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 3
- 108010064528 Basigin Proteins 0.000 description 3
- 102000015279 Basigin Human genes 0.000 description 3
- 241000588832 Bordetella pertussis Species 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 3
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 3
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 3
- 102100032937 CD40 ligand Human genes 0.000 description 3
- 108010065524 CD52 Antigen Proteins 0.000 description 3
- 101150116874 CML28 gene Proteins 0.000 description 3
- 102100039532 Calcium-activated chloride channel regulator 2 Human genes 0.000 description 3
- 102100029968 Calreticulin Human genes 0.000 description 3
- 102100038916 Caspase-5 Human genes 0.000 description 3
- 102000004091 Caspase-8 Human genes 0.000 description 3
- 102100021633 Cathepsin B Human genes 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102100029136 Collagen alpha-1(II) chain Human genes 0.000 description 3
- 102100025680 Complement decay-accelerating factor Human genes 0.000 description 3
- 102100029140 Cyclic nucleotide-gated cation channel beta-3 Human genes 0.000 description 3
- 108010058546 Cyclin D1 Proteins 0.000 description 3
- 102100035078 ETS-related transcription factor Elf-2 Human genes 0.000 description 3
- 108010055191 EphA3 Receptor Proteins 0.000 description 3
- 102100030324 Ephrin type-A receptor 3 Human genes 0.000 description 3
- 102100038975 Exosome complex component RRP46 Human genes 0.000 description 3
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 3
- 108090000382 Fibroblast growth factor 6 Proteins 0.000 description 3
- 102100028075 Fibroblast growth factor 6 Human genes 0.000 description 3
- 108010067306 Fibronectins Proteins 0.000 description 3
- 102100026561 Filamin-A Human genes 0.000 description 3
- 108010058643 Fungal Proteins Proteins 0.000 description 3
- 102100039717 G antigen 1 Human genes 0.000 description 3
- 102100040003 G antigen 2D Human genes 0.000 description 3
- 102100039698 G antigen 5 Human genes 0.000 description 3
- 101710092267 G antigen 5 Proteins 0.000 description 3
- 102100039713 G antigen 6 Human genes 0.000 description 3
- 101710092269 G antigen 6 Proteins 0.000 description 3
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 3
- 102100032340 G2/mitotic-specific cyclin-B1 Human genes 0.000 description 3
- 102100024405 GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Human genes 0.000 description 3
- 101710144640 GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Proteins 0.000 description 3
- 102100039788 GTPase NRas Human genes 0.000 description 3
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 3
- 108010036972 HLA-A11 Antigen Proteins 0.000 description 3
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 3
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 3
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 3
- 101000608799 Homo sapiens 116 kDa U5 small nuclear ribonucleoprotein component Proteins 0.000 description 3
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 3
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 3
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 3
- 101000888580 Homo sapiens Calcium-activated chloride channel regulator 2 Proteins 0.000 description 3
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 3
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 3
- 101000771163 Homo sapiens Collagen alpha-1(II) chain Proteins 0.000 description 3
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 description 3
- 101000771083 Homo sapiens Cyclic nucleotide-gated cation channel beta-3 Proteins 0.000 description 3
- 101000877377 Homo sapiens ETS-related transcription factor Elf-2 Proteins 0.000 description 3
- 101100389965 Homo sapiens EXOSC5 gene Proteins 0.000 description 3
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 3
- 101000913549 Homo sapiens Filamin-A Proteins 0.000 description 3
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 description 3
- 101000886678 Homo sapiens G antigen 2D Proteins 0.000 description 3
- 101000886136 Homo sapiens G antigen 4 Proteins 0.000 description 3
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 3
- 101000882127 Homo sapiens Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 3
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 3
- 101000971605 Homo sapiens Kita-kyushu lung cancer antigen 1 Proteins 0.000 description 3
- 101001054842 Homo sapiens Leucine zipper protein 4 Proteins 0.000 description 3
- 101001043594 Homo sapiens Low-density lipoprotein receptor-related protein 5 Proteins 0.000 description 3
- 101000578943 Homo sapiens MAGE-like protein 2 Proteins 0.000 description 3
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 3
- 101001036689 Homo sapiens Melanoma-associated antigen B5 Proteins 0.000 description 3
- 101001036675 Homo sapiens Melanoma-associated antigen B6 Proteins 0.000 description 3
- 101001057156 Homo sapiens Melanoma-associated antigen C2 Proteins 0.000 description 3
- 101001057159 Homo sapiens Melanoma-associated antigen C3 Proteins 0.000 description 3
- 101001057154 Homo sapiens Melanoma-associated antigen D2 Proteins 0.000 description 3
- 101001057131 Homo sapiens Melanoma-associated antigen D4 Proteins 0.000 description 3
- 101001057132 Homo sapiens Melanoma-associated antigen F1 Proteins 0.000 description 3
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 3
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 3
- 101000973618 Homo sapiens NF-kappa-B essential modulator Proteins 0.000 description 3
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 3
- 101001024605 Homo sapiens Next to BRCA1 gene 1 protein Proteins 0.000 description 3
- 101000604123 Homo sapiens Noggin Proteins 0.000 description 3
- 101001109282 Homo sapiens NudC domain-containing protein 1 Proteins 0.000 description 3
- 101000854060 Homo sapiens Oxygen-regulated protein 1 Proteins 0.000 description 3
- 101001131829 Homo sapiens P protein Proteins 0.000 description 3
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 3
- 101000874141 Homo sapiens Probable ATP-dependent RNA helicase DDX43 Proteins 0.000 description 3
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 3
- 101000573199 Homo sapiens Protein PML Proteins 0.000 description 3
- 101001109419 Homo sapiens RNA-binding protein NOB1 Proteins 0.000 description 3
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 3
- 101000591201 Homo sapiens Receptor-type tyrosine-protein phosphatase kappa Proteins 0.000 description 3
- 101000643620 Homo sapiens Synaptonemal complex protein 1 Proteins 0.000 description 3
- 101000763537 Homo sapiens Toll-like receptor 10 Proteins 0.000 description 3
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 3
- 101000648075 Homo sapiens Trafficking protein particle complex subunit 1 Proteins 0.000 description 3
- 101000904724 Homo sapiens Transmembrane glycoprotein NMB Proteins 0.000 description 3
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 3
- 101000955999 Homo sapiens V-set domain-containing T-cell activation inhibitor 1 Proteins 0.000 description 3
- 102100020881 Interleukin-1 alpha Human genes 0.000 description 3
- 108090000172 Interleukin-15 Proteins 0.000 description 3
- 102000003812 Interleukin-15 Human genes 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 102000004890 Interleukin-8 Human genes 0.000 description 3
- 108090001007 Interleukin-8 Proteins 0.000 description 3
- 102100038356 Kallikrein-2 Human genes 0.000 description 3
- 102100034872 Kallikrein-4 Human genes 0.000 description 3
- 102100021533 Kita-kyushu lung cancer antigen 1 Human genes 0.000 description 3
- 108010000851 Laminin Receptors Proteins 0.000 description 3
- 102100026910 Leucine zipper protein 4 Human genes 0.000 description 3
- 102100021926 Low-density lipoprotein receptor-related protein 5 Human genes 0.000 description 3
- 102100028333 MAGE-like protein 2 Human genes 0.000 description 3
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 3
- 102100037273 Mammaglobin-A Human genes 0.000 description 3
- 102100039475 Melanoma-associated antigen B5 Human genes 0.000 description 3
- 102100039483 Melanoma-associated antigen B6 Human genes 0.000 description 3
- 102100027252 Melanoma-associated antigen C2 Human genes 0.000 description 3
- 102100027248 Melanoma-associated antigen C3 Human genes 0.000 description 3
- 102100027251 Melanoma-associated antigen D2 Human genes 0.000 description 3
- 102100027257 Melanoma-associated antigen D4 Human genes 0.000 description 3
- 102100027258 Melanoma-associated antigen F1 Human genes 0.000 description 3
- 102100031545 Microsomal triglyceride transfer protein large subunit Human genes 0.000 description 3
- 102100023123 Mucin-16 Human genes 0.000 description 3
- 102100034263 Mucin-2 Human genes 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 3
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 3
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 3
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 3
- 102100022219 NF-kappa-B essential modulator Human genes 0.000 description 3
- 102100033174 Neutrophil elastase Human genes 0.000 description 3
- 102100038454 Noggin Human genes 0.000 description 3
- 102100036961 Nuclear mitotic apparatus protein 1 Human genes 0.000 description 3
- 102100022475 NudC domain-containing protein 1 Human genes 0.000 description 3
- 102100040557 Osteopontin Human genes 0.000 description 3
- 102100035714 Oxygen-regulated protein 1 Human genes 0.000 description 3
- 102100034574 P protein Human genes 0.000 description 3
- 108050007154 PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 3
- 108010081690 Pertussis Toxin Proteins 0.000 description 3
- 108010051456 Plasminogen Proteins 0.000 description 3
- 102100035724 Probable ATP-dependent RNA helicase DDX43 Human genes 0.000 description 3
- 102100026534 Procathepsin L Human genes 0.000 description 3
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 3
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 3
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 3
- 102100038358 Prostate-specific antigen Human genes 0.000 description 3
- 102100026375 Protein PML Human genes 0.000 description 3
- 102100030616 Protein-cysteine N-palmitoyltransferase HHAT Human genes 0.000 description 3
- 108010042038 Protozoan Proteins Proteins 0.000 description 3
- 102100022491 RNA-binding protein NOB1 Human genes 0.000 description 3
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 3
- 102100034089 Receptor-type tyrosine-protein phosphatase kappa Human genes 0.000 description 3
- 241000605947 Roseburia Species 0.000 description 3
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 3
- 101800001271 Surface protein Proteins 0.000 description 3
- 108010002687 Survivin Proteins 0.000 description 3
- 101710143177 Synaptonemal complex protein 1 Proteins 0.000 description 3
- 102100036417 Synaptotagmin-1 Human genes 0.000 description 3
- 108700019889 TEL-AML1 fusion Proteins 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- 102100027010 Toll-like receptor 1 Human genes 0.000 description 3
- 102100027009 Toll-like receptor 10 Human genes 0.000 description 3
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 3
- 102100025256 Trafficking protein particle complex subunit 1 Human genes 0.000 description 3
- 102100023931 Transcriptional regulator ATRX Human genes 0.000 description 3
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 3
- 102100033598 Triosephosphate isomerase Human genes 0.000 description 3
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 3
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 3
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 201000010989 colorectal carcinoma Diseases 0.000 description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000001476 gene delivery Methods 0.000 description 3
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 3
- 108040006849 interleukin-2 receptor activity proteins Proteins 0.000 description 3
- 108010024383 kallikrein 4 Proteins 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012792 lyophilization process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 229960005489 paracetamol Drugs 0.000 description 3
- 102000007863 pattern recognition receptors Human genes 0.000 description 3
- 108010089193 pattern recognition receptors Proteins 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 108010042703 synovial sarcoma X breakpoint proteins Proteins 0.000 description 3
- 101150047061 tag-72 gene Proteins 0.000 description 3
- 201000002510 thyroid cancer Diseases 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 238000002255 vaccination Methods 0.000 description 3
- LTHJXDSHSVNJKG-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOCCOC(=O)C(C)=C LTHJXDSHSVNJKG-UHFFFAOYSA-N 0.000 description 2
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 2
- 101800000504 3C-like protease Proteins 0.000 description 2
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 2
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 2
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 2
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 2
- 101150063992 APOC2 gene Proteins 0.000 description 2
- 102100028187 ATP-binding cassette sub-family C member 6 Human genes 0.000 description 2
- 102100036464 Activated RNA polymerase II transcriptional coactivator p15 Human genes 0.000 description 2
- 102100040430 Active breakpoint cluster region-related protein Human genes 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 2
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 2
- 108010083528 Adenylate Cyclase Toxin Proteins 0.000 description 2
- 102100020775 Adenylosuccinate lyase Human genes 0.000 description 2
- 108700040193 Adenylosuccinate lyases Proteins 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 2
- 101710115256 Alpha-actinin-4 Proteins 0.000 description 2
- 102100026882 Alpha-synuclein Human genes 0.000 description 2
- 102100039109 Amelogenin, Y isoform Human genes 0.000 description 2
- 102100036526 Anoctamin-7 Human genes 0.000 description 2
- 102100023086 Anosmin-1 Human genes 0.000 description 2
- 102100030346 Antigen peptide transporter 1 Human genes 0.000 description 2
- 102100022977 Antithrombin-III Human genes 0.000 description 2
- 102100039998 Apolipoprotein C-II Human genes 0.000 description 2
- 102100030970 Apolipoprotein C-III Human genes 0.000 description 2
- 102100029470 Apolipoprotein E Human genes 0.000 description 2
- 102100040124 Apoptosis-inducing factor 1, mitochondrial Human genes 0.000 description 2
- 241000207207 Aquifex pyrophilus Species 0.000 description 2
- 102100024003 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 Human genes 0.000 description 2
- 102100029361 Aromatase Human genes 0.000 description 2
- 102000007372 Ataxin-1 Human genes 0.000 description 2
- 108010032963 Ataxin-1 Proteins 0.000 description 2
- 102000007370 Ataxin2 Human genes 0.000 description 2
- 108010032951 Ataxin2 Proteins 0.000 description 2
- 241000589941 Azospirillum Species 0.000 description 2
- 102100021631 B-cell lymphoma 6 protein Human genes 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 101100477592 Bacillus subtilis (strain 168) sinR gene Proteins 0.000 description 2
- 108010077805 Bacterial Proteins Proteins 0.000 description 2
- 102100027522 Baculoviral IAP repeat-containing protein 7 Human genes 0.000 description 2
- 241000606660 Bartonella Species 0.000 description 2
- 102100036597 Basement membrane-specific heparan sulfate proteoglycan core protein Human genes 0.000 description 2
- 102100022794 Bestrophin-1 Human genes 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 102100035631 Bloom syndrome protein Human genes 0.000 description 2
- 102100025422 Bone morphogenetic protein receptor type-2 Human genes 0.000 description 2
- 241000588807 Bordetella Species 0.000 description 2
- 241000589968 Borrelia Species 0.000 description 2
- 241000589969 Borreliella burgdorferi Species 0.000 description 2
- 241001148534 Brachyspira Species 0.000 description 2
- 102100026008 Breakpoint cluster region protein Human genes 0.000 description 2
- 241001453380 Burkholderia Species 0.000 description 2
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 2
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 2
- 102100023703 C-C motif chemokine 15 Human genes 0.000 description 2
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 2
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 2
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 108700012439 CA9 Proteins 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 102100022002 CD59 glycoprotein Human genes 0.000 description 2
- 208000036875 CNGB3-related retinopathy Diseases 0.000 description 2
- 101100123850 Caenorhabditis elegans her-1 gene Proteins 0.000 description 2
- 102100029801 Calcium-transporting ATPase type 2C member 1 Human genes 0.000 description 2
- 241001239379 Calophysus macropterus Species 0.000 description 2
- 108090000549 Calreticulin Proteins 0.000 description 2
- 241000282836 Camelus dromedarius Species 0.000 description 2
- 241000589876 Campylobacter Species 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 108090000397 Caspase 3 Proteins 0.000 description 2
- 102100029855 Caspase-3 Human genes 0.000 description 2
- 108090000712 Cathepsin B Proteins 0.000 description 2
- 108090000624 Cathepsin L Proteins 0.000 description 2
- 102100039361 Chondrosarcoma-associated gene 2/3 protein Human genes 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 102100032368 Coiled-coil domain-containing protein 110 Human genes 0.000 description 2
- 102100033601 Collagen alpha-1(I) chain Human genes 0.000 description 2
- 102100031519 Collagen alpha-1(VI) chain Human genes 0.000 description 2
- 102100036213 Collagen alpha-2(I) chain Human genes 0.000 description 2
- 102100040496 Collagen alpha-2(VIII) chain Human genes 0.000 description 2
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 description 2
- 108010060385 Cyclin B1 Proteins 0.000 description 2
- 102100027417 Cytochrome P450 1B1 Human genes 0.000 description 2
- 102100029363 Cytochrome P450 2C19 Human genes 0.000 description 2
- 102100038698 Cytochrome P450 7B1 Human genes 0.000 description 2
- 102100026234 Cytokine receptor common subunit gamma Human genes 0.000 description 2
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 2
- 102100031868 DNA excision repair protein ERCC-8 Human genes 0.000 description 2
- 102100037700 DNA mismatch repair protein Msh3 Human genes 0.000 description 2
- 102100022307 DNA polymerase alpha catalytic subunit Human genes 0.000 description 2
- 102100031262 Deleted in malignant brain tumors 1 protein Human genes 0.000 description 2
- 102100040606 Dermatan-sulfate epimerase Human genes 0.000 description 2
- 102100023319 Dihydrolipoyl dehydrogenase, mitochondrial Human genes 0.000 description 2
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 2
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 2
- 102100021765 E3 ubiquitin-protein ligase RNF139 Human genes 0.000 description 2
- 102100029503 E3 ubiquitin-protein ligase TRIM32 Human genes 0.000 description 2
- 102100037238 E3 ubiquitin-protein ligase UBR4 Human genes 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 102100037354 Ectodysplasin-A Human genes 0.000 description 2
- 102100035094 Enamelin Human genes 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 108010055196 EphA2 Receptor Proteins 0.000 description 2
- 101100281209 Escherichia coli (strain K12) fliA gene Proteins 0.000 description 2
- 208000001382 Experimental Melanoma Diseases 0.000 description 2
- 101710191461 F420-dependent glucose-6-phosphate dehydrogenase Proteins 0.000 description 2
- 102100031509 Fibrillin-1 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 description 2
- 108090000380 Fibroblast growth factor 5 Proteins 0.000 description 2
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 2
- 102000003817 Fos-related antigen 1 Human genes 0.000 description 2
- 108090000123 Fos-related antigen 1 Proteins 0.000 description 2
- 102100022277 Fructose-bisphosphate aldolase A Human genes 0.000 description 2
- 102100039699 G antigen 4 Human genes 0.000 description 2
- 101710113436 GTPase KRas Proteins 0.000 description 2
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 2
- 101000609762 Gallus gallus Ovalbumin Proteins 0.000 description 2
- 102100028652 Gamma-enolase Human genes 0.000 description 2
- 102100039397 Gap junction beta-3 protein Human genes 0.000 description 2
- 102100039401 Gap junction beta-6 protein Human genes 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 102100039684 Glucose-6-phosphate exchanger SLC37A4 Human genes 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 108060003393 Granulin Proteins 0.000 description 2
- 102000001398 Granzyme Human genes 0.000 description 2
- 108060005986 Granzyme Proteins 0.000 description 2
- 102100035368 Growth/differentiation factor 6 Human genes 0.000 description 2
- 102100034471 H(+)/Cl(-) exchange transporter 5 Human genes 0.000 description 2
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 2
- 241000589989 Helicobacter Species 0.000 description 2
- 241000590002 Helicobacter pylori Species 0.000 description 2
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 2
- 102100030500 Heparin cofactor 2 Human genes 0.000 description 2
- 102000004989 Hepsin Human genes 0.000 description 2
- 108090001101 Hepsin Proteins 0.000 description 2
- 102100022103 Histone-lysine N-methyltransferase 2A Human genes 0.000 description 2
- 102100027893 Homeobox protein Nkx-2.1 Human genes 0.000 description 2
- 102100027345 Homeobox protein SIX3 Human genes 0.000 description 2
- 101000866618 Homo sapiens 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase Proteins 0.000 description 2
- 101000779641 Homo sapiens ALK tyrosine kinase receptor Proteins 0.000 description 2
- 101000986621 Homo sapiens ATP-binding cassette sub-family C member 6 Proteins 0.000 description 2
- 101000944272 Homo sapiens ATP-sensitive inward rectifier potassium channel 1 Proteins 0.000 description 2
- 101000964363 Homo sapiens Active breakpoint cluster region-related protein Proteins 0.000 description 2
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 2
- 101000678026 Homo sapiens Alpha-1-antichymotrypsin Proteins 0.000 description 2
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 2
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 2
- 101000959107 Homo sapiens Amelogenin, Y isoform Proteins 0.000 description 2
- 101000928370 Homo sapiens Anoctamin-7 Proteins 0.000 description 2
- 101001050039 Homo sapiens Anosmin-1 Proteins 0.000 description 2
- 101000793223 Homo sapiens Apolipoprotein C-III Proteins 0.000 description 2
- 101000890622 Homo sapiens Apoptosis-inducing factor 1, mitochondrial Proteins 0.000 description 2
- 101000928549 Homo sapiens Autoimmune regulator Proteins 0.000 description 2
- 101000971234 Homo sapiens B-cell lymphoma 6 protein Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101001000001 Homo sapiens Basement membrane-specific heparan sulfate proteoglycan core protein Proteins 0.000 description 2
- 101000903449 Homo sapiens Bestrophin-1 Proteins 0.000 description 2
- 101000765010 Homo sapiens Beta-galactosidase Proteins 0.000 description 2
- 101000934635 Homo sapiens Bone morphogenetic protein receptor type-2 Proteins 0.000 description 2
- 101000933320 Homo sapiens Breakpoint cluster region protein Proteins 0.000 description 2
- 101000978376 Homo sapiens C-C motif chemokine 15 Proteins 0.000 description 2
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 2
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 description 2
- 101000728145 Homo sapiens Calcium-transporting ATPase type 2C member 1 Proteins 0.000 description 2
- 101000741072 Homo sapiens Caspase-5 Proteins 0.000 description 2
- 101000745414 Homo sapiens Chondrosarcoma-associated gene 2/3 protein Proteins 0.000 description 2
- 101000868824 Homo sapiens Coiled-coil domain-containing protein 110 Proteins 0.000 description 2
- 101000941581 Homo sapiens Collagen alpha-1(VI) chain Proteins 0.000 description 2
- 101000875067 Homo sapiens Collagen alpha-2(I) chain Proteins 0.000 description 2
- 101000749886 Homo sapiens Collagen alpha-2(VIII) chain Proteins 0.000 description 2
- 101000725164 Homo sapiens Cytochrome P450 1B1 Proteins 0.000 description 2
- 101000957674 Homo sapiens Cytochrome P450 7B1 Proteins 0.000 description 2
- 101001055227 Homo sapiens Cytokine receptor common subunit gamma Proteins 0.000 description 2
- 101000920778 Homo sapiens DNA excision repair protein ERCC-8 Proteins 0.000 description 2
- 101000902558 Homo sapiens DNA polymerase alpha catalytic subunit Proteins 0.000 description 2
- 101000844721 Homo sapiens Deleted in malignant brain tumors 1 protein Proteins 0.000 description 2
- 101000954709 Homo sapiens Doublecortin domain-containing protein 2 Proteins 0.000 description 2
- 101001106970 Homo sapiens E3 ubiquitin-protein ligase RNF139 Proteins 0.000 description 2
- 101000634982 Homo sapiens E3 ubiquitin-protein ligase TRIM32 Proteins 0.000 description 2
- 101000807547 Homo sapiens E3 ubiquitin-protein ligase UBR4 Proteins 0.000 description 2
- 101000880080 Homo sapiens Ectodysplasin-A Proteins 0.000 description 2
- 101000877410 Homo sapiens Enamelin Proteins 0.000 description 2
- 101000918311 Homo sapiens Exostosin-1 Proteins 0.000 description 2
- 101000846893 Homo sapiens Fibrillin-1 Proteins 0.000 description 2
- 101000755879 Homo sapiens Fructose-bisphosphate aldolase A Proteins 0.000 description 2
- 101000893968 Homo sapiens G antigen 7 Proteins 0.000 description 2
- 101000889136 Homo sapiens Gap junction beta-3 protein Proteins 0.000 description 2
- 101000886173 Homo sapiens Glucose-6-phosphate exchanger SLC37A4 Proteins 0.000 description 2
- 101001023964 Homo sapiens Growth/differentiation factor 6 Proteins 0.000 description 2
- 101000710225 Homo sapiens H(+)/Cl(-) exchange transporter 5 Proteins 0.000 description 2
- 101001009007 Homo sapiens Hemoglobin subunit alpha Proteins 0.000 description 2
- 101001082432 Homo sapiens Heparin cofactor 2 Proteins 0.000 description 2
- 101000985516 Homo sapiens Hermansky-Pudlak syndrome 5 protein Proteins 0.000 description 2
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 description 2
- 101000651928 Homo sapiens Homeobox protein SIX3 Proteins 0.000 description 2
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 2
- 101000982538 Homo sapiens Inositol polyphosphate 5-phosphatase OCRL Proteins 0.000 description 2
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 2
- 101001011446 Homo sapiens Interferon regulatory factor 6 Proteins 0.000 description 2
- 101001002634 Homo sapiens Interleukin-1 alpha Proteins 0.000 description 2
- 101001033312 Homo sapiens Interleukin-4 receptor subunit alpha Proteins 0.000 description 2
- 101000677891 Homo sapiens Iron-sulfur clusters transporter ABCB7, mitochondrial Proteins 0.000 description 2
- 101001046960 Homo sapiens Keratin, type II cytoskeletal 1 Proteins 0.000 description 2
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 2
- 101001039035 Homo sapiens Lutropin-choriogonadotropic hormone receptor Proteins 0.000 description 2
- 101001004953 Homo sapiens Lysosomal acid lipase/cholesteryl ester hydrolase Proteins 0.000 description 2
- 101000634835 Homo sapiens M1-specific T cell receptor alpha chain Proteins 0.000 description 2
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 2
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 2
- 101000614988 Homo sapiens Mediator of RNA polymerase II transcription subunit 12 Proteins 0.000 description 2
- 101000620359 Homo sapiens Melanocyte protein PMEL Proteins 0.000 description 2
- 101000628547 Homo sapiens Metalloreductase STEAP1 Proteins 0.000 description 2
- 101000588130 Homo sapiens Microsomal triglyceride transfer protein large subunit Proteins 0.000 description 2
- 101000957756 Homo sapiens Microtubule-associated protein RP/EB family member 2 Proteins 0.000 description 2
- 101001133081 Homo sapiens Mucin-2 Proteins 0.000 description 2
- 101001030243 Homo sapiens Myosin-7 Proteins 0.000 description 2
- 101000997654 Homo sapiens N-acetylmannosamine kinase Proteins 0.000 description 2
- 101001109052 Homo sapiens NADH-ubiquinone oxidoreductase chain 4 Proteins 0.000 description 2
- 101000979216 Homo sapiens Necdin Proteins 0.000 description 2
- 101000985296 Homo sapiens Neuron-specific calcium-binding protein hippocalcin Proteins 0.000 description 2
- 101000603323 Homo sapiens Nuclear receptor subfamily 0 group B member 1 Proteins 0.000 description 2
- 101000588345 Homo sapiens Nuclear transcription factor Y subunit gamma Proteins 0.000 description 2
- 101000721757 Homo sapiens Olfactory receptor 51E2 Proteins 0.000 description 2
- 101001114052 Homo sapiens P antigen family member 4 Proteins 0.000 description 2
- 101000945735 Homo sapiens Parafibromin Proteins 0.000 description 2
- 101000610652 Homo sapiens Peripherin-2 Proteins 0.000 description 2
- 101000619805 Homo sapiens Peroxiredoxin-5, mitochondrial Proteins 0.000 description 2
- 101001073025 Homo sapiens Peroxisomal targeting signal 1 receptor Proteins 0.000 description 2
- 101000595674 Homo sapiens Pituitary homeobox 3 Proteins 0.000 description 2
- 101001091365 Homo sapiens Plasma kallikrein Proteins 0.000 description 2
- 101000582950 Homo sapiens Platelet factor 4 Proteins 0.000 description 2
- 101001126471 Homo sapiens Plectin Proteins 0.000 description 2
- 101000595193 Homo sapiens Podocin Proteins 0.000 description 2
- 101000611427 Homo sapiens Polyglutamine-binding protein 1 Proteins 0.000 description 2
- 101001105683 Homo sapiens Pre-mRNA-processing-splicing factor 8 Proteins 0.000 description 2
- 101001003584 Homo sapiens Prelamin-A/C Proteins 0.000 description 2
- 101000928339 Homo sapiens Progressive ankylosis protein homolog Proteins 0.000 description 2
- 101001038300 Homo sapiens Protein ERGIC-53 Proteins 0.000 description 2
- 101001123986 Homo sapiens Protein-serine O-palmitoleoyltransferase porcupine Proteins 0.000 description 2
- 101000896576 Homo sapiens Putative cytochrome P450 2D7 Proteins 0.000 description 2
- 101000665882 Homo sapiens Retinol-binding protein 4 Proteins 0.000 description 2
- 101001073409 Homo sapiens Retrotransposon-derived protein PEG10 Proteins 0.000 description 2
- 101001125551 Homo sapiens Ribose-phosphate pyrophosphokinase 1 Proteins 0.000 description 2
- 101000711466 Homo sapiens SAM pointed domain-containing Ets transcription factor Proteins 0.000 description 2
- 101000711796 Homo sapiens Sclerostin Proteins 0.000 description 2
- 101000665137 Homo sapiens Scm-like with four MBT domains protein 1 Proteins 0.000 description 2
- 101000836983 Homo sapiens Secretoglobin family 1D member 1 Proteins 0.000 description 2
- 101000823955 Homo sapiens Serine palmitoyltransferase 1 Proteins 0.000 description 2
- 101000628575 Homo sapiens Serine/threonine-protein kinase 19 Proteins 0.000 description 2
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 description 2
- 101000821972 Homo sapiens Solute carrier family 4 member 11 Proteins 0.000 description 2
- 101000861263 Homo sapiens Steroid 21-hydroxylase Proteins 0.000 description 2
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 2
- 101000617738 Homo sapiens Survival motor neuron protein Proteins 0.000 description 2
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 2
- 101000634836 Homo sapiens T cell receptor alpha chain MC.7.G5 Proteins 0.000 description 2
- 101000713600 Homo sapiens T-box transcription factor TBX22 Proteins 0.000 description 2
- 101000809875 Homo sapiens TYRO protein tyrosine kinase-binding protein Proteins 0.000 description 2
- 101000626155 Homo sapiens Tensin-4 Proteins 0.000 description 2
- 101000653005 Homo sapiens Thromboxane-A synthase Proteins 0.000 description 2
- 101000645320 Homo sapiens Titin Proteins 0.000 description 2
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 description 2
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 2
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 2
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 description 2
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 2
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 2
- 101000679575 Homo sapiens Trafficking protein particle complex subunit 2 Proteins 0.000 description 2
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 2
- 101000596093 Homo sapiens Transcription initiation factor TFIID subunit 1 Proteins 0.000 description 2
- 101001051166 Homo sapiens Transcriptional activator MN1 Proteins 0.000 description 2
- 101000635938 Homo sapiens Transforming growth factor beta-1 proprotein Proteins 0.000 description 2
- 101000850794 Homo sapiens Tropomyosin alpha-3 chain Proteins 0.000 description 2
- 101000764260 Homo sapiens Troponin T, cardiac muscle Proteins 0.000 description 2
- 101000625842 Homo sapiens Tubulin-specific chaperone E Proteins 0.000 description 2
- 101000610605 Homo sapiens Tumor necrosis factor receptor superfamily member 10A Proteins 0.000 description 2
- 101000610604 Homo sapiens Tumor necrosis factor receptor superfamily member 10B Proteins 0.000 description 2
- 101000610602 Homo sapiens Tumor necrosis factor receptor superfamily member 10C Proteins 0.000 description 2
- 101000679903 Homo sapiens Tumor necrosis factor receptor superfamily member 25 Proteins 0.000 description 2
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 2
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 2
- 101000772888 Homo sapiens Ubiquitin-protein ligase E3A Proteins 0.000 description 2
- 101000583031 Homo sapiens Unconventional myosin-Va Proteins 0.000 description 2
- 101000667110 Homo sapiens Vacuolar protein sorting-associated protein 13B Proteins 0.000 description 2
- 101001104102 Homo sapiens X-linked retinitis pigmentosa GTPase regulator Proteins 0.000 description 2
- 101000772560 Homo sapiens Zinc finger transcription factor Trps1 Proteins 0.000 description 2
- 102000003839 Human Proteins Human genes 0.000 description 2
- 108090000144 Human Proteins Proteins 0.000 description 2
- 102100027735 Hyaluronan mediated motility receptor Human genes 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 2
- 102100026724 Inositol polyphosphate 5-phosphatase OCRL Human genes 0.000 description 2
- 102100023915 Insulin Human genes 0.000 description 2
- 108050002021 Integrator complex subunit 2 Proteins 0.000 description 2
- 102100030130 Interferon regulatory factor 6 Human genes 0.000 description 2
- 102000000589 Interleukin-1 Human genes 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 102000003777 Interleukin-1 beta Human genes 0.000 description 2
- 108090000193 Interleukin-1 beta Proteins 0.000 description 2
- 108090000177 Interleukin-11 Proteins 0.000 description 2
- 102000003815 Interleukin-11 Human genes 0.000 description 2
- 102100020793 Interleukin-13 receptor subunit alpha-2 Human genes 0.000 description 2
- 101710112634 Interleukin-13 receptor subunit alpha-2 Proteins 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 108090000171 Interleukin-18 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 102100039078 Interleukin-4 receptor subunit alpha Human genes 0.000 description 2
- 102000000704 Interleukin-7 Human genes 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 108010002335 Interleukin-9 Proteins 0.000 description 2
- 102000000585 Interleukin-9 Human genes 0.000 description 2
- 102100021504 Iron-sulfur clusters transporter ABCB7, mitochondrial Human genes 0.000 description 2
- 102000017786 KCNJ1 Human genes 0.000 description 2
- 101710176220 Kallikrein-2 Proteins 0.000 description 2
- 102100022905 Keratin, type II cytoskeletal 1 Human genes 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241001112693 Lachnospiraceae Species 0.000 description 2
- 102000002297 Laminin Receptors Human genes 0.000 description 2
- 241000589248 Legionella Species 0.000 description 2
- 101100446671 Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai (strain 56601) flaB gene Proteins 0.000 description 2
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 2
- 241000186781 Listeria Species 0.000 description 2
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 2
- 102100040788 Lutropin-choriogonadotropic hormone receptor Human genes 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 102100026894 Lymphotoxin-beta Human genes 0.000 description 2
- 102100026001 Lysosomal acid lipase/cholesteryl ester hydrolase Human genes 0.000 description 2
- 102100033472 Lysosomal-trafficking regulator Human genes 0.000 description 2
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 description 2
- 108010010995 MART-1 Antigen Proteins 0.000 description 2
- 108010031030 Mammaglobin A Proteins 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 102100026553 Mannose-binding protein C Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102100021070 Mediator of RNA polymerase II transcription subunit 12 Human genes 0.000 description 2
- 108010023335 Member 2 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 108090000015 Mesothelin Proteins 0.000 description 2
- 102100026712 Metalloreductase STEAP1 Human genes 0.000 description 2
- 102100030157 Microphthalmia-associated transcription factor Human genes 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 102000003505 Myosin Human genes 0.000 description 2
- 108060008487 Myosin Proteins 0.000 description 2
- 102100038934 Myosin-7 Human genes 0.000 description 2
- 102100022437 Myotonin-protein kinase Human genes 0.000 description 2
- 102100033341 N-acetylmannosamine kinase Human genes 0.000 description 2
- 102100022913 NAD-dependent protein deacetylase sirtuin-2 Human genes 0.000 description 2
- 102100021506 NADH-ubiquinone oxidoreductase chain 4 Human genes 0.000 description 2
- 102100023064 Nectin-1 Human genes 0.000 description 2
- 206010029098 Neoplasm skin Diseases 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 102100028669 Neuron-specific calcium-binding protein hippocalcin Human genes 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 102100039019 Nuclear receptor subfamily 0 group B member 1 Human genes 0.000 description 2
- 102100031719 Nuclear transcription factor Y subunit gamma Human genes 0.000 description 2
- 102100025128 Olfactory receptor 51E2 Human genes 0.000 description 2
- 101710116435 Outer membrane protein Proteins 0.000 description 2
- 102100036201 Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial Human genes 0.000 description 2
- 102100023240 P antigen family member 4 Human genes 0.000 description 2
- 108060006580 PRAME Proteins 0.000 description 2
- 102000036673 PRAME Human genes 0.000 description 2
- 102100041030 Pancreas/duodenum homeobox protein 1 Human genes 0.000 description 2
- 102100034743 Parafibromin Human genes 0.000 description 2
- 102100028467 Perforin-1 Human genes 0.000 description 2
- 102100040375 Peripherin-2 Human genes 0.000 description 2
- 102100022078 Peroxiredoxin-5, mitochondrial Human genes 0.000 description 2
- 102100036598 Peroxisomal targeting signal 1 receptor Human genes 0.000 description 2
- 201000005702 Pertussis Diseases 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 101000622060 Photinus pyralis Luciferin 4-monooxygenase Proteins 0.000 description 2
- 102100036088 Pituitary homeobox 3 Human genes 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 102000004179 Plasminogen Activator Inhibitor 2 Human genes 0.000 description 2
- 108090000614 Plasminogen Activator Inhibitor 2 Proteins 0.000 description 2
- 102100030304 Platelet factor 4 Human genes 0.000 description 2
- 102100030477 Plectin Human genes 0.000 description 2
- 102100036037 Podocin Human genes 0.000 description 2
- 102100040748 Polyglutamine-binding protein 1 Human genes 0.000 description 2
- 102100021231 Pre-mRNA-processing-splicing factor 8 Human genes 0.000 description 2
- 102100026531 Prelamin-A/C Human genes 0.000 description 2
- 208000034255 Primary dystonia, DYT2 type Diseases 0.000 description 2
- 102100036812 Progressive ankylosis protein homolog Human genes 0.000 description 2
- 101710120463 Prostate stem cell antigen Proteins 0.000 description 2
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102100040252 Protein ERGIC-53 Human genes 0.000 description 2
- 102100028680 Protein patched homolog 1 Human genes 0.000 description 2
- 102100028119 Protein-serine O-palmitoleoyltransferase porcupine Human genes 0.000 description 2
- 241000588770 Proteus mirabilis Species 0.000 description 2
- 108010007100 Pulmonary Surfactant-Associated Protein A Proteins 0.000 description 2
- 102100030060 Pulmonary surfactant-associated protein A1 Human genes 0.000 description 2
- 102100027845 Pulmonary surfactant-associated protein D Human genes 0.000 description 2
- 102100021702 Putative cytochrome P450 2D7 Human genes 0.000 description 2
- 108090001066 Racemases and epimerases Proteins 0.000 description 2
- 102000004879 Racemases and epimerases Human genes 0.000 description 2
- 102100038042 Retinoblastoma-associated protein Human genes 0.000 description 2
- 102100023606 Retinoic acid receptor alpha Human genes 0.000 description 2
- 102100038246 Retinol-binding protein 4 Human genes 0.000 description 2
- 102100035844 Retrotransposon-derived protein PEG10 Human genes 0.000 description 2
- 241000589180 Rhizobium Species 0.000 description 2
- 241000191025 Rhodobacter Species 0.000 description 2
- 102100029508 Ribose-phosphate pyrophosphokinase 1 Human genes 0.000 description 2
- 102100034018 SAM pointed domain-containing Ets transcription factor Human genes 0.000 description 2
- 102000001332 SRC Human genes 0.000 description 2
- 101001128051 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L3 Proteins 0.000 description 2
- 102100028294 Saccharopine dehydrogenase Human genes 0.000 description 2
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 2
- 102100021466 Sarcoma antigen 1 Human genes 0.000 description 2
- 102100034201 Sclerostin Human genes 0.000 description 2
- 102100022068 Serine palmitoyltransferase 1 Human genes 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- 241000607766 Shigella boydii Species 0.000 description 2
- 102100023105 Sialin Human genes 0.000 description 2
- 108010041216 Sirtuin 2 Proteins 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 102100034803 Small nuclear ribonucleoprotein-associated protein N Human genes 0.000 description 2
- 102100027198 Sodium channel protein type 5 subunit alpha Human genes 0.000 description 2
- 102100023536 Solute carrier family 2, facilitated glucose transporter member 1 Human genes 0.000 description 2
- 102100021475 Solute carrier family 4 member 11 Human genes 0.000 description 2
- 102100037253 Solute carrier family 45 member 3 Human genes 0.000 description 2
- 102100032929 Son of sevenless homolog 1 Human genes 0.000 description 2
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 2
- 102100027545 Steroid 21-hydroxylase Human genes 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- 102100021947 Survival motor neuron protein Human genes 0.000 description 2
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 2
- 108010055170 Synaptotagmin I Proteins 0.000 description 2
- 102100029454 T cell receptor alpha chain MC.7.G5 Human genes 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 101150057140 TACSTD1 gene Proteins 0.000 description 2
- 108010032166 TARP Proteins 0.000 description 2
- 108091005735 TGF-beta receptors Proteins 0.000 description 2
- 102100038717 TYRO protein tyrosine kinase-binding protein Human genes 0.000 description 2
- 102100024545 Tensin-4 Human genes 0.000 description 2
- 102100034195 Thrombopoietin Human genes 0.000 description 2
- 102100030973 Thromboxane-A synthase Human genes 0.000 description 2
- 102100026260 Titin Human genes 0.000 description 2
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 2
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 2
- 102100024333 Toll-like receptor 2 Human genes 0.000 description 2
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 2
- 102100039357 Toll-like receptor 5 Human genes 0.000 description 2
- 102100039387 Toll-like receptor 6 Human genes 0.000 description 2
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 2
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 2
- 241000223997 Toxoplasma gondii Species 0.000 description 2
- 102100022613 Trafficking protein particle complex subunit 2 Human genes 0.000 description 2
- 102100023132 Transcription factor Jun Human genes 0.000 description 2
- 102100035222 Transcription initiation factor TFIID subunit 1 Human genes 0.000 description 2
- 102100024592 Transcriptional activator MN1 Human genes 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 102000016715 Transforming Growth Factor beta Receptors Human genes 0.000 description 2
- 102100030742 Transforming growth factor beta-1 proprotein Human genes 0.000 description 2
- 108060008539 Transglutaminase Proteins 0.000 description 2
- 102100034030 Transient receptor potential cation channel subfamily M member 8 Human genes 0.000 description 2
- 102100034902 Transmembrane 4 L6 family member 1 Human genes 0.000 description 2
- 241000589886 Treponema Species 0.000 description 2
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 2
- 102100033080 Tropomyosin alpha-3 chain Human genes 0.000 description 2
- 102100026893 Troponin T, cardiac muscle Human genes 0.000 description 2
- 102100024769 Tubulin-specific chaperone E Human genes 0.000 description 2
- 102100040113 Tumor necrosis factor receptor superfamily member 10A Human genes 0.000 description 2
- 102100040112 Tumor necrosis factor receptor superfamily member 10B Human genes 0.000 description 2
- 102100040115 Tumor necrosis factor receptor superfamily member 10C Human genes 0.000 description 2
- 102100022203 Tumor necrosis factor receptor superfamily member 25 Human genes 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 2
- 102100039094 Tyrosinase Human genes 0.000 description 2
- 102100027244 U4/U6.U5 tri-snRNP-associated protein 1 Human genes 0.000 description 2
- 102100024250 Ubiquitin carboxyl-terminal hydrolase CYLD Human genes 0.000 description 2
- 102100030434 Ubiquitin-protein ligase E3A Human genes 0.000 description 2
- 102100030409 Unconventional myosin-Va Human genes 0.000 description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 description 2
- 241000607626 Vibrio cholerae Species 0.000 description 2
- 102100035336 Werner syndrome ATP-dependent helicase Human genes 0.000 description 2
- 241000605941 Wolinella Species 0.000 description 2
- 208000012003 X-linked recessive ocular albinism Diseases 0.000 description 2
- 102100040092 X-linked retinitis pigmentosa GTPase regulator Human genes 0.000 description 2
- 102100039662 Xaa-Pro dipeptidase Human genes 0.000 description 2
- 241000607734 Yersinia <bacteria> Species 0.000 description 2
- 102100030619 Zinc finger transcription factor Trps1 Human genes 0.000 description 2
- 208000003012 achromatopsia 3 Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000033289 adaptive immune response Effects 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 108010029483 alpha 1 Chain Collagen Type I Proteins 0.000 description 2
- 108010034034 alpha-1,6-mannosylglycoprotein beta 1,6-N-acetylglucosaminyltransferase Proteins 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 108050002883 beta-defensin Proteins 0.000 description 2
- 102000012265 beta-defensin Human genes 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000005516 coenzyme A Substances 0.000 description 2
- 229940093530 coenzyme a Drugs 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 108091036078 conserved sequence Proteins 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 108010057167 dimethylaniline monooxygenase (N-oxide forming) Proteins 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 210000003162 effector t lymphocyte Anatomy 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 101150115513 flaB2 gene Proteins 0.000 description 2
- 101150003488 flaD gene Proteins 0.000 description 2
- 101150054723 fliI gene Proteins 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 201000010175 gallbladder cancer Diseases 0.000 description 2
- 229940037467 helicobacter pylori Drugs 0.000 description 2
- 108010003425 hyaluronan-mediated motility receptor Proteins 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 201000006747 infectious mononucleosis Diseases 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 235000015250 liver sausages Nutrition 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 2
- 210000003563 lymphoid tissue Anatomy 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 108010066416 multidrug resistance-associated protein 3 Proteins 0.000 description 2
- DAZSWUUAFHBCGE-KRWDZBQOSA-N n-[(2s)-3-methyl-1-oxo-1-pyrrolidin-1-ylbutan-2-yl]-3-phenylpropanamide Chemical compound N([C@@H](C(C)C)C(=O)N1CCCC1)C(=O)CCC1=CC=CC=C1 DAZSWUUAFHBCGE-KRWDZBQOSA-N 0.000 description 2
- 108010036112 nuclear matrix protein 22 Proteins 0.000 description 2
- 230000003571 opsonizing effect Effects 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 101800000607 p15 Proteins 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 102000016914 ras Proteins Human genes 0.000 description 2
- 108010014186 ras Proteins Proteins 0.000 description 2
- XYSQXZCMOLNHOI-UHFFFAOYSA-N s-[2-[[4-(acetylsulfamoyl)phenyl]carbamoyl]phenyl] 5-pyridin-1-ium-1-ylpentanethioate;bromide Chemical compound [Br-].C1=CC(S(=O)(=O)NC(=O)C)=CC=C1NC(=O)C1=CC=CC=C1SC(=O)CCCC[N+]1=CC=CC=C1 XYSQXZCMOLNHOI-UHFFFAOYSA-N 0.000 description 2
- 235000002020 sage Nutrition 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 201000003353 torsion dystonia 2 Diseases 0.000 description 2
- 102000003601 transglutaminase Human genes 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 206010046766 uterine cancer Diseases 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 229940118696 vibrio cholerae Drugs 0.000 description 2
- GKJZMAHZJGSBKD-NMMTYZSQSA-N (10E,12Z)-octadecadienoic acid Chemical compound CCCCC\C=C/C=C/CCCCCCCCC(O)=O GKJZMAHZJGSBKD-NMMTYZSQSA-N 0.000 description 1
- UDPGUMQDCGORJQ-UHFFFAOYSA-N (2-chloroethyl)phosphonic acid Chemical compound OP(O)(=O)CCCl UDPGUMQDCGORJQ-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- MHJJUOJOAJLYBS-ZBRNBAAYSA-N (2s)-2-aminopropanoic acid;(2s)-pyrrolidine-2-carboxylic acid Chemical compound C[C@H](N)C(O)=O.OC(=O)[C@@H]1CCCN1 MHJJUOJOAJLYBS-ZBRNBAAYSA-N 0.000 description 1
- XOYCLJDJUKHHHS-LHBOOPKSSA-N (2s,3s,4s,5r,6r)-6-[[(2s,3s,5r)-3-amino-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@H](O2)C(O)=O)O)[C@@H](N)C1 XOYCLJDJUKHHHS-LHBOOPKSSA-N 0.000 description 1
- LAQPKDLYOBZWBT-NYLDSJSYSA-N (2s,4s,5r,6r)-5-acetamido-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r)-5-acetamido-1,2-dihydroxy-6-oxo-4-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hexan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-[(1r,2r)-1,2,3-trihydrox Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@@H](NC(C)=O)C=O)[C@@H]([C@H](O)CO)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 LAQPKDLYOBZWBT-NYLDSJSYSA-N 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- GWMHBZDOVFZVQC-UHFFFAOYSA-N 1,5,6-trimethylimidazo[4,5-b]pyridin-2-amine Chemical compound N1=C(C)C(C)=CC2=C1N=C(N)N2C GWMHBZDOVFZVQC-UHFFFAOYSA-N 0.000 description 1
- WEYNBWVKOYCCQT-UHFFFAOYSA-N 1-(3-chloro-4-methylphenyl)-3-{2-[({5-[(dimethylamino)methyl]-2-furyl}methyl)thio]ethyl}urea Chemical compound O1C(CN(C)C)=CC=C1CSCCNC(=O)NC1=CC=C(C)C(Cl)=C1 WEYNBWVKOYCCQT-UHFFFAOYSA-N 0.000 description 1
- 102100038369 1-acyl-sn-glycerol-3-phosphate acyltransferase beta Human genes 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 108010020567 12E7 Antigen Proteins 0.000 description 1
- 102000008482 12E7 Antigen Human genes 0.000 description 1
- 102100020928 14 kDa phosphohistidine phosphatase Human genes 0.000 description 1
- 101710082470 14 kDa phosphohistidine phosphatase Proteins 0.000 description 1
- 102100022585 17-beta-hydroxysteroid dehydrogenase type 3 Human genes 0.000 description 1
- 102100021403 2,4-dienoyl-CoA reductase [(3E)-enoyl-CoA-producing], mitochondrial Human genes 0.000 description 1
- 102100027962 2-5A-dependent ribonuclease Human genes 0.000 description 1
- HVANFPMHKAMILB-XKNCWEQSSA-N 2-[(8s,9s,10s,11s,13s,14s,17r)-13-formyl-11-hydroxy-10-methyl-3-oxo-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]ethyl hydrogen sulfate Chemical compound C([C@@]1([C@@H](CCOS(O)(=O)=O)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2CC(=O)CC1 HVANFPMHKAMILB-XKNCWEQSSA-N 0.000 description 1
- AKEMIRQFANFFKU-NCYRAAIKSA-N 2-[[(2s,4as,6ar,6as,6br,8ar,10s,12as)-10-(2-carboxybenzoyl)oxy-2,4a,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12-dodecahydropicen-2-yl]methoxycarbonyl]benzoic acid Chemical compound C([C@]1(C)CC2=C3[C@@]([C@@]4(CC[C@H]5C(C)(C)[C@@H](OC(=O)C=6C(=CC=CC=6)C(O)=O)CC[C@]5(C)[C@H]4C=C3)C)(C)CC[C@@]2(C)CC1)OC(=O)C1=CC=CC=C1C(O)=O AKEMIRQFANFFKU-NCYRAAIKSA-N 0.000 description 1
- 101710186725 2-acylglycerol O-acyltransferase 2 Proteins 0.000 description 1
- 108010030844 2-methylcitrate synthase Proteins 0.000 description 1
- 102100026936 2-oxoglutarate dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100035352 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial Human genes 0.000 description 1
- 102100035315 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial Human genes 0.000 description 1
- 108010073030 25-Hydroxyvitamin D3 1-alpha-Hydroxylase Proteins 0.000 description 1
- 102100036285 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Human genes 0.000 description 1
- 102100023817 26S proteasome complex subunit SEM1 Human genes 0.000 description 1
- 208000017858 2q37 microdeletion syndrome Diseases 0.000 description 1
- 108010067083 3 beta-hydroxysteroid dehydrogenase type II Proteins 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- 102100027824 3'(2'),5'-bisphosphate nucleotidase 1 Human genes 0.000 description 1
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- AMQVHASIFJZFOS-UHFFFAOYSA-N 3-[(4-chlorophenyl)-(4-hydroxy-2-oxochromen-3-yl)methyl]-4-hydroxychromen-2-one Chemical compound O=C1OC=2C=CC=CC=2C(O)=C1C(C=1C(OC2=CC=CC=C2C=1O)=O)C1=CC=C(Cl)C=C1 AMQVHASIFJZFOS-UHFFFAOYSA-N 0.000 description 1
- 102100029103 3-ketoacyl-CoA thiolase Human genes 0.000 description 1
- 102100039217 3-ketoacyl-CoA thiolase, peroxisomal Human genes 0.000 description 1
- 101710082567 3-methylorcinaldehyde synthase Proteins 0.000 description 1
- 102100033875 3-oxo-5-alpha-steroid 4-dehydrogenase 2 Human genes 0.000 description 1
- INZOTETZQBPBCE-NYLDSJSYSA-N 3-sialyl lewis Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@H](O)CO)[C@@H]([C@@H](NC(C)=O)C=O)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 INZOTETZQBPBCE-NYLDSJSYSA-N 0.000 description 1
- SXXLKZCNJHJYFL-UHFFFAOYSA-N 4,5,6,7-tetrahydro-[1,2]oxazolo[4,5-c]pyridin-5-ium-3-olate Chemical compound C1CNCC2=C1ONC2=O SXXLKZCNJHJYFL-UHFFFAOYSA-N 0.000 description 1
- GMOGICAFJFPMNS-UHFFFAOYSA-N 4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1CN1CCNCCCNCCNCCC1 GMOGICAFJFPMNS-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- KFVINGKPXQSPNP-UHFFFAOYSA-N 4-amino-2-[2-(diethylamino)ethyl]-n-propanoylbenzamide Chemical compound CCN(CC)CCC1=CC(N)=CC=C1C(=O)NC(=O)CC KFVINGKPXQSPNP-UHFFFAOYSA-N 0.000 description 1
- 102100035923 4-aminobutyrate aminotransferase, mitochondrial Human genes 0.000 description 1
- KEWSCDNULKOKTG-UHFFFAOYSA-N 4-cyano-4-ethylsulfanylcarbothioylsulfanylpentanoic acid Chemical compound CCSC(=S)SC(C)(C#N)CCC(O)=O KEWSCDNULKOKTG-UHFFFAOYSA-N 0.000 description 1
- 102100035277 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6 Human genes 0.000 description 1
- MXCVHSXCXPHOLP-UHFFFAOYSA-N 4-oxo-6-propylchromene-2-carboxylic acid Chemical compound O1C(C(O)=O)=CC(=O)C2=CC(CCC)=CC=C21 MXCVHSXCXPHOLP-UHFFFAOYSA-N 0.000 description 1
- 102100033051 40S ribosomal protein S19 Human genes 0.000 description 1
- 102100037563 40S ribosomal protein S2 Human genes 0.000 description 1
- 102100034088 40S ribosomal protein S4, X isoform Human genes 0.000 description 1
- 102100028550 40S ribosomal protein S4, Y isoform 1 Human genes 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102100024626 5'-AMP-activated protein kinase subunit gamma-2 Human genes 0.000 description 1
- 102100031020 5-aminolevulinate synthase, erythroid-specific, mitochondrial Human genes 0.000 description 1
- 101710163573 5-hydroxyisourate hydrolase Proteins 0.000 description 1
- 108091027075 5S-rRNA precursor Proteins 0.000 description 1
- AAHNBILIYONQLX-UHFFFAOYSA-N 6-fluoro-3-[4-[3-methoxy-4-(4-methylimidazol-1-yl)phenyl]triazol-1-yl]-1-(2,2,2-trifluoroethyl)-4,5-dihydro-3h-1-benzazepin-2-one Chemical compound COC1=CC(C=2N=NN(C=2)C2C(N(CC(F)(F)F)C3=CC=CC(F)=C3CC2)=O)=CC=C1N1C=NC(C)=C1 AAHNBILIYONQLX-UHFFFAOYSA-N 0.000 description 1
- 101710154868 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 1
- 102100036512 7-dehydrocholesterol reductase Human genes 0.000 description 1
- VJUPMOPLUQHMLE-UUOKFMHZSA-N 8-Bromoadenosine Chemical compound BrC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VJUPMOPLUQHMLE-UUOKFMHZSA-N 0.000 description 1
- JBYXPOFIGCOSSB-GOJKSUSPSA-N 9-cis,11-trans-octadecadienoic acid Chemical compound CCCCCC\C=C\C=C/CCCCCCCC(O)=O JBYXPOFIGCOSSB-GOJKSUSPSA-N 0.000 description 1
- FWXNJWAXBVMBGL-UHFFFAOYSA-N 9-n,9-n,10-n,10-n-tetrakis(4-methylphenyl)anthracene-9,10-diamine Chemical compound C1=CC(C)=CC=C1N(C=1C2=CC=CC=C2C(N(C=2C=CC(C)=CC=2)C=2C=CC(C)=CC=2)=C2C=CC=CC2=1)C1=CC=C(C)C=C1 FWXNJWAXBVMBGL-UHFFFAOYSA-N 0.000 description 1
- 102100032290 A disintegrin and metalloproteinase with thrombospondin motifs 13 Human genes 0.000 description 1
- 102100027399 A disintegrin and metalloproteinase with thrombospondin motifs 2 Human genes 0.000 description 1
- 101150060184 ACHE gene Proteins 0.000 description 1
- 108091005670 ADAMTS13 Proteins 0.000 description 1
- 108091005662 ADAMTS2 Proteins 0.000 description 1
- 102100032533 ADP/ATP translocase 1 Human genes 0.000 description 1
- 102100026396 ADP/ATP translocase 2 Human genes 0.000 description 1
- 102100026397 ADP/ATP translocase 3 Human genes 0.000 description 1
- 102000017919 ADRB2 Human genes 0.000 description 1
- 108060003355 ADRB3 Proteins 0.000 description 1
- 102000017918 ADRB3 Human genes 0.000 description 1
- 101150012579 ADSL gene Proteins 0.000 description 1
- 102100024379 AF4/FMR2 family member 1 Human genes 0.000 description 1
- 102100024378 AF4/FMR2 family member 2 Human genes 0.000 description 1
- 102000010553 ALAD Human genes 0.000 description 1
- 101150082527 ALAD gene Proteins 0.000 description 1
- 101710168331 ALK tyrosine kinase receptor Proteins 0.000 description 1
- 102100032123 AMP deaminase 1 Human genes 0.000 description 1
- 102100032898 AMP deaminase 3 Human genes 0.000 description 1
- 102100037651 AP-2 complex subunit sigma Human genes 0.000 description 1
- 102100033936 AP-3 complex subunit beta-1 Human genes 0.000 description 1
- 101150037123 APOE gene Proteins 0.000 description 1
- 102100030840 AT-rich interactive domain-containing protein 4B Human genes 0.000 description 1
- 102000000872 ATM Human genes 0.000 description 1
- 102100021921 ATP synthase subunit a Human genes 0.000 description 1
- 102100028161 ATP-binding cassette sub-family C member 2 Human genes 0.000 description 1
- 102100028162 ATP-binding cassette sub-family C member 3 Human genes 0.000 description 1
- 102100024645 ATP-binding cassette sub-family C member 8 Human genes 0.000 description 1
- 102100024643 ATP-binding cassette sub-family D member 1 Human genes 0.000 description 1
- 102100020973 ATP-binding cassette sub-family D member 3 Human genes 0.000 description 1
- 102100033106 ATP-binding cassette sub-family G member 5 Human genes 0.000 description 1
- 102100033092 ATP-binding cassette sub-family G member 8 Human genes 0.000 description 1
- 102100032922 ATP-dependent 6-phosphofructokinase, muscle type Human genes 0.000 description 1
- 102100027452 ATP-dependent DNA helicase Q4 Human genes 0.000 description 1
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 1
- 101150020330 ATRX gene Proteins 0.000 description 1
- 208000012861 AVSD 1 Diseases 0.000 description 1
- 102100039164 Acetyl-CoA carboxylase 1 Human genes 0.000 description 1
- 102100030913 Acetylcholine receptor subunit alpha Human genes 0.000 description 1
- 102100022725 Acetylcholine receptor subunit beta Human genes 0.000 description 1
- 102100040963 Acetylcholine receptor subunit epsilon Human genes 0.000 description 1
- 102100033639 Acetylcholinesterase Human genes 0.000 description 1
- 102100029271 Acetylcholinesterase collagenic tail peptide Human genes 0.000 description 1
- 102100027446 Acetylserotonin O-methyltransferase Human genes 0.000 description 1
- 102100024005 Acid ceramidase Human genes 0.000 description 1
- 208000034012 Acid sphingomyelinase deficiency Diseases 0.000 description 1
- 201000011244 Acrocallosal syndrome Diseases 0.000 description 1
- 102100039819 Actin, alpha cardiac muscle 1 Human genes 0.000 description 1
- 102100026656 Actin, alpha skeletal muscle Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 102100035886 Adenine DNA glycosylase Human genes 0.000 description 1
- 108090001079 Adenine Nucleotide Translocator 1 Proteins 0.000 description 1
- 102100029457 Adenine phosphoribosyltransferase Human genes 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 102100036664 Adenosine deaminase Human genes 0.000 description 1
- 102100020925 Adenosylhomocysteinase Human genes 0.000 description 1
- 102100027236 Adenylate kinase isoenzyme 1 Human genes 0.000 description 1
- 101710137115 Adenylyl cyclase-associated protein 1 Proteins 0.000 description 1
- 102100040152 Adenylyl-sulfate kinase Human genes 0.000 description 1
- 102100022455 Adrenocorticotropic hormone receptor Human genes 0.000 description 1
- 208000008190 Agammaglobulinemia Diseases 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 208000006704 Aland Island eye disease Diseases 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 102100026608 Aldehyde dehydrogenase family 3 member A2 Human genes 0.000 description 1
- 102100033816 Aldehyde dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 1
- 102100025683 Alkaline phosphatase, tissue-nonspecific isozyme Human genes 0.000 description 1
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 1
- 102100024296 Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase Human genes 0.000 description 1
- 102100022463 Alpha-1-acid glycoprotein 1 Human genes 0.000 description 1
- 102100035991 Alpha-2-antiplasmin Human genes 0.000 description 1
- 102100035028 Alpha-L-iduronidase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102100031317 Alpha-N-acetylgalactosaminidase Human genes 0.000 description 1
- 102100034561 Alpha-N-acetylglucosaminidase Human genes 0.000 description 1
- 102100024085 Alpha-aminoadipic semialdehyde dehydrogenase Human genes 0.000 description 1
- 102100040743 Alpha-crystallin B chain Human genes 0.000 description 1
- 102100038910 Alpha-enolase Human genes 0.000 description 1
- 102100021761 Alpha-mannosidase 2 Human genes 0.000 description 1
- 102100040410 Alpha-methylacyl-CoA racemase Human genes 0.000 description 1
- 108010044434 Alpha-methylacyl-CoA racemase Proteins 0.000 description 1
- 102100030685 Alpha-sarcoglycan Human genes 0.000 description 1
- 102100031663 Alpha-tocopherol transfer protein Human genes 0.000 description 1
- 101710085003 Alpha-tubulin N-acetyltransferase Proteins 0.000 description 1
- 101710085461 Alpha-tubulin N-acetyltransferase 1 Proteins 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 102100032360 Alstrom syndrome protein 1 Human genes 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 201000000541 Ambras type hypertrichosis universalis congenita Diseases 0.000 description 1
- 102100039088 Amelogenin, X isoform Human genes 0.000 description 1
- 102100028661 Amine oxidase [flavin-containing] A Human genes 0.000 description 1
- 102100028116 Amine oxidase [flavin-containing] B Human genes 0.000 description 1
- 102100039338 Aminomethyltransferase, mitochondrial Human genes 0.000 description 1
- 102100020895 Ammonium transporter Rh type A Human genes 0.000 description 1
- 102100030988 Angiotensin-converting enzyme Human genes 0.000 description 1
- 101710185050 Angiotensin-converting enzyme Proteins 0.000 description 1
- 102100034280 Ankyrin repeat domain-containing protein 26 Human genes 0.000 description 1
- 102100031366 Ankyrin-1 Human genes 0.000 description 1
- 102100036818 Ankyrin-2 Human genes 0.000 description 1
- 102100025511 Anti-Muellerian hormone type-2 receptor Human genes 0.000 description 1
- 102100030343 Antigen peptide transporter 2 Human genes 0.000 description 1
- 102100033715 Apolipoprotein A-I Human genes 0.000 description 1
- 102100030942 Apolipoprotein A-II Human genes 0.000 description 1
- 102100037320 Apolipoprotein A-IV Human genes 0.000 description 1
- 102100040202 Apolipoprotein B-100 Human genes 0.000 description 1
- 102000011899 Aquaporin 2 Human genes 0.000 description 1
- 108010036221 Aquaporin 2 Proteins 0.000 description 1
- 241000207208 Aquifex Species 0.000 description 1
- 101000686547 Arabidopsis thaliana 30S ribosomal protein S1, chloroplastic Proteins 0.000 description 1
- 101100454193 Arabidopsis thaliana AAA1 gene Proteins 0.000 description 1
- 101100165034 Arabidopsis thaliana AZF2 gene Proteins 0.000 description 1
- 101100059333 Arabidopsis thaliana CYCA1-2 gene Proteins 0.000 description 1
- 101100332654 Arabidopsis thaliana ECA1 gene Proteins 0.000 description 1
- 101100226366 Arabidopsis thaliana EXT3 gene Proteins 0.000 description 1
- 101100125452 Arabidopsis thaliana ICR1 gene Proteins 0.000 description 1
- 101100018371 Arabidopsis thaliana ICR5 gene Proteins 0.000 description 1
- 101100290346 Arabidopsis thaliana MBS1 gene Proteins 0.000 description 1
- 101100404726 Arabidopsis thaliana NHX7 gene Proteins 0.000 description 1
- 101100517192 Arabidopsis thaliana NRPD1 gene Proteins 0.000 description 1
- 101100407152 Arabidopsis thaliana PBL7 gene Proteins 0.000 description 1
- 101100298412 Arabidopsis thaliana PCMP-H73 gene Proteins 0.000 description 1
- 101001125931 Arabidopsis thaliana Plastidial pyruvate kinase 2 Proteins 0.000 description 1
- 101000719121 Arabidopsis thaliana Protein MEI2-like 1 Proteins 0.000 description 1
- 101100038200 Arabidopsis thaliana RPD1 gene Proteins 0.000 description 1
- 101100417170 Arabidopsis thaliana RPI4 gene Proteins 0.000 description 1
- 101100536545 Arabidopsis thaliana TCL2 gene Proteins 0.000 description 1
- 101100210164 Arabidopsis thaliana VRN1 gene Proteins 0.000 description 1
- 101100102990 Arabidopsis thaliana WOX3 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108700040066 Argininosuccinate lyases Proteins 0.000 description 1
- 102100020999 Argininosuccinate synthase Human genes 0.000 description 1
- 108010078554 Aromatase Proteins 0.000 description 1
- 102100026789 Aryl hydrocarbon receptor repressor Human genes 0.000 description 1
- 102100024081 Aryl-hydrocarbon-interacting protein-like 1 Human genes 0.000 description 1
- 108020005224 Arylamine N-acetyltransferase Proteins 0.000 description 1
- 102100022146 Arylsulfatase A Human genes 0.000 description 1
- 102100031491 Arylsulfatase B Human genes 0.000 description 1
- 102100023943 Arylsulfatase L Human genes 0.000 description 1
- 101001120734 Ascaris suum Pyruvate dehydrogenase E1 component subunit alpha type I, mitochondrial Proteins 0.000 description 1
- 101150025804 Asl gene Proteins 0.000 description 1
- 102100023927 Asparagine synthetase [glutamine-hydrolyzing] Human genes 0.000 description 1
- 102100032948 Aspartoacylase Human genes 0.000 description 1
- 101001099569 Aspergillus oryzae (strain ATCC 42149 / RIB 40) Pectin lyase 1 Proteins 0.000 description 1
- 108010004586 Ataxia Telangiectasia Mutated Proteins Proteins 0.000 description 1
- 102000007371 Ataxin-3 Human genes 0.000 description 1
- 108010032947 Ataxin-3 Proteins 0.000 description 1
- 102100021321 Ataxin-3 Human genes 0.000 description 1
- 108010032953 Ataxin-7 Proteins 0.000 description 1
- 102100027766 Atlastin-1 Human genes 0.000 description 1
- 101150074725 Atxn3 gene Proteins 0.000 description 1
- 102100036465 Autoimmune regulator Human genes 0.000 description 1
- 208000035669 Autosomal dominant Charcot-Marie-Tooth disease type 2B Diseases 0.000 description 1
- 208000035665 Autosomal dominant Charcot-Marie-Tooth disease type 2D Diseases 0.000 description 1
- 208000033514 Autosomal dominant primary hypomagnesemia with hypocalciuria Diseases 0.000 description 1
- 208000031629 Autosomal dominant spastic paraplegia type 4 Diseases 0.000 description 1
- 208000036075 Autosomal dominant tubulointerstitial kidney disease Diseases 0.000 description 1
- 208000031721 Autosomal recessive spastic paraplegia type 23 Diseases 0.000 description 1
- 208000031627 Autosomal recessive spastic paraplegia type 5A Diseases 0.000 description 1
- 102100035682 Axin-1 Human genes 0.000 description 1
- 102100035683 Axin-2 Human genes 0.000 description 1
- 241000589938 Azospirillum brasilense Species 0.000 description 1
- 108700016341 Azospirillum brasilense Laf1 Proteins 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 108700009171 B-Cell Lymphoma 3 Proteins 0.000 description 1
- 102100035634 B-cell linker protein Human genes 0.000 description 1
- 102100021570 B-cell lymphoma 3 protein Human genes 0.000 description 1
- 108091012583 BCL2 Proteins 0.000 description 1
- 102100022790 BTB/POZ domain-containing protein KCTD11 Human genes 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 101710177963 Baculoviral IAP repeat-containing protein 7 Proteins 0.000 description 1
- 102100021264 Band 3 anion transport protein Human genes 0.000 description 1
- 241000606685 Bartonella bacilliformis Species 0.000 description 1
- 102100033949 Basic salivary proline-rich protein 3 Human genes 0.000 description 1
- 101150072667 Bcl3 gene Proteins 0.000 description 1
- 201000000046 Beckwith-Wiedemann syndrome Diseases 0.000 description 1
- 208000014596 Berardinelli-Seip congenital lipodystrophy Diseases 0.000 description 1
- 102100027321 Beta-1,4-galactosyltransferase 7 Human genes 0.000 description 1
- 102100030802 Beta-2-glycoprotein 1 Human genes 0.000 description 1
- 102100027314 Beta-2-microglobulin Human genes 0.000 description 1
- 102100029334 Beta-crystallin A3 Human genes 0.000 description 1
- 102100029388 Beta-crystallin B2 Human genes 0.000 description 1
- 102100026031 Beta-glucuronidase Human genes 0.000 description 1
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 description 1
- 102100022549 Beta-hexosaminidase subunit beta Human genes 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- 102100030686 Beta-sarcoglycan Human genes 0.000 description 1
- 208000012922 Beukes hip dysplasia Diseases 0.000 description 1
- 208000008225 Beukes type hip dysplasia Diseases 0.000 description 1
- 102100030401 Biglycan Human genes 0.000 description 1
- 102100028282 Bile salt export pump Human genes 0.000 description 1
- 102100033743 Biotin-[acetyl-CoA-carboxylase] ligase Human genes 0.000 description 1
- 108010029692 Bisphosphoglycerate mutase Proteins 0.000 description 1
- 102100036200 Bisphosphoglycerate mutase Human genes 0.000 description 1
- 102100027058 Bleomycin hydrolase Human genes 0.000 description 1
- 108091009167 Bloom syndrome protein Proteins 0.000 description 1
- 241000588779 Bordetella bronchiseptica Species 0.000 description 1
- 208000006146 Borjeson-Forssman-Lehmann syndrome Diseases 0.000 description 1
- 241000589893 Brachyspira hyodysenteriae Species 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 101000988373 Burkholderia cepacia Phthalate dioxygenase reductase Proteins 0.000 description 1
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 1
- 102100036841 C-C motif chemokine 1 Human genes 0.000 description 1
- 102100023702 C-C motif chemokine 13 Human genes 0.000 description 1
- 101710112613 C-C motif chemokine 13 Proteins 0.000 description 1
- 102100023705 C-C motif chemokine 14 Human genes 0.000 description 1
- 102100023700 C-C motif chemokine 16 Human genes 0.000 description 1
- 102100023698 C-C motif chemokine 17 Human genes 0.000 description 1
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 1
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 1
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 1
- 101710112538 C-C motif chemokine 27 Proteins 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 1
- 101710155834 C-C motif chemokine 7 Proteins 0.000 description 1
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 1
- 101710155833 C-C motif chemokine 8 Proteins 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 1
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 1
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 1
- 102100036189 C-X-C motif chemokine 3 Human genes 0.000 description 1
- 101710085504 C-X-C motif chemokine 6 Proteins 0.000 description 1
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 1
- 102100028737 CAP-Gly domain-containing linker protein 1 Human genes 0.000 description 1
- 101710134031 CCAAT/enhancer-binding protein beta Proteins 0.000 description 1
- 102000007499 CD27 Ligand Human genes 0.000 description 1
- 108010046080 CD27 Ligand Proteins 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 102000053028 CD36 Antigens Human genes 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 108010058905 CD44v6 antigen Proteins 0.000 description 1
- 108010062802 CD66 antigens Proteins 0.000 description 1
- 102100027221 CD81 antigen Human genes 0.000 description 1
- 208000011597 CGF1 Diseases 0.000 description 1
- 101150110330 CRAT gene Proteins 0.000 description 1
- 102100021975 CREB-binding protein Human genes 0.000 description 1
- 102100025805 Cadherin-1 Human genes 0.000 description 1
- 101100170001 Caenorhabditis elegans ddb-1 gene Proteins 0.000 description 1
- 101100181137 Caenorhabditis elegans pkc-3 gene Proteins 0.000 description 1
- 101100356682 Caenorhabditis elegans rho-1 gene Proteins 0.000 description 1
- 102100027557 Calcipressin-1 Human genes 0.000 description 1
- 102100038518 Calcitonin Human genes 0.000 description 1
- 102100038520 Calcitonin receptor Human genes 0.000 description 1
- 108010050543 Calcium-Sensing Receptors Proteins 0.000 description 1
- 102100034279 Calcium-binding mitochondrial carrier protein Aralar2 Human genes 0.000 description 1
- 102100025338 Calcium-binding tyrosine phosphorylation-regulated protein Human genes 0.000 description 1
- 102100024436 Caldesmon Human genes 0.000 description 1
- 102100025580 Calmodulin-1 Human genes 0.000 description 1
- 102000007590 Calpain Human genes 0.000 description 1
- 108010032088 Calpain Proteins 0.000 description 1
- 102100032539 Calpain-3 Human genes 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 101100449736 Candida albicans (strain SC5314 / ATCC MYA-2876) ZCF23 gene Proteins 0.000 description 1
- 101000809436 Candida albicans Sterol O-acyltransferase 2 Proteins 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- 102100033868 Cannabinoid receptor 1 Human genes 0.000 description 1
- 101710187010 Cannabinoid receptor 1 Proteins 0.000 description 1
- 102100038783 Carbohydrate sulfotransferase 6 Human genes 0.000 description 1
- 101710134395 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 102100035023 Carboxypeptidase B2 Human genes 0.000 description 1
- 102100024533 Carcinoembryonic antigen-related cell adhesion molecule 1 Human genes 0.000 description 1
- 201000005947 Carney Complex Diseases 0.000 description 1
- 102100036357 Carnitine O-acetyltransferase Human genes 0.000 description 1
- 102100027473 Cartilage oligomeric matrix protein Human genes 0.000 description 1
- 101710176668 Cartilage oligomeric matrix protein Proteins 0.000 description 1
- 108090000425 Caspase 6 Proteins 0.000 description 1
- 102000004018 Caspase 6 Human genes 0.000 description 1
- 108090000567 Caspase 7 Proteins 0.000 description 1
- 102100035904 Caspase-1 Human genes 0.000 description 1
- 108090000426 Caspase-1 Proteins 0.000 description 1
- 108090000572 Caspase-10 Proteins 0.000 description 1
- 102100026549 Caspase-10 Human genes 0.000 description 1
- 108090000552 Caspase-2 Proteins 0.000 description 1
- 102100032616 Caspase-2 Human genes 0.000 description 1
- 102100025597 Caspase-4 Human genes 0.000 description 1
- 101710090338 Caspase-4 Proteins 0.000 description 1
- 101710090333 Caspase-5 Proteins 0.000 description 1
- 102100038902 Caspase-7 Human genes 0.000 description 1
- 108090000566 Caspase-9 Proteins 0.000 description 1
- 102100026550 Caspase-9 Human genes 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 108020002739 Catechol O-methyltransferase Proteins 0.000 description 1
- 102100040999 Catechol O-methyltransferase Human genes 0.000 description 1
- 102100028914 Catenin beta-1 Human genes 0.000 description 1
- 102100024940 Cathepsin K Human genes 0.000 description 1
- 102100037182 Cation-independent mannose-6-phosphate receptor Human genes 0.000 description 1
- 241000863012 Caulobacter Species 0.000 description 1
- 241000010804 Caulobacter vibrioides Species 0.000 description 1
- 101100066776 Caulobacter vibrioides (strain ATCC 19089 / CB15) flgF gene Proteins 0.000 description 1
- 102100032212 Caveolin-3 Human genes 0.000 description 1
- ZEOWTGPWHLSLOG-UHFFFAOYSA-N Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F Chemical compound Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F ZEOWTGPWHLSLOG-UHFFFAOYSA-N 0.000 description 1
- 102000011068 Cdc42 Human genes 0.000 description 1
- 108050001278 Cdc42 Proteins 0.000 description 1
- 108091007854 Cdh1/Fizzy-related Proteins 0.000 description 1
- 102100025175 Cellular communication network factor 6 Human genes 0.000 description 1
- 208000016615 Central areolar choroidal dystrophy Diseases 0.000 description 1
- 102100023441 Centromere protein J Human genes 0.000 description 1
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 1
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 1
- 101710181340 Chaperone protein DnaK2 Proteins 0.000 description 1
- 108010058432 Chaperonin 60 Proteins 0.000 description 1
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 1
- 201000009744 Charcot-Marie-Tooth disease X-linked recessive 2 Diseases 0.000 description 1
- 201000009733 Charcot-Marie-Tooth disease X-linked recessive 3 Diseases 0.000 description 1
- 201000009729 Charcot-Marie-Tooth disease X-linked recessive 4 Diseases 0.000 description 1
- 201000008973 Charcot-Marie-Tooth disease type 2B Diseases 0.000 description 1
- 201000008958 Charcot-Marie-Tooth disease type 2D Diseases 0.000 description 1
- 201000008889 Charcot-Marie-Tooth disease type 4A Diseases 0.000 description 1
- 101710171922 Cheilanthifoline synthase Proteins 0.000 description 1
- 108010083702 Chemokine CCL21 Proteins 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 102000016950 Chemokine CXCL1 Human genes 0.000 description 1
- 108010014419 Chemokine CXCL1 Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 101100385253 Chiloscyllium indicum GM1 gene Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 102100030099 Chloride anion exchanger Human genes 0.000 description 1
- 102100023457 Chloride channel protein 1 Human genes 0.000 description 1
- 102100023459 Chloride channel protein ClC-Kb Human genes 0.000 description 1
- 102100037637 Cholesteryl ester transfer protein Human genes 0.000 description 1
- 102100032404 Cholinesterase Human genes 0.000 description 1
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 1
- 102100031196 Choriogonadotropin subunit beta 3 Human genes 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 208000031879 Chédiak-Higashi syndrome Diseases 0.000 description 1
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 description 1
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 description 1
- 101710082464 Cis-aconitate decarboxylase Proteins 0.000 description 1
- 101100328088 Cladosporium cladosporioides cla3 gene Proteins 0.000 description 1
- 102100031060 Clarin-1 Human genes 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 1
- 102100031552 Coactosin-like protein Human genes 0.000 description 1
- 101710105549 Coactosin-like protein Proteins 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 102100029057 Coagulation factor XIII A chain Human genes 0.000 description 1
- 102100029058 Coagulation factor XIII B chain Human genes 0.000 description 1
- 102100040996 Cochlin Human genes 0.000 description 1
- 102100024484 Codanin-1 Human genes 0.000 description 1
- 208000001353 Coffin-Lowry syndrome Diseases 0.000 description 1
- 102100035167 Coiled-coil domain-containing protein 54 Human genes 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102100031611 Collagen alpha-1(III) chain Human genes 0.000 description 1
- 102100031457 Collagen alpha-1(V) chain Human genes 0.000 description 1
- 102100024335 Collagen alpha-1(VII) chain Human genes 0.000 description 1
- 102100033825 Collagen alpha-1(XI) chain Human genes 0.000 description 1
- 102100028256 Collagen alpha-1(XVII) chain Human genes 0.000 description 1
- 102100030781 Collagen alpha-1(XXIII) chain Human genes 0.000 description 1
- 102100030976 Collagen alpha-2(IX) chain Human genes 0.000 description 1
- 102100031502 Collagen alpha-2(V) chain Human genes 0.000 description 1
- 102100031518 Collagen alpha-2(VI) chain Human genes 0.000 description 1
- 102100033780 Collagen alpha-3(IV) chain Human genes 0.000 description 1
- 102100030977 Collagen alpha-3(IX) chain Human genes 0.000 description 1
- 102100024338 Collagen alpha-3(VI) chain Human genes 0.000 description 1
- 102100033779 Collagen alpha-4(IV) chain Human genes 0.000 description 1
- 102100033775 Collagen alpha-5(IV) chain Human genes 0.000 description 1
- 102100033773 Collagen alpha-6(IV) chain Human genes 0.000 description 1
- 208000016046 Combined deficiency of factor V and factor VIII Diseases 0.000 description 1
- 108700040183 Complement C1 Inhibitor Proteins 0.000 description 1
- 102000055157 Complement C1 Inhibitor Human genes 0.000 description 1
- 102100025849 Complement C1q subcomponent subunit C Human genes 0.000 description 1
- 102100025892 Complement C1q tumor necrosis factor-related protein 1 Human genes 0.000 description 1
- 102100025877 Complement component C1q receptor Human genes 0.000 description 1
- 102100029362 Cone-rod homeobox protein Human genes 0.000 description 1
- 201000006705 Congenital generalized lipodystrophy Diseases 0.000 description 1
- 208000034717 Congenital hereditary endothelial dystrophy type II Diseases 0.000 description 1
- 108010069176 Connexin 30 Proteins 0.000 description 1
- 102100040998 Conserved oligomeric Golgi complex subunit 6 Human genes 0.000 description 1
- 102000012437 Copper-Transporting ATPases Human genes 0.000 description 1
- 108010022637 Copper-Transporting ATPases Proteins 0.000 description 1
- 102100027591 Copper-transporting ATPase 2 Human genes 0.000 description 1
- 108010024682 Core Binding Factor Alpha 1 Subunit Proteins 0.000 description 1
- 102000015775 Core Binding Factor Alpha 1 Subunit Human genes 0.000 description 1
- 102100021752 Corticoliberin Human genes 0.000 description 1
- 102100032323 Corticosteroid-binding globulin Human genes 0.000 description 1
- 102100032165 Corticotropin-releasing factor-binding protein Human genes 0.000 description 1
- 102100031096 Cubilin Human genes 0.000 description 1
- 102100029142 Cyclic nucleotide-gated cation channel alpha-3 Human genes 0.000 description 1
- 102100021430 Cyclic pyranopterin monophosphate synthase Human genes 0.000 description 1
- 102100037912 Cyclin-dependent kinase 11A Human genes 0.000 description 1
- 102100037916 Cyclin-dependent kinase 11B Human genes 0.000 description 1
- 102100035429 Cystathionine gamma-lyase Human genes 0.000 description 1
- 108010045283 Cystathionine gamma-lyase Proteins 0.000 description 1
- 102100026891 Cystatin-B Human genes 0.000 description 1
- 102100026897 Cystatin-C Human genes 0.000 description 1
- 102100031089 Cystinosin Human genes 0.000 description 1
- 108010074918 Cytochrome P-450 CYP1A1 Proteins 0.000 description 1
- 108010026925 Cytochrome P-450 CYP2C19 Proteins 0.000 description 1
- 108010000543 Cytochrome P-450 CYP2C9 Proteins 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 108010081668 Cytochrome P-450 CYP3A Proteins 0.000 description 1
- 102100024332 Cytochrome P450 11B1, mitochondrial Human genes 0.000 description 1
- 102100031476 Cytochrome P450 1A1 Human genes 0.000 description 1
- 102100026533 Cytochrome P450 1A2 Human genes 0.000 description 1
- 101710104280 Cytochrome P450 1A2 Proteins 0.000 description 1
- 102100036194 Cytochrome P450 2A6 Human genes 0.000 description 1
- 102100029358 Cytochrome P450 2C9 Human genes 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- 102100039205 Cytochrome P450 3A4 Human genes 0.000 description 1
- 102100025287 Cytochrome b Human genes 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- 102100025620 Cytochrome b-245 light chain Human genes 0.000 description 1
- 102100039924 Cytochrome b-c1 complex subunit 1, mitochondrial Human genes 0.000 description 1
- 102100031655 Cytochrome b5 Human genes 0.000 description 1
- 102100030878 Cytochrome c oxidase subunit 1 Human genes 0.000 description 1
- 102100039061 Cytokine receptor common subunit beta Human genes 0.000 description 1
- 101710199286 Cytosol aminopeptidase Proteins 0.000 description 1
- 102100020756 D(2) dopamine receptor Human genes 0.000 description 1
- 102100029815 D(4) dopamine receptor Human genes 0.000 description 1
- 102100037579 D-3-phosphoglycerate dehydrogenase Human genes 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 150000000828 D-mannose derivatives Chemical class 0.000 description 1
- 125000003423 D-mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 102100021246 DDIT3 upstream open reading frame protein Human genes 0.000 description 1
- 101150013449 DHS gene Proteins 0.000 description 1
- 102100024810 DNA (cytosine-5)-methyltransferase 3B Human genes 0.000 description 1
- 101710123222 DNA (cytosine-5)-methyltransferase 3B Proteins 0.000 description 1
- 102100021122 DNA damage-binding protein 2 Human genes 0.000 description 1
- 102100031866 DNA excision repair protein ERCC-5 Human genes 0.000 description 1
- 108010035476 DNA excision repair protein ERCC-5 Proteins 0.000 description 1
- 102100031867 DNA excision repair protein ERCC-6 Human genes 0.000 description 1
- 102100038026 DNA fragmentation factor subunit alpha Human genes 0.000 description 1
- 101710182628 DNA fragmentation factor subunit alpha Proteins 0.000 description 1
- 101710147299 DNA fragmentation factor subunit beta Proteins 0.000 description 1
- 102100029995 DNA ligase 1 Human genes 0.000 description 1
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 1
- 102100021147 DNA mismatch repair protein Msh6 Human genes 0.000 description 1
- 102100029766 DNA polymerase theta Human genes 0.000 description 1
- 101710082494 DNA protection during starvation protein Proteins 0.000 description 1
- 102100034490 DNA repair and recombination protein RAD54B Human genes 0.000 description 1
- 102100029094 DNA repair endonuclease XPF Human genes 0.000 description 1
- 102100024607 DNA topoisomerase 1 Human genes 0.000 description 1
- 102100033587 DNA topoisomerase 2-alpha Human genes 0.000 description 1
- 102100020986 DNA-binding protein RFX5 Human genes 0.000 description 1
- 102100021044 DNA-binding protein RFXANK Human genes 0.000 description 1
- 102100022204 DNA-dependent protein kinase catalytic subunit Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 102100038713 Death domain-containing protein CRADD Human genes 0.000 description 1
- 102100022283 Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100036466 Delta-like protein 3 Human genes 0.000 description 1
- 102100021790 Delta-sarcoglycan Human genes 0.000 description 1
- 201000008163 Dentatorubral pallidoluysian atrophy Diseases 0.000 description 1
- 102100029792 Dentin sialophosphoprotein Human genes 0.000 description 1
- 101800000026 Dentin sialoprotein Proteins 0.000 description 1
- 102100031242 Deoxyhypusine synthase Human genes 0.000 description 1
- 108700023218 Deoxyhypusine synthases Proteins 0.000 description 1
- 102100030012 Deoxyribonuclease-1 Human genes 0.000 description 1
- 101710127030 Dermatan-sulfate epimerase Proteins 0.000 description 1
- 102100034579 Desmoglein-1 Human genes 0.000 description 1
- 102100038199 Desmoplakin Human genes 0.000 description 1
- 108010086291 Deubiquitinating Enzyme CYLD Proteins 0.000 description 1
- 102100037981 Dickkopf-like protein 1 Human genes 0.000 description 1
- 101710125833 Dickkopf-like protein 1 Proteins 0.000 description 1
- 101000797456 Dictyostelium discoideum AMP deaminase Proteins 0.000 description 1
- 101000779375 Dictyostelium discoideum Alpha-protein kinase 1 Proteins 0.000 description 1
- 101000745420 Dictyostelium discoideum Contact site A protein Proteins 0.000 description 1
- 101001071611 Dictyostelium discoideum Glutathione reductase Proteins 0.000 description 1
- 101100226017 Dictyostelium discoideum repD gene Proteins 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- 102100027152 Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial Human genes 0.000 description 1
- 102100022317 Dihydropteridine reductase Human genes 0.000 description 1
- 102100036238 Dihydropyrimidinase Human genes 0.000 description 1
- 102100022334 Dihydropyrimidine dehydrogenase [NADP(+)] Human genes 0.000 description 1
- 102100035041 Dimethylaniline monooxygenase [N-oxide-forming] 3 Human genes 0.000 description 1
- 102100035046 Dimethylaniline monooxygenase [N-oxide-forming] 4 Human genes 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100020743 Dipeptidase 1 Human genes 0.000 description 1
- 102100029921 Dipeptidyl peptidase 1 Human genes 0.000 description 1
- 102100028360 Diphosphoinositol polyphosphate phosphohydrolase 3-beta Human genes 0.000 description 1
- 102100022273 Disrupted in schizophrenia 1 protein Human genes 0.000 description 1
- 102100031695 DnaJ homolog subfamily C member 2 Human genes 0.000 description 1
- 102100031675 DnaJ homolog subfamily C member 5 Human genes 0.000 description 1
- 102100039104 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit DAD1 Human genes 0.000 description 1
- 108010044266 Dopamine Plasma Membrane Transport Proteins Proteins 0.000 description 1
- 101100108073 Drosophila melanogaster Actn gene Proteins 0.000 description 1
- 101100181139 Drosophila melanogaster Pkcdelta gene Proteins 0.000 description 1
- 101100269980 Drosophila melanogaster aPKC gene Proteins 0.000 description 1
- 101100219190 Drosophila melanogaster byn gene Proteins 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 102100029638 Dual serine/threonine and tyrosine protein kinase Human genes 0.000 description 1
- 208000030772 Duane syndrome type 1 Diseases 0.000 description 1
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 1
- 102100032248 Dysferlin Human genes 0.000 description 1
- 102100035374 Dystrophia myotonica WD repeat-containing protein Human genes 0.000 description 1
- 102100024108 Dystrophin Human genes 0.000 description 1
- 102100023227 E3 SUMO-protein ligase EGR2 Human genes 0.000 description 1
- 101710197780 E3 ubiquitin-protein ligase LAP Proteins 0.000 description 1
- 102100022404 E3 ubiquitin-protein ligase Midline-1 Human genes 0.000 description 1
- 102100040068 E3 ubiquitin-protein ligase TRIM37 Human genes 0.000 description 1
- 102100025027 E3 ubiquitin-protein ligase TRIM69 Human genes 0.000 description 1
- 102100022207 E3 ubiquitin-protein ligase parkin Human genes 0.000 description 1
- 102000017930 EDNRB Human genes 0.000 description 1
- 101150049307 EEF1A2 gene Proteins 0.000 description 1
- 102100031814 EGF-containing fibulin-like extracellular matrix protein 1 Human genes 0.000 description 1
- 101150110503 END3 gene Proteins 0.000 description 1
- 102000012804 EPCAM Human genes 0.000 description 1
- 101150105460 ERCC2 gene Proteins 0.000 description 1
- 102100039563 ETS translocation variant 1 Human genes 0.000 description 1
- 208000033707 Early-onset X-linked optic atrophy Diseases 0.000 description 1
- 102100027094 Echinoderm microtubule-associated protein-like 1 Human genes 0.000 description 1
- 102100033167 Elastin Human genes 0.000 description 1
- 102100030695 Electron transfer flavoprotein subunit alpha, mitochondrial Human genes 0.000 description 1
- 102100027262 Electron transfer flavoprotein subunit beta Human genes 0.000 description 1
- 102100031804 Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial Human genes 0.000 description 1
- 102100037074 Ellis-van Creveld syndrome protein Human genes 0.000 description 1
- 102100031334 Elongation factor 2 Human genes 0.000 description 1
- 102100039246 Elongator complex protein 1 Human genes 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 102100023387 Endoribonuclease Dicer Human genes 0.000 description 1
- 102100029109 Endothelin-3 Human genes 0.000 description 1
- 102100029112 Endothelin-converting enzyme 1 Human genes 0.000 description 1
- 101710147220 Ent-copalyl diphosphate synthase, chloroplastic Proteins 0.000 description 1
- 101100007581 Entamoeba histolytica CPP1 gene Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 102100028471 Eosinophil peroxidase Human genes 0.000 description 1
- 101710116743 Ephrin type-A receptor 2 Proteins 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 102100025403 Epoxide hydrolase 1 Human genes 0.000 description 1
- 102100021793 Epsilon-sarcoglycan Human genes 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101001028319 Escherichia coli (strain K12) 2,4-dienoyl-CoA reductase [(2E)-enoyl-CoA-producing] Proteins 0.000 description 1
- 101100129584 Escherichia coli (strain K12) trg gene Proteins 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- 102100034174 Eukaryotic translation initiation factor 2-alpha kinase 3 Human genes 0.000 description 1
- 101710091919 Eukaryotic translation initiation factor 4G Proteins 0.000 description 1
- 102100029055 Exostosin-1 Human genes 0.000 description 1
- 102100029074 Exostosin-2 Human genes 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102100035650 Extracellular calcium-sensing receptor Human genes 0.000 description 1
- 102100027186 Extracellular superoxide dismutase [Cu-Zn] Human genes 0.000 description 1
- 102100030863 Eyes absent homolog 1 Human genes 0.000 description 1
- 102100028147 F-box/WD repeat-containing protein 4 Human genes 0.000 description 1
- 102100026693 FAS-associated death domain protein Human genes 0.000 description 1
- 201000003727 FG syndrome Diseases 0.000 description 1
- 102100038635 FYVE, RhoGEF and PH domain-containing protein 1 Human genes 0.000 description 1
- 208000035855 Familial platelet disorder with associated myeloid malignancy Diseases 0.000 description 1
- 102000009095 Fanconi Anemia Complementation Group A protein Human genes 0.000 description 1
- 108010087740 Fanconi Anemia Complementation Group A protein Proteins 0.000 description 1
- 102000018825 Fanconi Anemia Complementation Group C protein Human genes 0.000 description 1
- 108010027673 Fanconi Anemia Complementation Group C protein Proteins 0.000 description 1
- 102000013601 Fanconi Anemia Complementation Group D2 protein Human genes 0.000 description 1
- 108010026653 Fanconi Anemia Complementation Group D2 protein Proteins 0.000 description 1
- 102000012216 Fanconi Anemia Complementation Group F protein Human genes 0.000 description 1
- 108010022012 Fanconi Anemia Complementation Group F protein Proteins 0.000 description 1
- 108010033305 Fanconi Anemia Complementation Group G protein Proteins 0.000 description 1
- 102100027280 Fanconi anemia group A protein Human genes 0.000 description 1
- 102100027285 Fanconi anemia group B protein Human genes 0.000 description 1
- 102100034555 Fanconi anemia group G protein Human genes 0.000 description 1
- 108010039471 Fas Ligand Protein Proteins 0.000 description 1
- 102100026748 Fatty acid-binding protein, intestinal Human genes 0.000 description 1
- 102100020760 Ferritin heavy chain Human genes 0.000 description 1
- 102100038652 Ferritin heavy polypeptide-like 17 Human genes 0.000 description 1
- 102100021062 Ferritin light chain Human genes 0.000 description 1
- 102100030771 Ferrochelatase, mitochondrial Human genes 0.000 description 1
- 102100031510 Fibrillin-2 Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102100031752 Fibrinogen alpha chain Human genes 0.000 description 1
- 102100028313 Fibrinogen beta chain Human genes 0.000 description 1
- 102100024783 Fibrinogen gamma chain Human genes 0.000 description 1
- 102100035290 Fibroblast growth factor 13 Human genes 0.000 description 1
- 102100035307 Fibroblast growth factor 16 Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102100024802 Fibroblast growth factor 23 Human genes 0.000 description 1
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 1
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 1
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 1
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 description 1
- 102100032596 Fibrocystin Human genes 0.000 description 1
- 102100026559 Filamin-B Human genes 0.000 description 1
- 108010000916 Fimbriae Proteins Proteins 0.000 description 1
- 102100027627 Follicle-stimulating hormone receptor Human genes 0.000 description 1
- 102100027909 Folliculin Human genes 0.000 description 1
- 102100040977 Follitropin subunit beta Human genes 0.000 description 1
- 108010010285 Forkhead Box Protein L2 Proteins 0.000 description 1
- 102100021084 Forkhead box protein C1 Human genes 0.000 description 1
- 102100037042 Forkhead box protein E1 Human genes 0.000 description 1
- 102100035137 Forkhead box protein L2 Human genes 0.000 description 1
- 102100023371 Forkhead box protein N1 Human genes 0.000 description 1
- 102100035416 Forkhead box protein O4 Human genes 0.000 description 1
- 102100020997 Fractalkine Human genes 0.000 description 1
- 102100020714 Fragile X mental retardation 1 neighbor protein Human genes 0.000 description 1
- 102100027525 Frataxin, mitochondrial Human genes 0.000 description 1
- 208000024412 Friedreich ataxia Diseases 0.000 description 1
- 102100037181 Fructose-1,6-bisphosphatase 1 Human genes 0.000 description 1
- 102100022642 Fructose-2,6-bisphosphatase Human genes 0.000 description 1
- 102100022272 Fructose-bisphosphate aldolase B Human genes 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100039709 G antigen 2A Human genes 0.000 description 1
- 101710098406 G antigen 2A Proteins 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 108010038179 G-protein beta3 subunit Proteins 0.000 description 1
- 102100039860 G-protein coupled receptor 143 Human genes 0.000 description 1
- 208000025499 G6PD deficiency Diseases 0.000 description 1
- 102000017694 GABRA3 Human genes 0.000 description 1
- 102100025101 GATA-type zinc finger protein 1 Human genes 0.000 description 1
- 108010003163 GDP dissociation inhibitor 1 Proteins 0.000 description 1
- 108010013942 GMP Reductase Proteins 0.000 description 1
- 102100021188 GMP reductase 1 Human genes 0.000 description 1
- 101150016162 GSM1 gene Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 102100027346 GTP cyclohydrolase 1 Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 102100029974 GTPase HRas Human genes 0.000 description 1
- 102100030708 GTPase KRas Human genes 0.000 description 1
- 102100028496 Galactocerebrosidase Human genes 0.000 description 1
- 102100037777 Galactokinase Human genes 0.000 description 1
- 102100036291 Galactose-1-phosphate uridylyltransferase Human genes 0.000 description 1
- 102100039835 Galactoside alpha-(1,2)-fucosyltransferase 1 Human genes 0.000 description 1
- 102100040837 Galactoside alpha-(1,2)-fucosyltransferase 2 Human genes 0.000 description 1
- 101100476713 Gallus gallus SAX1 gene Proteins 0.000 description 1
- 102100039331 Gamma-crystallin A Human genes 0.000 description 1
- 102100027813 Gamma-crystallin C Human genes 0.000 description 1
- 102100027812 Gamma-crystallin D Human genes 0.000 description 1
- 101710191797 Gamma-enolase Proteins 0.000 description 1
- 101710115997 Gamma-tubulin complex component 2 Proteins 0.000 description 1
- 102100023364 Ganglioside GM2 activator Human genes 0.000 description 1
- 102100024411 Ganglioside-induced differentiation-associated protein 1 Human genes 0.000 description 1
- 102100021337 Gap junction alpha-1 protein Human genes 0.000 description 1
- 102100030526 Gap junction alpha-3 protein Human genes 0.000 description 1
- 102100025283 Gap junction alpha-8 protein Human genes 0.000 description 1
- 102100037260 Gap junction beta-1 protein Human genes 0.000 description 1
- 102100037156 Gap junction beta-2 protein Human genes 0.000 description 1
- 102100037391 Gasdermin-E Human genes 0.000 description 1
- 108010004460 Gastric Inhibitory Polypeptide Proteins 0.000 description 1
- 102100021022 Gastrin Human genes 0.000 description 1
- 102100030671 Gastrin-releasing peptide receptor Human genes 0.000 description 1
- 108090001064 Gelsolin Proteins 0.000 description 1
- 102100028953 Gelsolin Human genes 0.000 description 1
- 102000004878 Gelsolin Human genes 0.000 description 1
- 102100031885 General transcription and DNA repair factor IIH helicase subunit XPB Human genes 0.000 description 1
- 102100035184 General transcription and DNA repair factor IIH helicase subunit XPD Human genes 0.000 description 1
- 102100032865 General transcription factor IIH subunit 5 Human genes 0.000 description 1
- 102100037410 Gigaxonin Human genes 0.000 description 1
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 1
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 1
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 1
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 1
- 101710174134 Globin CTT-Z Proteins 0.000 description 1
- 102100025894 Glomulin Human genes 0.000 description 1
- 102100040890 Glucagon receptor Human genes 0.000 description 1
- 102100033417 Glucocorticoid receptor Human genes 0.000 description 1
- 102100036264 Glucose-6-phosphatase catalytic subunit 1 Human genes 0.000 description 1
- 102100035172 Glucose-6-phosphate 1-dehydrogenase Human genes 0.000 description 1
- 101710155861 Glucose-6-phosphate 1-dehydrogenase Proteins 0.000 description 1
- 101710174622 Glucose-6-phosphate 1-dehydrogenase, chloroplastic Proteins 0.000 description 1
- 101710137456 Glucose-6-phosphate 1-dehydrogenase, cytoplasmic isoform Proteins 0.000 description 1
- 102100021223 Glucosidase 2 subunit beta Human genes 0.000 description 1
- 102100034009 Glutamate dehydrogenase 1, mitochondrial Human genes 0.000 description 1
- 102100028603 Glutaryl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100033366 Glutathione hydrolase 1 proenzyme Human genes 0.000 description 1
- 102100033039 Glutathione peroxidase 1 Human genes 0.000 description 1
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 1
- 102100034294 Glutathione synthetase Human genes 0.000 description 1
- 101710155270 Glycerate 2-kinase Proteins 0.000 description 1
- 102100030395 Glycerol-3-phosphate dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100025506 Glycine cleavage system H protein, mitochondrial Human genes 0.000 description 1
- 102100033495 Glycine dehydrogenase (decarboxylating), mitochondrial Human genes 0.000 description 1
- 102100033945 Glycine receptor subunit alpha-1 Human genes 0.000 description 1
- 102100036589 Glycine-tRNA ligase Human genes 0.000 description 1
- 102100039264 Glycogen [starch] synthase, liver Human genes 0.000 description 1
- 102100039262 Glycogen [starch] synthase, muscle Human genes 0.000 description 1
- 102100029481 Glycogen phosphorylase, liver form Human genes 0.000 description 1
- 102100029492 Glycogen phosphorylase, muscle form Human genes 0.000 description 1
- 102100035716 Glycophorin-A Human genes 0.000 description 1
- 102100023849 Glycophorin-C Human genes 0.000 description 1
- 102100030648 Glyoxylate reductase/hydroxypyruvate reductase Human genes 0.000 description 1
- 102100033851 Gonadotropin-releasing hormone receptor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 1
- 102100028113 Granulocyte-macrophage colony-stimulating factor receptor subunit alpha Human genes 0.000 description 1
- 102100036717 Growth hormone variant Human genes 0.000 description 1
- 102100033365 Growth hormone-releasing hormone receptor Human genes 0.000 description 1
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 1
- 102100035379 Growth/differentiation factor 5 Human genes 0.000 description 1
- 102100040579 Guanidinoacetate N-methyltransferase Human genes 0.000 description 1
- 102100035346 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3 Human genes 0.000 description 1
- 102100032610 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Human genes 0.000 description 1
- 102100039261 Guanine nucleotide-binding protein G(t) subunit alpha-1 Human genes 0.000 description 1
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- 102100036733 Guanine nucleotide-binding protein subunit alpha-12 Human genes 0.000 description 1
- 102100031249 H/ACA ribonucleoprotein complex subunit DKC1 Human genes 0.000 description 1
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 1
- 102100031618 HLA class II histocompatibility antigen, DP beta 1 chain Human genes 0.000 description 1
- 102100040505 HLA class II histocompatibility antigen, DR alpha chain Human genes 0.000 description 1
- 108010045483 HLA-DPB1 antigen Proteins 0.000 description 1
- 108010067802 HLA-DR alpha-Chains Proteins 0.000 description 1
- 102100039330 HMG box-containing protein 1 Human genes 0.000 description 1
- 108700039143 HMGA2 Proteins 0.000 description 1
- 101710094895 HTLV-1 basic zipper factor Proteins 0.000 description 1
- 102100031561 Hamartin Human genes 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 1
- 102100034047 Heat shock factor protein 4 Human genes 0.000 description 1
- 101710178419 Heat shock protein 70 2 Proteins 0.000 description 1
- 102100026973 Heat shock protein 75 kDa, mitochondrial Human genes 0.000 description 1
- 101710113864 Heat shock protein 90 Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102100028006 Heme oxygenase 1 Human genes 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 102100038614 Hemoglobin subunit gamma-1 Human genes 0.000 description 1
- 102100038617 Hemoglobin subunit gamma-2 Human genes 0.000 description 1
- 102100030378 Hemoglobin subunit theta-1 Human genes 0.000 description 1
- 102100030387 Hemoglobin subunit zeta Human genes 0.000 description 1
- 101800000637 Hemokinin Proteins 0.000 description 1
- 102100031415 Hepatic triacylglycerol lipase Human genes 0.000 description 1
- 102100022623 Hepatocyte growth factor receptor Human genes 0.000 description 1
- 102100022057 Hepatocyte nuclear factor 1-alpha Human genes 0.000 description 1
- 102100022054 Hepatocyte nuclear factor 4-alpha Human genes 0.000 description 1
- 208000021236 Hereditary diffuse leukoencephalopathy with axonal spheroids and pigmented glia Diseases 0.000 description 1
- 102100028902 Hermansky-Pudlak syndrome 1 protein Human genes 0.000 description 1
- 102100028721 Hermansky-Pudlak syndrome 5 protein Human genes 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 102100038009 High affinity immunoglobulin epsilon receptor subunit beta Human genes 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 102100028999 High mobility group protein HMGI-C Human genes 0.000 description 1
- 208000023075 Hip dysplasia, Beukes type Diseases 0.000 description 1
- 102100021628 Histatin-3 Human genes 0.000 description 1
- 102100022695 Histidine ammonia-lyase Human genes 0.000 description 1
- 102100027619 Histidine-rich glycoprotein Human genes 0.000 description 1
- 102100035833 Histo-blood group ABO system transferase Human genes 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 1
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 1
- 102100038885 Histone acetyltransferase p300 Human genes 0.000 description 1
- 102100021454 Histone deacetylase 4 Human genes 0.000 description 1
- 108091016366 Histone-lysine N-methyltransferase EHMT1 Proteins 0.000 description 1
- 101710196274 Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 1
- 102100039121 Histone-lysine N-methyltransferase MECOM Human genes 0.000 description 1
- 101150073387 Hmga2 gene Proteins 0.000 description 1
- 102100035009 Holocytochrome c-type synthase Human genes 0.000 description 1
- 102100034633 Homeobox expressed in ES cells 1 Human genes 0.000 description 1
- 102100022376 Homeobox protein DLX-3 Human genes 0.000 description 1
- 102100023830 Homeobox protein EMX2 Human genes 0.000 description 1
- 102100030309 Homeobox protein Hox-A1 Human genes 0.000 description 1
- 102100040227 Homeobox protein Hox-D13 Human genes 0.000 description 1
- 102100028707 Homeobox protein MSX-1 Human genes 0.000 description 1
- 102100040615 Homeobox protein MSX-2 Human genes 0.000 description 1
- 102100027875 Homeobox protein Nkx-2.5 Human genes 0.000 description 1
- 102100028092 Homeobox protein Nkx-3.1 Human genes 0.000 description 1
- 102100033798 Homeobox protein aristaless-like 4 Human genes 0.000 description 1
- 102100031159 Homeobox protein prophet of Pit-1 Human genes 0.000 description 1
- 101000605571 Homo sapiens 1-acyl-sn-glycerol-3-phosphate acyltransferase beta Proteins 0.000 description 1
- 101001045211 Homo sapiens 17-beta-hydroxysteroid dehydrogenase type 3 Proteins 0.000 description 1
- 101001041661 Homo sapiens 2,4-dienoyl-CoA reductase [(3E)-enoyl-CoA-producing], mitochondrial Proteins 0.000 description 1
- 101001080057 Homo sapiens 2-5A-dependent ribonuclease Proteins 0.000 description 1
- 101000982656 Homo sapiens 2-oxoglutarate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000597665 Homo sapiens 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial Proteins 0.000 description 1
- 101000597680 Homo sapiens 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial Proteins 0.000 description 1
- 101000684297 Homo sapiens 26S proteasome complex subunit SEM1 Proteins 0.000 description 1
- 101000728693 Homo sapiens 28S ribosomal protein S11, mitochondrial Proteins 0.000 description 1
- 101000841262 Homo sapiens 3-ketoacyl-CoA thiolase Proteins 0.000 description 1
- 101000670146 Homo sapiens 3-ketoacyl-CoA thiolase, peroxisomal Proteins 0.000 description 1
- 101000640851 Homo sapiens 3-oxo-5-alpha-steroid 4-dehydrogenase 2 Proteins 0.000 description 1
- 101001000686 Homo sapiens 4-aminobutyrate aminotransferase, mitochondrial Proteins 0.000 description 1
- 101001022175 Homo sapiens 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6 Proteins 0.000 description 1
- 101000733040 Homo sapiens 40S ribosomal protein S19 Proteins 0.000 description 1
- 101001098029 Homo sapiens 40S ribosomal protein S2 Proteins 0.000 description 1
- 101000732165 Homo sapiens 40S ribosomal protein S4, X isoform Proteins 0.000 description 1
- 101000696103 Homo sapiens 40S ribosomal protein S4, Y isoform 1 Proteins 0.000 description 1
- 101000760987 Homo sapiens 5'-AMP-activated protein kinase subunit gamma-2 Proteins 0.000 description 1
- 101000773083 Homo sapiens 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 101001083755 Homo sapiens 5-aminolevulinate synthase, erythroid-specific, mitochondrial Proteins 0.000 description 1
- 101000928720 Homo sapiens 7-dehydrocholesterol reductase Proteins 0.000 description 1
- 101000833180 Homo sapiens AF4/FMR2 family member 1 Proteins 0.000 description 1
- 101000833172 Homo sapiens AF4/FMR2 family member 2 Proteins 0.000 description 1
- 101000775844 Homo sapiens AMP deaminase 1 Proteins 0.000 description 1
- 101000797462 Homo sapiens AMP deaminase 3 Proteins 0.000 description 1
- 101000806914 Homo sapiens AP-2 complex subunit sigma Proteins 0.000 description 1
- 101000779239 Homo sapiens AP-3 complex subunit beta-1 Proteins 0.000 description 1
- 101000792935 Homo sapiens AT-rich interactive domain-containing protein 4B Proteins 0.000 description 1
- 101000753741 Homo sapiens ATP synthase subunit a Proteins 0.000 description 1
- 101000986633 Homo sapiens ATP-binding cassette sub-family C member 3 Proteins 0.000 description 1
- 101000760570 Homo sapiens ATP-binding cassette sub-family C member 8 Proteins 0.000 description 1
- 101000783770 Homo sapiens ATP-binding cassette sub-family D member 3 Proteins 0.000 description 1
- 101000730838 Homo sapiens ATP-dependent 6-phosphofructokinase, muscle type Proteins 0.000 description 1
- 101000580577 Homo sapiens ATP-dependent DNA helicase Q4 Proteins 0.000 description 1
- 101000598552 Homo sapiens Acetyl-CoA acetyltransferase, mitochondrial Proteins 0.000 description 1
- 101000963424 Homo sapiens Acetyl-CoA carboxylase 1 Proteins 0.000 description 1
- 101000726895 Homo sapiens Acetylcholine receptor subunit alpha Proteins 0.000 description 1
- 101000678746 Homo sapiens Acetylcholine receptor subunit beta Proteins 0.000 description 1
- 101000965233 Homo sapiens Acetylcholine receptor subunit epsilon Proteins 0.000 description 1
- 101000770471 Homo sapiens Acetylcholinesterase collagenic tail peptide Proteins 0.000 description 1
- 101000936718 Homo sapiens Acetylserotonin O-methyltransferase Proteins 0.000 description 1
- 101000975753 Homo sapiens Acid ceramidase Proteins 0.000 description 1
- 101000959247 Homo sapiens Actin, alpha cardiac muscle 1 Proteins 0.000 description 1
- 101000834207 Homo sapiens Actin, alpha skeletal muscle Proteins 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 101000594506 Homo sapiens Acyl-coenzyme A diphosphatase NUDT19 Proteins 0.000 description 1
- 101001000351 Homo sapiens Adenine DNA glycosylase Proteins 0.000 description 1
- 101000929495 Homo sapiens Adenosine deaminase Proteins 0.000 description 1
- 101000716952 Homo sapiens Adenosylhomocysteinase Proteins 0.000 description 1
- 101001057251 Homo sapiens Adenylate kinase isoenzyme 1 Proteins 0.000 description 1
- 101000610212 Homo sapiens Adenylyl-sulfate kinase Proteins 0.000 description 1
- 101000678419 Homo sapiens Adrenocorticotropic hormone receptor Proteins 0.000 description 1
- 101000693913 Homo sapiens Albumin Proteins 0.000 description 1
- 101000717967 Homo sapiens Aldehyde dehydrogenase family 3 member A2 Proteins 0.000 description 1
- 101000574445 Homo sapiens Alkaline phosphatase, tissue-nonspecific isozyme Proteins 0.000 description 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 1
- 101000951392 Homo sapiens Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Proteins 0.000 description 1
- 101000678195 Homo sapiens Alpha-1-acid glycoprotein 1 Proteins 0.000 description 1
- 101000783712 Homo sapiens Alpha-2-antiplasmin Proteins 0.000 description 1
- 101001019502 Homo sapiens Alpha-L-iduronidase Proteins 0.000 description 1
- 101000588435 Homo sapiens Alpha-N-acetylgalactosaminidase Proteins 0.000 description 1
- 101000797282 Homo sapiens Alpha-actinin-4 Proteins 0.000 description 1
- 101000891982 Homo sapiens Alpha-crystallin B chain Proteins 0.000 description 1
- 101000882335 Homo sapiens Alpha-enolase Proteins 0.000 description 1
- 101000615953 Homo sapiens Alpha-mannosidase 2 Proteins 0.000 description 1
- 101000703500 Homo sapiens Alpha-sarcoglycan Proteins 0.000 description 1
- 101000776160 Homo sapiens Alsin Proteins 0.000 description 1
- 101000797795 Homo sapiens Alstrom syndrome protein 1 Proteins 0.000 description 1
- 101000959114 Homo sapiens Amelogenin, X isoform Proteins 0.000 description 1
- 101000694718 Homo sapiens Amine oxidase [flavin-containing] A Proteins 0.000 description 1
- 101000768078 Homo sapiens Amine oxidase [flavin-containing] B Proteins 0.000 description 1
- 101000887804 Homo sapiens Aminomethyltransferase, mitochondrial Proteins 0.000 description 1
- 101001075525 Homo sapiens Ammonium transporter Rh type A Proteins 0.000 description 1
- 101000780116 Homo sapiens Ankyrin repeat domain-containing protein 26 Proteins 0.000 description 1
- 101000796140 Homo sapiens Ankyrin-1 Proteins 0.000 description 1
- 101000928344 Homo sapiens Ankyrin-2 Proteins 0.000 description 1
- 101000693801 Homo sapiens Anti-Muellerian hormone type-2 receptor Proteins 0.000 description 1
- 101000757319 Homo sapiens Antithrombin-III Proteins 0.000 description 1
- 101000733802 Homo sapiens Apolipoprotein A-I Proteins 0.000 description 1
- 101000793406 Homo sapiens Apolipoprotein A-II Proteins 0.000 description 1
- 101000806793 Homo sapiens Apolipoprotein A-IV Proteins 0.000 description 1
- 101000889953 Homo sapiens Apolipoprotein B-100 Proteins 0.000 description 1
- 101000771674 Homo sapiens Apolipoprotein E Proteins 0.000 description 1
- 101000752037 Homo sapiens Arginase-1 Proteins 0.000 description 1
- 101000784014 Homo sapiens Argininosuccinate synthase Proteins 0.000 description 1
- 101000919395 Homo sapiens Aromatase Proteins 0.000 description 1
- 101000690533 Homo sapiens Aryl hydrocarbon receptor repressor Proteins 0.000 description 1
- 101000833576 Homo sapiens Aryl-hydrocarbon-interacting protein-like 1 Proteins 0.000 description 1
- 101000884399 Homo sapiens Arylamine N-acetyltransferase 2 Proteins 0.000 description 1
- 101000901140 Homo sapiens Arylsulfatase A Proteins 0.000 description 1
- 101000923070 Homo sapiens Arylsulfatase B Proteins 0.000 description 1
- 101000975827 Homo sapiens Arylsulfatase L Proteins 0.000 description 1
- 101000975992 Homo sapiens Asparagine synthetase [glutamine-hydrolyzing] Proteins 0.000 description 1
- 101000797251 Homo sapiens Aspartoacylase Proteins 0.000 description 1
- 101000936983 Homo sapiens Atlastin-1 Proteins 0.000 description 1
- 101000874566 Homo sapiens Axin-1 Proteins 0.000 description 1
- 101000874569 Homo sapiens Axin-2 Proteins 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101000803266 Homo sapiens B-cell linker protein Proteins 0.000 description 1
- 101100272581 Homo sapiens BIRC7 gene Proteins 0.000 description 1
- 101000974815 Homo sapiens BTB/POZ domain-containing protein KCTD11 Proteins 0.000 description 1
- 101001068638 Homo sapiens Basic salivary proline-rich protein 3 Proteins 0.000 description 1
- 101000937508 Homo sapiens Beta-1,4-galactosyltransferase 7 Proteins 0.000 description 1
- 101000959437 Homo sapiens Beta-2 adrenergic receptor Proteins 0.000 description 1
- 101000793425 Homo sapiens Beta-2-glycoprotein 1 Proteins 0.000 description 1
- 101000937544 Homo sapiens Beta-2-microglobulin Proteins 0.000 description 1
- 101000919139 Homo sapiens Beta-crystallin A3 Proteins 0.000 description 1
- 101000919250 Homo sapiens Beta-crystallin B2 Proteins 0.000 description 1
- 101000933465 Homo sapiens Beta-glucuronidase Proteins 0.000 description 1
- 101001045440 Homo sapiens Beta-hexosaminidase subunit alpha Proteins 0.000 description 1
- 101001045433 Homo sapiens Beta-hexosaminidase subunit beta Proteins 0.000 description 1
- 101001016707 Homo sapiens Beta-mannosidase Proteins 0.000 description 1
- 101000703495 Homo sapiens Beta-sarcoglycan Proteins 0.000 description 1
- 101001126865 Homo sapiens Biglycan Proteins 0.000 description 1
- 101000871771 Homo sapiens Biotin-[acetyl-CoA-carboxylase] ligase Proteins 0.000 description 1
- 101000984541 Homo sapiens Bleomycin hydrolase Proteins 0.000 description 1
- 101000803270 Homo sapiens Bloom syndrome protein Proteins 0.000 description 1
- 101000777599 Homo sapiens C-C chemokine receptor type 2 Proteins 0.000 description 1
- 101000946926 Homo sapiens C-C chemokine receptor type 5 Proteins 0.000 description 1
- 101000978381 Homo sapiens C-C motif chemokine 14 Proteins 0.000 description 1
- 101000978375 Homo sapiens C-C motif chemokine 16 Proteins 0.000 description 1
- 101000978362 Homo sapiens C-C motif chemokine 17 Proteins 0.000 description 1
- 101000978371 Homo sapiens C-C motif chemokine 18 Proteins 0.000 description 1
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 1
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 1
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 description 1
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 1
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 1
- 101000947193 Homo sapiens C-X-C motif chemokine 3 Proteins 0.000 description 1
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 1
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 1
- 101000767052 Homo sapiens CAP-Gly domain-containing linker protein 1 Proteins 0.000 description 1
- 101000914211 Homo sapiens CASP8 and FADD-like apoptosis regulator Proteins 0.000 description 1
- 101000942590 Homo sapiens CCR4-NOT transcription complex subunit 9 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000868215 Homo sapiens CD40 ligand Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 1
- 101000896987 Homo sapiens CREB-binding protein Proteins 0.000 description 1
- 101000580357 Homo sapiens Calcipressin-1 Proteins 0.000 description 1
- 101000741445 Homo sapiens Calcitonin Proteins 0.000 description 1
- 101000932890 Homo sapiens Calcitonin gene-related peptide 1 Proteins 0.000 description 1
- 101000741435 Homo sapiens Calcitonin receptor Proteins 0.000 description 1
- 101000935132 Homo sapiens Calcium-binding tyrosine phosphorylation-regulated protein Proteins 0.000 description 1
- 101000867715 Homo sapiens Calpain-3 Proteins 0.000 description 1
- 101000793651 Homo sapiens Calreticulin Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000855412 Homo sapiens Carbamoyl-phosphate synthase [ammonia], mitochondrial Proteins 0.000 description 1
- 101000882998 Homo sapiens Carbohydrate sulfotransferase 6 Proteins 0.000 description 1
- 101000760567 Homo sapiens Carbonic anhydrase 4 Proteins 0.000 description 1
- 101000946518 Homo sapiens Carboxypeptidase B2 Proteins 0.000 description 1
- 101000909313 Homo sapiens Carnitine O-palmitoyltransferase 2, mitochondrial Proteins 0.000 description 1
- 101000916173 Homo sapiens Catenin beta-1 Proteins 0.000 description 1
- 101000898449 Homo sapiens Cathepsin B Proteins 0.000 description 1
- 101000761509 Homo sapiens Cathepsin K Proteins 0.000 description 1
- 101001028831 Homo sapiens Cation-independent mannose-6-phosphate receptor Proteins 0.000 description 1
- 101000869042 Homo sapiens Caveolin-3 Proteins 0.000 description 1
- 101000946837 Homo sapiens Cell division cycle protein 27 homolog Proteins 0.000 description 1
- 101000934310 Homo sapiens Cellular communication network factor 6 Proteins 0.000 description 1
- 101000737793 Homo sapiens Cerebellar degeneration-related antigen 1 Proteins 0.000 description 1
- 101000851684 Homo sapiens Chimeric ERCC6-PGBD3 protein Proteins 0.000 description 1
- 101000906651 Homo sapiens Chloride channel protein 1 Proteins 0.000 description 1
- 101000906654 Homo sapiens Chloride channel protein ClC-Kb Proteins 0.000 description 1
- 101000880514 Homo sapiens Cholesteryl ester transfer protein Proteins 0.000 description 1
- 101000943274 Homo sapiens Cholinesterase Proteins 0.000 description 1
- 101000916489 Homo sapiens Chondroitin sulfate proteoglycan 4 Proteins 0.000 description 1
- 101000776619 Homo sapiens Choriogonadotropin subunit beta 3 Proteins 0.000 description 1
- 101000895818 Homo sapiens Chorionic somatomammotropin hormone 1 Proteins 0.000 description 1
- 101000992973 Homo sapiens Clarin-1 Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101000918350 Homo sapiens Coagulation factor XIII B chain Proteins 0.000 description 1
- 101000748988 Homo sapiens Cochlin Proteins 0.000 description 1
- 101000980888 Homo sapiens Codanin-1 Proteins 0.000 description 1
- 101000737052 Homo sapiens Coiled-coil domain-containing protein 54 Proteins 0.000 description 1
- 101000993285 Homo sapiens Collagen alpha-1(III) chain Proteins 0.000 description 1
- 101000941708 Homo sapiens Collagen alpha-1(V) chain Proteins 0.000 description 1
- 101000909498 Homo sapiens Collagen alpha-1(VII) chain Proteins 0.000 description 1
- 101000710623 Homo sapiens Collagen alpha-1(XI) chain Proteins 0.000 description 1
- 101000860679 Homo sapiens Collagen alpha-1(XVII) chain Proteins 0.000 description 1
- 101000920176 Homo sapiens Collagen alpha-1(XXIII) chain Proteins 0.000 description 1
- 101000919645 Homo sapiens Collagen alpha-2(IX) chain Proteins 0.000 description 1
- 101000941594 Homo sapiens Collagen alpha-2(V) chain Proteins 0.000 description 1
- 101000941585 Homo sapiens Collagen alpha-2(VI) chain Proteins 0.000 description 1
- 101000710873 Homo sapiens Collagen alpha-3(IV) chain Proteins 0.000 description 1
- 101000919644 Homo sapiens Collagen alpha-3(IX) chain Proteins 0.000 description 1
- 101000909506 Homo sapiens Collagen alpha-3(VI) chain Proteins 0.000 description 1
- 101000710870 Homo sapiens Collagen alpha-4(IV) chain Proteins 0.000 description 1
- 101000710886 Homo sapiens Collagen alpha-5(IV) chain Proteins 0.000 description 1
- 101000710885 Homo sapiens Collagen alpha-6(IV) chain Proteins 0.000 description 1
- 101000933636 Homo sapiens Complement C1q subcomponent subunit C Proteins 0.000 description 1
- 101000933665 Homo sapiens Complement component C1q receptor Proteins 0.000 description 1
- 101000919370 Homo sapiens Cone-rod homeobox protein Proteins 0.000 description 1
- 101000876012 Homo sapiens Conserved oligomeric Golgi complex subunit 4 Proteins 0.000 description 1
- 101000748957 Homo sapiens Conserved oligomeric Golgi complex subunit 6 Proteins 0.000 description 1
- 101000936280 Homo sapiens Copper-transporting ATPase 2 Proteins 0.000 description 1
- 101000895481 Homo sapiens Corticoliberin Proteins 0.000 description 1
- 101000868967 Homo sapiens Corticosteroid-binding globulin Proteins 0.000 description 1
- 101000921095 Homo sapiens Corticotropin-releasing factor-binding protein Proteins 0.000 description 1
- 101000922080 Homo sapiens Cubilin Proteins 0.000 description 1
- 101000771071 Homo sapiens Cyclic nucleotide-gated cation channel alpha-3 Proteins 0.000 description 1
- 101000969676 Homo sapiens Cyclic pyranopterin monophosphate synthase Proteins 0.000 description 1
- 101000738403 Homo sapiens Cyclin-dependent kinase 11A Proteins 0.000 description 1
- 101000738400 Homo sapiens Cyclin-dependent kinase 11B Proteins 0.000 description 1
- 101000737584 Homo sapiens Cystathionine gamma-lyase Proteins 0.000 description 1
- 101000912191 Homo sapiens Cystatin-B Proteins 0.000 description 1
- 101000912205 Homo sapiens Cystatin-C Proteins 0.000 description 1
- 101000922034 Homo sapiens Cystinosin Proteins 0.000 description 1
- 101000875170 Homo sapiens Cytochrome P450 2A6 Proteins 0.000 description 1
- 101000896586 Homo sapiens Cytochrome P450 2D6 Proteins 0.000 description 1
- 101000858267 Homo sapiens Cytochrome b Proteins 0.000 description 1
- 101000856723 Homo sapiens Cytochrome b-245 light chain Proteins 0.000 description 1
- 101000607486 Homo sapiens Cytochrome b-c1 complex subunit 1, mitochondrial Proteins 0.000 description 1
- 101000922386 Homo sapiens Cytochrome b5 Proteins 0.000 description 1
- 101000919849 Homo sapiens Cytochrome c oxidase subunit 1 Proteins 0.000 description 1
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000931901 Homo sapiens D(2) dopamine receptor Proteins 0.000 description 1
- 101000865206 Homo sapiens D(4) dopamine receptor Proteins 0.000 description 1
- 101000739890 Homo sapiens D-3-phosphoglycerate dehydrogenase Proteins 0.000 description 1
- 101001041466 Homo sapiens DNA damage-binding protein 2 Proteins 0.000 description 1
- 101000920783 Homo sapiens DNA excision repair protein ERCC-6 Proteins 0.000 description 1
- 101000863770 Homo sapiens DNA ligase 1 Proteins 0.000 description 1
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 1
- 101001027762 Homo sapiens DNA mismatch repair protein Msh3 Proteins 0.000 description 1
- 101000968658 Homo sapiens DNA mismatch repair protein Msh6 Proteins 0.000 description 1
- 101001094607 Homo sapiens DNA polymerase eta Proteins 0.000 description 1
- 101000865085 Homo sapiens DNA polymerase theta Proteins 0.000 description 1
- 101000712511 Homo sapiens DNA repair and recombination protein RAD54-like Proteins 0.000 description 1
- 101001132263 Homo sapiens DNA repair and recombination protein RAD54B Proteins 0.000 description 1
- 101000830681 Homo sapiens DNA topoisomerase 1 Proteins 0.000 description 1
- 101001075432 Homo sapiens DNA-binding protein RFX5 Proteins 0.000 description 1
- 101001075464 Homo sapiens DNA-binding protein RFXANK Proteins 0.000 description 1
- 101000619536 Homo sapiens DNA-dependent protein kinase catalytic subunit Proteins 0.000 description 1
- 101000957914 Homo sapiens Death domain-containing protein CRADD Proteins 0.000 description 1
- 101000755868 Homo sapiens Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000928513 Homo sapiens Delta-like protein 3 Proteins 0.000 description 1
- 101000616408 Homo sapiens Delta-sarcoglycan Proteins 0.000 description 1
- 101000865404 Homo sapiens Dentin sialophosphoprotein Proteins 0.000 description 1
- 101000863721 Homo sapiens Deoxyribonuclease-1 Proteins 0.000 description 1
- 101000816698 Homo sapiens Dermatan-sulfate epimerase Proteins 0.000 description 1
- 101000924316 Homo sapiens Desmoglein-1 Proteins 0.000 description 1
- 101000908058 Homo sapiens Dihydrolipoyl dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101001122360 Homo sapiens Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial Proteins 0.000 description 1
- 101000902365 Homo sapiens Dihydropteridine reductase Proteins 0.000 description 1
- 101000930818 Homo sapiens Dihydropyrimidinase Proteins 0.000 description 1
- 101000902632 Homo sapiens Dihydropyrimidine dehydrogenase [NADP(+)] Proteins 0.000 description 1
- 101000932213 Homo sapiens Dipeptidase 1 Proteins 0.000 description 1
- 101000793922 Homo sapiens Dipeptidyl peptidase 1 Proteins 0.000 description 1
- 101000929429 Homo sapiens Discoidin domain-containing receptor 2 Proteins 0.000 description 1
- 101000902072 Homo sapiens Disrupted in schizophrenia 1 protein Proteins 0.000 description 1
- 101000845887 Homo sapiens DnaJ homolog subfamily C member 2 Proteins 0.000 description 1
- 101000845893 Homo sapiens DnaJ homolog subfamily C member 5 Proteins 0.000 description 1
- 101000884921 Homo sapiens Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit DAD1 Proteins 0.000 description 1
- 101000865739 Homo sapiens Dual serine/threonine and tyrosine protein kinase Proteins 0.000 description 1
- 101000722054 Homo sapiens Dynamin-like 120 kDa protein, mitochondrial Proteins 0.000 description 1
- 101001016184 Homo sapiens Dysferlin Proteins 0.000 description 1
- 101000804521 Homo sapiens Dystrophia myotonica WD repeat-containing protein Proteins 0.000 description 1
- 101001053946 Homo sapiens Dystrophin Proteins 0.000 description 1
- 101001049692 Homo sapiens E3 SUMO-protein ligase EGR2 Proteins 0.000 description 1
- 101000680670 Homo sapiens E3 ubiquitin-protein ligase Midline-1 Proteins 0.000 description 1
- 101000610400 Homo sapiens E3 ubiquitin-protein ligase TRIM37 Proteins 0.000 description 1
- 101000830203 Homo sapiens E3 ubiquitin-protein ligase TRIM69 Proteins 0.000 description 1
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 description 1
- 101001065272 Homo sapiens EGF-containing fibulin-like extracellular matrix protein 1 Proteins 0.000 description 1
- 101000813729 Homo sapiens ETS translocation variant 1 Proteins 0.000 description 1
- 101001057941 Homo sapiens Echinoderm microtubule-associated protein-like 1 Proteins 0.000 description 1
- 101001010541 Homo sapiens Electron transfer flavoprotein subunit alpha, mitochondrial Proteins 0.000 description 1
- 101001057122 Homo sapiens Electron transfer flavoprotein subunit beta Proteins 0.000 description 1
- 101000920874 Homo sapiens Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial Proteins 0.000 description 1
- 101000881890 Homo sapiens Ellis-van Creveld syndrome protein Proteins 0.000 description 1
- 101000813117 Homo sapiens Elongator complex protein 1 Proteins 0.000 description 1
- 101000881679 Homo sapiens Endoglin Proteins 0.000 description 1
- 101000907904 Homo sapiens Endoribonuclease Dicer Proteins 0.000 description 1
- 101000967299 Homo sapiens Endothelin receptor type B Proteins 0.000 description 1
- 101000841213 Homo sapiens Endothelin-3 Proteins 0.000 description 1
- 101000841259 Homo sapiens Endothelin-converting enzyme 1 Proteins 0.000 description 1
- 101001012451 Homo sapiens Enteropeptidase Proteins 0.000 description 1
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 1
- 101000920667 Homo sapiens Epithelial cell adhesion molecule Proteins 0.000 description 1
- 101001077852 Homo sapiens Epoxide hydrolase 1 Proteins 0.000 description 1
- 101000616437 Homo sapiens Epsilon-sarcoglycan Proteins 0.000 description 1
- 101000882584 Homo sapiens Estrogen receptor Proteins 0.000 description 1
- 101000926508 Homo sapiens Eukaryotic translation initiation factor 2-alpha kinase 3 Proteins 0.000 description 1
- 101000896557 Homo sapiens Eukaryotic translation initiation factor 3 subunit B Proteins 0.000 description 1
- 101000918275 Homo sapiens Exostosin-2 Proteins 0.000 description 1
- 101000836222 Homo sapiens Extracellular superoxide dismutase [Cu-Zn] Proteins 0.000 description 1
- 101000938435 Homo sapiens Eyes absent homolog 1 Proteins 0.000 description 1
- 101001060244 Homo sapiens F-box/WD repeat-containing protein 4 Proteins 0.000 description 1
- 101000911074 Homo sapiens FAS-associated death domain protein Proteins 0.000 description 1
- 101000914673 Homo sapiens Fanconi anemia group A protein Proteins 0.000 description 1
- 101000914679 Homo sapiens Fanconi anemia group B protein Proteins 0.000 description 1
- 101001065295 Homo sapiens Fas-binding factor 1 Proteins 0.000 description 1
- 101000911337 Homo sapiens Fatty acid-binding protein, intestinal Proteins 0.000 description 1
- 101001002987 Homo sapiens Ferritin heavy chain Proteins 0.000 description 1
- 101001031604 Homo sapiens Ferritin heavy polypeptide-like 17 Proteins 0.000 description 1
- 101000818390 Homo sapiens Ferritin light chain Proteins 0.000 description 1
- 101000843611 Homo sapiens Ferrochelatase, mitochondrial Proteins 0.000 description 1
- 101000846890 Homo sapiens Fibrillin-2 Proteins 0.000 description 1
- 101000846244 Homo sapiens Fibrinogen alpha chain Proteins 0.000 description 1
- 101000917163 Homo sapiens Fibrinogen beta chain Proteins 0.000 description 1
- 101001052043 Homo sapiens Fibrinogen gamma chain Proteins 0.000 description 1
- 101000878123 Homo sapiens Fibroblast growth factor 16 Proteins 0.000 description 1
- 101001051973 Homo sapiens Fibroblast growth factor 23 Proteins 0.000 description 1
- 101001060267 Homo sapiens Fibroblast growth factor 5 Proteins 0.000 description 1
- 101000827746 Homo sapiens Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 101000730595 Homo sapiens Fibrocystin Proteins 0.000 description 1
- 101000913551 Homo sapiens Filamin-B Proteins 0.000 description 1
- 101000862396 Homo sapiens Follicle-stimulating hormone receptor Proteins 0.000 description 1
- 101001060703 Homo sapiens Folliculin Proteins 0.000 description 1
- 101000893054 Homo sapiens Follitropin subunit beta Proteins 0.000 description 1
- 101000818310 Homo sapiens Forkhead box protein C1 Proteins 0.000 description 1
- 101001029304 Homo sapiens Forkhead box protein E1 Proteins 0.000 description 1
- 101000907576 Homo sapiens Forkhead box protein N1 Proteins 0.000 description 1
- 101000877683 Homo sapiens Forkhead box protein O4 Proteins 0.000 description 1
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 description 1
- 101000932499 Homo sapiens Fragile X mental retardation 1 neighbor protein Proteins 0.000 description 1
- 101000861386 Homo sapiens Frataxin, mitochondrial Proteins 0.000 description 1
- 101000885581 Homo sapiens Frizzled-4 Proteins 0.000 description 1
- 101001028852 Homo sapiens Fructose-1,6-bisphosphatase 1 Proteins 0.000 description 1
- 101000823442 Homo sapiens Fructose-2,6-bisphosphatase Proteins 0.000 description 1
- 101000755933 Homo sapiens Fructose-bisphosphate aldolase B Proteins 0.000 description 1
- 101000918487 Homo sapiens Fumarylacetoacetase Proteins 0.000 description 1
- 101000887425 Homo sapiens G-protein coupled receptor 143 Proteins 0.000 description 1
- 101000868643 Homo sapiens G2/mitotic-specific cyclin-B1 Proteins 0.000 description 1
- 101000862581 Homo sapiens GTP cyclohydrolase 1 Proteins 0.000 description 1
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 1
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 1
- 101000860395 Homo sapiens Galactocerebrosidase Proteins 0.000 description 1
- 101001024874 Homo sapiens Galactokinase Proteins 0.000 description 1
- 101001021379 Homo sapiens Galactose-1-phosphate uridylyltransferase Proteins 0.000 description 1
- 101000885616 Homo sapiens Galactoside alpha-(1,2)-fucosyltransferase 1 Proteins 0.000 description 1
- 101000893710 Homo sapiens Galactoside alpha-(1,2)-fucosyltransferase 2 Proteins 0.000 description 1
- 101000893321 Homo sapiens Gamma-aminobutyric acid receptor subunit alpha-3 Proteins 0.000 description 1
- 101000745534 Homo sapiens Gamma-crystallin A Proteins 0.000 description 1
- 101000859938 Homo sapiens Gamma-crystallin C Proteins 0.000 description 1
- 101000859943 Homo sapiens Gamma-crystallin D Proteins 0.000 description 1
- 101000685969 Homo sapiens Ganglioside GM2 activator Proteins 0.000 description 1
- 101000833509 Homo sapiens Ganglioside-induced differentiation-associated protein 1 Proteins 0.000 description 1
- 101000894966 Homo sapiens Gap junction alpha-1 protein Proteins 0.000 description 1
- 101000726577 Homo sapiens Gap junction alpha-3 protein Proteins 0.000 description 1
- 101000858024 Homo sapiens Gap junction alpha-8 protein Proteins 0.000 description 1
- 101000954104 Homo sapiens Gap junction beta-1 protein Proteins 0.000 description 1
- 101000954092 Homo sapiens Gap junction beta-2 protein Proteins 0.000 description 1
- 101000889125 Homo sapiens Gap junction beta-6 protein Proteins 0.000 description 1
- 101001026269 Homo sapiens Gasdermin-E Proteins 0.000 description 1
- 101001002317 Homo sapiens Gastrin Proteins 0.000 description 1
- 101001010479 Homo sapiens Gastrin-releasing peptide receptor Proteins 0.000 description 1
- 101001059150 Homo sapiens Gelsolin Proteins 0.000 description 1
- 101000920748 Homo sapiens General transcription and DNA repair factor IIH helicase subunit XPB Proteins 0.000 description 1
- 101000655402 Homo sapiens General transcription factor IIH subunit 5 Proteins 0.000 description 1
- 101001025761 Homo sapiens Gigaxonin Proteins 0.000 description 1
- 101000857303 Homo sapiens Glomulin Proteins 0.000 description 1
- 101001040075 Homo sapiens Glucagon receptor Proteins 0.000 description 1
- 101000926939 Homo sapiens Glucocorticoid receptor Proteins 0.000 description 1
- 101000930910 Homo sapiens Glucose-6-phosphatase catalytic subunit 1 Proteins 0.000 description 1
- 101001040875 Homo sapiens Glucosidase 2 subunit beta Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101000870042 Homo sapiens Glutamate dehydrogenase 1, mitochondrial Proteins 0.000 description 1
- 101001058943 Homo sapiens Glutaryl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000997558 Homo sapiens Glutathione hydrolase 1 proenzyme Proteins 0.000 description 1
- 101001014936 Homo sapiens Glutathione peroxidase 1 Proteins 0.000 description 1
- 101001071608 Homo sapiens Glutathione reductase, mitochondrial Proteins 0.000 description 1
- 101001069973 Homo sapiens Glutathione synthetase Proteins 0.000 description 1
- 101001009678 Homo sapiens Glycerol-3-phosphate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000856845 Homo sapiens Glycine cleavage system H protein, mitochondrial Proteins 0.000 description 1
- 101000998096 Homo sapiens Glycine dehydrogenase (decarboxylating), mitochondrial Proteins 0.000 description 1
- 101000996297 Homo sapiens Glycine receptor subunit alpha-1 Proteins 0.000 description 1
- 101001072736 Homo sapiens Glycine-tRNA ligase Proteins 0.000 description 1
- 101001036117 Homo sapiens Glycogen [starch] synthase, liver Proteins 0.000 description 1
- 101001036130 Homo sapiens Glycogen [starch] synthase, muscle Proteins 0.000 description 1
- 101000700616 Homo sapiens Glycogen phosphorylase, liver form Proteins 0.000 description 1
- 101000700475 Homo sapiens Glycogen phosphorylase, muscle form Proteins 0.000 description 1
- 101001074244 Homo sapiens Glycophorin-A Proteins 0.000 description 1
- 101000905336 Homo sapiens Glycophorin-C Proteins 0.000 description 1
- 101001038874 Homo sapiens Glycoprotein hormones alpha chain Proteins 0.000 description 1
- 101001010442 Homo sapiens Glyoxylate reductase/hydroxypyruvate reductase Proteins 0.000 description 1
- 101000996727 Homo sapiens Gonadotropin-releasing hormone receptor Proteins 0.000 description 1
- 101000746364 Homo sapiens Granulocyte colony-stimulating factor receptor Proteins 0.000 description 1
- 101000916625 Homo sapiens Granulocyte-macrophage colony-stimulating factor receptor subunit alpha Proteins 0.000 description 1
- 101000642577 Homo sapiens Growth hormone variant Proteins 0.000 description 1
- 101000997535 Homo sapiens Growth hormone-releasing hormone receptor Proteins 0.000 description 1
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 1
- 101001023988 Homo sapiens Growth/differentiation factor 5 Proteins 0.000 description 1
- 101000893897 Homo sapiens Guanidinoacetate N-methyltransferase Proteins 0.000 description 1
- 101001014590 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Proteins 0.000 description 1
- 101001014594 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms short Proteins 0.000 description 1
- 101000888178 Homo sapiens Guanine nucleotide-binding protein G(t) subunit alpha-1 Proteins 0.000 description 1
- 101001072407 Homo sapiens Guanine nucleotide-binding protein subunit alpha-11 Proteins 0.000 description 1
- 101001072398 Homo sapiens Guanine nucleotide-binding protein subunit alpha-12 Proteins 0.000 description 1
- 101000844866 Homo sapiens H/ACA ribonucleoprotein complex subunit DKC1 Proteins 0.000 description 1
- 101000986084 Homo sapiens HLA class I histocompatibility antigen, C alpha chain Proteins 0.000 description 1
- 101000930800 Homo sapiens HLA class II histocompatibility antigen, DQ beta 1 chain Proteins 0.000 description 1
- 101001035846 Homo sapiens HMG box-containing protein 1 Proteins 0.000 description 1
- 101000795643 Homo sapiens Hamartin Proteins 0.000 description 1
- 101001016879 Homo sapiens Heat shock factor protein 4 Proteins 0.000 description 1
- 101000763352 Homo sapiens Heat shock protein 75 kDa, mitochondrial Proteins 0.000 description 1
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 1
- 101001079623 Homo sapiens Heme oxygenase 1 Proteins 0.000 description 1
- 101000899111 Homo sapiens Hemoglobin subunit beta Proteins 0.000 description 1
- 101001031977 Homo sapiens Hemoglobin subunit gamma-1 Proteins 0.000 description 1
- 101001031961 Homo sapiens Hemoglobin subunit gamma-2 Proteins 0.000 description 1
- 101000843063 Homo sapiens Hemoglobin subunit theta-1 Proteins 0.000 description 1
- 101000941289 Homo sapiens Hepatic triacylglycerol lipase Proteins 0.000 description 1
- 101000972946 Homo sapiens Hepatocyte growth factor receptor Proteins 0.000 description 1
- 101001045751 Homo sapiens Hepatocyte nuclear factor 1-alpha Proteins 0.000 description 1
- 101001045740 Homo sapiens Hepatocyte nuclear factor 4-alpha Proteins 0.000 description 1
- 101000838926 Homo sapiens Hermansky-Pudlak syndrome 1 protein Proteins 0.000 description 1
- 101000878594 Homo sapiens High affinity immunoglobulin epsilon receptor subunit beta Proteins 0.000 description 1
- 101000596894 Homo sapiens High affinity nerve growth factor receptor Proteins 0.000 description 1
- 101000898505 Homo sapiens Histatin-3 Proteins 0.000 description 1
- 101001044626 Homo sapiens Histidine ammonia-lyase Proteins 0.000 description 1
- 101000802660 Homo sapiens Histo-blood group ABO system transferase Proteins 0.000 description 1
- 101000882390 Homo sapiens Histone acetyltransferase p300 Proteins 0.000 description 1
- 101000899259 Homo sapiens Histone deacetylase 4 Proteins 0.000 description 1
- 101001033728 Homo sapiens Histone-lysine N-methyltransferase MECOM Proteins 0.000 description 1
- 101000634050 Homo sapiens Histone-lysine N-methyltransferase, H3 lysine-36 specific Proteins 0.000 description 1
- 101000946589 Homo sapiens Holocytochrome c-type synthase Proteins 0.000 description 1
- 101001067288 Homo sapiens Homeobox expressed in ES cells 1 Proteins 0.000 description 1
- 101000901646 Homo sapiens Homeobox protein DLX-3 Proteins 0.000 description 1
- 101001048970 Homo sapiens Homeobox protein EMX2 Proteins 0.000 description 1
- 101001083156 Homo sapiens Homeobox protein Hox-A1 Proteins 0.000 description 1
- 101001037168 Homo sapiens Homeobox protein Hox-D13 Proteins 0.000 description 1
- 101000985653 Homo sapiens Homeobox protein MSX-1 Proteins 0.000 description 1
- 101000967222 Homo sapiens Homeobox protein MSX-2 Proteins 0.000 description 1
- 101000632178 Homo sapiens Homeobox protein Nkx-2.1 Proteins 0.000 description 1
- 101000632197 Homo sapiens Homeobox protein Nkx-2.5 Proteins 0.000 description 1
- 101000578249 Homo sapiens Homeobox protein Nkx-3.1 Proteins 0.000 description 1
- 101000596925 Homo sapiens Homeobox protein TGIF1 Proteins 0.000 description 1
- 101000779608 Homo sapiens Homeobox protein aristaless-like 4 Proteins 0.000 description 1
- 101000706471 Homo sapiens Homeobox protein prophet of Pit-1 Proteins 0.000 description 1
- 101000872475 Homo sapiens Homogentisate 1,2-dioxygenase Proteins 0.000 description 1
- 101000867099 Homo sapiens Humanin Proteins 0.000 description 1
- 101000962530 Homo sapiens Hyaluronidase-1 Proteins 0.000 description 1
- 101001040270 Homo sapiens Hydroxyacylglutathione hydrolase, mitochondrial Proteins 0.000 description 1
- 101001047912 Homo sapiens Hydroxymethylglutaryl-CoA lyase, mitochondrial Proteins 0.000 description 1
- 101000988834 Homo sapiens Hypoxanthine-guanine phosphoribosyltransferase Proteins 0.000 description 1
- 101100125778 Homo sapiens IGHM gene Proteins 0.000 description 1
- 101001077647 Homo sapiens IQ motif and SEC7 domain-containing protein 2 Proteins 0.000 description 1
- 101000840540 Homo sapiens Iduronate 2-sulfatase Proteins 0.000 description 1
- 101000961156 Homo sapiens Immunoglobulin heavy constant gamma 1 Proteins 0.000 description 1
- 101000961146 Homo sapiens Immunoglobulin heavy constant gamma 2 Proteins 0.000 description 1
- 101000840257 Homo sapiens Immunoglobulin kappa constant Proteins 0.000 description 1
- 101001047811 Homo sapiens Inactive heparanase-2 Proteins 0.000 description 1
- 101000878213 Homo sapiens Inactive peptidyl-prolyl cis-trans isomerase FKBP6 Proteins 0.000 description 1
- 101000580021 Homo sapiens Inactive rhomboid protein 2 Proteins 0.000 description 1
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 1
- 101001077604 Homo sapiens Insulin receptor substrate 1 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101001050468 Homo sapiens Integral membrane protein 2B Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000994365 Homo sapiens Integrin alpha-6 Proteins 0.000 description 1
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 1
- 101001015006 Homo sapiens Integrin beta-4 Proteins 0.000 description 1
- 101000976697 Homo sapiens Inter-alpha-trypsin inhibitor heavy chain H1 Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101001001420 Homo sapiens Interferon gamma receptor 1 Proteins 0.000 description 1
- 101000852483 Homo sapiens Interleukin-1 receptor-associated kinase 1 Proteins 0.000 description 1
- 101000852255 Homo sapiens Interleukin-1 receptor-associated kinase-like 2 Proteins 0.000 description 1
- 101001033233 Homo sapiens Interleukin-10 Proteins 0.000 description 1
- 101001003142 Homo sapiens Interleukin-12 receptor subunit beta-1 Proteins 0.000 description 1
- 101001076430 Homo sapiens Interleukin-13 Proteins 0.000 description 1
- 101000853009 Homo sapiens Interleukin-24 Proteins 0.000 description 1
- 101001033279 Homo sapiens Interleukin-3 Proteins 0.000 description 1
- 101000998120 Homo sapiens Interleukin-3 receptor subunit alpha Proteins 0.000 description 1
- 101001043809 Homo sapiens Interleukin-7 receptor subunit alpha Proteins 0.000 description 1
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 1
- 101000998711 Homo sapiens Inversin Proteins 0.000 description 1
- 101000944277 Homo sapiens Inward rectifier potassium channel 2 Proteins 0.000 description 1
- 101001026582 Homo sapiens KAT8 regulatory NSL complex subunit 3 Proteins 0.000 description 1
- 101000605528 Homo sapiens Kallikrein-2 Proteins 0.000 description 1
- 101000975474 Homo sapiens Keratin, type I cytoskeletal 10 Proteins 0.000 description 1
- 101000975472 Homo sapiens Keratin, type I cytoskeletal 12 Proteins 0.000 description 1
- 101000614627 Homo sapiens Keratin, type I cytoskeletal 13 Proteins 0.000 description 1
- 101000614436 Homo sapiens Keratin, type I cytoskeletal 14 Proteins 0.000 description 1
- 101000614442 Homo sapiens Keratin, type I cytoskeletal 16 Proteins 0.000 description 1
- 101000998027 Homo sapiens Keratin, type I cytoskeletal 17 Proteins 0.000 description 1
- 101000998020 Homo sapiens Keratin, type I cytoskeletal 18 Proteins 0.000 description 1
- 101001050274 Homo sapiens Keratin, type I cytoskeletal 9 Proteins 0.000 description 1
- 101001007027 Homo sapiens Keratin, type II cuticular Hb1 Proteins 0.000 description 1
- 101001026977 Homo sapiens Keratin, type II cuticular Hb6 Proteins 0.000 description 1
- 101001046936 Homo sapiens Keratin, type II cytoskeletal 2 epidermal Proteins 0.000 description 1
- 101001056469 Homo sapiens Keratin, type II cytoskeletal 3 Proteins 0.000 description 1
- 101001056466 Homo sapiens Keratin, type II cytoskeletal 4 Proteins 0.000 description 1
- 101001056473 Homo sapiens Keratin, type II cytoskeletal 5 Proteins 0.000 description 1
- 101001056452 Homo sapiens Keratin, type II cytoskeletal 6A Proteins 0.000 description 1
- 101001056445 Homo sapiens Keratin, type II cytoskeletal 6B Proteins 0.000 description 1
- 101000971769 Homo sapiens Keratocan Proteins 0.000 description 1
- 101001050606 Homo sapiens Ketohexokinase Proteins 0.000 description 1
- 101000614481 Homo sapiens Kidney-associated antigen 1 Proteins 0.000 description 1
- 101001027628 Homo sapiens Kinesin-like protein KIF21A Proteins 0.000 description 1
- 101001091610 Homo sapiens Krev interaction trapped protein 1 Proteins 0.000 description 1
- 101001021858 Homo sapiens Kynureninase Proteins 0.000 description 1
- 101001090713 Homo sapiens L-lactate dehydrogenase A chain Proteins 0.000 description 1
- 101001051207 Homo sapiens L-lactate dehydrogenase B chain Proteins 0.000 description 1
- 101001130171 Homo sapiens L-lactate dehydrogenase C chain Proteins 0.000 description 1
- 101000918657 Homo sapiens L-xylulose reductase Proteins 0.000 description 1
- 101001020452 Homo sapiens LIM/homeobox protein Lhx3 Proteins 0.000 description 1
- 101000876418 Homo sapiens Laforin Proteins 0.000 description 1
- 101000882389 Homo sapiens Laforin, isoform 9 Proteins 0.000 description 1
- 101000972491 Homo sapiens Laminin subunit alpha-2 Proteins 0.000 description 1
- 101001023271 Homo sapiens Laminin subunit gamma-2 Proteins 0.000 description 1
- 101001054649 Homo sapiens Latent-transforming growth factor beta-binding protein 2 Proteins 0.000 description 1
- 101001054646 Homo sapiens Latent-transforming growth factor beta-binding protein 3 Proteins 0.000 description 1
- 101001008411 Homo sapiens Lebercilin Proteins 0.000 description 1
- 101000967918 Homo sapiens Left-right determination factor 2 Proteins 0.000 description 1
- 101000966742 Homo sapiens Leucine-rich PPR motif-containing protein, mitochondrial Proteins 0.000 description 1
- 101000620451 Homo sapiens Leucine-rich glioma-inactivated protein 1 Proteins 0.000 description 1
- 101000619640 Homo sapiens Leucine-rich repeats and immunoglobulin-like domains protein 1 Proteins 0.000 description 1
- 101000978210 Homo sapiens Leukotriene C4 synthase Proteins 0.000 description 1
- 101000966257 Homo sapiens Limb region 1 protein homolog Proteins 0.000 description 1
- 101001003687 Homo sapiens Lipoma-preferred partner Proteins 0.000 description 1
- 101000841267 Homo sapiens Long chain 3-hydroxyacyl-CoA dehydrogenase Proteins 0.000 description 1
- 101000677545 Homo sapiens Long-chain specific acyl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000780202 Homo sapiens Long-chain-fatty-acid-CoA ligase 6 Proteins 0.000 description 1
- 101001137074 Homo sapiens Long-wave-sensitive opsin 1 Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000611240 Homo sapiens Low molecular weight phosphotyrosine protein phosphatase Proteins 0.000 description 1
- 101000804764 Homo sapiens Lymphotactin Proteins 0.000 description 1
- 101001088879 Homo sapiens Lysine-specific demethylase 5D Proteins 0.000 description 1
- 101000979046 Homo sapiens Lysosomal alpha-mannosidase Proteins 0.000 description 1
- 101001122938 Homo sapiens Lysosomal protective protein Proteins 0.000 description 1
- 101001018064 Homo sapiens Lysosomal-trafficking regulator Proteins 0.000 description 1
- 101001018100 Homo sapiens Lysozyme C Proteins 0.000 description 1
- 101000983747 Homo sapiens MHC class II transactivator Proteins 0.000 description 1
- 101001028659 Homo sapiens MORC family CW-type zinc finger protein 1 Proteins 0.000 description 1
- 101000578262 Homo sapiens Magnesium transporter NIPA1 Proteins 0.000 description 1
- 101000918777 Homo sapiens Malonyl-CoA decarboxylase, mitochondrial Proteins 0.000 description 1
- 101000739159 Homo sapiens Mammaglobin-A Proteins 0.000 description 1
- 101000739168 Homo sapiens Mammaglobin-B Proteins 0.000 description 1
- 101001056128 Homo sapiens Mannose-binding protein C Proteins 0.000 description 1
- 101000577105 Homo sapiens Mannosyl-oligosaccharide glucosidase Proteins 0.000 description 1
- 101000573510 Homo sapiens McKusick-Kaufman/Bardet-Biedl syndromes putative chaperonin Proteins 0.000 description 1
- 101001120868 Homo sapiens Meckel syndrome type 1 protein Proteins 0.000 description 1
- 101000955266 Homo sapiens Mediator of RNA polymerase II transcription subunit 28 Proteins 0.000 description 1
- 101000760730 Homo sapiens Medium-chain specific acyl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000598987 Homo sapiens Medium-wave-sensitive opsin 1 Proteins 0.000 description 1
- 101000978418 Homo sapiens Melanocortin receptor 4 Proteins 0.000 description 1
- 101001134060 Homo sapiens Melanocyte-stimulating hormone receptor Proteins 0.000 description 1
- 101001036688 Homo sapiens Melanoma-associated antigen B1 Proteins 0.000 description 1
- 101000583150 Homo sapiens Membrane-associated phosphatidylinositol transfer protein 3 Proteins 0.000 description 1
- 101000581514 Homo sapiens Membrane-bound transcription factor site-2 protease Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000616876 Homo sapiens Mesencephalic astrocyte-derived neurotrophic factor Proteins 0.000 description 1
- 101000576802 Homo sapiens Mesothelin Proteins 0.000 description 1
- 101000669513 Homo sapiens Metalloproteinase inhibitor 1 Proteins 0.000 description 1
- 101000645296 Homo sapiens Metalloproteinase inhibitor 2 Proteins 0.000 description 1
- 101001013648 Homo sapiens Methionine synthase Proteins 0.000 description 1
- 101001116314 Homo sapiens Methionine synthase reductase Proteins 0.000 description 1
- 101000581533 Homo sapiens Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial Proteins 0.000 description 1
- 101001056160 Homo sapiens Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial Proteins 0.000 description 1
- 101000587058 Homo sapiens Methylenetetrahydrofolate reductase Proteins 0.000 description 1
- 101000581289 Homo sapiens Microcephalin Proteins 0.000 description 1
- 101001011628 Homo sapiens Microphthalmia-associated transcription factor Proteins 0.000 description 1
- 101000891579 Homo sapiens Microtubule-associated protein tau Proteins 0.000 description 1
- 101000615613 Homo sapiens Mineralocorticoid receptor Proteins 0.000 description 1
- 101000697649 Homo sapiens Mitochondrial chaperone BCS1 Proteins 0.000 description 1
- 101000763951 Homo sapiens Mitochondrial import inner membrane translocase subunit Tim8 A Proteins 0.000 description 1
- 101000960626 Homo sapiens Mitochondrial inner membrane protease subunit 2 Proteins 0.000 description 1
- 101001028702 Homo sapiens Mitochondrial-derived peptide MOTS-c Proteins 0.000 description 1
- 101000577080 Homo sapiens Mitochondrial-processing peptidase subunit alpha Proteins 0.000 description 1
- 101000896657 Homo sapiens Mitotic checkpoint serine/threonine-protein kinase BUB1 Proteins 0.000 description 1
- 101000591936 Homo sapiens Molybdopterin synthase catalytic subunit Proteins 0.000 description 1
- 101000963255 Homo sapiens Molybdopterin synthase sulfur carrier subunit Proteins 0.000 description 1
- 101000987117 Homo sapiens Monocarboxylate transporter 8 Proteins 0.000 description 1
- 101000576323 Homo sapiens Motor neuron and pancreas homeobox protein 1 Proteins 0.000 description 1
- 101000972286 Homo sapiens Mucin-4 Proteins 0.000 description 1
- 101000972282 Homo sapiens Mucin-5AC Proteins 0.000 description 1
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 description 1
- 101000982010 Homo sapiens Myelin proteolipid protein Proteins 0.000 description 1
- 101001115699 Homo sapiens Myelin-oligodendrocyte glycoprotein Proteins 0.000 description 1
- 101001090860 Homo sapiens Myeloblastin Proteins 0.000 description 1
- 101000585663 Homo sapiens Myocilin Proteins 0.000 description 1
- 101000635878 Homo sapiens Myosin light chain 3 Proteins 0.000 description 1
- 101000629029 Homo sapiens Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Proteins 0.000 description 1
- 101000588964 Homo sapiens Myosin-14 Proteins 0.000 description 1
- 101000958741 Homo sapiens Myosin-6 Proteins 0.000 description 1
- 101000982032 Homo sapiens Myosin-binding protein C, cardiac-type Proteins 0.000 description 1
- 101001030184 Homo sapiens Myotilin Proteins 0.000 description 1
- 101001132874 Homo sapiens Myotubularin Proteins 0.000 description 1
- 101000966872 Homo sapiens Myotubularin-related protein 2 Proteins 0.000 description 1
- 101001066305 Homo sapiens N-acetylgalactosamine-6-sulfatase Proteins 0.000 description 1
- 101001072470 Homo sapiens N-acetylglucosamine-1-phosphotransferase subunits alpha/beta Proteins 0.000 description 1
- 101000829992 Homo sapiens N-acetylglucosamine-6-sulfatase Proteins 0.000 description 1
- 101000829958 Homo sapiens N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Proteins 0.000 description 1
- 101001090919 Homo sapiens N-acylglucosamine 2-epimerase Proteins 0.000 description 1
- 101000983292 Homo sapiens N-fatty-acyl-amino acid synthase/hydrolase PM20D1 Proteins 0.000 description 1
- 101000651201 Homo sapiens N-sulphoglucosamine sulphohydrolase Proteins 0.000 description 1
- 101001128138 Homo sapiens NACHT, LRR and PYD domains-containing protein 2 Proteins 0.000 description 1
- 101001109465 Homo sapiens NACHT, LRR and PYD domains-containing protein 3 Proteins 0.000 description 1
- 101000973778 Homo sapiens NAD(P)H dehydrogenase [quinone] 1 Proteins 0.000 description 1
- 101001111195 Homo sapiens NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial Proteins 0.000 description 1
- 101001111187 Homo sapiens NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial Proteins 0.000 description 1
- 101000601581 Homo sapiens NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial Proteins 0.000 description 1
- 101000979227 Homo sapiens NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial Proteins 0.000 description 1
- 101000636705 Homo sapiens NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial Proteins 0.000 description 1
- 101000604411 Homo sapiens NADH-ubiquinone oxidoreductase chain 1 Proteins 0.000 description 1
- 101000632748 Homo sapiens NADH-ubiquinone oxidoreductase chain 2 Proteins 0.000 description 1
- 101000598279 Homo sapiens NADH-ubiquinone oxidoreductase chain 5 Proteins 0.000 description 1
- 101000632623 Homo sapiens NADH-ubiquinone oxidoreductase chain 6 Proteins 0.000 description 1
- 101001124388 Homo sapiens NPC intracellular cholesterol transporter 1 Proteins 0.000 description 1
- 101001109579 Homo sapiens NPC intracellular cholesterol transporter 2 Proteins 0.000 description 1
- 101100241084 Homo sapiens NRTN gene Proteins 0.000 description 1
- 101001128156 Homo sapiens Nanos homolog 3 Proteins 0.000 description 1
- 101000780028 Homo sapiens Natriuretic peptides A Proteins 0.000 description 1
- 101000979306 Homo sapiens Nectin-1 Proteins 0.000 description 1
- 101000978730 Homo sapiens Nephrin Proteins 0.000 description 1
- 101000978743 Homo sapiens Nephrocystin-1 Proteins 0.000 description 1
- 101001051490 Homo sapiens Neural cell adhesion molecule L1 Proteins 0.000 description 1
- 101001128694 Homo sapiens Neuroendocrine convertase 1 Proteins 0.000 description 1
- 101001014610 Homo sapiens Neuroendocrine secretory protein 55 Proteins 0.000 description 1
- 101001111338 Homo sapiens Neurofilament heavy polypeptide Proteins 0.000 description 1
- 101000745167 Homo sapiens Neuronal acetylcholine receptor subunit alpha-4 Proteins 0.000 description 1
- 101000720704 Homo sapiens Neuronal migration protein doublecortin Proteins 0.000 description 1
- 101000602167 Homo sapiens Neuroserpin Proteins 0.000 description 1
- 101001112229 Homo sapiens Neutrophil cytosol factor 1 Proteins 0.000 description 1
- 101001112224 Homo sapiens Neutrophil cytosol factor 2 Proteins 0.000 description 1
- 101000981336 Homo sapiens Nibrin Proteins 0.000 description 1
- 101001124309 Homo sapiens Nitric oxide synthase, endothelial Proteins 0.000 description 1
- 101000979761 Homo sapiens Norrin Proteins 0.000 description 1
- 101000597425 Homo sapiens Nuclear RNA export factor 2 Proteins 0.000 description 1
- 101000598160 Homo sapiens Nuclear mitotic apparatus protein 1 Proteins 0.000 description 1
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 description 1
- 101000979629 Homo sapiens Nucleoside diphosphate kinase A Proteins 0.000 description 1
- 101000836873 Homo sapiens Nucleotide exchange factor SIL1 Proteins 0.000 description 1
- 101000812677 Homo sapiens Nucleotide pyrophosphatase Proteins 0.000 description 1
- 101000598921 Homo sapiens Orexin Proteins 0.000 description 1
- 101000807596 Homo sapiens Orotidine 5'-phosphate decarboxylase Proteins 0.000 description 1
- 101001086210 Homo sapiens Osteocalcin Proteins 0.000 description 1
- 101001134169 Homo sapiens Otoferlin Proteins 0.000 description 1
- 101001021103 Homo sapiens Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial Proteins 0.000 description 1
- 101000720693 Homo sapiens Oxysterol-binding protein-related protein 1 Proteins 0.000 description 1
- 101001114051 Homo sapiens P antigen family member 5 Proteins 0.000 description 1
- 101001120086 Homo sapiens P2Y purinoceptor 12 Proteins 0.000 description 1
- 101000692980 Homo sapiens PHD finger protein 6 Proteins 0.000 description 1
- 101001074571 Homo sapiens PIN2/TERF1-interacting telomerase inhibitor 1 Proteins 0.000 description 1
- 101000738901 Homo sapiens PMS1 protein homolog 1 Proteins 0.000 description 1
- 101000741896 Homo sapiens POTE ankyrin domain family member D Proteins 0.000 description 1
- 101000572950 Homo sapiens POU domain, class 3, transcription factor 4 Proteins 0.000 description 1
- 101001094737 Homo sapiens POU domain, class 4, transcription factor 3 Proteins 0.000 description 1
- 101000613577 Homo sapiens Paired box protein Pax-2 Proteins 0.000 description 1
- 101000613490 Homo sapiens Paired box protein Pax-3 Proteins 0.000 description 1
- 101000601661 Homo sapiens Paired box protein Pax-7 Proteins 0.000 description 1
- 101000601664 Homo sapiens Paired box protein Pax-8 Proteins 0.000 description 1
- 101000735484 Homo sapiens Paired box protein Pax-9 Proteins 0.000 description 1
- 101000612089 Homo sapiens Pancreas/duodenum homeobox protein 1 Proteins 0.000 description 1
- 101001134456 Homo sapiens Pancreatic triacylglycerol lipase Proteins 0.000 description 1
- 101000610206 Homo sapiens Pappalysin-1 Proteins 0.000 description 1
- 101000629361 Homo sapiens Paraplegin Proteins 0.000 description 1
- 101000589873 Homo sapiens Parathyroid hormone/parathyroid hormone-related peptide receptor Proteins 0.000 description 1
- 101000891031 Homo sapiens Peptidyl-prolyl cis-trans isomerase FKBP10 Proteins 0.000 description 1
- 101000987581 Homo sapiens Perforin-1 Proteins 0.000 description 1
- 101001095085 Homo sapiens Periaxin Proteins 0.000 description 1
- 101001000631 Homo sapiens Peripheral myelin protein 22 Proteins 0.000 description 1
- 101000619708 Homo sapiens Peroxiredoxin-6 Proteins 0.000 description 1
- 101000987700 Homo sapiens Peroxisomal biogenesis factor 3 Proteins 0.000 description 1
- 101001082860 Homo sapiens Peroxisomal membrane protein 2 Proteins 0.000 description 1
- 101000579352 Homo sapiens Peroxisomal membrane protein PEX13 Proteins 0.000 description 1
- 101001045218 Homo sapiens Peroxisomal multifunctional enzyme type 2 Proteins 0.000 description 1
- 101000730779 Homo sapiens Peroxisome assembly factor 2 Proteins 0.000 description 1
- 101000579342 Homo sapiens Peroxisome assembly protein 12 Proteins 0.000 description 1
- 101001099372 Homo sapiens Peroxisome biogenesis factor 1 Proteins 0.000 description 1
- 101001126498 Homo sapiens Peroxisome biogenesis factor 10 Proteins 0.000 description 1
- 101000693847 Homo sapiens Peroxisome biogenesis factor 2 Proteins 0.000 description 1
- 101000741790 Homo sapiens Peroxisome proliferator-activated receptor gamma Proteins 0.000 description 1
- 101000873719 Homo sapiens Phakinin Proteins 0.000 description 1
- 101001038051 Homo sapiens Phlorizin hydrolase Proteins 0.000 description 1
- 101000955481 Homo sapiens Phosphatidylcholine translocator ABCB4 Proteins 0.000 description 1
- 101001130226 Homo sapiens Phosphatidylcholine-sterol acyltransferase Proteins 0.000 description 1
- 101000595489 Homo sapiens Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Proteins 0.000 description 1
- 101000734579 Homo sapiens Phosphoenolpyruvate carboxykinase [GTP], mitochondrial Proteins 0.000 description 1
- 101000734572 Homo sapiens Phosphoenolpyruvate carboxykinase, cytosolic [GTP] Proteins 0.000 description 1
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 description 1
- 101000600392 Homo sapiens Phosphoglycerate mutase 2 Proteins 0.000 description 1
- 101000983161 Homo sapiens Phospholipase A2, membrane associated Proteins 0.000 description 1
- 101000701363 Homo sapiens Phospholipid-transporting ATPase IC Proteins 0.000 description 1
- 101001094831 Homo sapiens Phosphomannomutase 2 Proteins 0.000 description 1
- 101000731078 Homo sapiens Phosphorylase b kinase gamma catalytic chain, liver/testis isoform Proteins 0.000 description 1
- 101000945272 Homo sapiens Phosphorylase b kinase regulatory subunit alpha, liver isoform Proteins 0.000 description 1
- 101000945267 Homo sapiens Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform Proteins 0.000 description 1
- 101001137939 Homo sapiens Phosphorylase b kinase regulatory subunit beta Proteins 0.000 description 1
- 101000633511 Homo sapiens Photoreceptor-specific nuclear receptor Proteins 0.000 description 1
- 101000595669 Homo sapiens Pituitary homeobox 2 Proteins 0.000 description 1
- 101001125939 Homo sapiens Plakophilin-1 Proteins 0.000 description 1
- 101000728115 Homo sapiens Plasma membrane calcium-transporting ATPase 3 Proteins 0.000 description 1
- 101000605403 Homo sapiens Plasminogen Proteins 0.000 description 1
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 1
- 101001116302 Homo sapiens Platelet endothelial cell adhesion molecule Proteins 0.000 description 1
- 101001071312 Homo sapiens Platelet glycoprotein IX Proteins 0.000 description 1
- 101001097889 Homo sapiens Platelet-activating factor acetylhydrolase Proteins 0.000 description 1
- 101001064282 Homo sapiens Platelet-activating factor acetylhydrolase IB subunit beta Proteins 0.000 description 1
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 1
- 101000692464 Homo sapiens Platelet-derived growth factor receptor-like protein Proteins 0.000 description 1
- 101000586618 Homo sapiens Poliovirus receptor Proteins 0.000 description 1
- 101000609211 Homo sapiens Polyadenylate-binding protein 2 Proteins 0.000 description 1
- 101001074439 Homo sapiens Polycystin-2 Proteins 0.000 description 1
- 101001067140 Homo sapiens Porphobilinogen deaminase Proteins 0.000 description 1
- 101000994626 Homo sapiens Potassium voltage-gated channel subfamily A member 1 Proteins 0.000 description 1
- 101000974726 Homo sapiens Potassium voltage-gated channel subfamily E member 1 Proteins 0.000 description 1
- 101000974720 Homo sapiens Potassium voltage-gated channel subfamily E member 2 Proteins 0.000 description 1
- 101000994648 Homo sapiens Potassium voltage-gated channel subfamily KQT member 4 Proteins 0.000 description 1
- 101000610107 Homo sapiens Pre-B-cell leukemia transcription factor 1 Proteins 0.000 description 1
- 101000617708 Homo sapiens Pregnancy-specific beta-1-glycoprotein 1 Proteins 0.000 description 1
- 101000617536 Homo sapiens Presenilin-1 Proteins 0.000 description 1
- 101000617546 Homo sapiens Presenilin-2 Proteins 0.000 description 1
- 101001000545 Homo sapiens Probable hydrolase PNKD Proteins 0.000 description 1
- 101000808590 Homo sapiens Probable ubiquitin carboxyl-terminal hydrolase FAF-Y Proteins 0.000 description 1
- 101000983583 Homo sapiens Procathepsin L Proteins 0.000 description 1
- 101000595904 Homo sapiens Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 Proteins 0.000 description 1
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 1
- 101001095095 Homo sapiens Proline-rich acidic protein 1 Proteins 0.000 description 1
- 101000611614 Homo sapiens Proline-rich protein PRCC Proteins 0.000 description 1
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 description 1
- 101000741544 Homo sapiens Properdin Proteins 0.000 description 1
- 101001098989 Homo sapiens Propionyl-CoA carboxylase alpha chain, mitochondrial Proteins 0.000 description 1
- 101001098982 Homo sapiens Propionyl-CoA carboxylase beta chain, mitochondrial Proteins 0.000 description 1
- 101001091094 Homo sapiens Prorelaxin H1 Proteins 0.000 description 1
- 101001091088 Homo sapiens Prorelaxin H2 Proteins 0.000 description 1
- 101000605122 Homo sapiens Prostaglandin G/H synthase 1 Proteins 0.000 description 1
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 description 1
- 101000920629 Homo sapiens Protein 4.1 Proteins 0.000 description 1
- 101000920625 Homo sapiens Protein 4.2 Proteins 0.000 description 1
- 101000959489 Homo sapiens Protein AF-9 Proteins 0.000 description 1
- 101000797903 Homo sapiens Protein ALEX Proteins 0.000 description 1
- 101000797623 Homo sapiens Protein AMBP Proteins 0.000 description 1
- 101000925651 Homo sapiens Protein ENL Proteins 0.000 description 1
- 101000969776 Homo sapiens Protein Mpv17 Proteins 0.000 description 1
- 101000821884 Homo sapiens Protein S100-G Proteins 0.000 description 1
- 101000874364 Homo sapiens Protein SCO2 homolog, mitochondrial Proteins 0.000 description 1
- 101000880769 Homo sapiens Protein SSX1 Proteins 0.000 description 1
- 101000880774 Homo sapiens Protein SSX4 Proteins 0.000 description 1
- 101000642815 Homo sapiens Protein SSXT Proteins 0.000 description 1
- 101000781361 Homo sapiens Protein XRP2 Proteins 0.000 description 1
- 101000726148 Homo sapiens Protein crumbs homolog 1 Proteins 0.000 description 1
- 101001072202 Homo sapiens Protein disulfide-isomerase Proteins 0.000 description 1
- 101000994437 Homo sapiens Protein jagged-1 Proteins 0.000 description 1
- 101001051777 Homo sapiens Protein kinase C alpha type Proteins 0.000 description 1
- 101000958299 Homo sapiens Protein lyl-1 Proteins 0.000 description 1
- 101000695187 Homo sapiens Protein patched homolog 1 Proteins 0.000 description 1
- 101000685914 Homo sapiens Protein transport protein Sec23B Proteins 0.000 description 1
- 101001123332 Homo sapiens Proteoglycan 4 Proteins 0.000 description 1
- 101000615238 Homo sapiens Proto-oncogene DBL Proteins 0.000 description 1
- 101000579425 Homo sapiens Proto-oncogene tyrosine-protein kinase receptor Ret Proteins 0.000 description 1
- 101000919980 Homo sapiens Protoheme IX farnesyltransferase, mitochondrial Proteins 0.000 description 1
- 101001123245 Homo sapiens Protoporphyrinogen oxidase Proteins 0.000 description 1
- 101001125901 Homo sapiens Pterin-4-alpha-carbinolamine dehydratase Proteins 0.000 description 1
- 101000864780 Homo sapiens Pulmonary surfactant-associated protein A1 Proteins 0.000 description 1
- 101001086862 Homo sapiens Pulmonary surfactant-associated protein B Proteins 0.000 description 1
- 101000612671 Homo sapiens Pulmonary surfactant-associated protein C Proteins 0.000 description 1
- 101000632467 Homo sapiens Pulmonary surfactant-associated protein D Proteins 0.000 description 1
- 101001082131 Homo sapiens Pumilio homolog 3 Proteins 0.000 description 1
- 101000730612 Homo sapiens Puratrophin-1 Proteins 0.000 description 1
- 101000737669 Homo sapiens Putative cat eye syndrome critical region protein 9 Proteins 0.000 description 1
- 101000584293 Homo sapiens Putative myc-like protein MYCLP1 Proteins 0.000 description 1
- 101000701517 Homo sapiens Putative protein ATXN8OS Proteins 0.000 description 1
- 101000873438 Homo sapiens Putative protein SEM1, isoform 2 Proteins 0.000 description 1
- 101000912352 Homo sapiens Putative uncharacterized protein DANCR Proteins 0.000 description 1
- 101001120726 Homo sapiens Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Proteins 0.000 description 1
- 101001091536 Homo sapiens Pyruvate kinase PKLR Proteins 0.000 description 1
- 101001111714 Homo sapiens RING-box protein 2 Proteins 0.000 description 1
- 101000725943 Homo sapiens RNA polymerase II subunit A C-terminal domain phosphatase Proteins 0.000 description 1
- 101000668165 Homo sapiens RNA-binding motif, single-stranded-interacting protein 1 Proteins 0.000 description 1
- 101000743264 Homo sapiens RNA-binding protein 6 Proteins 0.000 description 1
- 101001092166 Homo sapiens RPE-retinal G protein-coupled receptor Proteins 0.000 description 1
- 101000620777 Homo sapiens Rab proteins geranylgeranyltransferase component A 1 Proteins 0.000 description 1
- 101000620788 Homo sapiens Rab proteins geranylgeranyltransferase component A 2 Proteins 0.000 description 1
- 101001130509 Homo sapiens Ras GTPase-activating protein 1 Proteins 0.000 description 1
- 101000686227 Homo sapiens Ras-related protein R-Ras2 Proteins 0.000 description 1
- 101000584785 Homo sapiens Ras-related protein Rab-7a Proteins 0.000 description 1
- 101001062222 Homo sapiens Receptor-binding cancer antigen expressed on SiSo cells Proteins 0.000 description 1
- 101000710137 Homo sapiens Recoverin Proteins 0.000 description 1
- 101000692872 Homo sapiens Regulator of microtubule dynamics protein 1 Proteins 0.000 description 1
- 101001075466 Homo sapiens Regulatory factor X-associated protein Proteins 0.000 description 1
- 101000579218 Homo sapiens Renin Proteins 0.000 description 1
- 101000667643 Homo sapiens Required for meiotic nuclear division protein 1 homolog Proteins 0.000 description 1
- 101000899806 Homo sapiens Retinal guanylyl cyclase 1 Proteins 0.000 description 1
- 101000801643 Homo sapiens Retinal-specific phospholipid-transporting ATPase ABCA4 Proteins 0.000 description 1
- 101001078886 Homo sapiens Retinaldehyde-binding protein 1 Proteins 0.000 description 1
- 101001104199 Homo sapiens Retinitis pigmentosa 9 protein Proteins 0.000 description 1
- 101000742859 Homo sapiens Retinoblastoma-associated protein Proteins 0.000 description 1
- 101001112293 Homo sapiens Retinoic acid receptor alpha Proteins 0.000 description 1
- 101001099922 Homo sapiens Retinoic acid-induced protein 1 Proteins 0.000 description 1
- 101000729271 Homo sapiens Retinoid isomerohydrolase Proteins 0.000 description 1
- 101000742950 Homo sapiens Retinol dehydrogenase 5 Proteins 0.000 description 1
- 101000927774 Homo sapiens Rho guanine nucleotide exchange factor 12 Proteins 0.000 description 1
- 101000927796 Homo sapiens Rho guanine nucleotide exchange factor 7 Proteins 0.000 description 1
- 101000829506 Homo sapiens Rhodopsin kinase GRK1 Proteins 0.000 description 1
- 101001125547 Homo sapiens Ribose-phosphate pyrophosphokinase 2 Proteins 0.000 description 1
- 101000945090 Homo sapiens Ribosomal protein S6 kinase alpha-3 Proteins 0.000 description 1
- 101000609947 Homo sapiens Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha Proteins 0.000 description 1
- 101000609949 Homo sapiens Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit beta Proteins 0.000 description 1
- 101001106432 Homo sapiens Rod outer segment membrane protein 1 Proteins 0.000 description 1
- 101000857677 Homo sapiens Runt-related transcription factor 1 Proteins 0.000 description 1
- 101000901226 Homo sapiens S-arrestin Proteins 0.000 description 1
- 101100095198 Homo sapiens SCARB2 gene Proteins 0.000 description 1
- 101000761644 Homo sapiens SH3 domain-binding protein 2 Proteins 0.000 description 1
- 101100477520 Homo sapiens SHOX gene Proteins 0.000 description 1
- 101100208486 Homo sapiens SNRNP35 gene Proteins 0.000 description 1
- 101000652133 Homo sapiens STE20-like serine/threonine-protein kinase Proteins 0.000 description 1
- 101000724404 Homo sapiens Saccharopine dehydrogenase Proteins 0.000 description 1
- 101000641122 Homo sapiens Sacsin Proteins 0.000 description 1
- 101000740205 Homo sapiens Sal-like protein 1 Proteins 0.000 description 1
- 101000821981 Homo sapiens Sarcoma antigen 1 Proteins 0.000 description 1
- 101000936731 Homo sapiens Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 Proteins 0.000 description 1
- 101000936922 Homo sapiens Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 Proteins 0.000 description 1
- 101000740659 Homo sapiens Scavenger receptor class B member 1 Proteins 0.000 description 1
- 101000739195 Homo sapiens Secretoglobin family 1D member 2 Proteins 0.000 description 1
- 101000898985 Homo sapiens Seipin Proteins 0.000 description 1
- 101000683839 Homo sapiens Selenoprotein N Proteins 0.000 description 1
- 101000655897 Homo sapiens Serine protease 1 Proteins 0.000 description 1
- 101000610626 Homo sapiens Serine protease 33 Proteins 0.000 description 1
- 101000872580 Homo sapiens Serine protease hepsin Proteins 0.000 description 1
- 101000629622 Homo sapiens Serine-pyruvate aminotransferase Proteins 0.000 description 1
- 101000771237 Homo sapiens Serine/threonine-protein kinase A-Raf Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000777277 Homo sapiens Serine/threonine-protein kinase Chk2 Proteins 0.000 description 1
- 101001026882 Homo sapiens Serine/threonine-protein kinase D2 Proteins 0.000 description 1
- 101000601460 Homo sapiens Serine/threonine-protein kinase Nek4 Proteins 0.000 description 1
- 101000987315 Homo sapiens Serine/threonine-protein kinase PAK 3 Proteins 0.000 description 1
- 101000628562 Homo sapiens Serine/threonine-protein kinase STK11 Proteins 0.000 description 1
- 101000742986 Homo sapiens Serine/threonine-protein kinase WNK4 Proteins 0.000 description 1
- 101001036145 Homo sapiens Serine/threonine-protein kinase greatwall Proteins 0.000 description 1
- 101000799194 Homo sapiens Serine/threonine-protein kinase receptor R3 Proteins 0.000 description 1
- 101000915806 Homo sapiens Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform Proteins 0.000 description 1
- 101000869480 Homo sapiens Serum amyloid A-1 protein Proteins 0.000 description 1
- 101001094647 Homo sapiens Serum paraoxonase/arylesterase 1 Proteins 0.000 description 1
- 101000621061 Homo sapiens Serum paraoxonase/arylesterase 2 Proteins 0.000 description 1
- 101000826130 Homo sapiens Sex-determining region Y protein Proteins 0.000 description 1
- 101000760716 Homo sapiens Short-chain specific acyl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101001123859 Homo sapiens Sialidase-1 Proteins 0.000 description 1
- 101000685690 Homo sapiens Sialin Proteins 0.000 description 1
- 101000864098 Homo sapiens Small muscular protein Proteins 0.000 description 1
- 101000657580 Homo sapiens Small nuclear ribonucleoprotein-associated protein N Proteins 0.000 description 1
- 101000693993 Homo sapiens Sodium channel protein type 4 subunit alpha Proteins 0.000 description 1
- 101000713305 Homo sapiens Sodium-coupled neutral amino acid transporter 1 Proteins 0.000 description 1
- 101000631929 Homo sapiens Sodium-dependent serotonin transporter Proteins 0.000 description 1
- 101000923531 Homo sapiens Sodium/potassium-transporting ATPase subunit gamma Proteins 0.000 description 1
- 101000685678 Homo sapiens Solute carrier family 22 member 18 Proteins 0.000 description 1
- 101000829127 Homo sapiens Somatostatin receptor type 2 Proteins 0.000 description 1
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 1
- 101000664527 Homo sapiens Spastin Proteins 0.000 description 1
- 101000881267 Homo sapiens Spectrin alpha chain, erythrocytic 1 Proteins 0.000 description 1
- 101000881247 Homo sapiens Spectrin beta chain, erythrocytic Proteins 0.000 description 1
- 101000825248 Homo sapiens Sperm protein associated with the nucleus on the X chromosome C Proteins 0.000 description 1
- 101000824971 Homo sapiens Sperm surface protein Sp17 Proteins 0.000 description 1
- 101000652359 Homo sapiens Spermatogenesis-associated protein 2 Proteins 0.000 description 1
- 101000881206 Homo sapiens Spermine synthase Proteins 0.000 description 1
- 101000785978 Homo sapiens Sphingomyelin phosphodiesterase Proteins 0.000 description 1
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 1
- 101000697578 Homo sapiens Statherin Proteins 0.000 description 1
- 101000896517 Homo sapiens Steroid 17-alpha-hydroxylase/17,20 lyase Proteins 0.000 description 1
- 101000875401 Homo sapiens Sterol 26-hydroxylase, mitochondrial Proteins 0.000 description 1
- 101000617830 Homo sapiens Sterol O-acyltransferase 1 Proteins 0.000 description 1
- 101000820460 Homo sapiens Stomatin Proteins 0.000 description 1
- 101000577877 Homo sapiens Stromelysin-3 Proteins 0.000 description 1
- 101000951145 Homo sapiens Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial Proteins 0.000 description 1
- 101000685323 Homo sapiens Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial Proteins 0.000 description 1
- 101000654245 Homo sapiens Succinate dehydrogenase assembly factor 2, mitochondrial Proteins 0.000 description 1
- 101000829168 Homo sapiens Succinate-semialdehyde dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000716763 Homo sapiens Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial Proteins 0.000 description 1
- 101000643865 Homo sapiens Sulfite oxidase, mitochondrial Proteins 0.000 description 1
- 101000880098 Homo sapiens Sushi repeat-containing protein SRPX Proteins 0.000 description 1
- 101000821100 Homo sapiens Synapsin-1 Proteins 0.000 description 1
- 101000695522 Homo sapiens Synaptophysin Proteins 0.000 description 1
- 101000714470 Homo sapiens Synaptotagmin-1 Proteins 0.000 description 1
- 101000666775 Homo sapiens T-box transcription factor TBX3 Proteins 0.000 description 1
- 101000800488 Homo sapiens T-cell leukemia homeobox protein 1 Proteins 0.000 description 1
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 1
- 101000738413 Homo sapiens T-cell surface glycoprotein CD3 gamma chain Proteins 0.000 description 1
- 101000738335 Homo sapiens T-cell surface glycoprotein CD3 zeta chain Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000712674 Homo sapiens TGF-beta receptor type-1 Proteins 0.000 description 1
- 101000595554 Homo sapiens TIR domain-containing adapter molecule 2 Proteins 0.000 description 1
- 101100207070 Homo sapiens TNFSF8 gene Proteins 0.000 description 1
- 101000597193 Homo sapiens Telethonin Proteins 0.000 description 1
- 101000612838 Homo sapiens Tetraspanin-7 Proteins 0.000 description 1
- 101000799388 Homo sapiens Thiopurine S-methyltransferase Proteins 0.000 description 1
- 101000802084 Homo sapiens Thiosulfate sulfurtransferase Proteins 0.000 description 1
- 101000763314 Homo sapiens Thrombomodulin Proteins 0.000 description 1
- 101000799461 Homo sapiens Thrombopoietin Proteins 0.000 description 1
- 101000715050 Homo sapiens Thromboxane A2 receptor Proteins 0.000 description 1
- 101000796134 Homo sapiens Thymidine phosphorylase Proteins 0.000 description 1
- 101000837626 Homo sapiens Thyroid hormone receptor alpha Proteins 0.000 description 1
- 101000712600 Homo sapiens Thyroid hormone receptor beta Proteins 0.000 description 1
- 101000772267 Homo sapiens Thyrotropin receptor Proteins 0.000 description 1
- 101000633601 Homo sapiens Thyrotropin subunit beta Proteins 0.000 description 1
- 101000893741 Homo sapiens Tissue alpha-L-fucosidase Proteins 0.000 description 1
- 101000801481 Homo sapiens Tissue-type plasminogen activator Proteins 0.000 description 1
- 101000662686 Homo sapiens Torsin-1A Proteins 0.000 description 1
- 101000819111 Homo sapiens Trans-acting T-cell-specific transcription factor GATA-3 Proteins 0.000 description 1
- 101000891321 Homo sapiens Transcobalamin-2 Proteins 0.000 description 1
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 1
- 101000837845 Homo sapiens Transcription factor E3 Proteins 0.000 description 1
- 101001121409 Homo sapiens Transcription factor Ovo-like 2 Proteins 0.000 description 1
- 101000711846 Homo sapiens Transcription factor SOX-9 Proteins 0.000 description 1
- 101000674717 Homo sapiens Transcription initiation factor TFIID subunit 7-like Proteins 0.000 description 1
- 101001074042 Homo sapiens Transcriptional activator GLI3 Proteins 0.000 description 1
- 101000636213 Homo sapiens Transcriptional activator Myb Proteins 0.000 description 1
- 101000712663 Homo sapiens Transforming growth factor beta-3 proprotein Proteins 0.000 description 1
- 101000800463 Homo sapiens Transketolase Proteins 0.000 description 1
- 101000658574 Homo sapiens Transmembrane 4 L6 family member 1 Proteins 0.000 description 1
- 101000801040 Homo sapiens Transmembrane channel-like protein 1 Proteins 0.000 description 1
- 101000892344 Homo sapiens Transmembrane protein 185A Proteins 0.000 description 1
- 101000772194 Homo sapiens Transthyretin Proteins 0.000 description 1
- 101000891326 Homo sapiens Treacle protein Proteins 0.000 description 1
- 101000795130 Homo sapiens Trehalase Proteins 0.000 description 1
- 101000801742 Homo sapiens Triosephosphate isomerase Proteins 0.000 description 1
- 101000801701 Homo sapiens Tropomyosin alpha-1 chain Proteins 0.000 description 1
- 101000851892 Homo sapiens Tropomyosin beta chain Proteins 0.000 description 1
- 101000772173 Homo sapiens Tubby-related protein 1 Proteins 0.000 description 1
- 101000795659 Homo sapiens Tuberin Proteins 0.000 description 1
- 101000713585 Homo sapiens Tubulin beta-4A chain Proteins 0.000 description 1
- 101000800287 Homo sapiens Tubulointerstitial nephritis antigen-like Proteins 0.000 description 1
- 101000889756 Homo sapiens Tudor domain-containing protein 1 Proteins 0.000 description 1
- 101000638161 Homo sapiens Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 101000920026 Homo sapiens Tumor necrosis factor receptor superfamily member EDAR Proteins 0.000 description 1
- 101000850748 Homo sapiens Tumor necrosis factor receptor type 1-associated DEATH domain protein Proteins 0.000 description 1
- 101000613251 Homo sapiens Tumor susceptibility gene 101 protein Proteins 0.000 description 1
- 101000693985 Homo sapiens Twinkle mtDNA helicase Proteins 0.000 description 1
- 101000773184 Homo sapiens Twist-related protein 1 Proteins 0.000 description 1
- 101000690425 Homo sapiens Type-1 angiotensin II receptor Proteins 0.000 description 1
- 101000606090 Homo sapiens Tyrosinase Proteins 0.000 description 1
- 101001026790 Homo sapiens Tyrosine-protein kinase Fes/Fps Proteins 0.000 description 1
- 101000934996 Homo sapiens Tyrosine-protein kinase JAK3 Proteins 0.000 description 1
- 101000818543 Homo sapiens Tyrosine-protein kinase ZAP-70 Proteins 0.000 description 1
- 101001103033 Homo sapiens Tyrosine-protein kinase transmembrane receptor ROR2 Proteins 0.000 description 1
- 101001087418 Homo sapiens Tyrosine-protein phosphatase non-receptor type 12 Proteins 0.000 description 1
- 101000610557 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp31 Proteins 0.000 description 1
- 101000836268 Homo sapiens U4/U6.U5 tri-snRNP-associated protein 1 Proteins 0.000 description 1
- 101000819146 Homo sapiens UDP-glucose 4-epimerase Proteins 0.000 description 1
- 101000608653 Homo sapiens UbiA prenyltransferase domain-containing protein 1 Proteins 0.000 description 1
- 101000831708 Homo sapiens Ubiquitin carboxyl-terminal hydrolase CYLD Proteins 0.000 description 1
- 101000807344 Homo sapiens Ubiquitin-conjugating enzyme E2 A Proteins 0.000 description 1
- 101000807306 Homo sapiens Ubiquitin-like modifier-activating enzyme 1 Proteins 0.000 description 1
- 101000911513 Homo sapiens Uncharacterized protein FAM215A Proteins 0.000 description 1
- 101001000116 Homo sapiens Unconventional myosin-Ig Proteins 0.000 description 1
- 101000585635 Homo sapiens Unconventional myosin-XV Proteins 0.000 description 1
- 101000910482 Homo sapiens Uroporphyrinogen decarboxylase Proteins 0.000 description 1
- 101000805941 Homo sapiens Usherin Proteins 0.000 description 1
- 101001061851 Homo sapiens V(D)J recombination-activating protein 2 Proteins 0.000 description 1
- 101000743490 Homo sapiens V-set and immunoglobulin domain-containing protein 2 Proteins 0.000 description 1
- 101000854875 Homo sapiens V-type proton ATPase 116 kDa subunit a 3 Proteins 0.000 description 1
- 101000670953 Homo sapiens V-type proton ATPase subunit B, kidney isoform Proteins 0.000 description 1
- 101000803527 Homo sapiens Vacuolar ATPase assembly integral membrane protein VMA21 Proteins 0.000 description 1
- 101000667092 Homo sapiens Vacuolar protein sorting-associated protein 13A Proteins 0.000 description 1
- 101000807859 Homo sapiens Vasopressin V2 receptor Proteins 0.000 description 1
- 101000760747 Homo sapiens Very long-chain specific acyl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000854936 Homo sapiens Visual system homeobox 1 Proteins 0.000 description 1
- 101000742236 Homo sapiens Vitamin K-dependent gamma-carboxylase Proteins 0.000 description 1
- 101001125402 Homo sapiens Vitamin K-dependent protein C Proteins 0.000 description 1
- 101000577630 Homo sapiens Vitamin K-dependent protein S Proteins 0.000 description 1
- 101000867848 Homo sapiens Voltage-dependent L-type calcium channel subunit alpha-1F Proteins 0.000 description 1
- 101000983956 Homo sapiens Voltage-dependent L-type calcium channel subunit beta-2 Proteins 0.000 description 1
- 101000983947 Homo sapiens Voltage-dependent L-type calcium channel subunit beta-4 Proteins 0.000 description 1
- 101000740755 Homo sapiens Voltage-dependent calcium channel subunit alpha-2/delta-1 Proteins 0.000 description 1
- 101000771618 Homo sapiens WD repeat-containing protein 62 Proteins 0.000 description 1
- 101000804798 Homo sapiens Werner syndrome ATP-dependent helicase Proteins 0.000 description 1
- 101000621427 Homo sapiens Wiskott-Aldrich syndrome protein Proteins 0.000 description 1
- 101001104110 Homo sapiens X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 Proteins 0.000 description 1
- 101000606589 Homo sapiens Xaa-Pro dipeptidase Proteins 0.000 description 1
- 101000788669 Homo sapiens Zinc finger MYM-type protein 2 Proteins 0.000 description 1
- 101000788739 Homo sapiens Zinc finger MYM-type protein 3 Proteins 0.000 description 1
- 101000759185 Homo sapiens Zinc finger X-chromosomal protein Proteins 0.000 description 1
- 101000964566 Homo sapiens Zinc finger Y-chromosomal protein Proteins 0.000 description 1
- 101000760175 Homo sapiens Zinc finger protein 35 Proteins 0.000 description 1
- 101000760181 Homo sapiens Zinc finger protein 41 Proteins 0.000 description 1
- 101000964741 Homo sapiens Zinc finger protein 711 Proteins 0.000 description 1
- 101000976643 Homo sapiens Zinc finger protein ZIC 2 Proteins 0.000 description 1
- 101000976645 Homo sapiens Zinc finger protein ZIC 3 Proteins 0.000 description 1
- 101000685830 Homo sapiens Zinc transporter ZIP4 Proteins 0.000 description 1
- 101000883219 Homo sapiens cGMP-gated cation channel alpha-1 Proteins 0.000 description 1
- 102100034782 Homogentisate 1,2-dioxygenase Human genes 0.000 description 1
- 101150051916 Hsd3b3 gene Proteins 0.000 description 1
- 102100031450 Humanin Human genes 0.000 description 1
- 102100039283 Hyaluronidase-1 Human genes 0.000 description 1
- 102100040544 Hydroxyacylglutathione hydrolase, mitochondrial Human genes 0.000 description 1
- 108010052919 Hydroxyethylthiazole kinase Proteins 0.000 description 1
- 102100024004 Hydroxymethylglutaryl-CoA lyase, mitochondrial Human genes 0.000 description 1
- 108010027436 Hydroxymethylpyrimidine kinase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 101150020162 ICS1 gene Proteins 0.000 description 1
- 102000026633 IL6 Human genes 0.000 description 1
- 102100025141 IQ motif and SEC7 domain-containing protein 2 Human genes 0.000 description 1
- 102100029199 Iduronate 2-sulfatase Human genes 0.000 description 1
- 102100039345 Immunoglobulin heavy constant gamma 1 Human genes 0.000 description 1
- 102100039346 Immunoglobulin heavy constant gamma 2 Human genes 0.000 description 1
- 102100039352 Immunoglobulin heavy constant mu Human genes 0.000 description 1
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 description 1
- 102100024022 Inactive heparanase-2 Human genes 0.000 description 1
- 102100027537 Inactive rhomboid protein 2 Human genes 0.000 description 1
- 102100026214 Indian hedgehog protein Human genes 0.000 description 1
- 101710139099 Indian hedgehog protein Proteins 0.000 description 1
- 208000027646 Infantile-onset X-linked spinal muscular atrophy Diseases 0.000 description 1
- 102100036721 Insulin receptor Human genes 0.000 description 1
- 102100025087 Insulin receptor substrate 1 Human genes 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102100023350 Integral membrane protein 2B Human genes 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 102100032816 Integrin alpha-6 Human genes 0.000 description 1
- 102100032832 Integrin alpha-7 Human genes 0.000 description 1
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 1
- 108010030506 Integrin alpha6beta4 Proteins 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 102100033000 Integrin beta-4 Human genes 0.000 description 1
- 102100023490 Inter-alpha-trypsin inhibitor heavy chain H1 Human genes 0.000 description 1
- 108010064600 Intercellular Adhesion Molecule-3 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 102100035678 Interferon gamma receptor 1 Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102100036342 Interleukin-1 receptor-associated kinase 1 Human genes 0.000 description 1
- 102100036433 Interleukin-1 receptor-associated kinase-like 2 Human genes 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 102100039068 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102100020790 Interleukin-12 receptor subunit beta-1 Human genes 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 102100026011 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000007482 Interleukin-13 Receptor alpha2 Subunit Human genes 0.000 description 1
- 108010085418 Interleukin-13 Receptor alpha2 Subunit Proteins 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108010082786 Interleukin-1alpha Proteins 0.000 description 1
- 102100036671 Interleukin-24 Human genes 0.000 description 1
- 102100039064 Interleukin-3 Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 description 1
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 1
- 102100026236 Interleukin-8 Human genes 0.000 description 1
- 102100033257 Inversin Human genes 0.000 description 1
- 102100033114 Inward rectifier potassium channel 2 Human genes 0.000 description 1
- 208000034613 Isolated polycystic liver disease Diseases 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102100025392 Isovaleryl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 101710201965 Isovaleryl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101150008942 J gene Proteins 0.000 description 1
- 102100037489 KAT8 regulatory NSL complex subunit 3 Human genes 0.000 description 1
- 108010011185 KCNQ1 Potassium Channel Proteins 0.000 description 1
- 108010006746 KCNQ2 Potassium Channel Proteins 0.000 description 1
- 108010038888 KCNQ3 Potassium Channel Proteins 0.000 description 1
- 108010093811 Kazal Pancreatic Trypsin Inhibitor Proteins 0.000 description 1
- 102100023970 Keratin, type I cytoskeletal 10 Human genes 0.000 description 1
- 102100023967 Keratin, type I cytoskeletal 12 Human genes 0.000 description 1
- 102100040487 Keratin, type I cytoskeletal 13 Human genes 0.000 description 1
- 102100040445 Keratin, type I cytoskeletal 14 Human genes 0.000 description 1
- 102100040441 Keratin, type I cytoskeletal 16 Human genes 0.000 description 1
- 102100033511 Keratin, type I cytoskeletal 17 Human genes 0.000 description 1
- 102100033421 Keratin, type I cytoskeletal 18 Human genes 0.000 description 1
- 102100023129 Keratin, type I cytoskeletal 9 Human genes 0.000 description 1
- 102100028340 Keratin, type II cuticular Hb1 Human genes 0.000 description 1
- 102100037382 Keratin, type II cuticular Hb6 Human genes 0.000 description 1
- 102100022854 Keratin, type II cytoskeletal 2 epidermal Human genes 0.000 description 1
- 102100025759 Keratin, type II cytoskeletal 3 Human genes 0.000 description 1
- 102100025758 Keratin, type II cytoskeletal 4 Human genes 0.000 description 1
- 102100025756 Keratin, type II cytoskeletal 5 Human genes 0.000 description 1
- 102100025656 Keratin, type II cytoskeletal 6A Human genes 0.000 description 1
- 102100025655 Keratin, type II cytoskeletal 6B Human genes 0.000 description 1
- 102100021497 Keratocan Human genes 0.000 description 1
- 102100023418 Ketohexokinase Human genes 0.000 description 1
- 102100037688 Kinesin-like protein KIF21A Human genes 0.000 description 1
- 101100193693 Kirsten murine sarcoma virus K-RAS gene Proteins 0.000 description 1
- 102100035878 Krev interaction trapped protein 1 Human genes 0.000 description 1
- 102100036091 Kynureninase Human genes 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- 102100034671 L-lactate dehydrogenase A chain Human genes 0.000 description 1
- 102100024580 L-lactate dehydrogenase B chain Human genes 0.000 description 1
- 102100031357 L-lactate dehydrogenase C chain Human genes 0.000 description 1
- 101710159002 L-lactate oxidase Proteins 0.000 description 1
- 102100036106 LIM/homeobox protein Lhx3 Human genes 0.000 description 1
- 241000904817 Lachnospiraceae bacterium Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102100035192 Laforin Human genes 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 108010021099 Lamin Type A Proteins 0.000 description 1
- 102000008201 Lamin Type A Human genes 0.000 description 1
- 108010021101 Lamin Type B Proteins 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 102100022745 Laminin subunit alpha-2 Human genes 0.000 description 1
- 102100022743 Laminin subunit alpha-4 Human genes 0.000 description 1
- 102100024629 Laminin subunit beta-3 Human genes 0.000 description 1
- 102100035159 Laminin subunit gamma-2 Human genes 0.000 description 1
- 101710084021 Large envelope protein Proteins 0.000 description 1
- 102100027017 Latent-transforming growth factor beta-binding protein 2 Human genes 0.000 description 1
- 208000002180 Laurin-Sandrow syndrome Diseases 0.000 description 1
- 102100027443 Lebercilin Human genes 0.000 description 1
- 101710197072 Lectin 1 Proteins 0.000 description 1
- 102100040511 Left-right determination factor 2 Human genes 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 241000222722 Leishmania <genus> Species 0.000 description 1
- 102100023487 Lens fiber major intrinsic protein Human genes 0.000 description 1
- 208000010994 Lethal infantile mitochondrial myopathy Diseases 0.000 description 1
- 102100040589 Leucine-rich PPR motif-containing protein, mitochondrial Human genes 0.000 description 1
- 102100022275 Leucine-rich glioma-inactivated protein 1 Human genes 0.000 description 1
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 1
- 102100023758 Leukotriene C4 synthase Human genes 0.000 description 1
- 102100040547 Limb region 1 protein homolog Human genes 0.000 description 1
- 102100026358 Lipoma-preferred partner Human genes 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102100022119 Lipoprotein lipase Human genes 0.000 description 1
- 102000057248 Lipoprotein(a) Human genes 0.000 description 1
- 108010033266 Lipoprotein(a) Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 102100029107 Long chain 3-hydroxyacyl-CoA dehydrogenase Human genes 0.000 description 1
- 102100021644 Long-chain specific acyl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100034337 Long-chain-fatty-acid-CoA ligase 6 Human genes 0.000 description 1
- 102100035576 Long-wave-sensitive opsin 1 Human genes 0.000 description 1
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 1
- 102100029205 Low affinity immunoglobulin gamma Fc region receptor II-b Human genes 0.000 description 1
- 102100029193 Low affinity immunoglobulin gamma Fc region receptor III-A Human genes 0.000 description 1
- 102100040947 Lutropin subunit beta Human genes 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 102100035304 Lymphotactin Human genes 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 1
- 102100033143 Lysine-specific demethylase 5D Human genes 0.000 description 1
- 101710204480 Lysosomal acid phosphatase Proteins 0.000 description 1
- 102100023231 Lysosomal alpha-mannosidase Human genes 0.000 description 1
- 102100028524 Lysosomal protective protein Human genes 0.000 description 1
- 108010009491 Lysosomal-Associated Membrane Protein 2 Proteins 0.000 description 1
- 102100020983 Lysosome membrane protein 2 Human genes 0.000 description 1
- 102100038225 Lysosome-associated membrane glycoprotein 2 Human genes 0.000 description 1
- 102100033468 Lysozyme C Human genes 0.000 description 1
- 102000003624 MCOLN1 Human genes 0.000 description 1
- 101150091161 MCOLN1 gene Proteins 0.000 description 1
- 101150083522 MECP2 gene Proteins 0.000 description 1
- 208000035177 MELAS Diseases 0.000 description 1
- 102100026371 MHC class II transactivator Human genes 0.000 description 1
- 102000034655 MIF Human genes 0.000 description 1
- 108060004872 MIF Proteins 0.000 description 1
- 102100037200 MORC family CW-type zinc finger protein 1 Human genes 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 101150090732 MTT1 gene Proteins 0.000 description 1
- 208000002569 Machado-Joseph Disease Diseases 0.000 description 1
- 101710119980 Macrophage migration inhibitory factor Proteins 0.000 description 1
- 101000687334 Magnaporthe oryzae (strain 70-15 / ATCC MYA-4617 / FGSC 8958) NAD(P)H-dependent pentose reductase Proteins 0.000 description 1
- 102100039143 Magnesium transporter MRS2 homolog, mitochondrial Human genes 0.000 description 1
- 102100028112 Magnesium transporter NIPA1 Human genes 0.000 description 1
- 101710122864 Major tegument protein Proteins 0.000 description 1
- 102100029461 Malonyl-CoA decarboxylase, mitochondrial Human genes 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102100037267 Mammaglobin-B Human genes 0.000 description 1
- 102100026061 Mannan-binding lectin serine protease 1 Human genes 0.000 description 1
- 101710117390 Mannan-binding lectin serine protease 1 Proteins 0.000 description 1
- 102100026046 Mannan-binding lectin serine protease 2 Human genes 0.000 description 1
- 101710117460 Mannan-binding lectin serine protease 2 Proteins 0.000 description 1
- 101001129124 Mannheimia haemolytica Outer membrane lipoprotein 1 Proteins 0.000 description 1
- 101710110798 Mannose-binding protein C Proteins 0.000 description 1
- 102100025315 Mannosyl-oligosaccharide glucosidase Human genes 0.000 description 1
- 102100026300 McKusick-Kaufman/Bardet-Biedl syndromes putative chaperonin Human genes 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 102100026048 Meckel syndrome type 1 protein Human genes 0.000 description 1
- 102100039004 Mediator of RNA polymerase II transcription subunit 28 Human genes 0.000 description 1
- 102100024590 Medium-chain specific acyl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100023724 Melanocortin receptor 4 Human genes 0.000 description 1
- 102100034216 Melanocyte-stimulating hormone receptor Human genes 0.000 description 1
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 1
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 1
- 102100039477 Melanoma-associated antigen B1 Human genes 0.000 description 1
- 102000056430 Member 1 Solute Carrier Family 12 Human genes 0.000 description 1
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 1
- 108010049137 Member 1 Subfamily D ATP Binding Cassette Transporter Proteins 0.000 description 1
- 108010093662 Member 11 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 1
- 102000056548 Member 3 Solute Carrier Family 12 Human genes 0.000 description 1
- 108010090837 Member 5 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 1
- 108010090822 Member 8 Subfamily G ATP Binding Cassette Transporter Proteins 0.000 description 1
- 102100030351 Membrane-associated phosphatidylinositol transfer protein 3 Human genes 0.000 description 1
- 102100027382 Membrane-bound transcription factor site-2 protease Human genes 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 102100021833 Mesencephalic astrocyte-derived neurotrophic factor Human genes 0.000 description 1
- 102000003735 Mesothelin Human genes 0.000 description 1
- 102100025096 Mesothelin Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 1
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 1
- 102100026261 Metalloproteinase inhibitor 3 Human genes 0.000 description 1
- 102100028708 Metallothionein-3 Human genes 0.000 description 1
- 102100031551 Methionine synthase Human genes 0.000 description 1
- 102100024614 Methionine synthase reductase Human genes 0.000 description 1
- 102100039124 Methyl-CpG-binding protein 2 Human genes 0.000 description 1
- 102100027320 Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial Human genes 0.000 description 1
- 102100026552 Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial Human genes 0.000 description 1
- 102100029684 Methylenetetrahydrofolate reductase Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102100022259 Mevalonate kinase Human genes 0.000 description 1
- 108700040132 Mevalonate kinases Proteins 0.000 description 1
- 102100027632 Microcephalin Human genes 0.000 description 1
- 108010050345 Microphthalmia-Associated Transcription Factor Proteins 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 102100021316 Mineralocorticoid receptor Human genes 0.000 description 1
- 108010074346 Mismatch Repair Endonuclease PMS2 Proteins 0.000 description 1
- 102100037480 Mismatch repair endonuclease PMS2 Human genes 0.000 description 1
- 108010009513 Mitochondrial Aldehyde Dehydrogenase Proteins 0.000 description 1
- 102100038738 Mitochondrial carnitine/acylcarnitine carrier protein Human genes 0.000 description 1
- 102100027891 Mitochondrial chaperone BCS1 Human genes 0.000 description 1
- 102100026808 Mitochondrial import inner membrane translocase subunit Tim8 A Human genes 0.000 description 1
- 102100039840 Mitochondrial inner membrane protease subunit 2 Human genes 0.000 description 1
- 108010047660 Mitochondrial intermediate peptidase Proteins 0.000 description 1
- 101710151805 Mitochondrial intermediate peptidase 1 Proteins 0.000 description 1
- 102100030108 Mitochondrial ornithine transporter 1 Human genes 0.000 description 1
- 102100037173 Mitochondrial-derived peptide MOTS-c Human genes 0.000 description 1
- 102100028192 Mitogen-activated protein kinase kinase kinase kinase 2 Human genes 0.000 description 1
- 101710144533 Mitogen-activated protein kinase kinase kinase kinase 2 Proteins 0.000 description 1
- 102100021691 Mitotic checkpoint serine/threonine-protein kinase BUB1 Human genes 0.000 description 1
- 241001092142 Molina Species 0.000 description 1
- 102100027983 Molybdenum cofactor sulfurase Human genes 0.000 description 1
- 101710132461 Molybdenum cofactor sulfurase Proteins 0.000 description 1
- 102100039428 Molybdopterin synthase sulfur carrier subunit Human genes 0.000 description 1
- 102100027871 Monocarboxylate transporter 8 Human genes 0.000 description 1
- 102100025744 Mothers against decapentaplegic homolog 1 Human genes 0.000 description 1
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 1
- 102100025170 Motor neuron and pancreas homeobox protein 1 Human genes 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 108010008705 Mucin-2 Proteins 0.000 description 1
- 102100022693 Mucin-4 Human genes 0.000 description 1
- 102100022496 Mucin-5AC Human genes 0.000 description 1
- 102100030173 Muellerian-inhibiting factor Human genes 0.000 description 1
- 101710122877 Muellerian-inhibiting factor Proteins 0.000 description 1
- 108010066419 Multidrug Resistance-Associated Protein 2 Proteins 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100381649 Mus musculus Bik gene Proteins 0.000 description 1
- 101100382264 Mus musculus Ca14 gene Proteins 0.000 description 1
- 101000933115 Mus musculus Caspase-4 Proteins 0.000 description 1
- 101100112373 Mus musculus Ctsm gene Proteins 0.000 description 1
- 101100447665 Mus musculus Gas2 gene Proteins 0.000 description 1
- 101100460492 Mus musculus Nkx1-2 gene Proteins 0.000 description 1
- 101100348669 Mus musculus Nkx3-1 gene Proteins 0.000 description 1
- 101001123852 Mus musculus Sialidase-2 Proteins 0.000 description 1
- 101100481579 Mus musculus Tlr11 gene Proteins 0.000 description 1
- 101100481580 Mus musculus Tlr12 gene Proteins 0.000 description 1
- 101100481581 Mus musculus Tlr13 gene Proteins 0.000 description 1
- 101100207071 Mus musculus Tnfsf8 gene Proteins 0.000 description 1
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 1
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 101000944608 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Chaperonin GroEL 2 Proteins 0.000 description 1
- 101000891671 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Medium/long-chain-fatty-acid-CoA ligase FadD6 Proteins 0.000 description 1
- 102100026784 Myelin proteolipid protein Human genes 0.000 description 1
- 102100023302 Myelin-oligodendrocyte glycoprotein Human genes 0.000 description 1
- 102100034681 Myeloblastin Human genes 0.000 description 1
- 102100029839 Myocilin Human genes 0.000 description 1
- 108010009047 Myosin VIIa Proteins 0.000 description 1
- 102100030971 Myosin light chain 3 Human genes 0.000 description 1
- 102100026925 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Human genes 0.000 description 1
- 102100032972 Myosin-14 Human genes 0.000 description 1
- 102100038319 Myosin-6 Human genes 0.000 description 1
- 102100026771 Myosin-binding protein C, cardiac-type Human genes 0.000 description 1
- 102100038894 Myotilin Human genes 0.000 description 1
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 1
- 102100033817 Myotubularin Human genes 0.000 description 1
- 102100040602 Myotubularin-related protein 2 Human genes 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- 102100031688 N-acetylgalactosamine-6-sulfatase Human genes 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 102100036710 N-acetylglucosamine-1-phosphotransferase subunits alpha/beta Human genes 0.000 description 1
- 102100023282 N-acetylglucosamine-6-sulfatase Human genes 0.000 description 1
- 102100023315 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Human genes 0.000 description 1
- 102100034977 N-acylglucosamine 2-epimerase Human genes 0.000 description 1
- 102100026783 N-alpha-acetyltransferase 16, NatA auxiliary subunit Human genes 0.000 description 1
- 102100027661 N-sulphoglucosamine sulphohydrolase Human genes 0.000 description 1
- 102100022691 NACHT, LRR and PYD domains-containing protein 3 Human genes 0.000 description 1
- 102100022365 NAD(P)H dehydrogenase [quinone] 1 Human genes 0.000 description 1
- 102100023963 NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial Human genes 0.000 description 1
- 102100023964 NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial Human genes 0.000 description 1
- 102100037519 NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial Human genes 0.000 description 1
- 102100023212 NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial Human genes 0.000 description 1
- 102100031919 NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial Human genes 0.000 description 1
- 102100038625 NADH-ubiquinone oxidoreductase chain 1 Human genes 0.000 description 1
- 102100028488 NADH-ubiquinone oxidoreductase chain 2 Human genes 0.000 description 1
- 102100036971 NADH-ubiquinone oxidoreductase chain 5 Human genes 0.000 description 1
- 102100028386 NADH-ubiquinone oxidoreductase chain 6 Human genes 0.000 description 1
- 108010082739 NADPH Oxidase 2 Proteins 0.000 description 1
- 101150114886 NECTIN1 gene Proteins 0.000 description 1
- 101150079937 NEUROD1 gene Proteins 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 108010059419 NIMA-Interacting Peptidylprolyl Isomerase Proteins 0.000 description 1
- 102000005591 NIMA-Interacting Peptidylprolyl Isomerase Human genes 0.000 description 1
- 102100029565 NPC intracellular cholesterol transporter 1 Human genes 0.000 description 1
- 102100022737 NPC intracellular cholesterol transporter 2 Human genes 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 102100034296 Natriuretic peptides A Human genes 0.000 description 1
- 102100034559 Natural resistance-associated macrophage protein 1 Human genes 0.000 description 1
- 102100023210 Necdin Human genes 0.000 description 1
- 102000002356 Nectin Human genes 0.000 description 1
- 108060005251 Nectin Proteins 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 102100023195 Nephrin Human genes 0.000 description 1
- 102100023187 Nephrocystin-1 Human genes 0.000 description 1
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 1
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 description 1
- 108700020297 NeuroD Proteins 0.000 description 1
- 102100032132 Neuroendocrine convertase 1 Human genes 0.000 description 1
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 1
- 102000007530 Neurofibromin 1 Human genes 0.000 description 1
- 108010085793 Neurofibromin 1 Proteins 0.000 description 1
- 102100024007 Neurofilament heavy polypeptide Human genes 0.000 description 1
- 201000004009 Neurogenic arthrogryposis multiplex congenita Diseases 0.000 description 1
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 1
- 102100039909 Neuronal acetylcholine receptor subunit alpha-4 Human genes 0.000 description 1
- 102100037591 Neuroserpin Human genes 0.000 description 1
- 101001122350 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial Proteins 0.000 description 1
- 102100021584 Neurturin Human genes 0.000 description 1
- 102100027341 Neutral and basic amino acid transport protein rBAT Human genes 0.000 description 1
- 102100023620 Neutrophil cytosol factor 1 Human genes 0.000 description 1
- 102100023618 Neutrophil cytosol factor 2 Human genes 0.000 description 1
- 102100024403 Nibrin Human genes 0.000 description 1
- 102100028452 Nitric oxide synthase, endothelial Human genes 0.000 description 1
- 108700002045 Nod2 Signaling Adaptor Proteins 0.000 description 1
- 101150083031 Nod2 gene Proteins 0.000 description 1
- 108010049586 Norepinephrine Plasma Membrane Transport Proteins Proteins 0.000 description 1
- 102100025036 Norrin Human genes 0.000 description 1
- 208000016113 North Carolina macular dystrophy Diseases 0.000 description 1
- 102000001759 Notch1 Receptor Human genes 0.000 description 1
- 108010029755 Notch1 Receptor Proteins 0.000 description 1
- 102000001760 Notch3 Receptor Human genes 0.000 description 1
- 108010029756 Notch3 Receptor Proteins 0.000 description 1
- 102100035403 Nuclear RNA export factor 2 Human genes 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- 102100039614 Nuclear receptor ROR-alpha Human genes 0.000 description 1
- 102100022678 Nucleophosmin Human genes 0.000 description 1
- 108010025568 Nucleophosmin Proteins 0.000 description 1
- 102100023252 Nucleoside diphosphate kinase A Human genes 0.000 description 1
- 102100027096 Nucleotide exchange factor SIL1 Human genes 0.000 description 1
- 102100039306 Nucleotide pyrophosphatase Human genes 0.000 description 1
- 102100029441 Nucleotide-binding oligomerization domain-containing protein 2 Human genes 0.000 description 1
- 208000035023 Oculocerebrorenal syndrome of Lowe Diseases 0.000 description 1
- 101000761187 Odontomachus monticola U-poneritoxin(01)-Om1a Proteins 0.000 description 1
- 108700006385 OmpF Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101710148753 Ornithine aminotransferase Proteins 0.000 description 1
- 102100027177 Ornithine aminotransferase, mitochondrial Human genes 0.000 description 1
- 101100335694 Oryza sativa subsp. japonica G1L6 gene Proteins 0.000 description 1
- 108700006640 OspA Proteins 0.000 description 1
- 102100031475 Osteocalcin Human genes 0.000 description 1
- 102000004067 Osteocalcin Human genes 0.000 description 1
- 108090000573 Osteocalcin Proteins 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- 102100034198 Otoferlin Human genes 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 101710160102 Outer membrane protein B Proteins 0.000 description 1
- 101710105714 Outer surface protein A Proteins 0.000 description 1
- 101710195703 Oxygen-dependent coproporphyrinogen-III oxidase Proteins 0.000 description 1
- 101710146072 Oxygen-independent coproporphyrinogen III oxidase Proteins 0.000 description 1
- 102100023238 P antigen family member 5 Human genes 0.000 description 1
- 102100026171 P2Y purinoceptor 12 Human genes 0.000 description 1
- 101150072055 PAL1 gene Proteins 0.000 description 1
- 108010032788 PAX6 Transcription Factor Proteins 0.000 description 1
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 description 1
- 102100026365 PHD finger protein 6 Human genes 0.000 description 1
- 101150096217 PHYH gene Proteins 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108700043304 PKC-3 Proteins 0.000 description 1
- 102100037482 PMS1 protein homolog 1 Human genes 0.000 description 1
- 102100038762 POTE ankyrin domain family member D Human genes 0.000 description 1
- 102100026450 POU domain, class 3, transcription factor 4 Human genes 0.000 description 1
- 102100035398 POU domain, class 4, transcription factor 3 Human genes 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 101710148592 PTS system fructose-like EIIA component Proteins 0.000 description 1
- 101710169713 PTS system fructose-specific EIIA component Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102100040852 Paired box protein Pax-2 Human genes 0.000 description 1
- 102100040891 Paired box protein Pax-3 Human genes 0.000 description 1
- 102100037506 Paired box protein Pax-6 Human genes 0.000 description 1
- 102100037503 Paired box protein Pax-7 Human genes 0.000 description 1
- 102100037502 Paired box protein Pax-8 Human genes 0.000 description 1
- 102100034901 Paired box protein Pax-9 Human genes 0.000 description 1
- 108020002591 Palmitoyl protein thioesterase Proteins 0.000 description 1
- 102000005327 Palmitoyl protein thioesterase Human genes 0.000 description 1
- 101710124046 Palmitoyl-acyl carrier protein thioesterase, chloroplastic Proteins 0.000 description 1
- 102100033359 Pancreatic triacylglycerol lipase Human genes 0.000 description 1
- 101001128814 Pandinus imperator Pandinin-1 Proteins 0.000 description 1
- 102100040156 Pappalysin-1 Human genes 0.000 description 1
- 102100027006 Paraplegin Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 102100032256 Parathyroid hormone/parathyroid hormone-related peptide receptor Human genes 0.000 description 1
- 108010065129 Patched-1 Receptor Proteins 0.000 description 1
- 102000007497 Patched-2 Receptor Human genes 0.000 description 1
- 108010071083 Patched-2 Receptor Proteins 0.000 description 1
- 208000024787 Patella aplasia/hypoplasia Diseases 0.000 description 1
- 102100035278 Pendrin Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010077519 Peptide Elongation Factor 2 Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102100040283 Peptidyl-prolyl cis-trans isomerase B Human genes 0.000 description 1
- 102100040349 Peptidyl-prolyl cis-trans isomerase FKBP10 Human genes 0.000 description 1
- 108010056995 Perforin Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 102100022239 Peroxiredoxin-6 Human genes 0.000 description 1
- 108010077056 Peroxisomal Targeting Signal 2 Receptor Proteins 0.000 description 1
- 102100029577 Peroxisomal biogenesis factor 3 Human genes 0.000 description 1
- 102100030564 Peroxisomal membrane protein 2 Human genes 0.000 description 1
- 102100028223 Peroxisomal membrane protein PEX13 Human genes 0.000 description 1
- 102100022587 Peroxisomal multifunctional enzyme type 2 Human genes 0.000 description 1
- 102100032924 Peroxisomal targeting signal 2 receptor Human genes 0.000 description 1
- 102100032931 Peroxisome assembly factor 2 Human genes 0.000 description 1
- 102100028224 Peroxisome assembly protein 12 Human genes 0.000 description 1
- 102100038881 Peroxisome biogenesis factor 1 Human genes 0.000 description 1
- 102100030554 Peroxisome biogenesis factor 10 Human genes 0.000 description 1
- 102100025516 Peroxisome biogenesis factor 2 Human genes 0.000 description 1
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 1
- 102100035832 Phakinin Human genes 0.000 description 1
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 1
- 101710125939 Phenylalanine-4-hydroxylase Proteins 0.000 description 1
- 102100040402 Phlorizin hydrolase Human genes 0.000 description 1
- 102100039032 Phosphatidylcholine translocator ABCB4 Human genes 0.000 description 1
- 102100031538 Phosphatidylcholine-sterol acyltransferase Human genes 0.000 description 1
- 102100032543 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Human genes 0.000 description 1
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 1
- 101710169596 Phosphatidylinositol-binding clathrin assembly protein Proteins 0.000 description 1
- 102100034792 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial Human genes 0.000 description 1
- 102100034796 Phosphoenolpyruvate carboxykinase, cytosolic [GTP] Human genes 0.000 description 1
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 1
- 102100037385 Phosphoglycerate mutase 2 Human genes 0.000 description 1
- 102100026831 Phospholipase A2, membrane associated Human genes 0.000 description 1
- 102100030448 Phospholipid-transporting ATPase IC Human genes 0.000 description 1
- 102100035362 Phosphomannomutase 2 Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 102100032391 Phosphorylase b kinase gamma catalytic chain, liver/testis isoform Human genes 0.000 description 1
- 102100033548 Phosphorylase b kinase regulatory subunit alpha, liver isoform Human genes 0.000 description 1
- 102100033547 Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform Human genes 0.000 description 1
- 102100020854 Phosphorylase b kinase regulatory subunit beta Human genes 0.000 description 1
- 102100029533 Photoreceptor-specific nuclear receptor Human genes 0.000 description 1
- 102100039421 Phytanoyl-CoA dioxygenase, peroxisomal Human genes 0.000 description 1
- 102100036090 Pituitary homeobox 2 Human genes 0.000 description 1
- 102100029331 Plakophilin-1 Human genes 0.000 description 1
- 102100034869 Plasma kallikrein Human genes 0.000 description 1
- 102100029744 Plasma membrane calcium-transporting ATPase 3 Human genes 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 1
- 101100205354 Plasmodium falciparum (isolate 3D7) proRS gene Proteins 0.000 description 1
- 102100036154 Platelet basic protein Human genes 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 102100036851 Platelet glycoprotein IX Human genes 0.000 description 1
- 102100037518 Platelet-activating factor acetylhydrolase Human genes 0.000 description 1
- 102100030655 Platelet-activating factor acetylhydrolase IB subunit beta Human genes 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- 102100026554 Platelet-derived growth factor receptor-like protein Human genes 0.000 description 1
- 102100040990 Platelet-derived growth factor subunit B Human genes 0.000 description 1
- 102100029740 Poliovirus receptor Human genes 0.000 description 1
- 101710179684 Poly [ADP-ribose] polymerase Proteins 0.000 description 1
- 102100023712 Poly [ADP-ribose] polymerase 1 Human genes 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 229920002730 Poly(butyl cyanoacrylate) Polymers 0.000 description 1
- 102100039427 Polyadenylate-binding protein 2 Human genes 0.000 description 1
- 102100036142 Polycystin-2 Human genes 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 229920012196 Polyoxymethylene Copolymer Polymers 0.000 description 1
- 108010013381 Porins Proteins 0.000 description 1
- 102000017033 Porins Human genes 0.000 description 1
- 102100034391 Porphobilinogen deaminase Human genes 0.000 description 1
- 101710189720 Porphobilinogen deaminase Proteins 0.000 description 1
- 101710170827 Porphobilinogen deaminase, chloroplastic Proteins 0.000 description 1
- 102100034368 Potassium voltage-gated channel subfamily A member 1 Human genes 0.000 description 1
- 102100022755 Potassium voltage-gated channel subfamily E member 1 Human genes 0.000 description 1
- 102100022752 Potassium voltage-gated channel subfamily E member 2 Human genes 0.000 description 1
- 102100037444 Potassium voltage-gated channel subfamily KQT member 1 Human genes 0.000 description 1
- 102100034354 Potassium voltage-gated channel subfamily KQT member 2 Human genes 0.000 description 1
- 102100034360 Potassium voltage-gated channel subfamily KQT member 3 Human genes 0.000 description 1
- 102100034363 Potassium voltage-gated channel subfamily KQT member 4 Human genes 0.000 description 1
- 102100040171 Pre-B-cell leukemia transcription factor 1 Human genes 0.000 description 1
- 102100022019 Pregnancy-specific beta-1-glycoprotein 2 Human genes 0.000 description 1
- 102100022033 Presenilin-1 Human genes 0.000 description 1
- 102100022036 Presenilin-2 Human genes 0.000 description 1
- 108010050254 Presenilins Proteins 0.000 description 1
- 102000015499 Presenilins Human genes 0.000 description 1
- 208000033377 Primary dystonia, DYT4 type Diseases 0.000 description 1
- 108010069820 Pro-Opiomelanocortin Proteins 0.000 description 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 1
- 102100032251 Pro-thyrotropin-releasing hormone Human genes 0.000 description 1
- 101710119292 Probable D-lactate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101710145525 Probable cinnamyl alcohol dehydrogenase Proteins 0.000 description 1
- 101710089118 Probable cytosol aminopeptidase Proteins 0.000 description 1
- 102100035920 Probable hydrolase PNKD Human genes 0.000 description 1
- 102100036829 Probable peptidyl-tRNA hydrolase Human genes 0.000 description 1
- 101710100896 Probable porphobilinogen deaminase Proteins 0.000 description 1
- 102100038600 Probable ubiquitin carboxyl-terminal hydrolase FAF-Y Human genes 0.000 description 1
- 102100035202 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 Human genes 0.000 description 1
- 102100028772 Proline dehydrogenase 1, mitochondrial Human genes 0.000 description 1
- 102100040829 Proline-rich protein PRCC Human genes 0.000 description 1
- 102100040120 Prominin-1 Human genes 0.000 description 1
- 102100038567 Properdin Human genes 0.000 description 1
- 102100039022 Propionyl-CoA carboxylase alpha chain, mitochondrial Human genes 0.000 description 1
- 102100039025 Propionyl-CoA carboxylase beta chain, mitochondrial Human genes 0.000 description 1
- 102100034945 Prorelaxin H1 Human genes 0.000 description 1
- 102100034949 Prorelaxin H2 Human genes 0.000 description 1
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 1
- 102100033514 Prostate and testis expressed protein 1 Human genes 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100031952 Protein 4.1 Human genes 0.000 description 1
- 102100031953 Protein 4.2 Human genes 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 102100039686 Protein AF-9 Human genes 0.000 description 1
- 102100032859 Protein AMBP Human genes 0.000 description 1
- 102100033813 Protein ENL Human genes 0.000 description 1
- 102100023602 Protein Hook homolog 1 Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100021486 Protein S100-G Human genes 0.000 description 1
- 102100035546 Protein SCO2 homolog, mitochondrial Human genes 0.000 description 1
- 102100037687 Protein SSX1 Human genes 0.000 description 1
- 102100037727 Protein SSX4 Human genes 0.000 description 1
- 101710137284 Protein STPG4 Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102100027331 Protein crumbs homolog 1 Human genes 0.000 description 1
- 102100036352 Protein disulfide-isomerase Human genes 0.000 description 1
- 102100032702 Protein jagged-1 Human genes 0.000 description 1
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 1
- 102100038231 Protein lyl-1 Human genes 0.000 description 1
- 102100023366 Protein transport protein Sec23B Human genes 0.000 description 1
- 102100030944 Protein-glutamine gamma-glutamyltransferase K Human genes 0.000 description 1
- 102100026858 Protein-lysine 6-oxidase Human genes 0.000 description 1
- 102100028965 Proteoglycan 4 Human genes 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 1
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 1
- 108010017121 Proto-Oncogene Proteins c-pim-1 Proteins 0.000 description 1
- 102000004433 Proto-Oncogene Proteins c-pim-1 Human genes 0.000 description 1
- 108010019674 Proto-Oncogene Proteins c-sis Proteins 0.000 description 1
- 102100021384 Proto-oncogene DBL Human genes 0.000 description 1
- 102100028286 Proto-oncogene tyrosine-protein kinase receptor Ret Human genes 0.000 description 1
- 102100030729 Protoheme IX farnesyltransferase, mitochondrial Human genes 0.000 description 1
- 102100029028 Protoporphyrinogen oxidase Human genes 0.000 description 1
- 208000022366 Pseudohypoaldosteronism type 2A Diseases 0.000 description 1
- 241000589615 Pseudomonas syringae Species 0.000 description 1
- 201000004613 Pseudoxanthoma elasticum Diseases 0.000 description 1
- 102100029333 Pterin-4-alpha-carbinolamine dehydratase Human genes 0.000 description 1
- 102000007615 Pulmonary Surfactant-Associated Protein A Human genes 0.000 description 1
- 108010007127 Pulmonary Surfactant-Associated Protein D Proteins 0.000 description 1
- 102100032617 Pulmonary surfactant-associated protein B Human genes 0.000 description 1
- 102100040971 Pulmonary surfactant-associated protein C Human genes 0.000 description 1
- 102100027358 Pumilio homolog 3 Human genes 0.000 description 1
- 101710156592 Putative TATA-binding protein pB263R Proteins 0.000 description 1
- 102100035369 Putative cat eye syndrome critical region protein 9 Human genes 0.000 description 1
- 102100030632 Putative myc-like protein MYCLP1 Human genes 0.000 description 1
- 101710183548 Pyridoxal 5'-phosphate synthase subunit PdxS Proteins 0.000 description 1
- 102100039233 Pyrin Human genes 0.000 description 1
- 108010059278 Pyrin Proteins 0.000 description 1
- 102100026067 Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Human genes 0.000 description 1
- 102100034909 Pyruvate kinase PKLR Human genes 0.000 description 1
- 101150058540 RAC1 gene Proteins 0.000 description 1
- 102000001183 RAG-1 Human genes 0.000 description 1
- 108060006897 RAG1 Proteins 0.000 description 1
- 101150028777 RAP1A gene Proteins 0.000 description 1
- 101150111584 RHOA gene Proteins 0.000 description 1
- 102100027669 RNA polymerase II subunit A C-terminal domain phosphatase Human genes 0.000 description 1
- 102100038150 RNA-binding protein 6 Human genes 0.000 description 1
- 108090000740 RNA-binding protein EWS Proteins 0.000 description 1
- 102000004229 RNA-binding protein EWS Human genes 0.000 description 1
- 208000036448 RPGR-related retinopathy Diseases 0.000 description 1
- 102000004913 RYR1 Human genes 0.000 description 1
- 108060007240 RYR1 Proteins 0.000 description 1
- 102100034335 Rab GDP dissociation inhibitor alpha Human genes 0.000 description 1
- 102100022881 Rab proteins geranylgeranyltransferase component A 1 Human genes 0.000 description 1
- 102100022880 Rab proteins geranylgeranyltransferase component A 2 Human genes 0.000 description 1
- 102100022851 Rab5 GDP/GTP exchange factor Human genes 0.000 description 1
- 102100035582 Ral-GDS-related protein Human genes 0.000 description 1
- 102100031426 Ras GTPase-activating protein 1 Human genes 0.000 description 1
- 102100022122 Ras-related C3 botulinum toxin substrate 1 Human genes 0.000 description 1
- 102100025003 Ras-related protein R-Ras2 Human genes 0.000 description 1
- 102100039767 Ras-related protein Rab-27A Human genes 0.000 description 1
- 102100030019 Ras-related protein Rab-7a Human genes 0.000 description 1
- 102100030706 Ras-related protein Rap-1A Human genes 0.000 description 1
- 101000957387 Rattus norvegicus Cytochrome P450 2B1 Proteins 0.000 description 1
- 101000957377 Rattus norvegicus Cytochrome P450 2B2 Proteins 0.000 description 1
- 101100443768 Rattus norvegicus Dock9 gene Proteins 0.000 description 1
- 101000817602 Rattus norvegicus Dynamin-1 Proteins 0.000 description 1
- 101001000628 Rattus norvegicus Peripheral myelin protein 22 Proteins 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 102100029165 Receptor-binding cancer antigen expressed on SiSo cells Human genes 0.000 description 1
- 102100034572 Recoverin Human genes 0.000 description 1
- 102100026432 Regulator of microtubule dynamics protein 1 Human genes 0.000 description 1
- 102100021043 Regulatory factor X-associated protein Human genes 0.000 description 1
- 101710203837 Replication-associated protein Proteins 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 102100022663 Retinal guanylyl cyclase 1 Human genes 0.000 description 1
- 102100033617 Retinal-specific phospholipid-transporting ATPase ABCA4 Human genes 0.000 description 1
- 102100028001 Retinaldehyde-binding protein 1 Human genes 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 101710124357 Retinoblastoma-associated protein Proteins 0.000 description 1
- 102100038470 Retinoic acid-induced protein 1 Human genes 0.000 description 1
- 102100031176 Retinoid isomerohydrolase Human genes 0.000 description 1
- 102100038053 Retinol dehydrogenase 5 Human genes 0.000 description 1
- 101001030849 Rhinella marina Mesotocin receptor Proteins 0.000 description 1
- 102100033193 Rho guanine nucleotide exchange factor 12 Human genes 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 102100023742 Rhodopsin kinase GRK1 Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 102100029509 Ribose-phosphate pyrophosphokinase 2 Human genes 0.000 description 1
- 102100033643 Ribosomal protein S6 kinase alpha-3 Human genes 0.000 description 1
- 102100039177 Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha Human genes 0.000 description 1
- 102100039174 Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit beta Human genes 0.000 description 1
- 102100021424 Rod outer segment membrane protein 1 Human genes 0.000 description 1
- 241000605944 Roseburia cecicola Species 0.000 description 1
- 108010055623 S-Phase Kinase-Associated Proteins Proteins 0.000 description 1
- 102100034374 S-phase kinase-associated protein 2 Human genes 0.000 description 1
- 101150097162 SERPING1 gene Proteins 0.000 description 1
- 108050003189 SH2B adapter protein 1 Proteins 0.000 description 1
- 102100024865 SH3 domain-binding protein 2 Human genes 0.000 description 1
- 108091006619 SLC11A1 Proteins 0.000 description 1
- 108091006621 SLC12A1 Proteins 0.000 description 1
- 108091006623 SLC12A3 Proteins 0.000 description 1
- 108091006633 SLC12A6 Proteins 0.000 description 1
- 108091006161 SLC17A5 Proteins 0.000 description 1
- 108091006780 SLC19A2 Proteins 0.000 description 1
- 108091006736 SLC22A5 Proteins 0.000 description 1
- 108091006418 SLC25A13 Proteins 0.000 description 1
- 108091006411 SLC25A15 Proteins 0.000 description 1
- 108091006422 SLC25A20 Proteins 0.000 description 1
- 108091006716 SLC25A4 Proteins 0.000 description 1
- 108091006715 SLC25A5 Proteins 0.000 description 1
- 108091006495 SLC25A6 Proteins 0.000 description 1
- 108091006505 SLC26A2 Proteins 0.000 description 1
- 108091006504 SLC26A3 Proteins 0.000 description 1
- 108091006507 SLC26A4 Proteins 0.000 description 1
- 108091006296 SLC2A1 Proteins 0.000 description 1
- 108091006299 SLC2A2 Proteins 0.000 description 1
- 108091006300 SLC2A4 Proteins 0.000 description 1
- 108091006311 SLC3A1 Proteins 0.000 description 1
- 101150105729 SLC45A3 gene Proteins 0.000 description 1
- 108091006318 SLC4A1 Proteins 0.000 description 1
- 108091006262 SLC4A4 Proteins 0.000 description 1
- 108091006277 SLC5A1 Proteins 0.000 description 1
- 108091006273 SLC5A5 Proteins 0.000 description 1
- 102000005030 SLC6A2 Human genes 0.000 description 1
- 102000005029 SLC6A3 Human genes 0.000 description 1
- 102000005038 SLC6A4 Human genes 0.000 description 1
- 108091006236 SLC7A7 Proteins 0.000 description 1
- 108091006239 SLC7A9 Proteins 0.000 description 1
- 101700032040 SMAD1 Proteins 0.000 description 1
- 101150019443 SMAD4 gene Proteins 0.000 description 1
- 108700028341 SMARCB1 Proteins 0.000 description 1
- 101150008214 SMARCB1 gene Proteins 0.000 description 1
- 108700022176 SOS1 Proteins 0.000 description 1
- 108060006706 SRC Proteins 0.000 description 1
- 102100030571 STE20-like serine/threonine-protein kinase Human genes 0.000 description 1
- 102100025746 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 Human genes 0.000 description 1
- 101001053942 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) Diphosphomevalonate decarboxylase Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101000677924 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 40S ribosomal protein S6-A Proteins 0.000 description 1
- 101001114408 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 40S ribosomal protein S6-B Proteins 0.000 description 1
- 101000733871 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L4-A Proteins 0.000 description 1
- 101000733875 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L4-B Proteins 0.000 description 1
- 101000853650 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L8-A Proteins 0.000 description 1
- 101000853649 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L8-B Proteins 0.000 description 1
- 101100116913 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DJP1 gene Proteins 0.000 description 1
- 101100444397 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ECM32 gene Proteins 0.000 description 1
- 101100121588 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GCY1 gene Proteins 0.000 description 1
- 101100017043 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HIR3 gene Proteins 0.000 description 1
- 101100197320 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RPL35A gene Proteins 0.000 description 1
- 101100473190 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RPN1 gene Proteins 0.000 description 1
- 101100042631 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SIN3 gene Proteins 0.000 description 1
- 101100477614 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SIR4 gene Proteins 0.000 description 1
- 102100034272 Sacsin Human genes 0.000 description 1
- 102100037204 Sal-like protein 1 Human genes 0.000 description 1
- 101100094962 Salmo salar salarin gene Proteins 0.000 description 1
- 241000533331 Salmonella bongori Species 0.000 description 1
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 208000025802 Sanfilippo syndrome type C Diseases 0.000 description 1
- 102100027697 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 Human genes 0.000 description 1
- 102100027732 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 Human genes 0.000 description 1
- 102100023363 Sarcosine dehydrogenase, mitochondrial Human genes 0.000 description 1
- 101150028021 Sardh gene Proteins 0.000 description 1
- 208000019937 Scapuloperoneal spinal muscular atrophy Diseases 0.000 description 1
- 102100037118 Scavenger receptor class B member 1 Human genes 0.000 description 1
- 101100347609 Schizosaccharomyces pombe (strain 972 / ATCC 24843) myo3 gene Proteins 0.000 description 1
- 201000004224 Schnyder corneal dystrophy Diseases 0.000 description 1
- 208000018675 Schwartz-Jampel syndrome Diseases 0.000 description 1
- 208000036451 Schwartz-Jampel syndrome type 1 Diseases 0.000 description 1
- 101000906480 Sclerotinia sclerotiorum Endoglucanase 1 Proteins 0.000 description 1
- 102100038689 Scm-like with four MBT domains protein 1 Human genes 0.000 description 1
- 102100037279 Secretoglobin family 1D member 2 Human genes 0.000 description 1
- 102100021463 Seipin Human genes 0.000 description 1
- 102100023781 Selenoprotein N Human genes 0.000 description 1
- 108010005020 Serine Peptidase Inhibitor Kazal-Type 5 Proteins 0.000 description 1
- 102100032491 Serine protease 1 Human genes 0.000 description 1
- 102100040342 Serine protease 33 Human genes 0.000 description 1
- 102100034801 Serine protease hepsin Human genes 0.000 description 1
- 102100025144 Serine protease inhibitor Kazal-type 1 Human genes 0.000 description 1
- 102100025420 Serine protease inhibitor Kazal-type 5 Human genes 0.000 description 1
- 102100026842 Serine-pyruvate aminotransferase Human genes 0.000 description 1
- 102100029437 Serine/threonine-protein kinase A-Raf Human genes 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 102100031075 Serine/threonine-protein kinase Chk2 Human genes 0.000 description 1
- 102100027939 Serine/threonine-protein kinase PAK 2 Human genes 0.000 description 1
- 101710148167 Serine/threonine-protein kinase PAK 2 Proteins 0.000 description 1
- 102100027911 Serine/threonine-protein kinase PAK 3 Human genes 0.000 description 1
- 102100026715 Serine/threonine-protein kinase STK11 Human genes 0.000 description 1
- 102100038101 Serine/threonine-protein kinase WNK4 Human genes 0.000 description 1
- 102100034136 Serine/threonine-protein kinase receptor R3 Human genes 0.000 description 1
- 102100029014 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform Human genes 0.000 description 1
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 101100174184 Serratia marcescens fosA gene Proteins 0.000 description 1
- 102100032277 Serum amyloid A-1 protein Human genes 0.000 description 1
- 102100035476 Serum paraoxonase/arylesterase 1 Human genes 0.000 description 1
- 102100022824 Serum paraoxonase/arylesterase 2 Human genes 0.000 description 1
- 108010089417 Sex Hormone-Binding Globulin Proteins 0.000 description 1
- 102100030758 Sex hormone-binding globulin Human genes 0.000 description 1
- 102100022978 Sex-determining region Y protein Human genes 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 108700025071 Short Stature Homeobox Proteins 0.000 description 1
- 102100029992 Short stature homeobox protein Human genes 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- 102100024639 Short-chain specific acyl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100028760 Sialidase-1 Human genes 0.000 description 1
- 108010011033 Signaling Lymphocytic Activation Molecule Associated Protein Proteins 0.000 description 1
- 102000013970 Signaling Lymphocytic Activation Molecule Associated Protein Human genes 0.000 description 1
- 208000003874 Simpson-Golabi-Behmel syndrome Diseases 0.000 description 1
- 241000589196 Sinorhizobium meliloti Species 0.000 description 1
- 108700031298 Smad4 Proteins 0.000 description 1
- 102100029873 Small muscular protein Human genes 0.000 description 1
- 102100027195 Sodium channel protein type 4 subunit alpha Human genes 0.000 description 1
- 102000006633 Sodium-Bicarbonate Symporters Human genes 0.000 description 1
- 102000058090 Sodium-Glucose Transporter 1 Human genes 0.000 description 1
- 102100028874 Sodium-dependent serotonin transporter Human genes 0.000 description 1
- 102100020886 Sodium/iodide cotransporter Human genes 0.000 description 1
- 102100034351 Sodium/potassium-transporting ATPase subunit gamma Human genes 0.000 description 1
- 102100034245 Solute carrier family 12 member 6 Human genes 0.000 description 1
- 102100023537 Solute carrier family 2, facilitated glucose transporter member 2 Human genes 0.000 description 1
- 102100033939 Solute carrier family 2, facilitated glucose transporter member 4 Human genes 0.000 description 1
- 102100023102 Solute carrier family 22 member 18 Human genes 0.000 description 1
- 102100036924 Solute carrier family 22 member 5 Human genes 0.000 description 1
- 102100023802 Somatostatin receptor type 2 Human genes 0.000 description 1
- 102100021796 Sonic hedgehog protein Human genes 0.000 description 1
- 101710113849 Sonic hedgehog protein Proteins 0.000 description 1
- 101150100839 Sos1 gene Proteins 0.000 description 1
- 102100038829 Spastin Human genes 0.000 description 1
- 102100037608 Spectrin alpha chain, erythrocytic 1 Human genes 0.000 description 1
- 102100037613 Spectrin beta chain, erythrocytic Human genes 0.000 description 1
- 102100026503 Sperm mitochondrial-associated cysteine-rich protein Human genes 0.000 description 1
- 102100022322 Sperm protein associated with the nucleus on the X chromosome C Human genes 0.000 description 1
- 102100037616 Spermine synthase Human genes 0.000 description 1
- 108010061312 Sphingomyelin Phosphodiesterase Proteins 0.000 description 1
- 102000011971 Sphingomyelin Phosphodiesterase Human genes 0.000 description 1
- 102100026263 Sphingomyelin phosphodiesterase Human genes 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 description 1
- 101710185775 Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 1
- 102100028026 Statherin Human genes 0.000 description 1
- 108010049356 Steroid 11-beta-Hydroxylase Proteins 0.000 description 1
- 108010015330 Steroid 17-alpha-Hydroxylase Proteins 0.000 description 1
- 102000001854 Steroid 17-alpha-Hydroxylase Human genes 0.000 description 1
- 102100021719 Steroid 17-alpha-hydroxylase/17,20 lyase Human genes 0.000 description 1
- 102100039081 Steroid Delta-isomerase Human genes 0.000 description 1
- 108010048349 Steroidogenic Factor 1 Proteins 0.000 description 1
- 102100029856 Steroidogenic factor 1 Human genes 0.000 description 1
- 102100036325 Sterol 26-hydroxylase, mitochondrial Human genes 0.000 description 1
- 102100021993 Sterol O-acyltransferase 1 Human genes 0.000 description 1
- 102100021685 Stomatin Human genes 0.000 description 1
- 101000874347 Streptococcus agalactiae IgA FC receptor Proteins 0.000 description 1
- 102100028847 Stromelysin-3 Human genes 0.000 description 1
- 102100038014 Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial Human genes 0.000 description 1
- 102100023155 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial Human genes 0.000 description 1
- 102100031715 Succinate dehydrogenase assembly factor 2, mitochondrial Human genes 0.000 description 1
- 102100023673 Succinate-semialdehyde dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100020868 Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial Human genes 0.000 description 1
- 102100030113 Sulfate transporter Human genes 0.000 description 1
- 102100020951 Sulfite oxidase, mitochondrial Human genes 0.000 description 1
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 1
- 102100038836 Superoxide dismutase [Cu-Zn] Human genes 0.000 description 1
- 102100032891 Superoxide dismutase [Mn], mitochondrial Human genes 0.000 description 1
- 108060007963 Surf-1 Proteins 0.000 description 1
- 102000046669 Surf-1 Human genes 0.000 description 1
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 1
- 102100037352 Sushi repeat-containing protein SRPX Human genes 0.000 description 1
- 102100021905 Synapsin-1 Human genes 0.000 description 1
- 102100028706 Synaptophysin Human genes 0.000 description 1
- 101000898020 Synechocystis sp. (strain PCC 6803 / Kazusa) Homogentisate phytyltransferase Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108010014480 T-box transcription factor 5 Proteins 0.000 description 1
- 102100036839 T-box transcription factor TBX22 Human genes 0.000 description 1
- 102100038409 T-box transcription factor TBX3 Human genes 0.000 description 1
- 102100024755 T-box transcription factor TBX5 Human genes 0.000 description 1
- 208000000389 T-cell leukemia Diseases 0.000 description 1
- 102100033111 T-cell leukemia homeobox protein 1 Human genes 0.000 description 1
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 description 1
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 1
- 102100037911 T-cell surface glycoprotein CD3 gamma chain Human genes 0.000 description 1
- 102100037906 T-cell surface glycoprotein CD3 zeta chain Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 108700012457 TACSTD2 Proteins 0.000 description 1
- 102100040296 TATA-box-binding protein Human genes 0.000 description 1
- 101710145783 TATA-box-binding protein Proteins 0.000 description 1
- 102100033456 TGF-beta receptor type-1 Human genes 0.000 description 1
- 102100033455 TGF-beta receptor type-2 Human genes 0.000 description 1
- 102100036074 TIR domain-containing adapter molecule 2 Human genes 0.000 description 1
- 101150031162 TM4SF1 gene Proteins 0.000 description 1
- 108090000925 TNF receptor-associated factor 2 Proteins 0.000 description 1
- 102100033082 TNF receptor-associated factor 3 Human genes 0.000 description 1
- 102100034779 TRAF family member-associated NF-kappa-B activator Human genes 0.000 description 1
- 101150097293 TSC3 gene Proteins 0.000 description 1
- 101800000849 Tachykinin-associated peptide 2 Proteins 0.000 description 1
- 102100026508 Tafazzin Human genes 0.000 description 1
- 101710175789 Tafazzin Proteins 0.000 description 1
- 101710199973 Tail tube protein Proteins 0.000 description 1
- 102100035155 Telethonin Human genes 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 208000028911 Temporomandibular Joint disease Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 102100035115 Testin Human genes 0.000 description 1
- 101710070533 Testin Proteins 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 102100040952 Tetraspanin-7 Human genes 0.000 description 1
- 101150050472 Tfr2 gene Proteins 0.000 description 1
- 101000874827 Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8) Dephospho-CoA kinase Proteins 0.000 description 1
- 102100030104 Thiamine transporter 1 Human genes 0.000 description 1
- 102100034162 Thiopurine S-methyltransferase Human genes 0.000 description 1
- 108010022173 Thiosulfate sulfurtransferase Proteins 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 102100036704 Thromboxane A2 receptor Human genes 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 1
- 101800001703 Thymopentin Proteins 0.000 description 1
- 102400000160 Thymopentin Human genes 0.000 description 1
- 108010057966 Thyroid Nuclear Factor 1 Proteins 0.000 description 1
- 102100028702 Thyroid hormone receptor alpha Human genes 0.000 description 1
- 102100033451 Thyroid hormone receptor beta Human genes 0.000 description 1
- 101710113649 Thyroid peroxidase Proteins 0.000 description 1
- 102100029337 Thyrotropin receptor Human genes 0.000 description 1
- 102100029530 Thyrotropin subunit beta Human genes 0.000 description 1
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 1
- 108010031429 Tissue Inhibitor of Metalloproteinase-3 Proteins 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102100040526 Tissue alpha-L-fucosidase Human genes 0.000 description 1
- 102100033571 Tissue-type plasminogen activator Human genes 0.000 description 1
- 206010062129 Tongue neoplasm Diseases 0.000 description 1
- 102100037454 Torsin-1A Human genes 0.000 description 1
- 102100021386 Trans-acting T-cell-specific transcription factor GATA-3 Human genes 0.000 description 1
- 102100040423 Transcobalamin-2 Human genes 0.000 description 1
- 108010057666 Transcription Factor CHOP Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000004893 Transcription factor AP-2 Human genes 0.000 description 1
- 108090001039 Transcription factor AP-2 Proteins 0.000 description 1
- 102100028507 Transcription factor E3 Human genes 0.000 description 1
- 102100026385 Transcription factor Ovo-like 2 Human genes 0.000 description 1
- 102100034204 Transcription factor SOX-9 Human genes 0.000 description 1
- 102100021172 Transcription initiation factor TFIID subunit 7-like Human genes 0.000 description 1
- 102100035559 Transcriptional activator GLI3 Human genes 0.000 description 1
- 102100030780 Transcriptional activator Myb Human genes 0.000 description 1
- 102100026143 Transferrin receptor protein 2 Human genes 0.000 description 1
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 description 1
- 108010082684 Transforming Growth Factor-beta Type II Receptor Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 102100033460 Transforming growth factor beta-3 proprotein Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 208000008963 Transient myeloproliferative syndrome Diseases 0.000 description 1
- 102100033055 Transketolase Human genes 0.000 description 1
- 102100033690 Transmembrane channel-like protein 1 Human genes 0.000 description 1
- 102100040666 Transmembrane protein 185A Human genes 0.000 description 1
- 102100029290 Transthyretin Human genes 0.000 description 1
- 102100040421 Treacle protein Human genes 0.000 description 1
- 102100029677 Trehalase Human genes 0.000 description 1
- 241000589910 Treponema phagedenis Species 0.000 description 1
- 101100395211 Trichoderma harzianum his3 gene Proteins 0.000 description 1
- 206010044628 Trichothiodystrophy Diseases 0.000 description 1
- 102100033632 Tropomyosin alpha-1 chain Human genes 0.000 description 1
- 102100036471 Tropomyosin beta chain Human genes 0.000 description 1
- 241000223104 Trypanosoma Species 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 102100029293 Tubby-related protein 1 Human genes 0.000 description 1
- 102100031638 Tuberin Human genes 0.000 description 1
- 102100036788 Tubulin beta-4A chain Human genes 0.000 description 1
- 102100033469 Tubulointerstitial nephritis antigen-like Human genes 0.000 description 1
- 102100040192 Tudor domain-containing protein 1 Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 102100032100 Tumor necrosis factor ligand superfamily member 8 Human genes 0.000 description 1
- 101710187743 Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 1
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 1
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 1
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100030810 Tumor necrosis factor receptor superfamily member EDAR Human genes 0.000 description 1
- 102100033081 Tumor necrosis factor receptor type 1-associated DEATH domain protein Human genes 0.000 description 1
- 102100027881 Tumor protein 63 Human genes 0.000 description 1
- 101710140697 Tumor protein 63 Proteins 0.000 description 1
- 102100040879 Tumor susceptibility gene 101 protein Human genes 0.000 description 1
- 102100027212 Tumor-associated calcium signal transducer 2 Human genes 0.000 description 1
- 102100027193 Twinkle mtDNA helicase Human genes 0.000 description 1
- 102100030398 Twist-related protein 1 Human genes 0.000 description 1
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 1
- 102100026803 Type-1 angiotensin II receptor Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102100021869 Tyrosine aminotransferase Human genes 0.000 description 1
- 101710175714 Tyrosine aminotransferase Proteins 0.000 description 1
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 1
- 102100037333 Tyrosine-protein kinase Fes/Fps Human genes 0.000 description 1
- 102100025387 Tyrosine-protein kinase JAK3 Human genes 0.000 description 1
- 102100021125 Tyrosine-protein kinase ZAP-70 Human genes 0.000 description 1
- 102100033020 Tyrosine-protein phosphatase non-receptor type 12 Human genes 0.000 description 1
- 102100020785 U11/U12 small nuclear ribonucleoprotein 35 kDa protein Human genes 0.000 description 1
- 102100040118 U4/U6 small nuclear ribonucleoprotein Prp31 Human genes 0.000 description 1
- 101710155955 U4/U6.U5 tri-snRNP-associated protein 1 Proteins 0.000 description 1
- 102100021436 UDP-glucose 4-epimerase Human genes 0.000 description 1
- 102100020797 UMP-CMP kinase Human genes 0.000 description 1
- 101150076392 UOX gene Proteins 0.000 description 1
- 102100039547 UbiA prenyltransferase domain-containing protein 1 Human genes 0.000 description 1
- 108010005656 Ubiquitin Thiolesterase Proteins 0.000 description 1
- 102100025038 Ubiquitin carboxyl-terminal hydrolase isozyme L1 Human genes 0.000 description 1
- 102100037261 Ubiquitin-conjugating enzyme E2 A Human genes 0.000 description 1
- 102100037160 Ubiquitin-like modifier-activating enzyme 1 Human genes 0.000 description 1
- 102100026728 Uncharacterized protein FAM215A Human genes 0.000 description 1
- 102100035824 Unconventional myosin-Ig Human genes 0.000 description 1
- 102100031835 Unconventional myosin-VIIa Human genes 0.000 description 1
- 102100029836 Unconventional myosin-XV Human genes 0.000 description 1
- 101710166980 Uridylate kinase Proteins 0.000 description 1
- 102100024118 Uroporphyrinogen decarboxylase Human genes 0.000 description 1
- 108020000963 Uroporphyrinogen-III synthase Proteins 0.000 description 1
- 102100034397 Uroporphyrinogen-III synthase Human genes 0.000 description 1
- 201000008554 Usher syndrome type 3A Diseases 0.000 description 1
- 102100037930 Usherin Human genes 0.000 description 1
- 102100029591 V(D)J recombination-activating protein 2 Human genes 0.000 description 1
- 102100020738 V-type proton ATPase 116 kDa subunit a 3 Human genes 0.000 description 1
- 102100039468 V-type proton ATPase subunit B, kidney isoform Human genes 0.000 description 1
- 101150045640 VWF gene Proteins 0.000 description 1
- 102100035048 Vacuolar ATPase assembly integral membrane protein VMA21 Human genes 0.000 description 1
- 102100039114 Vacuolar protein sorting-associated protein 13A Human genes 0.000 description 1
- 102100039113 Vacuolar protein sorting-associated protein 13B Human genes 0.000 description 1
- 102100022962 Vam6/Vps39-like protein Human genes 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 1
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 1
- 102100037108 Vasopressin V2 receptor Human genes 0.000 description 1
- 102100024591 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 241000607594 Vibrio alginolyticus Species 0.000 description 1
- 241000607272 Vibrio parahaemolyticus Species 0.000 description 1
- 101100173799 Vibrio parahaemolyticus serotype O3:K6 (strain RIMD 2210633) flgH1 gene Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 102100038182 Vitamin K-dependent gamma-carboxylase Human genes 0.000 description 1
- 102100029477 Vitamin K-dependent protein C Human genes 0.000 description 1
- 102100028885 Vitamin K-dependent protein S Human genes 0.000 description 1
- 102100033031 Voltage-dependent L-type calcium channel subunit alpha-1F Human genes 0.000 description 1
- 102100025807 Voltage-dependent L-type calcium channel subunit beta-2 Human genes 0.000 description 1
- 102100025836 Voltage-dependent L-type calcium channel subunit beta-4 Human genes 0.000 description 1
- 102100037059 Voltage-dependent calcium channel subunit alpha-2/delta-1 Human genes 0.000 description 1
- 102100029478 WD repeat-containing protein 62 Human genes 0.000 description 1
- 201000003263 Waardenburg syndrome type 2A Diseases 0.000 description 1
- 208000008256 Waardenburg syndrome type 2B Diseases 0.000 description 1
- 108010007135 Werner Syndrome Helicase Proteins 0.000 description 1
- 102100023034 Wiskott-Aldrich syndrome protein Human genes 0.000 description 1
- 241000605939 Wolinella succinogenes Species 0.000 description 1
- 108091007416 X-inactive specific transcript Proteins 0.000 description 1
- 208000032470 X-linked 1 intellectual disability Diseases 0.000 description 1
- 208000034576 X-linked 14 intellectual disability Diseases 0.000 description 1
- 208000032009 X-linked 2 intellectual disability Diseases 0.000 description 1
- 208000034560 X-linked 20 intellectual disability Diseases 0.000 description 1
- 208000031691 X-linked Charcot-Marie-Tooth disease type 2 Diseases 0.000 description 1
- 208000031692 X-linked Charcot-Marie-Tooth disease type 3 Diseases 0.000 description 1
- 108700042462 X-linked Nuclear Proteins 0.000 description 1
- 201000002380 X-linked amelogenesis imperfecta hypoplastic/hypomaturation 2 Diseases 0.000 description 1
- 208000002564 X-linked cardiac valvular dysplasia Diseases 0.000 description 1
- 201000000467 X-linked cone-rod dystrophy 1 Diseases 0.000 description 1
- 201000000465 X-linked cone-rod dystrophy 2 Diseases 0.000 description 1
- 208000029823 X-linked deafness 1 Diseases 0.000 description 1
- 208000029828 X-linked deafness 3 Diseases 0.000 description 1
- 208000029830 X-linked deafness 4 Diseases 0.000 description 1
- 201000003426 X-linked dystonia-parkinsonism Diseases 0.000 description 1
- 208000032344 X-linked myopia 1 Diseases 0.000 description 1
- 102100040089 X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 Human genes 0.000 description 1
- 208000014914 X-linked spinal muscular atrophy 2 Diseases 0.000 description 1
- 108091035715 XIST (gene) Proteins 0.000 description 1
- 108700031763 Xeroderma Pigmentosum Group D Proteins 0.000 description 1
- 102100032726 Y+L amino acid transporter 1 Human genes 0.000 description 1
- 241000607447 Yersinia enterocolitica Species 0.000 description 1
- 102100025085 Zinc finger MYM-type protein 2 Human genes 0.000 description 1
- 102100025417 Zinc finger MYM-type protein 3 Human genes 0.000 description 1
- 102100023405 Zinc finger X-chromosomal protein Human genes 0.000 description 1
- 102100040802 Zinc finger Y-chromosomal protein Human genes 0.000 description 1
- 102100024672 Zinc finger protein 35 Human genes 0.000 description 1
- 102100024669 Zinc finger protein 41 Human genes 0.000 description 1
- 102100040724 Zinc finger protein 711 Human genes 0.000 description 1
- 102100023492 Zinc finger protein ZIC 2 Human genes 0.000 description 1
- 102100023495 Zinc finger protein ZIC 3 Human genes 0.000 description 1
- 102100023140 Zinc transporter ZIP4 Human genes 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 208000025531 adult-onset foveomacular vitelliform dystrophy Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- GZCGUPFRVQAUEE-KVTDHHQDSA-N aldehydo-D-mannose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O GZCGUPFRVQAUEE-KVTDHHQDSA-N 0.000 description 1
- GZCGUPFRVQAUEE-BXKVDMCESA-N aldehydo-L-mannose Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-BXKVDMCESA-N 0.000 description 1
- 150000001312 aldohexoses Chemical class 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 229960004784 allergens Drugs 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 108010075843 alpha-2-HS-Glycoprotein Proteins 0.000 description 1
- 102000012005 alpha-2-HS-Glycoprotein Human genes 0.000 description 1
- 108010009380 alpha-N-acetyl-D-glucosaminidase Proteins 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 201000000673 alpha-methylacyl-CoA racemase deficiency Diseases 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 208000026753 anterior segment dysgenesis Diseases 0.000 description 1
- 108010036226 antigen CYFRA21.1 Proteins 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 201000002496 arrhythmogenic right ventricular dysplasia 1 Diseases 0.000 description 1
- 101150085047 asd-1 gene Proteins 0.000 description 1
- 208000037741 atherosclerosis susceptibility Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000030759 autism susceptibility 1 Diseases 0.000 description 1
- 208000031592 autosomal dominant myopia 2 Diseases 0.000 description 1
- 208000021033 autosomal dominant polycystic liver disease Diseases 0.000 description 1
- 208000036479 autosomal dominant scapuloperoneal spinal muscular atrophy Diseases 0.000 description 1
- 201000006257 autosomal recessive nonsyndromic deafness 5 Diseases 0.000 description 1
- 208000031397 autosomal recessive nonsyndromic hearing loss 5 Diseases 0.000 description 1
- 201000003291 autosomal recessive osteopetrosis 1 Diseases 0.000 description 1
- 102100021298 b(0,+)-type amino acid transporter 1 Human genes 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 210000001224 bacterial fimbriae Anatomy 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940092528 bartonella bacilliformis Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 201000008181 benign familial infantile epilepsy Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 102100038623 cGMP-gated cation channel alpha-1 Human genes 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 201000009828 cataract 10 multiple types Diseases 0.000 description 1
- 201000009912 cataract 32 multiple types Diseases 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 101150055276 ced-3 gene Proteins 0.000 description 1
- 101150039936 ced-9 gene Proteins 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 208000031406 ceroid lipofuscinosis, neuronal, 4 (Kufs type) Diseases 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 208000008403 chondrocalcinosis 1 Diseases 0.000 description 1
- 201000008675 chorea-acanthocytosis Diseases 0.000 description 1
- 208000003571 choroideremia Diseases 0.000 description 1
- 208000029659 chromosome 2q37 deletion syndrome Diseases 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 230000002281 colonystimulating effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 208000003908 cone-rod dystrophy 1 Diseases 0.000 description 1
- 208000005011 cone-rod dystrophy 5 Diseases 0.000 description 1
- 208000035443 congenital autosomal dominant nystagmus 2 Diseases 0.000 description 1
- 208000031350 congenital autosomal dominant nystagmus 4 Diseases 0.000 description 1
- 208000027332 congenital dyserythropoietic anemia type II Diseases 0.000 description 1
- 208000012231 congenital dyserythropoietic anemia type III Diseases 0.000 description 1
- 201000000728 congenital hereditary endothelial dystrophy of cornea Diseases 0.000 description 1
- 208000028494 congenital hereditary endothelial dystrophy type I Diseases 0.000 description 1
- 208000028889 congenital nystagmus 2 Diseases 0.000 description 1
- 208000028886 congenital nystagmus 4 Diseases 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 238000004690 coupled electron pair approximation Methods 0.000 description 1
- 101150044687 crm gene Proteins 0.000 description 1
- 230000000959 cryoprotective effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 108010048032 cyclophilin B Proteins 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 108010012052 cytochrome P-450 CYP2C subfamily Proteins 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 229940127276 delta-like ligand 3 Drugs 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 208000036969 diffuse hereditary with spheroids 1 leukoencephalopathy Diseases 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- 208000013984 distal hereditary motor neuronopathy type 2 Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 208000001321 ectrodactyly, ectodermal dysplasia, and cleft lip-palate syndrome 1 Diseases 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108060002564 ependymin Proteins 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 208000027386 essential tremor 1 Diseases 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 201000001267 familial hypocalciuric hypercalcemia 2 Diseases 0.000 description 1
- 201000001265 familial hypocalciuric hypercalcemia 3 Diseases 0.000 description 1
- WDQNIWFZKXZFAY-UHFFFAOYSA-M fentin acetate Chemical compound CC([O-])=O.C1=CC=CC=C1[Sn+](C=1C=CC=CC=1)C1=CC=CC=C1 WDQNIWFZKXZFAY-UHFFFAOYSA-M 0.000 description 1
- VLMZMRDOMOGGFA-WDBKCZKBSA-N festuclavine Chemical compound C1=CC([C@H]2C[C@H](CN(C)[C@@H]2C2)C)=C3C2=CNC3=C1 VLMZMRDOMOGGFA-WDBKCZKBSA-N 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 208000030376 fibronectin glomerulopathy Diseases 0.000 description 1
- 101150060393 flaC gene Proteins 0.000 description 1
- 101150093258 flgA gene Proteins 0.000 description 1
- 101150030774 flgB gene Proteins 0.000 description 1
- 101150091294 flgC gene Proteins 0.000 description 1
- 101150049711 flgF gene Proteins 0.000 description 1
- 101150110087 flgG gene Proteins 0.000 description 1
- 101150045261 flgH gene Proteins 0.000 description 1
- 101150012969 flgI gene Proteins 0.000 description 1
- 101150068991 flhB gene Proteins 0.000 description 1
- 101150017109 fliA gene Proteins 0.000 description 1
- 101150036299 fliE gene Proteins 0.000 description 1
- 101150056436 fliG gene Proteins 0.000 description 1
- 101150106199 fliL gene Proteins 0.000 description 1
- 101150073554 fliM gene Proteins 0.000 description 1
- 101150034368 fliZ gene Proteins 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- 108010006620 fodrin Proteins 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 101150078861 fos gene Proteins 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 1
- 208000030377 glomuvenous malformation Diseases 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 101150055960 hemB gene Proteins 0.000 description 1
- 201000007787 hereditary spastic paraplegia 23 Diseases 0.000 description 1
- 201000007474 hereditary spastic paraplegia 3A Diseases 0.000 description 1
- 201000007473 hereditary spastic paraplegia 4 Diseases 0.000 description 1
- 201000007104 hereditary spastic paraplegia 5A Diseases 0.000 description 1
- 108010044853 histidine-rich proteins Proteins 0.000 description 1
- 201000008665 holoprosencephaly 1 Diseases 0.000 description 1
- 208000008777 holoprosencephaly 2 Diseases 0.000 description 1
- 102000056735 human MART-2 Human genes 0.000 description 1
- 102000056142 human TLR1 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 201000010551 hypertrophic cardiomyopathy 2 Diseases 0.000 description 1
- 201000010517 hypertrophic cardiomyopathy 6 Diseases 0.000 description 1
- 208000031813 idiopathic 1 basal ganglia calcification Diseases 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 208000011635 immunodeficiency 61 Diseases 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 108010092830 integrin alpha7beta1 Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 108010028309 kalinin Proteins 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 108010008094 laminin alpha 3 Proteins 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 230000034701 macropinocytosis Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 201000006010 major affective disorder 1 Diseases 0.000 description 1
- 201000006009 major affective disorder 2 Diseases 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 150000002703 mannose derivatives Chemical class 0.000 description 1
- AEUKDPKXTPNBNY-XEYRWQBLSA-N mcp 2 Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)C1=CC=CC=C1 AEUKDPKXTPNBNY-XEYRWQBLSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- ONCZDRURRATYFI-QTCHDTBASA-N methyl (2z)-2-methoxyimino-2-[2-[[(e)-1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]acetate Chemical compound CO\N=C(/C(=O)OC)C1=CC=CC=C1CO\N=C(/C)C1=CC=CC(C(F)(F)F)=C1 ONCZDRURRATYFI-QTCHDTBASA-N 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 208000005340 mucopolysaccharidosis III Diseases 0.000 description 1
- 208000036707 mucopolysaccharidosis type 3C Diseases 0.000 description 1
- 208000012224 mucopolysaccharidosis type IIIC Diseases 0.000 description 1
- 108010066052 multidrug resistance-associated protein 1 Proteins 0.000 description 1
- 208000033573 multinodular 1 with or without Sertoli-Leydig cell tumors goiter Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 208000034420 multiple type III exostoses Diseases 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 101150091791 mvk gene Proteins 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- LBCGUKCXRVUULK-QGZVFWFLSA-N n-[2-(1,3-benzodioxol-5-yl)ethyl]-1-[2-(1h-imidazol-1-yl)-6-methylpyrimidin-4-yl]-d-prolinamide Chemical compound N=1C(C)=CC(N2[C@H](CCC2)C(=O)NCCC=2C=C3OCOC3=CC=2)=NC=1N1C=CN=C1 LBCGUKCXRVUULK-QGZVFWFLSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- AEMBWNDIEFEPTH-UHFFFAOYSA-N n-tert-butyl-n-ethylnitrous amide Chemical compound CCN(N=O)C(C)(C)C AEMBWNDIEFEPTH-UHFFFAOYSA-N 0.000 description 1
- 208000031580 neurogenic type arthrogryposis multiplex congenita 2 Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 201000007657 neuronal ceroid lipofuscinosis 5 Diseases 0.000 description 1
- 208000033581 nocturnal 1 enuresis Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 208000023876 non-syndromic X-linked intellectual disability 1 Diseases 0.000 description 1
- 208000024746 non-syndromic X-linked intellectual disability 14 Diseases 0.000 description 1
- 208000024707 non-syndromic X-linked intellectual disability 2 Diseases 0.000 description 1
- 208000024733 non-syndromic X-linked intellectual disability 20 Diseases 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 201000006352 oculocerebrorenal syndrome Diseases 0.000 description 1
- 208000000895 ophthalmoplegia, external, and myopia Diseases 0.000 description 1
- 208000027014 optic atrophy 1 Diseases 0.000 description 1
- 208000025019 optic atrophy 2 Diseases 0.000 description 1
- 201000006284 orofacial cleft 1 Diseases 0.000 description 1
- 208000010486 orofacial cleft 3 Diseases 0.000 description 1
- 201000001937 osteoporosis-pseudoglioma syndrome Diseases 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 208000007138 otopalatodigital syndrome type 1 Diseases 0.000 description 1
- 208000037346 otosclerosis 1 Diseases 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 101150008465 pdb1 gene Proteins 0.000 description 1
- 108010044156 peptidyl-prolyl cis-trans isomerase b Proteins 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920002791 poly-4-hydroxybutyrate Polymers 0.000 description 1
- 208000030151 polycystic kidney disease 3 with or without polycystic liver disease Diseases 0.000 description 1
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 1
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 201000001682 primary autosomal recessive microcephaly 2 with or without cortical malformations Diseases 0.000 description 1
- 208000032288 primary infantile B glaucoma 3 Diseases 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108020004930 proline dehydrogenase Proteins 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 108010079891 prostein Proteins 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 208000023558 pseudoxanthoma elasticum (inherited or acquired) Diseases 0.000 description 1
- 108010033990 rab27 GTP-Binding Proteins Proteins 0.000 description 1
- 230000021014 regulation of cell growth Effects 0.000 description 1
- 201000002065 renal hypomagnesemia 2 Diseases 0.000 description 1
- 108091008726 retinoic acid receptors α Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 201000002636 rippling muscle disease 1 Diseases 0.000 description 1
- 108020000318 saccharopine dehydrogenase Proteins 0.000 description 1
- 201000000381 schizophrenia 1 Diseases 0.000 description 1
- 201000000379 schizophrenia 2 Diseases 0.000 description 1
- 201000000377 schizophrenia 3 Diseases 0.000 description 1
- 201000000372 schizophrenia 4 Diseases 0.000 description 1
- 201000000370 schizophrenia 6 Diseases 0.000 description 1
- 206010051951 scimitar syndrome Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 108010039827 snRNP Core Proteins Proteins 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 201000003624 spinocerebellar ataxia type 1 Diseases 0.000 description 1
- 201000003262 split hand-foot malformation 1 Diseases 0.000 description 1
- 208000004452 split hand-foot malformation 2 Diseases 0.000 description 1
- 201000003268 split hand-foot malformation 3 Diseases 0.000 description 1
- 108010088201 squamous cell carcinoma-related antigen Proteins 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 101150050955 stn gene Proteins 0.000 description 1
- CXVGEDCSTKKODG-UHFFFAOYSA-N sulisobenzone Chemical compound C1=C(S(O)(=O)=O)C(OC)=CC(O)=C1C(=O)C1=CC=CC=C1 CXVGEDCSTKKODG-UHFFFAOYSA-N 0.000 description 1
- 108010045815 superoxide dismutase 2 Proteins 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 102220482183 tRNA pseudouridine synthase A_E11S_mutation Human genes 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 208000011317 telomere syndrome Diseases 0.000 description 1
- WWJZWCUNLNYYAU-UHFFFAOYSA-N temephos Chemical compound C1=CC(OP(=S)(OC)OC)=CC=C1SC1=CC=C(OP(=S)(OC)OC)C=C1 WWJZWCUNLNYYAU-UHFFFAOYSA-N 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229940118376 tetanus toxin Drugs 0.000 description 1
- PSWFFKRAVBDQEG-YGQNSOCVSA-N thymopentin Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 PSWFFKRAVBDQEG-YGQNSOCVSA-N 0.000 description 1
- 229960004517 thymopentin Drugs 0.000 description 1
- 201000006134 tongue cancer Diseases 0.000 description 1
- 201000003315 torsion dystonia 4 Diseases 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
- 108010058734 transglutaminase 1 Proteins 0.000 description 1
- 201000003569 transient neonatal diabetes mellitus Diseases 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 108010020589 trehalose-6-phosphate synthase Proteins 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 201000007906 type 1 diabetes mellitus 2 Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 208000019206 urinary tract infection Diseases 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 102000009310 vitamin D receptors Human genes 0.000 description 1
- 108050000156 vitamin D receptors Proteins 0.000 description 1
- 208000020939 vitelliform macular dystrophy 1 Diseases 0.000 description 1
- 208000006542 von Hippel-Lindau disease Diseases 0.000 description 1
- 108010073629 xeroderma pigmentosum group F protein Proteins 0.000 description 1
- 229940098232 yersinia enterocolitica Drugs 0.000 description 1
- 208000036381 Åland Islands eye disease Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
Definitions
- the present invention is directed to (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA.
- the inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate.
- the present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.
- nucleic acids are therefore regarded as important tools for gene therapy and prophylactic and therapeutic vaccination against infectious and malignant diseases.
- nucleic acids both DNA and RNA
- Nucleic acids have been used widely in gene therapy, either in naked or in complexed form.
- the application of nucleic acids and particularly of RNA for therapeutic vaccination is revised permanently.
- nucleic acids and particularly RNA or mRNA molecules can be optimized for a more efficient transcription rate.
- the 5′ Cap structure, the untranslated and translated regions are typically modified to stabilize the molecule or to change its characteristics to enhance its translation properties (see e.g. Pascolo, S. (2008), Handb Exp Pharmacol (183): 221-35).
- different formulations of nucleic acids and particularly of mRNA molecules or different delivery routes are investigated to achieve improved expression levels.
- RNA thus represents a favored tool in modern molecular medicine. It also exhibits some superior properties over DNA cell transfection. As generally known, transfection of DNA molecules may lead to serious problems. E.g. application of DNA molecules bears the risk that the DNA integrates into the host genome. Integration of foreign DNA into the host genome can have an influence on expression of the host genes and possibly triggers expression of an oncogene or destruction of a tumor suppressor gene. Furthermore, a gene—and therefore the gene product—which is essential to the host may also be inactivated by integration of the foreign DNA into the coding region of this gene. There may be a particular danger if integration of the DNA takes place into a gene which is involved in regulation of cell growth.
- DNA still represents an important tool, even though some risks are associated with the application of DNA. These risks do not occur if RNA, particularly mRNA, is used instead of DNA.
- An advantage of using RNA rather than DNA is that no virus-derived promoter element has to be administered in vivo and no integration into the genome may occur. Furthermore, the RNA has not to overcome the barrier to the nucleus.
- a main disadvantage resulting from the use of RNA is due to its huge instability. Even though it is understood that DNA, e.g., naked DNA, introduced into a patient circulatory system is typically not stable and therefore may have little chance of affecting most disease processes (see e.g.
- RNA Ribonucleic acid
- RNA is typically stored at ⁇ 20° C. or even ⁇ 80° C. and RNAse free conditions to prevent a prior degradation of the RNA.
- This method does not prevent a loss of function effectively and additionally is very cost-intensive for shipping when these temperatures have to be guaranteed.
- One further method for stabilization comprises lyophilization or freeze-drying of the RNA. Lyophilization is a worldwide known and recognized method in the art to enhance storage stability of temperature sensitive biomolecules, such as nucleic acids. During lyophilization, typically water is removed from a frozen sample containing nucleic acids via sublimation. The process of lyophilization is usually characterized by a primary and a secondary drying step. During the primary drying step, free, i.e.
- the sample containing nucleic acids is initially cooled below the freezing point of the solution and accordingly of the water contained therein. As a result, the water freezes. Dependent on temperature, rate of cooling down (freezing rate), and the time for freezing, the crystal structure of water is changed. This exhibits physical stress on the nucleic acid (sequence) and other components of the solution, which may lead to a damage of the nucleic acid, e.g. breakage of strands, loss of supercoiling, etc. Furthermore, due to the decrease of volume and loss of the hydration sphere, autocatalytic degradation processes are favored e.g. by traces of transition metals. Additionally, significant changes of pH are possible by concentration of traces of acids and bases.
- Lyophilization involves two stresses, freezing and drying. Both are known to damage nucleic acids, such as non-viral vectors or plasmid DNA. In the literature, a number of cryoprotectants and lyoprotectants are discussed for lyophilization purposes to prevent these damages. In this context, cryoprotectants are understood as excipients, which allow influencing the structure of the ice and/or the eutectical temperature of the mixture. Lyoprotectants are typically excipients, which partially or totally replace the hydration sphere around a molecule and thus prevent catalytic and hydrolytic processes.
- lyophilization causes the removal of the hydration sphere around the DNA, wherein it appears that there are approximately 20 water molecules per nucleotide pair bound most tightly to DNA. These water molecules do not form an ice-like structure upon low-temperature cooling. Upon DNA dehydration over hygroscopic salts at 0% relative humidity, only five or six water molecules remain (see e.g. Tao et al., Biopolymers, 28, 1019-1030 (1989)). Lyophilization may increase the stability of DNA under long-term storage, but may also cause some damage upon the initial lyophilization process, potentially through changes in the DNA secondary structure, breaks of the nucleic acid chain(s) or the concentration of reactive elements such as contaminating metals.
- Lyophilization can also cause damage upon the initial lyophilization process in other nucleic acid, e.g. RNA.
- Agents that can substitute for non-freezable water, such as some carbohydrates, can demonstrate cryoprotective properties for DNA and other molecules during lyophilization of intact bacteria (see e.g. Israeli et al, Cryobiology, 30, 519-523 (1993); or Rudolph et al, Arch. Biochem. Biophys., 245, 134-143 (1986)).
- specific carbohydrates are utilized in the art as lyoprotective substances for enhancing stability of the nucleic acid (sequence) during lyophilization. They exhibit an effect on storage stability after lyophilisation of pure nucleic acids or nucleic acid (sequence) complexes (see e.g. Maitani, Y., Y. Aso, et al. (2008), Int J Pharm 356(1-2): 69-75; Quaak, S. G., J. H. van den Berg, et al. (2008), Eur J Pharm Biopharm 70(2): 429-38; Jones, K. L., D. Drane, et al.
- Lyoprotective properties are particularly described for sucrose, glucose, and trehalose. They allow to restore at least in part the transfection efficiency which is otherwise lost in many cases after lyophilisation (see Maitani et al, 2008, supra; Yadava, P., M. Gibbs, et al. (2008). AAPS PharmSciTech 9(2): 335-41; Werth, S., B.
- Sugars are able to prevent loss in activity due to the lyophilization process mainly by preventing particle fusion/aggregation especially in the case of liposome complexed nucleic acids (see Yadava et al, 2008, supra; Katas, H., S. Chen, et al. (2008), J Microencapsul: 1-8; Molina et al, supra, 2001).
- Poxon et al. (2000, supra) investigated the effect of lyophilization on plasmid DNA activity.
- Poxon et al. (2000, supra) hypothesized, that a change in the DNA conformation from supercoiled to open circular and linear form would be indicative of damage of the plasmid DNA.
- the percentage of supercoiled DNA did not change after lyophilization and subsequent DMED treatment, suggesting that other effects drew responsible for the loss of transfection efficiency.
- Li et al. (see Li, B., S. Li, et al. (2000), J Pharm Sci 89(3): 355-64) furthermore showed that disaccharides are superior to monosaccharides using them as a cryoprotectant for lyophilization of lipid based gene delivery systems due to the prevention of aggregation. They noted that it is very important to prevent the particle size of the complexes during lyophilization. Unfortunately, in a specific example of lipid based gene delivery systems, lyophilization with mannose led to an increase in particle size, which was regarded as negative for transfection efficiency. Additionally Li et al. (2000, supra) showed that lipid delivery systems can be stored at room temperature without loss of transfection efficiency when lyophilized in 10% sucrose.
- Li et al. (2000, supra) did not examine the stabilization due to the presence of mannose as a lyoprotectant. More importantly, they did not observe an increase in the expression of the encoded protein due to the presence of sugar (sucrose and trehalose) in the injection buffer.
- Jones et al (2007, supra) is one rare document, which examines the effect of sugars on long term stability of mRNA. It describes the possibility to prevent storage depending loss of transfection activity in vitro. Jones et al (2007, supra) uses trehalose as a lyoprotectant and shows a preventive effect on the loss of transfection activity at a storage temperature of 4° C. for a period of 6 months. Integrity of the mRNA was only measured by loss of weight after recovering. At elevated temperatures (room temperature and higher) degradation and a dramatic loss of transfection efficiency took place. Additionally; transfection efficiency could not be improved using trehalose as lyoprotectant.
- specific carbohydrates may also be utilized to improve biological activity and/or transfection efficiency, which is, at least at a first glance, independent from stability issues.
- specific carbohydrates e.g. of mannose may be attributed to the interaction of these carbohydrates with specific receptors in the cell.
- mannose may involve the mannose receptor targeted transfer.
- the mannose receptor (MR) is primarily present on dendritic cells (DCs) and macrophages.
- the carbohydrate recognition domains of the MR recognizes carbohydrates (e.g. mannose, fucose, glucose, N-Acetylglucosamine, maltose) on the cell walls of infectious agents (mainly bacteria and yeast) which leads to rapid internalization and phagocytosis.
- sucrose is a common trigger for endocytosis in animal cells and therefore the ODN internalizes into endosomes together with the sucrose.
- Sun et al. (2007) only examined in vitro transfection assays which are very difficult to transfer to the in vivo situation due to the dilution effect. In tissues it thus appeared very unlikely that the nucleic acid and the sugar molecule enter the cell at the same time.
- the present invention is summarized as (the use of) a solution and uses thereof containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA.
- the inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate.
- the present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.
- the problem underlying the present invention is solved by (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection.
- a solution containing at least one nucleic acid (sequence) and mannose stabilizes the at least one nucleic acid (sequence) contained in the inventive solution during lyophilization and/or improves biological activity of the nucleic acid (sequence).
- FIG. 1 shows the in vivo luciferase expression in balb/c mice 1) buffer control: Ringer-lactate 2) mRNA/WFI: mRNA coding for luciferase lyophilized in WFI (water for injection) and dissolved in salt containing solution 3) mRNA/trehalose: mRNA coding for luciferase lyophilized in WFI containing 5% trehalose and dissolved in salt containing solution 4) mRNA/mannose: mRNA coding for luciferase lyophilized in WFI containing 2.5% mannose and dissolved in salt containing solution 5) mRNA/mannite: mRNA coding for luciferase lyophilized in WFI containing 5% mannite and dissolved in salt containing solution.
- 2 RNA-Sol-Salt) 3
- RNA-Sol_MnSalt RNA-Sol_MnSalt
- FIG. 3 shows the relative integrity of mRNA lyophilized in a glucose or mannose containing solution stored at 60° C. for 0 to 33 days (d). Mannose clearly increases the stability of lyophilized RNA compared to the addition of glucose.
- FIG. 4 depicts the tumour growth in mice vaccinated with 1) 80% Ringer lactate as control, 2) mRNA coding for ovalbumine (not lyophilized) in 80% Ringer lactate and 3) mRNA coding for ovalbumine lyophilized in 2.5% (w/w) Mannose containing WFI and dissolved in 80% Ringer lactate. It is remarkable that the mannose-containing solution extremely enhances the efficacy of the mRNA vaccination compared to the sample without mannose. Since the samples were controlled for integrity and complex size it is guaranteed that the RNA was intact in all samples. The optimal concentration of mannose is located between 1% and 10%.
- FIG. 5 illustrates the mRNA sequence termed pCV19-Pp luc(GC)-muag-A70-C30 (SEQ ID NO: 1), coding for Photinus pyralis luciferase, which exhibits a length of 1857 nucleotides.
- the mRNA sequence contains following sequence elements:
- the ORF is indicated in italic letters, muag (mutated alpha-globin-3′-UTR is indicated with a dotted line, the poly-A-tail is underlined with a single line and the poly-C-tail is underlined with a double line.
- FIG. 6 shows the mRNA sequence termed CAP-GgOva(GC)-muag-A70-C30 (SEQ ID NO: 2), coding for Gallus gallus ovalbumin, which exhibits a length of 1365 nucleotides.
- the mRNA sequence contains following sequence elements:
- the ORF is indicated in italic letters, muag (mutated alpha-globin-3′-UTR is indicated with a dotted line, the poly-A-tail is underlined with a single line and the poly-C-tail is underlined with a double line.
- the present invention relates to (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA.
- the inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate.
- the present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.
- the present invention thus provides (the use of) a solution containing at least one nucleic acid (sequence) and (free) mannose for lyophilization, transfection and/or injection.
- free mannose is preferably understood as a mannose, which is not covalently bound and/or conjugated, preferably not covalently bound and/or conjugated to the nucleic acid (sequence) to be lyophilized, transfected and/or injected.
- “Free” mannose may therefore comprise a free, non-covalently bound and/or unconjugated mannose, preferably with respect to the nucleic acid (sequence) to be lyophilized, transfected and/or injected.
- mannose is preferably a sugar monomer of the aldohexose series of carbohydrates.
- Mannose as defined herein typically has the molecular formula C 6 H 12 C 6 , is also known under its IUPAC nomenclature as (2S,3S,4R,5R)-Pentahydroxyhexanal, (2R,3R,4S,5S)-Pentahydroxyhexanal. It is preferably identified under CAS number 31103-86-3 and typically exhibits the following general structure:
- Mannose is typically formed by the oxidation of mannitol. It can also be formed from D-glucose in the Lobry-de Bruyn-van Ekenstein transformation. Mannose as defined herein typically occurs in two diastereomeric isoforms, D-Mannose and L-Mannose (CAS numbers 3458-28-4 for D-mannose and 10030-80-5 for L-mannose). D-mannose is sold as a naturopathic remedy for urinary tract infections, and it is claimed to work through the disruption of adherence of bacteria in the urinary tract. D-Mannose and L-Mannose can be illustrated as the D and L straight-chain forms of mannose using Fischer projections according to the following structures:
- mannose as used herein is a D-Mannose.
- D-Mannose may be depicted according to at least one of the D-Mannose isomers ⁇ -D-Mannofuranose, ⁇ -D-Mannofuranose, ⁇ -D-Mannopyranose and ⁇ -D-Mannopyranose as represented by following Haworth-structures:
- D-Mannose forms anomers, wherein ⁇ -D-Mannofuranose occurs in a concentration/frequency of less than 1%, ⁇ -D-Mannofuranose in a concentration/frequency of less than 1%, ⁇ -D-Mannopyranose in a concentration/frequency of about 67% and ⁇ -D-Mannopyranose in a concentration/frequency of about 33%.
- D-Mannose may be selected more preferably from at least one, two, three or four of the anomers ⁇ -D-Mannofuranose, ⁇ -D-Mannofuranose, ⁇ -D-Mannopyranose and/or ⁇ -D-Mannopyranose.
- mannose upon solubilization in an aqueous solution mannose typically forms the above anomers in an equilibrity reaction, typically in the above concentrations.
- mannose as used herein is selected from an anomeric mixture of D-Mannose, preferably an anomeric mixture comprising ⁇ -D-Mannofuranose, ⁇ -D-Mannofuranose, ⁇ -D-Mannopyranose and ⁇ -D-Mannopyranose, more preferably in the above concentrations/frequencies.
- mannose as used herein may be selected from L-mannose or a racemic mixture of D-Mannose and/or L-Mannose, wherein D-mannose preferably as described above. Such mixtures may be obtained e.g. by a non-selective synthesis of mannose, e.g.
- An anomeric mixture may furthermore be obtained by solubilization of mannose in an aqueous solution, e.g. in water, WFI, or any buffer or solution as defined herein.
- mannose as used herein is typically present in the inventive solution for lyophilization, transfection and/or injection in a concentration of about 0.01 to about 10% (w/w), preferably in a concentration of about 0.01 to about 10% (w/w), more preferably in a concentration of about 0.1 to about 7.5% (w/w), even more preferably in a concentration of about 0.5 to about 5% (w/w), and most preferably in a concentration of about 1 to about 4% (w/w), e.g. a concentration of about 2 to about 4% (w/w), such as about 2.5% (w/w).
- a concentration of about 1% (w/w) mannose corresponds to a concentration of about 55,506 mM mannose. Any of the above and herein mentioned values and concentrations for mannose in % (w/w) may thus be calculated in mM on the above basis.
- the present invention provides (use of) a solution containing at least one nucleic acid sequence and free mannose for lyophilization, transfection and/or injection of the at least one nucleic acid (sequence). Lyophilization, transfection and/or injection may be carried out in vivo, in vitro or ex vivo.
- a lyophilized nucleic acid (sequence) may be any suitable nucleic acid, selected e.g. from any (double-stranded or single-stranded) DNA, preferably, without being limited thereto, e.g.
- genomic DNA single-stranded DNA molecules, double-stranded DNA molecules, coding DNA, DNA primers, DNA probes, immunostimulatory DNA, a (short) DNA oligonucleotide ((short) oligodesoxyribonucleotides), or may be selected e.g. from any PNA (peptide nucleic acid) or may be selected e.g.
- RNA from any (double-stranded or single-stranded) RNA, preferably, without being limited thereto, a (short) RNA oligonucleotide ((short) oligoribonucleotide), a coding RNA, a messenger RNA (mRNA), an immunostimulatory RNA, a siRNA, an antisense RNA, a micro RNA or riboswitches, ribozymes or aptamers; etc.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be a ribosomal RNA (rRNA), a transfer RNA (tRNA), a messenger RNA (mRNA), or a viral RNA (vRNA).
- rRNA ribosomal RNA
- tRNA transfer RNA
- mRNA messenger RNA
- vRNA viral RNA
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is an RNA. More preferably, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a (linear) single-stranded RNA, even more preferably an mRNA.
- an mRNA is typically an RNA, which is composed of several structural elements, e.g. an optional 5′-UTR region, an upstream positioned ribosomal binding site followed by a coding region, an optional 3′-UTR region, which may be followed by a poly-A tail (and/or a poly-C-tail).
- An mRNA may occur as a mono-, di-, or even multicistronic RNA, i.e. an RNA which carries the coding sequences of one, two or more proteins or peptides.
- Such coding sequences in di-, or even multicistronic mRNA may be separated by at least one IRES sequence, e.g. as defined herein.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a single- or a double-stranded nucleic acid (molecule) (which may also be regarded as a nucleic acid (molecule) due to non-covalent association of two single-stranded nucleic acid(s) (molecules)) or a partially double-stranded or partially single stranded nucleic acid, which are at least partially self complementary (both of these partially double-stranded or partially single stranded nucleic acid molecules are typically formed by a longer and a shorter single-stranded nucleic acid molecule or by two single stranded nucleic acid molecules, which are about equal in length, wherein one single-stranded nucleic acid molecule is in part complementary to the other single-stranded nucleic acid molecules molecule and both thus form a double-stranded nucleic acid molecules molecule in this region, i.e.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a single-stranded nucleic acid molecule.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a circular or linear nucleic acid molecule, preferably a linear nucleic acid molecule.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a coding nucleic acid, e.g. a DNA or RNA.
- a coding DNA or RNA may be any DNA or RNA as defined above.
- such a coding DNA or RNA may be a single- or a double-stranded DNA or RNA, more preferably a single-stranded DNA or RNA, and/or a circular or linear DNA or RNA, more preferably a linear DNA or RNA.
- the coding DNA or RNA may be a (linear) single-stranded DNA or RNA.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a ((linear) single-stranded) messenger RNA (mRNA).
- mRNA messenger RNA
- Such an mRNA may occur as a mono-, di-, or even multicistronic RNA, i.e. an RNA which carries the coding sequences of one, two or more proteins or peptides.
- Such coding sequences in di-, or even multicistronic mRNA may be separated by at least one IRES sequence, e.g. as defined herein.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode a protein or a peptide, which may be selected, without being restricted thereto, e.g. from therapeutically active proteins or peptides, from antigens, e.g. tumor antigens, pathogenic antigens (e.g.
- coding DNA or RNA may be transported into a cell, a tissue or an organism and the protein may be expressed subsequently in this cell, tissue or organism.
- therapeutically active proteins may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection. These may be selected from any naturally occurring recombinant or isolated protein known to a skilled person from the prior art. Without being restricted thereto therapeutically active proteins may comprise proteins, capable of stimulating or inhibiting the signal transduction in the cell, e.g. cytokines, antibodies, etc. Therapeutically active proteins may thus comprise cytokines of class I of the family of cytokines, having 4 positionally conserved cysteine residues (CCCC) and comprising a conserved sequence motif Trp-Ser-X-Trp-Ser (WSXWS), wherein X is a non-conserved amino acid.
- CCCC positionally conserved cysteine residues
- WSXWS conserved sequence motif Trp-Ser-X-Trp-Ser
- Cytokines of class I of the family of cytokines comprise the GM-CSF subfamily, e.g. IL-3, IL-5, GM-CSF, the IL-6-subfamily, e.g. IL-6, IL-11, IL-12, or the IL-2-subfamily, e.g. IL-2, IL-4, IL-7, IL-9, IL-15, etc., or the cytokines IL-1alpha, IL-1beta, IL-10 etc.
- Therapeutically active proteins may also comprise cytokines of class II of the family of cytokines, which also comprise 4 positionally conserved cystein residues (CCCC), but no conserved sequence motif Trp-Ser-X-Trp-Ser (WSXWS). Cytokines of class II of the family of cytokines comprise e.g. IFN-alpha, IFN-beta, IFN-gamma, etc. Therapeutically active proteins may additionally comprise cytokines of the family of tumor necrose factors, e.g. TNF-alpha, TNF-beta, etc., or cytokines of the family of chemokines, which comprise 7 transmembrane helices and interact with G-protein, e.g. IL-8, MIP-1, RANTES, CCR5, CXR4, etc., or cytokine specific receptors, such as TNF-R1, TNF-RII, CD40, OX40 (CD134), Fas, etc.
- cytokine specific receptors such
- Therapeutically active proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be selected from any of the proteins given in the following: 0ATL3, OFC3, OPA3, OPD2, 4-IBBL, 5T4, 6Ckine, 707-AP, 9D7, A2M, AA, AAAS, AACT, AASS, ABAT, ABCAI, ABCA4, ABCB1, ABCB11, ABCB2, ABCB4, ABCB7, ABCC2, ABCC6, ABCC8, ABCD1, ABCD3, ABCG5, ABCG8, ABL1, ABO, ABR ACAA1, ACACA, ACADL, ACADM, ACADS, ACADVL, ACAT1, ACCPN, ACE, ACHE, ACHM3, ACHM1, ACLS, ACP1, ACTA1, ACTC, ACTN4, ACVRL1, AD2, ADA, ADAMTS13, ADAMTS2, ADFN, ADHIB, ADHIC, A
- Therapeutically active proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may further be selected from apoptotic factors or apoptosis related proteins including AIF, Apaf e.g. Apaf-1, Apaf-2, Apaf-3, oder APO-2 (L), APO-3 (L), Apopain, Bad, Bak, Bax, Bcl-2, Bcl-x L , Bcl-x S , bik, CAD, Calpain, Caspase e.g.
- AIF Apaf e.g. Apaf-1, Apaf-2, Apaf-3, oder APO-2 (L), APO-3 (L)
- Apopain Bad, Bak, Bax, Bcl-2, Bcl-x L , Bcl-x S , bik, CAD, Calpain, Caspase e.g.
- a therapeutically active protein which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can also be an adjuvant protein.
- an adjuvant protein is preferably to be understood as any protein, which is capable to elicit an innate immune response as defined herein.
- such an innate immune response comprises activation of a pattern recognition receptor, such as e.g. a receptor selected from the Toll-like receptor (TLR) family, including e.g. a Toll like receptor selected from human TLR1 to TLR10 or from murine Toll like receptors TLR1 to TLR13.
- TLR Toll-like receptor
- an innate immune response is elicited in a mammal as defined above.
- the adjuvant protein is selected from human adjuvant proteins or from pathogenic adjuvant proteins, in particular from bacterial adjuvant proteins.
- mRNA encoding human proteins involved in adjuvant effects may be used as well.
- Human adjuvant proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically comprise any human protein, which is capable of eliciting an innate immune response (in a mammal), e.g. as a reaction of the binding of an exogenous TLR ligand to a TLR.
- human adjuvant proteins encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from the group consisting of, without being limited thereto, cytokines which induce or enhance an innate immune response, including IL-2, IL-12, IL-15, IL-18, IL-21CCL21, GM-CSF and TNF-alpha; cytokines which are released from macrophages, including IL-1, IL-6, IL-8, IL-12 and TNF-alpha; from components of the complement system including Clq, MBL, C1r, C1s, C2b, Bb, D, MASP-1, MASP-2, C4b, C3b, C5a, C3a, C4a, C5b, C6, C7, C8, C9, CR1, CR2, CR3, CR4, C1qR, CIINH, C4 bp, MCP, DAF, H, I, P and CD59
- NF- ⁇ B, c-Fos, c-Jun, c-Myc e.g. IL-1 alpha, IL-1 beta, Beta-Defensin, IL-6, IFN gamma, IFN alpha and IFN beta; from costimulatory molecules, including CD28 or CD40-ligand or PD1; protein domains, including LAMP; cell surface proteins; or human adjuvant proteins including CD80, CD81, CD86, trif, flt-3 ligand, thymopentin, Gp96 or fibronectin, etc., or any species homolog of any of the above human adjuvant proteins.
- Pathogenic adjuvant proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically comprise any pathogenic (adjuvant) protein, which is capable of eliciting an innate immune response (in a mammal), more preferably selected from pathogenic (adjuvant) proteins derived from bacteria, protozoa, viruses, or fungi, animals, etc., and even more preferably from pathogenic adjuvant proteins selected from the group consisting of, without being limited thereto, bacterial proteins, protozoan proteins (e.g. profilin-like protein of Toxoplasma gondii ), viral proteins, or fungal proteins, animal proteins, etc.
- pathogenic (adjuvant) protein which is capable of eliciting an innate immune response (in a mammal)
- pathogenic (adjuvant) proteins derived from bacteria, protozoa, viruses, or fungi, animals, etc. and even more preferably from pathogenic adjuvant
- bacterial (adjuvant) proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise any bacterial protein, which is capable of eliciting an innate immune response (preferably in a mammal) or shows an adjuvant character.
- such bacterial (adjuvant) proteins are selected from the group consisting of bacterial heat shock proteins or chaperons, including Hsp60, Hsp70, Hsp90, Hsp100; OmpA (Outer membrane protein) from gram-negative bacteria; bacterial porins, including OmpF; bacterial toxins, including pertussis toxin (PT) from Bordetella pertussis , pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis , PT-9K/129G mutant from pertussis toxin, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis , tetanus toxin, cholera toxin (CT), cholera toxin B-subunit, CTK63 mutant from cholera toxin, CTE112K mutant from CT, Escherichia coli heat-l
- CT
- Bacterial (adjuvant) proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be selected from bacterial adjuvant proteins, even more preferably selected from the group consisting of, without being limited thereto, bacterial flagellins, including flagellins from organisms including Agrobacterium, Aquifex, Azospirillum, Bacillus, Bartonella, Bordetella, Borrelia, Burkholderia, Campylobacter, Caulobacte, Clostridium, Escherichia, Helicobacter, Lachnospiraceae, Legionella, Listeria, Proteus, Pseudomonas, Rhizobium, Rhodobacter, Roseburia, Salmonella, Serpulina, Serratia, Shigella, Treponema, Vibrio, Wolinella, Yersinia , more preferably flagellins from the species, without being limited there
- Bacterial flagellins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection even more preferably comprise a sequence selected from the group comprising any of the following sequences as referred to their accession numbers:
- FlaD organism species gene name accession No GI: 14278870 tumefaciens FlhB (flhB) FliG (fliG) FliN (fliN) FliM (fliM) MotA (motA) FlgF (flgF) FliI (fliI) FlgB (flgB) FlgC (flgC) FliE (fliE) FlgG (flgG) FlgA (flgA) FlgI (flgI) FlgH (flgH) FliL (fliL) FliP (fliP) FlaA (flaA) FlaB (flaB) FlaC (flaC) Aquifex Aquifex pyrophilus U17575 GI: 596244 Azospirillum Azospirillum brasilense Laf1 U26679 GI:
- Protozoan proteins which may also be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from any protozoan protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Tc52 from Trypanosoma cruzi , PFTG from Trypanosoma gondii , Protozoan heat shock proteins, LeIF from Leishmania spp., profilin-like protein from Toxoplasma gondii , etc.
- Viral proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from any viral protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Respiratory Syncytial Virus fusion glycoprotein (F-protein), envelope protein from MMT virus, mouse leukemia virus protein, Hemagglutinin protein of wild type measles virus, etc.
- F-protein Respiratory Syncytial Virus fusion glycoprotein
- Fungal proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from any fungal protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, fungal immunomodulatory protein (FIP; LZ-8), etc.
- FIP fungal immunomodulatory protein
- pathogenic adjuvant proteins which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may finally be selected from any further pathogenic protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Keyhole limpet hemocyanin (KLH), OspA, etc.
- KLH Keyhole limpet hemocyanin
- OspA OspA
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may alternatively encode an antigen.
- the term “antigen” refers to a substance which is recognized by the immune system and is capable of triggering an antigen-specific immune response, e.g. by formation of antibodies as part of an adaptive immune response.
- the first step of an adaptive immune response is the activation of na ⁇ ve antigen-specific T cells by antigen-presenting cells. This occurs in the lymphoid tissues and organs through which na ⁇ ve T cells are constantly passing.
- the three cell types that can serve as antigen-presenting cells are dendritic cells, macrophages, and B cells.
- Tissue dendritic cells take up antigens by phagocytosis and macropinocytosis and are stimulated by infection to migrate to the local lymphoid tissue, where they differentiate into mature dendritic cells. Macrophages ingest particulate antigens such as bacteria and are induced by infectious agents to express MHC class II molecules. The unique ability of B cells to bind and internalize soluble protein antigens via their receptors may be important to induce T cells. By presenting the antigen on MHC molecules leads to activation of T cells which induces their proliferation and differentiation into armed effector T cells.
- effector T cells The most important function of effector T cells is the killing of infected cells by CD8 + cytotoxic T cells and the activation of macrophages by TH1 cells which together make up cell-mediated immunity, and the activation of B cells by both TH2 and TH1 cells to produce different classes of antibody, thus driving the humoral immune response.
- T cells recognize an antigen by their T cell receptors which does not recognize and bind antigen directly, but instead recognize short peptide fragments e.g. of pathogens' protein antigens, which are bound to MHC molecules on the surfaces of other cells.
- T cells fall into two major classes that have different effector functions.
- the two classes are distinguished by the expression of the cell-surface proteins CD4 and CD8. These two types of T cells differ in the class of MHC molecule that they recognize.
- MHC class I and MHC class II which differ in their structure and expression pattern on tissues of the body.
- CD4 + T cells bind to the MHC class II molecule and CD8 + T cells to the MHC class I molecule.
- MHC class I and MHC class II have distinct distributions among cells that reflect the different effector functions of the T cells that recognize them.
- MHC class I molecules present peptides from pathogens, commonly viruses to CD8 + T cells, which differentiate into cytotoxic T cells that are specialized to kill any cell that they specifically recognize.
- MHC class I molecules Almost all cells express MHC class I molecules, although the level of constitutive expression varies from one cell type to the next. But not only pathogenic peptides from viruses are presented by MHC class I molecules, also self-antigens like tumour antigens are presented by them. MHC class I molecules bind peptides from proteins degraded in the cytosol and transported in the endoplasmic reticulum. Thereby MHC class I molecules on the surface of cells infected with viruses or other cytosolic pathogens display peptides from these pathogen.
- the CD8 + T cells that recognize MHC class I:peptide complexes are specialized to kill any cells displaying foreign peptides and so rid the body of cells infected with viruses and other cytosolic pathogens.
- CD4 + T cells CD4 + helper T cells
- MHC class II molecules are normally found on B lymphocytes, dendritic cells, and macrophages, cells that participate in immune responses, but not on other tissue cells. Macrophages, for example, are activated to kill the intravesicular pathogens they harbour, and B cells to secrete immunoglobulins against foreign molecules. MHC class II molecules are prevented from binding to peptides in the endoplasmic reticulum and thus MHC class II molecules bind peptides from proteins which are degraded in endosomes.
- TH1 cells can capture peptides from pathogens that have entered the vesicular system of macrophages, or from antigens internalized by immature dendritic cells or the immunoglobulin receptors of B cells.
- Pathogens that accumulate in large numbers inside macrophage and dendritic cell vesicles tend to stimulate the differentiation of TH1 cells, whereas extracellular antigens tend to stimulate the production of TH2 cells.
- TH1 cells activate the microbicidal properties of macrophages and induce B cells to make IgG antibodies that are very effective of opsonising extracellular pathogens for ingestion by phagocytic cells
- TH2 cells initiate the humoral response by activating na ⁇ ve B cells to secrete IgM, and induce the production of weakly opsonising antibodies such as IgG1 and IgG3 (mouse) and IgG2 and IgG4 (human) as well as IgA and IgE (mouse and human).
- antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically comprise any antigen, falling under the above definition, more preferably protein and peptide antigens, e.g. tumor antigens, allergy antigens, auto-immune self-antigens, pathogens, etc.
- antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be antigens generated outside the cell, more typically antigens not derived from the host organism (e.g. a human) itself (i.e.
- non-self antigens but rather derived from host cells outside the host organism, e.g. viral antigens, bacterial antigens, fungal antigens, protozoological antigens, animal antigens (preferably selected from animals or organisms as disclosed herein), allergy antigens, etc.
- Allergy antigens are typically antigens, which cause an allergy in a human and may be derived from either a human or other sources.
- Antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be furthermore antigens generated inside the cell, the tissue or the body, e.g. by secretion of proteins, their degradation, metabolism, etc.
- antigens include antigens derived from the host organism (e.g. a human) itself, e.g. tumor antigens, self-antigens or auto-antigens, such as auto-immune self-antigens, etc., but also (non-self) antigens as defined above, which have been originally been derived from host cells outside the host organism, but which are fragmented or degraded inside the body, tissue or cell, e.g. by (protease) degradation, metabolism, etc.
- host organism e.g. a human
- tumor antigens e.g. tumor antigens, self-antigens or auto-antigens, such as auto-immune self-antigens, etc.
- non-self antigens as defined above, which have been originally been derived from host cells outside the host organism, but which are fragmented or degraded inside the body, tissue or cell, e.g. by (protease) degradation, metabolism, etc.
- Tumor antigens are preferably located on the surface of the (tumor) cell. Tumor antigens may also be selected from proteins, which are overexpressed in tumor cells compared to a normal cell. Furthermore, tumor antigens also includes antigens expressed in cells which are (were) not themselves (or originally not themselves) degenerated but are associated with the supposed tumor. Antigens which are connected with tumor-supplying vessels or (re)formation thereof, in particular those antigens which are associated with neovascularization, e.g.
- Antigens connected with a tumor furthermore include antigens from cells or tissues, typically embedding the tumor. Further, some substances (usually proteins or peptides) are expressed in patients suffering (knowingly or not-knowingly) from a cancer disease and they occur in increased concentrations in the body fluids of said patients. These substances are also referred to as “tumor antigens”, however they are not antigens in the stringent meaning of an immune response inducing substance.
- the class of tumor antigens can be divided further into tumor-specific antigens (TSAs) and tumor-associated-antigens (TAAs). TSAs can only be presented by tumor cells and never by normal “healthy” cells.
- TAAs which are more common, are usually presented by both tumor and healthy cells. These antigens are recognized and the antigen-presenting cell can be destroyed by cytotoxic T cells. Additionally, tumor antigens can also occur on the surface of the tumor in the form of, e.g., a mutated receptor. In this case, they can be recognized by antibodies.
- tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are shown in Tables 1 and 2 below. These tables illustrate specific (protein) antigens (i.e. “tumor antigens”) with respect to the cancer disease, they are associated with. According to the invention, the terms “cancer diseases” and “tumor diseases” are used synonymously herein.
- tumor antigen Name of tumor antigen related thereto 5T4 colorectal cancer, gastric cancer, ovarian cancer 707-AP 707 alanine proline Melanoma 9D7 renal cell carcinoma AFP alpha-fetoprotein hepatocellular carcinoma, gallbladder cancer, testicular cancer, ovarian cancer, bladder cancer AlbZIP HPG1 prostate cancer alpha5beta1- Integrin alpha5beta6- colon cancer Integrin alpha-methylacyl- prostate cancer coenzyme A racemase ART-4 adenocarcinoma antigen lung cancer, head and neck cancer, recognized by T cells 4 leukemia, esophageal cancer, gastric cancer, cervical cancer, ovarian cancer, breast cancer, squamous cell carcinoma B7H4 ovarian cancer BAGE-1 B antigen bladder cancer, head and neck cancer, lung cancer, melanoma, squamous cell carcinoma BCL-2 leukemia BING-4
- mutant antigens expressed in cancer diseases Mutant antigen Name of mutant antigen Cancers or cancer diseases related thereto alpha-actinin-4/m lung carcinoma ARTC1/m melanoma bcr/abl breakpoint cluster region- CML Abelson fusion protein beta-Catenin/m beta-Catenin melanoma BRCA1/m breast cancer BRCA2/m breast cancer CASP-5/m colorectal cancer, gastric cancer, endometrial carcinoma CASP-8/m head and neck cancer, squamous cell carcinoma CDC27/m cell-division-cycle 27 CDK4/m cyclin-dependent kinase 4 melanoma CDKN2A/m melanoma CML66 CML COA-1/m colorectal cancer DEK-CAN fusion protein AML EFTUD2/m melanoma ELF2/m Elongation factor 2 lung squamous cell carcinoma ETV6-AML1 Ets variant gene6/acute myeloid ALL leukemia 1
- the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are selected from the group consisting of 5T4, 707-AP, 9D7, AFP, AlbZIP HPG 1, alpha-5-beta-1-integrin, alpha-5-beta-6-integrin, alpha-actinin-4/m, alpha-methylacyl-coenzyme A racemase, ART-4, ARTC1/m, B7H4, BAGE-1, BCL-2, bcr/abl, beta-catenin/m, BING-4, BRCA1/m, BRCA2/m, CA 15-3/CA 27-29, CA 19-9, CA72-4, CA125, calreticulin, CAMEL, CASP-8/m, cathepsin B, cathepsin L, CD19, CD20, CD22, CD25, CDE30, CD33, CD4, CD52, CD55, CD56
- the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are selected from the group consisting of MAGE-A1 (e.g. MAGE-A1 according to accession number M77481), MAGE-A2, MAGE-A3, MAGE-A6 (e.g. MAGE-A6 according to accession number NM — 005363), MAGE-C1, MAGE-C2, melan-A (e.g. melan-A according to accession number NM — 005511), GP100 (e.g. GP100 according to accession number M77348), tyrosinase (e.g.
- tyrosinase according to accession number NM — 000372
- survivin e.g. survivin according to accession number AF077350
- CEA e.g. CEA according to accession number NM — 004363
- Her-2/neu e.g. Her-2/neu according to accession number M11730
- WT1 e.g. WT1 according to accession number NM — 000378
- PRAME e.g. PRAME according to accession number NM — 006115
- EGFR1 epidermal growth factor receptor 1
- EGFR1 epipidermal growth factor receptor 1
- MUC1 mucin-1
- mucin-1 according to accession number NM — 002456
- SEC61G e.g. SEC61G according to accession number NM — 014302
- hTERT e.g. hTERT accession number NM — 198253
- 5T4 e.g. 5T4 according to accession number NM — 006670
- NY-Eso-1 e.g. NY-Esol according to accession number NM — 001327)
- TRP-2 e.g. TRP-2 according to accession number NM — 001922
- STEAP PCA
- PSA PSMA
- the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may form a cocktail of antigens, e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of prostate cancer (PCa), preferably of neoadjuvant and/or hormone-refractory prostate cancers, and diseases or disorders related thereto.
- a cocktail of antigens e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of prostate cancer (PCa), preferably of neoadjuvant and/or hormone-refractory prostate cancers, and diseases or disorders related thereto.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is preferably at least one RNA, more preferably at least one mRNA, which may encode at least one, preferably two, three or even four (preferably different) antigens of the following group of antigens:
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two, three or four (preferably different) antigens of the following combinations of antigens:
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two, three or four (preferably different) antigens:
- At least one antigen is selected from:
- the further antigen(s) is (are) selected from at least one antigen of any of the following specific antigens or combinations thereof:
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, encoding four (preferably different) antigens selected from PSA, PSMA, PSCA and STEAP.
- the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may form a cocktail of antigens, e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of non-small cell lung cancers (NSCLC), preferably selected from the three main sub-types squamous cell lung carcinoma, adenocarcinoma and large cell lung carcinoma, or of disorders related thereto.
- NSCLC non-small cell lung cancers
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is preferably at least one RNA, more preferably at least one mRNA, which may encode at least one, preferably two, three, four, five, six, seven, eight, nine, ten eleven or twelve (preferably different) antigens of the following group of antigens:
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two, three, five or six (preferably different) antigens of the following combinations of antigens:
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least one, preferably two, three, four, five, six, seven, eight, nine, ten eleven or twelve (preferably different) antigens of the following combinations of antigens:
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two (preferably different) antigens exclusively selected from any of the antigens of the above mentioned group(s) or subgroup(s) comprising (at least) any one of the following combinations of antigens:
- the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may form a cocktail of antigens, e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of non-small cell lung cancers (NSCLC), preferably selected from the three main sub-types squamous cell lung carcinoma, adenocarcinoma and large cell lung carcinoma, or of disorders related thereto.
- NSCLC non-small cell lung cancers
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is preferably at least one RNA, more preferably at least one mRNA, which may encode at least two (preferably different) antigens,
- At least one, preferably at least two, three, four, five or even six, of these at least two antigens is (are) selected from:
- the further antigen(s) is (are) selected from at least one antigen as defined herein, preferably in any of the herein mentioned combinations, groups or subgroups of antigens, e.g. the further antigen(s) is (are) selected from, e.g.:
- the at least one antigen(s) according to a) is (are) selected from:
- the at least one antigen(s) according to a) is (are) selected from:
- the at least one antigen(s) according to b) is (are) selected from an antigen (antigens) as defined in one of the following combinations:
- the at least one antigen(s) according to b) is (are) selected from the following combination:
- each of the at least two (preferably different) antigens as defined herein may be encoded by one (monocistronic) RNA, preferably one (monocistronic) mRNA.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise at least two (monocistronic) RNAs, preferably mRNAs, wherein each of these at least two (monocistronic) RNAs, preferably mRNAs, may encode just one (preferably different) antigen, preferably selected from one of the above mentioned combinations.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise (at least) one bi- or even multicistronic RNA, preferably mRNA, i.e. (at least) one RNA which carries two or even more of the coding sequences of at the least two (preferably different) antigens, preferably selected from one of the above mentioned combinations.
- Such coding sequences of the at least two (preferably different) antigens of the (at least) one bi- or even multicistronic RNA may be separated by at least one IRES (internal ribosomal entry site) sequence, as defined below.
- the term “encoding at least two (preferably different) antigens” may mean, without being limited thereto, that the (at least) one (bi- or even multicistronic) RNA, preferably a mRNA, may encode e.g. at least two, three, four, five, six, seven, eight, nine, ten, eleven or twelve (preferably different) antigens of the above mentioned group(s) of antigens or their fragments or variants. More preferably, without being limited thereto, the (at least) one (bi- or even multicistronic) RNA, preferably mRNA, may encode e.g.
- IRES internal ribosomal entry site
- IRES sequences can function as a sole ribosome binding site, but it can also serve to provide a bi- or even multicistronic RNA as defined above which codes for several proteins, which are to be translated by the ribosomes independently of one another.
- IRES sequences which can be used according to the invention are those from picornaviruses (e.g.
- FMDV pestiviruses
- CFFV pestiviruses
- PV polioviruses
- ECMV encephalomyocarditis viruses
- FMDV foot and mouth disease viruses
- HCV hepatitis C viruses
- CSFV classical swine fever viruses
- MLV mouse leukoma virus
- SIV simian immunodeficiency viruses
- CrPV cricket paralysis viruses
- the at least one monocistronic RNA and the at least one bi- or even multicistronic RNA may preferably also encode (in part) identical antigens selected from one of the above mentioned groups or subgroups of antigens, preferably in one of the above mentioned combinations, provided that the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as a whole provides at least two (preferably different) antigens as defined above.
- Such an aspect may be advantageous e.g. for a staggered, e.g. time dependent, administration of the inventive solution for lyophilization, transfection and/or injection, e.g.
- RNAs encoding the at least two (preferably different) antigens may be e.g. contained in (different parts of) a kit of parts composition or may be e.g. administered separately as components of different pharmaceutical compositions, vaccines, lyophilized nucleic acids, etc.
- one further class of antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection comprises allergy antigens.
- allergy antigens may be selected from antigens derived from different sources, e.g. from animals, plants, fungi, bacteria, etc. Allergens in this context include e.g. grasses, pollens, molds, drugs, or numerous environmental triggers, etc. Allergy antigens typically belong to different classes of compounds, such as nucleic acids and their fragments, proteins or peptides and their fragments, carbohydrates, polysaccharides, sugars, lipids, phospholipids, etc.
- antigens which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, i.e. protein or peptide antigens and their fragments or epitopes, or nucleic acids and their fragments, particularly nucleic acids and their fragments, encoding such protein or peptide antigens and their fragments or epitopes.
- antigens derived from animals which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, insects, such as mite (e.g. house dust mites), mosquito, bee (e.g. honey bee, bumble bee), cockroach, tick, moth (e.g.
- mite e.g. house dust mites
- mosquito e.g. honey bee, bumble bee
- cockroach e.g.
- Antigens derived from plants, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, fruits, such as kiwi, pineapple, jackfruit, papaya, lemon, orange, mandarin, melon, sharon fruit, strawberry, lychee, apple, cherry compassion apple, mango, passion fruit, plum, apricot, nectarine, pear, passion fruit, raspberry, grape, from vegetables, such as garlic, onion, leek, soya bean, celery, cauliflower, turnip, paprika, chickpea, fennel, zucchini, cucumber, carrot, yam, bean, pea, olive, tomato, potato, lentil, lettuce, avocado, parsley, horseradish, chirimoya, beet, pumpkin, spinach, from spices, such as mustard, coriander, saffron, pepper, aniseed, from crop, such as
- Antigens derived from fungi which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, e.g. Alternia sp., Aspergillus sp., Beauveria sp., Candida sp., Cladosporium sp., Endothia sp., Curcularia sp., Embellisia sp., Epicoccum sp., Fusarium sp., Malassezia sp., Penicillum sp., Pleospora sp., Saccharomyces sp., etc.
- Antigens derived from bacteria which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, e.g. Bacillus tetani, Staphylococcus aureus, Streptomyces griseus , etc.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode an antibody.
- an antibody may be selected from any antibody, e.g. any recombinantly produced or naturally occurring antibodies, known in the art, in particular antibodies suitable for therapeutic, diagnostic or scientific purposes, or antibodies which have been identified in relation to specific cancer diseases.
- the term “antibody” is used in its broadest sense and specifically covers monoclonal and polyclonal antibodies (including agonist, antagonist, and blocking or neutralizing antibodies) and antibody species with polyepitopic specificity.
- “antibody” typically comprises any antibody known in the art (e.g.
- IgM, IgD, IgG, IgA and IgE antibodies such as naturally occurring antibodies, antibodies generated by immunization in a host organism, antibodies which were isolated and identified from naturally occurring antibodies or antibodies generated by immunization in a host organism and recombinantly produced by biomolecular methods known in the art, as well as chimeric antibodies, human antibodies, humanized antibodies, bispecific antibodies, intrabodies, i.e. antibodies expressed in cells and optionally localized in specific cell compartments, and fragments and variants of the aforementioned antibodies.
- an antibody consists of a light chain and a heavy chain both having variable and constant domains.
- the light chain consists of an N-terminal variable domain, V L , and a C-terminal constant domain, C L .
- the heavy chain of the IgG antibody for example, is comprised of an N-terminal variable domain, V H , and three constant domains, C H 1, C H 2 and C H 3.
- Single chain antibodies may be encoded by the lyophilized nucleic acid according to the present invention as well.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode a polyclonal antibody.
- polyclonal antibody typically means mixtures of antibodies directed to specific antigens or immunogens or epitopes of a protein which were generated by immunization of a host organism, such as a mammal, e.g. including goat, cattle, swine, dog, cat, donkey, monkey, ape, a rodent such as a mouse, hamster and rabbit.
- Polyclonal antibodies are generally not identical, and thus usually recognize different epitopes or regions from the same antigen.
- each lyophilized nucleic acid encoding a specific (monoclonal) antibody being directed to specific antigens or immunogens or epitopes of a protein.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode a monoclonal antibody.
- the term “monoclonal antibody” herein typically refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed to a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed to different determinants (epitopes), each monoclonal antibody is directed to a single determinant on the antigen.
- monoclonal antibodies as defined above may be made by the hybridoma method first described by Kohler and Milstein, Nature, 256:495 (1975), or may be made by recombinant DNA methods, e.g. as described in U.S. Pat. No. 4,816,567. “Monoclonal antibodies” may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990), for example. According to Kohler and Milstein, an immunogen (antigen) of interest is injected into a host such as a mouse and B-cell lymphocytes produced in response to the immunogen are harvested after a period of time.
- the B-cells are combined with myeloma cells obtained from mouse and introduced into a medium which permits the B-cells to fuse with the myeloma cells, producing hybridomas. These fused cells (hybridomas) are then placed into separate wells of microtiter plates and grown to produce monoclonal antibodies. The monoclonal antibodies are tested to determine which of them are suitable for detecting the antigen of interest. After being selected, the monoclonal antibodies can be grown in cell cultures or by injecting the hybridomas into mice.
- the peptide sequences of these monoclonal antibodies have to be sequenced and the at least one nucleic acid (sequence) encoding these antibodies can be present as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- non-human monoclonal or polyclonal antibodies such as murine antibodies may also be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection such antibodies are typically only of limited use, since they generally induce an immune response by production of human antibodies directed to the said non-human antibodies, in the human body. Therefore, a particular non-human antibody can only be administered once to the human.
- chimeric, humanized non-human and human antibodies are also envisaged encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- “Chimeric” antibodies which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are preferably antibodies in which the constant domains of an antibody described above are replaced by sequences of antibodies from other organisms, preferably human sequences.
- “Humanized” (non-human) antibodies which may be also encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are antibodies in which the constant and variable domains (except for the hypervariable domains) described above of an antibody are replaced by human sequences.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode human antibodies, i.e. antibodies having only human sequences.
- human antibodies can be isolated from human tissues or from immunized non-human host organisms which are transgene for the human IgG gene locus, and at least one nucleic acid (sequence) may be prepared according to procedures well known in the art. Additionally, human antibodies can be provided by the use of a phage display.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode bispecific antibodies.
- Bispecific antibodies in context of the invention are preferably antibodies which act as an adaptor between an effector and a respective target by two different F ab -domains, e.g. for the purposes of recruiting effector molecules such as toxins, drugs, cytokines etc., targeting effector cells such as CTL, NK cells, makrophages, granulocytes, etc. (see for review: Kontermann R. E., Acta Pharmacol. Sin, 2005, 26(1): 1-9).
- Bispecific antibodies as described herein are, in general, configured to recognize by two different F a /b-domains, e.g.
- bispecificity means herewith that the antigen-binding regions of the antibodies are specific for two different epitopes.
- different antigens, immunogens or epitopes, etc. can be brought close together, what, optionally, allows a direct interaction of the two components.
- different cells such as effector cells and target cells can be connected via a bispecific antibody.
- antibodies or fragments thereof which bind, on the one hand, a soluble antigen as described herein, and, on the other hand, an antigen or receptor on the surface of a tumor cell.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also encode intrabodies, wherein these intrabodies may be antibodies as defined above. Since these antibodies are intracellular expressed antibodies, i.e. antibodies which may be encoded by nucleic acids localized in specific areas of the cell and also expressed there, such antibodies may be termed intrabodies.
- Antibodies as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may preferably comprise full-length antibodies, i.e. antibodies composed of the full heavy and full light chains, as described above. However, derivatives of antibodies such as antibody fragments, variants or adducts may also be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also encode antibody fragments selected from Fab, Fab′, F(ab′) 2 , Fc, Facb, pFc′, Fd and Fv fragments of the aforementioned (full-length) antibodies.
- antibody fragments are known in the art.
- a Fab (“fragment, antigen binding”) fragment is composed of one constant and one variable domain of each of the heavy and the light chain. The two variable domains bind the epitope on specific antigens. The two chains are connected via a disulfide linkage.
- a scFv (“single chain variable fragment”) fragment typically consists of the variable domains of the light and heavy chains.
- the domains are linked by an artificial linkage, in general a polypeptide linkage such as a peptide composed of 15-25 glycine, proline and/or serine residues.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be in the form of dsRNA, preferably siRNA.
- a dsRNA, or a siRNA is of interest particularly in connection with the phenomenon of RNA interference.
- RNAi RNA interference
- the in vitro technique of RNA interference (RNAi) is based on double-stranded RNA molecules (dsRNA), which trigger the sequence-specific suppression of gene expression (Zamore (2001) Nat. Struct. Biol. 9: 746-750; Sharp (2001) Genes Dev. 5:485-490: Hannon (2002) Nature 41: 244-251).
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus be a double-stranded RNA (dsRNA) having a length of from 17 to 29, preferably from 19 to 25, and preferably being at least 90%, more preferably 95% and especially 100% (of the nucleotides of a dsRNA) complementary to a section of the nucleic acid (sequence) of a (therapeutically relevant) protein or antigen described (as active ingredient) hereinbefore, either a coding or a non-coding section, preferably a coding section.
- dsRNA double-stranded RNA
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a dsRNA having the general structure 5′-(N 17-29 )-3′, preferably having the general structure 5′-(N 19-25 )-3′, more preferably having the general structure 5′-(N 19-24 )-3′, or yet more preferably having the general structure 5′-(N 21-23 )-3′, wherein for each general structure each N is a (preferably different) nucleotide of a section of the mRNA of a therapeutically relevant protein or antigen described hereinbefore, preferably being selected from a continuous number of 17 to 29 nucleotides of the mRNA of a therapeutically relevant protein or antigen and being present in the general structure 5′-(N 17-29 )-3′ in their natural order.
- dsRNAs used as nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can also be directed against nucleotide sequences of a (therapeutically relevant) protein or antigen described (as active ingredient) hereinbefore that do not lie in the coding region, in particular in the 5′ non-coding region of the mRNA, for example, therefore, against non-coding regions of the mRNA having a regulatory function.
- the target sequence of the dsRNA used as nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can therefore lie in the translated and untranslated region of the mRNA and/or in the region of the control elements of a protein or antigen described hereinbefore.
- the target sequence of a dsRNA used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can also lie in the overlapping region of untranslated and translated sequence; in particular, the target sequence can comprise at least one nucleotide upstream of the start triplet of the coding region of the mRNA.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be in the form of a CpG nucleic acid, in particular CpG-RNA or CpG-DNA.
- a CpG-RNA or CpG-DNA used according to the invention can be a single-stranded CpG-DNA (ss CpG-DNA), a double-stranded CpG-DNA (dsDNA), a single-stranded CpG-RNA (ss CpG-RNA) or a double-stranded CpG-RNA (ds CpG-RNA).
- the CpG nucleic acid used according to the invention is preferably in the form of CpG-RNA, more preferably in the form of single-stranded CpG-RNA (ss CpG-RNA). Also preferably, such CpG nucleic acids have a length as described above. Preferably the CpG motifs are unmethylated.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be in the form of an immunostimulatory RNA.
- an immunostimulatory RNA used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be any (double-stranded or single-stranded) RNA, e.g. a coding RNA, as defined above.
- the immunostimulatory RNA may be a single-stranded, a double-stranded or a partially double-stranded RNA, more preferably a single-stranded RNA, and/or a circular or linear RNA, more preferably a linear RNA. More preferably, the immunostimulatory RNA may be a (linear) single-stranded RNA. Even more preferably, the immunostimulatory RNA may be a ((linear) single-stranded) messenger RNA (mRNA). An immunostimulatory RNA may also occur as a short RNA oligonucleotide as defined above.
- An immunostimulatory RNA as used herein may furthermore be selected from any class of RNA molecules, found in nature or being prepared synthetically, and which can induce an immune response.
- an immune response may occur in various ways.
- a substantial factor for a suitable immune response is the stimulation of different T-cell sub-populations.
- T-lymphocytes are typically divided into two sub-populations, the T-helper I (Th1) cells and the T-helper 2 (Th2) cells, with which the immune system is capable of destroying intracellular (Th1) and extracellular (Th2) pathogens (e.g. antigens).
- the two Th cell populations differ in the pattern of the effector proteins (cytokines) produced by them.
- Th1 cells assist the cellular immune response by activation of macrophages and cytotoxic T-cells.
- Th2 cells promote the humoral immune response by stimulation of the B-cells for conversion into plasma cells and by formation of antibodies (e.g. against antigens).
- the Th1/Th2 ratio is therefore of great importance in the immune response.
- the Th1/Th2 ratio of the immune response is preferably shifted in the direction towards the cellular response (Th1 response) and a cellular immune response is thereby induced.
- the immune system may be activated by ligands of Toll-like receptors (TLRs).
- TLRs are a family of highly conserved pattern recognition receptor (PRR) polypeptides that recognize pathogen-associated molecular patterns (PAMPs) and play a critical role in innate immunity in mammals.
- PRR pattern recognition receptor
- TLR1-TLR13 Toll-like receptors: TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 or TLR13
- TLR1-TLR13 Toll-like receptors: TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 or TLR13
- CpG DNA unmethylated bacterial DNA and synthetic analogs thereof
- ligands for certain TLRs include certain nucleic acid molecules and that certain types of RNA are immunostimulatory in a sequence-independent or sequence-dependent manner, wherein these various immunostimulatory RNAs may e.g. stimulate TLR3, TLR7, or TLR8, or intracellular receptors such as RIG-1, MDA-5, etc.
- these various immunostimulatory RNAs may e.g. stimulate TLR3, TLR7, or TLR8, or intracellular receptors such as RIG-1, MDA-5, etc.
- Lipford et al. determined certain G,U-containing oligoribonucleotides as immunostimulatory by acting via TLR7 and TLR8 (see WO 03/086280).
- the immunostimulatory G,U-containing oligoribonucleotides described by Lipford et al. were believed to be derivable from RNA sources including ribosomal RNA, transfer RNA, messenger RNA, and viral RNA.
- any RNA as e.g. defined above (irrespective of its specific length, strandedness, modification and/or nucleotide sequence) may have immunostimulatory properties, i.e. enhance the immune response.
- An RNA as defined above and being the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus be used to enhance (unspecific) immunostimulation, if suitable and desired for a specific treatment.
- the at least one (immunostimulatory) RNA (molecule) used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus comprise any RNA sequence known to be immunostimulatory, including, without being limited thereto, RNA sequences representing and/or encoding ligands of TLRs, preferably selected from family members TLR1-TLR13, more preferably from TLR7 and TLR8, ligands for intracellular receptors for RNA (such as RIG-1 or MAD-5, etc.) (see e.g. Meylan, E., Tschopp, J. (2006). Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol. Cell.
- immunostimulatory RNA molecules used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include any other RNA capable of eliciting an immune response.
- immunostimulatory RNA may include ribosomal RNA (rRNA), transfer RNA (tRNA), messenger RNA (mRNA), and viral RNA (vRNA).
- Such further (classes of) immunostimulatory RNA molecules which may be used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, without being limited thereto, may comprise e.g. an RNA molecule of formula (I):
- G is guanosine, uracil or an analogue of guanosine or uracil
- X is guanosine, uracil, adenosine, thymidine, cytosine or an analogue of the above-mentioned nucleotides
- l is an integer from 1 to 40
- n is an integer and is at least 3;
- C is cytosine, uracil or an analogue of cytosine or uracil
- X is guanosine, uracil, adenosine, thymidine, cytosine or an analogue of the above-mentioned nucleotides
- l is an integer from 1 to 40
- the immunostimulatory RNA molecules used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise a length as defined above in general for RNA molecules of the RNA of the present invention, more preferably a length of 5 to 5000, of 500 to 5000 or, more preferably, of 1000 to 5000 or, alternatively, of 5 to 1000, 5 to 500, 5 to 250, of 5 to 100, of 5 to 50 or, more preferably, of 5 to 30 nucleotides.
- the immunostimulatory RNA used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be furthermore modified, preferably “chemically modified” in order to enhance the immunostimulatory properties of said RNA.
- chemical modification means that the immuostimulatory RNA is modified by replacement, insertion or removal of individual or several atoms or atomic groups compared with naturally occurring RNA species.
- analogues of guanosine, uracil, adenosine, and cytosine include, without implying any limitation, any naturally occurring or non-naturally occurring guanosine, uracil, adenosine, thymidine or cytosine that has been altered chemically, for example by acetylation, methylation, hydroxylation, etc., including 1-methyl-adenosine, 1-methyl-guanosine, 1-methyl-inosine, 2,2-dimethyl-guanosine, 2,6-diaminopurine, 2′-Amino-2′-deoxyadenosine, 2′-Amino-2′-deoxycytidine, 2′-Amino-2′-deoxyguanosine, 2′-Amino-2′-deoxyuridine, 2-Amino-6-chloropurineriboside, 2-Aminopurine-riboside, 2′-Araadenosine, 2′
- analogue as described above, particular preference is given according to the invention to those analogues that increase the immunogenicity of the immunostimulatory RNA sequence used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection and/or do not interfere with a further modification that has been introduced into said immunostimulatory RNA.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above may also occur in the form of a modified nucleic acid, wherein any modification, as defined herein, may be introduced into the nucleic acid prior to lyophilization, transfection and/or injection. Modifications as defined herein preferably lead to a further stabilized nucleic acid as defined herein.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus be provided as a “stabilized nucleic acid”, preferably as a stabilized RNA, more preferably as an RNA that is essentially resistant to in vivo degradation (e.g. by an exo- or endo-nuclease).
- stabilization can be effected, for example, by a modified phosphate backbone of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- a backbone modification in connection with the present invention is a modification in which phosphates of the backbone of the nucleotides contained in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are chemically modified.
- Nucleotides that may be preferably used in this connection contain e.g. a phosphorothioate-modified phosphate backbone, preferably at least one of the phosphate oxygens contained in the phosphate backbone being replaced by a sulfur atom.
- Stabilized at least one nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may further include, for example: non-ionic phosphate analogues, such as, for example, alkyl and aryl phosphonates, in which the charged phosphonate oxygen is replaced by an alkyl or aryl group, or phosphodiesters and alkylphosphotriesters, in which the charged oxygen residue is present in alkylated form.
- Such backbone modifications typically include, without implying any limitation, modifications from the group consisting of methylphosphonates, phosphoramidates and phosphorothioates (e.g. cytidine-5′-O-(1-thiophosphate)).
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may additionally or alternatively also contain sugar modifications.
- a sugar modification in connection with the present invention is a chemical modification of the sugar of the nucleotides of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically includes, without implying any limitation, sugar modifications selected from the group consisting of 2′-deoxy-2′-fluoro-oligoribonucleotide (2′-fluoro-2′-deoxycytidine-5′-triphosphate, 2′-fluoro-2′-deoxyuridine-5′-triphosphate), 2′-deoxy-2′-deamine oligoribonucleotide (2′-amino-2′-deoxycytidine-5′-triphosphate, 2′-amino-2′-deoxyuridine-5′-triphosphate), 2′-O-alkyl oligoribonucleotide, 2′-
- Significant in this case means an increase in the expression of the protein compared with the expression of the native nucleic acid (sequence) by at least 20%, preferably at least 30%, 40%, 50% or 60%, more preferably by at least 70%, 80%, 90% or even 100% and most preferably by at least 150%, 200% or even 300% or more.
- a nucleotide having such a base modification is preferably selected from the group of the base-modified nucleotides consisting of 2-amino-6-chloropurineriboside-5′-triphosphate, 2-aminoadenosine-5′-triphosphate, 2-thiocytidine-5′-triphosphate, 2-thiouridine-5′-triphosphate, 4-thiouridine-5′-triphosphate, 5-aminoallylcytidine-5′-triphosphate, 5-aminoallyluridine-5′-triphosphate, 5-bromocytidine-5′-triphosphate, 5-bromouridine-5′-triphosphate, 5-iodocytidine-5′-triphosphate, 5-iodouridine-5′-triphosphate, 5-methylcytidine-5′-triphosphate, 5-methyluridine-5′-triphosphate, 6-azacytidine-5′-triphosphate, 6-azauridine-5′-triphosphate, 6-chloropurinerib
- nucleotides for base modifications selected from the group of base-modified nucleotides consisting of 5-methylcytidine-5′-triphosphate, 7-deazaguanosine-5′-triphosphate, 5-bromocytidine-5′-triphosphate, and pseudouridine-5′-triphosphate.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can likewise be modified (and preferably stabilized) by introducing further modified nucleotides containing modifications of their ribose or base moieties.
- nucleotide analogues are defined as non-natively occurring variants of naturally occurring nucleotides.
- analogues are chemically derivatized nucleotides with non-natively occurring functional groups, which are preferably added to or deleted from the naturally occurring nucleotide or which substitute the naturally occurring functional groups of a nucleotide. Accordingly, each component of the naturally occurring nucleotide may be modified, namely the base component, the sugar (ribose) component and/or the phosphate component forming the backbone (see above) of the nucleic acid sequence.
- Exemplary analogues of guanosine, uracil, adenosine, and cytosine include, without implying any limitation, any naturally occurring or non-naturally occurring guanosine, uracil, adenosine, thymidine or cytosine that has been altered chemically, for example by acetylation, methylation, hydroxylation, etc., including 1-methyl-adenosine, 1-methyl-guanosine, 1-methyl-inosine, 2,2-dimethyl-guanosine, 2,6-diaminopurine, 2′-Amino-2′-deoxyadenosine, 2′-Amino-2′-deoxycytidine, 2′-Amino-2′-deoxyguanosine, 2′-Amino-2′-deoxyuridine, 2-Amino-6-chloropurineriboside, 2-Aminopurine-riboside, 2′-Araadenosine, 2′-
- analogue as described above, particular preference may be given according to the invention to those analogues that do not interfere with a further modification of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection that has been introduced.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can contain a lipid modification.
- a lipid-modified nucleic acid typically comprises a nucleic acid as defined herein.
- Such a lipid-modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically further comprises at least one linker covalently linked with that nucleic acid, and at least one lipid covalently linked with the respective linker.
- the lipid-modified nucleic acid comprises an at least one nucleic acid as defined herein and at least one (bifunctional) lipid covalently linked (without a linker) with that nucleic acid.
- the lipid which may be contained in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection (complexed or covalently bound thereto) is typically a lipid or a lipophilic residue that preferably is itself biologically active.
- lipids preferably include natural substances or compounds such as, for example, vitamins, e.g. alpha-tocopherol (vitamin E), including RRR-alpha-tocopherol (formerly D-alpha-tocopherol), L-alpha-tocopherol, the racemate D,L-alpha-tocopherol, vitamin E succinate (VES), or vitamin A and its derivatives, e.g.
- retinoic acid retinol
- vitamin D and its derivatives e.g. vitamin D and also the ergosterol precursors thereof
- vitamin E and its derivatives vitamin K and its derivatives, e.g. vitamin K and related quinone or phytol compounds, or steroids, such as bile acids, for example cholic acid, deoxycholic acid, dehydrocholic acid, cortisone, digoxygenin, testosterone, cholesterol or thiocholesterol.
- bile acids for example cholic acid, deoxycholic acid, dehydrocholic acid, cortisone, digoxygenin, testosterone, cholesterol or thiocholesterol.
- Further lipids or lipophilic residues within the scope of the present invention include, without implying any limitation, polyalkylene glycols (Oberhauser et al., Nucl.
- aliphatic groups such as, for example, C 1 -C 20 -alkanes, C 1 -C 20 -alkenes or C 1 -C 20 -alkanol compounds, etc., such as, for example, dodecanediol, hexadecanol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10, 111; Kabanov et al., FEBS Lett., 1990, 259, 327; Svinarchuk et al., Biochimie, 1993, 75, 49), phospholipids such as, for example, phosphatidylglycerol, diacylphosphatidylglycerol, phosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, di
- polyamines or polyalkylene glycols such as, for example, polyethylene glycol (PEG) (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969), hexaethylene glycol (HEG), palmitin or palmityl residues (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229), octadecylamines or hexylamino-carbonyl-oxycholesterol residues (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923), and also waxes, terpenes, alicyclic hydrocarbons, saturated and mono- or poly-unsaturated fatty acid residues, etc.
- PEG polyethylene glycol
- HEG hexaethylene glycol
- HOG hexaethylene glycol
- palmitin or palmityl residues Mishra et al
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may likewise be stabilized in order to prevent degradation of the nucleic acid by various approaches, particularly, when RNA or mRNA is used as a nucleic acid for the inventive purpose.
- RNAases ribonucleases
- the natural degradation of mRNA in the cytoplasm of cells is very finely regulated and RNase contaminations may be generally removed by special treatment prior to use of said compositions, in particular with diethyl pyrocarbonate (DEPC).
- DEPC diethyl pyrocarbonate
- a number of mechanisms of natural degradation are known in this connection in the prior art, which may be utilized as well.
- the terminal structure is typically of critical importance for an mRNA.
- cap structure a modified guanosine nucleotide
- the so-called poly-A tail is typically a sequence of up to 200 adenosine nucleotides
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can therefore be stabilized against degradation by RNases by the addition of a so-called “5′ cap” structure.
- 5′ cap a so-called “5′ cap” structure.
- Particular preference is given in this connection to an m7G(5′)ppp (5′(A,G(5′)ppp(5′)A or G(5′)ppp(5′)G as the 5“cap” structure.
- such a modification is introduced only if a modification, for example a lipid modification, has not already been introduced at the 5′ end of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, if provided as a mRNA or if the modification does not interfere with the immunogenic properties of the (unmodified or chemically modified) nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- a modification for example a lipid modification
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may contain, especially if the nucleic acid is in the form of a mRNA, a poly-A tail on the 3′ terminus of typically about to 200 adenosine nucleotides, preferably about 10 to 100 adenosine nucleotides, more preferably about 20 to 100 adenosine nucleotides or even more preferably about 40 to 80 adenosine nucleotides.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may contain, especially if the nucleic acid is in the form of a mRNA, a poly-C tail on the 3′ terminus of typically about to 200 cytosine nucleotides, preferably about 10 to 100 cytosine nucleotides, more preferably about 20 to 70 cytosine nucleotides or even more preferably about 20 to 60 or even to 40 cytosine nucleotides.
- the G/C content of the coding region of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is modified, particularly increased, compared to the G/C content of the coding region of its particular wild type mRNA, i.e. the unmodified mRNA.
- the encoded amino acid sequence of the at least one mRNA is preferably not modified compared to the coded amino acid sequence of the particular wild type mRNA.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is based on the fact that the sequence of any mRNA region to be translated is important for efficient translation of that mRNA.
- composition and the sequence of various nucleotides are important.
- sequences having an increased G (guanosine)/C (cytosine) content are more stable than sequences having an increased A (adenosine)/U (uracil) content.
- the codons of the mRNA are therefore varied compared to its wild type mRNA, while retaining the translated amino acid sequence, such that they include an increased amount of G/C nucleotides.
- the most favorable codons for the stability can be determined (so-called alternative codon usage).
- nucleic acid sequence
- transfection and/or injection especially if the nucleic acid is in the form of a mRNA
- nucleic acid is in the form of a mRNA
- amino acids which are encoded by codons which contain exclusively G or C nucleotides no modification of the codon is necessary.
- the codons for Pro (CCC or CCG), Arg (CGC or CGG), Ala (GCC or GCG) and Gly (GGC or GGG) require no modification, since no A or U is present.
- codons which contain A and/or U nucleotides can be modified by substitution of other codons which code for the same amino acids but contain no A and/or U. Examples of these are:
- the codons for Pro can be modified from CCU or CCA to CCC or CCG; the codons for Arg can be modified from CGU or CGA or AGA or AGG to CGC or CGG; the codons for Ala can be modified from GCU or GCA to GCC or GCG; the codons for Gly can be modified from GGU or GGA to GGC or GGG.
- substitutions listed above can be used either individually or in all possible combinations to increase the G/C content of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, compared to its particular wild type mRNA (i.e. the original sequence).
- all codons for Thr occurring in the wild type sequence can be modified to ACC (or ACG).
- combinations of the above substitution possibilities are used:
- the G/C content of the coding region of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is increased by at least 7%, more preferably by at least 15%, particularly preferably by at least 20%, compared to the G/C content of the coded region of the wild type mRNA.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is based on the finding that the translation efficiency is also determined by a different frequency in the occurrence of tRNAs in cells.
- nucleic acid sequence of the inventive solution for lyophilization, transfection and/or injection
- the corresponding modified nucleic acid is translated to a significantly poorer degree than in the case where codons coding for relatively “frequent” tRNAs are present.
- the coding region of the modified nucleic acid is preferably modified compared to the corresponding region of the wild type mRNA such that at least one codon of the wild type sequence which codes for a tRNA which is relatively rare in the cell is exchanged for a codon which codes for a tRNA which is relatively frequent in the cell and carries the same amino acid as the relatively rare tRNA.
- sequences of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is modified such that codons for which frequently occurring tRNAs are available are inserted.
- all codons of the wild type sequence which code for a tRNA which is relatively rare in the cell can in each case be exchanged for a codon which codes for a tRNA which is relatively frequent in the cell and which, in each case, carries the same amino acid as the relatively rare tRNA.
- the sequential G/C content which is increased, in particular maximized, in the modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection especially if the nucleic acid is in the form of a mRNA, with the “frequent” codons without modifying the amino acid sequence of the protein encoded by the coding region of the nucleic acid.
- This preferred aspect allows provision of a particularly efficiently translated and stabilized (modified) nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA.
- a modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as described above (increased G/C content; exchange of tRNAs) can be carried out using the computer program explained in WO 02/098443—the disclosure content of which is included in its full scope in the present invention.
- nucleotide sequence of any desired nucleic acid or mRNA can be modified with the aid of the genetic code or the degenerative nature thereof such that a maximum G/C content results, in combination with the use of codons which code for tRNAs occurring as frequently as possible in the cell, and the amino acid sequence coded by the modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection preferably not being modified compared to the non-modified sequence.
- the source code in Visual Basic 6.0 development environment used: Microsoft Visual Studio Enterprise 6.0 with Servicepack 3
- Microsoft Visual Studio Enterprise 6.0 with Servicepack 3 is also described in WO 02/098443.
- the A/U content in the environment of the ribosome binding site of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is increased compared to the A/U content in the environment of the ribosome binding site of its particular wild type mRNA.
- This modification an increased A/U content around the ribosome binding site increases the efficiency of ribosome binding to the nucleic acid.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection especially if the nucleic acid is in the form of a mRNA, may be modified with respect to potentially destabilizing sequence elements.
- the coding region and/or the 5′ and/or 3′ untranslated region of this nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be modified compared to the particular wild type nucleic acid such that is contains no destabilizing sequence elements, the coded amino acid sequence of the modified nucleic acid of the present invention, especially if the nucleic acid is in the form of a mRNA, preferably not being modified compared to its particular wild type nucleic acid.
- DSE destabilizing sequence elements
- nucleic acid sequence of the inventive solution for lyophilization, transfection and/or injection
- nucleic acid is in the form of a mRNA, optionally in the region which encodes for a protein or a peptide as defined herein
- one or more such modifications compared to the corresponding region of the wild type nucleic acid can therefore be carried out, so that no or substantially no destabilizing sequence elements are contained there.
- DSE present in the untranslated regions (3′- and/or 5′-UTR) can also be eliminated from the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, by such modifications.
- Such destabilizing sequences are e.g. AU-rich sequences (AURES), which occur in 3′-UTR sections of numerous unstable RNAs (Caput et al., Proc. Natl. Acad. Sci. USA 1986, 83: 1670 to 1674).
- AURES AU-rich sequences
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is therefore preferably modified compared to the wild type nucleic acid such that the modified nucleic acid contains no such destabilizing sequences.
- sequence motifs which are recognized by possible endonucleases, e.g.
- sequence GAACAAG which is contained in the 3′-UTR segment of the gene which codes for the transferrin receptor (Binder et al., EMBO J. 1994, 13: 1969 to 1980).
- sequence motifs are also preferably removed in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above especially if the nucleic acid is in the form of a mRNA, has, in a modified form, at least one IRES as defined above and/or at least one 5′ and/or 3′ stabilizing sequence, in a modified form, e.g. to enhance ribosome binding or to allow expression of different encoded proteins located on an at least one (bi- or even multicistronic) RNA of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above.
- These stabilizing sequences in the 5′ and/or 3′ untranslated regions have the effect of increasing the half-life of the nucleic acid in the cytosol.
- These stabilizing sequences can have 100% sequence identity to naturally occurring sequences which occur in viruses, bacteria and eukaryotes, but can also be partly or completely synthetic.
- the untranslated sequences (UTR) of the (alpha-)globin gene e.g.
- stabilizing sequences which can be used in the present invention for a stabilized nucleic acid.
- Another example of a stabilizing sequence has the general formula (C/U)CCAN x CCC(U/A)Py x UC(C/U)CC (SEQ ID NO: 4), which is contained in the 3′UTR of the very stable RNA which codes for (alpha-)globin, type(1)-collagen, 15-lipoxygenase or for tyrosine hydroxylase (cf. Holcik et al., Proc. Natl. Acad. Sci. USA 1997, 94: 2410 to 2414).
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, is therefore preferably present as (alpha-)globin UTR (untranslated regions)-stabilized RNA, in particular as (alpha-)globin UTR-stabilized RNA.
- nucleic acid sequence
- inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, using a DNA matrix for preparation of the nucleic acid by techniques of the well known site directed mutagenesis or with an oligonucleotide ligation strategy (see e.g. Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 3rd ed., Cold Spring Harbor, N.Y., 2001).
- a corresponding DNA molecule may be transcribed in vitro.
- This DNA matrix preferably comprises a suitable promoter, e.g. a T7 or SP6 promoter, for in vitro transcription, which is followed by the desired nucleotide sequence for the nucleic acid, e.g. mRNA, to be prepared and a termination signal for in vitro transcription.
- the DNA molecule which forms the matrix of at least one RNA of interest, may be prepared by fermentative proliferation and subsequent isolation as part of a plasmid which can be replicated in bacteria.
- Plasmids which may be mentioned as suitable for the present invention are e.g. the plasmids pT7Ts (GenBank accession number U26404; Lai et al., Development 1995, 121: 2349 to 2360), pGEM® series, e.g. pGEM®-1 (GenBank accession number X65300; from Promega) and pSP64 (GenBank accession number X65327); cf. also Mezei and Storts, Purification of PCR Products, in: Griffin and Griffin (ed.), PCR Technology: Current Innovation, CRC Press, Boca Raton, Fla., 2001.
- Nucleic acid molecules used according to the invention as defined above may be prepared using any method known in the art, including synthetic methods such as e.g. solid phase synthesis, as well as in vitro methods, such as in vitro transcription reactions.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, may additionally or alternatively encode a secretory signal peptide.
- signal peptides are sequences, which typically exhibit a length of about 15 to 30 amino acids and are preferably located at the N-terminus of the encoded peptide, without being limited thereto.
- Signal peptides as defined herein preferably allow the transport of the protein or peptide as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, into a defined cellular compartment, preferably the cell surface, the endoplasmic reticulum (ER) or the endosomal-lysosomal compartment.
- secretory signal peptide sequences as defined herein include, without being limited thereto, signal sequences of classical or non-classical MHC-molecules (e.g. signal sequences of MHC I and II molecules, e.g.
- signal sequences of cytokines or immunoglobulines as defined herein signal sequences of the invariant chain of immunoglobulines or antibodies as defined herein, signal sequences of Lampl, Tapasin, Erp57, Calretikulin, Calnexin, and further membrane associated proteins or of proteins associated with the endoplasmic reticulum (ER) or the endosomal-lysosomal compartment.
- signal sequences of MHC class I molecule HLA-A*0201 may be used according to the present invention.
- nucleic acid sequence of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, and further to any nucleic acid as used in the context of the present invention and may be, if suitable or necessary, be combined with each other in any combination, provided, these combinations of modifications do not interfere with each other in the respective nucleic acid.
- a person skilled in the art will be able to take his choice accordingly.
- the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above as well as proteins or peptides as encoded by this nucleic acid may comprise fragments or variants of those sequences.
- Such fragments or variants may typically comprise a sequence having a sequence identity with one of the above mentioned nucleic acids, or with one of the proteins or peptides or sequences, if encoded by the at least one nucleic acid (sequence) of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, preferably at least 70%, more preferably at least 80%, equally more preferably at least 85%, even more preferably at least 90% and most preferably at least 95% or even 97%, to the entire wild type sequence, either on nucleic acid level or on amino acid level.
- “Fragments” of proteins or peptides in the context of the present invention may comprise a sequence of a protein or peptide as defined above, which is, with regard to its amino acid sequence (or its encoded nucleic acid (sequence)), N-terminally, C-terminally and/or intrasequentially truncated compared to the amino acid sequence of the original (native) protein (or its encoded nucleic acid (sequence)). Such truncation may thus occur either on the amino acid level or correspondingly on the nucleic acid level.
- a sequence identity with respect to such a fragment as defined above may therefore preferably refer to the entire protein or peptide as defined above or to the entire (coding) nucleic acid (sequence) of such a protein or peptide.
- “fragments” of nucleic acids in the context of the present invention may comprise a sequence of a nucleic acid as defined above, which is, with regard to its nucleic acid (sequence) 5′-, 3′- and/or intrasequentially truncated compared to the nucleic acid (sequence) of the original (native) nucleic acid (sequence).
- a sequence identity with respect to such a fragment as defined above may therefore preferably refer to the entire nucleic acid as defined above.
- Fragments of proteins or peptides in the context of the present invention may furthermore comprise a sequence of a protein or peptide as defined above, which has a length of about 6 to about 20 or even more amino acids, e.g. fragments as processed and presented by MHC class I molecules, preferably having a length of about 8 to about 10 amino acids, e.g. 8, 9, or 10, (or even 6, 7, 11, or 12 amino acids), or fragments as processed and presented by MHC class II molecules, preferably having a length of about 13 or more amino acids, e.g.
- fragments may be selected from any part of the amino acid sequence.
- These fragments are typically recognized by T-cells in form of a complex consisting of the peptide fragment and an MHC molecule, i.e. the fragments are typically not recognized in their native form.
- Fragments of proteins or peptides as defined herein may also comprise epitopes of those proteins or peptides.
- Epitopes also called “antigen determinants” in the context of the present invention are typically fragments located on the outer surface of (native) proteins or peptides as defined herein, preferably having 5 to 15 amino acids, more preferably having 5 to 12 amino acids, even more preferably having 6 to 9 amino acids, which may be recognized by antibodies or B-cell receptors, i.e. in their native form.
- Such epitopes of proteins or peptides may furthermore be selected from any of the herein mentioned variants of such proteins or peptides.
- antigenic determinants can be conformational or discontinuous epitopes which are composed of segments of the proteins or peptides as defined herein that are discontinuous in the amino acid sequence of the proteins or peptides as defined herein but are brought together in the three-dimensional structure or continuous or linear epitopes which are composed of a single polypeptide chain.
- “Variants” of proteins or peptides as defined above may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, wherein nucleic acids of the nucleic acid, encoding the protein or peptide as defined above, are exchanged.
- a protein or peptide may be generated, having an amino acid sequence which differs from the original sequence in one or more mutation(s), such as one or more substituted, inserted and/or deleted amino acid(s).
- these fragments and/or variants have the same biological function or specific activity compared to the full-length native protein, e.g. its specific antigenic property.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above may also encode a protein or peptide as defined above, wherein the encoded amino acid sequence comprises conservative amino acid substitution(s) compared to its physiological sequence.
- the encoded amino acid sequences as well as their encoding nucleotide sequences in particular fall under the term variants as defined above.
- Substitutions in which amino acids which originate from the same class are exchanged for one another are called conservative substitutions.
- these are amino acids having aliphatic side chains, positively or negatively charged side chains, aromatic groups in the side chains or amino acids, the side chains of which can enter into hydrogen bridges, e.g. side chains which have a hydroxyl function.
- an amino acid having a polar side chain is replaced by another amino acid having a likewise polar side chain, or, for example, an amino acid characterized by a hydrophobic side chain is substituted by another amino acid having a likewise hydrophobic side chain (e.g. serine (threonine) by threonine (serine) or leucine (isoleucine) by isoleucine (leucine)).
- Insertions and substitutions are possible, in particular, at those sequence positions which cause no modification to the three-dimensional structure or do not affect the binding region. Modifications to a three-dimensional structure by insertion(s) or deletion(s) can easily be determined e.g.
- CD spectra circular dichroism spectra
- variants of proteins or peptides as defined above which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, may also comprise those sequences, wherein nucleic acids of the nucleic acid are exchanged according to the degeneration of the genetic code, without leading to an alteration of respective amino acid sequence of the protein or peptide, i.e. the amino acid sequence or at least part thereof may not differ from the original sequence in one or more mutation(s) within the above meaning.
- nucleic acid (sequence) s e.g. at least one nucleic acid (sequence) as defined herein, or amino acid sequences, preferably their encoded amino acid sequences, e.g. the amino acid sequences of the proteins or peptides as defined above
- the sequences can be aligned in order to be subsequently compared to one another. Therefore, e.g. gaps can be inserted into the sequence of the first sequence and the component at the corresponding position of the second sequence can be compared. If a position in the first sequence is occupied by the same component as is the case at a position in the second sequence, the two sequences are identical at this position.
- the percentage to which two sequences are identical is a function of the number of identical positions divided by the total number of positions.
- the percentage to which two sequences are identical can be determined using a mathematical algorithm.
- a preferred, but not limiting, example of a mathematical algorithm which can be used is the algorithm of Karlin et al. (1993), PNAS USA, 90:5873-5877 or Altschul et al. (1997), Nucleic Acids Res., 25:3389-3402. Such an algorithm is integrated in the BLAST program. Sequences which are identical to the sequences of the present invention to a certain extent can be identified by this program.
- the inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) as defined above and mannose, may additionally contain a lactate.
- a lactate provided a surprisingly good effect on stabilization of the inventive nucleic acid (sequence) during lyophilization additional to the mannose already contained in the solution. This is particularly surprising and was not suggested by any of the prior art available.
- salts typically destabilize a nucleic acid (sequence) during lyophilization, always would have expected that lactate, representing a salt, would rather destabilize than stabilize a nucleic acid (sequence) during lyophilization.
- a lactate as defined herein may be any lactate available in the art.
- a lactate within the context of the present invention is defined as a chemical compound, particularly a salt, derived from free lactic acid (IUPAC systematic name: 2-hydroxypropanoic acid), also known as milk acid, including its optical isomers L-(+)-lactic acid, (S)-lactic acid, D-( ⁇ )-lactic acid or (R)-lactic acid, more preferably its biologically active optical isomer L-(+)-lactic acid, wherein the salt or an anion thereof, preferably may be selected from sodium-lactate, potassium-lactate, or Al 3 + -lactate, NH 4 + -lactate, Fe-lactate, Li-lactate, Mg-lactate, Ca-lactate, Mn-lactate or Ag-lactate, or selected from Ringer's lactate (RiLa), lactated Ringer's solution (main content sodium lactate, also termed “Hartmann's Solution” in the UK), acetated Ring
- Lactic acid is a chemical compound that plays a role in several biochemical processes. It was first isolated in 1780 by a Swedish chemist, Carl Wilhelm Scheele, and is a carboxylic acid with a chemical formula of C 3 H 6 O 3 . It has a hydroxyl group adjacent to the carboxyl group, making it an alpha hydroxy acid (AHA). In solution, it can lose a proton from the acidic group, producing the lactate ion CH 3 CH(OH)COO ⁇ . Lactic acid is chiral and has two optical isomers.
- L-(+)-lactic acid or (S)-lactic acid is known as L-(+)-lactic acid or (S)-lactic acid and the other, its mirror image, is D-( ⁇ )-lactic acid or (R)-lactic acid, wherein L-(+)-lactic acid is the biologically important isomer.
- L-lactate is constantly produced in animals from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise.
- LDH lactate dehydrogenase
- lactic acid is typically produced via fermentation using among others bacteria such as Lactobacillus bacteria, etc.
- the inventive solution for lyophilization, transfection and/or injection as defined above may typically comprise a lactate concentration in the range of about 3 mM to about 300 mM, preferably in the range of about 5 mM to about 200 mM, more preferably in the range of about 10 mM to about 150 mM, even more preferably about 15 mM to about 35 mM, and most preferably 20 mM to about 31 mM.
- inventive solution for lyophilization, transfection and/or injection as defined above may typically comprise a Ringer's lactate content (or a content of any of the aforementioned (undiluted) lactate containing solutions) e.g. in the range of about 10% (w/w) to about 100% (w/w), e.g.
- Ringer's lactate (100% (w/w) is typically defined as a solution comprising 131 mM Na + , 5.36 mM K + , 1.84 mM Ca 2+ , and 28.3 mM Lactate).
- the inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) and mannose, may additionally contain water, preferably water for injection (WFI).
- WFI water for injection
- WFI water for injection
- WFI Water for Injection
- WFI is water purified by distillation or reverse osmosis.” WFI is typically produced by either distillation or 2-stage reverse osmosis. It is usually stored and distributed hot (at about 80° C.) in order to meet microbial quality requirements. WFI typically does not contain more than 0.25 USP endotoxin units (EU) per ml.
- EU USP endotoxin units
- Endotoxins are a class of pyrogens that are components of the cell wall of Gram-negative bacteria (the most common type of bacteria in water), preferably in an action limit of 10 cfu/100 ml.
- the microbial quality may be tested by membrane filtration of a 100 ml sample and plate count agar at an incubation temperature of 30 to 35 degrees Celsius for a 48-hour period.
- the chemical purity requirements of WFI are typically the same as of PW (purified water).
- inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) and mannose may additionally contain further optional components or additives, e.g. a cryoprotectant, a lyoprotectant or any further suitable additive, preferably as defined in the following.
- the inventive solution for lyophilization, transfection and/or injection as defined herein may contain the herein defined contents, optional components, additives, etc. in such a concentration so as to lead to an osmolality or osmolarity comparable to that of blood plasma.
- Osmolarity is typically to be understood as a measure of all contents, optional components, additives, etc. of the inventive solution for lyophilization, transfection and/or injection as defined herein.
- Osmolarity is typically the measure of solute concentration, defined as the number of osmoles (Osm) of all solubilized contents, optional components, additives, etc. per liter (I) of solution (osmol/l or osm/l).
- the inventive solution for lyophilization, transfection and/or injection as defined herein may comprise an osmolarity preferably in the range of about 200 mosmol/l to about 400 mosmol/l, more preferably in the range of about 250 mosmol/l to about 350 mosmol/l, even more preferably in the range of about 270 mosmol/l to about 330 mosmol/l or in the range of about 280 mosmol/l to about 320 mosmol/l, or in the range of about e.g. about 290 mosmol/l to about 310 mosmol/l, e.g.
- the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain at least one suspending agent, preferably mannit, preferably in a concentration of about 1 to 15% (w/w), more preferably in a concentration of about 3 to 10% (w/w), and even more preferably in a concentration of about 4 to 6% (w/w).
- at least one suspending agent preferably mannit, preferably in a concentration of about 1 to 15% (w/w), more preferably in a concentration of about 3 to 10% (w/w), and even more preferably in a concentration of about 4 to 6% (w/w).
- inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain at least one optional component or additive selected, e.g., from mannite, proteins, peptides, amino acids, alcohols, carbohydrates, metals or metal ions, surfactants, polymers or complexing agents, buffers, etc., or a combination thereof.
- at least one optional component or additive selected, e.g., from mannite, proteins, peptides, amino acids, alcohols, carbohydrates, metals or metal ions, surfactants, polymers or complexing agents, buffers, etc., or a combination thereof.
- another optional component or additive of the inventive solution for lyophilization, transfection and/or injection as defined above may also be selected from the group of amino acids.
- group may comprise, without being limited thereto, any naturally occurring amino acid.
- Cryoprotectants and/or lyoprotectants selected from the group of amino acids may additionally comprise any modification of a naturally occurring amino acid.
- a further optional component or additive may be selected from the group of alcohols.
- group may comprise, without being limited thereto, any alcohol suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, mannitol, polyethyleneglycol, polypropyleneglycol, sorbitol, etc.
- mannitol is preferably excluded from the scope of the present invention.
- a further optional component or additive may be selected from the group of carbohydrates.
- Such group of carbohydrates may comprise, without being limited thereto, any carbohydrate, suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, monosaccharides, such as e.g. glucose, fructose, etc., disaccharides, such as e.g. lactose, maltose, sucrose, trehalose, etc., and polysaccharides, such as e.g. dextran, HP-beta CD, etc.
- a further suitable optional component or additive may be selected from the group of proteins.
- Such group may comprise, without being limited thereto, proteins such as albumin, gelatine, therapeutically active proteins as defined above, antibodies as defined above, antigens as defined above, or any further protein encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above.
- a further optional component or additive which may be contained in the inventive solution for lyophilization, transfection and/or injection as defined above may be selected from the group of metals or metal ions, typically comprising, without being limited thereto, metals or metal ions or salts selected from
- alkali metals including members of group 1 of the periodic table: lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr), and their (monovalent) metal alkali metal ions and salts; preferably lithium (Li), sodium (Na), potassium (K), and their (monovalent) metal alkali metal ions and salts;
- alkaline earth metals including members of group 2 of the periodic table: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra), and their (divalent) alkaline earth metal ions and salts; preferably magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and their (divalent) alkaline earth metal ions and salts;
- transition metals including members of groups 3 to 13 of the periodic table and their metal ions and salts.
- the transition metals typically comprise the 40 chemical elements 21 to 30, 39 to 48, 71 to 80, and 103 to 112.
- the name transition originates from their position in the periodic table of elements. In each of the four periods in which they occur, these elements represent the successive addition of electrons to the d atomic orbitals of the atoms. In this way, the transition metals represent the transition between subgroup 2 elements and subgroup 12 (or 13) elements.
- Transition metals in the context of the present invention particularly comprise members of subgroup 3 of the periodic table: including Scandium (Sc), Yttrium (Y), and Lutetium (Lu), members of subgroup 4 of the periodic table: including Titan (Ti), Zirconium (Zr), and Hafnium (Hf), members of subgroup 5 of the periodic table: including Vanadium (V), Niobium (Nb), and Tantalum (Ta), members of subgroup 6 of the periodic table: including Chrome (Cr), Molybdenum (Mo), and Tungsten (W), members of subgroup 7 of the periodic table: including Manganese (Mn), Technetium (Tc), and Rhenium (Re), members of subgroup 8 of the periodic table: including Iron (Fe), Ruthenium (Ru), and Osmium (Os), members of subgroup 9 of the periodic table: including Cobalt (Co), Rhodium (Rh), and Iridium (Ir), members of subgroup 10 of the periodic table: including Nickel (Ni
- earth metals or members of the boron group including members of group 3 of the periodic table: including Boron (B), Aluminium (Al), Gallium (Ga), Indium (In) and Thallium (Tl) and their metal ions and salts; preferably Boron (B) and Aluminium (Al) and their metal ions and salts;
- metalloids or semi metals including Boron (B), Silicon (Si), Germanium (Ge), Arsenic (As), Antimony (Sb), Tellurium (Te).and Polonium (Po), and their semi metal ions and salts; preferably Boron (B) and Silicon (Si) and their semi metal ions and salts;
- a further optional component or additive of the inventive solution for lyophilization, transfection and/or injection as defined above may be selected from the group of surfactants comprising, without being limited thereto, any surfactant, suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, Tween, e.g. Tween 80 (e.g. 0.2%), Pluronics, e.g. Pluronic L121 (e.g. 1.25%), Triton-X, SDS, PEG, LTAB, Saponin, Cholate, etc.
- surfactants comprising, without being limited thereto, any surfactant, suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, Tween, e.g. Tween 80 (e.g. 0.2%), Pluronics, e.g. Pluronic L121 (e.g. 1.25%), Triton-X, SDS, PEG, LTAB, Saponin, Cholate, etc.
- Another optional component or additive which may be contained in the inventive solution for lyophilization, transfection and/or injection as defined above may be selected from the group of polymers or complexing agents, preferably to complex the nucleic acid, more preferably a RNA or mRNA contained in the inventive solution for lyophilization, transfection and/or injection as defined above.
- Such polymers or complexing agents typically comprise, without being limited thereto, any polymer suitable for the preparation of a pharmaceutical composition, such as minor/major groove binders, nucleic acid binding proteins, lipoplexes, nanoplexes, non-cationic or non-polycationic compounds, such as PLGA, Polyacetate, Polyacrylate, PVA, Dextran, hydroxymethylcellulose, starch, MMP, PVP, heparin, pectin, hyaluronic acid, and derivatives thereof, or cationic or polycationic compounds, particularly cationic or polycationic polymers or cationic or polycationic lipids, preferably cationic or polycationic polymers.
- any polymer suitable for the preparation of a pharmaceutical composition such as minor/major groove binders, nucleic acid binding proteins, lipoplexes, nanoplexes, non-cationic or non-polycationic compounds, such as PLGA, Polyacetate, Polyacrylate, PVA, Dextran, hydroxymethylcellulose
- such a cationic or polycationic compound is typically selected from any cationic or polycationic compound, suitable for complexing and thereby stabilizing a nucleic acid as defined herein, e.g. by associating the nucleic acid as defined herein with the cationic or polycationic compound.
- cationic or polycationic compounds are selected from cationic or polycationic peptides or proteins, including protamine, nucleoline, spermin or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), poly-arginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, Tat, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP22 derived or analog peptides, HSV VP22 (Herpes simplex), MAP, KALA or protein transduction domains (PTDs, PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila
- oligoarginines in this context are e.g. Arg 7 , Arg 8 , Arg 9 , Arg 7 , H 3 R 9 , R 9 H3, H 3 R 9 H 3 , YSSR 9 SSY, (RKH) 4 , Y(RKH) 2 R, etc.
- Further preferred cationic or polycationic compounds, which can be used for complexing the nucleic acid as defined herein may include cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g.
- PEI polyethyleneimine
- DOTMA [1-(2,3-sioleyloxy)propyl)]-N,N,N-trimethylammonium chloride
- DMRIE di-C14-amidine
- DOTIM DOTIM
- SAINT DC-Chol
- BGTC CTAP
- DOPC DODAP
- DOPE Dioleyl phosphatidylethanol-amine
- DOSPA DODAB
- DOIC DOIC
- DMEPC DOGS: Dioctadecylamidoglicylspermin
- DIMRI Dimyristo-oxypropyl dimethyl hydroxyethyl ammonium bromide
- DOTAP dioleoyloxy-3-(trimethylammonio)propane
- DC-6-14 O,O-ditetradecanoyl-N-( ⁇ -trimethylammonioacetyl)diethanolamine chloride
- CLIP1 rac-[(2,3-dioctadecyloxypropyl)(2-hydroxyethyl)]
- modified polyaminoacids such as 3-aminoacid-polymers or reversed polyamides, etc.
- modified polyethylenes such as PVP (poly(N-ethyl-4-vinylpyridinium bromide)), etc.
- modified acrylates such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc.
- modified Amidoamines such as pAMAM (poly(amidoamine)), etc.
- modified polybetaminoester (PBAE) such as diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc.
- dendrimers such as polypropylamine dendrimers or pAMAM based dendrimers, etc.
- polyimine(s) such as PEI: poly(ethyleneimine), poly(propyleneimine), etc.
- polyallylamine sugar backbone based polymers, such as
- association or complexing the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above with cationic or polycationic compounds preferably provides adjuvant properties to the nucleic acid, preferably if provided as an RNA, and/or confers a stabilizing effect to the nucleic acid as defined herein by complexation.
- the procedure for stabilizing the nucleic acid as defined herein is in general described in EP-A-1083232, the disclosure of which is incorporated by reference into the present invention in its entirety.
- cationic or polycationic compounds are compounds selected from the group consisting of protamine, nucleoline, spermin, spermidine, oligoarginines as defined above, such as Arg 7 , Arg 8 , Arg 9 , Arg 7 , H 3 R 9 , R 9 H3, H 3 R 9 H 3 , YSSR 9 SSY, (RKH) 4 , Y(RKH) 2 R, etc.
- the nucleic acid of the inventive solution for lyophilization, transfection and/or injection as defined above, preferably an RNA or mRNA is complexed with a cationic or polycationic compound as defined above.
- the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain water, water for injection (WFI), or a buffer, preferably selected from a buffer as defined above, e.g. a buffer containing 2-hydroxypropanoic acid, preferably including at least one of its optical isomers L-(+)-lactic acid, (S)-lactic acid, D-( ⁇ )-lactic acid or (R)-lactic acid, more preferably its biologically active optical isomer L-(+)-lactic acid, or a salt or an anion thereof, preferably selected from sodium-lactate, potassium-lactate, or Al 3 + -lactate, NH 4 + -lactate, Fe-lactate, Li-lactate, Mg-lactate, Ca-lactate, Mn-lactate or Ag-lactate, or a buffer selected from Ringer's lactate (RiLa), lactated Ringer's solution (main content sodium lactate, also termed “Hartmann's Solution” in the UK
- a buffer as defined herein may also be an isotonic buffer or solution, preferably selected from isotonic saline, a lactate or ortho-lactate-containing isotonic solution, a isotonic buffer or solution selected from phosphate-buffered saline (PBS), TRIS-buffered saline (TBS), Hank's balanced salt solution (HBSS), Earle's balanced salt solution (EBSS), standard saline citrate (SSC), HEPES-buffered saline (HBS), Grey's balanced salt solution (GBSS), or normal saline (NaCl), hypotonic (saline) solutions with addition of glucose or dextrose, or any solution as defined herein, etc.
- PBS phosphate-buffered saline
- TRIS-buffered saline TRIS-buffered saline
- HBSS Hank's balanced salt solution
- EBSS Earle's balanced salt solution
- SSC standard
- Isotonic isotonic buffers or solutions are particularly preferred as buffers in the context of the present invention for injection and/or transfection purposes.
- These isotonic buffers or solutions are preferably prepared by a skilled person preferably as defined herein or according to definitions preparation protocols well known in the art for these specific isotonic buffers or solutions.
- the inventive solution for lyophilization, transfection and/or injection as defined above may contain these isotonic buffers or solutions or (all) its contents in isotonic concentrations, preferably as defined herein or in the art for these specific isotonic solutions.
- a buffer may be used, more preferably an aqueous (isotonic solution or aqueous) buffer, containing a sodium salt, preferably at least 50 mM of a sodium salt, a calcium salt, preferably at least 0.01 mM of a calcium salt, and optionally a potassium salt, preferably at least 3 mM of a potassium salt.
- the sodium, calcium and, optionally, potassium salts may occur in the form of their halogenides, e.g. chlorides, iodides, or bromides, in the form of their hydroxides, carbonates, hydrogen carbonates, or sulfates, etc.
- examples of sodium salts include e.g.
- examples of the optional potassium salts include e.g. KCl, KI, KBr, K 2 CO 3 , KHCO 3 , K 2 SO 4
- examples of calcium salts include e.g. CaCl 2 , Cal 2 , CaBr 2 , CaCO 3 , CaSO 4 , Ca(OH) 2 .
- the salts are present in such an (isotonic solution or) buffer in a concentration of at least 50 mM sodium chloride (NaCl), at least 3 mM potassium chloride (KCl) and at least 0.01 mM calcium chloride (CaCl 2 ).
- organic anions of the aforementioned cations may be contained in the buffer.
- the buffer may contain salts selected from sodium chloride (NaCl), calcium chloride (CaCl 2 ) and optionally potassium chloride (KCl), wherein further anions may be present additional to the chlorides.
- CaCl 2 can also be replaced by another salt like KCl.
- the buffer may be hypertonic, isotonic or hypotonic with reference to the specific reference medium, i.e. the buffer may have a higher, identical or lower salt content with reference to the specific reference medium, wherein preferably such concentrations of the aforementioned salts may be used, which do not lead to damage of cells due to osmosis or other concentration effects.
- Reference media are e.g.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, if lyophilized may again be reconstituted after lyophilization in a buffer as defined herein, preferably in an isotonic buffer, preferably as defined above, e.g. as a further step of a method for lyophilization as defined herein.
- nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, if lyophilized, may alternatively be lyophilized in a buffer as defined above (containing mannose) and may be reconstituted after lyophilization in water or a buffer, e.g. as defined herein, to obtain the desired salt concentration or alternatively the desired buffer conditions.
- the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain an adjuvant.
- an adjuvant is preferably an immunostimulating agent, selected from the group consisting of cationic peptides, including polypeptides including protamine, nucleoline, spermine or spermidine, cationic polysaccharides, including chitosan, TDM, MDP, muramyl dipeptide, pluronics, alum solution, aluminium hydroxide, ADJUMERTM (polyphosphazene); aluminium phosphate gel; glucans from algae; algammulin; aluminium hydroxide gel (alum); highly protein-adsorbing aluminium hydroxide gel; low viscosity aluminium hydroxide gel; AF or SPT (emulsion of squalane (5%), Tween 80 (0.2%), Pluronic L121 (1.25%), phosphate-buffered saline, pH 7.4); AVRIDINETM
- coli labile enterotoxin-protoxin microspheres and microparticles of any composition; MF59TM; (squalene-water emulsion); MONTANIDE ISA 51TM (purified incomplete Freund's adjuvant); MONTANIDE ISA 720TM (metabolisable oil adjuvant); MPLTM (3-Q-desacyl-4′-monophosphoryl lipid A); MTP-PE and MTP-PE liposomes ((N-acetyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1,2-dipalmitoyl-sn-glycero-3-(hydroxyphosphoryloxy))ethylamide, monosodium salt); MURAMETIDETM (Nac-Mur-L-Ala-D-Gln-OCH 3 ); MURAPALMITINETM and D-MURAPALMITINETM (Nac-Mur-L-Thr-D-isoGln-sn-
- biopolymers such as PLG, PMM, Inulin, etc.
- microbe derived adjuvants such as Romurtide, DETOX, MPL, CWS, Mannose, CpG7909, ISS-1018, IC31, Imidazoquinolines, Ampligen, Ribi529, IMOxine, IRIVs, VLPs, cholera toxin, heat-labile toxin, Pam3Cys, Flagellin, GPI anchor, LNFPIII/Lewis X, antimicrobial peptides, UC-IV50, RSV fusion protein, cdiGMP, etc.; preferred adjuvants suitable as antagonists may e.g. include CGRP neuropeptide;
- cationic or polycationic compounds which are suitable for depot and delivery, including protamine, nucleoline, spermin or spermidine, or other cationic peptides or proteins, including poly-L-lysine (PLL), poly-arginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, Tat, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP22 derived or analog peptides, HSV VP22 (Herpes simplex), MAP, KALA or protein transduction domains (PTDs, PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), pAntp
- the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain a protein or a peptide, which may be selected, without being restricted thereto, e.g. from therapeutically active proteins or peptides, from antigens, e.g. tumor antigens, pathogenic antigens (e.g. selected from pathogenic proteins as defined above or from animal antigens, viral antigens, protozoal antigens, bacterial antigens, allergic antigens), autoimmune antigens, or further antigens, from allergens, from antibodies, from immunostimulatory proteins or peptides, from antigen-specific T-cell receptors, or from any other protein or peptide suitable for a specific (therapeutic) application.
- antigens e.g. tumor antigens, pathogenic antigens (e.g. selected from pathogenic proteins as defined above or from animal antigens, viral antigens, protozoal antigens, bacterial antigens, allergic antigens), autoimmune antigens
- the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain one or more compatible solid or liquid fillers or diluents or encapsulating compounds, which are suitable for administration to a patient to be treated.
- compatible means that these constituents are capable of being mixed with the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above in such a manner that no interaction occurs which would substantially reduce the pharmaceutical effectiveness of the nucleic acid under typical use conditions.
- Pharmaceutically acceptable carriers, fillers and diluents must, of course, have sufficiently high purity and sufficiently low toxicity to make them suitable for administration to a person to be treated.
- Some examples of compounds which can be used as pharmaceutically acceptable carriers, fillers or constituents thereof are sugars, such as, for example, lactose, glucose and sucrose; starches, such as, for example, corn starch or potato starch; cellulose and its derivatives, such as, for example, sodium carboxymethylcellulose, ethylcellulose, cellulose acetate; powdered tragacanth; malt; gelatin; tallow; solid glidants, such as, for example, stearic acid, magnesium stearate; calcium sulfate; vegetable oils, such as, for example, groundnut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil from theobroma ; polyols, such as, for example, polypropylene glycol, glycerol, sorbitol, mannitol and polyethylene glycol; alginic acid.
- sugars such as, for example, lactose, glucose and sucrose
- starches such as, for example, corn
- inventive solution for lyophilization, transfection and/or injection as defined above may occur as a liquid, a semi-liquid or even a semi-solid or a solid sample or composition, preferably as a liquid, a semi-liquid or a semi-solid sample or composition, more preferably as a liquid or a semi-liquid sample or composition.
- the pH of the inventive solution for lyophilization, transfection and/or injection as defined above may be in the range of about 4 to 8, preferably in the range of about 6 to about 8, more preferably from about 7 to about 8.
- the inventive solution for lyophilization, transfection and/or injection as defined above may be a transfection and/or injection solution.
- the inventive solution can be used for injection and surprisingly allows to significantly enhance the rate of (transfection and thus) expression of a protein as defined above, preferably of a protein, which is encoded by a nucleic acid as defined above and forming part of the inventive solution for lyophilization, transfection and/or injection.
- Such an injection solution may contain any components as defined above for the inventive solution for lyophilization, transfection and/or injection.
- the inventive injection solution may be formed as a pharmaceutical composition or vaccine as defined in the following or may contain components thereof.
- the inventive injection solution can comprise or even consist of an isotonic solution as defined above and e.g. can (additionally) contain different salts (e.g. 0.5 mM to 50 mM potassium, 13 mM to 250 mM sodium, 0.2 mM to 10 mM calcium, and 0.2 mM to 10 mM magnesium).
- different injection solutions can be utilized, e.g. PBS, HBSS, Ringer-Lactat.
- the inventive injection solution may be administered as described in the following for a pharmaceutical composition or vaccine.
- the inventive solution for lyophilization, transfection and/or injection as defined above may be a solution for lyophilization of a nucleic acid as described herein.
- the solution for lyophilization of a nucleic acid as described herein surprisingly and significantly enhances storage stability of RNA, particularly in lyophilized form.
- the present invention provides a lyophilized nucleic acid (sequence), which has been lyophilized in an inventive solution for lyophilization, transfection and/or injection as defined above.
- lyophilization may be carried out starting from an inventive solution for lyophilization, transfection and/or injection as defined above, containing at least a nucleic acid (sequence) and mannose as defined above.
- the solution may contain any further optional components as defined above, preferably lactate or a lactate derived salt as defined above.
- the (residual) water content of the lyophilized nucleic sequence acid as defined herein is typically reduced to a content of about 0.5% (w/w) to about 10% (w/w), more preferably to a content of about 1% (w/w) to about 5% (w/w), even more preferably to a content of about 2% (w/w) to about 4% (w/w), most preferably to a content of about 3% (w/w), e.g. 3% (w/w) ⁇ 2% (w/w), or 3% (w/w) ⁇ 1% (w/w).
- the lyophilized nucleic acid (sequence) as defined herein typically comprises an excellent enhanced storage-stability, when compared to a lyophilized nucleic acid (sequence) of the art, which has been lyophilized without the presence of mannose, e.g. in the presence of water for injection (WFI) as described herein.
- the lyophilized nucleic acid (sequence) as defined and as prepared herein advantageously can be stored in a temperature range of about ⁇ 80° C. to +60° C. significantly longer, when compared to a lyophilized nucleic acid (sequence) of the art.
- the storage-stability of the lyophilized nucleic acid is calculated on the basis of the relative integrity of the nucleic acid (sequence).
- the relative integrity of the lyophilized nucleic acid is typically defined as the relative content of the nucleic acid (sequence) exhibiting a correct length when compared to the total content of the at least one nucleic acid (sequence) in the sample.
- the relative integrity of the mRNA in the lyophilized mRNA is typically defined as the relative content of the mRNA exhibiting a correct length when compared to the total content of mRNA in the sample.
- the storage-stability of a nucleic acid is typically determined on the basis of the relative integrity (over a defined or not defined period of time), wherein the nucleic acid (sequence) typically exhibits an unchanged biological activity.
- the storage stability is preferably regarded as complied with, if the relative integrity of the (lyophilized) nucleic acid (sequence) (s) is at least about 70%.
- a relative integrity of more than 70% meets the quality criteria of CureVac GmbH for mRNA, e.g. for mRNA exhibiting a GC-content of more than 60% and a base length of ⁇ 2000 nt in RNA containing formulations. This criterium may be applied to the above definition.
- lyophilized nucleic acid as defined herein, which may be lyophilized from an inventive solution for lyophilization, transfection and/or injection as defined above, may be prepared using a method as defined herein in the following.
- the present invention also provides a method of lyophilization of a nucleic acid (sequence), preferably for preparation of a lyophilized nucleic acid (sequence) as defined herein, particularly for preparation of a lyophilized nucleic acid (sequence) which may be lyophilized from an inventive solution for lyophilization, transfection and/or injection as defined above.
- lyophilization also termed cryodesiccation
- lyophilization is typically understood as a freeze-drying process, which allows removing water from a frozen sample, e.g. from an inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, via sublimation as described below in further detail.
- inventive method of lyophilization of a nucleic acid as defined herein from an inventive solution for lyophilization, transfection and/or injection as defined above preferably leads to an enhanced storage stability of the nucleic acid.
- the method typically comprises the following steps:
- the inventive method is directed to a method of lyophilization of a nucleic acid (sequence) as defined herein, preferably a nucleic acid (sequence) forming part of the inventive solution for lyophilization, transfection and/or injection as defined above.
- Lyophilization also termed cryodesiccation
- a frozen sample preferably the above defined inventive solution containing at least one nucleic acid (sequence) and mannose as defined above
- lyophilization is typically carried out by freeze-drying a sample first freezing a nucleic acid containing sample, which has been supplemented with mannose as defined herein, and then drying the nucleic acid containing sample via sublimation, optionally by reducing the surrounding pressure and/or adding enough heat to allow the frozen water in the sample to sublime directly from the solid phase to gas.
- an inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) and mannose as defined above, and optionally supplemented with further components as defined above, is provided.
- the inventive solution, particularly the at least one nucleic acid (sequence), the mannose and the optional components, is preferably as defined above.
- the inventive solution may be prepared e.g.
- the nucleic acid containing sample particularly the inventive solution for lyophilization, transfection and/or injection as defined above containing at least one nucleic acid and mannose as defined herein, is frozen.
- the freezing process may be carried out by any method, which allows to (entirely) freeze the sample. In a lab, this may be done by placing the material in a freeze-drying flask and rotating the flask in a bath, called a shell freezer, which is cooled by mechanical refrigeration, dry ice and methanol, or liquid nitrogen. On a larger-scale, freezing is usually carried out using a freeze-drying machine.
- the freezing temperatures are in the range between ⁇ 20° C. and ⁇ 80° C., preferably in the between ⁇ 30° C. and ⁇ 60° C., even more preferably in the range between ⁇ 40° C. and ⁇ 50° C., most preferably about ⁇ 47° C.
- the frozen sample is dried, typically using two drying steps, primary drying step c1) and secondary drying step c2).
- primary drying step c1) free, i.e. unbound, water surrounding the nucleic acid (sequence) and optionally further components, escapes from the solution.
- water being bound on a molecular basis by the at least one nucleic acid (sequence) may be removed in a secondary drying step c2) by adding thermal energy. In both cases the hydration sphere around the nucleic acid (sequence) is lost.
- the primary drying step c1) may be carried out at normal pressure, e.g. in the range of about 980 to about 1045 millibar (mbar), e.g. about 1013 mbar, but also may be carried out by lowering the pressure, usually to the range of a few millibar, e.g. in the range of about 0.001 mbar to about 0.2 mbar, preferably in the range of about 0.01 mbar to about 0.1 mbar, even more preferably in the range of about 0.025 mbar to about 0.075 mbar, e.g. about 0.05 mbar.
- pressure is typically controlled through the application of partial vacuum. The vacuum allows speeding up sublimation, making it useful as a deliberate drying process.
- a cold condenser chamber and/or condenser plates may be used to provide (a) surface(s) for the water vapor to re-solidify on.
- Condenser temperatures are typically below ⁇ 50° C. ( ⁇ 60° F.).
- heat may be supplied to the sample to allow for the water to sublimate. The amount of heat necessary can be calculated using the sublimating molecules' latent heat of sublimation. In this initial drying phase, about 95% (w/w) of the water in the material is sublimated. This phase may be carried out slow to avoid applying too much heat and possible alteration or damage of the structure of the nucleic acid to be lyophilized.
- the heat may be in the range of about ⁇ 40° C. to about +20° C., e.g. in the range of about ⁇ 30° C. to about +20° C., in the range of about ⁇ 20° C. to about +20° C., in the range of about ⁇ 10° C. to about +10° C., in the range of about ⁇ 40° C. to about +10° C., in the range of about ⁇ 30° C. to about +10° C., in the range of about ⁇ 20° C. to about +10° C., in the range of about ⁇ 20° C. to about +/ ⁇ 0° C., or in the range of about ⁇ 10° C. to about +/ ⁇ 0° C.
- heat and low pressure may be applied, preferably heat in the range as defined above and a low pressure in the range as defined above.
- the secondary drying step c2) typically aims to remove unfrozen water molecules bound in the structure of the nucleic acid (sequence), since the ice (frozen water molecules) is usually removed in the primary drying step c1) above.
- the temperature is typically raised higher than in the primary drying step, and can even be above 0° C., to break any physico-chemical interactions that have formed between the water molecules and the frozen material.
- the pressure may be lowered in this stage to encourage desorption.
- heat can be applied and pressure can be lowered, preferably in the above ranges. More preferably, the heat, if applied, may be in the range of about +10° C.
- the pressure, if lowered, is usually lowered to the range of a few millibars, e.g. as defined above, more preferably in the range of about 0.001 mbar to about 0.05 mbar, preferably in the range of about 0.001 mbar to about 0.025 mbar, even more preferably in the range of about 0.005 mbar to about 0.015 mbar, e.g. about 0.01 mbar.
- heat and low pressure may be applied, preferably in the ranges as defined above.
- the lyophilized nucleic acid (sequence) obtained according to steps b) and c), particularly c1) and c2), is typically floated in an optional step d) with an inert gas, such as nitrogen, etc., or a noble gas, such as helium, neon, argon, xenon, krypton, and/or the lyophilized nucleic acid is typically sealed.
- an inert gas such as nitrogen, etc., or a noble gas, such as helium, neon, argon, xenon, krypton
- the vacuum is usually broken, e.g. to atmospheric pressure (preferably about 1013 mbar), if low pressure was applied, and the temperature is typically adjusted to room temperature, if heat was used.
- the lyophilized nucleic acid (sequence) is optionally sealed in step e) of the inventive method of lyophilization with or without an inert gas.
- the lyophilized nucleic acid (sequence) is advantageously contained in any of the above mentioned steps a), b), c), and d) (and more preferably already lyophilized) in a sealable container.
- a lyophilized nucleic acid is preferably obtained, wherein the final (residual) water content in the inventive lyophilized nucleic acid is preferably in the range of about 0.5% (w/w) to about 10% (w/w), more preferably in the range of about 1% (w/w) to about 5% (w/w), even more preferably in the range of about 2% (w/w) to about 4% (w/w), most preferably in the range of about 3% (w/w), e.g. 3% (w/w) ⁇ 2% (w/w), or 3% (w/w) ⁇ 1% (w/w).
- a lyophilized nucleic acid may be obtained, which may be used for the inventive purposes. Additionally, steps d) and/or e) may be carried out. However, the lyophilized nucleic acid (sequence) may alternatively or additionally to steps d) and/or e) be reconstituted in a solution to obtain a product which is ready to be used in any of the herein mentioned applications. Therefore, according to a particularly preferred aspect, the lyophilized nucleic acid (sequence) may again be reconstituted in a buffer as defined above or a solution for reconstitution.
- such a solution for reconstitution is a solution as defined above for the inventive solution for lyophilization, transfection and/or injection, wherein the solution for reconstitution may contain at least one of the components as defined above for the inventive solution for lyophilization, transfection and/or injection except of the nucleic acid.
- Most preferred is an isotonic solution for reconstitution.
- the reconstitution may occur, e.g., after lyophilization, e.g. as a further step f) of the abovementioned method for lyophilization.
- the present invention furthermore provides a pharmaceutical composition, comprising the inventive solution for lyophilization, transfection and/or injection as defined above containing at least a nucleic acid (sequence) and mannose and eventually further components as defined above, or the lyophilized nucleic acid (sequence) or the lyophilized inventive solution as defined above and optionally a pharmaceutically acceptable carrier and/or vehicle.
- inventive pharmaceutical composition may optionally be supplemented with further components as defined above for the inventive solution for lyophilization, transfection and/or injection.
- the inventive pharmaceutical composition comprises the inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, or the lyophilized nucleic acid (sequence) as defined above.
- inventive pharmaceutical composition may comprise another class of compounds, which may be added to the inventive pharmaceutical composition in this context, may be selected from at least one pharmaceutically active component.
- a pharmaceutically active component in this context is a compound that has a therapeutic effect against a particular indication, preferably cancer diseases, autoimmune disease, allergies, infectious diseases or a further disease as defined herein.
- Such compounds include, without implying any limitation, preferably compounds including, without implying any limitation, peptides or proteins (e.g. as defined herein), nucleic acids, (therapeutically active) low molecular weight organic or inorganic compounds (molecular weight less than 5000, preferably less than 1000), sugars, antigens or antibodies (e.g.
- therapeutic agents already known in the prior art, antigenic cells, antigenic cellular fragments, cellular fractions; modified, attenuated or de-activated (e.g. chemically or by irridation) pathogens (virus, bacteria etc.), etc.
- inventive pharmaceutical composition may comprise a pharmaceutically acceptable carrier and/or vehicle.
- a pharmaceutically acceptable carrier typically includes the liquid or non-liquid basis of the inventive pharmaceutical composition. If the inventive pharmaceutical composition is provided in liquid form, the carrier will typically be pyrogen-free water; isotonic saline or buffered (aqueous) solutions, e.g phosphate, citrate etc. buffered solutions.
- water or preferably a buffer preferably an aqueous buffer
- a sodium salt preferably at least 50 mM of a sodium salt
- a calcium salt preferably at least 0.01 mM of a calcium salt
- optionally a potassium salt preferably at least 3 mM of a potassium salt.
- the sodium, calcium and, optionally, potassium salts may occur in the form of their halogenides, e.g. chlorides, iodides, or bromides, in the form of their hydroxides, carbonates, hydrogen carbonates, or sulfates, etc.
- examples of sodium salts include e.g.
- examples of the optional potassium salts include e.g. KCl, KI, KBr, K 2 CO 3 , KHCO 3 , K 2 SO 4
- examples of calcium salts include e.g. CaCl 2 , Cal 2 , CaBr 2 , CaCO 3 , CaSO 4 , Ca(OH) 2 .
- organic anions of the aforementioned cations may be contained in the buffer.
- the buffer suitable for injection purposes as defined above is an isotonic injection solution as defined herein and therefore may contain salts selected from sodium chloride (NaCl), calcium chloride (CaCl 2 ) and optionally potassium chloride (KCl), wherein further anions may be present additional to the chlorides. CaCl 2 can also be replaced by another salt like KCl.
- the salts in the injection buffer are present in a concentration of at least 50 mM sodium chloride (NaCl), at least 3 mM potassium chloride (KCl) and at least 0.01 mM calcium chloride (CaCl 2 ).
- the injection buffer may be hypertonic, isotonic or hypotonic with reference to the specific reference medium, i.e.
- the buffer may have a higher, identical or lower salt content with reference to the specific reference medium, wherein preferably such concentrations of the afore mentioned salts may be used, which do not lead to damage of cells due to osmosis or other concentration effects.
- Reference media are e.g. liquids occurring in “in vivo” methods, such as blood, lymph, cytosolic liquids, or other body liquids, or e.g. liquids, which may be used as reference media in “in vitro” methods, such as common buffers or liquids.
- Such common buffers or liquids are known to a skilled person and may be as defined above. Most preferred are isotonic solutions as defined above in general may be present in an osmolality or osmolarity comparable to that of blood plasma, preferably in the range as defined above.
- one or more compatible solid or liquid fillers or diluents or encapsulating compounds may be used as well for the inventive pharmaceutical composition, which are suitable for administration to a patient to be treated.
- the term “compatible” as used here means that these constituents of the inventive pharmaceutical composition are capable of being mixed with the nucleic acid (sequence) as defined herein in such a manner that no interaction occurs which would substantially reduce the pharmaceutical effectiveness of the inventive pharmaceutical composition under typical use conditions.
- Pharmaceutically acceptable carriers, fillers and diluents must, of course, have sufficiently high purity and sufficiently low toxicity to make them suitable for administration to a person to be treated.
- Some examples of compounds which can be used as pharmaceutically acceptable carriers, fillers or constituents thereof are sugars, such as, for example, lactose, glucose and sucrose; starches, such as, for example, corn starch or potato starch; cellulose and its derivatives, such as, for example, sodium carboxymethylcellulose, ethylcellulose, cellulose acetate; powdered tragacanth; malt; gelatin; tallow; solid glidants, such as, for example, stearic acid, magnesium stearate; calcium sulfate; vegetable oils, such as, for example, groundnut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil from theobroma ; polyols, such as, for example, polypropylene glycol, glycerol, sorbitol, mannitol and polyethylene glycol; alginic acid.
- sugars such as, for example, lactose, glucose and sucrose
- starches such as, for example, corn
- the inventive pharmaceutical composition may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, and sublingual injection or infusion techniques. Most preferred is intradermal and transdermal administration.
- the inventive pharmaceutical composition may be administered by parenteral injection, more preferably by subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, and sublingual injection or via infusion techniques.
- Sterile injectable forms of the inventive pharmaceutical compositions may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
- a non-toxic parenterally-acceptable diluent or solvent for example as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or di-glycerides.
- Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
- These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
- Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation of the inventive pharmaceutical composition.
- inventive pharmaceutical composition as defined above may also be administered orally in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
- carriers commonly used include lactose and corn starch.
- Lubricating agents, such as magnesium stearate, are also typically added.
- useful diluents include lactose and dried cornstarch.
- the at least one nucleic acid as defined above of the inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, or of the lyophilized nucleic acid (sequence) as defined above, is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
- the inventive pharmaceutical composition may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, e.g. including diseases of the skin or of any other accessible epithelial tissue. Suitable topical formulations are readily prepared for each of these areas or organs.
- the inventive pharmaceutical composition may be formulated in a suitable ointment, containing the components as defined above suspended or dissolved in one or more carriers. Carriers for topical administration include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
- the inventive pharmaceutical composition can be formulated in a suitable lotion or cream.
- suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
- the inventive pharmaceutical composition typically comprises a “safe and effective amount” of the components of the inventive pharmaceutical composition as defined above, particularly of the at least one nucleic acid (sequence).
- a “safe and effective amount” means an amount of the at least one nucleic acid (sequence) that is sufficient to significantly induce a positive modification of a disease or disorder as defined herein.
- a “safe and effective amount” is small enough to avoid serious side-effects, that is to say to permit a sensible relationship between advantage and risk. The determination of these limits typically lies within the scope of sensible medical judgment.
- a “safe and effective amount” of the components of the inventive pharmaceutical composition, particularly of the at least one nucleic acid (sequence) will furthermore vary in connection with the particular condition to be treated and also with the age and physical condition of the patient to be treated, the body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, the activity of the specific nucleic acid (sequence) employed, the severity of the condition, the duration of the treatment, the nature of the accompanying therapy, of the particular pharmaceutically acceptable carrier used, and similar factors, within the knowledge and experience of the accompanying doctor.
- the inventive pharmaceutical composition may be used for human and also for veterinary medical purposes, preferably for human medical purposes, as a pharmaceutical composition in general or as a vaccine.
- the inventive pharmaceutical composition may be provided as a vaccine.
- Such an inventive vaccine is typically composed like the inventive pharmaceutical composition, i.e. it contains at least comprising the inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, or the lyophilized nucleic acid (sequence) as defined above and optionally a pharmaceutically acceptable carrier and/or vehicle. Further components may be as defined above for the inventive pharmaceutical composition.
- the inventive vaccine preferably supports at least an innate immune response of the immune system of a patient to be treated. Additionally, the inventive vaccine furthermore may also elicit an adaptive immune response, preferably, if the at least one nucleic acid (sequence) of the inventive vaccine encodes any of the above mentioned antigens (or antibodies), which elicit an adaptive immune response.
- the inventive vaccine may also comprise a pharmaceutically acceptable carrier, adjuvant, and/or vehicle as defined above for the inventive pharmaceutical composition.
- a pharmaceutically acceptable carrier is determined in principle by the manner in which the inventive vaccine is administered.
- the inventive vaccine can be administered, for example, systemically or locally. Routes for systemic administration in general include, for example, transdermal, oral, parenteral routes, including subcutaneous, intravenous, intramuscular, intraarterial, intradermal and intraperitoneal injections and/or intranasal administration routes.
- Routes for local administration in general include, for example, topical administration routes but also intradermal, transdermal, subcutaneous, or intramuscular injections or intralesional, intracranial, intrapulmonal, intracardial, and sublingual injections. More preferably, vaccines herein may be administered by an intradermal, subcutaneous, or intramuscular route. Inventive vaccines are therefore preferably formulated in liquid (or sometimes in solid) form. The suitable amount of the inventive vaccine to be administered can be determined by routine experiments with animal models. Such models include, without implying any limitation, rabbit, sheep, mouse, rat, dog and non-human primate models. Preferred unit dose forms for injection include sterile solutions of water, physiological saline or mixtures thereof. The pH of such solutions should be adjusted to about 7.4.
- Suitable carriers for injection include hydrogels, devices for controlled or delayed release, polylactic acid and collagen matrices.
- Suitable pharmaceutically acceptable carriers for topical application include those which are suitable for use in lotions, creams, gels and the like. If the inventive vaccine is to be administered orally, tablets, capsules and the like are the preferred unit dose form.
- the pharmaceutically acceptable carriers for the preparation of unit dose forms which can be used for oral administration are well known in the prior art. The choice thereof will depend on secondary considerations such as taste, costs and storability, which are not critical for the purposes of the present invention, and can be made without difficulty by a person skilled in the art.
- the inventive vaccine can additionally contain one or more auxiliary substances in order to further increase its immunogenicity.
- various mechanisms can come into consideration in this respect. For example, compounds that permit the maturation of dendritic cells (DCs), for example lipopolysaccharides, TNF-alpha or CD40 ligand, form a first class of suitable auxiliary substances.
- DCs dendritic cells
- TNF-alpha or CD40 ligand form a first class of suitable auxiliary substances.
- auxiliary substance any agent that influences the immune system in the manner of a “danger signal” (LPS, GP96, etc.) or cytokines, such as GM-CFS, which allow an immune response produced by the immune-stimulating adjuvant according to the invention to be enhanced and/or influenced in a targeted manner or adjuvants as defined above.
- a “danger signal” LPS, GP96, etc.
- cytokines such as GM-CFS
- auxiliary substances are cytokines, such as monokines, lymphokines, interleukins or chemokines, that further promote the innate immune response, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, INF-alpha, IFN-beta, INF-gamma, GM-CSF, G-CSF, M-CSF, LT-beta or TNF-alpha, growth factors, such as hGH.
- cytokines such as monokines, lymphokines, interleukins
- emulsifiers such as, for example, Tween®
- wetting agents such as, for example, sodium lauryl sulfate
- colouring agents such as, for example, sodium lauryl sulfate
- taste-imparting agents pharmaceutical carriers
- tablet-forming agents such as, for example, stabilizers; antioxidants; preservatives.
- the inventive vaccine can also additionally contain any further compound, which is known to be immune-stimulating due to its binding affinity (as ligands) to human Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, or due to its binding affinity (as ligands) to murine Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 or TLR13.
- any further compound which is known to be immune-stimulating due to its binding affinity (as ligands) to human Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 or TLR13.
- CpG nucleic acids in particular CpG-RNA or CpG-DNA.
- a CpG-RNA or CpG-DNA can be a single-stranded CpG-DNA (ss CpG-DNA), a double-stranded CpG-DNA (dsDNA), a single-stranded CpG-RNA (ss CpG-RNA) or a double-stranded CpG-RNA (ds CpG-RNA).
- the CpG nucleic acid is preferably in the form of CpG-RNA, more preferably in the form of single-stranded CpG-RNA (ss CpG-RNA).
- the CpG nucleic acid preferably contains at least one or more (mitogenic) cytosine/guanine dinucleotide sequence(s) (CpG motif(s)).
- CpG motif(s) cytosine/guanine dinucleotide sequence(s)
- at least one CpG motif contained in these sequences that is to say the C (cytosine) and the G (guanine) of the CpG motif, is unmethylated. All further cytosines or guanines optionally contained in these sequences can be either methylated or unmethylated.
- the C (cytosine) and the G (guanine) of the CpG motif can also be present in methylated form.
- the CpG nucleic acids may be provided either in solubilized or in lyophilized form e.g. lyophilized using a method likewise as described herein for the inventive nucleic acid (sequence).
- Another class of compounds which may be added to an inventive vaccine in this context, may be selected from at least one pharmaceutically active component as defined above for the inventive pharmaceutical composition.
- the present invention provides several applications and uses of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or of the inventive lyophilized nucleic acid (sequence), of the inventive pharmaceutical composition or of the inventive vaccine all preferably as defined above.
- the present invention is directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the use of the inventive lyophilized nucleic acid (sequence) for lyophilization, transfection and/or injection.
- the present invention is directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the use of the inventive lyophilized nucleic acid (sequence) for the preparation of an injection solution as defined herein. More preferably, such an injection solution may be used to (significantly) enhance the transfection efficiency of the nucleic acid and or the expression of a protein encoded by the nucleic acid sequence, whereby the encoded protein is preferably a protein as defined herein.
- the present invention may also be directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the use of the inventive lyophilized nucleic acid (sequence)
- an injection solution as defined herein, e.g. as a pharmaceutical composition
- an injection solution may contain any components as defined above for the inventive solution for lyophilization, transfection and/or injection.
- the inventive injection solution may be formed as a pharmaceutical composition or vaccine as defined in the following or may contain components thereof.
- the inventive injection solution may be formulated and/or administered as described in the following for a pharmaceutical composition or vaccine.
- the present invention is directed to the first medical use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the first medical use of the inventive lyophilized nucleic acid (sequence), i.e. the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the inventive lyophilized nucleic acid (sequence) as a medicament.
- the medicament may be in the form of a pharmaceutical composition or in the form of a vaccine as a specific form of pharmaceutical compositions, both preferably as defined herein.
- the present invention is directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or more preferably the use of the inventive lyophilized nucleic acid (sequence), or the inventive pharmaceutical composition or the inventive vaccine for the prophylaxis, treatment and/or amelioration of diseases as defined herein, preferably selected from cancer or tumor diseases, infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases, autoimmune diseases, allergies or allergic diseases, monogenetic diseases, i.e. (hereditary) diseases, or genetic diseases in general, diseases which have a genetic inherited background and which are typically caused by a single gene defect and are inherited according to Mendel's laws, cardiovascular diseases, neuronal diseases, or any further disease mentioned herein.
- diseases as defined herein, preferably selected from cancer or tumor diseases, infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases, autoimmune diseases, allergies or allergic diseases, monogenetic diseases
- the present invention is directed to the (second medical) use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or more preferably the use of the inventive lyophilized nucleic acid (sequence), or the inventive pharmaceutical composition or the inventive vaccine for the treatment of diseases as defined herein, preferably to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or more preferably the use of the inventive lyophilized nucleic acid (sequence), or the inventive pharmaceutical composition or the inventive vaccine for the preparation of a medicament for the prophylaxis, treatment and/or amelioration of various diseases as defined herein, preferably selected from cancer or tumor diseases, infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases, autoimmune diseases, allergies or allergic diseases, monogenetic diseases, i.e. (hereditary) diseases, or genetic diseases in general, diseases
- cervical carcinoma cervical cancer
- diseases as defined herein comprise infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases.
- infectious diseases preferably to (viral, bacterial or protozoological) infectious diseases, are typically selected from influenza, malaria, SARS, yellow fever, AIDS, Lyme borreliosis, Leishmaniasis, anthrax, meningitis, viral infectious diseases such as AIDS, Condyloma acuminata, hollow warts, Dengue fever, three-day fever, Ebola virus, cold, early summer meningoencephalitis (FSME), flu, shingles, hepatitis, herpes simplex type I, herpes simplex type II, Herpes zoster, influenza, Japanese encephalitis, Lassa fever, Marburg virus, measles, foot-and-mouth disease, mononucleosis, mumps, Norwalk virus infection, Pfeiffer's glandular fever, smallpox, polio (childhood lameness
- diseases as defined herein comprise autoimmune diseases as defined in the following.
- Autoimmune diseases can be broadly divided into systemic and organ-specific or localised autoimmune disorders, depending on the principal clinico-pathologic features of each disease.
- Autoimmune diseases may be divided into the categories of systemic syndromes, including systemic lupus erythematosus (SLE), Sjögren's syndrome, Scleroderma, Rheumatoid Arthritis and polymyositis or local syndromes which may be endocrinologic (type I diabetes (Diabetes mellitus Type 1), Hashimoto's thyroiditis, Addison's disease etc.), dermatologic (pemphigus vulgaris), haematologic (autoimmune haemolytic anaemia), neural (multiple sclerosis) or can involve virtually any circumscribed mass of body tissue.
- SLE systemic lupus erythematosus
- Sjögren's syndrome Scleroderma
- the autoimmune diseases to be treated may be selected from the group consisting of type I autoimmune diseases or type II autoimmune diseases or type III autoimmune diseases or type IV autoimmune diseases, such as, for example, multiple sclerosis (MS), rheumatoid arthritis, diabetes, type I diabetes (Diabetes mellitus Type 1), chronic polyarthritis, Basedow's disease, autoimmune forms of chronic hepatitis, colitis ulcerosa, type I allergy diseases, type II allergy diseases, type III allergy diseases, type IV allergy diseases, fibromyalgia, hair loss, Bechterew's disease, Crohn's disease, Myasthenia gravis, neurodermitis, Polymyalgia rheumatica, progressive systemic sclerosis (PSS), Reiter's syndrome, rheumatic arthritis, psoriasis, vasculitis, etc, or type II diabetes.
- MS multiple sclerosis
- rheumatoid arthritis diabetes
- type I diabetes Diabetes mellit
- the autoreaction may be due to a T-Cell bypass.
- a normal immune system requires the activation of B-cells by T-cells before the former can produce antibodies in large quantities.
- This requirement of a T-cell can be by-passed in rare instances, such as infection by organisms producing super-antigens, which are capable of initiating polyclonal activation of B-cells, or even of T-cells, by directly binding to the ⁇ -subunit of T-cell receptors in a non-specific fashion.
- Another explanation deduces autoimmune diseases from a Molecular Mimicry.
- An exogenous antigen may share structural similarities with certain host antigens; thus, any antibody produced against this antigen (which mimics the self-antigens) can also, in theory, bind to the host antigens and amplify the immune response.
- the most striking form of molecular mimicry is observed in Group A beta-haemolytic streptococci, which shares antigens with human myocardium, and is responsible for the cardiac manifestations of rheumatic fever.
- diseases as defined herein comprise allergies or allergic diseases, i.e. diseases related to allergies.
- Allergy is a condition that typically involves an abnormal, acquired immunological hypersensitivity to certain foreign antigens or allergens, such as the allergy antigens as defined above.
- allergy antigens or allergens may be selected from allergy antigens as defined above antigens derived from different sources, e.g. from animals, plants, fungi, bacteria, etc.
- Allergens in this context include e.g. grasses, pollens, molds, drugs, or numerous environmental triggers, etc. Allergies normally result in a local or systemic inflammatory response to these antigens or allergens and lead to immunity in the body against these allergens.
- Type I hypersensitivity is characterized by excessive activation of mast cells and basophils by IgE, resulting in a systemic inflammatory response that can result in symptoms as benign as a runny nose, to life-threatening anaphylactic shock and death.
- allergies include, without being limited thereto, allergic asthma (leading to swelling of the nasal mucosa), allergic conjunctivitis (leading to redness and itching of the conjunctiva), allergic rhinitis (“hay fever”), anaphylaxis, angiodema, atopic dermatitis (eczema), urticaria (hives), eosinophilia, respiratory, allergies to insect stings, skin allergies (leading to and including various rashes, such as eczema, hives (urticaria) and (contact) dermatitis), food allergies, allergies to medicine, etc. Treatment of such allergic disorders or diseases may occur preferably by desensitizing the immune reaction which triggers a specific immune response.
- diseases to be treated in the context of the present invention likewise include (hereditary) diseases, or genetic diseases in general monogenetic diseases, i.e. (hereditary) diseases, or genetic diseases in general.
- Such (mono-)genetic diseases, (hereditary) diseases, or genetic diseases in general are typically caused by genetic defects, e.g. due to gene mutations resulting in loss of protein activity or regulatory mutations which do not allow transcription or translation of the protein. Frequently, these diseases lead to metabolic disorders or other symptoms, e.g. muscle dystrophy.
- the present invention allows treating the following (hereditary) diseases or genetic diseases: 3-beta-hydroxysteroid dehydrogenase deficiency (type II); 3-ketothiolase deficiency; 6-mercaptopurine sensitivity; Aarskog-Scott syndrome; Abetalipoproteinemia; Acatalasemia; Achondrogenesis; Achondrogenesis-hypochondrogenesis; Achondroplasia; Achromatopsia; Acromesomelic dysplasia (Hunter-Thompson type); ACTH deficiency; Acyl-CoA dehydrogenase deficiency (short-chain, medium chain, long chain); Adenomatous polyposis coli; Adenosin-deaminase deficiency; Adenylosuccinase deficiency; Adhalinopathy; Adrenal hyperplasia, congenital (due to 11-beta-hydroxylase deficiency; due to 17-alpha-hydroxylase deficiency;
- Diseases to be treated in the context of the present invention likewise also include diseases which have a genetic inherited background and which are typically caused by a single gene defect and are inherited according to Mendel's laws are preferably selected from the group consisting of autosomal-recessive inherited diseases, such as, for example, adenosine deaminase deficiency, familial hypercholesterolaemia, Canavan's syndrome, Gaucher's disease, Fanconi anaemia, neuronal ceroid lipofuscinoses, mucoviscidosis (cystic fibrosis), sickle cell anaemia, phenylketonuria, alcaptonuria, albinism, hypothyreosis, galactosaemia, alpha-1-anti-trypsin deficiency, Xeroderma pigmentosum, Ribbing's syndrome, mucopolysaccharidoses, cleft lip, jaw, palate, Laurence Moon Biedl Bardet sydrome, short
- X syndrome muscular dystrophy (Duchenne and Becker-Kiener type), haemophilia A and B, G6PD deficiency, Fabry's disease, mucopolysaccharidosis, Norrie's syndrome, Retinitis pigmentosa, septic granulomatosis, X-SCID, ornithine transcarbamylase deficiency, Lesch-Nyhan syndrome, or from autosomal-dominant inherited diseases, such as, for example, hereditary angiooedema, Marfan syndrome, neurofibromatosis, type I progeria, Osteogenesis imperfecta, Klippel-Trenaurnay syndrome, Sturge-Weber syndrome, Hippel-Lindau syndrome and tuberosis sclerosis.
- hereditary angiooedema Marfan syndrome
- neurofibromatosis type I progeria
- Osteogenesis imperfecta Klippel-Trenaurnay syndrome
- the present invention also allows treatment of diseases, which have not been inherited, or which may not be summarized under the above categories.
- diseases may include e.g. the treatment of patients, which are in need of a specific protein factor, e.g. a specific therapeutically active protein as mentioned above.
- This may e.g. include dialysis patients, e.g. patients which undergo a (regular) a kidney or renal dialysis, and which may be in need of specific therapeutically active proteins as defined above, e.g. erythropoietin (EPO), etc.
- EPO erythropoietin
- diseases in the context of the present invention may include cardiovascular diseases chosen from, without being limited thereto, coronary heart disease, arteriosclerosis, apoplexy and hypertension, etc.
- diseases in the context of the present invention may be chosen from neuronal diseases including e.g. Alzheimer's disease, amyotrophic lateral sclerosis, dystonia, epilepsy, multiple sclerosis and Parkinson's disease etc.
- kits particularly kits of parts.
- kits of parts may contain e.g. a pharmaceutical composition or a vaccine as defined above, preferably divided into different parts of the kit.
- inventive pharmaceutical composition or the inventive vaccine may be prepared as a kit of parts, e.g. by incorporating into one or more parts of the kit components of the inventive pharmaceutical composition or the inventive vaccine as described herein as a dry formulation, i.e.
- the inventive pharmaceutical composition or the inventive vaccine may be prepared as a kit of parts, e.g. by incorporating into one or more parts of the kit the lyophilized nucleic acid (sequence) as described herein, i.e.
- kits of parts as described above for the inventive solution for lyophilization, transfection and/or injection or as described above for the inventive pharmaceutical composition or as described above for the inventive vaccine e.g.
- kits in the dry part(s) of the kit, in the liquid part(s) of the kit, preferably in solubilized form, or in at least one separate part of the kit as a dry form and/or in a lyophilized (liquid) form.
- kits preferably kits of parts, may be applied, e.g., for any of the above mentioned applications or uses.
- the kit may optionally contain technical instructions with information on the administration and dosage of the lyophilized nucleic acid.
- Kit of parts comprising in one or more parts of the kit at least one lyophilized nucleic acid as defined herein, and optionally in one or more parts of the kit further additives as defined herein, and in one or more parts of the kit water, a liquid and/or a buffer or solution as defined herein, and optionally technical instructions with information on the administration and dosage of the lyophilized nucleic acid.
- the DNA sequence corresponding to pCV19-Ppluc(GC)-muag-A70-C30 was prepared, which encodes the Photinus pyralis luciferase coding sequence.
- the constructs were prepared by modifying the wild type Photinus pyralis luciferase encoding DNA sequence by introducing a GC-optimized sequence for a better codon usage and stabilization, stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR)), a stretch of 70 ⁇ adenosine at the 3′-terminal end (poly-A-tail) and a stretch of 30 ⁇ cytosine at the 3′-terminal end (poly-C-tail), corresponding to SEQ ID NO: 1 (see FIG.
- the sequence of the final DNA construct had a length of 1857 nucleotides.
- the corresponding mRNA sequence was termed “pCV19-Ppluc(GC)-muag-A70-C30” (SEQ ID NO: 1) (see FIG. 5 ).
- the DNA sequence corresponding to CAP-GgOva(GC)-muag-A70-C30 was prepared, which encodes to the Ovalbumin coding sequence. Therefore, a basic DNA construct was prepared corresponding to CAP-GgOva(GC)-muag-A70-C30 by introducing into the underlying wild type sequence construct stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR)), a stretch of 70 ⁇ adenosine at the 3′-terminal end (poly-A-tail) and a stretch of 30 ⁇ cytosine at the 3′-terminal end (poly-C-tail), leading to a sequence corresponding to SEQ ID NO: 2 (see FIG. 6 ).
- the corresponding mRNA sequence was termed CAP-GgOva(GC)-muag-A70-C30 (SEQ ID NO: 2) (see FIG. 6 ).
- the respective DNA plasmids prepared according to Example 1 were transcribed in vitro using T7-Polymerase (T7-Opti mRNA Kit, CureVac, Tibingen, Germany) following the manufactures instructions. Subsequently the mRNA was purified using PureMessenger® (CureVac, Tubingen, Germany).
- the PureMessenger® purified and precipitated mRNA obtained according to Examples 1 and 2 coding for Photinus pyralis luciferase (Luc mRNA) (SEQ ID NO: 1) or Ovalbumin (SEQ ID NO: 2) was dissolved in water for injection (WFI) to 5 g/l. Subsequently the mRNA was diluted with WFI (water for injection) or salt solution (see FIG. 2 ), with addition of glucose, trehalose, mannite or mannose. Aliquots of these solutions were lyophilized (Controls were frozen in liquid nitrogen or kept in solution). The locked cups were stored for the indicated time at 60° C. The resuspension was conducted with WFI.
- the mRNA containing buffers were frozen by liquid nitrogen for at least min and lyophilized over night at 0.08 mbar in a freeze drier Alpha 1-2 (Fa. Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany).
- the lyophilisates were dissolved with a sterile salt containing solution (5 mM KCl, 2 mM CaCl 2 , 2 mM MgCl 2 , 130 mM NaCl in WFI).
- mice Each group (2 mice per group) of 7 week old female balb/c mice were treated by intradermal injection with 100 ⁇ l of each sample. After 24 h mice were killed and the injected tissue was collected and lysed as described ahead. Tissue samples were crushed by a mill after freezing in liquid nitrogen and lysed afterwards by adding 800 ⁇ l of lysing buffer (25 mM Tris HCL, 2 mM EDTA, 10% Glycerol, 1% Triton X-100, 2 mM DTT, 1 mM PMSF, pH 7.5-7.8). The lysates were shaked for 6 min and spinned down for another min at 4° C. and 13500 rpm. The supernatants were measured with a luminometer LB9507 and analyzed as grouped analysis using 2-way ANOVA with Bonferroni post test.
- lysing buffer 25 mM Tris HCL, 2 mM EDTA, 10% Glycerol, 1% Triton X-100, 2 mM DTT
- FIG. 1 shows the in vivo luciferase expression in balb/c mice 1) buffer control: Ringer-lactate 2) mRNA/WFI: mRNA coding for luciferase lyophilized in WFI (water for injection) and dissolved in salt containing solution 3) mRNA/trehalose: mRNA coding for luciferase lyophilized in WFI containing 5% trehalose and dissolved in salt containing solution 4) mRNA/mannose: mRNA coding for luciferase lyophilized in WFI containing 2.5% mannose and dissolved in salt containing solution 5) mRNA/mannite: mRNA coding for luciferase lyophilized in WFI containing 5% mannite and dissolved in salt containing solution.
- RNA was complexed with protamine according to the following protocol.
- RNA was first mixed at a ratio 4:1 RNA/Protamine (w/w) with a protamine containing salt solution (5 mM KCl, 2 mM CaCl, 2 mM MgCl, 130 mM NaCl) to a final RNA concentration of 0.4 g/l.
- Mannose was added to the solution in a final concentration of 2.5% (w/w).
- RNA was complexed with protamine in the following protocol.
- RNA was mixed at a ratio 4:1 RNA/Protamine (w/w) with a diluted protamine solution containing protamine, WFI and mannose or glucose to a final RNA concentration of 0.4 g/l and 5% (w/w) mannose or 5% (w/w) glucose.
- the solution was divided into 65 ⁇ l containing aliquots in 2 ml polypropylene tubes with crewed caps, frozen by liquid nitrogen for at least 5 min and lyophilized over night at 0.08 mbar in a freeze drier Alpha 1-2 (Fa. Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany).
- the samples were stored at 60° C. for 0-33 days. At the indicated time points 2 aliquotes of each sample were dissolved in 65 ⁇ l WFI. 50 ⁇ l of each sample were precipitated with 2-propanole. The pellets were diluted in 50 ⁇ l WFI again and for 1 ⁇ g of each sample an agarose gel electrophoresis was conducted. After separation the relative integrity of RNA was measured as the relation between full length product and total RNA calculated in %. 70% relative integrity was found to be a typical limit for an intact product accepted by the authorities.
- FIG. 3 depicts the relative integrity of mRNA lyophilized in a glucose or mannose containing solution stored at 60° C. for 0 to 33 days (d).
- OVA-RNActive in RiLa mRNA coding for Gallus gallus ovalbumine complexed with protamine and dissolved in 80% Ringer lactate
- OVA-RNActive lyophilized in 2.5% (w/w) mannose mRNA coding for Gallus gallus ovalbumine complexed with protamine, lyophilized in WFI containing 2.5% (w/w) mannose and dissolved in 80% Ringer lactate
- RiLa control 80% Ringer lactate was used as control mRNA coding for ovalbumine was complexed with protamine in the following protocol. RNA was mixed at a ratio 4:1 RNA/Protamine (w/w). Mannose was added to a final concentration of 2.5% (w/w).
- the mannose containing RNA solution was aliquoted into a borosilicate glas typ I and frozen by liquid nitrogen for at least 5 min and lyophilized at 0.055 mbar for 22 h.
- Sample plates were kept at room temperature for 17 h and were than elevated to 35° C. for another 5 h.
- the chamber was flooded with dry argon and the samples were closed under this atmosphere by a bromobutyl stopper.
- the lyophilized and non-lyophilized samples were stored in an exsiccator at 4-8° C. and the lyophilized sample was dissolved in 80% Ringer lactate prior to use. Prior use the samples were controlled for relative integrity by agarose gel chromatography and complex size by dynamic light scattering using a Zetasizer Nano (Malvern Instruments, Malvern, UK).
- mice 7 week old C57BL/6 mice were vaccinated intradermally with 2 cycles (Prime day 1/Boost day 9) of 80 ⁇ l formulations. As a negative control 80 ⁇ l 80% Ringer lactate without any RNA were injected. At day 15 1 ⁇ 10 6 E.G7-OVA cells (tumour cells which stably express ovalbumine) per mice were implanted subcutaneously. Tumour growth was monitored by measuring the tumor size in 3 dimensions using a calliper.
- E.G7-OVA cells tumor cells which stably express ovalbumine
- FIG. 4 depicts the tumour growth in mice vaccinated with 1) 80% Ringer lactate as control, 2) mRNA coding for ovalbumine (not lyophilized) in 80% Ringer lactate and 3) mRNA coding for ovalbumine lyophilized in 2.5% (w/w) mannose containing WFI and dissolved in 80% Ringer lactate.
- the optimal concentration of mannose is located between 1% and 10%.
- the formulation of the injection solution can contain different salts (e.g. 0.5 mM to 50 mM potassium, 13 mM to 250 mM sodium, 0.2 mM to 10 mM calcium, and 0.2 mM to 10 mM magnesium). Different injection solutions can be utilized, e.g. PBS, HBSS, Ringer-Lactat.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Genetics & Genomics (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Oncology (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- This application represents the U.S. National Stage Application of International Application No. PCT/EP2010/006788, filed Nov. 8, 2010, which claims priority to International Application No. PCT/EP2009/008804, filed Dec. 9, 2009, all of which are incorporated herein by reference in their entirety for all purposes.
- The present invention is directed to (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA. The inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate. The present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.
- In gene therapy and many other therapeutically relevant biochemical and biotechnological applications the use of nucleic acids for therapeutic and diagnostic purposes is of major importance. As an example, rapid progress has occurred in recent years in the field of gene therapy and promising results have been achieved. Nucleic acids are therefore regarded as important tools for gene therapy and prophylactic and therapeutic vaccination against infectious and malignant diseases.
- Nucleic acids, both DNA and RNA, have been used widely in gene therapy, either in naked or in complexed form. In this context, the application of nucleic acids and particularly of RNA for therapeutic vaccination is revised permanently. On the one hand, nucleic acids and particularly RNA or mRNA molecules can be optimized for a more efficient transcription rate. The 5′ Cap structure, the untranslated and translated regions are typically modified to stabilize the molecule or to change its characteristics to enhance its translation properties (see e.g. Pascolo, S. (2008), Handb Exp Pharmacol (183): 221-35). Further, different formulations of nucleic acids and particularly of mRNA molecules or different delivery routes are investigated to achieve improved expression levels. To mention are the encapsulation into cationic liposomes or cationic polymers (see e.g. Hoerr, I., R. Obst, et al. (2000), Eur J Immunol 30(1): 1-7; Hess, P. R., D. Boczkowski, et al. (2006), Cancer Immunol Immunother 55(6): 672-83; Scheel, B., R. Teufel, et al. (2005), Eur J Immunol 35(5): 1557-66), the needleless delivery of gold particles coated by mRNA using a gene gun (see e.g. Qiu, P., P. Ziegelhoffer, et al. (1996). “Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization.” Gene Ther 3(3): 262-8), the transfection of in vitro generated autologous APCs that are re-administred to patients (see e.g. Boczkowski, D., S. K. Nair, et al. (1996). “Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo.” J Exp Med 184(2): 465-72; Boczkowski, et al, 1996, supra), and the direct injection of naked RNA (see Hoerrr et al, 2000, supra). Despite all progress achieved regarding gene delivery it is very important to improve further transfection efficiency to make nucleic acids especially RNA applicable for all imaginable therapeutic purposes.
- Application of RNA thus represents a favored tool in modern molecular medicine. It also exhibits some superior properties over DNA cell transfection. As generally known, transfection of DNA molecules may lead to serious problems. E.g. application of DNA molecules bears the risk that the DNA integrates into the host genome. Integration of foreign DNA into the host genome can have an influence on expression of the host genes and possibly triggers expression of an oncogene or destruction of a tumor suppressor gene. Furthermore, a gene—and therefore the gene product—which is essential to the host may also be inactivated by integration of the foreign DNA into the coding region of this gene. There may be a particular danger if integration of the DNA takes place into a gene which is involved in regulation of cell growth. Nevertheless, DNA still represents an important tool, even though some risks are associated with the application of DNA. These risks do not occur if RNA, particularly mRNA, is used instead of DNA. An advantage of using RNA rather than DNA is that no virus-derived promoter element has to be administered in vivo and no integration into the genome may occur. Furthermore, the RNA has not to overcome the barrier to the nucleus. However, a main disadvantage resulting from the use of RNA is due to its huge instability. Even though it is understood that DNA, e.g., naked DNA, introduced into a patient circulatory system is typically not stable and therefore may have little chance of affecting most disease processes (see e.g. Poxon et al., Pharmaceutical development and Technology, 5(1), 115-122 (2000)) the problem of stability is even more evident in the case of RNA. As generally known, the physico chemical stability of RNAs in solution is extremely low. RNA is very susceptible to hydrolysis by ubiquitous ribonucleases and is typically completely degraded already after a few hours or days in solution. This even occurs in the absence of RNases, e.g. when stored a few hours or days in solution at room temperature.
- To avoid such degradation the RNA is typically stored at −20° C. or even −80° C. and RNAse free conditions to prevent a prior degradation of the RNA. This method, however, does not prevent a loss of function effectively and additionally is very cost-intensive for shipping when these temperatures have to be guaranteed. One further method for stabilization comprises lyophilization or freeze-drying of the RNA. Lyophilization is a worldwide known and recognized method in the art to enhance storage stability of temperature sensitive biomolecules, such as nucleic acids. During lyophilization, typically water is removed from a frozen sample containing nucleic acids via sublimation. The process of lyophilization is usually characterized by a primary and a secondary drying step. During the primary drying step, free, i.e. unbound, water surrounding the nucleic acid (sequence) and optionally further components, escapes from the solution. Subsequent thereto water being bound on a molecular basis by the nucleic acids may be removed in a secondary drying step by adding thermal energy. In both cases the hydration sphere around the nucleic acids is lost.
- During lyophilization the sample containing nucleic acids is initially cooled below the freezing point of the solution and accordingly of the water contained therein. As a result, the water freezes. Dependent on temperature, rate of cooling down (freezing rate), and the time for freezing, the crystal structure of water is changed. This exhibits physical stress on the nucleic acid (sequence) and other components of the solution, which may lead to a damage of the nucleic acid, e.g. breakage of strands, loss of supercoiling, etc. Furthermore, due to the decrease of volume and loss of the hydration sphere, autocatalytic degradation processes are favored e.g. by traces of transition metals. Additionally, significant changes of pH are possible by concentration of traces of acids and bases.
- Lyophilization involves two stresses, freezing and drying. Both are known to damage nucleic acids, such as non-viral vectors or plasmid DNA. In the literature, a number of cryoprotectants and lyoprotectants are discussed for lyophilization purposes to prevent these damages. In this context, cryoprotectants are understood as excipients, which allow influencing the structure of the ice and/or the eutectical temperature of the mixture. Lyoprotectants are typically excipients, which partially or totally replace the hydration sphere around a molecule and thus prevent catalytic and hydrolytic processes.
- In the specific context of DNA, lyophilization causes the removal of the hydration sphere around the DNA, wherein it appears that there are approximately 20 water molecules per nucleotide pair bound most tightly to DNA. These water molecules do not form an ice-like structure upon low-temperature cooling. Upon DNA dehydration over hygroscopic salts at 0% relative humidity, only five or six water molecules remain (see e.g. Tao et al., Biopolymers, 28, 1019-1030 (1989)). Lyophilization may increase the stability of DNA under long-term storage, but may also cause some damage upon the initial lyophilization process, potentially through changes in the DNA secondary structure, breaks of the nucleic acid chain(s) or the concentration of reactive elements such as contaminating metals. Lyophilization can also cause damage upon the initial lyophilization process in other nucleic acid, e.g. RNA. Agents that can substitute for non-freezable water, such as some carbohydrates, can demonstrate cryoprotective properties for DNA and other molecules during lyophilization of intact bacteria (see e.g. Israeli et al, Cryobiology, 30, 519-523 (1993); or Rudolph et al, Arch. Biochem. Biophys., 245, 134-143 (1986)).
- During lyophilization, specific carbohydrates, such as several sugars, appear to play a central role in stabilization of the nucleic acid. However, when using cryoprotectants and lyoprotectants, no general rule may be applied with respect to their impact on different groups of compounds. Therefore, in many cases an optimal formulation has to be found using empirical methods.
- In this context, specific carbohydrates are utilized in the art as lyoprotective substances for enhancing stability of the nucleic acid (sequence) during lyophilization. They exhibit an effect on storage stability after lyophilisation of pure nucleic acids or nucleic acid (sequence) complexes (see e.g. Maitani, Y., Y. Aso, et al. (2008), Int J Pharm 356(1-2): 69-75; Quaak, S. G., J. H. van den Berg, et al. (2008), Eur J Pharm Biopharm 70(2): 429-38; Jones, K. L., D. Drane, et al. (2007), Biotechniques 43(5): 675-81; Molina, M. C., S. D. Allison, et al. (2001), J Pharm Sci 90(10): 1445-55; and Allison, S. D. and T. J. Anchordoquy (2000), J Pharm Sci 89(5): 682-91). Lyoprotective properties are particularly described for sucrose, glucose, and trehalose. They allow to restore at least in part the transfection efficiency which is otherwise lost in many cases after lyophilisation (see Maitani et al, 2008, supra; Yadava, P., M. Gibbs, et al. (2008). AAPS PharmSciTech 9(2): 335-41; Werth, S., B. Urban-Klein, et al. (2006), J Control Release 112(2): 257-70; Brus, C., E. Kleemann, et al. (2004), J Control Release 95(1): 119-31; Poxon, S. W. and J. A. Hughes (2000), Pharm Dev Technol 5(1): 115-22; Anchordoquy, T. J., J. F. Carpenter, et al. (1997), Arch Biochem Biophys 348(1): 199-206). Sugars are able to prevent loss in activity due to the lyophilization process mainly by preventing particle fusion/aggregation especially in the case of liposome complexed nucleic acids (see Yadava et al, 2008, supra; Katas, H., S. Chen, et al. (2008), J Microencapsul: 1-8; Molina et al, supra, 2001).
- Particularly, Poxon et al. (2000, supra) investigated the effect of lyophilization on plasmid DNA activity. Poxon et al. (2000, supra) hypothesized, that a change in the DNA conformation from supercoiled to open circular and linear form would be indicative of damage of the plasmid DNA. However, the percentage of supercoiled DNA did not change after lyophilization and subsequent DMED treatment, suggesting that other effects drew responsible for the loss of transfection efficiency. Poxon et al. (2000, supra) found that a decrease in plasmid DNA activity as measured by an in vitro transfection assay can be ameliorated by the use of carbohydrates during lyophilization of the plasmid DNA but he did not found that any of the used carbohydrates increased the transfection efficiency of the plasmid DNA. As lyoprotectants, glucose (monosaccaride), sucrose and lactose (disaccharides) were used. Poxon et al. (2000, supra), however, only carried out investigations with plasmid DNA. They did also not investigate if the addition of saccharides to the lyophilization affects the stability of the lyophilized plasmid DNA.
- Li et al. (see Li, B., S. Li, et al. (2000), J Pharm Sci 89(3): 355-64) furthermore showed that disaccharides are superior to monosaccharides using them as a cryoprotectant for lyophilization of lipid based gene delivery systems due to the prevention of aggregation. They noted that it is very important to prevent the particle size of the complexes during lyophilization. Unfortunately, in a specific example of lipid based gene delivery systems, lyophilization with mannose led to an increase in particle size, which was regarded as negative for transfection efficiency. Additionally Li et al. (2000, supra) showed that lipid delivery systems can be stored at room temperature without loss of transfection efficiency when lyophilized in 10% sucrose. Li et al. (2000, supra) did not examine the stabilization due to the presence of mannose as a lyoprotectant. More importantly, they did not observe an increase in the expression of the encoded protein due to the presence of sugar (sucrose and trehalose) in the injection buffer.
- Even though many available prior art documents discuss the stabilization of nucleic acids during lyophilization in the context of plasmid DNA, only few publications focus on stabilization of other nucleic acids, such as RNAs, e.g. during lyophilization and long-term storage.
- In this context, Jones et al (2007, supra) is one rare document, which examines the effect of sugars on long term stability of mRNA. It describes the possibility to prevent storage depending loss of transfection activity in vitro. Jones et al (2007, supra) uses trehalose as a lyoprotectant and shows a preventive effect on the loss of transfection activity at a storage temperature of 4° C. for a period of 6 months. Integrity of the mRNA was only measured by loss of weight after recovering. At elevated temperatures (room temperature and higher) degradation and a dramatic loss of transfection efficiency took place. Additionally; transfection efficiency could not be improved using trehalose as lyoprotectant.
- In a further context, specific carbohydrates may also be utilized to improve biological activity and/or transfection efficiency, which is, at least at a first glance, independent from stability issues. Such an effect of specific carbohydrates, e.g. of mannose may be attributed to the interaction of these carbohydrates with specific receptors in the cell. As an example, the addition of mannose may involve the mannose receptor targeted transfer. The mannose receptor (MR) is primarily present on dendritic cells (DCs) and macrophages. The carbohydrate recognition domains of the MR recognizes carbohydrates (e.g. mannose, fucose, glucose, N-Acetylglucosamine, maltose) on the cell walls of infectious agents (mainly bacteria and yeast) which leads to rapid internalization and phagocytosis. This process can initiate effective immune defense. Several different strategies targeted to the MR have been used to enhance transfection levels or to develop upgraded vaccines (see Keler, T., V. Ramakrishna, et al. (2004). “Mannose receptor-targeted vaccines.” Expert Opin Biol Ther 4(12): 1953-62). In this context, mannose modified non-viral DNA vectors, including cationic liposomes (Kawakami, S., A. Sato, et al. (2000), Gene Ther 7(4): 292-9; and Hattori, Y., S. Kawakami, et al. (2006), J Gene Med 8(7): 824-34), polyethyleneimine (Diebold, S. S., H. Lehrmann, et al. (1999), Hum Gene Ther 10(5): 775-86), poly L-lysine (Nishikawa, M., S. Takemura, et al. (2000), J Drug Target 8(1): 29-38), dendrimers (Arima, H., Y. Chihara, et al. (2006), J Control Release 116(1): 64-74) and chitosan (Kim, T. H., J. W. Nah, et al. (2006), J Nanosci Nanotechnol 6(9-10): 2796-803); (Hashimoto, M., M. Morimoto, et al. (2006), Biotechnol Lett 28(11): 815-21), have been reported (see also review: Irache, J. M., H. H. Salman, et al. (2008). “Mannose-targeted systems for the delivery of therapeutics.” Expert Opin Drug Deliv 5(6): 703-24). However, in all cases mannose was covalently bound to the vector to ensure a combined uptake due to binding to the mannose receptor. However, the expression of the mannose receptor is restricted to a few cell types (especially dendritic cells) which are not excessively present in the dermis and therefore it appeared unlikely that free mannose improves the expression of the encoded protein due to an increased uptake in mannose receptor expressing cells.
- The only case which is known in the prior art to use free sugar to enhance transfection efficiency is disclosed in Sun et al (see Sun, C., K. Ridderstrale, et al. (2007), Plant J 52(6): 1192-8). Sun et al. (2007) could show that sucrose can stimulate uptake of oligo deoxynucleotides (ODN) in human cells (in vitro). They investigated the effect of glucose and sucrose to the ODN delivery compared to the effect of oligofectamine, a commercially available lipid-based transfection reagent. Interestingly they observed that sucrose was 30% more potent than oligofectamine and even 60% more potent than glucose supporting ODN uptake. They hypothesized that sucrose is a common trigger for endocytosis in animal cells and therefore the ODN internalizes into endosomes together with the sucrose. Sun et al. (2007) only examined in vitro transfection assays which are very difficult to transfer to the in vivo situation due to the dilution effect. In tissues it thus appeared very unlikely that the nucleic acid and the sugar molecule enter the cell at the same time.
- Summarizing the above, there is a long-lasting and urgent need in the art to provide means, which allow (a skilled person) to store RNA without a loss in activity, an effect, which is observed in many cases. Likewise, there is a long-lasting and urgent need to provide means, which allow (a skilled person) to enhance transfection efficiency of nucleic acids especially of RNA for in vitro and particularly for in vivo applications. In this context, a still most challenging problem of the prior art is the stability of the above defined nucleic acids, particularly during storage and delivery. Another challenging problem of the prior art, which in part due to the problem of stability, is the loss of activity subsequent to storage, or the loss of biological activity after lyophilization (e.g. increase in particle size, . . . ), which is observed for many nucleic acids. Finally, a further challenging problem of the prior art represents the small amount of expressed protein or small biological activity of the nucleic acid obtained upon transfection into the cell. Some further problems can be regarded in the provision of a suitable final dosage form for delivering these nucleic acids but also the production, transport and storage thereof. Especially transport of RNA is a remaining problem because it is very cost-intensive to ensure temperatures at −20° C. and below during shipment.
- The present invention is summarized as (the use of) a solution and uses thereof containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA. The inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate. The present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.
- All of the challenging problems mentioned above in the background of the invention are solved by the present invention, particularly by the attached claims. According to a first aspect, the problem underlying the present invention is solved by (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection. Preferably, the inventive solution containing at least one nucleic acid (sequence) and mannose stabilizes the at least one nucleic acid (sequence) contained in the inventive solution during lyophilization and/or improves biological activity of the nucleic acid (sequence). This is particularly preferable true, if a protein is encoded by the at least one nucleic acid (sequence), as expression of an encoded protein may be increased thereby. This solution is particularly surprising and was not suggested by any of the above mentioned prior art documents. In contrast, reviewing the prior art a skilled person would have rather suggested that—considering its teaching—addition of mannose as lyoprotectant diminishes transfection efficiency and even more problematic, may lead to a decrease of biological activity of the nucleic acid, or, if a protein is encoded, to a decrease of the expression of the encoded protein in vitro or in vivo. Regarding transfection the prior art only dealt with covalently bound mannose. Free mannose was never considered as suitable. As discussed above, in tissues it appears very unlikely that the nucleic acid and the sugar molecule enter the cell at the same time. Therefore, it was highly surprising for the present inventors to see that free mannose can in fact improve transfection efficiency in vivo as outlined herein.
- In summary it was particularly surprising to the inventors, that use of such a mannose containing solution was associated with the significant increase of storage capabilities, particularly the storage at room temperature or higher could be shown using mannose as lyoprotectant. Additionally, it was particularly surprising, that an increase in transfection efficiency due to the use of such a mannose containing solution was associated with the significant increase in biological activity. In contrast to the covalent binding shown in the art the present inventors used free mannose which was only added to the solution and which was not covalently bound to the nucleic acid. As a combined uptake in mannose receptor expressing cells is unlikely due to the dilution effect in the tissue a skilled person would never have suggested that mannose could improve transfection efficiency of nucleic acids, especially RNA. Particularly Sun et al. only examined in vitro transfection assays with free sugar containing solutions which are very difficult to transfer to the in vivo situation due to the dilution effect. Likewise, a skilled person would never have suggested that free mannose, could improve transfection efficiency of nucleic acids, especially RNA.
- The following Figures are intended to illustrate the invention further. They are not intended to limit the subject matter of the invention thereto.
-
FIG. 1 : shows the in vivo luciferase expression in balb/c mice 1) buffer control: Ringer-lactate 2) mRNA/WFI: mRNA coding for luciferase lyophilized in WFI (water for injection) and dissolved in salt containing solution 3) mRNA/trehalose: mRNA coding for luciferase lyophilized in WFI containing 5% trehalose and dissolved in salt containing solution 4) mRNA/mannose: mRNA coding for luciferase lyophilized in WFI containing 2.5% mannose and dissolved in salt containing solution 5) mRNA/mannite: mRNA coding for luciferase lyophilized in WFI containing 5% mannite and dissolved in salt containing solution. -
FIG. 2 : displays the relative integrity of RNA in mRNA/protamine containing samples dissolved in salt containing solution (5 mM K, 2 mM Ca, 2 mM Mg, 130 mM Na) and subsequently 1) lyophilized from salt solution (1=RNA-Lyo-Salt) 2) stored in salt solution (2=RNA-Sol-Salt) 3) lyophilized from 2.5% mannose containing salt solution (3=RNA-Lyo_MnSalt) or 4) stored in 2.5% mannose containing salt solution (4=RNA-Sol_MnSalt). Comparison of the lyophilized samples clearly shows that storage of RNA at 60° C. is not possible when lyophilized from a salt containing solution. However, addition of mannose leads to an absolutely unexpected stabilization of the RNA, although it is believed in the state of the art that presence of salts is adverse and therefore should be avoided. -
FIG. 3 : shows the relative integrity of mRNA lyophilized in a glucose or mannose containing solution stored at 60° C. for 0 to 33 days (d). Mannose clearly increases the stability of lyophilized RNA compared to the addition of glucose. -
FIG. 4 : depicts the tumour growth in mice vaccinated with 1) 80% Ringer lactate as control, 2) mRNA coding for ovalbumine (not lyophilized) in 80% Ringer lactate and 3) mRNA coding for ovalbumine lyophilized in 2.5% (w/w) Mannose containing WFI and dissolved in 80% Ringer lactate. It is remarkable that the mannose-containing solution extremely enhances the efficacy of the mRNA vaccination compared to the sample without mannose. Since the samples were controlled for integrity and complex size it is guaranteed that the RNA was intact in all samples. The optimal concentration of mannose is located between 1% and 10%. -
FIG. 5 : illustrates the mRNA sequence termed pCV19-Pp luc(GC)-muag-A70-C30 (SEQ ID NO: 1), coding for Photinus pyralis luciferase, which exhibits a length of 1857 nucleotides. The mRNA sequence contains following sequence elements: -
- the coding sequence encoding Photinus pyralis luciferase;
- stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR));
- 70× adenosine at the 3′-terminal end (poly-A-tail);
- 30× cytosine at the 3′-terminal end (poly-C-tail).
- The ORF is indicated in italic letters, muag (mutated alpha-globin-3′-UTR is indicated with a dotted line, the poly-A-tail is underlined with a single line and the poly-C-tail is underlined with a double line.
-
FIG. 6 : shows the mRNA sequence termed CAP-GgOva(GC)-muag-A70-C30 (SEQ ID NO: 2), coding for Gallus gallus ovalbumin, which exhibits a length of 1365 nucleotides. The mRNA sequence contains following sequence elements: -
- the coding sequence encoding Gallus gallus ovalbumin;
- stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR));
- 70× adenosine at the 3′-terminal end (poly-A-tail);
- 30× cytosine at the 3′-terminal end (poly-C-tail).
- The ORF is indicated in italic letters, muag (mutated alpha-globin-3′-UTR is indicated with a dotted line, the poly-A-tail is underlined with a single line and the poly-C-tail is underlined with a double line.
- The present invention relates to (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA. The inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate. The present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.
- According to the first aspect, the present invention thus provides (the use of) a solution containing at least one nucleic acid (sequence) and (free) mannose for lyophilization, transfection and/or injection. In this context “free” mannose is preferably understood as a mannose, which is not covalently bound and/or conjugated, preferably not covalently bound and/or conjugated to the nucleic acid (sequence) to be lyophilized, transfected and/or injected. “Free” mannose may therefore comprise a free, non-covalently bound and/or unconjugated mannose, preferably with respect to the nucleic acid (sequence) to be lyophilized, transfected and/or injected.
- In the context of the present invention, mannose is preferably a sugar monomer of the aldohexose series of carbohydrates. Mannose as defined herein typically has the molecular formula C6H12C6, is also known under its IUPAC nomenclature as (2S,3S,4R,5R)-Pentahydroxyhexanal, (2R,3R,4S,5S)-Pentahydroxyhexanal. It is preferably identified under CAS number 31103-86-3 and typically exhibits the following general structure:
- Mannose is typically formed by the oxidation of mannitol. It can also be formed from D-glucose in the Lobry-de Bruyn-van Ekenstein transformation. Mannose as defined herein typically occurs in two diastereomeric isoforms, D-Mannose and L-Mannose (CAS numbers 3458-28-4 for D-mannose and 10030-80-5 for L-mannose). D-mannose is sold as a naturopathic remedy for urinary tract infections, and it is claimed to work through the disruption of adherence of bacteria in the urinary tract. D-Mannose and L-Mannose can be illustrated as the D and L straight-chain forms of mannose using Fischer projections according to the following structures:
- According to a particularly preferred aspect, mannose as used herein is a D-Mannose. D-Mannose may be depicted according to at least one of the D-Mannose isomers α-D-Mannofuranose, β-D-Mannofuranose, α-D-Mannopyranose and β-D-Mannopyranose as represented by following Haworth-structures:
- Typically, the occurrence of the different mannose isomers in nature significantly differs. D-Mannose forms anomers, wherein α-D-Mannofuranose occurs in a concentration/frequency of less than 1%, β-D-Mannofuranose in a concentration/frequency of less than 1%, α-D-Mannopyranose in a concentration/frequency of about 67% and β-D-Mannopyranose in a concentration/frequency of about 33%. Thus, D-Mannose may be selected more preferably from at least one, two, three or four of the anomers α-D-Mannofuranose, β-D-Mannofuranose, α-D-Mannopyranose and/or β-D-Mannopyranose. Most preferably, upon solubilization in an aqueous solution mannose typically forms the above anomers in an equilibrity reaction, typically in the above concentrations.
- According to a particularly preferred aspect, mannose as used herein is selected from an anomeric mixture of D-Mannose, preferably an anomeric mixture comprising α-D-Mannofuranose, β-D-Mannofuranose, α-D-Mannopyranose and β-D-Mannopyranose, more preferably in the above concentrations/frequencies. Alternatively, but less preferred, mannose as used herein may be selected from L-mannose or a racemic mixture of D-Mannose and/or L-Mannose, wherein D-mannose preferably as described above. Such mixtures may be obtained e.g. by a non-selective synthesis of mannose, e.g. by non-selective oxidation of mannitol. An anomeric mixture may furthermore be obtained by solubilization of mannose in an aqueous solution, e.g. in water, WFI, or any buffer or solution as defined herein.
- According to a more preferred aspect, mannose as used herein is typically present in the inventive solution for lyophilization, transfection and/or injection in a concentration of about 0.01 to about 10% (w/w), preferably in a concentration of about 0.01 to about 10% (w/w), more preferably in a concentration of about 0.1 to about 7.5% (w/w), even more preferably in a concentration of about 0.5 to about 5% (w/w), and most preferably in a concentration of about 1 to about 4% (w/w), e.g. a concentration of about 2 to about 4% (w/w), such as about 2.5% (w/w). Herein, a concentration of about 1% (w/w) mannose corresponds to a concentration of about 55,506 mM mannose. Any of the above and herein mentioned values and concentrations for mannose in % (w/w) may thus be calculated in mM on the above basis.
- According to the above first embodiment, the present invention provides (use of) a solution containing at least one nucleic acid sequence and free mannose for lyophilization, transfection and/or injection of the at least one nucleic acid (sequence). Lyophilization, transfection and/or injection may be carried out in vivo, in vitro or ex vivo. In the context of the present invention, such a lyophilized nucleic acid (sequence) may be any suitable nucleic acid, selected e.g. from any (double-stranded or single-stranded) DNA, preferably, without being limited thereto, e.g. genomic DNA, single-stranded DNA molecules, double-stranded DNA molecules, coding DNA, DNA primers, DNA probes, immunostimulatory DNA, a (short) DNA oligonucleotide ((short) oligodesoxyribonucleotides), or may be selected e.g. from any PNA (peptide nucleic acid) or may be selected e.g. from any (double-stranded or single-stranded) RNA, preferably, without being limited thereto, a (short) RNA oligonucleotide ((short) oligoribonucleotide), a coding RNA, a messenger RNA (mRNA), an immunostimulatory RNA, a siRNA, an antisense RNA, a micro RNA or riboswitches, ribozymes or aptamers; etc. The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be a ribosomal RNA (rRNA), a transfer RNA (tRNA), a messenger RNA (mRNA), or a viral RNA (vRNA). Preferably, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is an RNA. More preferably, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a (linear) single-stranded RNA, even more preferably an mRNA. In the context of the present invention, an mRNA is typically an RNA, which is composed of several structural elements, e.g. an optional 5′-UTR region, an upstream positioned ribosomal binding site followed by a coding region, an optional 3′-UTR region, which may be followed by a poly-A tail (and/or a poly-C-tail). An mRNA may occur as a mono-, di-, or even multicistronic RNA, i.e. an RNA which carries the coding sequences of one, two or more proteins or peptides. Such coding sequences in di-, or even multicistronic mRNA may be separated by at least one IRES sequence, e.g. as defined herein.
- Furthermore, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a single- or a double-stranded nucleic acid (molecule) (which may also be regarded as a nucleic acid (molecule) due to non-covalent association of two single-stranded nucleic acid(s) (molecules)) or a partially double-stranded or partially single stranded nucleic acid, which are at least partially self complementary (both of these partially double-stranded or partially single stranded nucleic acid molecules are typically formed by a longer and a shorter single-stranded nucleic acid molecule or by two single stranded nucleic acid molecules, which are about equal in length, wherein one single-stranded nucleic acid molecule is in part complementary to the other single-stranded nucleic acid molecules molecule and both thus form a double-stranded nucleic acid molecules molecule in this region, i.e. a partially double-stranded or partially single stranded nucleic acid molecules). Preferably, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a single-stranded nucleic acid molecule. Furthermore, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a circular or linear nucleic acid molecule, preferably a linear nucleic acid molecule.
- According to one alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a coding nucleic acid, e.g. a DNA or RNA. Such a coding DNA or RNA may be any DNA or RNA as defined above. Preferably, such a coding DNA or RNA may be a single- or a double-stranded DNA or RNA, more preferably a single-stranded DNA or RNA, and/or a circular or linear DNA or RNA, more preferably a linear DNA or RNA. Even more preferably, the coding DNA or RNA may be a (linear) single-stranded DNA or RNA. Most preferably, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a ((linear) single-stranded) messenger RNA (mRNA). Such an mRNA may occur as a mono-, di-, or even multicistronic RNA, i.e. an RNA which carries the coding sequences of one, two or more proteins or peptides. Such coding sequences in di-, or even multicistronic mRNA may be separated by at least one IRES sequence, e.g. as defined herein.
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode a protein or a peptide, which may be selected, without being restricted thereto, e.g. from therapeutically active proteins or peptides, from antigens, e.g. tumor antigens, pathogenic antigens (e.g. selected from pathogenic proteins as defined herein or from animal antigens, viral antigens, protozoal antigens, bacterial antigens, allergic antigens), autoimmune antigens, or further antigens, from allergens, from antibodies, from immunostimulatory proteins or peptides, from antigen-specific T-cell receptors, or from any other protein or peptide suitable for a specific (therapeutic) application, wherein the coding DNA or RNA may be transported into a cell, a tissue or an organism and the protein may be expressed subsequently in this cell, tissue or organism.
- In this context, therapeutically active proteins may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection. These may be selected from any naturally occurring recombinant or isolated protein known to a skilled person from the prior art. Without being restricted thereto therapeutically active proteins may comprise proteins, capable of stimulating or inhibiting the signal transduction in the cell, e.g. cytokines, antibodies, etc. Therapeutically active proteins may thus comprise cytokines of class I of the family of cytokines, having 4 positionally conserved cysteine residues (CCCC) and comprising a conserved sequence motif Trp-Ser-X-Trp-Ser (WSXWS), wherein X is a non-conserved amino acid. Cytokines of class I of the family of cytokines comprise the GM-CSF subfamily, e.g. IL-3, IL-5, GM-CSF, the IL-6-subfamily, e.g. IL-6, IL-11, IL-12, or the IL-2-subfamily, e.g. IL-2, IL-4, IL-7, IL-9, IL-15, etc., or the cytokines IL-1alpha, IL-1beta, IL-10 etc. Therapeutically active proteins may also comprise cytokines of class II of the family of cytokines, which also comprise 4 positionally conserved cystein residues (CCCC), but no conserved sequence motif Trp-Ser-X-Trp-Ser (WSXWS). Cytokines of class II of the family of cytokines comprise e.g. IFN-alpha, IFN-beta, IFN-gamma, etc. Therapeutically active proteins may additionally comprise cytokines of the family of tumor necrose factors, e.g. TNF-alpha, TNF-beta, etc., or cytokines of the family of chemokines, which comprise 7 transmembrane helices and interact with G-protein, e.g. IL-8, MIP-1, RANTES, CCR5, CXR4, etc., or cytokine specific receptors, such as TNF-R1, TNF-RII, CD40, OX40 (CD134), Fas, etc.
- Therapeutically active proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be selected from any of the proteins given in the following: 0ATL3, OFC3, OPA3, OPD2, 4-IBBL, 5T4, 6Ckine, 707-AP, 9D7, A2M, AA, AAAS, AACT, AASS, ABAT, ABCAI, ABCA4, ABCB1, ABCB11, ABCB2, ABCB4, ABCB7, ABCC2, ABCC6, ABCC8, ABCD1, ABCD3, ABCG5, ABCG8, ABL1, ABO, ABR ACAA1, ACACA, ACADL, ACADM, ACADS, ACADVL, ACAT1, ACCPN, ACE, ACHE, ACHM3, ACHM1, ACLS, ACP1, ACTA1, ACTC, ACTN4, ACVRL1, AD2, ADA, ADAMTS13, ADAMTS2, ADFN, ADHIB, ADHIC, ADLDH3A2, ADRB2, ADRB3, ADSL, AEZ, AFA, AFD1, AFP, AGA, AGL, AGMX2, AGPS, AGSI, AGT, AGTR1, AGXT, AH02, AHCY, AHDS, AHHR, AHSG, AIC, AIED, AIH2, AIH3, AIM-2, AIPL1, AIRE, AK1, ALAD, ALAS2, ALB, HPG1, ALDH2, ALDH3A2, ALDH4A1, ALDH5A1, ALDHIAI, ALDOA, ALDOB, ALMS1, ALPL, ALPP, ALS2, ALX4, AMACR, AMBP, AMCD, AMCD1, AMCN, AMELX, AMELY, AMGL, AMH, AMHR2, AMPD3, AMPD1, AMT, ANC, ANCR, ANK1, ANOP1, AOM, APOA4, APOC2, APOC3, AP3B1, APC, aPKC, APOA2, APOA1, APOB, APOC3, APOC2, APOE, APOH, APP, APRT, APS1, AQP2, AR, ARAF1, ARG1, ARHGEF12, ARMET, ARSA, ARSB, ARSC2, ARSE, ART-4, ARTC1/m, ARTS, ARVD1, ARX, AS, ASAH, ASAT, ASD1, ASL, ASMD, ASMT, ASNS, ASPA, ASS, ASSP2, ASSP5, ASSP6, AT3, ATD, ATHS, ATM, ATP2A1, ATP2A2, ATP2C1, ATP6B1, ATP7A, ATP7B, ATP8B1, ATPSK2, ATRX, ATXN1, ATXN2, ATXN3, AUTS1, AVMD, AVP, AVPR2, AVSD1, AXIN1, AXIN2, AZF2, B2M, B4GALT7, B7H4, BAGE, BAGE-1, BAX, BBS2, BBS3, BBS4, BCA225, BCAA, BCH, BCHE, BCKDHA, BCKDHB, BCLIO, BCL2, BCL3, BCL5, BCL6, BCPM, BCR, BCR/ABL, BDC, BDE, BDMF, BDMR, BEST1, beta-Catenin/m, BF, BFHD, BFIC, BFLS, BFSP2, BGLAP, BGN, BHD, BHR1, BING-4, BIRC5, BJS, BLM, BLMH, BLNK, BMPR2, BPGM, BRAF, BRCA1, BRCA1/m, BRCA2, BRCA2/m, BRCD2, BRCD1, BRDT, BSCL, BSCL2, BTAA, BTD, BTK, BUB1, BWS, BZX, COL2A1, COL6A1, CINH, CIQA, CIQB, CIQG, C1S, C2, C3, C4A, C4B, C5, C6, C7, C7orf2, C8A, C8B, C9, CA125, CA15-3/CA 27-29, CA195, CA19-9, CA72-4, CA2, CA242, CA50, CABYR, CACD, CACNA2D1, CACNAIA, CACNAIF, CACNAIS, CACNB2, CACNB4, CAGE, CA1, CALB3, CALCA, CALCR, CALM, CALR, CAM43, CAMEL, CAP-1, CAPN3, CARD15, CASP-5/m, CASP-8, CASP-8/m, CASR, CAT, CATM, CAV3, CB1, CBBM, CBS, CCA1, CCAL2, CCAL1, CCAT, CCL-1, CCL-11, CCL-12, CCL-13, CCL-14, CCL-15, CCL-16, CCL-17, CCL-18, CCL-19, CCL-2, CCL-20, CCL-21, CCL-22, CCL-23, CCL-24, CCL-25, CCL-27, CCL-3, CCL-4, CCL-5, CCL-7, CCL-8, CCM1, CCNB1, CCND1, CCO, CCR2, CCR5, CCT, CCV, CCZS, CD1, CDI9, CD20, CD22, CD25, CD27, CD27L, cD3, CD30, CD30, CD30L, CD33, CD36, CD3E, CD3G, CD3Z, CD4, CD40, CD40L, CD44, CD44v, CD44v6, CD52, CD55, CD56, CD59, CD80, CD86, CDAN1, CDAN2, CDAN3, CDC27, CDC27/m, CDC2L1, CDH1, CDK4, CDK4/m, CDKNIC, CDKN2A, CDKN2A/m, CDKNIA, CDKNIC, CDL1, CDPD1, CDR1, CEA, CEACAM1, CEACAM5, CECR, CECR9, CEPA, CETP, CFNS, CFTR, CGF1, CHAC, CHED2, CHED1, CHEK2, CHM, CHML, CHR39c, CHRNA4, CHRNA1, CHRNB1, CHRNE, CHS, CHS1, CHST6, CHXIO, CIAS1, CIDX, CKN1, CLA2, CLA3, CLA1, CLCA2, CLCN1, CLCN5, CLCNKB, CLDNI6, CLP, CLN2, CLN3, CLN4, CLN5, CLN6, CLN8, CIQA, CIQB, C1QG, CIR, CLS, CMCWTD, CMDJ, CMD1A, CMDIB, CMH2, MH3, CMH6, CMKBR2, CMKBR5, CML28, CML66, CMM, CMT2B, CMT2D, CMT4A, CMTIA, CMTX2, CMTX3, C-MYC, CNA1, CND, CNGA3, CNGA1, CNGB3, CNSN, CNTF, COA-1/m, COCH, COD2, COD1, COH1, COL10A, COL2A2, COL1A2, COL17A1, COL1A1, COL1A2, COL2A1, COL3A1, COL4A3, COL4A4, COL4A5, COL4A6, COL5A1, COL5A2, COL6A1, COL6A2, COL6A3, COL7A1, COL8A2, COL9A2, COL9A3, COL11A1, COLIA2, COL23A1, COL1A1, COLQ, COMP, COMT, CORD5, CORD1, COX10, COX-2, CP, CPB2, CPO, CPP, CPS1, CPT2, CPTIA, CPX, CRAT, CRB1, CRBM, CREBBP, CRH, CRHBP, CRS, CRV, CRX, CRYAB, CRYBA1, CRYBB2, CRYGA, CRYGC, CRYGD, CSA, CSE, CSFIR, CSF2RA, CSF2RB, CSF3R, CSFIR, CST3, CSTB, CT, CT7, CT-9/BRD6, CTAA1, CTACK, CTEN, CTH, CTHM, CTLA4, CTM, CTNNB1, CTNS, CTPA, CTSB, CTSC, CTSK, CTSL, CTS1, CUBN, CVD1, CX3CL1, CXCL1, CXCL10, CXCLI1, CXCL12, CXCL13, CXCL16, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CYB5, CYBA, CYBB, CYBB5, CYFRA 21-1, CYLD, CYLD1, CYMD, CYPIIB1, CYPIIB2, CYP17, CYP17A1, CYP19, CYP19A1, CYPIA2, CYP1B1, CYP21A2, CYP27A1, CYP27B1, CYP2A6, CYP2C, CYP2C19, CYP2C9, CYP2D, CYP2D6, CYP2D7P1, CYP3A4, CYP7B1, CYPB1, CYP11B1, CYP1A1, CYP1B1, CYRAA, D40, DAD1, DAM, DAM-10/MAGE-B1, DAM-6/MAGE-B2, DAX1, DAZ, DBA, DBH, DB1, DBT, DCC, DC-CK1, DCK, DCR, DCX, DDB 1, DDB2, DDIT3, DDU, DECR1, DEK-CAN, DEM, DES, DF, DFN2, DFN4, DFN6, DFNA4, DFNA5, DFNB5, DGCR, DHCR7, DHFR, DHOF, DHS, D1A1, D1APH2, D1APH1, D1H1, D100, DISC1, DKC1, DLAT, DLD, DLL3, DLX3, DMBT1, DMD, DM1, DMPK, DMWD, DNA11, DNASE1, DNMT3B, DPEP1, DPYD, DPYS, DRD2, DRD4, DRPLA, DSCR1, DSG1, DSP, DSPP, DSS, DTDP2, DTR, DURS1, DWS, DYS, DYSF, DYT2, DYT3, DYT4, DYT2, DYT1, DYX1, EBAF, EBM, EBNA, EBP, EBR3, EBS1, ECA], ECB2, ECE1, ECGF1, ECT, ED2, ED4, EDA, EDAR, ECA1, EDN3, EDNRB, EEC1, EEFIAIL14, EEGV1, EFEMP1, EFTUD2/m, EGFR, EGFR/Her1, EG1, EGR2, EIF2AK3, eIF4G, EKV, E11S, ELA2, ELF2, ELF2M, ELK, ELN, ELONG, EMD, EML1, EMMPRIN, EMX2, ENA-78, ENAM, END3, ENG, ENO1, ENPP1, ENUR2, ENUR1, EOS, EP300, EPB41, EPB42, EPCAM, EPD, EphAl, EphA2, EphA3, EphrinA2, EphrinA3, EPHX1, EPM2A, EPO, EPOR, EPX, ERBB2, ERCC2 ERCC3, ERCC4, ERCC5, ERCC6, ERVR, ESR1, ETFA, ETFB, ETFDH, ETM1, ETV6-AML1, ETV1, EVC, EVR2, EVR1, EWSR1, EXT2, EXT3, EXT1, EYA1, EYCL2, EYCL3, EYCL1, EZH2, F10, F1, F12, F13A1, F13B, F2, F5, F5F8D, F7, F8, F8C, F9, FABP2, FACL6, FAH, FANCA, FANCB, FANCC, FANCD2, FANCF, FasL, FBN2, FBN1, FBP1, FCG3RA, FCGR2A, FCGR2B, FCGR3A, FCHL, FCMD, FCP1, FDPSL5, FECH, FEO, FEOM1, FES, FGA, FGB, FGD1, FGF2, FGF23, FGF5, FGFR2, FGFR3, FGFR1, FGG, FGS1, FH, F1C1, F1H, F2, FKBP6, FLNA, FLT4, FMO3, FMO4, FMR2, FMR1, FN, FN1/m, FOXC1, FOXE1, FOXL2, FOXOIA, FPDMM, FPF, Fra-1, FRAXF, FRDA, FSHB, FSHMD1A, FSHR, FTH1, FTHL17, FTL, FTZF1, FUCA1, FUT2, FUT6, FUT1, FY, G250, G250/CAIX, G6PC, G6PD, G6PT1, G6PT2, GAA, GABRA3, GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7b, GAGE-8, GALC, GALE, GALK1, GALNS, GALT, GAMT, GAN, GAST, GASTRINI7, GATA3, GATA, GBA, GBE, GC, GCDH, GCGR, GCH1, GCK, GCP-2, GCS1, G-CSF, GCSH, GCSL, GCY, GDEP, GDF5, GDI1, GDNF, GDXY, GFAP, GFND, GGCX, GGT1, GH2, GH1, GHR, GHRHR, GHS, GIF, GINGF, GIP, GJA3, GJA8, GJB2, GJB3, GJB6, GJB1, GK, GLA, GLB, GLB1, GLC3B, GLCIB, GLCIC, GLDC, GL13, GLP1, GLRA1, GLUD1, GM1 (fuc-GM1), GM2A, GM-CSF, GMPR, GNA12, GNAS, GNAT1, GNB3, GNE, GNPTA, GNRH, GNRH1, GNRHR, GNS, GnT-V, gp100, GPIBA, GPIBB, GP9, GPC3, GPD2, GPDS1, GP1, GPIBA, GPN1LW, GPNMB/m, GPSC, GPX1, GRHPR, GRK1, GROα, GROPβ, GROγ, GRPR, GSE, GSM1, GSN, GSR, GSS, GTD, GTS, GUCAIA, GUCY2D, GULOP, GUSB, GUSM, GUST, GYPA, GYPC, GYS1, GYS2, HOKPP2, HOMG2, HADHA, HADHB, HAGE, HAGH, HAL, HAST-2, HB1, HBA2, HBA1, HBB, HBBP1, HBD, HBEl, HBG2, HBG1, HBHR, HBP1, HBQ1, HBZ, HBZP, HCA, HCC-1, HCC-4, HCF2, HCG, HCL2, HCL1, HCR, HCVS, HD, HPN, HER2, HER2/NEU, HER3, HERV-K-MEL, HESX1, HEXA, HEXB, HF1, HFE, HF1, HGD, HHC2, HHC3, HHG, HK1 HLA-A, HLA-A*0201-R1701, HLA-A11/m, HLA-A2/m, HLA-DPB1 HLA-DRA, HLCS, HLXB9, HMBS, HMGA2, HMGCL, HM1, HMN2, HMOX1, HMSI HMW-MAA, HIND, HNE, HNF4A, HOAC, HOMEOBOX NKX 3.1, HOM-TES-14/SCP-1, HOM-TES-85, HOXA1 HOXD13, HP, HPC1, HPD, HPE2, HPE1, HPFH, HPFH2, HPRT1, HPS1, HPT, HPV-E6, HPV-E7, HR, HRAS, HRD, HRG, HRPT2, HRPT1, HRX, HSDIIB2, HSD17B3, HSD17B4, HSD3B2, HSD3B3, HSN1, HSP70-2M, HSPG2, HST-2, HTC2, HTC1, hTERT, HTN3, HTR2c, HVBS6, HVBS1, HVEC, HVIS, HYAL1, HYR, I-309, IAB, IBGC1, IBM2, ICAM1, ICAM3, iCE, ICHQ, ICR5, ICR1, ICS1, IDDM2, IDDM1, IDS, IDUA, IF, □IFNa/b, □IFNGR1, IGAD1, IGER, IGF-1R, IGF2R, IGF1, IGH, IGHC, IGHG2, IGHG1, IGHM, IGHR, IGKC, 1HG1, IHH, IKBKG, IL1, IL-1 RA, IL1, IL-11, IL12, IL12RB1, IL13, IL-13Rα2, IL-15, IL-16, IL-17, IL18, IL-1a, IL-1a, IL-1b, IL-β, ILIRAPL1, IL2, IL24, IL-2R, IL2RA, IL2RG, IL3, IL3RA, IL4, IL4R, IL4R, IL-5, IL6, IL-7, IL7R, IL-8, IL-9, Immature laminin receptor, IMMP2L, INDX, INFGR1, INFGR2, INFα, IFN□, INFγ, INS, INSR, INVS, IP-10, IP2, IPF1, IP1, IRF6, IRS1, ISCW, ITGA2, ITGA2B, ITGA6, ITGA7, ITGB2, ITGB3, ITGB4, ITIH1, ITM2B, IV, IVD, JAG1, JAK3, JBS, JBTS1, JMS, JPD, KAL1, KAL2, KAL1, KLK2, KLK4, KCNA1, KCNE2, KCNE1, KCNH2, KCNJ1, KCNJ2, KCNJ1, KCNQ2, KCNQ3, KCNQ4, KCNQ1, KCS, KERA, KFM, KFS, KFSD, KHK, ki-67, KIAA0020, KIAA0205, KIAA0205/m, KIFIB, KIT, KK-LC-1, KLK3, KLKB1, KM-HN-1, KMS, KNG, KNO, K-RAS/m, KRAS2, KREV1, KRT1, KRT10, KRT12, KRT13, KRT14, KRT14L1, KRT14L2, KRT14L3, KRT16, KRT16L1, KRT16L2, KRT17, KRT18, KRT2A, KRT3, KRT4, KRT5, KRT6A, KRT6B, KRT9, KRTHB1, KRTHB6, KRT1, KSA, KSS, KWE, KYNU, L0HI9CR1, LICAM, LAGE, LAGE-1, LALL, LAMA2, LAMA3, LAMB3, LAMB, LAMC2, LAMP2, LAP, LCA5, LCAT, LCCS, LCCS 1, LCFS2, LCS1, LCT, LDHA, LDHB, LDHC, LDLR, LDLR/FUT, LEP, LEWISY, LGCR, LGGF-PBP, LGI1, LGMD2H, LGMD1A, LGMDIB, LHB, LHCGR, LHON, LHRH, LHX3, LIF, LIG1, LIMM, LIMP2, LIPA, LIPA, LIPB, LIPC, LIVIN, LICAM, LMAN1, LMNA, LMXIB, LOLR, LOR, LOX, LPA, LPL, LPP, LQT4, LRP5, LRS1, LSFC, LT-β, LTBP2, LTC4S, LYL1, XCL1, LYZ, M344, MA50, MAA, MADH4, MAFD2, MAFD1, MAGE, MAGE-A1, MAGE-A10, MAGE-A12, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A9, MAGEB1, MAGE-B10, MAGE-B16, MAGE-B17, MAGE-B2, MAGE-B3, MAGE-B4, MAGE-B5, MAGE-B6, MAGE-C1, MAGE-C2, MAGE-C3, MAGE-D1, MAGE-D2, MAGE-D4, MAGE-E1, MAGE-E2, MAGE-F1, MAGE-H1, MAGEL2, MGB1, MGB2, MAN2A1, MAN2B1, MANBA, MANBB, MAOA, MAOB, MAPK81P1, MAPT, MART-1, MART-2, MART2/m, MATIA, MBL2, MBP, MBS1, MCIR, MC2R, MC4R, MCC, MCCC2, MCCC1, MCDR1, MCF2, MCKD, MCL1, MCIR, MCOLN1, MCOP, MCOR, MCP-1, MCP-2, MCP-3, MCP-4, MCPH2, MCPH1, MCS, M-CSF, MDB, MDCR, MDM2, MDRV, MDS1, ME1, ME1/m, ME2, ME20, ME3, MEAX, MEB, MEC CCL-28, MECP2, MEFV, MELANA, MELAS, MEN1 MSLN, MET, MF4, MG50, MG50/PXDN, MGAT2, MGAT5, MGCI MGCR, MGCT, MG1, MGP, MHC2TA, MHS2, MHS4, MIC2, MIC5, MID1, MIF, MIP, MIP-5/HCC-2, MITF, MJD, MK167, MKKS, MKS1, MLH1, MLL, MLLT2, MLLT3, MLLT7, MLLT1, MLS, MLYCD, MMAIa, MMP 11, MMVP1, MN/CA IX-Antigen, MNG1, MN1, MOC31, MOCS2, MOCS1, MOG, MORC, MOS, MOV18, MPD1, MPE, MPFD, MP1, MPIF-1, MPL, MPO, MPS3C, MPZ, MREIIA, MROS, MRP1, MRP2, MRP3, MRSD, MRX14, MRX2, MRX20, MRX3, MRX40, MRXA, MRX1, MS, MS4A2, MSD, MSH2, MSH3, MSH6, MSS, MSSE, MSX2, MSX1, MTATP6, MTC03, MTCO1, MTCYB, MTHFR, MTM1, MTMR2, MTND2, MTND4, MTND5, MTND6, MTND1, MTP, MTR, MTRNR2, MTRNR1, MTRR, MTTE, MTTG, MTT1, MTTK, MTTL2, MTTL1, MTTN, MTTP, MTTS1, MUC1, MUC2, MUC4, MUC5AC, MUM-1, MUM-1/m, MUM-2, MUM-2/m, MUM-3, MUM-3/m, MUT, mutant p21 ras, MUTYH, MVK, MX2, MX11, MYO5A, MYB, MYBPC3, MYC, MYCL2, MYH6, MYH7, MYL2, MYL3, MYMY, MYO15A, MYO1G, MYO5A, MYO7A, MYOC, Myosin/m, MYP2, MYP1, NA88-A, N-acetylglucosaminyltransferase-V, NAGA, NAGLU, NAMSD, NAPB, NAT2, NAT, NB1A1, NBS1, NCAM, NCF2, NCF1, NDN, NDP, NDUFS4, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NEB, NEFH, NEM1, Neo-PAP, neo-PAP/m, NEU1, NEUROD1, NF2, NF1, NFYC/m, NGEP, NHS, NKS1, NKX2E, NM, NME1, NMP22, NMTC, NODAL, NOG, NOS3, NOTCH3, NOTCH1, NP, NPC2, NPC1, NPHL2, NPHP1, NPHS2, NPHS1, NPM/ALK, NPPA, NQO1, NR2E3, NR3C1, NR3C2, NRAS, NRAS/m, NRL, NROB1, NRTN, NSE, NSX, NTRK1, NUMA1, NXF2, NY-CO1, NY-ESO1, NY-ESO-B, NY-LU-12, ALDOA, NYS2, NYS4, NY-SAR-35, NYS1, NYX, OA3, OA1, OAP, OASD, OAT, OCA1, OCA2, OCD1, OCRL, OCRL1, OCT, ODDD, ODT1, OFC1, OFD1, OGDH, OGT, OGT/m, OPA2, OPA1, OPD1, OPEM, OPG, OPN, OPNILW, OPNIMW, OPN SW, OPPG, OPTB1, TTD, ORM1, ORP1, OS-9, OS-9/m, OSM LIF, OTC, OTOF, OTSC1, OXCT1, OYTES1, P15, P190 MINOR BCR-ABL, P2RY12, P3, P16, P40, P4HB, P-501, P53, P53/m, P97, PABPN1, PAFAHIB1, PAFAHIP1, PAGE-4, PAGE-5, PAH, PAl-1, PAI-2, PAK3, PAP, PAPPA, PARK2, PART-1, PATE, PAX2, PAX3, PAX6, PAX7, PAX8, PAX9, PBCA, PBCRA1, PBT, PBX1, PBXP1, PC, PCBD, PCCA, PCCB, PCK2, PCK1, PCLD, PCOS1, PCSK1, PDB1, PDCN, PDE6A, PDE6B, PDEF, PDGFB, PDGFR, PDGFRL, PDHA1, PDR, PDX1, PECAM1, PEEl, PEO1, PEPD, PEX10, PEX12, PEX13, PEX3, PEX5, PEX6, PEX7, PEX1, PF4, PFB1, PFC, PFKFB1, PFKM, PGAM2, PGD, PGK1, PGKIP1, PGL2, PGR, PGS, PHA2A, PHB, PHEX, PHGDH, PHKA2, PHKA1, PHKB, PHKG2, PHP, PHYH, P1, PI3, PIGA, PIMI-KINASE, PIN1, PIP5KIB, PITX2, PITX3, PKD2, PKD3, PKD1, PKDTS, PKHD1, PKLR, PKP1, PKU1, PLA2G2A, PLA2G7, PLAT, PLEC1, PLG, PL1, PLOD, PLP1, PMEL17, PML, PML/RARα, PMM2, PMP22, PMS2, PMS1, PNKD, PNLIP, POF1, POLA, POLH, POMC, PON2, PON1, PORC, POTE, POUIF1, POU3F4, POU4F3, POUIF1, PPAC, PPARG, PPCD, PPGB, PPH1, PPKB, PPMX, PPOX, PPPIR3A, PPP2R2B, PPT1, PRAME, PRB, PRB3, PRCA1, PRCC, PRD, PRDX5/m, PRF1, PRG4, PRKARIA, PRKCA, PRKDC, PRKWNK4, PRNP, PROC, PRODH, PROM1, PROP1, PROS1, PRST, PRP8, PRPF31, PRPF8, PRPH2, PRPS2, PRPS1, PRS, PRSS7, PRSS1, PRTN3, PRX, PSA, PSAP, PSCA, PSEN2, PSEN1, PSG1, PSGR, PSM, PSMA, PSORS1, PTC, PTCH, PTCH1, PTCH2, PTEN, PTGS1, PTH, PTHR1, PTLAH, PTOS1, PTPN12, PTPNI 1, PTPRK, PTPRK/m, PTS, PUJO, PVR, PVRL1, PWCR, PXE, PXMP3, PXR1, PYGL, PYGM, QDPR, RAB27A, RAD54B, RAD54L, RAG2, RAGE, RAGE-1, RAG1, RAP1, RARA, RASA1, RBAF600/m, RB1, RBP4, RBP4, RBS, RCA1, RCAS1, RCCP2, RCD1, RCV1, RDH5, RDPA, RDS, RECQL2, RECQL3, RECQL4, REGIA, REHOBE, REN, RENBP, RENS1, RET, RFX5, RFXANK, RFXAP, RGR, RHAG, RHAMM/CDI68, RHD, RHO, R1p-1, RLBP1, RLN2, RLN1, RLS, RMD1, RMRP, ROM1, ROR2, RP, RP1, RPI4, RP17, RP2, RP6, RP9, RPD1, RPE65, RPGR, RPGRIP1, RP1, RPIO, RPS19, RPS2, RPS4X, RPS4Y, RPS6KA3, RRAS2, RS1, RSN, RSS, RU1, RU2, RUNX2, RUNX1, RWS, RYR1, S-100, SAA1, SACS, SAG, SAGE, SALL1, SARDH, SART1, SART2, SART3, SAS, SAX1, SCA2, SCA4, SCA5, SCA7, SCA8, SCA1, SCC, SCCD, SCF, SCLC1, SCNIA, SCNIB, SCN4A, SCN5A, SCNNIA, SCNNIB, SCNNIG, SCO2, SCP1, SCZD2, SCZD3, SCZD4, SCZD6, SCZD1, SDF-1a/P3, SDHA, SDHD, SDYS, SEDL, SERPENA7, SERPINA3, SERPINA6, SERPINAl, SERPINC1, SERPIND1, SERPINEl, SERPINF2, SERPING1, SERPINI1, SFTPA1, SFTPB, SFTPC, SFTPD, SGCA, SGCB, SGCD, SGCE, SGM1, SGSH, SGY-1, SH2D1A, SHBG, SHFM2, SHFM3, SHFM1, SHH, SHOX, S1, SIAL, SIALYL LEWISX, SIASD, S11, S1M1, SIRT2/m, SIX3, SJS1, SKP2, SLCIOA2, SLC12A1, SLC12A3, SLC17A5, SLC19A2, SLC22A1L, SLC22A5, SLC25A13, SLC25A15, SLC25A20, SLC25A4, SLC25A5, SLC25A6, SLC26A2, SLC26A3, SLC26A4, SLC2A1, SLC2A2, SLC2A4, SLC3A1, SLC4A1, SLC4A4, SLC5A1, SLC5A5, SLC6A2, SLC6A3, SLC6A4, SLC7A7, SLC7A9, SLC11A1, SLOS, SMA, SMAD1, SMAL, SMARCB1, SMAX2, SMCR, SMCY, SM1, SMN2, SMN1, SMPD1, SNCA, SNRPN, SOD2, SOD3, SOD1, SOS1, SOST, SOX9, SOXIO, Spl7, SPANXC, SPG23, SPG3A, SPG4, SPG5A, SPG5B, SPG6, SPG7, SPINK1, SPINK5, SPPK, SPPM, SPSMA, SPTA1, SPTB, SPTLC1, SRC, SRD5A2, SRPX, SRS, SRY, βhCG, SSTR2, SSX1, SSX2 (HOM-MEL-40/SSX2), SSX4, ST8, STAMP-1, STAR, STARP1, STATH, STEAP, STK2, STK11, STn/KLH, STO, STOM, STS, SUOX, SURF1, SURVIVIN-2B, SYCP1, SYM1, SYN1, SYNS1, SYP, SYT/SSX, SYT-SSX-1, SYT-SSX-2, TA-90, TAAL6, TACSTD1, TACSTD2, TAG72, TAF7L, TAF1, TAGE, TAG-72, TALl, TAM, TAP2, TAP1, TAPVR1, TARC, TARP, TAT, TAZ, TBP, TBX22, TBX3, TBX5, TBXA2R, TBXAS1, TCAP, TCF2, TCF1, TCIRG1, TCL2, TCL4, TCLIA, TCN2, TCOF1, TCR, TCRA, TDD, TDFA, TDRD1, TECK, TECTA, TEK, TEL/AML1, TELAB1, TEXI5, TF, TFAP2B, TFE3, TFR2, TG, TGFα, TGF-β, TGFB1, TGFB1, TGFBR2, TGFBRE, TGFβ3, TGF R11, TGIF, TGM-4, TGM1, TH, THAS, THBD, THC, THC2, THM, THPO, THRA, THRB, TIMM8A, TIMP2, TIMP3, TIMP1, TITF1, TKCR, TKT, TLP, TLR1, TLR10, TLR2, TLR3, TLR4, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLX1, TM4SF1, TM4SF2, TMC1, TMD, TMIP, TNDM, TNF, TNFRSFIIA, TNFRSFIA, TNFRSF6, TNFSF5, TNFSF6, TNFα, TNFβ, TNN13, TNNT2, TOC, TOP2A, TOP1, TP53, TP63, TPA, TPBG, TP1, TPl/m, TPI1, TPM3, TPM1, TPMT, TPO, TPS, TPTA, TRA, TRAG3, TRAPPC2, TRC8, TREH, TRG, TRH, TRIM32, TRIM37, TRP1, TRP2, TRP-2/6b, TRP-2/INT2, Trp-p8, TRPS1, TS, TSC2, TSC3, TSC1, TSG101, TSHB, TSHR, TSP-180, TST, TTGA2B, TTN, TTPA, TTR, TU M2-PK, TULP1, TWIST, TYH, TYR, TYROBP, TYROBP, TYRP1, TYS, UBE2A, UBE3A, UBE1, UCHL1, UFS, UGTIA, ULR, UMPK, UMPS, UOX, UPA, UQCRC1, URO5, UROD, UPKIB, UROS, USH2A, USH3A, USHIA, USHIC, USP9Y, UV24, VBCH, VCF, VD1, VDR, VEGF, VEGFR-2, VEGFR-1, VEGFR-2/FLK-1, VHL, VIM, VMD2, VMD1, VMGLOM, VNEZ, VNF, VP, VRN1, VWF, VWS, WAS, WBS2, WFS2, WFS1, WHCR, WHN, WISP3, WMS, WRN, WS2A, WS2B, WSN, WSS, WT2, WT3, WT1, WTS, WWS, XAGE, XDH, XIC, XIST, XK, XM, XPA, XPC, XRCC9, XS, ZAP70, ZFHXIB, ZFX, ZFY, ZIC2, ZIC3, ZNFI45, ZNF261, ZNF35, ZNF41, ZNF6, ZNF198, ZWSI.
- Therapeutically active proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may further be selected from apoptotic factors or apoptosis related proteins including AIF, Apaf e.g. Apaf-1, Apaf-2, Apaf-3, oder APO-2 (L), APO-3 (L), Apopain, Bad, Bak, Bax, Bcl-2, Bcl-xL, Bcl-xS, bik, CAD, Calpain, Caspase e.g. Caspase-1, Caspase-2, Caspase-3, Caspase-4, Caspase-5, Caspase-6, Caspase-7, Caspase-8, Caspase-9, Caspase-10, Caspase-11, ced-3, ced-9, c-Jun, c-Myc, crm A, cytochrom C, CdR1, DcR1, DD, DED, DISC, DNA-PKCS, DR3, DR4, DR5, FADD/MORT-1, FAK, Fas (Fas-ligand CD95/fas (receptor)), FLICE/MACH, FLIP, fodrin, fos, G-Actin, Gas-2, gelsolin, granzyme A/B, ICAD, ICE, JNK, lamin A/B, MAP, MCL-1, Mdm-2, MEKK-I, MORT-1, NEDD, NF-kappa B, NuMa, p53, PAK-2, PARP, perforin, PITSLRE, PKCdelta, pRb, presenilin, prICE, RAIDD, Ras, RIP, sphingomyelinase, thymidinkinase from herpes simplex, TRADD, TRAF2, TRAIL-R1, TRAIL-R2, TRAIL-R3, transglutaminase, etc.
- A therapeutically active protein, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can also be an adjuvant protein. In this context, an adjuvant protein is preferably to be understood as any protein, which is capable to elicit an innate immune response as defined herein. Preferably, such an innate immune response comprises activation of a pattern recognition receptor, such as e.g. a receptor selected from the Toll-like receptor (TLR) family, including e.g. a Toll like receptor selected from human TLR1 to TLR10 or from murine Toll like receptors TLR1 to TLR13. Preferably, an innate immune response is elicited in a mammal as defined above. More preferably, the adjuvant protein is selected from human adjuvant proteins or from pathogenic adjuvant proteins, in particular from bacterial adjuvant proteins. In addition, mRNA encoding human proteins involved in adjuvant effects may be used as well. Human adjuvant proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically comprise any human protein, which is capable of eliciting an innate immune response (in a mammal), e.g. as a reaction of the binding of an exogenous TLR ligand to a TLR. More preferably, human adjuvant proteins encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from the group consisting of, without being limited thereto, cytokines which induce or enhance an innate immune response, including IL-2, IL-12, IL-15, IL-18, IL-21CCL21, GM-CSF and TNF-alpha; cytokines which are released from macrophages, including IL-1, IL-6, IL-8, IL-12 and TNF-alpha; from components of the complement system including Clq, MBL, C1r, C1s, C2b, Bb, D, MASP-1, MASP-2, C4b, C3b, C5a, C3a, C4a, C5b, C6, C7, C8, C9, CR1, CR2, CR3, CR4, C1qR, CIINH, C4 bp, MCP, DAF, H, I, P and CD59; from proteins which are components of the signalling networks of the pattern recognition receptors including TLR and IL-1R1, whereas the components are ligands of the pattern recognition receptors including IL-1alpha, IL-1 beta, Beta-defensin, heat shock proteins, such as HSPIO, HSP60, HSP65, HSP70, HSP75 and HSP90, gp96, Fibrinogen, Typill repeat extra domain A of fibronectin; the receptors, including IL-1R1, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11; the signal transducers including components of the Small-GTPases signalling (RhoA, Ras, Rac1, Cdc42 etc.), components of the PIP signalling (PI3K, Src-Kinases, etc.), components of the MyD88-dependent signalling (MyD88, IRAK1, IRAK2, etc.), components of the MyD88-independent signalling (TICAMI, TICAM2 etc.); activated transcription factors including e.g. NF-κB, c-Fos, c-Jun, c-Myc; and induced target genes including e.g. IL-1 alpha, IL-1 beta, Beta-Defensin, IL-6, IFN gamma, IFN alpha and IFN beta; from costimulatory molecules, including CD28 or CD40-ligand or PD1; protein domains, including LAMP; cell surface proteins; or human adjuvant proteins including CD80, CD81, CD86, trif, flt-3 ligand, thymopentin, Gp96 or fibronectin, etc., or any species homolog of any of the above human adjuvant proteins.
- Pathogenic adjuvant proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically comprise any pathogenic (adjuvant) protein, which is capable of eliciting an innate immune response (in a mammal), more preferably selected from pathogenic (adjuvant) proteins derived from bacteria, protozoa, viruses, or fungi, animals, etc., and even more preferably from pathogenic adjuvant proteins selected from the group consisting of, without being limited thereto, bacterial proteins, protozoan proteins (e.g. profilin-like protein of Toxoplasma gondii), viral proteins, or fungal proteins, animal proteins, etc.
- In this context, bacterial (adjuvant) proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise any bacterial protein, which is capable of eliciting an innate immune response (preferably in a mammal) or shows an adjuvant character. More preferably, such bacterial (adjuvant) proteins are selected from the group consisting of bacterial heat shock proteins or chaperons, including Hsp60, Hsp70, Hsp90, Hsp100; OmpA (Outer membrane protein) from gram-negative bacteria; bacterial porins, including OmpF; bacterial toxins, including pertussis toxin (PT) from Bordetella pertussis, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, PT-9K/129G mutant from pertussis toxin, pertussis adenylate cyclase toxin CyaA and CyaC from Bordetella pertussis, tetanus toxin, cholera toxin (CT), cholera toxin B-subunit, CTK63 mutant from cholera toxin, CTE112K mutant from CT, Escherichia coli heat-labile enterotoxin (LT), B subunit from heat-labile enterotoxin (LTB) Escherichia coli heat-labile enterotoxin mutants with reduced toxicity, including LTK63, LTR72; phenol-soluble modulin; neutrophil-activating protein (HP-NAP) from Helicobacter pylori; Surfactant protein D; Outer surface protein A lipoprotein from Borrelia burgdorferi, Ag38 (38 kDa antigen) from Mycobacterium tuberculosis; proteins from bacterial fimbriae; Enterotoxin CT of Vibrio cholerae, Pilin from pili from gram negative bacteria, and Surfactant protein A; etc., or any species homolog of any of the above bacterial (adjuvant) proteins.
- Bacterial (adjuvant) proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be selected from bacterial adjuvant proteins, even more preferably selected from the group consisting of, without being limited thereto, bacterial flagellins, including flagellins from organisms including Agrobacterium, Aquifex, Azospirillum, Bacillus, Bartonella, Bordetella, Borrelia, Burkholderia, Campylobacter, Caulobacte, Clostridium, Escherichia, Helicobacter, Lachnospiraceae, Legionella, Listeria, Proteus, Pseudomonas, Rhizobium, Rhodobacter, Roseburia, Salmonella, Serpulina, Serratia, Shigella, Treponema, Vibrio, Wolinella, Yersinia, more preferably flagellins from the species, without being limited thereto, Agrobacterium tumefaciens, Aquifex pyrophilus, Azospirillum brasilense, Bacillus subtilis, Bacillus thuringiensis, Bartonella bacilliformis, Bordetella bronchiseptica, Borrelia burgdorferi, Burkholderia cepacia, Campylobacter jejuni, Caulobacter crescentus, Clostridium botulinum
strain Bennett clone 1, Escherichia coli, Helicobacter pylori, Lachnospiraceae bacterium, Legionella pneumophila, Listeria monocytogenes, Proteus mirabilis, Pseudomonas aeroguinosa, Pseudomonas syringae, Rhizobium meliloti, Rhodobacter sphaeroides, Roseburia cecicola, Roseburis hominis, Salmonella typhimurium, Salmonella bongori, Salmonella typhi, Salmonella enteritidis, Serpulina hyodysenteriae, Serratia marcescens, Shigella boydii, Treponema phagedenis, Vibrio alginolyticus, Vibrio cholerae, Vibrio parahaemolyticus, Wolinella succinogenes and Yersinia enterocolitica. - Bacterial flagellins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection even more preferably comprise a sequence selected from the group comprising any of the following sequences as referred to their accession numbers:
-
organism species gene name accession No GI No Agrobacterium Agrobacterium FlaD (flaD) U95165 GI: 14278870 tumefaciens FlhB (flhB) FliG (fliG) FliN (fliN) FliM (fliM) MotA (motA) FlgF (flgF) FliI (fliI) FlgB (flgB) FlgC (flgC) FliE (fliE) FlgG (flgG) FlgA (flgA) FlgI (flgI) FlgH (flgH) FliL (fliL) FliP (fliP) FlaA (flaA) FlaB (flaB) FlaC (flaC) Aquifex Aquifex pyrophilus U17575 GI: 596244 Azospirillum Azospirillum brasilense Laf1 U26679 GI: 1173509 Bacillus Bacillus subtilis hag AB033501 GI: 14278870 Bacillus Bacillus flab X67138 GI: 46019718 thuringiensis Bartonella Bartonella L20677 GI: 304184 bacilliformis Bordetella Bordetella flaA L13034 GI: 289453 bronchiseptica Borrelia Borrelia X16833 GI: 39356 burgdorferi Burkholderia Burkholderia fliC AF011370 GI: 2935154 cepacia Campylobacter Campylobacter flaA J05635 GI: 144197 jejuni flaB Caulobacter Caulobacter J01556 GI: 144239 crescentus Clostridium Clostridium FlaA DQ845000 GI: 114054886 botulinum strain Bennett clone 1 Escherichia Escherichia coli hag M14358 GI: 146311 AJ884569 (EMBL- SVA) Helicobacter Helicobacter flaA X60746 GI: 43631 pylori Lachnospiraceae Lachnospiraceae DQ789131 GI: 113911615 bacterium Legionella Legionella flaA X83232 GI: 602877 pneumophila Listeria Listeria flaA X65624 GI: 44097 monocytogenes Proteus Proteus mirabilis FlaD (flaD) AF221596 GI: 6959881 FlaA (flaA) FlaB (flaB) FliA (fliA) FliZ (fliZ) Pseudomonas Pseudomonas flaA M57501 GI: 151225 aeroguinosa Pseudomonas Pseudomonas fliC EF544882 GI: 146335619 syringae Rhizobium Rhizobium flaA M24526 GI: 152220 meliloti flaB Rhodobacter Rhodobacter fliC AF274346 GI: 10716972 sphaeroides Roseburia Roseburia M20983 GI: 152535 cecicola Roseburia Roseburis Fla2 DQ789141 GI: 113911632 hominis Salmonella Salmonella D13689 GI: 217062 typhimurium (NCBI ID) Salmonella Salmonella fliC AY603412 GI: 51342390 bongori Salmonella Salmonella typhi flag L21912 GI: 397810 Salmonella Salmonella fliC M84980 GI: 154015 enteritidis Serpulina Serpulina flaB2 X63513 GI: 450669 hyodysenteriae Serratia Serratia hag M27219 GI: 152826 marcescens Shigella Shigella boydii fliC-SB D26165 GI: 442485 Treponema Treponema flaB2 M94015 GI: 155060 phagedenis Vibrio Vibrio flaA EF125175 GI: 119434395 alginolyticus Vibrio s Vibrio AF069392 GI: 7327274 parahaemolyticus Wolinella Wolinella flag M82917 GI: 155337 succinogenes Yersinia Yersinia L33467 GI: 496295 enterocolitica - Protozoan proteins, which may also be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from any protozoan protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Tc52 from Trypanosoma cruzi, PFTG from Trypanosoma gondii, Protozoan heat shock proteins, LeIF from Leishmania spp., profilin-like protein from Toxoplasma gondii, etc.
- Viral proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from any viral protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Respiratory Syncytial Virus fusion glycoprotein (F-protein), envelope protein from MMT virus, mouse leukemia virus protein, Hemagglutinin protein of wild type measles virus, etc.
- Fungal proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be selected from any fungal protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, fungal immunomodulatory protein (FIP; LZ-8), etc.
- Finally, pathogenic adjuvant proteins, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may finally be selected from any further pathogenic protein showing adjuvant character, more preferably, from the group consisting of, without being limited thereto, Keyhole limpet hemocyanin (KLH), OspA, etc.
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may alternatively encode an antigen. According to the present invention, the term “antigen” refers to a substance which is recognized by the immune system and is capable of triggering an antigen-specific immune response, e.g. by formation of antibodies as part of an adaptive immune response. In this context, the first step of an adaptive immune response is the activation of naïve antigen-specific T cells by antigen-presenting cells. This occurs in the lymphoid tissues and organs through which naïve T cells are constantly passing. The three cell types that can serve as antigen-presenting cells are dendritic cells, macrophages, and B cells. Each of these cells has a distinct function in eliciting immune responses. Tissue dendritic cells take up antigens by phagocytosis and macropinocytosis and are stimulated by infection to migrate to the local lymphoid tissue, where they differentiate into mature dendritic cells. Macrophages ingest particulate antigens such as bacteria and are induced by infectious agents to express MHC class II molecules. The unique ability of B cells to bind and internalize soluble protein antigens via their receptors may be important to induce T cells. By presenting the antigen on MHC molecules leads to activation of T cells which induces their proliferation and differentiation into armed effector T cells. The most important function of effector T cells is the killing of infected cells by CD8+ cytotoxic T cells and the activation of macrophages by TH1 cells which together make up cell-mediated immunity, and the activation of B cells by both TH2 and TH1 cells to produce different classes of antibody, thus driving the humoral immune response. T cells recognize an antigen by their T cell receptors which does not recognize and bind antigen directly, but instead recognize short peptide fragments e.g. of pathogens' protein antigens, which are bound to MHC molecules on the surfaces of other cells.
- T cells fall into two major classes that have different effector functions. The two classes are distinguished by the expression of the cell-surface proteins CD4 and CD8. These two types of T cells differ in the class of MHC molecule that they recognize. There are two classes of MHC molecule—MHC class I and MHC class II—which differ in their structure and expression pattern on tissues of the body. CD4+ T cells bind to the MHC class II molecule and CD8+ T cells to the MHC class I molecule. MHC class I and MHC class II have distinct distributions among cells that reflect the different effector functions of the T cells that recognize them. MHC class I molecules present peptides from pathogens, commonly viruses to CD8+ T cells, which differentiate into cytotoxic T cells that are specialized to kill any cell that they specifically recognize. Almost all cells express MHC class I molecules, although the level of constitutive expression varies from one cell type to the next. But not only pathogenic peptides from viruses are presented by MHC class I molecules, also self-antigens like tumour antigens are presented by them. MHC class I molecules bind peptides from proteins degraded in the cytosol and transported in the endoplasmic reticulum. Thereby MHC class I molecules on the surface of cells infected with viruses or other cytosolic pathogens display peptides from these pathogen. The CD8+ T cells that recognize MHC class I:peptide complexes are specialized to kill any cells displaying foreign peptides and so rid the body of cells infected with viruses and other cytosolic pathogens. The main function of CD4+ T cells (CD4+ helper T cells) that recognize MHC class II molecules is to activate other effector cells of the immune system. Thus MHC class II molecules are normally found on B lymphocytes, dendritic cells, and macrophages, cells that participate in immune responses, but not on other tissue cells. Macrophages, for example, are activated to kill the intravesicular pathogens they harbour, and B cells to secrete immunoglobulins against foreign molecules. MHC class II molecules are prevented from binding to peptides in the endoplasmic reticulum and thus MHC class II molecules bind peptides from proteins which are degraded in endosomes. They can capture peptides from pathogens that have entered the vesicular system of macrophages, or from antigens internalized by immature dendritic cells or the immunoglobulin receptors of B cells. Pathogens that accumulate in large numbers inside macrophage and dendritic cell vesicles tend to stimulate the differentiation of TH1 cells, whereas extracellular antigens tend to stimulate the production of TH2 cells. TH1 cells activate the microbicidal properties of macrophages and induce B cells to make IgG antibodies that are very effective of opsonising extracellular pathogens for ingestion by phagocytic cells, whereas TH2 cells initiate the humoral response by activating naïve B cells to secrete IgM, and induce the production of weakly opsonising antibodies such as IgG1 and IgG3 (mouse) and IgG2 and IgG4 (human) as well as IgA and IgE (mouse and human).
- In the context of the present invention, antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically comprise any antigen, falling under the above definition, more preferably protein and peptide antigens, e.g. tumor antigens, allergy antigens, auto-immune self-antigens, pathogens, etc. In accordance with the invention, antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be antigens generated outside the cell, more typically antigens not derived from the host organism (e.g. a human) itself (i.e. non-self antigens) but rather derived from host cells outside the host organism, e.g. viral antigens, bacterial antigens, fungal antigens, protozoological antigens, animal antigens (preferably selected from animals or organisms as disclosed herein), allergy antigens, etc. Allergy antigens are typically antigens, which cause an allergy in a human and may be derived from either a human or other sources. Antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be furthermore antigens generated inside the cell, the tissue or the body, e.g. by secretion of proteins, their degradation, metabolism, etc. Such antigens include antigens derived from the host organism (e.g. a human) itself, e.g. tumor antigens, self-antigens or auto-antigens, such as auto-immune self-antigens, etc., but also (non-self) antigens as defined above, which have been originally been derived from host cells outside the host organism, but which are fragmented or degraded inside the body, tissue or cell, e.g. by (protease) degradation, metabolism, etc.
- One class of antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection comprises tumor antigens. “Tumor antigens” are preferably located on the surface of the (tumor) cell. Tumor antigens may also be selected from proteins, which are overexpressed in tumor cells compared to a normal cell. Furthermore, tumor antigens also includes antigens expressed in cells which are (were) not themselves (or originally not themselves) degenerated but are associated with the supposed tumor. Antigens which are connected with tumor-supplying vessels or (re)formation thereof, in particular those antigens which are associated with neovascularization, e.g. growth factors, such as VEGF, bFGF etc., are also included herein. Antigens connected with a tumor furthermore include antigens from cells or tissues, typically embedding the tumor. Further, some substances (usually proteins or peptides) are expressed in patients suffering (knowingly or not-knowingly) from a cancer disease and they occur in increased concentrations in the body fluids of said patients. These substances are also referred to as “tumor antigens”, however they are not antigens in the stringent meaning of an immune response inducing substance. The class of tumor antigens can be divided further into tumor-specific antigens (TSAs) and tumor-associated-antigens (TAAs). TSAs can only be presented by tumor cells and never by normal “healthy” cells. They typically result from a tumor specific mutation. TAAs, which are more common, are usually presented by both tumor and healthy cells. These antigens are recognized and the antigen-presenting cell can be destroyed by cytotoxic T cells. Additionally, tumor antigens can also occur on the surface of the tumor in the form of, e.g., a mutated receptor. In this case, they can be recognized by antibodies.
- Examples of tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are shown in Tables 1 and 2 below. These tables illustrate specific (protein) antigens (i.e. “tumor antigens”) with respect to the cancer disease, they are associated with. According to the invention, the terms “cancer diseases” and “tumor diseases” are used synonymously herein.
-
TABLE 1 Antigens expressed in cancer diseases Cancers or cancer diseases Tumor antigen Name of tumor antigen related thereto 5T4 colorectal cancer, gastric cancer, ovarian cancer 707-AP 707 alanine proline Melanoma 9D7 renal cell carcinoma AFP alpha-fetoprotein hepatocellular carcinoma, gallbladder cancer, testicular cancer, ovarian cancer, bladder cancer AlbZIP HPG1 prostate cancer alpha5beta1- Integrin alpha5beta6- colon cancer Integrin alpha-methylacyl- prostate cancer coenzyme A racemase ART-4 adenocarcinoma antigen lung cancer, head and neck cancer, recognized by T cells 4 leukemia, esophageal cancer, gastric cancer, cervical cancer, ovarian cancer, breast cancer, squamous cell carcinoma B7H4 ovarian cancer BAGE-1 B antigen bladder cancer, head and neck cancer, lung cancer, melanoma, squamous cell carcinoma BCL-2 leukemia BING-4 melanoma CA 15-3/CA 27- breast cancer, ovary cancer, lung 29 cancer, prostate cancer CA 19-9 gastric cancer, pancreatic cancer, liver cancer, breast cancer, gallbladder cancer, colon cancer, ovary cancer, lung cancer CA 72-4 ovarian cancer CA125 ovarian cancer, colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, uterus cancer, cervix carcinoma, colon cancer, breast cancer, lung cancer calreticulin bladder cancer CAMEL CTL-recognized antigen on melanoma melanoma CASP-8 caspase-8 head and neck cancer cathepsin B breast cancer cathepsin L breast cancer CD19 B-cell malignancies CD20 CD22 CD25 CD30 CD33 CD4 CD52 CD55 CD56 CD80 CEA carcinoembryonic antigen gut carcinoma, colorectal cancer, colon cancer, hepatocellular cancer, lung cancer, breast cancer, thyroid cancer, pancreatic cancer, liver cancer cervix cancer, bladder cancer, melanoma CLCA2 calcium-activated chloride lung cancer channel-2 CML28 leukemia Coactosin-like pancreatic cancer protein Collagen XXIII prostate cancer COX-2 ovarian cancer, breast cancer, colorectal cancer CT-9/BRD6 bromodomain testis-specific protein Cten C-terminal tensin-like protein prostate cancer cyclin B1 cyclin D1 ovarian cancer cyp-B cyclophilin B bladder cancer, lung cancer, T-cell leukemia, squamous cell carcinoma, CYPB1 cytochrom P450 1B1 leukemia DAM-10/MAGE- differentiation antigen melanoma melanoma, skin tumors, ovarian B1 10 cancer, lung cancer DAM-6/MAGE- differentiation antigen melanoma 6 melanoma, skin tumors, ovarian B2 cancer, lung cancer EGFR/Her1 lung cancer, ovarian cancer, head and neck cancer, colon cancer, pancreatic cancer, breast cancer EMMPRIN tumor cell-associated lung cancer, breast cancer, bladder extracellular matrix cancer, ovarian cancer, brain metalloproteinase inducer/ cancer, lymphoma EpCam epithelial cell adhesion molecule ovarian cancer, breast cancer, colon cancer, lung cancer EphA2 ephrin type-A receptor 2 glioma EphA3 ephrin type-A receptor 2 melanoma, sarcoma, lung cancer ErbB3 breast cancer EZH2 (enhancer of Zeste homolog 2) endometrium cancer, melanoma, prostate cancer, breast cancer FGF-5 fibroblast growth factor-5 renal cell carcinoma, breast cancer, prostate cancer FN fibronectin melanoma Fra-1 Fos-related antigen-1 breast cancer, esophageal cancer, renal cell carcinoma, thyroid cancer G250/CAIX glycoprotein 250 leukemia, renal cell carcinoma, head and neck cancer, colon cancer, ovarian cancer, cervical cancer GAGE-1 G antigen 1 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-2 G antigen 2 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-3 G antigen 3 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-4 G antigen 4 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-5 G antigen 5 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-6 G antigen 6 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-7b G antigen 7b bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GAGE-8 G antigen 8 bladder cancer, lung cancer, sarcoma, melanoma, head and neck cancer GDEP gene differentially expressed in prostate cancer prostate GnT-V N-acetylglucosaminyltransferase V glioma, melanoma gp100 glycoprotein 100 kDa melanoma GPC3 glypican 3 hepatocellular carcinoma, melanoma HAGE helicase antigen bladder cancer HAST-2 human signet ring tumor-2 hepsin prostate Her2/neu/ErbB2 human epidermal receptor- breast cancer, bladder cancer, 2/neurological melanoma, ovarian cancer, pancreas cancer, gastric cancer HERV-K-MEL melanoma HNE human neutrophil elastase leukemia homeobox NKX prostate cancer 3.1 HOM-TES- ovarian cancer 14/SCP-1 HOM-TES-85 HPV-E6 cervical cancer HPV-E7 cervical cancer HST-2 gastric cancer hTERT human telomerase reverse breast cancer, melanoma, lung transcriptase cancer, ovarian cancer, sarcoma, Non-Hodgkin-lymphoma, acute leukemia iCE intestinal carboxyl esterase renal cell carcinoma IGF-1R colorectal cancer IL-13Ra2 interleukin 13 receptor alpha 2 glioblastoma chain IL-2R colorectal cancer IL-5 immature laminin renal cell carcinoma receptor kallikrein 2 prostate cancer kallikrein 4 prostate cancer Ki67 prostate cancer, breast cancer, Non- Hodgkin-lymphoma, melanoma KIAA0205 bladder cancer KK-LC-1 Kita-kyushu lung cancer antigen 1 lung cancer KM-HN-1 tongue cancer, hepatocellular carcinomas, melanoma, gastric cancer, esophageal, colon cancer, pancreatic cancer LAGE-1 L antigen bladder cancer, head and neck cancer, melanoma livin bladder cancer, melanoma MAGE-A1 melanoma antigen-A1 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-A10 melanoma antigen-A10 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-A12 melanoma antigen-A12 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia, prostate cancer, myeloma, brain tumors MAGE-A2 melanoma antigen-A2 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-A3 melanoma antigen-A3 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-A4 melanoma antigen-A4 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-A6 melanoma antigen-A6 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-A9 melanoma-antigen-A9 bladder cancer, head and neck cancer, melanoma, colon cancer, lung cancer, sarcoma, leukemia MAGE-B1 melanoma-antigen-B1 melanoma MAGE-B10 melanoma-antigen-B10 melanoma MAGE-B16 melanoma-antigen-B16 melanoma MAGE-B17 melanoma-antigen-B17 melanoma MAGE-B2 melanoma-antigen-B2 melanoma MAGE-B3 melanoma-antigen-B3 melanoma MAGE-B4 melanoma-antigen-B4 melanoma MAGE-B5 melanoma-antigen-B5 melanoma MAGE-B6 melanoma-antigen-B6 melanoma MAGE-C1 melanoma-antigen-C1 bladder cancer, melanoma MAGE-C2 melanoma-antigen-C2 melanoma MAGE-C3 melanoma-antigen-C3 melanoma MAGE-D1 melanoma-antigen-D1 melanoma MAGE-D2 melanoma-antigen-D2 melanoma MAGE-D4 melanoma-antigen-D4 melanoma MAGE-E1 melanoma-antigen-E1 bladder cancer, melanoma MAGE-E2 melanoma-antigen-E2 melanoma MAGE-F1 melanoma-antigen-F1 melanoma MACE-H1 melanoma-antigen-H1 melanoma MAGEL2 MAGE-like 2 melanoma mammaglobin A breast cancer MART-1/Melan-A melanoma antigen recognized by melanoma T cells-1/melanoma antigen A MART-2 melanoma antigen recognized by melanoma T cells-2 matrix protein 22 bladder cancer MC1R melanocortin 1 receptor melanoma M-CSF macrophage colony-stimulating ovarian cancer factor gene mesothelin ovarian cancer MG50/PXDN breast cancer, glioblastoma, melanoma MMP 11 M-phase phosphoprotein 11 leukemia MN/CA IX- renal cell carcinoma antigen MRP-3 multidrug resistance-associated lung cancer protein 3 MUC1 mucin 1 breast cancer MUC2 mucin 2 breast cancer, ovarian cancer, pancreatic cancer NA88-A NA cDNA clone of patient M88 melanoma N-acetylglucos- aminyltransferase-V Neo-PAP Neo-poly(A) polymerase NGEP prostate cancer NMP22 bladder cancer NPM/ALK nucleophosmin/anaplastic lymphoma kinase fusion protein NSE neuron-specific enolase small cell cancer of lung, neuroblastoma, Wilm' tumor, melanoma, thyroid cancer, kidney cancer, testicle cancer, pancreas cancer NY-ESO-1 New York esophageous 1 bladder cancer, head and neck cancer, melanoma, sarcoma, B- lymphoma, hepatoma, pancreatic cancer, ovarian cancer, breast cancer NY-ESO-B OA1 ocular albinism type 1 protein melanoma OFA-iLRP oncofetal antigen-immature leukemia laminin receptor OGT O-linked N-acetylglucosamine transferase gene OS-9 osteocalcin prostate cancer osteopontin prostate cancer, breast cancer, ovarian cancer p15 protein 15 p15 melanoma p190 minor bcr- abl p53 PAGE-4 prostate GAGE-like protein-4 prostate cancer PAI-1 plasminogen acitvator inhibitor 1 breast cancer PAI-2 plasminogen acitvator inhibitor 2 breast cancer PAP prostate acic phosphatase prostate cancer PART-1 prostate cancer PATE prostate cancer PDEF prostate cancer Pim-1-Kinase Pin1 Propyl isomerase prostate cancer POTE prostate cancer PRAME preferentially expressed antigen melanoma, lung cancer, leukemia, of melanoma head and neck cancer, renal cell carcinoma, sarcoma prostein prostate cancer proteinase-3 PSA prostate-specific antigen prostate cancer PSCA prostate cancer PSGR prostate cancer PSM PSMA prostate-specific membrane prostate cancer antigen RAGE-1 renal antigen bladder cancer, renal cancer, sarcoma, colon cancer RHAMM/CD168 receptor for hyaluronic acid leukemia mediated motility RU1 renal ubiquitous 1 bladder cancer, melanoma, renal cancer RU2 renal ubiquitous 1 bladder cancer, melanoma, sarcoma, brain tumor, esophagel cancer, renal cancer, colon cancer, breast cancer S-100 melanoma SAGE sarcoma antigen SART-1 squamous antigen rejecting esophageal cancer, head and neck tumor 1 cancer, lung cancer, uterine cancer SART-2 squamous antigen rejecting head and neck cancer, lung cancer, tumor 1 renal cell carcinoma, melanoma, brain tumor SART-3 squamous antigen rejecting head and neck cancer, lung cancer, tumor 1 leukemia, melanoma, esophageal cancer SCC squamous cell carcinoma antigen lung cancer Sp17 sperm protein 17 multiple myeloma SSX-1 synovial sarcoma X breakpoint 1 hepatocellular cell carcinom, breast cancer SSX-2/HOM- synovial sarcoma X breakpoint 2 breast cancer MEL-40 SSX-4 synovial sarcoma X breakpoint 4 bladder cancer, hepatocellular cell carcinoma, breast cancer STAMP-1 prostate cancer STEAP six transmembrane epithelial prostate cancer antigen prostate survivin bladder cancer survivin-2B intron 2-retaining survivin bladder cancer TA-90 melanoma TAG-72 prostate carcinoma TARP prostate cancer TGFb TGFbeta TGFbRII TGFbeta receptor II TGM-4 prostate-specific prostate cancer transglutaminase TRAG-3 taxol resistant associated protein 3 breast cancer, leukemia, and melanoma TRG testin-related gene TRP-1 tyrosine related protein 1 melanoma TRP-2/6b TRP-2/novel exon 6b melanoma, glioblastoma TRP-2/INT2 TRP-2/intron 2 melanoma, glioblastoma Trp-p8 prostate cancer Tyrosinase melanoma UPA urokinase-type plasminogen breast cancer activator VEGF vascular endothelial growth factor VEGFR-2/FLK-1 vascular endothelial growth factor receptor-2 WT1 Wilm' tumor gene gastric cancer, colon cancer, lung cancer, breast cancer, ovarian cancer, leukemia -
TABLE 2 Mutant antigens expressed in cancer diseases Mutant antigen Name of mutant antigen Cancers or cancer diseases related thereto alpha-actinin-4/m lung carcinoma ARTC1/m melanoma bcr/abl breakpoint cluster region- CML Abelson fusion protein beta-Catenin/m beta-Catenin melanoma BRCA1/m breast cancer BRCA2/m breast cancer CASP-5/m colorectal cancer, gastric cancer, endometrial carcinoma CASP-8/m head and neck cancer, squamous cell carcinoma CDC27/m cell-division-cycle 27 CDK4/m cyclin-dependent kinase 4 melanoma CDKN2A/m melanoma CML66 CML COA-1/m colorectal cancer DEK-CAN fusion protein AML EFTUD2/m melanoma ELF2/m Elongation factor 2 lung squamous cell carcinoma ETV6-AML1 Ets variant gene6/acute myeloid ALL leukemia 1 gene fusion protein FN1/m fibronectin 1 melanoma GPNMB/m melanoma HLA-A*0201- arginine to isoleucine exchange renal cell carcinoma R1701 at residue 170 of the alpha-helix of the alpha2-domain in the HLA-A2 gene HLA-A11/m melanoma HLA-A2/m renal cell carcinoma HSP70-2M heat shock protein 70-2 mutated renal cell carcinoma, melanoma, neuroblastoma KIAA0205/m bladder tumor K-Ras/m pancreatic carcinoma, colorectal carcinoma LDLR-FUT LDR-Fucosyltransferase fusion melanoma protein MART2/m melanoma ME1/m non-small cell lung carcinoma MUM-1/m melanoma ubiquitous mutated 1 melanoma MUM-2/m melanoma ubiquitous mutated 2 melanoma MUM-3/m melanoma ubiquitous mutated 3 melanoma Myosin class I/m melanoma neo-PAP/m melanoma NFYC/m lung squamous cell carcinoma N-Ras/m melanoma OGT/m colorectal carcinoma OS-9/m melanoma p53/m Pml/RARa promyelocytic leukemia/retinoic APL, PML acid receptor alpha PRDX5/m melanoma PTPRK/m receptor-type protein-tyrosine melanoma phosphatase kappa RBAF600/m melanoma SIRT2/m melanoma SYT-SSX-1 synaptotagmin I/synovial sarcoma sarcoma X fusion protein SYT-SSX-2 synaptotagmin I/synovial sarcoma sarcoma X fusion protein TEL-AML1 translocation Ets-family AML leukemia/acute myeloid leukemia 1 fusion protein TGFbRII TGFbeta receptor II colorectal carcinoma TPI/m triosephosphate isomerase Melanoma - In a preferred aspect of the present invention, the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are selected from the group consisting of 5T4, 707-AP, 9D7, AFP, AlbZIP HPG 1, alpha-5-beta-1-integrin, alpha-5-beta-6-integrin, alpha-actinin-4/m, alpha-methylacyl-coenzyme A racemase, ART-4, ARTC1/m, B7H4, BAGE-1, BCL-2, bcr/abl, beta-catenin/m, BING-4, BRCA1/m, BRCA2/m, CA 15-3/CA 27-29, CA 19-9, CA72-4, CA125, calreticulin, CAMEL, CASP-8/m, cathepsin B, cathepsin L, CD19, CD20, CD22, CD25, CDE30, CD33, CD4, CD52, CD55, CD56, CD80, CDC27/m, CDK4/m, CDKN2A/m, CEA, CLCA2, CML28, CML66, COA-1/m, coactosin-like protein, collage XXIII, COX-2, CT-9/BRD6, Cten, cyclin B1, cyclin D1, cyp-B, CYPB1, DAM-10, DAM-6, DEK-CAN, EFTUD2/m, EGFR, ELF2/m, EMMPRIN, EpCam, EphA2, EphA3, ErbB3, ETV6-AMLI, EZH2, FGF-5, FN, Frau-1, G250, GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE7b, GAGE-8, GDEP, GnT-V, gp100, GPC3, GPNMB/m, HAGE, HAST-2, hepsin, Her2/neu, HERV-K-MEL, HLA-A*0201-R171, HLA-A11/m, HLA-A2/m, HNE, homeobox NKX3.1, HOM-TES-14/SCP-1, HOM-TES-85, HPV-E6, HPV-E7, HSP70-2M, HST-2, hTERT, iCE, IGF-1R, IL-13Rα2, IL-2R, IL-5, immature laminin receptor, kallikrein-2, kallikrein-4, Ki67, KIAA0205, KIAA0205/m, KK-LC-1, K-Ras/m, LAGE-A1, LDLR-FUT, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A9, MAGE-A100, MAGE-A12, MAGE-B1, MAGE-B2, MAGE-B3, MAGE-B4, MAGE-B5, MAGE-B6, MAGE-B10, MAGE-B16, MAGE-B17, MAGE-C1, MAGE-C2, MAGE-C3, MAGE-D1, MAGE-D2, MAGE-D4, MAGE-E1, MAGE-E2, MAGE-F1, MAGE-H1, MAGEL2, mammaglobin A, MART-1/melan-A, MART-2, MART-2/m, matrix protein 22, MCIR, M-CSF, MEl/m, mesothelin, MG50/PXDN, MMP11, MN/CA IX-antigen, MRP-3, MUC-1, MUC-2, MUM-1/m, MUM-2/m, MUM-3/m, myosin class 1/m, NA88-A, N-acetylglucosaminyltransferase-V, Neo-PAP, Neo-PAP/m, NFYC/m, NGEP, NMP22, NPM/ALK, N-Ras/m, NSE, NY-ESO-1, NY-ESO-B, OA1, OFA-iLRP, OGT, OGT/m, OS-9, OS-9/m, osteocalcin, osteopontin, p15, p190 minor bcr-abl, p53, p53/m, PAGE-4, PAl-1, PAI-2, PART-1, PATE, PDEF, Pim-1-Kinase, Pin-1, Pml/PARalpha, POTE, PRAME, PRDX5/m, prostein, proteinase-3, PSA, PSCA, PSGR, PSM, PSMA, PTPRK/m, RAGE-1, RBAF600/m, RHAMM/CD168, RU1, RU2, S-100, SAGE, SART-1, SART-2, SART-3, SCC, SIRT2/m, Spl7, SSX-1, SSX-2/HOM-MEL-40, SSX-4, STAMP-1, STEAP, survivin, survivin-2B, SYT-SSX-1, SYT-SSX-2, TA-90, TAG-72, TARP, TEL-AML1, TGFbeta, TGFbetaR11, TGM-4, TP1/m, TRAG-3, TRG, TRP-1, TRP-2/6b, TRP/INT2, TRP-p8, tyrosinase, UPA, VEGF, VEGFR-2/FLK-1, and WT1.
- In a particularly preferred aspect, the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are selected from the group consisting of MAGE-A1 (e.g. MAGE-A1 according to accession number M77481), MAGE-A2, MAGE-A3, MAGE-A6 (e.g. MAGE-A6 according to accession number NM—005363), MAGE-C1, MAGE-C2, melan-A (e.g. melan-A according to accession number NM—005511), GP100 (e.g. GP100 according to accession number M77348), tyrosinase (e.g. tyrosinase according to accession number NM—000372), survivin (e.g. survivin according to accession number AF077350), CEA (e.g. CEA according to accession number NM—004363), Her-2/neu (e.g. Her-2/neu according to accession number M11730), WT1 (e.g. WT1 according to accession number NM—000378), PRAME (e.g. PRAME according to accession number NM—006115), EGFR1 (epidermal growth factor receptor 1) (e.g. EGFR1 (epidermal growth factor receptor 1) according to accession number AF288738), MUC1, mucin-1 (e.g. mucin-1 according to accession number NM—002456), SEC61G (e.g. SEC61G according to accession number NM—014302), hTERT (e.g. hTERT accession number NM—198253), 5T4 (e.g. 5T4 according to accession number NM—006670), NY-Eso-1 (e.g. NY-Esol according to accession number NM—001327), TRP-2 (e.g. TRP-2 according to accession number NM—001922), STEAP, PCA, PSA, PSMA, etc.
- According to a further particularly preferred aspect, the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may form a cocktail of antigens, e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of prostate cancer (PCa), preferably of neoadjuvant and/or hormone-refractory prostate cancers, and diseases or disorders related thereto. For this purpose, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is preferably at least one RNA, more preferably at least one mRNA, which may encode at least one, preferably two, three or even four (preferably different) antigens of the following group of antigens:
-
- PSA (Prostate-Specific Antigen)=KLK3 (Kallikrein-3),
- PSMA (Prostate-Specific Membrane Antigen),
- PSCA (Prostate Stem Cell Antigen),
- STEAP (Six Transmembrane Epithelial Antigen of the Prostate).
- More preferably, in the latter aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two, three or four (preferably different) antigens of the following combinations of antigens:
-
- PSA and PSMA, or
- PSA and PSCA, or
- PSA and STEAP, or
- PSMA and PSCA, or
- PSMA and STEAP, or
- PSCA and STEAP,
- or
- PSA, PSMA and PSCA, or
- PSA, PSMA and STEAP, or
- PSMA, PSCA and STEAP, or
- PSA, PSCA and STEAP, or
- or
- PSA, PSMA, PSCA and STEAP
- Even more preferably, in the latter aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two, three or four (preferably different) antigens:
- wherein at least one antigen is selected from:
- b) wherein the further antigen(s) is (are) selected from at least one antigen of any of the following specific antigens or combinations thereof:
-
- PSA (Prostate-Specific Antigen), or
- PSMA (Prostate-Specific Membrane Antigen), or
- PSCA (Prostate Stem Cell Antigen);
- or
- PSA and PSMA, or
- PSA and PSCA, or
- PSMA and PSCA;
- or
- PSA, PSMA and PSCA.
- Most preferably, in the latter aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, encoding four (preferably different) antigens selected from PSA, PSMA, PSCA and STEAP.
- According to another particularly preferred aspect, the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may form a cocktail of antigens, e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of non-small cell lung cancers (NSCLC), preferably selected from the three main sub-types squamous cell lung carcinoma, adenocarcinoma and large cell lung carcinoma, or of disorders related thereto. For this purpose, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is preferably at least one RNA, more preferably at least one mRNA, which may encode at least one, preferably two, three, four, five, six, seven, eight, nine, ten eleven or twelve (preferably different) antigens of the following group of antigens:
-
- hTERT,
- WT1,
- MAGE-A2,
- 5T4,
- MAGE-A3,
- MUC1,
- Her-2/neu,
- NY-ESO-1,
- CEA,
- Survivin,
- MAGE-C1, and/or
- MAGE-C2,
wherein any combination of these antigens is possible.
- More preferably, in the latter aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two, three, five or six (preferably different) antigens of the following combinations of antigens:
-
- hTERT,
- WT1,
- 5T4,
- NY-ESO-1,
- Survivin, and/or
- MAGE-C2,
wherein any combination of these antigens is possible.
- Even more preferably, in the latter aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least one, preferably two, three, four, five, six, seven, eight, nine, ten eleven or twelve (preferably different) antigens of the following combinations of antigens:
-
- hTERT and WT1, or
- hTERT and 5T4, or
- hTERT and NY-ESO-1, or
- hTERT and Survivin, or
- hTERT and MAGE-C2, or
- WT1 and 5T4, or
- WT1 and NY-ESO-1, or
- WT1 and Survivin, or
- WT1 and MAGE-C2, or
- 5T4 and NY-ESO-1, or
- 5T4 and Survivin, or
- 5T4 and MAGE-C2, or
- NY-ESO-1 and Survivin, or
- NY-ESO-1 and MAGE-C2, or
- Survivin and MAGE-C2,
- or
- hTERT, WT1 and 5T4, or
- hTERT, WT1 and NY-ESO-1, or
- hTERT, WT1 and Survivin, or
- hTERT, WT1 and MAGE-C2, or
- hTERT, 5T4, and NY-ESO-1, or
- hTERT, 5T4, and Survivin, or
- hTERT, 5T4, and MAGE-C2, or
- hTERT, NY-ESO-1 and Survivin, or
- hTERT, NY-ESO-1 and MAGE-C2, or
- hTERT, Survivin and MAGE-C2, or
- WT1, 5T4 and NY-ESO-1, or
- WT1, 5T4 and Survivin, or
- WT1, 5T4 and MAGE-C2, or
- WT1, NY-ESO-1 and Survivin, or
- WT1, NY-ESO-1 and MAGE-C2, or
- WT1, Survivin and MAGE-C2, or
- 5T4, NY-ESO-1 and Survivin, or
- 5T4, NY-ESO-1 and MAGE-C2, or
- 5T4, Survivin and MAGE-C2, or
- NY-ESO-1, Survivin, and MAGE-C2,
- or
- hTERT, WT1, 5T4 and NY-ESO-1, or
- hTERT, WT1, 5T4 and Survivin, or
- hTERT, WT1, 5T4 and MAGE-C2, or
- hTERT, 5T4, NY-ESO-1 and Survivin, or
- hTERT, 5T4, NY-ESO-1 and MAGE-C2, or
- hTERT, NY-ESO-1, Survivin and MAGE-C2, or
- WT1, 5T4, NY-ESO-1, and Survivin, or
- WT1, 5T4, NY-ESO-1, and MAGE-C2, or
- WT1, 5T4, Survivin, and MAGE-C2, or
- 5T4, NY-ESO-1, Survivin, and MAGE-C2,
- or
- hTERT, WT1, 5T4, NY-ESO-1 and Survivin, or
- hTERT, WT1, 5T4, NY-ESO-1 and MAGE-C2, or
- WT1, 5T4, NY-ESO-1, Survivin and MAGE-C2,
- or
- hTERT, WT1, 5T4, NY-ESO-1, Survivin, and MAGE-C2.
- Preferably, in the latter aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also be at least one RNA, more preferably at least one mRNA, which may encode at least two (preferably different) antigens exclusively selected from any of the antigens of the above mentioned group(s) or subgroup(s) comprising (at least) any one of the following combinations of antigens:
-
- hTERT and WT1, or
- hTERT and 5T4, or
- hTERT and NY-ESO-1, or
- hTERT and Survivin, or
- hTERT and MAGE-C2, or
- WT1 and 5T4, or
- WT1 and NY-ESO-1, or
- WT1 and Survivin, or
- WT1 and MAGE-C2, or
- 5T4 and NY-ESO-1, or
- 5T4 and Survivin, or
- 5T4 and MAGE-C2, or
- NY-ESO-1 and Survivin, or
- NY-ESO-1 and MAGE-C2, or
- Survivin and MAGE-C2,
- or
- hTERT, WT1 and 5T4, or
- hTERT, WT1 and NY-ESO-1, or
- hTERT, WT1 and Survivin, or
- hTERT, WT1 and MAGE-C2, or
- hTERT, 5T4, and NY-ESO-1, or
- hTERT, 5T4, and Survivin, or
- hTERT, 5T4, and MAGE-C2, or
- hTERT, NY-ESO-1 and Survivin, or
- hTERT, NY-ESO-1 and MAGE-C2, or
- hTERT, Survivin and MAGE-C2, or
- WT1, 5T4 and NY-ESO-1, or
- WT1, 5T4 and Survivin, or
- WT1, 5T4 and MAGE-C2, or
- WT1, NY-ESO-1 and Survivin, or
- WT1, NY-ESO-1 and MAGE-C2, or
- WT1, Survivin and MAGE-C2, or
- 5T4, NY-ESO-1 and Survivin, or
- 5T4, NY-ESO-1 and MAGE-C2, or
- 5T4, Survivin and MAGE-C2, or
- NY-ESO-1, Survivin, and MAGE-C2,
- or
- hTERT, WT1, 5T4 and NY-ESO-1, or
- hTERT, WT1, 5T4 and Survivin, or
- hTERT, WT1, 5T4 and MAGE-C2, or
- hTERT, 5T4, NY-ESO-1 and Survivin, or
- hTERT, 5T4, NY-ESO-1 and MAGE-C2, or
- hTERT, NY-ESO-1, Survivin and MAGE-C2, or
- WT1, 5T4, NY-ESO-1, and Survivin, or
- WT1, 5T4, NY-ESO-1, and MAGE-C2, or
- WT1, 5T4, Survivin, and MAGE-C2, or
- 5T4, NY-ESO-1, Survivin, and MAGE-C2,
- or
- hTERT, WT1, 5T4, NY-ESO-1 and Survivin, or
- hTERT, WT1, 5T4, NY-ESO-1 and MAGE-C2, or
- WT1, 5T4, NY-ESO-1, Survivin and MAGE-C2,
- or
- hTERT, WT1, 5T4, NY-ESO-1, Survivin, and MAGE-C2.
- According to a further particularly preferred aspect, the tumor antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may form a cocktail of antigens, e.g. in an active (immunostimulatory) composition or a kit of parts (wherein preferably each antigen is contained in one part of the kit), preferably for eliciting an (adaptive) immune response for the treatment of non-small cell lung cancers (NSCLC), preferably selected from the three main sub-types squamous cell lung carcinoma, adenocarcinoma and large cell lung carcinoma, or of disorders related thereto. For this purpose, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is preferably at least one RNA, more preferably at least one mRNA, which may encode at least two (preferably different) antigens,
- a) wherein at least one, preferably at least two, three, four, five or even six, of these at least two antigens is (are) selected from:
-
- 5T4
- NY-ESO-1,
- MAGE-A2,
- MAGE-A3,
- MAGE-C1, and/or
- MAGE-C2, and
- b) wherein the further antigen(s) is (are) selected from at least one antigen as defined herein, preferably in any of the herein mentioned combinations, groups or subgroups of antigens, e.g. the further antigen(s) is (are) selected from, e.g.:
-
- hTERT,
- WT1,
- MAGE-A2,
- 5T4,
- MAGE-A3,
- MUC1,
- Her-2/neu,
- NY-ESO-1,
- CEA,
- Survivin,
- MAGE-C1, and/or
- MAGE-C2.
- Preferably, in the latter aspect, the at least one antigen(s) according to a) is (are) selected from:
-
- NY-ESO-1,
- MAGE-C1, and/or
- MAGE-C2.
- More preferably, in the latter aspect, the at least one antigen(s) according to a) is (are) selected from:
-
- MAGE-C1, and/or
- MAGE-C2.
- Preferably, in the latter aspect, the at least one antigen(s) according to b) is (are) selected from an antigen (antigens) as defined in one of the following combinations:
-
- hTERT and WT1; or
- hTERT and MAGE-A2; or
- hTERT and 5T4; or
- hTERT and MAGE-A3; or
- hTERT and MUC1; or
- hTERT and Her-2/neu; or
- hTERT and NY-ESO-1; or
- hTERT and CEA; or
- hTERT and Survivin; or
- hTERT and MAGE-C1; or
- hTERT and MAGE-C2; or
- WT1 and MAGE-A2; or
- WT1 and 5T4; or
- WT1 and MAGE-A3; or
- WT1 and MUC1; or
- WT1 and Her-2/neu; or
- WT1 and NY-ESO-1; or
- WT1 and CEA; or
- WT1 and Survivin; or
- WT1 and MAGE-C1; or
- WT1 and MAGE-C2; or
- MAGE-A2 and 5T4; or
- MAGE-A2 and MAGE-A3; or
- MAGE-A2 and MUC1; or
- MAGE-A2 and Her-2/neu; or
- MAGE-A2 and NY-ESO-1; or
- MAGE-A2 and CEA; or
- MAGE-A2 and Survivin; or
- MAGE-A2 and MAGE-C1; or
- MAGE-A2 and MAGE-C2; or
- 5T4 and MAGE-A3; or
- 5T4 and MUC1; or
- 5T4 and Her-2/neu; or
- 5T4 and NY-ESO-1; or
- 5T4 and CEA; or
- 5T4 and Survivin; or
- 5T4 and MAGE-C1; or
- 5T4 and MAGE-C2; or
- MAGE-A3 and MUC1; or
- MAGE-A3 and Her-2/neu; or
- MAGE-A3 and NY-ESO-1; or
- MAGE-A3 and CEA; or
- MAGE-A3 and Survivin; or
- MAGE-A3 and MAGE-C1
- MAGE-A3 and MAGE-C2
- MUC1 and Her-2/neu; or
- MUC1 and NY-ESO-1; or
- MUC1 and CEA; or
- MUC1 and Survivin; or
- MUC1 and MAGE-C1; or
- MUC1 and MAGE-C2; or
- HER-2/NEU and NY-ESO-1; or
- HER-2/NEU and CEA; or
- HER-2/NEU and Survivin; or
- HER-2/NEU and MAGE-C1; or
- HER-2/NEU and MAGE-C2; or
- NY-ESO-1 and CEA; or
- NY-ESO-1 and Survivin; or
- NY-ESO-1 and MAGE-C1; or
- NY-ESO-1 and MAGE-C2; or
- CEA and Survivin; or
- CEA and MAGE-C1; or
- CEA and MAGE-C2; or
- Survivin and MAGE-C1; or
- Survivin and MAGE-C2; or
- MAGE-C1 and MAGE-C2;
- or
- hTERT, WT1 and MAGE-A2; or
- hTERT, WT1 and 5T4; or
- hTERT, WT1 and MAGE-A3; or
- hTERT, WT1 and MUC1; or
- hTERT, WT1 and Her-2/neu; or
- hTERT, WT1 and NY-ESO-1; or
- hTERT, WT1 and CEA; or
- hTERT, WT1 and Survivin; or
- hTERT, WT1 and MAGE-C1; or
- hTERT, WT1 and MAGE-C2; or
- WT1, MAGE-A2 and 5T4; or
- WT1, MAGE-A2 and MAGE-A3; or
- WT1, MAGE-A2 and MUC1; or
- WT1, MAGE-A2 and Her-2/neu; or
- WT1, MAGE-A2 and NY-ESO-1; or
- WT1, MAGE-A2 and CEA; or
- WT1, MAGE-A2 and Survivin; or
- WT1, MAGE-A2 and MAGE-C1; or
- WT1, MAGE-A2 and MAGE-C2; or
- MAGE-A2, 5T4 and MAGE-A3; or
- MAGE-A2, 5T4 and MUC1; or
- MAGE-A2, 5T4 and Her-2/neu; or
- MAGE-A2, 5T4 and NY-ESO-1; or
- MAGE-A2, 5T4 and CEA; or
- MAGE-A2, 5T4 and Survivin; or
- MAGE-A2, 5T4 and MAGE-C1; or
- MAGE-A2, 5T4 and MAGE-C2; or
- 5T4, MAGE-A3 and MUC1; or
- 5T4, MAGE-A3 and Her-2/neu; or
- 5T4, MAGE-A3 and NY-ESO-1; or
- 5T4, MAGE-A3 and CEA; or
- 5T4, MAGE-A3 and Survivin; or
- 5T4, MAGE-A3 and MAGE-C1; or
- 5T4, MAGE-A3 and MAGE-C2; or
- MAGE-A3, MUC1 and Her-2/neu; or
- MAGE-A3, MUC1 and NY-ESO-1; or
- MAGE-A3, MUC1 and CEA; or
- MAGE-A3, MUC1 and Survivin; or
- MAGE-A3, MUC1 and MAGE-C1; or
- MAGE-A3, MUC1 and MAGE-C2; or
- MUC1, Her-2/neu and NY-ESO-1; or
- MUC1, Her-2/neu and CEA; or
- MUC1, Her-2/neu and Survivin; or
- MUC1, Her-2/neu and MAGE-C1; or
- MUC1, Her-2/neu and MAGE-C2; or
- HER-2/NEU, NY-ESO-1 and CEA; or
- HER-2/NEU, NY-ESO-1 and Survivin; or
- HER-2/NEU, NY-ESO-1 and MAGE-C1; or
- HER-2/NEU, NY-ESO-1 and MAGE-C2; or
- NY-ESO-1, CEA and Survivin; or
- NY-ESO-1, CEA and MAGE-C1; or
- NY-ESO-1, CEA and MAGE-C2; or
- CEA, Survivin and MAGE-C1; or
- CEA, Survivin and MAGE-C2; or
- Survivin, MAGE-C1 and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2 and 5T4; or
- hTERT, WT1, MAGE-A2 and MAGE-A3; or
- hTERT, WT1, MAGE-A2 and MUC1; or
- hTERT, WT1, MAGE-A2 and Her-2/neu; or
- hTERT, WT1, MAGE-A2 and NY-ESO-1; or
- hTERT, WT1, MAGE-A2 and CEA; or
- hTERT, WT1, MAGE-A2 and Survivin; or
- hTERT, WT1, MAGE-A2 and MAGE-C1; or
- hTERT, WT1, MAGE-A2 and MAGE-C2; or
- WT1, MAGE-A2, 5T4 and MAGE-A3; or
- WT1, MAGE-A2, 5T4 and MUC1; or
- WT1, MAGE-A2, 5T4 and Her-2/neu; or
- WT1, MAGE-A2, 5T4 and NY-ESO-1; or
- WT1, MAGE-A2, 5T4 and CEA; or
- WT1, MAGE-A2, 5T4 and Survivin; or
- WT1, MAGE-A2, 5T4 and MAGE-C1; or
- WT1, MAGE-A2, 5T4 and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3 and MUC1; or
- MAGE-A2, 5T4, MAGE-A3 and Her-2/neu; or
- MAGE-A2, 5T4, MAGE-A3 and NY-ESO-1; or
- MAGE-A2, 5T4, MAGE-A3 and CEA; or
- MAGE-A2, 5T4, MAGE-A3 and Survivin; or
- MAGE-A2, 5T4, MAGE-A3 and MAGE-C1; or
- MAGE-A2, 5T4, MAGE-A3 and MAGE-C2; or
- 5T4, MAGE-A3, MUC1, and Her-2/neu; or
- 5T4, MAGE-A3, MUC1 and NY-ESO-1; or
- 5T4, MAGE-A3, MUC1 and CEA; or
- 5T4, MAGE-A3, MUC1 and Survivin; or
- 5T4, MAGE-A3, MUC1 and MAGE-C1; or
- 5T4, MAGE-A3, MUC1 and MAGE-C2; or
- MAGE-A3, MUC1, Her-2/neu and NY-ESO-1; or
- MAGE-A3, MUC1, Her-2/neu and CEA; or
- MAGE-A3, MUC1, Her-2/neu and Survivin; or
- MAGE-A3, MUC1, Her-2/neu and MAGE-C1; or
- MAGE-A3, MUC1, Her-2/neu and MAGE-C2; or
- MUC1, Her-2/neu, NY-ESO-1 and CEA; or
- MUC1, Her-2/neu, NY-ESO-1 and Survivin; or
- MUC1, Her-2/neu, NY-ESO-1 and MAGE-C1; or
- MUC1, Her-2/neu, NY-ESO-1 and MAGE-C2; or
- HER-2/NEU, NY-ESO-1, CEA and Survivin; or
- HER-2/NEU, NY-ESO-1, CEA and MAGE-C1; or
- HER-2/NEU, NY-ESO-1, CEA and MAGE-C2; or
- NY-ESO-1, CEA, Survivin and MAGE-C1; or
- NY-ESO-1, CEA, Survivin and MAGE-C2; or
- CEA, Survivin, MAGE-C1 and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4 and MAGE-A3; or
- hTERT, WT1, MAGE-A2, 5T4 and MUC1; or
- hTERT, WT1, MAGE-A2, 5T4 and Her-2/neu; or
- hTERT, WT1, MAGE-A2, 5T4 and NY-ESO-1; or
- hTERT, WT1, MAGE-A2, 5T4 and CEA; or
- hTERT, WT1, MAGE-A2, 5T4 and Survivin; or
- hTERT, WT1, MAGE-A2, 5T4 and MAGE-C1; or
- hTERT, WT1, MAGE-A2, 5T4 and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and MUC1; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and Her-2/neu; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and NY-ESO-1; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and CEA; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and Survivin; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and MAGE-C1; or
- WT1, MAGE-A2, 5T4, MAGE-A3 and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3, MUC1 and Her-2/neu; or
- MAGE-A2, 5T4, MAGE-A3, MUC1 and NY-ESO-1; or
- MAGE-A2, 5T4, MAGE-A3, MUC1 and CEA; or
- MAGE-A2, 5T4, MAGE-A3, MUC and Survivin; or
- MAGE-A2, 5T4, MAGE-A3, MUC1 and MAGE-C11; or
- MAGE-A2, 5T4, MAGE-A3, MUC1 and MAGE-C2; or
- 5T4, MAGE-A3, MUC1, Her-2/neu and NY-ESO-1; or
- 5T4, MAGE-A3, MUC1, Her-2/neu and CEA; or
- 5T4, MAGE-A3, MUC1, Her-2/neu and Survivin; or
- 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C1; or
- 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C2; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and CEA; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and Survivin; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C1; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C2; or
- MUC1, Her-2/neu, NY-ESO-1, CEA and Survivin; or
- MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C1; or
- MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C2; or
- HER-2/NEU, NY-ESO-1, CEA, Survivin and MAGE-C1; or
- HER-2/NEU, NY-ESO-1, CEA, Survivin and MAGE-C2; or
- NY-ESO-1, CEA, Survivin, MAGE-C1and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and MUC1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and Her-2/neu; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and NY-ESO-1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and CEA; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and Survivin; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and MAGE-C1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3 and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and Her-2/neu; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and NY-ESO-1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and CEA; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and Survivin; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and MAGE-C1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and NY-ESO-1; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and CEA; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and Survivin; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C1; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C2; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and CEA; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and Survivin; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C1; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C2; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and Survivin; or
- MAGE-A3, MUC11, Her-2/neu, NY-ESO-1, CEA and MAGE-C1;
- or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C2;
- or
- MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C1; or
- MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C2; or
- HER-2/NEU, NY-ESO-1, CEA, Survivin, MAGE-C1and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and Her-2/neu; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and NY-ESO-1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and CEA; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and Survivin; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and MAGE-C1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1 and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and NY-ESO-1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and CEA; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and Survivin; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and CEA; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and Survivin;
- or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C1; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C2; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and Survivin; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C1; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C2; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C1;
- or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C2;
- or
- MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin, MAGE-C1 and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and NY-ESO-1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and CEA;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and Survivin; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and CEA; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and Survivin; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and Survivin; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C1; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C2; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C1; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C2; or
- MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin, MAGE-C1 and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and CEA; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and Survivin; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1 and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and Survivin; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C1; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C2; or
- 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin, MAGE-C1 and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and Survivin; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C1; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C2; or
- MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin, MAGE-C1and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C1; or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin and MAGE-C2; or
- WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin, MAGE-C1and MAGE-C2;
- or
- hTERT, WT1, MAGE-A2, 5T4, MAGE-A3, MUC1, Her-2/neu, NY-ESO-1, CEA, Survivin, MAGE-C1and MAGE-C2.
- More preferably, in the latter aspect, the at least one antigen(s) according to b) is (are) selected from the following combination:
-
- Survivin and 5T4
- In the above embodiments, each of the at least two (preferably different) antigens as defined herein may be encoded by one (monocistronic) RNA, preferably one (monocistronic) mRNA. In other words, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise at least two (monocistronic) RNAs, preferably mRNAs, wherein each of these at least two (monocistronic) RNAs, preferably mRNAs, may encode just one (preferably different) antigen, preferably selected from one of the above mentioned combinations.
- According to another particularly preferred aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise (at least) one bi- or even multicistronic RNA, preferably mRNA, i.e. (at least) one RNA which carries two or even more of the coding sequences of at the least two (preferably different) antigens, preferably selected from one of the above mentioned combinations. Such coding sequences of the at least two (preferably different) antigens of the (at least) one bi- or even multicistronic RNA may be separated by at least one IRES (internal ribosomal entry site) sequence, as defined below. Thus, the term “encoding at least two (preferably different) antigens” may mean, without being limited thereto, that the (at least) one (bi- or even multicistronic) RNA, preferably a mRNA, may encode e.g. at least two, three, four, five, six, seven, eight, nine, ten, eleven or twelve (preferably different) antigens of the above mentioned group(s) of antigens or their fragments or variants. More preferably, without being limited thereto, the (at least) one (bi- or even multicistronic) RNA, preferably mRNA, may encode e.g. at least two, three, four, five or six (preferably different) antigens of the above mentioned subgroup(s) of antigens or their fragments or variants within the above definitions. In this context, a so-called IRES (internal ribosomal entry site) sequence as defined above can function as a sole ribosome binding site, but it can also serve to provide a bi- or even multicistronic RNA as defined above which codes for several proteins, which are to be translated by the ribosomes independently of one another. Examples of IRES sequences which can be used according to the invention are those from picornaviruses (e.g. FMDV), pestiviruses (CFFV), polioviruses (PV), encephalomyocarditis viruses (ECMV), foot and mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), mouse leukoma virus (MLV), simian immunodeficiency viruses (SIV) or cricket paralysis viruses (CrPV).
- According to a further particularly preferred aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise a mixture of at least one monocistronic RNA, preferably mRNA, as defined above, and at least one bi- or even multicistronic RNA, preferably mRNA, as defined above. The at least one monocistronic RNA and/or the at least one bi- or even multicistronic RNA preferably encode different antigens or their fragments or variants, the antigens preferably being selected from one of the above mentioned groups or subgroups of antigens, more preferably in one of the above mentioned combinations. However, the at least one monocistronic RNA and the at least one bi- or even multicistronic RNA may preferably also encode (in part) identical antigens selected from one of the above mentioned groups or subgroups of antigens, preferably in one of the above mentioned combinations, provided that the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as a whole provides at least two (preferably different) antigens as defined above. Such an aspect may be advantageous e.g. for a staggered, e.g. time dependent, administration of the inventive solution for lyophilization, transfection and/or injection, e.g. as a pharmaceutical composition, as a vaccine, a lyophilized nucleic acid, etc., to a patient in need thereof. The components of a pharmaceutical composition, as a vaccine, a lyophilized nucleic acid, etc., particularly the different RNAs encoding the at least two (preferably different) antigens, may be e.g. contained in (different parts of) a kit of parts composition or may be e.g. administered separately as components of different pharmaceutical compositions, vaccines, lyophilized nucleic acids, etc.
- According to another aspect, one further class of antigens as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection comprises allergy antigens. Such allergy antigens may be selected from antigens derived from different sources, e.g. from animals, plants, fungi, bacteria, etc. Allergens in this context include e.g. grasses, pollens, molds, drugs, or numerous environmental triggers, etc. Allergy antigens typically belong to different classes of compounds, such as nucleic acids and their fragments, proteins or peptides and their fragments, carbohydrates, polysaccharides, sugars, lipids, phospholipids, etc. Of particular interest in the context of the present invention are antigens, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, i.e. protein or peptide antigens and their fragments or epitopes, or nucleic acids and their fragments, particularly nucleic acids and their fragments, encoding such protein or peptide antigens and their fragments or epitopes.
- Particularly preferred, antigens derived from animals, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, insects, such as mite (e.g. house dust mites), mosquito, bee (e.g. honey bee, bumble bee), cockroach, tick, moth (e.g. silk moth), midge, bug, flea, wasp, caterpillar, fruit fly, migratory locust, grasshopper, ant aphide, from crustaceans, such as shrimps, crab, krill, lobster, prawn, crawfish, scampi, from birds, such as duck, goose, seagull, turkey, ostrich, chicken, from fishes, such as eel, herring, carp, seabream, codfish, halibut, catfish, beluga, salmon, flounder, mackerel, cuttlefish, perch, form molluscs, such as scallop, octopus, abalone, snail, whelk, squid, clam, mussel, from spiders, from mammals, such as cow, rabbit, sheep, lion, jaguar, leopard, rat, pig, buffalo, dog, loris, hamster, guinea pig, fallow deer, horse, cat, mouse, ocelot, serval, from arthropod, such as spider, or silverfish, from worms, such as nematodes, from trichinella species, or roundworm, from amphibians, such as frogs, or from sea squirt, etc.
- Antigens derived from plants, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, fruits, such as kiwi, pineapple, jackfruit, papaya, lemon, orange, mandarin, melon, sharon fruit, strawberry, lychee, apple, cherry paradise apple, mango, passion fruit, plum, apricot, nectarine, pear, passion fruit, raspberry, grape, from vegetables, such as garlic, onion, leek, soya bean, celery, cauliflower, turnip, paprika, chickpea, fennel, zucchini, cucumber, carrot, yam, bean, pea, olive, tomato, potato, lentil, lettuce, avocado, parsley, horseradish, chirimoya, beet, pumpkin, spinach, from spices, such as mustard, coriander, saffron, pepper, aniseed, from crop, such as oat, buckwheat, barley, rice, wheat, maize, rapeseed, sesame, from nuts, such as cashew, walnut, butternut, pistachio, almond, hazelnut, peanut, brazil nut, pecan, chestnut, from trees, such as alder, hornbeam, cedar, birch, hazel, beech, ash, privet, oak, plane tree, cypress, palm, from flowers, such as ragweed, carnation, forsythia, sunflower, lupine, chamomile, lilac, passion flower, from grasses, such as quack grass, common bent, brome grass, Bermuda grass, sweet vernal grass, rye grass, or from other plants, such as opium poppy, pellitory, ribwort, tobacco, asparagus, mugwort, cress, etc.
- Antigens derived from fungi, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, e.g. Alternia sp., Aspergillus sp., Beauveria sp., Candida sp., Cladosporium sp., Endothia sp., Curcularia sp., Embellisia sp., Epicoccum sp., Fusarium sp., Malassezia sp., Penicillum sp., Pleospora sp., Saccharomyces sp., etc.
- Antigens derived from bacteria, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include antigens derived from, without being limited thereto, e.g. Bacillus tetani, Staphylococcus aureus, Streptomyces griseus, etc.
- According to a further alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode an antibody. According to the present invention, such an antibody may be selected from any antibody, e.g. any recombinantly produced or naturally occurring antibodies, known in the art, in particular antibodies suitable for therapeutic, diagnostic or scientific purposes, or antibodies which have been identified in relation to specific cancer diseases. Herein, the term “antibody” is used in its broadest sense and specifically covers monoclonal and polyclonal antibodies (including agonist, antagonist, and blocking or neutralizing antibodies) and antibody species with polyepitopic specificity. According to the invention, “antibody” typically comprises any antibody known in the art (e.g. IgM, IgD, IgG, IgA and IgE antibodies), such as naturally occurring antibodies, antibodies generated by immunization in a host organism, antibodies which were isolated and identified from naturally occurring antibodies or antibodies generated by immunization in a host organism and recombinantly produced by biomolecular methods known in the art, as well as chimeric antibodies, human antibodies, humanized antibodies, bispecific antibodies, intrabodies, i.e. antibodies expressed in cells and optionally localized in specific cell compartments, and fragments and variants of the aforementioned antibodies. In general, an antibody consists of a light chain and a heavy chain both having variable and constant domains. The light chain consists of an N-terminal variable domain, VL, and a C-terminal constant domain, CL. In contrast, the heavy chain of the IgG antibody, for example, is comprised of an N-terminal variable domain, VH, and three constant domains,
C H1, CH2 and CH3. Single chain antibodies may be encoded by the lyophilized nucleic acid according to the present invention as well. - According to a first alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode a polyclonal antibody. In this context, the term, “polyclonal antibody” typically means mixtures of antibodies directed to specific antigens or immunogens or epitopes of a protein which were generated by immunization of a host organism, such as a mammal, e.g. including goat, cattle, swine, dog, cat, donkey, monkey, ape, a rodent such as a mouse, hamster and rabbit. Polyclonal antibodies are generally not identical, and thus usually recognize different epitopes or regions from the same antigen. Thus, in such a case, typically a mixture (a composition) of different at least one nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection will be used, each lyophilized nucleic acid encoding a specific (monoclonal) antibody being directed to specific antigens or immunogens or epitopes of a protein.
- According to a further alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode a monoclonal antibody. The term “monoclonal antibody” herein typically refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed to a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed to different determinants (epitopes), each monoclonal antibody is directed to a single determinant on the antigen. For example, monoclonal antibodies as defined above may be made by the hybridoma method first described by Kohler and Milstein, Nature, 256:495 (1975), or may be made by recombinant DNA methods, e.g. as described in U.S. Pat. No. 4,816,567. “Monoclonal antibodies” may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990), for example. According to Kohler and Milstein, an immunogen (antigen) of interest is injected into a host such as a mouse and B-cell lymphocytes produced in response to the immunogen are harvested after a period of time. The B-cells are combined with myeloma cells obtained from mouse and introduced into a medium which permits the B-cells to fuse with the myeloma cells, producing hybridomas. These fused cells (hybridomas) are then placed into separate wells of microtiter plates and grown to produce monoclonal antibodies. The monoclonal antibodies are tested to determine which of them are suitable for detecting the antigen of interest. After being selected, the monoclonal antibodies can be grown in cell cultures or by injecting the hybridomas into mice. However, for the purposes of the present invention, the peptide sequences of these monoclonal antibodies have to be sequenced and the at least one nucleic acid (sequence) encoding these antibodies can be present as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- For therapeutical purposes in humans, non-human monoclonal or polyclonal antibodies, such as murine antibodies may also be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection. However, such antibodies are typically only of limited use, since they generally induce an immune response by production of human antibodies directed to the said non-human antibodies, in the human body. Therefore, a particular non-human antibody can only be administered once to the human. To solve this problem, chimeric, humanized non-human and human antibodies are also envisaged encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection. “Chimeric” antibodies, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are preferably antibodies in which the constant domains of an antibody described above are replaced by sequences of antibodies from other organisms, preferably human sequences. “Humanized” (non-human) antibodies, which may be also encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are antibodies in which the constant and variable domains (except for the hypervariable domains) described above of an antibody are replaced by human sequences. According to another alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode human antibodies, i.e. antibodies having only human sequences. Such human antibodies can be isolated from human tissues or from immunized non-human host organisms which are transgene for the human IgG gene locus, and at least one nucleic acid (sequence) may be prepared according to procedures well known in the art. Additionally, human antibodies can be provided by the use of a phage display.
- In addition, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may encode bispecific antibodies. “Bispecific” antibodies in context of the invention are preferably antibodies which act as an adaptor between an effector and a respective target by two different Fab-domains, e.g. for the purposes of recruiting effector molecules such as toxins, drugs, cytokines etc., targeting effector cells such as CTL, NK cells, makrophages, granulocytes, etc. (see for review: Kontermann R. E., Acta Pharmacol. Sin, 2005, 26(1): 1-9). Bispecific antibodies as described herein are, in general, configured to recognize by two different Fa/b-domains, e.g. two different antigens, immunogens, epitopes, drugs, cells (or receptors on cells), or other molecules (or structures) as described above. Bispecificity means herewith that the antigen-binding regions of the antibodies are specific for two different epitopes. Thus, different antigens, immunogens or epitopes, etc. can be brought close together, what, optionally, allows a direct interaction of the two components. For example, different cells such as effector cells and target cells can be connected via a bispecific antibody. Encompassed, but not limited, by the present invention are antibodies or fragments thereof which bind, on the one hand, a soluble antigen as described herein, and, on the other hand, an antigen or receptor on the surface of a tumor cell.
- According to the invention, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also encode intrabodies, wherein these intrabodies may be antibodies as defined above. Since these antibodies are intracellular expressed antibodies, i.e. antibodies which may be encoded by nucleic acids localized in specific areas of the cell and also expressed there, such antibodies may be termed intrabodies.
- Antibodies as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may preferably comprise full-length antibodies, i.e. antibodies composed of the full heavy and full light chains, as described above. However, derivatives of antibodies such as antibody fragments, variants or adducts may also be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may also encode antibody fragments selected from Fab, Fab′, F(ab′)2, Fc, Facb, pFc′, Fd and Fv fragments of the aforementioned (full-length) antibodies. In general, antibody fragments are known in the art. For example, a Fab (“fragment, antigen binding”) fragment is composed of one constant and one variable domain of each of the heavy and the light chain. The two variable domains bind the epitope on specific antigens. The two chains are connected via a disulfide linkage. A scFv (“single chain variable fragment”) fragment, for example, typically consists of the variable domains of the light and heavy chains. The domains are linked by an artificial linkage, in general a polypeptide linkage such as a peptide composed of 15-25 glycine, proline and/or serine residues.
- According to a further alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be in the form of dsRNA, preferably siRNA. A dsRNA, or a siRNA, is of interest particularly in connection with the phenomenon of RNA interference. The in vitro technique of RNA interference (RNAi) is based on double-stranded RNA molecules (dsRNA), which trigger the sequence-specific suppression of gene expression (Zamore (2001) Nat. Struct. Biol. 9: 746-750; Sharp (2001) Genes Dev. 5:485-490: Hannon (2002) Nature 41: 244-251). In the transfection of mammalian cells with long dsRNA, the activation of protein kinase R and RnaseL brings about unspecific effects, such as, for example, an interferon response (Stark et al. (1998) Annu. Rev. Biochem. 67: 227-264; He and Katze (2002) Viral Immunol. 15: 95-119). These unspecific effects are avoided when shorter, for example 21- to 23-mer, so-called siRNA (small interfering RNA), is used, because unspecific effects are not triggered by siRNA that is shorter than 30 bp (Elbashir et al. (2001) Nature 411: 494-498).
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus be a double-stranded RNA (dsRNA) having a length of from 17 to 29, preferably from 19 to 25, and preferably being at least 90%, more preferably 95% and especially 100% (of the nucleotides of a dsRNA) complementary to a section of the nucleic acid (sequence) of a (therapeutically relevant) protein or antigen described (as active ingredient) hereinbefore, either a coding or a non-coding section, preferably a coding section. 90% complementary means that with a length of a dsRNA described herein of, for example, nucleotides, this contains not more than 2 nucleotides without corresponding complementarity with the corresponding section of the mRNA. The sequence of the double-stranded RNA used according to the invention is, however, preferably wholly complementary in its general structure with a section of the nucleic acid of a therapeutically relevant protein or antigen described hereinbefore. In this context the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be a dsRNA having the general structure 5′-(N17-29)-3′, preferably having the general structure 5′-(N19-25)-3′, more preferably having the general structure 5′-(N19-24)-3′, or yet more preferably having the general structure 5′-(N21-23)-3′, wherein for each general structure each N is a (preferably different) nucleotide of a section of the mRNA of a therapeutically relevant protein or antigen described hereinbefore, preferably being selected from a continuous number of 17 to 29 nucleotides of the mRNA of a therapeutically relevant protein or antigen and being present in the general structure 5′-(N17-29)-3′ in their natural order. In principle, all the sections having a length of from 17 to 29, preferably from 19 to 25, base pairs that occur in the mRNA can serve as target sequence for a dsRNA herein. Equally, dsRNAs used as nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can also be directed against nucleotide sequences of a (therapeutically relevant) protein or antigen described (as active ingredient) hereinbefore that do not lie in the coding region, in particular in the 5′ non-coding region of the mRNA, for example, therefore, against non-coding regions of the mRNA having a regulatory function. The target sequence of the dsRNA used as nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can therefore lie in the translated and untranslated region of the mRNA and/or in the region of the control elements of a protein or antigen described hereinbefore. The target sequence of a dsRNA used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can also lie in the overlapping region of untranslated and translated sequence; in particular, the target sequence can comprise at least one nucleotide upstream of the start triplet of the coding region of the mRNA.
- According to another alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be in the form of a CpG nucleic acid, in particular CpG-RNA or CpG-DNA. A CpG-RNA or CpG-DNA used according to the invention can be a single-stranded CpG-DNA (ss CpG-DNA), a double-stranded CpG-DNA (dsDNA), a single-stranded CpG-RNA (ss CpG-RNA) or a double-stranded CpG-RNA (ds CpG-RNA). The CpG nucleic acid used according to the invention is preferably in the form of CpG-RNA, more preferably in the form of single-stranded CpG-RNA (ss CpG-RNA). Also preferably, such CpG nucleic acids have a length as described above. Preferably the CpG motifs are unmethylated.
- Likewise, according to a further alternative, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be in the form of an immunostimulatory RNA. Such an immunostimulatory RNA used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be any (double-stranded or single-stranded) RNA, e.g. a coding RNA, as defined above. Preferably, the immunostimulatory RNA may be a single-stranded, a double-stranded or a partially double-stranded RNA, more preferably a single-stranded RNA, and/or a circular or linear RNA, more preferably a linear RNA. More preferably, the immunostimulatory RNA may be a (linear) single-stranded RNA. Even more preferably, the immunostimulatory RNA may be a ((linear) single-stranded) messenger RNA (mRNA). An immunostimulatory RNA may also occur as a short RNA oligonucleotide as defined above. An immunostimulatory RNA as used herein may furthermore be selected from any class of RNA molecules, found in nature or being prepared synthetically, and which can induce an immune response. In this context, an immune response may occur in various ways. A substantial factor for a suitable immune response is the stimulation of different T-cell sub-populations. T-lymphocytes are typically divided into two sub-populations, the T-helper I (Th1) cells and the T-helper 2 (Th2) cells, with which the immune system is capable of destroying intracellular (Th1) and extracellular (Th2) pathogens (e.g. antigens). The two Th cell populations differ in the pattern of the effector proteins (cytokines) produced by them. Thus, Th1 cells assist the cellular immune response by activation of macrophages and cytotoxic T-cells. Th2 cells, on the other hand, promote the humoral immune response by stimulation of the B-cells for conversion into plasma cells and by formation of antibodies (e.g. against antigens). The Th1/Th2 ratio is therefore of great importance in the immune response. In connection with the present invention, the Th1/Th2 ratio of the immune response is preferably shifted in the direction towards the cellular response (Th1 response) and a cellular immune response is thereby induced. According to one example, the immune system may be activated by ligands of Toll-like receptors (TLRs). TLRs are a family of highly conserved pattern recognition receptor (PRR) polypeptides that recognize pathogen-associated molecular patterns (PAMPs) and play a critical role in innate immunity in mammals. Currently at least thirteen family members, designated TLR1-TLR13 (Toll-like receptors: TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 or TLR13), have been identified. Furthermore, a number of specific TLR ligands have been identified. It was e.g. found that unmethylated bacterial DNA and synthetic analogs thereof (CpG DNA) are ligands for TLR9 (Hemmi H et al. (2000) Nature 408:740-5; Bauer S et al. (2001) Proc Natl Acad Sci USA 98, 9237-42). Furthermore, it has been reported that ligands for certain TLRs include certain nucleic acid molecules and that certain types of RNA are immunostimulatory in a sequence-independent or sequence-dependent manner, wherein these various immunostimulatory RNAs may e.g. stimulate TLR3, TLR7, or TLR8, or intracellular receptors such as RIG-1, MDA-5, etc. E.g. Lipford et al. determined certain G,U-containing oligoribonucleotides as immunostimulatory by acting via TLR7 and TLR8 (see WO 03/086280). The immunostimulatory G,U-containing oligoribonucleotides described by Lipford et al. were believed to be derivable from RNA sources including ribosomal RNA, transfer RNA, messenger RNA, and viral RNA.
- According to the present invention, it was found that any RNA (molecule) as e.g. defined above (irrespective of its specific length, strandedness, modification and/or nucleotide sequence) may have immunostimulatory properties, i.e. enhance the immune response. An RNA as defined above and being the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus be used to enhance (unspecific) immunostimulation, if suitable and desired for a specific treatment.
- The at least one (immunostimulatory) RNA (molecule) used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus comprise any RNA sequence known to be immunostimulatory, including, without being limited thereto, RNA sequences representing and/or encoding ligands of TLRs, preferably selected from family members TLR1-TLR13, more preferably from TLR7 and TLR8, ligands for intracellular receptors for RNA (such as RIG-1 or MAD-5, etc.) (see e.g. Meylan, E., Tschopp, J. (2006). Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol. Cell. 22, 561-569), or any other immunostimulatory RNA sequence. Furthermore, (classes of) immunostimulatory RNA molecules, used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may include any other RNA capable of eliciting an immune response. Without being limited thereto, such an immunostimulatory RNA may include ribosomal RNA (rRNA), transfer RNA (tRNA), messenger RNA (mRNA), and viral RNA (vRNA).
- Such further (classes of) immunostimulatory RNA molecules, which may be used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, without being limited thereto, may comprise e.g. an RNA molecule of formula (I):
-
GlXmGn - wherein:
G is guanosine, uracil or an analogue of guanosine or uracil;
X is guanosine, uracil, adenosine, thymidine, cytosine or an analogue of the above-mentioned nucleotides;
l is an integer from 1 to 40, - wherein when l=1 G is guanosine or an analogue thereof,
- when I>1 at least 50% of the nucleotides are guanosine or an analogue thereof;
- m is an integer and is at least 3;
- wherein when m=3× is uracil or an analogue thereof,
-
- when m>3 at least 3 successive uracils or analogues of uracil occur;
n is an integer from 1 to 40,
- when m>3 at least 3 successive uracils or analogues of uracil occur;
- wherein when n=1 G is guanosine or an analogue thereof,
-
- when n>1 at least 50% of the nucleotides are guanosine or an analogue thereof.
- In addition, such further (classes of) immunostimulatory RNA molecules, which may be used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise, without being limited thereto, e.g. an RNA molecule of formula (II):
-
ClXmCn - wherein:
- C is cytosine, uracil or an analogue of cytosine or uracil;
X is guanosine, uracil, adenosine, thymidine, cytosine or an analogue of the above-mentioned nucleotides;
l is an integer from 1 to 40, - wherein when l=1 C is cytosine or an analogue thereof,
-
- when I>1 at least 50% of the nucleotides are cytosine or an analogue thereof;
m is an integer and is at least 3;
- when I>1 at least 50% of the nucleotides are cytosine or an analogue thereof;
- wherein when m=3× is uracil or an analogue thereof,
-
- when m>3 at least 3 successive uracils or analogues of uracil occur;
n is an integer from 1 to 40,
- when m>3 at least 3 successive uracils or analogues of uracil occur;
- wherein when n=1 C is cytosine or an analogue thereof,
-
- when n>1 at least 50% of the nucleotides are cytosine or an analogue
thereof.
- when n>1 at least 50% of the nucleotides are cytosine or an analogue
- Preferably, the immunostimulatory RNA molecules used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may comprise a length as defined above in general for RNA molecules of the RNA of the present invention, more preferably a length of 5 to 5000, of 500 to 5000 or, more preferably, of 1000 to 5000 or, alternatively, of 5 to 1000, 5 to 500, 5 to 250, of 5 to 100, of 5 to 50 or, more preferably, of 5 to 30 nucleotides.
- The immunostimulatory RNA used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be furthermore modified, preferably “chemically modified” in order to enhance the immunostimulatory properties of said RNA. The term “chemical modification” means that the immuostimulatory RNA is modified by replacement, insertion or removal of individual or several atoms or atomic groups compared with naturally occurring RNA species.
- Preferably, the chemical modification of the immunostimulatory RNA comprises at least one analogue of naturally occurring nucleotides. In a list which is in no way conclusive, examples which may be mentioned for nucleotide analogues and which may be used herein for modification are analogues of guanosine, uracil, adenosine, thymidine, cytosine. The modifications may refer to modifications of the base, the ribose moiety and/or the phosphate backbone moiety. In this context, analogues of guanosine, uracil, adenosine, and cytosine include, without implying any limitation, any naturally occurring or non-naturally occurring guanosine, uracil, adenosine, thymidine or cytosine that has been altered chemically, for example by acetylation, methylation, hydroxylation, etc., including 1-methyl-adenosine, 1-methyl-guanosine, 1-methyl-inosine, 2,2-dimethyl-guanosine, 2,6-diaminopurine, 2′-Amino-2′-deoxyadenosine, 2′-Amino-2′-deoxycytidine, 2′-Amino-2′-deoxyguanosine, 2′-Amino-2′-deoxyuridine, 2-Amino-6-chloropurineriboside, 2-Aminopurine-riboside, 2′-Araadenosine, 2′-Aracytidine, 2′-Arauridine, 2′-Azido-2′-deoxyadenosine, 2′-Azido-2′-deoxycytidine, 2′-Azido-2′-deoxyguanosine, 2′-Azido-2′-deoxyuridine, 2-Chloroadenosine, 2′-Fluoro-2′-deoxyadenosine, 2′-Fluoro-2′-deoxycytidine, 2′-Fluoro-2′-deoxyguanosine, 2′-Fluoro-2′-deoxyuridine, 2′-Fluorothymidine, 2-methyl-adenosine, 2-methyl-guanosine, 2-methyl-thio-N6-isopenenyl-adenosine, 2′-O-Methyl-2-aminoadenosine, 2′-O-Methyl-2′-deoxyadenosine, 2′-O-Methyl-2′-deoxycytidine, 2′-O-Methyl-2′-deoxyguanosine, 2′-O-Methyl-2′-deoxyuridine, 2′-O-Methyl-5-methyluridine, 2′-O-Methylinosine, 2′-O-Methylpseudouridine, 2-Thiocytidine, 2-thio-cytosine, 3-methyl-cytosine, 4-acetyl-cytosine, 4-Thiouridine, 5-(carboxyhydroxymethyl)-uracil, 5,6-Dihydrouridine, 5-Aminoallylcytidine, 5-Aminoallyl-deoxy-uridine, 5-Bromouridine, 5-carboxymethylaminomethyl-2-thio-uracil, 5-carboxymethylamonomethyl-uracil, 5-Chloro-Ara-cytosine, 5-Fluoro-uridine, 5-Iodouridine, 5-methoxycarbonylmethyl-uridine, 5-methoxy-uridine, 5-methyl-2-thio-uridine, 6-Azacytidine, 6-Azauridine, 6-Chloro-7-deaza-guanosine, 6-Chloropurineriboside, 6-Mercapto-guanosine, 6-Methyl-mercaptopurine-riboside, 7-Deaza-2′-deoxy-guanosine, 7-Deazaadenosine, 7-methyl-guanosine, 8-Azaadenosine, 8-Bromo-adenosine, 8-Bromo-guanosine, 8-Mercapto-guanosine, 8-Oxoguanosine, Benzimidazole-riboside, Beta-D-mannosyl-queosine, Dihydro-uracil, Inosine, N1-Methyladenosine, N6-([6-Aminohexyl]carbamoylmethyl)-adenosine, N6-isopentenyl-adenosine, N6-methyl-adenosine, N7-Methyl-xanthosine, N-uracil-5-oxyacetic acid methyl ester, Puromycin, Queosine, Uracil-5-oxyacetic acid, Uracil-5-oxyacetic acid methyl ester, Wybutoxosine, Xanthosine, and Xylo-adenosine. The preparation of such analogues is known to a person skilled in the art, for example from U.S. Pat. No. 4,373,071, U.S. Pat. No. 4,401,796, U.S. Pat. No. 4,415,732, U.S. Pat. No. 4,458,066, U.S. Pat. No. 4,500,707, U.S. Pat. No. 4,668,777, U.S. Pat. No. 4,973,679, U.S. Pat. No. 5,047,524, U.S. Pat. No. 5,132,418, U.S. Pat. No. 5,153,319, U.S. Pat. Nos. 5,262,530 and 5,700,642. In the case of an analogue as described above, particular preference is given according to the invention to those analogues that increase the immunogenicity of the immunostimulatory RNA sequence used as the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection and/or do not interfere with a further modification that has been introduced into said immunostimulatory RNA.
- In general, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above may also occur in the form of a modified nucleic acid, wherein any modification, as defined herein, may be introduced into the nucleic acid prior to lyophilization, transfection and/or injection. Modifications as defined herein preferably lead to a further stabilized nucleic acid as defined herein.
- According to a first aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may thus be provided as a “stabilized nucleic acid”, preferably as a stabilized RNA, more preferably as an RNA that is essentially resistant to in vivo degradation (e.g. by an exo- or endo-nuclease). Such stabilization can be effected, for example, by a modified phosphate backbone of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection. A backbone modification in connection with the present invention is a modification in which phosphates of the backbone of the nucleotides contained in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection are chemically modified. Nucleotides that may be preferably used in this connection contain e.g. a phosphorothioate-modified phosphate backbone, preferably at least one of the phosphate oxygens contained in the phosphate backbone being replaced by a sulfur atom. Stabilized at least one nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may further include, for example: non-ionic phosphate analogues, such as, for example, alkyl and aryl phosphonates, in which the charged phosphonate oxygen is replaced by an alkyl or aryl group, or phosphodiesters and alkylphosphotriesters, in which the charged oxygen residue is present in alkylated form. Such backbone modifications typically include, without implying any limitation, modifications from the group consisting of methylphosphonates, phosphoramidates and phosphorothioates (e.g. cytidine-5′-O-(1-thiophosphate)).
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may additionally or alternatively also contain sugar modifications. A sugar modification in connection with the present invention is a chemical modification of the sugar of the nucleotides of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically includes, without implying any limitation, sugar modifications selected from the group consisting of 2′-deoxy-2′-fluoro-oligoribonucleotide (2′-fluoro-2′-deoxycytidine-5′-triphosphate, 2′-fluoro-2′-deoxyuridine-5′-triphosphate), 2′-deoxy-2′-deamine oligoribonucleotide (2′-amino-2′-deoxycytidine-5′-triphosphate, 2′-amino-2′-deoxyuridine-5′-triphosphate), 2′-O-alkyl oligoribonucleotide, 2′-deoxy-2′-C-alkyl oligoribonucleotide (2′-O-methylcytidine-5′-triphosphate, 2′-methyluridine-5′-triphosphate), 2′-C-alkyl oligoribonucleotide, and isomers thereof (2′-aracytidine-5′-triphosphate, 2′-arauridine-5′-triphosphate), or azidotriphosphate (2′-azido-2′-deoxycytidine-5′-triphosphate, 2′-azido-2′-deoxyuridine-5′-triphosphate).
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may additionally or alternatively also contain at least one base modification, which is preferably suitable for increasing the expression of the protein coded for by the lyophilized nucleic acid as compared with the unaltered, i.e. natural (=native), nucleic acid (sequence). Significant in this case means an increase in the expression of the protein compared with the expression of the native nucleic acid (sequence) by at least 20%, preferably at least 30%, 40%, 50% or 60%, more preferably by at least 70%, 80%, 90% or even 100% and most preferably by at least 150%, 200% or even 300% or more. In connection with the present invention, a nucleotide having such a base modification is preferably selected from the group of the base-modified nucleotides consisting of 2-amino-6-chloropurineriboside-5′-triphosphate, 2-aminoadenosine-5′-triphosphate, 2-thiocytidine-5′-triphosphate, 2-thiouridine-5′-triphosphate, 4-thiouridine-5′-triphosphate, 5-aminoallylcytidine-5′-triphosphate, 5-aminoallyluridine-5′-triphosphate, 5-bromocytidine-5′-triphosphate, 5-bromouridine-5′-triphosphate, 5-iodocytidine-5′-triphosphate, 5-iodouridine-5′-triphosphate, 5-methylcytidine-5′-triphosphate, 5-methyluridine-5′-triphosphate, 6-azacytidine-5′-triphosphate, 6-azauridine-5′-triphosphate, 6-chloropurineriboside-5′-triphosphate, 7-deazaadenosine-5′-triphosphate, 7-deazaguanosine-5′-triphosphate, 8-azaadenosine-5′-triphosphate, 8-azidoadenosine-5′-triphosphate, benzimidazole-riboside-5′-triphosphate, N1-methyladenosine-5′-triphosphate, N1-methylguanosine-5′-triphosphate, N6-methyladenosine-5′-triphosphate, O6-methylguanosine-5′-triphosphate, pseudouridine-5′-triphosphate, or puromycin-5′-triphosphate, xanthosine-5′-triphosphate. Particular preference is given to nucleotides for base modifications selected from the group of base-modified nucleotides consisting of 5-methylcytidine-5′-triphosphate, 7-deazaguanosine-5′-triphosphate, 5-bromocytidine-5′-triphosphate, and pseudouridine-5′-triphosphate.
- According to another aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can likewise be modified (and preferably stabilized) by introducing further modified nucleotides containing modifications of their ribose or base moieties. Generally, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may contain any native (=naturally occurring) nucleotide, e.g. guanosine, uracil, adenosine, and/or cytosine or an analogue thereof. In this connection, nucleotide analogues are defined as non-natively occurring variants of naturally occurring nucleotides. Accordingly, analogues are chemically derivatized nucleotides with non-natively occurring functional groups, which are preferably added to or deleted from the naturally occurring nucleotide or which substitute the naturally occurring functional groups of a nucleotide. Accordingly, each component of the naturally occurring nucleotide may be modified, namely the base component, the sugar (ribose) component and/or the phosphate component forming the backbone (see above) of the nucleic acid sequence. Exemplary analogues of guanosine, uracil, adenosine, and cytosine include, without implying any limitation, any naturally occurring or non-naturally occurring guanosine, uracil, adenosine, thymidine or cytosine that has been altered chemically, for example by acetylation, methylation, hydroxylation, etc., including 1-methyl-adenosine, 1-methyl-guanosine, 1-methyl-inosine, 2,2-dimethyl-guanosine, 2,6-diaminopurine, 2′-Amino-2′-deoxyadenosine, 2′-Amino-2′-deoxycytidine, 2′-Amino-2′-deoxyguanosine, 2′-Amino-2′-deoxyuridine, 2-Amino-6-chloropurineriboside, 2-Aminopurine-riboside, 2′-Araadenosine, 2′-Aracytidine, 2′-Arauridine, 2′-Azido-2′-deoxyadenosine, 2′-Azido-2′-deoxycytidine, 2′-Azido-2′-deoxyguanosine, 2′-Azido-2′-deoxyuridine, 2-Chloroadenosine, 2′-Fluoro-2′-deoxyadenosine, 2′-Fluoro-2′-deoxycytidine, 2′-Fluoro-2′-deoxyguanosine, 2′-Fluoro-2′-deoxyuridine, 2′-Fluorothymidine, 2-methyl-adenosine, 2-methyl-guanosine, 2-methyl-thio-N6-isopenenyl-adenosine, 2′-O-Methyl-2-aminoadenosine, 2′-O-Methyl-2′-deoxyadenosine, 2′-O-Methyl-2′-deoxycytidine, 2′-O-Methyl-2′-deoxyguanosine, 2′-O-Methyl-2′-deoxyuridine, 2′-O-Methyl-5-methyluridine, 2′-O-Methylinosine, 2′-O-Methylpseudouridine, 2-Thiocytidine, 2-thio-cytosine, 3-methyl-cytosine, 4-acetyl-cytosine, 4-Thiouridine, 5-(carboxyhydroxymethyl)-uracil, 5,6-Dihydrouridine, 5-Aminoallylcytidine, 5-Aminoallyl-deoxy-uridine, 5-Bromouridine, 5-carboxymethylaminomethyl-2-thio-uracil, 5-carboxymethylamonomethyl-uracil, 5-Chloro-Ara-cytosine, 5-Fluoro-uridine, 5-Iodouridine, 5-methoxycarbonylmethyl-uridine, 5-methoxy-uridine, 5-methyl-2-thio-uridine, 6-Azacytidine, 6-Azauridine, 6-Chloro-7-deaza-guanosine, 6-Chloropurineriboside, 6-Mercapto-guanosine, 6-Methyl-mercaptopurine-riboside, 7-Deaza-2′-deoxy-guanosine, 7-Deazaadenosine, 7-methyl-guanosine, 8-Azaadenosine, 8-Bromo-adenosine, 8-Bromo-guanosine, 8-Mercapto-guanosine, 8-Oxoguanosine, Benzimidazole-riboside, Beta-D-mannosyl-queosine, Dihydro-uracil, Inosine, N1-Methyladenosine, N6-([6-Aminohexyl]carbamoyl methyl)-adenosine, N6-isopentenyl-adenosine, N6-methyl-adenosine, N7-Methyl-xanthosine, N-uracil-5-oxyacetic acid methyl ester, Puromycin, Queosine, Uracil-5-oxyacetic acid, Uracil-5-oxyacetic acid methyl ester, Wybutoxosine, Xanthosine, and Xylo-adenosine. The preparation of such analogues is known to a person skilled in the art, for example from U.S. Pat. Nos. 4,373,071, U.S. Pat. No. 4,401,796, U.S. Pat. No. 4,415,732, U.S. Pat. No. 4,458,066, U.S. Pat. No. 4,500,707, U.S. Pat. No. 4,668,777, U.S. Pat. No. 4,973,679, U.S. Pat. No. 5,047,524, U.S. Pat. No. 5,132,418, U.S. Pat. No. 5,153,319, U.S. Pat. Nos. 5,262,530 and 5,700,642. In the case of an analogue as described above, particular preference may be given according to the invention to those analogues that do not interfere with a further modification of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection that has been introduced.
- According to a particular aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection can contain a lipid modification. Such a lipid-modified nucleic acid typically comprises a nucleic acid as defined herein. Such a lipid-modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection typically further comprises at least one linker covalently linked with that nucleic acid, and at least one lipid covalently linked with the respective linker. Alternatively, the lipid-modified nucleic acid comprises an at least one nucleic acid as defined herein and at least one (bifunctional) lipid covalently linked (without a linker) with that nucleic acid. According to a third alternative, the lipid-modified nucleic acid comprises a nucleic acid RNA as defined herein, at least one linker covalently linked with that nucleic acid, and at least one lipid covalently linked with the respective linker, and also at least one (bifunctional) lipid covalently linked (without a linker) with that nucleic acid.
- The lipid, which may be contained in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection (complexed or covalently bound thereto) is typically a lipid or a lipophilic residue that preferably is itself biologically active. Such lipids preferably include natural substances or compounds such as, for example, vitamins, e.g. alpha-tocopherol (vitamin E), including RRR-alpha-tocopherol (formerly D-alpha-tocopherol), L-alpha-tocopherol, the racemate D,L-alpha-tocopherol, vitamin E succinate (VES), or vitamin A and its derivatives, e.g. retinoic acid, retinol, vitamin D and its derivatives, e.g. vitamin D and also the ergosterol precursors thereof, vitamin E and its derivatives, vitamin K and its derivatives, e.g. vitamin K and related quinone or phytol compounds, or steroids, such as bile acids, for example cholic acid, deoxycholic acid, dehydrocholic acid, cortisone, digoxygenin, testosterone, cholesterol or thiocholesterol. Further lipids or lipophilic residues within the scope of the present invention include, without implying any limitation, polyalkylene glycols (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533), aliphatic groups such as, for example, C1-C20-alkanes, C1-C20-alkenes or C1-C20-alkanol compounds, etc., such as, for example, dodecanediol, hexadecanol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10, 111; Kabanov et al., FEBS Lett., 1990, 259, 327; Svinarchuk et al., Biochimie, 1993, 75, 49), phospholipids such as, for example, phosphatidylglycerol, diacylphosphatidylglycerol, phosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, di-hexadecyl-rac-glycerol, sphingolipids, cerebrosides, gangliosides, or
triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651; Shea et al., Nucl. Acids Res., 1990, 18, 3777), polyamines or polyalkylene glycols, such as, for example, polyethylene glycol (PEG) (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969), hexaethylene glycol (HEG), palmitin or palmityl residues (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229), octadecylamines or hexylamino-carbonyl-oxycholesterol residues (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923), and also waxes, terpenes, alicyclic hydrocarbons, saturated and mono- or poly-unsaturated fatty acid residues, etc. - The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may likewise be stabilized in order to prevent degradation of the nucleic acid by various approaches, particularly, when RNA or mRNA is used as a nucleic acid for the inventive purpose. It is known in the art that instability and (fast) degradation of mRNA or of RNA in general may represent a serious problem in the application of RNA based compositions. This instability of RNA is typically due to RNA-degrading enzymes, “RNAases” (ribonucleases), wherein contamination with such ribonucleases may sometimes completely degrade RNA in solution. Accordingly, the natural degradation of mRNA in the cytoplasm of cells is very finely regulated and RNase contaminations may be generally removed by special treatment prior to use of said compositions, in particular with diethyl pyrocarbonate (DEPC). A number of mechanisms of natural degradation are known in this connection in the prior art, which may be utilized as well. E.g., the terminal structure is typically of critical importance for an mRNA. As an example, at the 5′ end of naturally occurring mRNAs there is usually a so-called “cap structure” (a modified guanosine nucleotide), and at the 3′ end is typically a sequence of up to 200 adenosine nucleotides (the so-called poly-A tail).
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, particularly if provided as a mRNA, can therefore be stabilized against degradation by RNases by the addition of a so-called “5′ cap” structure. Particular preference is given in this connection to an m7G(5′)ppp (5′(A,G(5′)ppp(5′)A or G(5′)ppp(5′)G as the 5“cap” structure. However, such a modification is introduced only if a modification, for example a lipid modification, has not already been introduced at the 5′ end of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, if provided as a mRNA or if the modification does not interfere with the immunogenic properties of the (unmodified or chemically modified) nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection.
- According to a further preferred aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may contain, especially if the nucleic acid is in the form of a mRNA, a poly-A tail on the 3′ terminus of typically about to 200 adenosine nucleotides, preferably about 10 to 100 adenosine nucleotides, more preferably about 20 to 100 adenosine nucleotides or even more preferably about 40 to 80 adenosine nucleotides.
- According to a further preferred aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may contain, especially if the nucleic acid is in the form of a mRNA, a poly-C tail on the 3′ terminus of typically about to 200 cytosine nucleotides, preferably about 10 to 100 cytosine nucleotides, more preferably about 20 to 70 cytosine nucleotides or even more preferably about 20 to 60 or even to 40 cytosine nucleotides.
- According to another aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be modified, and thus stabilized, especially if the nucleic acid is in the form of a mRNA, by modifying the G/C content of the nucleic acid, particularly an mRNA, preferably of the coding region thereof.
- In a particularly preferred aspect of the present invention, the G/C content of the coding region of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is modified, particularly increased, compared to the G/C content of the coding region of its particular wild type mRNA, i.e. the unmodified mRNA. The encoded amino acid sequence of the at least one mRNA is preferably not modified compared to the coded amino acid sequence of the particular wild type mRNA.
- This modification of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is based on the fact that the sequence of any mRNA region to be translated is important for efficient translation of that mRNA. Thus, the composition and the sequence of various nucleotides are important. In particular, sequences having an increased G (guanosine)/C (cytosine) content are more stable than sequences having an increased A (adenosine)/U (uracil) content. According to the invention, the codons of the mRNA are therefore varied compared to its wild type mRNA, while retaining the translated amino acid sequence, such that they include an increased amount of G/C nucleotides. In respect to the fact that several codons code for one and the same amino acid (so-called degeneration of the genetic code), the most favorable codons for the stability can be determined (so-called alternative codon usage).
- Depending on the amino acid to be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, there are various possibilities for modification of the at least one mRNA sequence, compared to its wild type sequence. In the case of amino acids which are encoded by codons which contain exclusively G or C nucleotides, no modification of the codon is necessary. Thus, the codons for Pro (CCC or CCG), Arg (CGC or CGG), Ala (GCC or GCG) and Gly (GGC or GGG) require no modification, since no A or U is present.
- In contrast, codons which contain A and/or U nucleotides can be modified by substitution of other codons which code for the same amino acids but contain no A and/or U. Examples of these are:
- the codons for Pro can be modified from CCU or CCA to CCC or CCG;
the codons for Arg can be modified from CGU or CGA or AGA or AGG to CGC or CGG;
the codons for Ala can be modified from GCU or GCA to GCC or GCG;
the codons for Gly can be modified from GGU or GGA to GGC or GGG. - In other cases, although A or U nucleotides cannot be eliminated from the codons, it is however possible to decrease the A and U content by using codons which contain a lower content of A and/or U nucleotides. Examples of these are:
- the codons for Phe can be modified from UUU to UUC;
the codons for Leu can be modified from UUA, UUG, CUU or CUA to CUC or CUG;
the codons for Ser can be modified from UCU or UCA or AGU to UCC, UCG or AGC;
the codon for Tyr can be modified from UAU to UAC;
the codon for Cys can be modified from UGU to UGC;
the codon for H is can be modified from CAU to CAC;
the codon for Gln can be modified from CAA to CAG;
the codons for Ile can be modified from AUU or AUA to AUC;
the codons for Thr can be modified from ACU or ACA to ACC or ACG;
the codon for Asn can be modified from AAU to AAC;
the codon for Lys can be modified from AAA to AAG;
the codons for Val can be modified from GUU or GUA to GUC or GUG;
the codon for Asp can be modified from GAU to GAC;
the codon for Glu can be modified from GAA to GAG;
the stop codon UAA can be modified to UAG or UGA. - In the case of the codons for Met (AUG) and Trp (UGG), on the other hand, there is no possibility of sequence modification.
- The substitutions listed above can be used either individually or in all possible combinations to increase the G/C content of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, compared to its particular wild type mRNA (i.e. the original sequence). Thus, for example, all codons for Thr occurring in the wild type sequence can be modified to ACC (or ACG). Preferably, however, for example, combinations of the above substitution possibilities are used:
- substitution of all codons coding for Thr in the original sequence (wild type mRNA) to ACC (or ACG) and
substitution of all codons originally coding for Ser to UCC (or UCG or AGC);
substitution of all codons coding for Ile in the original sequence to AUC and
substitution of all codons originally coding for Lys to AAG and
substitution of all codons originally coding for Tyr to UAC;
substitution of all codons coding for Val in the original sequence to GUC (or GUG) and
substitution of all codons originally coding for Glu to GAG and
substitution of all codons originally coding for Ala to GCC (or GCG) and
substitution of all codons originally coding for Arg to CGC (or CGG);
substitution of all codons coding for Val in the original sequence to GUC (or GUG) and
substitution of all codons originally coding for Glu to GAG and
substitution of all codons originally coding for Ala to GCC (or GCG) and
substitution of all codons originally coding for Gly to GGC (or GGG) and
substitution of all codons originally coding for Asn to AAC;
substitution of all codons coding for Val in the original sequence to GUC (or GUG) and
substitution of all codons originally coding for Phe to UUC and
substitution of all codons originally coding for Cys to UGC and
substitution of all codons originally coding for Leu to CUG (or CUC) and
substitution of all codons originally coding for Gln to CAG and
substitution of all codons originally coding for Pro to CCC (or CCG); etc. - Preferably, the G/C content of the coding region of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is increased by at least 7%, more preferably by at least 15%, particularly preferably by at least 20%, compared to the G/C content of the coded region of the wild type mRNA. According to a specific aspect at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, more preferably at least 70%, even more preferably at least 80% and most preferably at least 90%, 95% or even 100% of the substitutable codons in the region coding for a protein or peptide as defined herein or its fragment or variant thereof or the whole sequence of the wild type mRNA sequence are substituted, thereby increasing the GC/content of said sequence.
- In this context, it is particularly preferable to increase the G/C content of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, to the maximum (i.e. 100% of the substitutable codons), in particular in the region coding for a protein, compared to the wild type sequence.
- According to the invention, a further preferred modification of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is based on the finding that the translation efficiency is also determined by a different frequency in the occurrence of tRNAs in cells. Thus, if so-called “rare codons” are present in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, to an increased extent, the corresponding modified nucleic acid (sequence) is translated to a significantly poorer degree than in the case where codons coding for relatively “frequent” tRNAs are present.
- Especially if the modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection is in the form of a mRNA, the coding region of the modified nucleic acid is preferably modified compared to the corresponding region of the wild type mRNA such that at least one codon of the wild type sequence which codes for a tRNA which is relatively rare in the cell is exchanged for a codon which codes for a tRNA which is relatively frequent in the cell and carries the same amino acid as the relatively rare tRNA. By this modification, the sequences of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is modified such that codons for which frequently occurring tRNAs are available are inserted. In other words, according to the invention, by this modification all codons of the wild type sequence which code for a tRNA which is relatively rare in the cell can in each case be exchanged for a codon which codes for a tRNA which is relatively frequent in the cell and which, in each case, carries the same amino acid as the relatively rare tRNA.
- Which tRNAs occur relatively frequently in the cell and which, in contrast, occur relatively rarely is known to a person skilled in the art; cf. e.g. Akashi, Curr. Opin. Genet. Dev. 2001, 11(6): 660-666. The codons which use for the particular amino acid the tRNA which occurs the most frequently, e.g. the Gly codon, which uses the tRNA which occurs the most frequently in the (human) cell, are particularly preferred.
- According to the invention, it is particularly preferable to link the sequential G/C content which is increased, in particular maximized, in the modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, with the “frequent” codons without modifying the amino acid sequence of the protein encoded by the coding region of the nucleic acid. This preferred aspect allows provision of a particularly efficiently translated and stabilized (modified) nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA.
- The determination of a modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as described above (increased G/C content; exchange of tRNAs) can be carried out using the computer program explained in WO 02/098443—the disclosure content of which is included in its full scope in the present invention. Using this computer program, the nucleotide sequence of any desired nucleic acid or mRNA can be modified with the aid of the genetic code or the degenerative nature thereof such that a maximum G/C content results, in combination with the use of codons which code for tRNAs occurring as frequently as possible in the cell, and the amino acid sequence coded by the modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection preferably not being modified compared to the non-modified sequence. Alternatively, it is also possible to modify only the G/C content or only the codon usage compared to the original sequence. The source code in Visual Basic 6.0 (development environment used: Microsoft Visual Studio Enterprise 6.0 with Servicepack 3) is also described in WO 02/098443.
- In a further preferred aspect of the present invention, the A/U content in the environment of the ribosome binding site of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is increased compared to the A/U content in the environment of the ribosome binding site of its particular wild type mRNA. This modification (an increased A/U content around the ribosome binding site) increases the efficiency of ribosome binding to the nucleic acid. An effective binding of the ribosomes to the ribosome binding site (Kozak sequence: GCCGCCACCAUGG (SEQ ID NO: 3), the AUG forms the start codon) in turn has the effect of an efficient translation of the nucleic acid.
- According to a further aspect the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, may be modified with respect to potentially destabilizing sequence elements. Particularly, the coding region and/or the 5′ and/or 3′ untranslated region of this nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection may be modified compared to the particular wild type nucleic acid such that is contains no destabilizing sequence elements, the coded amino acid sequence of the modified nucleic acid of the present invention, especially if the nucleic acid is in the form of a mRNA, preferably not being modified compared to its particular wild type nucleic acid. It is known that, for example, in sequences of eukaryotic RNAs destabilizing sequence elements (DSE) occur, to which signal proteins bind and regulate enzymatic degradation of RNA. For further stabilization of the modified nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, optionally in the region which encodes for a protein or a peptide as defined herein, one or more such modifications compared to the corresponding region of the wild type nucleic acid can therefore be carried out, so that no or substantially no destabilizing sequence elements are contained there. According to the invention, DSE present in the untranslated regions (3′- and/or 5′-UTR) can also be eliminated from the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, by such modifications.
- Such destabilizing sequences are e.g. AU-rich sequences (AURES), which occur in 3′-UTR sections of numerous unstable RNAs (Caput et al., Proc. Natl. Acad. Sci. USA 1986, 83: 1670 to 1674). The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA, is therefore preferably modified compared to the wild type nucleic acid such that the modified nucleic acid contains no such destabilizing sequences. This also applies to those sequence motifs which are recognized by possible endonucleases, e.g. the sequence GAACAAG, which is contained in the 3′-UTR segment of the gene which codes for the transferrin receptor (Binder et al., EMBO J. 1994, 13: 1969 to 1980). These sequence motifs are also preferably removed in the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection, especially if the nucleic acid is in the form of a mRNA.
- Also preferably, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, has, in a modified form, at least one IRES as defined above and/or at least one 5′ and/or 3′ stabilizing sequence, in a modified form, e.g. to enhance ribosome binding or to allow expression of different encoded proteins located on an at least one (bi- or even multicistronic) RNA of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above.
- According to the invention, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, furthermore preferably has at least one 5′ and/or 3′ stabilizing sequence. These stabilizing sequences in the 5′ and/or 3′ untranslated regions have the effect of increasing the half-life of the nucleic acid in the cytosol. These stabilizing sequences can have 100% sequence identity to naturally occurring sequences which occur in viruses, bacteria and eukaryotes, but can also be partly or completely synthetic. The untranslated sequences (UTR) of the (alpha-)globin gene, e.g. from Homo sapiens or Xenopus laevis may be mentioned as an example of stabilizing sequences which can be used in the present invention for a stabilized nucleic acid. Another example of a stabilizing sequence has the general formula (C/U)CCANxCCC(U/A)PyxUC(C/U)CC (SEQ ID NO: 4), which is contained in the 3′UTR of the very stable RNA which codes for (alpha-)globin, type(1)-collagen, 15-lipoxygenase or for tyrosine hydroxylase (cf. Holcik et al., Proc. Natl. Acad. Sci. USA 1997, 94: 2410 to 2414). Such stabilizing sequences can of course be used individually or in combination with one another and also in combination with other stabilizing sequences known to a person skilled in the art. The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, is therefore preferably present as (alpha-)globin UTR (untranslated regions)-stabilized RNA, in particular as (alpha-)globin UTR-stabilized RNA.
- Nevertheless, substitutions, additions or eliminations of bases are preferably carried out with the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, using a DNA matrix for preparation of the nucleic acid by techniques of the well known site directed mutagenesis or with an oligonucleotide ligation strategy (see e.g. Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 3rd ed., Cold Spring Harbor, N.Y., 2001). In such a process, for preparation of the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, a corresponding DNA molecule may be transcribed in vitro. This DNA matrix preferably comprises a suitable promoter, e.g. a T7 or SP6 promoter, for in vitro transcription, which is followed by the desired nucleotide sequence for the nucleic acid, e.g. mRNA, to be prepared and a termination signal for in vitro transcription. The DNA molecule, which forms the matrix of at least one RNA of interest, may be prepared by fermentative proliferation and subsequent isolation as part of a plasmid which can be replicated in bacteria. Plasmids which may be mentioned as suitable for the present invention are e.g. the plasmids pT7Ts (GenBank accession number U26404; Lai et al., Development 1995, 121: 2349 to 2360), pGEM® series, e.g. pGEM®-1 (GenBank accession number X65300; from Promega) and pSP64 (GenBank accession number X65327); cf. also Mezei and Storts, Purification of PCR Products, in: Griffin and Griffin (ed.), PCR Technology: Current Innovation, CRC Press, Boca Raton, Fla., 2001.
- Nucleic acid molecules used according to the invention as defined above may be prepared using any method known in the art, including synthetic methods such as e.g. solid phase synthesis, as well as in vitro methods, such as in vitro transcription reactions.
- According to another particularly preferred aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, may additionally or alternatively encode a secretory signal peptide. Such signal peptides are sequences, which typically exhibit a length of about 15 to 30 amino acids and are preferably located at the N-terminus of the encoded peptide, without being limited thereto. Signal peptides as defined herein preferably allow the transport of the protein or peptide as encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, into a defined cellular compartment, preferably the cell surface, the endoplasmic reticulum (ER) or the endosomal-lysosomal compartment. Examples of secretory signal peptide sequences as defined herein include, without being limited thereto, signal sequences of classical or non-classical MHC-molecules (e.g. signal sequences of MHC I and II molecules, e.g. of the MHC class I molecule HLA-A*0201), signal sequences of cytokines or immunoglobulines as defined herein, signal sequences of the invariant chain of immunoglobulines or antibodies as defined herein, signal sequences of Lampl, Tapasin, Erp57, Calretikulin, Calnexin, and further membrane associated proteins or of proteins associated with the endoplasmic reticulum (ER) or the endosomal-lysosomal compartment. Particularly preferably, signal sequences of MHC class I molecule HLA-A*0201 may be used according to the present invention.
- Any of the above modifications may be applied to the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, especially if the nucleic acid is in the form of a mRNA, and further to any nucleic acid as used in the context of the present invention and may be, if suitable or necessary, be combined with each other in any combination, provided, these combinations of modifications do not interfere with each other in the respective nucleic acid. A person skilled in the art will be able to take his choice accordingly.
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above as well as proteins or peptides as encoded by this nucleic acid, may comprise fragments or variants of those sequences. Such fragments or variants may typically comprise a sequence having a sequence identity with one of the above mentioned nucleic acids, or with one of the proteins or peptides or sequences, if encoded by the at least one nucleic acid (sequence) of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, preferably at least 70%, more preferably at least 80%, equally more preferably at least 85%, even more preferably at least 90% and most preferably at least 95% or even 97%, to the entire wild type sequence, either on nucleic acid level or on amino acid level.
- “Fragments” of proteins or peptides in the context of the present invention (encoded by a nucleic acid as defined herein) may comprise a sequence of a protein or peptide as defined above, which is, with regard to its amino acid sequence (or its encoded nucleic acid (sequence)), N-terminally, C-terminally and/or intrasequentially truncated compared to the amino acid sequence of the original (native) protein (or its encoded nucleic acid (sequence)). Such truncation may thus occur either on the amino acid level or correspondingly on the nucleic acid level. A sequence identity with respect to such a fragment as defined above may therefore preferably refer to the entire protein or peptide as defined above or to the entire (coding) nucleic acid (sequence) of such a protein or peptide. Likewise, “fragments” of nucleic acids in the context of the present invention may comprise a sequence of a nucleic acid as defined above, which is, with regard to its nucleic acid (sequence) 5′-, 3′- and/or intrasequentially truncated compared to the nucleic acid (sequence) of the original (native) nucleic acid (sequence). A sequence identity with respect to such a fragment as defined above may therefore preferably refer to the entire nucleic acid as defined above.
- Fragments of proteins or peptides in the context of the present invention (encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above) may furthermore comprise a sequence of a protein or peptide as defined above, which has a length of about 6 to about 20 or even more amino acids, e.g. fragments as processed and presented by MHC class I molecules, preferably having a length of about 8 to about 10 amino acids, e.g. 8, 9, or 10, (or even 6, 7, 11, or 12 amino acids), or fragments as processed and presented by MHC class II molecules, preferably having a length of about 13 or more amino acids, e.g. 13, 14, 15, 16, 17, 18, 19, 20 or even more amino acids, wherein these fragments may be selected from any part of the amino acid sequence. These fragments are typically recognized by T-cells in form of a complex consisting of the peptide fragment and an MHC molecule, i.e. the fragments are typically not recognized in their native form.
- Fragments of proteins or peptides as defined herein (encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above) may also comprise epitopes of those proteins or peptides. Epitopes (also called “antigen determinants”) in the context of the present invention are typically fragments located on the outer surface of (native) proteins or peptides as defined herein, preferably having 5 to 15 amino acids, more preferably having 5 to 12 amino acids, even more preferably having 6 to 9 amino acids, which may be recognized by antibodies or B-cell receptors, i.e. in their native form. Such epitopes of proteins or peptides may furthermore be selected from any of the herein mentioned variants of such proteins or peptides. In this context antigenic determinants can be conformational or discontinuous epitopes which are composed of segments of the proteins or peptides as defined herein that are discontinuous in the amino acid sequence of the proteins or peptides as defined herein but are brought together in the three-dimensional structure or continuous or linear epitopes which are composed of a single polypeptide chain.
- “Variants” of proteins or peptides as defined above may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, wherein nucleic acids of the nucleic acid, encoding the protein or peptide as defined above, are exchanged. Thereby, a protein or peptide may be generated, having an amino acid sequence which differs from the original sequence in one or more mutation(s), such as one or more substituted, inserted and/or deleted amino acid(s). Preferably, these fragments and/or variants have the same biological function or specific activity compared to the full-length native protein, e.g. its specific antigenic property.
- The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above may also encode a protein or peptide as defined above, wherein the encoded amino acid sequence comprises conservative amino acid substitution(s) compared to its physiological sequence. Those encoded amino acid sequences as well as their encoding nucleotide sequences in particular fall under the term variants as defined above. Substitutions in which amino acids which originate from the same class are exchanged for one another are called conservative substitutions. In particular, these are amino acids having aliphatic side chains, positively or negatively charged side chains, aromatic groups in the side chains or amino acids, the side chains of which can enter into hydrogen bridges, e.g. side chains which have a hydroxyl function. This means that e.g. an amino acid having a polar side chain is replaced by another amino acid having a likewise polar side chain, or, for example, an amino acid characterized by a hydrophobic side chain is substituted by another amino acid having a likewise hydrophobic side chain (e.g. serine (threonine) by threonine (serine) or leucine (isoleucine) by isoleucine (leucine)). Insertions and substitutions are possible, in particular, at those sequence positions which cause no modification to the three-dimensional structure or do not affect the binding region. Modifications to a three-dimensional structure by insertion(s) or deletion(s) can easily be determined e.g. using CD spectra (circular dichroism spectra) (Urry, 1985, Absorption, Circular Dichroism and ORD of Polypeptides, in: Modern Physical Methods in Biochemistry, Neuberger et al. (ed.), Elsevier, Amsterdam).
- Furthermore, variants of proteins or peptides as defined above, which may be encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, may also comprise those sequences, wherein nucleic acids of the nucleic acid are exchanged according to the degeneration of the genetic code, without leading to an alteration of respective amino acid sequence of the protein or peptide, i.e. the amino acid sequence or at least part thereof may not differ from the original sequence in one or more mutation(s) within the above meaning.
- In order to determine the percentage to which two sequences (nucleic acid (sequence) s, e.g. at least one nucleic acid (sequence) as defined herein, or amino acid sequences, preferably their encoded amino acid sequences, e.g. the amino acid sequences of the proteins or peptides as defined above) are identical, the sequences can be aligned in order to be subsequently compared to one another. Therefore, e.g. gaps can be inserted into the sequence of the first sequence and the component at the corresponding position of the second sequence can be compared. If a position in the first sequence is occupied by the same component as is the case at a position in the second sequence, the two sequences are identical at this position. The percentage to which two sequences are identical is a function of the number of identical positions divided by the total number of positions. The percentage to which two sequences are identical can be determined using a mathematical algorithm. A preferred, but not limiting, example of a mathematical algorithm which can be used is the algorithm of Karlin et al. (1993), PNAS USA, 90:5873-5877 or Altschul et al. (1997), Nucleic Acids Res., 25:3389-3402. Such an algorithm is integrated in the BLAST program. Sequences which are identical to the sequences of the present invention to a certain extent can be identified by this program.
- The inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) as defined above and mannose, may additionally contain a lactate. Such a lactate provided a surprisingly good effect on stabilization of the inventive nucleic acid (sequence) during lyophilization additional to the mannose already contained in the solution. This is particularly surprising and was not suggested by any of the prior art available. A skilled person, bearing in mind that salts typically destabilize a nucleic acid (sequence) during lyophilization, always would have expected that lactate, representing a salt, would rather destabilize than stabilize a nucleic acid (sequence) during lyophilization.
- A lactate as defined herein may be any lactate available in the art. Preferably, a lactate within the context of the present invention is defined as a chemical compound, particularly a salt, derived from free lactic acid (IUPAC systematic name: 2-hydroxypropanoic acid), also known as milk acid, including its optical isomers L-(+)-lactic acid, (S)-lactic acid, D-(−)-lactic acid or (R)-lactic acid, more preferably its biologically active optical isomer L-(+)-lactic acid, wherein the salt or an anion thereof, preferably may be selected from sodium-lactate, potassium-lactate, or Al3 +-lactate, NH4 +-lactate, Fe-lactate, Li-lactate, Mg-lactate, Ca-lactate, Mn-lactate or Ag-lactate, or selected from Ringer's lactate (RiLa), lactated Ringer's solution (main content sodium lactate, also termed “Hartmann's Solution” in the UK), acetated Ringer's solution, or selected from lactate containing water, or ortho-lactate-containing (isotonic) solutions (e.g. for injection purposes), etc. The chemical structure of lactic acid is as follows:
- Lactic acid is a chemical compound that plays a role in several biochemical processes. It was first isolated in 1780 by a Swedish chemist, Carl Wilhelm Scheele, and is a carboxylic acid with a chemical formula of C3H6O3. It has a hydroxyl group adjacent to the carboxyl group, making it an alpha hydroxy acid (AHA). In solution, it can lose a proton from the acidic group, producing the lactate ion CH3CH(OH)COO−. Lactic acid is chiral and has two optical isomers. One is known as L-(+)-lactic acid or (S)-lactic acid and the other, its mirror image, is D-(−)-lactic acid or (R)-lactic acid, wherein L-(+)-lactic acid is the biologically important isomer. L-lactate is constantly produced in animals from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. Industrially, lactic acid is typically produced via fermentation using among others bacteria such as Lactobacillus bacteria, etc.
- The inventive solution for lyophilization, transfection and/or injection as defined above may typically comprise a lactate concentration in the range of about 3 mM to about 300 mM, preferably in the range of about 5 mM to about 200 mM, more preferably in the range of about 10 mM to about 150 mM, even more preferably about 15 mM to about 35 mM, and most preferably 20 mM to about 31 mM.
- Alternatively, the inventive solution for lyophilization, transfection and/or injection as defined above may typically comprise a Ringer's lactate content (or a content of any of the aforementioned (undiluted) lactate containing solutions) e.g. in the range of about 10% (w/w) to about 100% (w/w), e.g. in the range of about 20% (w/w) to about 100% (w/w), in the range of about 30% (w/w) to about 100% (w/w), in the range of about 40% (w/w) to about 100% (w/w), in the range of about 50% (w/w) to about 90% (w/w), preferably in the range of about 60% (w/w) to about 90% (w/w), more preferably in the range of about 70% (w/w) to about 90% (w/w), e.g. about 80% (w/w), of Ringer's lactate (or the aforementioned (undiluted) lactate containing solution). In this context, Ringer's lactate (100% (w/w)) is typically defined as a solution comprising 131 mM Na+, 5.36 mM K+, 1.84 mM Ca2+, and 28.3 mM Lactate).
- The inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) and mannose, may additionally contain water, preferably water for injection (WFI). In this context, the term “water for injection” (WFI) is a term defined by standard USP 23. USP 23 monograph states that “Water for Injection (WFI) is water purified by distillation or reverse osmosis.” WFI is typically produced by either distillation or 2-stage reverse osmosis. It is usually stored and distributed hot (at about 80° C.) in order to meet microbial quality requirements. WFI typically does not contain more than 0.25 USP endotoxin units (EU) per ml. Endotoxins are a class of pyrogens that are components of the cell wall of Gram-negative bacteria (the most common type of bacteria in water), preferably in an action limit of 10 cfu/100 ml. The microbial quality may be tested by membrane filtration of a 100 ml sample and plate count agar at an incubation temperature of 30 to 35 degrees Celsius for a 48-hour period. The chemical purity requirements of WFI are typically the same as of PW (purified water).
- The inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) and mannose, may additionally contain further optional components or additives, e.g. a cryoprotectant, a lyoprotectant or any further suitable additive, preferably as defined in the following.
- Preferably, the inventive solution for lyophilization, transfection and/or injection as defined herein may contain the herein defined contents, optional components, additives, etc. in such a concentration so as to lead to an osmolality or osmolarity comparable to that of blood plasma. In this context, the term “osmolarity” is typically to be understood as a measure of all contents, optional components, additives, etc. of the inventive solution for lyophilization, transfection and/or injection as defined herein. Osmolarity is typically the measure of solute concentration, defined as the number of osmoles (Osm) of all solubilized contents, optional components, additives, etc. per liter (I) of solution (osmol/l or osm/l). In the present context, the inventive solution for lyophilization, transfection and/or injection as defined herein may comprise an osmolarity preferably in the range of about 200 mosmol/l to about 400 mosmol/l, more preferably in the range of about 250 mosmol/l to about 350 mosmol/l, even more preferably in the range of about 270 mosmol/l to about 330 mosmol/l or in the range of about 280 mosmol/l to about 320 mosmol/l, or in the range of about e.g. about 290 mosmol/l to about 310 mosmol/l, e.g. about 295 mosmol/l, about mosmol/l, about 296 mosmol/l, about 297 mosmol/l, about 298 mosmol/l, about 299 mosmol/l, about, 300 mosmol/l, about 301 mosmol/l, about 302 mosmol/l, about 303 mosmol/l, about 304 mosmol/l, about 305 mosmol/l, about 306 mosmol/l, about 307 mosmol/l, about 308 mosmol/l.
- As a particularly preferred optional component or additive, the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain at least one suspending agent, preferably mannit, preferably in a concentration of about 1 to 15% (w/w), more preferably in a concentration of about 3 to 10% (w/w), and even more preferably in a concentration of about 4 to 6% (w/w).
- As a further component, the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain at least one optional component or additive selected, e.g., from mannite, proteins, peptides, amino acids, alcohols, carbohydrates, metals or metal ions, surfactants, polymers or complexing agents, buffers, etc., or a combination thereof.
- In the context of the present invention, another optional component or additive of the inventive solution for lyophilization, transfection and/or injection as defined above may also be selected from the group of amino acids. Such group may comprise, without being limited thereto, any naturally occurring amino acid. Cryoprotectants and/or lyoprotectants selected from the group of amino acids may additionally comprise any modification of a naturally occurring amino acid.
- Furthermore, in the context of the inventive solution for lyophilization, transfection and/or injection as defined above, a further optional component or additive may be selected from the group of alcohols. Such group may comprise, without being limited thereto, any alcohol suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, mannitol, polyethyleneglycol, polypropyleneglycol, sorbitol, etc. However, mannitol is preferably excluded from the scope of the present invention.
- Additionally, in the context of the inventive solution for lyophilization, transfection and/or injection as defined above, a further optional component or additive may be selected from the group of carbohydrates. Such group of carbohydrates may comprise, without being limited thereto, any carbohydrate, suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, monosaccharides, such as e.g. glucose, fructose, etc., disaccharides, such as e.g. lactose, maltose, sucrose, trehalose, etc., and polysaccharides, such as e.g. dextran, HP-beta CD, etc.
- Also, in the context of the inventive solution for lyophilization, transfection and/or injection as defined above, a further suitable optional component or additive may be selected from the group of proteins. Such group may comprise, without being limited thereto, proteins such as albumin, gelatine, therapeutically active proteins as defined above, antibodies as defined above, antigens as defined above, or any further protein encoded by the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above.
- A further optional component or additive, which may be contained in the inventive solution for lyophilization, transfection and/or injection as defined above may be selected from the group of metals or metal ions, typically comprising, without being limited thereto, metals or metal ions or salts selected from
- alkali metals, including members of
group 1 of the periodic table: lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr), and their (monovalent) metal alkali metal ions and salts; preferably lithium (Li), sodium (Na), potassium (K), and their (monovalent) metal alkali metal ions and salts; - alkaline earth metals, including members of group 2 of the periodic table: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra), and their (divalent) alkaline earth metal ions and salts; preferably magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and their (divalent) alkaline earth metal ions and salts;
- transition metals, including members of groups 3 to 13 of the periodic table and their metal ions and salts. The transition metals typically comprise the 40 chemical elements 21 to 30, 39 to 48, 71 to 80, and 103 to 112. The name transition originates from their position in the periodic table of elements. In each of the four periods in which they occur, these elements represent the successive addition of electrons to the d atomic orbitals of the atoms. In this way, the transition metals represent the transition between subgroup 2 elements and subgroup 12 (or 13) elements. Transition metals in the context of the present invention particularly comprise members of subgroup 3 of the periodic table: including Scandium (Sc), Yttrium (Y), and Lutetium (Lu), members of subgroup 4 of the periodic table: including Titan (Ti), Zirconium (Zr), and Hafnium (Hf), members of subgroup 5 of the periodic table: including Vanadium (V), Niobium (Nb), and Tantalum (Ta), members of subgroup 6 of the periodic table: including Chrome (Cr), Molybdenum (Mo), and Tungsten (W), members of subgroup 7 of the periodic table: including Manganese (Mn), Technetium (Tc), and Rhenium (Re), members of subgroup 8 of the periodic table: including Iron (Fe), Ruthenium (Ru), and Osmium (Os), members of subgroup 9 of the periodic table: including Cobalt (Co), Rhodium (Rh), and Iridium (Ir), members of subgroup 10 of the periodic table: including Nickel (Ni), Palladium (Pd), and Platin (Pt), members of subgroup 11 of the periodic table: including Copper (Cu), Silver (Ag), and Gold (Au), members of subgroup 12 of the periodic table: including Zinc (Zn), Cadmium (Cd), and Mercury (Hg); preferably members of period 4 of any of subgroups 1 to 12 of the periodic table: including Scandium (Sc), Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) and their metal ions and salts;
- earth metals or members of the boron group, including members of group 3 of the periodic table: including Boron (B), Aluminium (Al), Gallium (Ga), Indium (In) and Thallium (Tl) and their metal ions and salts; preferably Boron (B) and Aluminium (Al) and their metal ions and salts;
- metalloids or semi metals: including Boron (B), Silicon (Si), Germanium (Ge), Arsenic (As), Antimony (Sb), Tellurium (Te).and Polonium (Po), and their semi metal ions and salts; preferably Boron (B) and Silicon (Si) and their semi metal ions and salts;
- In the context of the present invention, a further optional component or additive of the inventive solution for lyophilization, transfection and/or injection as defined above may be selected from the group of surfactants comprising, without being limited thereto, any surfactant, suitable for the preparation of a pharmaceutical composition, preferably, without being limited thereto, Tween, e.g. Tween 80 (e.g. 0.2%), Pluronics, e.g. Pluronic L121 (e.g. 1.25%), Triton-X, SDS, PEG, LTAB, Saponin, Cholate, etc.
- Another optional component or additive, which may be contained in the inventive solution for lyophilization, transfection and/or injection as defined above may be selected from the group of polymers or complexing agents, preferably to complex the nucleic acid, more preferably a RNA or mRNA contained in the inventive solution for lyophilization, transfection and/or injection as defined above. Such polymers or complexing agents typically comprise, without being limited thereto, any polymer suitable for the preparation of a pharmaceutical composition, such as minor/major groove binders, nucleic acid binding proteins, lipoplexes, nanoplexes, non-cationic or non-polycationic compounds, such as PLGA, Polyacetate, Polyacrylate, PVA, Dextran, hydroxymethylcellulose, starch, MMP, PVP, heparin, pectin, hyaluronic acid, and derivatives thereof, or cationic or polycationic compounds, particularly cationic or polycationic polymers or cationic or polycationic lipids, preferably cationic or polycationic polymers. In the context of the present invention, such a cationic or polycationic compound is typically selected from any cationic or polycationic compound, suitable for complexing and thereby stabilizing a nucleic acid as defined herein, e.g. by associating the nucleic acid as defined herein with the cationic or polycationic compound. Particularly preferred, cationic or polycationic compounds are selected from cationic or polycationic peptides or proteins, including protamine, nucleoline, spermin or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), poly-arginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, Tat, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP22 derived or analog peptides, HSV VP22 (Herpes simplex), MAP, KALA or protein transduction domains (PTDs, PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), pAntp, pIs1, FGF, Lactoferrin, Transportan, Buforin-2, Bac715-24, SynB, SynB(1), pVEC, hCT-derived peptides, SAP, protamine, spermine, spermidine, or histones. Additionally, preferred cationic or polycationic proteins or peptides may be selected from following proteins or peptides having the following total formula: (Arg)l; (Lys)m; (His)n; (Orn)o; (Xaa)x, wherein I+m+n+o+x=8-15, and I, m, n or o independently of each other may be any number selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15, provided that the overall content of Arg, Lys, His and Orn represents at least 50% of all amino acids of the oligopeptide; and Xaa may be any amino acid selected from native (=naturally occurring) or non-native amino acids except of Arg, Lys, His or Orn; and x may be any number selected from 0, 1, 2, 3 or 4, provided, that the overall content of Xaa does not exceed 50% of all amino acids of the oligopeptide. Particularly preferred oligoarginines in this context are e.g. Arg7, Arg8, Arg9, Arg7, H3R9, R9H3, H3R9H3, YSSR9SSY, (RKH)4, Y(RKH)2R, etc. Further preferred cationic or polycationic compounds, which can be used for complexing the nucleic acid as defined herein may include cationic polysaccharides, for example chitosan, polybrene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g. DOTMA: [1-(2,3-sioleyloxy)propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanol-amine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristo-oxypropyl dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: O,O-ditetradecanoyl-N-(α-trimethylammonioacetyl)diethanolamine chloride, CLIP1: rac-[(2,3-dioctadecyloxypropyl)(2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: rac-[2(2,3-dihexadecyloxypropyl-oxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2,3-dihexadecyloxypropyl-oxysuccinyloxy)ethyl]-trimethylammonium, oligofectamine, or cationic or polycationic polymers, e.g. modified polyaminoacids, such as 3-aminoacid-polymers or reversed polyamides, etc., modified polyethylenes, such as PVP (poly(N-ethyl-4-vinylpyridinium bromide)), etc., modified acrylates, such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc., modified Amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaminoester (PBAE), such as diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, etc., dendrimers, such as polypropylamine dendrimers or pAMAM based dendrimers, etc., polyimine(s), such as PEI: poly(ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based polymers, such as cyclodextrin based polymers, dextran based polymers, Chitosan, etc., silan backbone based polymers, such as PMOXA-PDMS copolymers, etc., Blockpolymers consisting of a combination of one or more cationic blocks (e.g. selected of a cationic polymer as mentioned above) and of one or more hydrophilic- or hydrophobic blocks (e.g polyethyleneglycole); etc. Association or complexing the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above with cationic or polycationic compounds preferably provides adjuvant properties to the nucleic acid, preferably if provided as an RNA, and/or confers a stabilizing effect to the nucleic acid as defined herein by complexation. The procedure for stabilizing the nucleic acid as defined herein is in general described in EP-A-1083232, the disclosure of which is incorporated by reference into the present invention in its entirety. Particularly preferred as cationic or polycationic compounds are compounds selected from the group consisting of protamine, nucleoline, spermin, spermidine, oligoarginines as defined above, such as Arg7, Arg8, Arg9, Arg7, H3R9, R9H3, H3R9H3, YSSR9SSY, (RKH)4, Y(RKH)2R, etc. Preferably, the nucleic acid of the inventive solution for lyophilization, transfection and/or injection as defined above, preferably an RNA or mRNA, is complexed with a cationic or polycationic compound as defined above.
- As a further optional component, the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain water, water for injection (WFI), or a buffer, preferably selected from a buffer as defined above, e.g. a buffer containing 2-hydroxypropanoic acid, preferably including at least one of its optical isomers L-(+)-lactic acid, (S)-lactic acid, D-(−)-lactic acid or (R)-lactic acid, more preferably its biologically active optical isomer L-(+)-lactic acid, or a salt or an anion thereof, preferably selected from sodium-lactate, potassium-lactate, or Al3 +-lactate, NH4 +-lactate, Fe-lactate, Li-lactate, Mg-lactate, Ca-lactate, Mn-lactate or Ag-lactate, or a buffer selected from Ringer's lactate (RiLa), lactated Ringer's solution (main content sodium lactate, also termed “Hartmann's Solution” in the UK), acetated Ringer's solution, or ortho-lactate-containing solutions (e.g. for injection purposes), or lactate containing water. A buffer as defined herein may also be an isotonic buffer or solution, preferably selected from isotonic saline, a lactate or ortho-lactate-containing isotonic solution, a isotonic buffer or solution selected from phosphate-buffered saline (PBS), TRIS-buffered saline (TBS), Hank's balanced salt solution (HBSS), Earle's balanced salt solution (EBSS), standard saline citrate (SSC), HEPES-buffered saline (HBS), Grey's balanced salt solution (GBSS), or normal saline (NaCl), hypotonic (saline) solutions with addition of glucose or dextrose, or any solution as defined herein, etc. Isotonic isotonic buffers or solutions are particularly preferred as buffers in the context of the present invention for injection and/or transfection purposes. These isotonic buffers or solutions are preferably prepared by a skilled person preferably as defined herein or according to definitions preparation protocols well known in the art for these specific isotonic buffers or solutions. More preferably, the inventive solution for lyophilization, transfection and/or injection as defined above may contain these isotonic buffers or solutions or (all) its contents in isotonic concentrations, preferably as defined herein or in the art for these specific isotonic solutions. In the above context a buffer may be used, more preferably an aqueous (isotonic solution or aqueous) buffer, containing a sodium salt, preferably at least 50 mM of a sodium salt, a calcium salt, preferably at least 0.01 mM of a calcium salt, and optionally a potassium salt, preferably at least 3 mM of a potassium salt. According to a preferred aspect, the sodium, calcium and, optionally, potassium salts may occur in the form of their halogenides, e.g. chlorides, iodides, or bromides, in the form of their hydroxides, carbonates, hydrogen carbonates, or sulfates, etc. Without being limited thereto, examples of sodium salts include e.g. NaCl, NaI, NaBr, Na2 CO3, NaHCO3, Na2 SO4, examples of the optional potassium salts include e.g. KCl, KI, KBr, K2 CO3, KHCO3, K2 SO4, and examples of calcium salts include e.g. CaCl2, Cal2, CaBr2, CaCO3, CaSO4, Ca(OH)2. Typically, the salts are present in such an (isotonic solution or) buffer in a concentration of at least 50 mM sodium chloride (NaCl), at least 3 mM potassium chloride (KCl) and at least 0.01 mM calcium chloride (CaCl2). Furthermore, organic anions of the aforementioned cations may be contained in the buffer. According to a more preferred aspect, the buffer may contain salts selected from sodium chloride (NaCl), calcium chloride (CaCl2) and optionally potassium chloride (KCl), wherein further anions may be present additional to the chlorides. CaCl2 can also be replaced by another salt like KCl. The buffer may be hypertonic, isotonic or hypotonic with reference to the specific reference medium, i.e. the buffer may have a higher, identical or lower salt content with reference to the specific reference medium, wherein preferably such concentrations of the aforementioned salts may be used, which do not lead to damage of cells due to osmosis or other concentration effects. Reference media are e.g. liquids occurring in “in vivo” methods, such as blood, lymph, cytosolic liquids, or other body liquids, or e.g. liquids, which may be used as reference media in “in vitro” methods, such as common buffers or liquids. Such common buffers or liquids are known to a skilled person. Furthermore, according to a particularly preferred aspect, the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, if lyophilized, may again be reconstituted after lyophilization in a buffer as defined herein, preferably in an isotonic buffer, preferably as defined above, e.g. as a further step of a method for lyophilization as defined herein. The nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above, if lyophilized, may alternatively be lyophilized in a buffer as defined above (containing mannose) and may be reconstituted after lyophilization in water or a buffer, e.g. as defined herein, to obtain the desired salt concentration or alternatively the desired buffer conditions.
- As another optional component, the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain an adjuvant. Such an adjuvant is preferably an immunostimulating agent, selected from the group consisting of cationic peptides, including polypeptides including protamine, nucleoline, spermine or spermidine, cationic polysaccharides, including chitosan, TDM, MDP, muramyl dipeptide, pluronics, alum solution, aluminium hydroxide, ADJUMER™ (polyphosphazene); aluminium phosphate gel; glucans from algae; algammulin; aluminium hydroxide gel (alum); highly protein-adsorbing aluminium hydroxide gel; low viscosity aluminium hydroxide gel; AF or SPT (emulsion of squalane (5%), Tween 80 (0.2%), Pluronic L121 (1.25%), phosphate-buffered saline, pH 7.4); AVRIDINE™ (propanediamine); BAY R1005™ ((N-(2-deoxy-2-L-leucylamino-b-D-glucopyranosyl)-N-octadecyl-dodecanoyl-amide hydroacetate); CALCITRIOL™ (1-alpha,25-dihydroxy-vitamin D3); calcium phosphate gel; CAPTM (calcium phosphate nanoparticles); cholera holotoxin, cholera-toxin-A1-protein-A-D-fragment fusion protein, sub-unit B of the cholera toxin; CRL 1005 (block copolymer P1205); cytokine-containing liposomes; DDA (dimethyldioctadecylammonium bromide); DHEA (dehydroepiandrosterone); DMPC (dimyristoylphosphatidylcholine); DMPG (dimyristoylphosphatidylglycerol); DOC/alum complex (deoxycholic acid sodium salt); Freund's complete adjuvant; Freund's incomplete adjuvant; gamma inulin; Gerbu adjuvant (mixture of: i) N-acetylglucosaminyl-(P1-4)-N-acetylmuramyl-L-alanyl-D-glutamine (GMDP), ii) dimethyldioctadecylammonium chloride (DDA), iii) zinc-L-proline salt complex (ZnPro-8); GM-CSF); GMDP (N-acetylglucosaminyl-(b1-4)-N-acetylmuramyl-L-alanyl-D-isoglutamine); imiquimod (1-(2-methypropyl)-H-imidazo[4,5-c]quinoline-4-amine); ImmTher™ (N-acetylglucosaminyl-N-acetylmuramyl-L-Ala-D-isoGlu-L-Ala-glycerol dipalmitate); DRVs (immunoliposomes prepared from dehydration-rehydration vesicles); interferon-gamma; interleukin-1 beta; interleukin-2; interleukin-7; interleukin-12; ISCOMS™ (“Immunostimulating Complexes”); ISCOPREP 7.0.3.™; liposomes; LOXORIBINE™ (7-allyl-8-oxoguanosine (guanine)); LT oral adjuvant (E. coli labile enterotoxin-protoxin); microspheres and microparticles of any composition; MF59™; (squalene-water emulsion); MONTANIDE ISA 51™ (purified incomplete Freund's adjuvant); MONTANIDE ISA 720™ (metabolisable oil adjuvant); MPL™ (3-Q-desacyl-4′-monophosphoryl lipid A); MTP-PE and MTP-PE liposomes ((N-acetyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1,2-dipalmitoyl-sn-glycero-3-(hydroxyphosphoryloxy))ethylamide, monosodium salt); MURAMETIDE™ (Nac-Mur-L-Ala-D-Gln-OCH3); MURAPALMITINE™ and D-MURAPALMITINE™ (Nac-Mur-L-Thr-D-isoGln-sn-glyceroldipalmitoyl); NAGO (neuraminidase-galactose oxidase); nanospheres or nanoparticles of any composition; NISVs (non-ionic surfactant vesicles); PLEURAN™ (beta-glucan); PLGA, PGA and PLA (homo- and co-polymers of lactic acid and glycolic acid; microspheres/nanospheres); PLURONIC L121™; PMMA (polymethyl methacrylate); PODDS™ (proteinoid microspheres); polyethylene carbamate derivatives; poly-rA: poly-rU (polyadenylic acid-polyuridylic acid complex); polysorbate 80 (Tween 80); protein cochleates (Avanti Polar Lipids, Inc., Alabaster, Ala.); STIMULON™ (QS-21); Quil-A (Quil-A saponin); S-28463 (4-amino-otec-dimethyl-2-ethoxymethyl-1H-imidazo[4,5-c]quinoline-1-ethanol); SAF-1™ (“Syntex adjuvant formulation”); Sendai proteoliposomes and Sendai-containing lipid matrices; Span-85 (sorbitan trioleate); Specol (emulsion of Marcol 52, Span 85 and Tween 85); squalene or Robane (2,6,10,15,19,23-hexamethyltetracosan and 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexane); stearyltyrosine (octadecyltyrosine hydrochloride); Theramid® (N-acetylglucosaminyl-N-acetylmuramyl-L-Ala-D-isoGlu-L-Ala-dipalmitoxypropylamide); Theronyl-MDP (Termurtide™ or [thr l]-MDP; N-acetylmuramyl-L-threonyl-D-isoglutamine); Ty particles (Ty-VLPs or virus-like particles); Walter-Reed liposomes (liposomes containing lipid A adsorbed on aluminium hydroxide), and lipopeptides, including Pam3Cys, in particular aluminium salts, such as Adju-phos, Alhydrogel, Rehydragel, etc.; emulsions, such as CFA, SAF, IFA, MF59, Provax, TiterMax, Montanide, Vaxfectin, etc.; copolymers, such as Optivax (CRL1005), L121, Poloaxmer4010), etc.; liposomes, such as Stealth, etc., cochleates, such as BIORAL, etc.; plant derived adjuvants, such as QS21, Quil A, Iscomatrix, ISCOM, etc.; preferred adjuvants suitable for costimulation may include e.g. Tomatine, biopolymers, such as PLG, PMM, Inulin, etc.; microbe derived adjuvants, such as Romurtide, DETOX, MPL, CWS, Mannose, CpG7909, ISS-1018, IC31, Imidazoquinolines, Ampligen, Ribi529, IMOxine, IRIVs, VLPs, cholera toxin, heat-labile toxin, Pam3Cys, Flagellin, GPI anchor, LNFPIII/Lewis X, antimicrobial peptides, UC-IV50, RSV fusion protein, cdiGMP, etc.; preferred adjuvants suitable as antagonists may e.g. include CGRP neuropeptide;
- or may be selected from cationic or polycationic compounds which are suitable for depot and delivery, including protamine, nucleoline, spermin or spermidine, or other cationic peptides or proteins, including poly-L-lysine (PLL), poly-arginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, Tat, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP22 derived or analog peptides, HSV VP22 (Herpes simplex), MAP, KALA or protein transduction domains (PTDs, PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1, L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), pAntp, pIs1, FGF, Lactoferrin, Transportan, Buforin-2, Bac715-24, SynB, SynB(1), pVEC, hCT-derived peptides, SAP, protamine, spermine, spermidine, or histones. Additionally, preferred cationic or polycationic proteins or peptides may be selected from following proteins or peptides having the following total formula: (Arg)l; (Lys)m; (His)n; (Orn)o; (Xaa)x, wherein I+m+n+o+x=8-15, and l, m, n or o independently of each other may be any number selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15, provided that the overall content of Arg, Lys, His and Orn represents at least 50% of all amino acids of the oligopeptide; and Xaa may be any amino acid selected from native (=naturally occurring) or non-native amino acids except of Arg, Lys, His or Orn; and x may be any number selected from 0, 1, 2, 3 or 4, provided, that the overall content of Xaa does not exceed 50% of all amino acids of the oligopeptide, cationic polysaccharides, for example chitosan, polybrene, cationic polymers, including polyethyleneimine (PEI), cationic lipids, including DOTMA: [1-(2,3-sioleyloxy)propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphatidylethanol-amine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristo-oxypropyl dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: O,O-ditetradecanoyl-N-(α-trimethylammonioacetyl)diethanolamine chloride, CLIP1: rac-[(2,3-dioctadecyloxypropyl)(2-hydroxyethyl)]-dimethylammonium chloride, CLIP6: rac-[2(2,3-dihexadecyloxypropyl-oxymethyloxy)ethyl]trimethylammonium, CLIP9: rac-[2(2,3-dihexadecyloxypropyl-oxysuccinyloxy)ethyl]-trimethylammonium, oligofectamine, or cationic or polycationic polymers, including modified polyaminoacids, including f3-aminoacid-polymers or reversed polyamides, modified polyethylenes, including PVP (poly(N-ethyl-4-vinylpyridinium bromide)), modified acrylates, including pDMAEMA (poly(dimethylaminoethyl methylacrylate)), modified Amidoamines including pAMAM (poly(amidoamine)), modified polybetaminoester (PBAE), including diamine end modified 1,4 butanediol diacrylate-co-5-amino-1-pentanol polymers, dendrimers, including polypropylamine dendrimers or pAMAM based dendrimers, polyimine(s), including PEI: poly(ethyleneimine), poly(propyleneimine), polyallylamine, sugar backbone based polymers, including cyclodextrin based polymers, dextran based polymers, Chitosan, silan backbone based polymers, including PMOXA-PDMS copolymers, blockpolymers consisting of a combination of one or more cationic blocks (including selected og a cationic polymer as mentioned above) and of one or more hydrophilic- or hydrophobic blocks (e.g polyethyleneglycole);
- or may be selected from nucleic acids of formula (I) above: GlXmGn;
- or may be selected from nucleic acids of formula (II) above: ClXmCn.
- As another optional component, the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain a protein or a peptide, which may be selected, without being restricted thereto, e.g. from therapeutically active proteins or peptides, from antigens, e.g. tumor antigens, pathogenic antigens (e.g. selected from pathogenic proteins as defined above or from animal antigens, viral antigens, protozoal antigens, bacterial antigens, allergic antigens), autoimmune antigens, or further antigens, from allergens, from antibodies, from immunostimulatory proteins or peptides, from antigen-specific T-cell receptors, or from any other protein or peptide suitable for a specific (therapeutic) application.
- As another optional component, the inventive solution for lyophilization, transfection and/or injection as defined above may additionally contain one or more compatible solid or liquid fillers or diluents or encapsulating compounds, which are suitable for administration to a patient to be treated. The term “compatible” as used here means that these constituents are capable of being mixed with the nucleic acid (sequence) of the inventive solution for lyophilization, transfection and/or injection as defined above in such a manner that no interaction occurs which would substantially reduce the pharmaceutical effectiveness of the nucleic acid under typical use conditions. Pharmaceutically acceptable carriers, fillers and diluents must, of course, have sufficiently high purity and sufficiently low toxicity to make them suitable for administration to a person to be treated. Some examples of compounds which can be used as pharmaceutically acceptable carriers, fillers or constituents thereof are sugars, such as, for example, lactose, glucose and sucrose; starches, such as, for example, corn starch or potato starch; cellulose and its derivatives, such as, for example, sodium carboxymethylcellulose, ethylcellulose, cellulose acetate; powdered tragacanth; malt; gelatin; tallow; solid glidants, such as, for example, stearic acid, magnesium stearate; calcium sulfate; vegetable oils, such as, for example, groundnut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil from theobroma; polyols, such as, for example, polypropylene glycol, glycerol, sorbitol, mannitol and polyethylene glycol; alginic acid.
- The inventive solution for lyophilization, transfection and/or injection as defined above may occur as a liquid, a semi-liquid or even a semi-solid or a solid sample or composition, preferably as a liquid, a semi-liquid or a semi-solid sample or composition, more preferably as a liquid or a semi-liquid sample or composition.
- The pH of the inventive solution for lyophilization, transfection and/or injection as defined above may be in the range of about 4 to 8, preferably in the range of about 6 to about 8, more preferably from about 7 to about 8.
- Particularly preferred, the inventive solution for lyophilization, transfection and/or injection as defined above may be a transfection and/or injection solution. In this context, the inventive solution can be used for injection and surprisingly allows to significantly enhance the rate of (transfection and thus) expression of a protein as defined above, preferably of a protein, which is encoded by a nucleic acid as defined above and forming part of the inventive solution for lyophilization, transfection and/or injection. Such an injection solution may contain any components as defined above for the inventive solution for lyophilization, transfection and/or injection. Alternatively or additionally, the inventive injection solution may be formed as a pharmaceutical composition or vaccine as defined in the following or may contain components thereof. Most preferably, the inventive injection solution can comprise or even consist of an isotonic solution as defined above and e.g. can (additionally) contain different salts (e.g. 0.5 mM to 50 mM potassium, 13 mM to 250 mM sodium, 0.2 mM to 10 mM calcium, and 0.2 mM to 10 mM magnesium). Different injection solutions can be utilized, e.g. PBS, HBSS, Ringer-Lactat. The inventive injection solution may be administered as described in the following for a pharmaceutical composition or vaccine.
- According to another particularly preferred aspect, the inventive solution for lyophilization, transfection and/or injection as defined above may be a solution for lyophilization of a nucleic acid as described herein. In this context, the solution for lyophilization of a nucleic acid as described herein surprisingly and significantly enhances storage stability of RNA, particularly in lyophilized form.
- According to a second embodiment, the present invention provides a lyophilized nucleic acid (sequence), which has been lyophilized in an inventive solution for lyophilization, transfection and/or injection as defined above. In other words, lyophilization may be carried out starting from an inventive solution for lyophilization, transfection and/or injection as defined above, containing at least a nucleic acid (sequence) and mannose as defined above. Furthermore, the solution may contain any further optional components as defined above, preferably lactate or a lactate derived salt as defined above.
- Upon lyophilization starting from an inventive solution for lyophilization, transfection and/or injection as defined above, the (residual) water content of the lyophilized nucleic sequence acid as defined herein is typically reduced to a content of about 0.5% (w/w) to about 10% (w/w), more preferably to a content of about 1% (w/w) to about 5% (w/w), even more preferably to a content of about 2% (w/w) to about 4% (w/w), most preferably to a content of about 3% (w/w), e.g. 3% (w/w)±2% (w/w), or 3% (w/w)±1% (w/w).
- The lyophilized nucleic acid (sequence) as defined herein typically comprises an excellent enhanced storage-stability, when compared to a lyophilized nucleic acid (sequence) of the art, which has been lyophilized without the presence of mannose, e.g. in the presence of water for injection (WFI) as described herein. The lyophilized nucleic acid (sequence) as defined and as prepared herein advantageously can be stored in a temperature range of about −80° C. to +60° C. significantly longer, when compared to a lyophilized nucleic acid (sequence) of the art. According to the present invention, the storage-stability of the lyophilized nucleic acid (sequence) is calculated on the basis of the relative integrity of the nucleic acid (sequence). The relative integrity of the lyophilized nucleic acid (sequence) is typically defined as the relative content of the nucleic acid (sequence) exhibiting a correct length when compared to the total content of the at least one nucleic acid (sequence) in the sample. In the context of an mRNA, the relative integrity of the mRNA in the lyophilized mRNA is typically defined as the relative content of the mRNA exhibiting a correct length when compared to the total content of mRNA in the sample. The storage-stability of a nucleic acid (sequence) is typically determined on the basis of the relative integrity (over a defined or not defined period of time), wherein the nucleic acid (sequence) typically exhibits an unchanged biological activity. In the context of the present invention the storage stability is preferably regarded as complied with, if the relative integrity of the (lyophilized) nucleic acid (sequence) (s) is at least about 70%. A relative integrity of more than 70% meets the quality criteria of CureVac GmbH for mRNA, e.g. for mRNA exhibiting a GC-content of more than 60% and a base length of <2000 nt in RNA containing formulations. This criterium may be applied to the above definition.
- The lyophilized nucleic acid (sequence) as defined herein, which may be lyophilized from an inventive solution for lyophilization, transfection and/or injection as defined above, may be prepared using a method as defined herein in the following.
- Therefore, according to a further aspect, the present invention also provides a method of lyophilization of a nucleic acid (sequence), preferably for preparation of a lyophilized nucleic acid (sequence) as defined herein, particularly for preparation of a lyophilized nucleic acid (sequence) which may be lyophilized from an inventive solution for lyophilization, transfection and/or injection as defined above.
- In the context of the present invention lyophilization (also termed cryodesiccation) is typically understood as a freeze-drying process, which allows removing water from a frozen sample, e.g. from an inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, via sublimation as described below in further detail. The inventive method of lyophilization of a nucleic acid as defined herein from an inventive solution for lyophilization, transfection and/or injection as defined above preferably leads to an enhanced storage stability of the nucleic acid. The method typically comprises the following steps:
-
- a) optionally providing as a nucleic acid containing sample an inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, and optionally supplemented with further components as defined above;
- b) freezing the nucleic acid containing sample, obtained according to step a);
- c) drying the frozen nucleic acid containing sample, obtained according to step b), via sublimation;
- d) optionally floating the lyophilized nucleic acid obtained according to step c) with an inert gas, such as nitrogen, etc., or a noble gas, such as helium, neon, argon, xenon, krypton;
- e) optionally sealing the lyophilized nucleic acid obtained according to step c) or d).
- The inventive method is directed to a method of lyophilization of a nucleic acid (sequence) as defined herein, preferably a nucleic acid (sequence) forming part of the inventive solution for lyophilization, transfection and/or injection as defined above. Lyophilization (also termed cryodesiccation) is typically understood as a process, which allows removing water from a frozen sample (preferably the above defined inventive solution containing at least one nucleic acid (sequence) and mannose as defined above) in one or more steps via sublimation. In the context of the present invention, lyophilization is typically carried out by freeze-drying a sample first freezing a nucleic acid containing sample, which has been supplemented with mannose as defined herein, and then drying the nucleic acid containing sample via sublimation, optionally by reducing the surrounding pressure and/or adding enough heat to allow the frozen water in the sample to sublime directly from the solid phase to gas.
- According to an optional first step a) of the inventive method of lyophilization an inventive solution for lyophilization, transfection and/or injection as defined above, containing at least one nucleic acid (sequence) and mannose as defined above, and optionally supplemented with further components as defined above, is provided. The inventive solution, particularly the at least one nucleic acid (sequence), the mannose and the optional components, is preferably as defined above. The inventive solution may be prepared e.g. by adding mannose as defined above, preferably in the above defined concentrations, to a sample containing a nucleic acid (sequence) as defined above, or by adding a nucleic acid (sequence) as defined above to a mannose containing sample, preferably in the above defined concentrations. Such an inventive solution for lyophilization, transfection and/or injection as defined above has optionally been supplemented with further components, preferably as defined above.
- According to the second step b) the nucleic acid containing sample, particularly the inventive solution for lyophilization, transfection and/or injection as defined above containing at least one nucleic acid and mannose as defined herein, is frozen. The freezing process may be carried out by any method, which allows to (entirely) freeze the sample. In a lab, this may be done by placing the material in a freeze-drying flask and rotating the flask in a bath, called a shell freezer, which is cooled by mechanical refrigeration, dry ice and methanol, or liquid nitrogen. On a larger-scale, freezing is usually carried out using a freeze-drying machine. In this step, it is important to cool the material below its triple point, the lowest temperature at which the solid and liquid phases of the material can coexist. This ensures that sublimation rather than melting will occur in the following steps. Larger crystals are easier to freeze-dry. Usually, the freezing temperatures are in the range between −20° C. and −80° C., preferably in the between −30° C. and −60° C., even more preferably in the range between −40° C. and −50° C., most preferably about −47° C.
- According to a third step c), the frozen sample is dried, typically using two drying steps, primary drying step c1) and secondary drying step c2). During the primary drying step c1), free, i.e. unbound, water surrounding the nucleic acid (sequence) and optionally further components, escapes from the solution. Subsequent thereto water being bound on a molecular basis by the at least one nucleic acid (sequence) may be removed in a secondary drying step c2) by adding thermal energy. In both cases the hydration sphere around the nucleic acid (sequence) is lost.
- The primary drying step c1) may be carried out at normal pressure, e.g. in the range of about 980 to about 1045 millibar (mbar), e.g. about 1013 mbar, but also may be carried out by lowering the pressure, usually to the range of a few millibar, e.g. in the range of about 0.001 mbar to about 0.2 mbar, preferably in the range of about 0.01 mbar to about 0.1 mbar, even more preferably in the range of about 0.025 mbar to about 0.075 mbar, e.g. about 0.05 mbar. In this primary drying step, pressure is typically controlled through the application of partial vacuum. The vacuum allows speeding up sublimation, making it useful as a deliberate drying process. Furthermore, a cold condenser chamber and/or condenser plates may be used to provide (a) surface(s) for the water vapor to re-solidify on. Condenser temperatures are typically below −50° C. (−60° F.). Alternatively, instead of lowering the pressure, heat may be supplied to the sample to allow for the water to sublimate. The amount of heat necessary can be calculated using the sublimating molecules' latent heat of sublimation. In this initial drying phase, about 95% (w/w) of the water in the material is sublimated. This phase may be carried out slow to avoid applying too much heat and possible alteration or damage of the structure of the nucleic acid to be lyophilized. The heat, if applied, may be in the range of about −40° C. to about +20° C., e.g. in the range of about −30° C. to about +20° C., in the range of about −20° C. to about +20° C., in the range of about −10° C. to about +10° C., in the range of about −40° C. to about +10° C., in the range of about −30° C. to about +10° C., in the range of about −20° C. to about +10° C., in the range of about −20° C. to about +/−0° C., or in the range of about −10° C. to about +/−0° C. As a further alternative, heat and low pressure may be applied, preferably heat in the range as defined above and a low pressure in the range as defined above.
- The secondary drying step c2) typically aims to remove unfrozen water molecules bound in the structure of the nucleic acid (sequence), since the ice (frozen water molecules) is usually removed in the primary drying step c1) above. In this secondary drying step c2), the temperature is typically raised higher than in the primary drying step, and can even be above 0° C., to break any physico-chemical interactions that have formed between the water molecules and the frozen material. Alternatively, the pressure may be lowered in this stage to encourage desorption. According to a further alternative, heat can be applied and pressure can be lowered, preferably in the above ranges. More preferably, the heat, if applied, may be in the range of about +10° C. to about +40° C., preferably in the range of about +25° C. to about +35° C., e.g. about 30° C. The pressure, if lowered, is usually lowered to the range of a few millibars, e.g. as defined above, more preferably in the range of about 0.001 mbar to about 0.05 mbar, preferably in the range of about 0.001 mbar to about 0.025 mbar, even more preferably in the range of about 0.005 mbar to about 0.015 mbar, e.g. about 0.01 mbar. As a further alternative, heat and low pressure may be applied, preferably in the ranges as defined above.
- After the freeze-drying process is complete, i.e. steps b) and c), particularly
- c1) and c2), are finished, the lyophilized nucleic acid (sequence) obtained according to steps b) and c), particularly c1) and c2), is typically floated in an optional step d) with an inert gas, such as nitrogen, etc., or a noble gas, such as helium, neon, argon, xenon, krypton, and/or the lyophilized nucleic acid is typically sealed. For this purpose, the vacuum is usually broken, e.g. to atmospheric pressure (preferably about 1013 mbar), if low pressure was applied, and the temperature is typically adjusted to room temperature, if heat was used.
- Subsequently or alternatively to step d) of the inventive method of lyophilization, the lyophilized nucleic acid (sequence) is optionally sealed in step e) of the inventive method of lyophilization with or without an inert gas. For this purpose, the lyophilized nucleic acid (sequence) is advantageously contained in any of the above mentioned steps a), b), c), and d) (and more preferably already lyophilized) in a sealable container.
- At the end of the lyophilization method as defined above, typically comprising optionally step a), step b) step c), particularly steps c1) and c2), and optionally step d) and/or step e), a lyophilized nucleic acid is preferably obtained, wherein the final (residual) water content in the inventive lyophilized nucleic acid is preferably in the range of about 0.5% (w/w) to about 10% (w/w), more preferably in the range of about 1% (w/w) to about 5% (w/w), even more preferably in the range of about 2% (w/w) to about 4% (w/w), most preferably in the range of about 3% (w/w), e.g. 3% (w/w)±2% (w/w), or 3% (w/w)±1% (w/w).
- After carrying out any of steps b) and c) a lyophilized nucleic acid (sequence) may be obtained, which may be used for the inventive purposes. Additionally, steps d) and/or e) may be carried out. However, the lyophilized nucleic acid (sequence) may alternatively or additionally to steps d) and/or e) be reconstituted in a solution to obtain a product which is ready to be used in any of the herein mentioned applications. Therefore, according to a particularly preferred aspect, the lyophilized nucleic acid (sequence) may again be reconstituted in a buffer as defined above or a solution for reconstitution. Preferably, such a solution for reconstitution is a solution as defined above for the inventive solution for lyophilization, transfection and/or injection, wherein the solution for reconstitution may contain at least one of the components as defined above for the inventive solution for lyophilization, transfection and/or injection except of the nucleic acid. Most preferred is an isotonic solution for reconstitution. The reconstitution may occur, e.g., after lyophilization, e.g. as a further step f) of the abovementioned method for lyophilization.
- According to a third embodiment, the present invention furthermore provides a pharmaceutical composition, comprising the inventive solution for lyophilization, transfection and/or injection as defined above containing at least a nucleic acid (sequence) and mannose and eventually further components as defined above, or the lyophilized nucleic acid (sequence) or the lyophilized inventive solution as defined above and optionally a pharmaceutically acceptable carrier and/or vehicle. The inventive pharmaceutical composition may optionally be supplemented with further components as defined above for the inventive solution for lyophilization, transfection and/or injection.
- As a first ingredient, the inventive pharmaceutical composition comprises the inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, or the lyophilized nucleic acid (sequence) as defined above.
- As a second ingredient the inventive pharmaceutical composition may comprise another class of compounds, which may be added to the inventive pharmaceutical composition in this context, may be selected from at least one pharmaceutically active component. A pharmaceutically active component in this context is a compound that has a therapeutic effect against a particular indication, preferably cancer diseases, autoimmune disease, allergies, infectious diseases or a further disease as defined herein. Such compounds include, without implying any limitation, preferably compounds including, without implying any limitation, peptides or proteins (e.g. as defined herein), nucleic acids, (therapeutically active) low molecular weight organic or inorganic compounds (molecular weight less than 5000, preferably less than 1000), sugars, antigens or antibodies (e.g. as defined herein), therapeutic agents already known in the prior art, antigenic cells, antigenic cellular fragments, cellular fractions; modified, attenuated or de-activated (e.g. chemically or by irridation) pathogens (virus, bacteria etc.), etc.
- Furthermore, the inventive pharmaceutical composition may comprise a pharmaceutically acceptable carrier and/or vehicle. In the context of the present invention, a pharmaceutically acceptable carrier typically includes the liquid or non-liquid basis of the inventive pharmaceutical composition. If the inventive pharmaceutical composition is provided in liquid form, the carrier will typically be pyrogen-free water; isotonic saline or buffered (aqueous) solutions, e.g phosphate, citrate etc. buffered solutions. Particularly for injection of the inventive pharmaceutical composition, water or preferably a buffer, more preferably an aqueous buffer, may be used, containing a sodium salt, preferably at least 50 mM of a sodium salt, a calcium salt, preferably at least 0.01 mM of a calcium salt, and optionally a potassium salt, preferably at least 3 mM of a potassium salt. According to a preferred aspect, the sodium, calcium and, optionally, potassium salts may occur in the form of their halogenides, e.g. chlorides, iodides, or bromides, in the form of their hydroxides, carbonates, hydrogen carbonates, or sulfates, etc. Without being limited thereto, examples of sodium salts include e.g. NaCl, NaI, NaBr, Na2 CO3, NaHCO3, Na2SO4, examples of the optional potassium salts include e.g. KCl, KI, KBr, K2CO3, KHCO3, K2SO4, and examples of calcium salts include e.g. CaCl2, Cal2, CaBr2, CaCO3, CaSO4, Ca(OH)2. Furthermore, organic anions of the aforementioned cations may be contained in the buffer. According to a more preferred aspect, the buffer suitable for injection purposes as defined above is an isotonic injection solution as defined herein and therefore may contain salts selected from sodium chloride (NaCl), calcium chloride (CaCl2) and optionally potassium chloride (KCl), wherein further anions may be present additional to the chlorides. CaCl2 can also be replaced by another salt like KCl. Typically, the salts in the injection buffer are present in a concentration of at least 50 mM sodium chloride (NaCl), at least 3 mM potassium chloride (KCl) and at least 0.01 mM calcium chloride (CaCl2). The injection buffer may be hypertonic, isotonic or hypotonic with reference to the specific reference medium, i.e. the buffer may have a higher, identical or lower salt content with reference to the specific reference medium, wherein preferably such concentrations of the afore mentioned salts may be used, which do not lead to damage of cells due to osmosis or other concentration effects. Reference media are e.g. liquids occurring in “in vivo” methods, such as blood, lymph, cytosolic liquids, or other body liquids, or e.g. liquids, which may be used as reference media in “in vitro” methods, such as common buffers or liquids. Such common buffers or liquids are known to a skilled person and may be as defined above. Most preferred are isotonic solutions as defined above in general may be present in an osmolality or osmolarity comparable to that of blood plasma, preferably in the range as defined above.
- However, one or more compatible solid or liquid fillers or diluents or encapsulating compounds may be used as well for the inventive pharmaceutical composition, which are suitable for administration to a patient to be treated. The term “compatible” as used here means that these constituents of the inventive pharmaceutical composition are capable of being mixed with the nucleic acid (sequence) as defined herein in such a manner that no interaction occurs which would substantially reduce the pharmaceutical effectiveness of the inventive pharmaceutical composition under typical use conditions. Pharmaceutically acceptable carriers, fillers and diluents must, of course, have sufficiently high purity and sufficiently low toxicity to make them suitable for administration to a person to be treated. Some examples of compounds which can be used as pharmaceutically acceptable carriers, fillers or constituents thereof are sugars, such as, for example, lactose, glucose and sucrose; starches, such as, for example, corn starch or potato starch; cellulose and its derivatives, such as, for example, sodium carboxymethylcellulose, ethylcellulose, cellulose acetate; powdered tragacanth; malt; gelatin; tallow; solid glidants, such as, for example, stearic acid, magnesium stearate; calcium sulfate; vegetable oils, such as, for example, groundnut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil from theobroma; polyols, such as, for example, polypropylene glycol, glycerol, sorbitol, mannitol and polyethylene glycol; alginic acid.
- The inventive pharmaceutical composition may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, and sublingual injection or infusion techniques. Most preferred is intradermal and transdermal administration.
- Preferably, the inventive pharmaceutical composition may be administered by parenteral injection, more preferably by subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, and sublingual injection or via infusion techniques. Sterile injectable forms of the inventive pharmaceutical compositions may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation of the inventive pharmaceutical composition.
- The inventive pharmaceutical composition as defined above may also be administered orally in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient, i.e. the at least one nucleic acid as defined above of the inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, or of the lyophilized nucleic acid (sequence) as defined above, is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
- The inventive pharmaceutical composition may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, e.g. including diseases of the skin or of any other accessible epithelial tissue. Suitable topical formulations are readily prepared for each of these areas or organs. For topical applications, the inventive pharmaceutical composition may be formulated in a suitable ointment, containing the components as defined above suspended or dissolved in one or more carriers. Carriers for topical administration include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the inventive pharmaceutical composition can be formulated in a suitable lotion or cream. In the context of the present invention, suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate,
polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. - The inventive pharmaceutical composition typically comprises a “safe and effective amount” of the components of the inventive pharmaceutical composition as defined above, particularly of the at least one nucleic acid (sequence). As used herein, a “safe and effective amount” means an amount of the at least one nucleic acid (sequence) that is sufficient to significantly induce a positive modification of a disease or disorder as defined herein. At the same time, however, a “safe and effective amount” is small enough to avoid serious side-effects, that is to say to permit a sensible relationship between advantage and risk. The determination of these limits typically lies within the scope of sensible medical judgment. A “safe and effective amount” of the components of the inventive pharmaceutical composition, particularly of the at least one nucleic acid (sequence) will furthermore vary in connection with the particular condition to be treated and also with the age and physical condition of the patient to be treated, the body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, the activity of the specific nucleic acid (sequence) employed, the severity of the condition, the duration of the treatment, the nature of the accompanying therapy, of the particular pharmaceutically acceptable carrier used, and similar factors, within the knowledge and experience of the accompanying doctor. The inventive pharmaceutical composition may be used for human and also for veterinary medical purposes, preferably for human medical purposes, as a pharmaceutical composition in general or as a vaccine.
- According to a specific aspect, the inventive pharmaceutical composition may be provided as a vaccine. Such an inventive vaccine is typically composed like the inventive pharmaceutical composition, i.e. it contains at least comprising the inventive solution for lyophilization, transfection and/or injection as defined above containing a nucleic acid (sequence) and mannose as defined above, or the lyophilized nucleic acid (sequence) as defined above and optionally a pharmaceutically acceptable carrier and/or vehicle. Further components may be as defined above for the inventive pharmaceutical composition. The inventive vaccine preferably supports at least an innate immune response of the immune system of a patient to be treated. Additionally, the inventive vaccine furthermore may also elicit an adaptive immune response, preferably, if the at least one nucleic acid (sequence) of the inventive vaccine encodes any of the above mentioned antigens (or antibodies), which elicit an adaptive immune response.
- The inventive vaccine may also comprise a pharmaceutically acceptable carrier, adjuvant, and/or vehicle as defined above for the inventive pharmaceutical composition. In the specific context of the inventive vaccine, the choice of a pharmaceutically acceptable carrier is determined in principle by the manner in which the inventive vaccine is administered. The inventive vaccine can be administered, for example, systemically or locally. Routes for systemic administration in general include, for example, transdermal, oral, parenteral routes, including subcutaneous, intravenous, intramuscular, intraarterial, intradermal and intraperitoneal injections and/or intranasal administration routes. Routes for local administration in general include, for example, topical administration routes but also intradermal, transdermal, subcutaneous, or intramuscular injections or intralesional, intracranial, intrapulmonal, intracardial, and sublingual injections. More preferably, vaccines herein may be administered by an intradermal, subcutaneous, or intramuscular route. Inventive vaccines are therefore preferably formulated in liquid (or sometimes in solid) form. The suitable amount of the inventive vaccine to be administered can be determined by routine experiments with animal models. Such models include, without implying any limitation, rabbit, sheep, mouse, rat, dog and non-human primate models. Preferred unit dose forms for injection include sterile solutions of water, physiological saline or mixtures thereof. The pH of such solutions should be adjusted to about 7.4. Suitable carriers for injection include hydrogels, devices for controlled or delayed release, polylactic acid and collagen matrices. Suitable pharmaceutically acceptable carriers for topical application include those which are suitable for use in lotions, creams, gels and the like. If the inventive vaccine is to be administered orally, tablets, capsules and the like are the preferred unit dose form. The pharmaceutically acceptable carriers for the preparation of unit dose forms which can be used for oral administration are well known in the prior art. The choice thereof will depend on secondary considerations such as taste, costs and storability, which are not critical for the purposes of the present invention, and can be made without difficulty by a person skilled in the art.
- The inventive vaccine can additionally contain one or more auxiliary substances in order to further increase its immunogenicity. A synergistic action of the at least one nucleic acid sequence of the inventive vaccine and of an auxiliary substance, which may be optionally contained in the inventive vaccine as described above, is preferably achieved thereby. Depending on the various types of auxiliary substances, various mechanisms can come into consideration in this respect. For example, compounds that permit the maturation of dendritic cells (DCs), for example lipopolysaccharides, TNF-alpha or CD40 ligand, form a first class of suitable auxiliary substances. In general, it is possible to use as auxiliary substance any agent that influences the immune system in the manner of a “danger signal” (LPS, GP96, etc.) or cytokines, such as GM-CFS, which allow an immune response produced by the immune-stimulating adjuvant according to the invention to be enhanced and/or influenced in a targeted manner or adjuvants as defined above. Particularly preferred auxiliary substances are cytokines, such as monokines, lymphokines, interleukins or chemokines, that further promote the innate immune response, such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, INF-alpha, IFN-beta, INF-gamma, GM-CSF, G-CSF, M-CSF, LT-beta or TNF-alpha, growth factors, such as hGH.
- Further additives which may be included in the inventive vaccine are emulsifiers, such as, for example, Tween®, wetting agents, such as, for example, sodium lauryl sulfate; colouring agents; taste-imparting agents, pharmaceutical carriers; tablet-forming agents; stabilizers; antioxidants; preservatives.
- The inventive vaccine can also additionally contain any further compound, which is known to be immune-stimulating due to its binding affinity (as ligands) to human Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, or due to its binding affinity (as ligands) to murine Toll-like receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 or TLR13.
- Another class of compounds, which may be added to an inventive vaccine in this context, may be CpG nucleic acids, in particular CpG-RNA or CpG-DNA. A CpG-RNA or CpG-DNA can be a single-stranded CpG-DNA (ss CpG-DNA), a double-stranded CpG-DNA (dsDNA), a single-stranded CpG-RNA (ss CpG-RNA) or a double-stranded CpG-RNA (ds CpG-RNA). The CpG nucleic acid is preferably in the form of CpG-RNA, more preferably in the form of single-stranded CpG-RNA (ss CpG-RNA). The CpG nucleic acid preferably contains at least one or more (mitogenic) cytosine/guanine dinucleotide sequence(s) (CpG motif(s)). According to a first preferred alternative, at least one CpG motif contained in these sequences, that is to say the C (cytosine) and the G (guanine) of the CpG motif, is unmethylated. All further cytosines or guanines optionally contained in these sequences can be either methylated or unmethylated. According to a further preferred alternative, however, the C (cytosine) and the G (guanine) of the CpG motif can also be present in methylated form. The CpG nucleic acids may be provided either in solubilized or in lyophilized form e.g. lyophilized using a method likewise as described herein for the inventive nucleic acid (sequence).
- Finally, another class of compounds, which may be added to an inventive vaccine in this context, may be selected from at least one pharmaceutically active component as defined above for the inventive pharmaceutical composition.
- According to a further embodiment, the present invention provides several applications and uses of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or of the inventive lyophilized nucleic acid (sequence), of the inventive pharmaceutical composition or of the inventive vaccine all preferably as defined above.
- According to one specific aspect, the present invention is directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the use of the inventive lyophilized nucleic acid (sequence) for lyophilization, transfection and/or injection.
- According to one other specific aspect, the present invention is directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the use of the inventive lyophilized nucleic acid (sequence) for the preparation of an injection solution as defined herein. More preferably, such an injection solution may be used to (significantly) enhance the transfection efficiency of the nucleic acid and or the expression of a protein encoded by the nucleic acid sequence, whereby the encoded protein is preferably a protein as defined herein. Accordingly, the present invention may also be directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the use of the inventive lyophilized nucleic acid (sequence)
- (for the preparation of an injection solution as defined herein, e.g. as a pharmaceutical composition) to (significantly) enhance the transfection efficiency of the nucleic acid and or the expression of a protein encoded by the nucleic acid sequence, whereby the encoded protein is preferably a protein as defined above. Such an injection solution may contain any components as defined above for the inventive solution for lyophilization, transfection and/or injection. Alternatively or additionally, the inventive injection solution may be formed as a pharmaceutical composition or vaccine as defined in the following or may contain components thereof. Preferably, the inventive injection solution may be formulated and/or administered as described in the following for a pharmaceutical composition or vaccine.
- According to one other specific aspect, the present invention is directed to the first medical use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the first medical use of the inventive lyophilized nucleic acid (sequence), i.e. the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or the inventive lyophilized nucleic acid (sequence) as a medicament. The medicament may be in the form of a pharmaceutical composition or in the form of a vaccine as a specific form of pharmaceutical compositions, both preferably as defined herein.
- According to one further aspect, the present invention is directed to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or more preferably the use of the inventive lyophilized nucleic acid (sequence), or the inventive pharmaceutical composition or the inventive vaccine for the prophylaxis, treatment and/or amelioration of diseases as defined herein, preferably selected from cancer or tumor diseases, infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases, autoimmune diseases, allergies or allergic diseases, monogenetic diseases, i.e. (hereditary) diseases, or genetic diseases in general, diseases which have a genetic inherited background and which are typically caused by a single gene defect and are inherited according to Mendel's laws, cardiovascular diseases, neuronal diseases, or any further disease mentioned herein.
- According to another aspect, the present invention is directed to the (second medical) use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or more preferably the use of the inventive lyophilized nucleic acid (sequence), or the inventive pharmaceutical composition or the inventive vaccine for the treatment of diseases as defined herein, preferably to the use of the inventive solution for lyophilization, transfection and/or injection containing a nucleic acid (sequence) and mannose, or more preferably the use of the inventive lyophilized nucleic acid (sequence), or the inventive pharmaceutical composition or the inventive vaccine for the preparation of a medicament for the prophylaxis, treatment and/or amelioration of various diseases as defined herein, preferably selected from cancer or tumor diseases, infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases, autoimmune diseases, allergies or allergic diseases, monogenetic diseases, i.e. (hereditary) diseases, or genetic diseases in general, diseases which have a genetic inherited background and which are typically caused by a single gene defect and are inherited according to Mendel's laws, cardiovascular diseases, neuronal diseases, or any further disease mentioned herein.
- According to one specific aspect, diseases as defined herein comprise cancer or tumor diseases, preferably selected from melanomas, malignant melanomas, colon carcinomas, lymphomas, sarcomas, blastomas, renal carcinomas, gastrointestinal tumors, gliomas, prostate tumors, bladder cancer, rectal tumors, stomach cancer, oesophageal cancer, pancreatic cancer, liver cancer, mammary carcinomas (=breast cancer), uterine cancer, cervical cancer, acute myeloid leukaemia (AML), acute lymphoid leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), hepatomas, various virus-induced tumors such as, for example, papilloma virus-induced carcinomas (e.g. cervical carcinoma=cervical cancer), adenocarcinomas, herpes virus-induced tumors (e.g. Burkitt's lymphoma, EBV-induced B-cell lymphoma), hepatitis B-induced tumors (hepatocell carcinomas), HTLV-1- and HTLV-2-induced lymphomas, acoustic neuroma, lung carcinomas (=lung cancer=bronchial carcinoma), small-cell lung carcinomas, pharyngeal cancer, anal carcinoma, glioblastoma, rectal carcinoma, astrocytoma, brain tumors, retinoblastoma, basalioma, brain metastases, medulloblastomas, vaginal cancer, pancreatic cancer, testicular cancer, Hodgkin's syndrome, meningiomas, Schneeberger disease, hypophysis tumor, Mycosis fungoides, carcinoids, neurinoma, spinalioma, Burkitt's lymphoma, laryngeal cancer, renal cancer, thymoma, corpus carcinoma, bone cancer, non-Hodgkin's lymphomas, urethral cancer, CUP syndrome, head/neck tumors, oligodendroglioma, vulval cancer, intestinal cancer, colon carcinoma, oesophageal carcinoma (=oesophageal cancer), wart involvement, tumors of the small intestine, craniopharyngeomas, ovarian carcinoma, genital tumors, ovarian cancer (=ovarian carcinoma), pancreatic carcinoma (=pancreatic cancer), endometrial carcinoma, liver metastases, penile cancer, tongue cancer, gall bladder cancer, leukaemia, plasmocytoma, lid tumor, prostate cancer (=prostate tumors), etc.
- According to one further specific aspect, diseases as defined herein comprise infectious diseases, preferably (viral, bacterial or protozoological) infectious diseases. Such infectious diseases, preferably to (viral, bacterial or protozoological) infectious diseases, are typically selected from influenza, malaria, SARS, yellow fever, AIDS, Lyme borreliosis, Leishmaniasis, anthrax, meningitis, viral infectious diseases such as AIDS, Condyloma acuminata, hollow warts, Dengue fever, three-day fever, Ebola virus, cold, early summer meningoencephalitis (FSME), flu, shingles, hepatitis, herpes simplex type I, herpes simplex type II, Herpes zoster, influenza, Japanese encephalitis, Lassa fever, Marburg virus, measles, foot-and-mouth disease, mononucleosis, mumps, Norwalk virus infection, Pfeiffer's glandular fever, smallpox, polio (childhood lameness), pseudo-croup, fifth disease, rabies, warts, West Nile fever, chickenpox, cytomegalic virus (CMV), bacterial infectious diseases such as miscarriage (prostate inflammation), anthrax, appendicitis, borreliosis, botulism, Camphylobacter, Chlamydia trachomatis (inflammation of the urethra, conjunctivitis), cholera, diphtheria, donavanosis, epiglottitis, typhus fever, gas gangrene, gonorrhoea, rabbit fever, Heliobacter pylori, whooping cough, climatic bubo, osteomyelitis, Legionnaire's disease, leprosy, listeriosis, pneumonia, meningitis, bacterial meningitis, anthrax, otitis media, Mycoplasma hominis, neonatal sepsis (Chorioamnionitis), noma, paratyphus, plague, Reiter's syndrome, Rocky Mountain spotted fever, Salmonella paratyphus, Salmonella typhus, scarlet fever, syphilis, tetanus, tripper, tsutsugamushi disease, tuberculosis, typhus, vaginitis (colpitis), soft chancre, and infectious diseases caused by parasites, protozoa or fungi, such as amoebiasis, bilharziosis, Chagas disease, Echinococcus, fish tapeworm, fish poisoning (Ciguatera), fox tapeworm, athlete's foot, canine tapeworm, candidosis, yeast fungus spots, scabies, cutaneous Leishmaniosis, lambliasis (giardiasis), lice, malaria, microscopy, onchocercosis (river blindness), fungal diseases, bovine tapeworm, schistosomiasis, porcine tapeworm, toxoplasmosis, trichomoniasis, trypanosomiasis (sleeping sickness), visceral Leishmaniosis, nappy/diaper dermatitis or miniature tapeworm.
- According to another specific aspect, diseases as defined herein comprise autoimmune diseases as defined in the following. Autoimmune diseases can be broadly divided into systemic and organ-specific or localised autoimmune disorders, depending on the principal clinico-pathologic features of each disease. Autoimmune diseases may be divided into the categories of systemic syndromes, including systemic lupus erythematosus (SLE), Sjögren's syndrome, Scleroderma, Rheumatoid Arthritis and polymyositis or local syndromes which may be endocrinologic (type I diabetes (Diabetes mellitus Type 1), Hashimoto's thyroiditis, Addison's disease etc.), dermatologic (pemphigus vulgaris), haematologic (autoimmune haemolytic anaemia), neural (multiple sclerosis) or can involve virtually any circumscribed mass of body tissue. The autoimmune diseases to be treated may be selected from the group consisting of type I autoimmune diseases or type II autoimmune diseases or type III autoimmune diseases or type IV autoimmune diseases, such as, for example, multiple sclerosis (MS), rheumatoid arthritis, diabetes, type I diabetes (Diabetes mellitus Type 1), chronic polyarthritis, Basedow's disease, autoimmune forms of chronic hepatitis, colitis ulcerosa, type I allergy diseases, type II allergy diseases, type III allergy diseases, type IV allergy diseases, fibromyalgia, hair loss, Bechterew's disease, Crohn's disease, Myasthenia gravis, neurodermitis, Polymyalgia rheumatica, progressive systemic sclerosis (PSS), Reiter's syndrome, rheumatic arthritis, psoriasis, vasculitis, etc, or type II diabetes. While the exact mode as to why the immune system induces an immune reaction against autoantigens has not been elucidated so far, there are several findings with regard to the etiology. Accordingly, the autoreaction may be due to a T-Cell bypass. A normal immune system requires the activation of B-cells by T-cells before the former can produce antibodies in large quantities. This requirement of a T-cell can be by-passed in rare instances, such as infection by organisms producing super-antigens, which are capable of initiating polyclonal activation of B-cells, or even of T-cells, by directly binding to the β-subunit of T-cell receptors in a non-specific fashion. Another explanation deduces autoimmune diseases from a Molecular Mimicry. An exogenous antigen may share structural similarities with certain host antigens; thus, any antibody produced against this antigen (which mimics the self-antigens) can also, in theory, bind to the host antigens and amplify the immune response. The most striking form of molecular mimicry is observed in Group A beta-haemolytic streptococci, which shares antigens with human myocardium, and is responsible for the cardiac manifestations of rheumatic fever.
- Additionally, according to one further specific aspect, diseases as defined herein comprise allergies or allergic diseases, i.e. diseases related to allergies. Allergy is a condition that typically involves an abnormal, acquired immunological hypersensitivity to certain foreign antigens or allergens, such as the allergy antigens as defined above. Such allergy antigens or allergens may be selected from allergy antigens as defined above antigens derived from different sources, e.g. from animals, plants, fungi, bacteria, etc. Allergens in this context include e.g. grasses, pollens, molds, drugs, or numerous environmental triggers, etc. Allergies normally result in a local or systemic inflammatory response to these antigens or allergens and lead to immunity in the body against these allergens. Without being bound to theory, several different disease mechanisms are supposed to be involved in the development of allergies. According to a classification scheme by P. Gell and R. Coombs the word “allergy” was restricted to type I hypersensitivities, which are caused by the classical IgE mechanism. Type I hypersensitivity is characterized by excessive activation of mast cells and basophils by IgE, resulting in a systemic inflammatory response that can result in symptoms as benign as a runny nose, to life-threatening anaphylactic shock and death. Well known types of allergies include, without being limited thereto, allergic asthma (leading to swelling of the nasal mucosa), allergic conjunctivitis (leading to redness and itching of the conjunctiva), allergic rhinitis (“hay fever”), anaphylaxis, angiodema, atopic dermatitis (eczema), urticaria (hives), eosinophilia, respiratory, allergies to insect stings, skin allergies (leading to and including various rashes, such as eczema, hives (urticaria) and (contact) dermatitis), food allergies, allergies to medicine, etc. Treatment of such allergic disorders or diseases may occur preferably by desensitizing the immune reaction which triggers a specific immune response. Such a desensitizing may be carried out by administering an effective amount of the allergen or allergic antigen encoded by the lyophilized nucleic acid as defined herein, preferably, when formulated as a pharmaceutical composition, to induce a slight immune reaction. The amount of the allergen or allergic antigen may then be raised step by step in subsequent administrations until the immune system of the patient to be treated tolerates a specific amount of allergen or allergic antigen.
- Additionally, diseases to be treated in the context of the present invention likewise include (hereditary) diseases, or genetic diseases in general monogenetic diseases, i.e. (hereditary) diseases, or genetic diseases in general. Such (mono-)genetic diseases, (hereditary) diseases, or genetic diseases in general are typically caused by genetic defects, e.g. due to gene mutations resulting in loss of protein activity or regulatory mutations which do not allow transcription or translation of the protein. Frequently, these diseases lead to metabolic disorders or other symptoms, e.g. muscle dystrophy. The present invention allows treating the following (hereditary) diseases or genetic diseases: 3-beta-hydroxysteroid dehydrogenase deficiency (type II); 3-ketothiolase deficiency; 6-mercaptopurine sensitivity; Aarskog-Scott syndrome; Abetalipoproteinemia; Acatalasemia; Achondrogenesis; Achondrogenesis-hypochondrogenesis; Achondroplasia; Achromatopsia; Acromesomelic dysplasia (Hunter-Thompson type); ACTH deficiency; Acyl-CoA dehydrogenase deficiency (short-chain, medium chain, long chain); Adenomatous polyposis coli; Adenosin-deaminase deficiency; Adenylosuccinase deficiency; Adhalinopathy; Adrenal hyperplasia, congenital (due to 11-beta-hydroxylase deficiency; due to 17-alpha-hydroxylase deficiency; due to 21-hydroxylase deficiency); Adrenal hypoplasia, congenital, with hypogonadotropic hypogonadism; Adrenogenital syndrom; Adrenoleukodystrophy; Adrenomyeloneuropathy; Afibrinogenemia; Agammaglobulinemia; Alagille syndrome; Albinism (brown, ocular, oculocutaneous, rufous); Alcohol intolerance, acute; Aldolase A deficiency; Aldosteronism, glucocorticoid-remediable; Alexander disease; Alkaptonuria; Alopecia universalis; Alpha-1-antichymotrypsin deficiency; Alpha-methylacyl-CoA racemase deficiency; Alpha-thalassemia/mental retardation syndrome; Alport syndrome; Alzheimer disease-1 (APP-related); Alzheimer disease-3; Alzheimer disease-4; Amelogenesis imperfecta; Amyloid neuropathy (familial, several allelic types); Amyloidosis (Dutch type; Finnish type; hereditary renal; renal; senile systemic); Amytrophic lateral sclerosis; Analbuminemia; Androgen insensitivity; Anemia (Diamond-Blackfan); Anemia (hemolytic, due to PK deficiency); Anemia (hemolytic, Rh-null, suppressor type); Anemia (neonatal hemolytic, fatal and nearfatal); Anemia (sideroblastic, with ataxia); Anemia (sideroblastic/hypochromic); Anemia due to G6PD deficiency; Aneurysm (familial arterial); Angelman syndrome; Angioedema; Aniridia; Anterior segment anomalies and cataract; Anterior segment mesenchymal dysgenesis; Anterior segment mesenchymal dysgenesis and cataract; Antithrombin III deficiency; Anxiety-related personality traits; Apert syndrome; Apnea (postanesthetic); ApoA-1 and apoC-III deficiency (combined); Apolipoprotein A-II deficiency; Apolipoprotein B-100 (ligand-defective); Apparent mineralocorticoid excess (hypertension due to); Argininemia; Argininosuccinicaciduria; Arthropathy (progressive pseudorheumatoid, of childhood); Aspartylglucosaminuria; Ataxia (episodic); Ataxia with isolated vitamin E deficiency; Ataxia-telangiectasia; Atelosteogenesis II; ATP-dependent DNA ligase 1 deficiency; Atrial septal defect with atrioventricular conduction defects; Atrichia with papular lesions; Autism (succinylpurinemic); Autoimmune polyglandular disease, type 1; Autonomic nervous system dysfunction; Axenfeld anomaly; Azoospermia; Bamforth-Lazarus syndrome; Bannayan-Zonana syndrome; Barthsyndrome; Bartter syndrome (type 2 or type 3); Basal cell carcinoma; Basal cell nevus syndrome; BCG infection; Beare-Stevenson cutis gyrata syndrome; Becker muscular dystrophy; Beckwith-Wiedemann syndrome; Bernard-Soulier syndrome (type B; type C); Bethlem myopathy; Bile acid malabsorption, primary; Biotimidase deficiency; Bladder cancer; Bleeding disorder due to defective thromboxane A2 receptor; Bloom syndrome; Brachydactyl)—(type B1 or type C); Branchiootic syndrome; Branchiootorenal syndrome; Breast cancer (invasive intraductal; lobular; male, with Reifenstein syndrome; sporadic); Breast cancer-1 (early onset); Breast cancer-2 (early onset); Brody myopathy; Brugada syndrome; Brunner syndrome; Burkitt lymphoma; Butterfly dystrophy (retinal); C1q deficiency (type A; type B; type C); C1r/CIs deficiency; C1s deficiency, isolated; C2 deficiency; C3 deficiency; C3b inactivator deficiency; C4 deficiency; C8 deficiency, type II; C9 deficiency; Campomelic dysplasia with autosomal sex reversal; Camptodactyl)-arthropathy-coxa varapericarditis syndrome; Canavan disease; Carbamoylphosphate synthetase I deficiency; Carbohydrate-deficient glycoprotein syndrome (type I; type Ib; type II); Carcinoid tumor of lung; Cardioencephalomyopathy (fatal infantile, due to cytochrome c oxidase deficiency); Cardiomyopathy (dilated; X-linked dilated; familial hypertrophic; hypertrophic); Carnitine deficiency (systemic primary); Carnitine-acylcarnitine translocase deficiency; Carpal tunnel syndrome (familial); Cataract (cerulean; congenital; crystalline aculeiform; juvenile-onset; polymorphic and lamellar; punctate; zonular pulverulent); Cataract, Coppock-like; CD59 deficiency; Central core disease; Cerebellar ataxia; Cerebral amyloid angiopathy; Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy; Cerebral cavernous malformations-1; Cerebrooculofacioskeletal syndrome; Cerebrotendinous xanthomatosis; Cerebrovascular disease; Ceroid lipofuscinosis (neuronal, variant juvenile type, with granular osmiophilic deposits); Ceroid lipofuscinosis (neuronal-1, infantile); Ceroid-lipofuscinosis (neuronal-3, juvenile); Char syndrome; Charcot-Marie-Tooth disease; Charcot-Marie-Tooth neuropathy; Charlevoix-Saguenay type; Chediak-Higashi syndrome; Chloride diarrhea (Finnish type); Cholestasis (benign recurrent intrahepatic); Cholestasis (familial intrahepatic); Cholestasis (progressive familial intrahepatic); Cholesteryl ester storage disease; Chondrodysplasia punctata (brachytelephalangic; rhizomelic; X-linked dominant; X-linked recessive; Grebe type); Chondrosarcoma; Choroideremia; Chronic granulomatous disease (autosomal, due to deficiency of CYBA); Chronic granulomatous disease α-linked); Chronic granulomatous disease due to deficiency of NCF-1; Chronic granulomatous disease due to deficiency of NCF-2; Chylomicronemia syndrome, familial; Citrullinemia; classical Cockayne syndrome-1; Cleft lip, cleft jaw, cleft palate; Cleft lip/palate ectodermal dysplasia syndrome; Cleidocranial dysplasia; CMO II deficiency; Coats disease; Cockayne syndrome-2, type B; Coffin-Lowry syndrome; Colchicine resistance; Colon adenocarcinoma; Colon cancer; Colorblindness (deutan; protan; tritan); Colorectal cancer; Combined factor V and VIII deficiency; Combined hyperlipemia (familial); Combined immunodeficiency (X-linked, moderate); Complex I deficiency; Complex neurologic disorder; Cone dystrophy-3; Cone-rod dystrophy 3; Cone-rod dystrophy 6; Cone-rod retinal dystrophy-2; Congenital bilateral absence of vas deferens; Conjunctivitis, ligneous; Contractural arachnodactyly; Coproporphyria; Cornea plana congenita; Corneal clouding; Corneal dystrophy (Avellino type; gelatinous drop-like; Groenouw type I; lattice type I; Reis-Bucklers type); Cortisol resistance; Coumarin resistance; Cowden disease; CPT deficiency, hepatic (type I; type II); Cramps (familial, potassium-aggravated); Craniofacial-deafness-hand syndrome; Craniosynostosis (type 2); Cretinism; Creutzfeldt-Jakob disease; Crigler-Najjar syndrome; Crouzon syndrome; Currarino syndrome; Cutis laxa; Cyclic hematopoiesis; Cyclic ichthyosis; Cylindromatosis; Cystic fibrosis; Cystinosis (nephropathic); Cystinuria (type 11; type Ill); Daltonism; Darier disease; D-bifunctional protein deficiency; Deafness, autosomal dominant 1; Deafness, autosomal dominant 11; Deafness, autosomal dominant 12; Deafness, autosomal dominant 15; Deafness, autosomal dominant 2; Deafness, autosomal dominant 3; Deafness, autosomal dominant 5; Deafness, autosomal dominant 8; Deafness, autosomal dominant 9; Deafness, autosomal recessive 1; Deafness, autosomal recessive 2; Deafness, autosomal recessive 21; Deafness, autosomal recessive 3; Deafness, autosomal recessive 4; Deafness, autosomal recessive 9; Deafness, nonsyndromic sensorineural 13; Deafness, X-linked 1; Deafness, X-linked 3; Debrisoquine sensitivity; Dejerine-Sottas disease; Dementia (familial Danish); Dementia (frontotemporal, with parkinsonism); Dent disease; Dental anomalies; Dentatorubro-pallidoluysian atrophy; Denys-Drash syndrome; Dermatofibrosarcoma protuberans; Desmoid disease; Diabetes insipidus (nephrogenic); Diabetes insipidus (neurohypophyseal); Diabetes mellitus (insulin-resistant); Diabetes mellitus (rare form); Diabetes mellitus (type II); Diastrophic dysplasia; Dihydropyrimidinuria; Dosage-sensitive sex reversal; Doyne honeycomb degeneration of retina; Dubin-Johnson syndrome; Duchenne muscular dystrophy; Dyserythropoietic anemia with thrombocytopenia; Dysfibrinogenemia (alpha type; beta type; gamma type); Dyskeratosis congenita-1; Dysprothrombinemia; Dystonia (DOPAresponsive); Dystonia (myoclonic); Dystonia-1 (torsion); Ectodermal dysplasia; Ectopia lentis; Ectopia pupillae; Ectrodactyl)-(ectodermal dysplasia, and cleft lip/palate syndrome 3); Ehlers-Danlos syndrome (progeroid form); Ehlers-Danlos syndrome (type I; type II; type III; type IV; type VI; type VII); Elastin Supravalvar aortic stenosis; Elliptocytosis-1; Elliptocytosis-2; Elliptocytosis-3; Ellis-van Creveld syndrome; Emery-Dreifuss muscular dystrophy; Emphysema; Encephalopathy; Endocardial fibroelastosis-2; Endometrial carcinoma; Endplate acetylcholinesterase deficiency; Enhanced S-cone syndrome; Enlarged vestibular aqueduct; Epidermolysis bullosa; Epidermolysis bullosa dystrophica (dominant or recessive); Epidermolysis bullosa simplex; Epidermolytic hyperkeratosis; Epidermolytic palmoplantar keratoderma; Epilepsy (generalize; juvenile; myoclonic; nocturnal frontal lobe; progressive myoclonic); Epilepsy, benign, neonatal (type1 or type2); Epiphyseal dysplasia (multiple); Episodic ataxia (type 2); Episodic ataxia/myokymia syndrome; Erythremias (alpha-; dysplasia); Erythrocytosis; Erythrokeratoderma; Estrogen resistance; Exertional myoglobinuria due to deficiency of LDH-A; Exostoses, multiple (type 1; type 2); Exudative vitreoretinopathy, X-linked; Fabry disease; Factor H deficiency; Factor VII deficiency; Factor X deficiency; Factor XI deficiency; Factor XII deficiency; Factor XIIIA deficiency; Factor XIIIB deficiency; Familial Mediterranean fever; Fanconi anemia; Fanconi-Bickel syndrome; Farber lipogranulomatosis; Fatty liver (acute); Favism; Fish-eye disease; Foveal hypoplasia; Fragile X syndrome; Frasier syndrome; Friedreich ataxia; fructose-bisphosphatase Fructose intolerance; Fucosidosis; Fumarase deficiency; Fundus albipunctatus; Fundus flavimaculatus; G6PD deficiency; GABA-transaminase deficiency; Galactokinase deficiency with cataracts; Galactose epimerase deficiency; Galactosemia; Galactosialidosis; GAMT deficiency; Gardner syndrome; Gastric cancer; Gaucher disease; Generalized epilepsy with febrile seizures plus; Germ cell tumors; Gerstmann-Straussler disease; Giant cell hepatitis (neonatal); Giant platelet disorder; Giant-cell fibroblastoma; Gitelman syndrome; Glanzmann thrombasthenia (type A; type B); Glaucoma 1A; Glaucoma 3A; Glioblastoma multiforme; Glomerulosclerosis (focal segmental); Glucose transport defect (blood-brain barrier); Glucose/galactose malabsorption; Glucosidase I deficiency; Glutaricaciduria (type I; type IIB; type IIC); Gluthation synthetase deficiency; Glycerol kinase deficiency; Glycine receptor (alpha-1 polypeptide); Glycogen storage disease I; Glycogen storage disease II; Glycogen storage disease III; Glycogen storage disease IV; Glycogen storage disease VI; Glycogen storage disease VII; Glycogenosis (hepatic, autosomal); Glycogenosis (X-linked hepatic); GM1-gangliosidosis; GM2-gangliosidosis; Goiter (adolescent multinodular); Goiter (congenital); Goiter (nonendemic, simple); Gonadal dysgenesis (XY type); Granulomatosis, septic; Graves disease; Greig cephalopolysyndactyl)-syndrome; Griscelli syndrome; Growth hormone deficient dwarfism; Growth retardation with deafness and mental retardation; Gynecomastia (familial, due to increased aromatase activity); Gyrate atrophy of choroid and retina with ornithinemia (B6 responsive or unresponsive); Hailey-Hailey disease; Haim-Munk syndrome; Hand-foot-uterus syndrome; Harderoporphyrinuria; HDL deficiency (familial); Heart block (nonprogressive or progressive); Heinz body anemia; HELLP syndrome; Hematuria (familial benign); Heme oxygenase-1 deficiency; Hemiplegic migraine; Hemochromotosis; Hemoglobin H disease; Hemolytic anemia due to ADA excess; Hemolytic anemia due to adenylate kinase deficiency; Hemolytic anemia due to band 3 defect; Hemolytic anemia due to glucosephosphate isomerase deficiency; Hemolytic anemia due to glutathione synthetase deficiency; Hemolytic anemia due to hexokinase deficiency; Hemolytic anemia due to PGK deficiency; Hemolytic-uremic syndrome; Hemophagocytic lymphohistiocytosis; Hemophilia A; Hemophilia B; Hemorrhagic diathesis due to factor V deficiency; Hemosiderosis (systemic, due to aceruloplasminemia); Hepatic lipase deficiency; Hepatoblastoma; Hepatocellular carcinoma; Hereditary hemorrhagic telangiectasia-1; Hereditary hemorrhagic telangiectasia-2; Hermansky-Pudlak syndrome; Heterotaxy α-linked visceral); Heterotopia (periventricular); Hippel-Lindau syndrom; Hirschsprung disease; Histidine-rich glycoprotein Thrombophilia due to HRG deficiency; HMG-CoA lyase deficiency; Holoprosencephaly-2; Holoprosencephaly-3; Holoprosencephaly-4; Holoprosencephaly-5; Holt-Oram syndrome; Homocystinuria; Hoyeraal-Hreidarsson; HPFH (deletion type or nondeletion type); HPRT-related gout; Huntington disease; Hydrocephalus due to aqueductal stenosis; Hydrops fetalis; Hyperbetalipoproteinemia; Hypercholesterolemia, familial; Hyperferritinemia-cataract syndrome; Hyperglycerolemia; Hyperglycinemia; Hyperimmunoglobulinemia D and periodic fever syndrome; Hyperinsulinism; Hyperinsulinism-hyperammonemia syndrome; Hyperkalemic periodic paralysis; Hyperlipoproteinemia; Hyperlysinemia; Hypermethioninemia (persistent, autosomal, dominant, due to methionine, adenosyltransferase I/III deficiency); Hyperornithinemia-hyperammonemiahomocitrullinemia syndrome; Hyperoxaluria; Hyperparathyroidism; Hyperphenylalaninemia due to pterin-4-acarbinolamine dehydratase deficiency; Hyperproinsulinemia; Hyperprolinemia; Hypertension; Hyperthroidism (congenital); Hypertriglyceridemia; Hypoalphalipoproteinemia; Hypobetalipoproteinemia; Hypocalcemia; Hypochondroplasia; Hypochromic microcytic anemia; Hypodontia; Hypofibrinogenemia; Hypoglobulinemia and absent B cells; Hypogonadism (hypergonadotropic); Hypogonadotropic (hypogonadism); Hypokalemic periodic paralysis; Hypomagnesemia; Hypomyelination (congenital); Hypoparathyroidism; Hypophosphatasia (adult; childhood; infantile; hereditary); Hypoprothrombinemia; Hypothyroidism (congenital; hereditary congenital; nongoitrous); Ichthyosiform erythroderma; Ichthyosis; Ichthyosis bullosa of Siemens; IgG2 deficiency; Immotile cilia syndrome-1; Immunodeficiency (T-cell receptor/CD3 complex); Immunodeficiency (X-linked, with hyper-IgM); Immunodeficiency due to defect in CD3-gamma; Immunodeficiency-centromeric instabilityfacial anomalies syndrome; Incontinentia pigmenti; Insensitivity to pain (congenital, with anhidrosis); Insomnia (fatal familial); Interleukin-2 receptor deficiency (alpha chain); Intervertebral disc disease; Iridogoniodysgenesis; Isolated growth hormone deficiency (Illig type with absent GH and Kowarski type with bioinactive GH); Isovalericacidemia; Jackson-Weiss sydnrome; Jensen syndrome; Jervell and Lange-Nielsen syndrome; Joubert syndrom; Juberg-Marsidi syndrome; Kallmann syndrome; Kanzaki disease; Keratitis; Keratoderma (palmoplantar); Keratosis palmoplantaris striata I; Keratosis palmoplantaris striata II; Ketoacidosis due to SCOT deficiency; Keutel syndrome; Klippel-Trenaurnay syndrom; Kniest dysplasia; Kostmann neutropenia; Krabbe disease; Kurzripp-Polydaktylie syndrom; Lacticacidemia due to PDX1 deficiency; Langer mesomelic dysplasia; Laron dwarfism; Laurence-Moon-Biedl-Bardet syndrom; LCHAD deficiency; Leber congenital amaurosis; Left-right axis malformation; Leigh syndrome; Leiomyomatosis (diffuse, with Alport syndrome); Leprechaunism; Leri-Weill dyschondrosteosis; Lesch-Nyhan syndrome; Leukemia (acute myeloid; acute promyelocytic; acute T-cell lymphoblastic; chronic myeloid; juvenile myelomonocytic; Leukemia-1 (T-cell acute lymphocytic); Leukocyte adhesion deficiency; Leydig cell adenoma; Lhermitte-Duclos syndrome; Liddle syndrome; L1-Fraumeni syndrome; Lipoamide dehydrogenase deficiency; Lipodystrophy; Lipoid adrenal hyperplasia; Lipoprotein lipase deficiency; Lissencephaly (X-linked); Lissencephaly-1; liver Glycogen storage disease (type 0); Long QT syndrome-1; Long QT syndrome-2; Long QT syndrome-3; Long QT syndrome-5; Long QT syndrome-6; Lowe syndrome; Lung cancer; Lung cancer (nonsmall cell); Lung cancer (small cell); Lymphedema; Lymphoma (B-cell non-Hodgkin); Lymphoma (diffuse large cell); Lymphoma (follicular); Lymphoma (MALT); Lymphoma (mantel cell); Lymphoproliferative syndrome (X-linked); Lysinuric protein intolerance; Machado-Joseph disease; Macrocytic anemia refractory (of 5q syndrome); Macular dystrophy; Malignant mesothelioma; Malonyl-CoA decarboxylase deficiency; Mannosidosis, (alpha- or beta-); Maple syrup urine disease (type Ia; type Ib; type II); Marfan syndrome; Maroteaux-Lamy syndrome; Marshall syndrome; MASA syndrome; Mast cell leukemia; Mastocytosis with associated hematologic disorder; McArdle disease; McCune-Albright polyostotic fibrous dysplasia; McKusick-Kaufman syndrome; McLeod phenotype; Medullary thyroid carcinoma; Medulloblastoma; Meesmann corneal dystrophy; Megaloblastic anemia-1; Melanoma; Membroproliferative glomerulonephritis; Meniere disease; Meningioma (NF2-related; SIS-related); Menkes disease; Mental retardation α-linked); Mephenyloin poor metabolizer; Mesothelioma; Metachromatic leukodystrophy; Metaphyseal chondrodysplasia (Murk Jansen type; Schmid type); Methemoglobinemia; Methionine adenosyltransferase deficiency (autosomal recessive); Methylcobalamin deficiency (cbl G type); Methylmalonicaciduria (mutase deficiency type); Mevalonicaciduria; MHC class II deficiency; Microphthalmia (cataracts, and iris abnormalities); Miyoshi myopathy; MODY; Mohr-Tranebjaerg syndrome; Molybdenum cofactor deficiency (type A or type B); Monilethrix; Morbus Fabry; Morbus Gaucher; Mucopolysaccharidosis; Mucoviscidosis; Muencke syndrome; Muir-Torre syndrome; Mulibrey nanism; Multiple carboxylase deficiency (biotinresponsive); Multiple endocrine neoplasia; Muscle glycogenosis; Muscular dystrophy (congenital merosindeficient); Muscular dystrophy (Fukuyama congenital); Muscular dystrophy (limb-girdle); Muscular dystrophy) Duchenne-like); Muscular dystrophy with epidermolysis bullosa simplex; Myasthenic syndrome (slow-channel congenital); Mycobacterial infection (atypical, familial disseminated); Myelodysplastic syndrome; Myelogenous leukemia; Myeloid malignancy; Myeloperoxidase deficiency; Myoadenylate deaminase deficiency; Myoglobinuria/hemolysis due to PGK deficiency; Myoneurogastrointestinal encephalomyopathy syndrome; Myopathy (actin; congenital; desmin-related; cardioskeletal; distal; nemaline); Myopathy due to CPT 11 deficiency; Myopathy due to phosphoglycerate mutase deficiency; Myotonia congenita; Myotonia levior; Myotonic dystrophy; Myxoid liposarcoma; NAGA deficiency; Nailpatella syndrome; Nemaline myopathy 1 (autosomal dominant); Nemaline myopathy 2 (autosomal recessive); Neonatal hyperparathyroidism; Nephrolithiasis; Nephronophthisis (juvenile); Nephropathy (chronic hypocomplementemic); Nephrosis-1; Nephrotic syndrome; Netherton syndrome; Neuroblastoma; Neurofibromatosis (type I or type 2); Neurolemmomatosis; neuronal-5 Ceroid-lipofuscinosis; Neuropathy; Neutropenia (alloimmune neonatal); Niemann-Pick disease (type A; type B; type C1; type D); Night blindness (congenital stationary); Nijmegen breakage syndrome; Noncompaction of left ventricular myocardium; Nonepidermolytic palmoplantar keratoderma; Norrie disease; Norum disease; Nucleoside phosphorylase deficiency; Obesity; Occipital hornsyndrome; Ocular albinism (Nettleship-Falls type); Oculopharyngeal muscular dystorphy; Oguchi disease; Oligodontia; Omenn syndrome; Opitz G syndrome; Optic nerve coloboma with renal disease; Ornithine transcarbamylase deficiency; Oroticaciduria; Orthostatic intolerance; OSMED syndrome; Ossification of posterior longitudinal ligament of spine; Osteoarthrosis; Osteogenesis imperfecta; Osteolysis; Osteopetrosis (recessive or idiopathic); Osteosarcoma; Ovarian carcinoma; Ovarian dysgenesis; Pachyonychia congenita (Jackson-Lawler type or Jadassohn-Lewandowsky type); Paget disease of bone; Pallister-Hall syndrome; Pancreatic agenesis; Pancreatic cancer; Pancreatitis; Papillon-Lefevre syndrome; Paragangliomas; Paramyotonia congenita; Parietal foramina; Parkinson disease (familial or juvenile); Paroxysmal nocturnal hemoglobinuria; Pelizaeus-Merzbacher disease; Pendred syndrome; Perineal hypospadias; Periodic fever; Peroxisomal biogenesis disorder; Persistent hyperinsulinemic hypoglycemia of infancy; Persistent Mullerian duct syndrome (type II); Peters anomaly; Peutz-Jeghers syndrome; Pfeiffer syndrome; Phenylketonuria; Phosphoribosyl pyrophosphate synthetaserelated gout; Phosphorylase kinase deficiency of liver and muscle; Piebaldism; Pilomatricoma; Pinealoma with bilateral retinoblastoma; Pituitary ACTH secreting adenoma; Pituitary hormone deficiency; Pituitary tumor; Placental steroid sulfatase deficiency; Plasmin inhibitor deficiency; Plasminogen deficiency (types I and II); Plasminogen Tochigi disease; Platelet disorder; Platelet glycoprotein IV deficiency; Platelet-activating factor acetylhydrolase deficiency; Polycystic kidney disease; Polycystic lipomembranous osteodysplasia with sclerosing leukenencephalophathy; Polydactyl), postaxial; Polyposis; Popliteal pterygium syndrome; Porphyria (acute hepatic or acute intermittent or congenital erythropoietic); Porphyria cutanea tarda; Porphyria hepatoerythropoietic; Porphyria variegata; Prader-Willi syndrome; Precocious puberty; Premature ovarian failure; Progeria Typ 1; Progeria Typ II; Progressive external ophthalmoplegia; Progressive intrahepatic cholestasis-2; Prolactinoma (hyperparathyroidism, carcinoid syndrome); Prolidase deficiency; Propionicacidemia; Prostate cancer; Protein S deficiency; Proteinuria; Protoporphyria (erythropoietic); Pseudoachondroplasia; Pseudohermaphroditism; Pseudohypoaldosteronism; Pseudohypoparathyroidism; Pseudovaginal perineoscrotal hypospadias; Pseudovitamin D deficiency rickets; Pseudoxanthoma elasticum (autosomal dominant; autosomal recessive); Pulmonary alveolar proteinosis; Pulmonary hypertension; Purpura fulminans; Pycnodysostosis; Pyropoikilocytosis; Pyruvate carboxylase deficiency; Pyruvate dehydrogenase deficiency; Rabson-Mendenhall syndrome; Refsum disease; Renal cell carcinoma; Renal tubular acidosis; Renal tubular acidosis with deafness; Renal tubular acidosis-osteopetrosis syndrome; Reticulosis (familial histiocytic); Retinal degeneration; Retinal dystrophy; Retinitis pigmentosa; Retinitis punctata albescens; Retinoblastoma; Retinol binding protein deficiency; Retinoschisis; Rett syndrome; Rh(mod) syndrome; Rhabdoid predisposition syndrome; Rhabdoid tumors; Rhabdomyosarcoma; Rhabdomyosarcoma (alveolar); Rhizomelic chondrodysplasia punctata; Ribbing-Syndrom; Rickets (vitamin D-resistant); Rieger anomaly; Robinow syndrome; Rothmund-Thomson syndrome; Rubenstein-Taybi syndrome; Saccharopinuria; Saethre-Chotzen syndrome; Salla disease; Sandhoff disease (infantile, juvenile, and adult forms); Sanfilippo syndrome (type A or type B); Schindler disease; Schizencephaly; Schizophrenia (chronic); Schwannoma (sporadic); SCID (autosomal recessive, T-negative/Bpositive type); Secretory pathway w/TMD; SED congenita; Segawa syndrome; Selective T-cell defect; SEMD (Pakistani type); SEMD (Strudwick type); Septooptic dysplasia; Severe combined immunodeficiency (B cellnegative); Severe combined immunodeficiency (T-cell negative, B-cell/natural killer cell-positive type); Severe combined immunodeficiency (Xlinked); Severe combined immunodeficiency due to ADA deficiency; Sex reversal (XY, with adrenal failure); Sezary syndrome; Shah-Waardenburg syndrome; Short stature; Shprintzen-Goldberg syndrome; Sialic acid storage disorder; Sialidosis (type I or type II); Sialuria; Sickle cell anemia; Simpson-Golabi-Behmel syndrome; Situs ambiguus; Sjogren-Larsson syndrome; Smith-Fineman-Myers syndrome; Smith-Lemli-Opitz syndrome (type I or type II); Somatotrophinoma; Sorsby fundus dystrophy; Spastic paraplegia; Spherocytosis; Spherocytosis-1; Spherocytosis-2; Spinal and bulbar muscular atrophy of Kennedy; Spinal muscular atrophy; Spinocerebellar ataxia; Spondylocostal dysostosis; Spondyloepiphyseal dysplasia tarda; Spondylometaphyseal dysplasia (Japanese type); Stargardt disease-1; Steatocystoma multiplex; Stickler syndrome; Sturge-Weber syndrom; Subcortical laminal heteropia; Subcortical laminar heterotopia; Succinic semialdehyde dehydrogenase deficiency; Sucrose intolerance; Sutherland-Haan syndrome; Sweat chloride elevation without CF; Symphalangism; Synostoses syndrome; Synpolydactyly; Tangier disease; Tay-Sachs disease; T-cell acute lymphoblastic leukemia; T-cell immunodeficiency; T-cell prolymphocytic leukemia; Thalassemia (alpha- or delta-); Thalassemia due to Hb Lepore; Thanatophoric dysplasia (types I or II); Thiamine-responsive megaloblastic anemia syndrome; Thrombocythemia; Thrombophilia (dysplasminogenemic); Thrombophilia due to heparin cofactor II deficiency; Thrombophilia due to protein C deficiency; Thrombophilia due to thrombomodulin defect; Thyroid adenoma; Thyroid hormone resistance; Thyroid iodine peroxidase deficiency; Tietz syndrome; Tolbutamide poor metabolizer; Townes-Brocks syndrome; Transcobalamin II deficiency; Treacher Collins mandibulofacial dysostosis; Trichodontoosseous syndrome; Trichorhinophalangeal syndrome; Trichothiodystrophy; Trifunctional protein deficiency (type I or type II); Trypsinogen deficiency; Tuberous sclerosis-1; Tuberous sclerosis-2; Turcot syndrome; Tyrosine phosphatase; Tyrosinemia; Ulnar-mammary syndrome; Urolithiasis (2,8-dihydroxyadenine); Usher syndrome (type 1B or type 2A); Venous malformations; Ventricular tachycardia; Virilization; Vitamin K-dependent coagulation defect; VLCAD deficiency; Vohwinkel syndrome; von Hippel-Lindau syndrome; von Willebrand disease; Waardenburg syndrome; Waardenburg syndrome/ocular albinism; Waardenburg-Shah neurologic variant; Waardenburg-Shah syndrome; Wagner syndrome; Warfarin sensitivity; Watson syndrome; Weissenbacher-Zweymuller syndrome; Werner syndrome; Weyers acrodental dysostosis; White sponge nevus; Williams-Beuren syndrome; Wilms tumor (type1); Wilson disease; Wiskott-Aldrich syndrome; Wolcott-Rallison syndrome; Wolfram syndrome; Wolman disease; Xanthinuria (type I); Xeroderma pigmentosum; X-SCID; Yemenite deaf-blind hypopigmentation syndrome; ypocalciuric hypercalcemia (type I); Zellweger syndrome; Zlotogora-Ogur syndrome.
- Diseases to be treated in the context of the present invention likewise also include diseases which have a genetic inherited background and which are typically caused by a single gene defect and are inherited according to Mendel's laws are preferably selected from the group consisting of autosomal-recessive inherited diseases, such as, for example, adenosine deaminase deficiency, familial hypercholesterolaemia, Canavan's syndrome, Gaucher's disease, Fanconi anaemia, neuronal ceroid lipofuscinoses, mucoviscidosis (cystic fibrosis), sickle cell anaemia, phenylketonuria, alcaptonuria, albinism, hypothyreosis, galactosaemia, alpha-1-anti-trypsin deficiency, Xeroderma pigmentosum, Ribbing's syndrome, mucopolysaccharidoses, cleft lip, jaw, palate, Laurence Moon Biedl Bardet sydrome, short rib polydactylia syndrome, cretinism, Joubert's syndrome, type II progeria, brachydactylia, adrenogenital syndrome, and X-chromosome inherited diseases, such as, for example, colour blindness, e.g. red/green blindness, fragile X syndrome, muscular dystrophy (Duchenne and Becker-Kiener type), haemophilia A and B, G6PD deficiency, Fabry's disease, mucopolysaccharidosis, Norrie's syndrome, Retinitis pigmentosa, septic granulomatosis, X-SCID, ornithine transcarbamylase deficiency, Lesch-Nyhan syndrome, or from autosomal-dominant inherited diseases, such as, for example, hereditary angiooedema, Marfan syndrome, neurofibromatosis, type I progeria, Osteogenesis imperfecta, Klippel-Trenaurnay syndrome, Sturge-Weber syndrome, Hippel-Lindau syndrome and tuberosis sclerosis.
- The present invention also allows treatment of diseases, which have not been inherited, or which may not be summarized under the above categories. Such diseases may include e.g. the treatment of patients, which are in need of a specific protein factor, e.g. a specific therapeutically active protein as mentioned above. This may e.g. include dialysis patients, e.g. patients which undergo a (regular) a kidney or renal dialysis, and which may be in need of specific therapeutically active proteins as defined above, e.g. erythropoietin (EPO), etc.
- Likewise, diseases in the context of the present invention may include cardiovascular diseases chosen from, without being limited thereto, coronary heart disease, arteriosclerosis, apoplexy and hypertension, etc.
- Finally, diseases in the context of the present invention may be chosen from neuronal diseases including e.g. Alzheimer's disease, amyotrophic lateral sclerosis, dystonia, epilepsy, multiple sclerosis and Parkinson's disease etc.
- According to a final embodiment, the present invention also provides kits, particularly kits of parts. Such kits of parts may contain e.g. a pharmaceutical composition or a vaccine as defined above, preferably divided into different parts of the kit. As an example, the inventive pharmaceutical composition or the inventive vaccine may be prepared as a kit of parts, e.g. by incorporating into one or more parts of the kit components of the inventive pharmaceutical composition or the inventive vaccine as described herein as a dry formulation, i.e. devoid of any liquid component, and in at least one further separate part of the kit water, a liquid and/or a buffer as described herein for the inventive pharmaceutical composition or the inventive vaccine or a liquid and/or a buffer as described herein for the inventive solution for lyophilization, transfection and/or injection, e.g. an isotonic salt solution. Alternatively, the inventive pharmaceutical composition or the inventive vaccine may be prepared as a kit of parts, e.g. by incorporating into one or more parts of the kit the lyophilized nucleic acid (sequence) as described herein, i.e. devoid of any liquid component, and in at least one further separate part of the kit a liquid and/or a buffer as described herein for the inventive pharmaceutical composition or the inventive vaccine or a liquid and/or a buffer as described herein for the inventive solution for lyophilization, transfection and/or injection, e.g. an isotonic salt solution. Further components may be incorporated in such kits of parts as described above for the inventive solution for lyophilization, transfection and/or injection or as described above for the inventive pharmaceutical composition or as described above for the inventive vaccine e.g. in the dry part(s) of the kit, in the liquid part(s) of the kit, preferably in solubilized form, or in at least one separate part of the kit as a dry form and/or in a lyophilized (liquid) form. Such kits, preferably kits of parts, may be applied, e.g., for any of the above mentioned applications or uses. The kit may optionally contain technical instructions with information on the administration and dosage of the lyophilized nucleic acid. Kit of parts, comprising in one or more parts of the kit at least one lyophilized nucleic acid as defined herein, and optionally in one or more parts of the kit further additives as defined herein, and in one or more parts of the kit water, a liquid and/or a buffer or solution as defined herein, and optionally technical instructions with information on the administration and dosage of the lyophilized nucleic acid.
- The following examples are intended to illustrate the invention further. They are not intended to limit the subject matter of the invention thereto.
- For the present examples DNA sequences encoding Photinus pyralis luciferase as well as DNA sequences encoding Ovalbumin were prepared and used for subsequent in vitro transcription reactions and expression studies.
- According to a first preparation, the DNA sequence corresponding to pCV19-Ppluc(GC)-muag-A70-C30 was prepared, which encodes the Photinus pyralis luciferase coding sequence. The constructs were prepared by modifying the wild type Photinus pyralis luciferase encoding DNA sequence by introducing a GC-optimized sequence for a better codon usage and stabilization, stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR)), a stretch of 70× adenosine at the 3′-terminal end (poly-A-tail) and a stretch of 30× cytosine at the 3′-terminal end (poly-C-tail), corresponding to SEQ ID NO: 1 (see
FIG. 5 ). The sequence of the final DNA construct had a length of 1857 nucleotides. The corresponding mRNA sequence was termed “pCV19-Ppluc(GC)-muag-A70-C30” (SEQ ID NO: 1) (seeFIG. 5 ). - According to a second preparation, the DNA sequence corresponding to CAP-GgOva(GC)-muag-A70-C30 was prepared, which encodes to the Ovalbumin coding sequence. Therefore, a basic DNA construct was prepared corresponding to CAP-GgOva(GC)-muag-A70-C30 by introducing into the underlying wild type sequence construct stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR)), a stretch of 70× adenosine at the 3′-terminal end (poly-A-tail) and a stretch of 30× cytosine at the 3′-terminal end (poly-C-tail), leading to a sequence corresponding to SEQ ID NO: 2 (see
FIG. 6 ). The corresponding mRNA sequence was termed CAP-GgOva(GC)-muag-A70-C30 (SEQ ID NO: 2) (seeFIG. 6 ). - Both sequences contain following sequence elements:
-
- the coding sequence encoding Photinus pyralis luciferase (SEQ ID NO: 1) or Gallus gallus Ovalbumin (SEQ ID NO: 2);
- stabilizing sequences derived from alpha-globin-3′-UTR (muag (mutated alpha-globin-3′-UTR));
- 70× adenosine at the 3′-terminal end (poly-A-tail);
- 30× cytosine at the 3′-terminal end (poly-C-tail).
- The respective DNA plasmids prepared according to Example 1 were transcribed in vitro using T7-Polymerase (T7-Opti mRNA Kit, CureVac, Tibingen, Germany) following the manufactures instructions. Subsequently the mRNA was purified using PureMessenger® (CureVac, Tubingen, Germany).
- The PureMessenger® purified and precipitated mRNA obtained according to Examples 1 and 2 coding for Photinus pyralis luciferase (Luc mRNA) (SEQ ID NO: 1) or Ovalbumin (SEQ ID NO: 2) were prepared for transfection and expression tests.
- The PureMessenger® purified and precipitated mRNA obtained according to Examples 1 and 2 coding for Photinus pyralis luciferase (Luc mRNA) (SEQ ID NO: 1) or Ovalbumin (SEQ ID NO: 2) was dissolved in water for injection (WFI) to 5 g/l. Subsequently the mRNA was diluted with WFI (water for injection) or salt solution (see
FIG. 2 ), with addition of glucose, trehalose, mannite or mannose. Aliquots of these solutions were lyophilized (Controls were frozen in liquid nitrogen or kept in solution). The locked cups were stored for the indicated time at 60° C. The resuspension was conducted with WFI. - In the present experiment following solutions for lyophilization were used:
-
- WFI (water for injection): purified mRNA coding for luciferase with a concentration of 4.9 g/l in WFI was diluted with WFI to a final mRNA concentration of 0.05 g/l.
- Buffer containing mannose: 0.25 g mannose was diluted with 10 ml WFI and passed through a syringe filter tip 0.22 μm resulting in a sterile 2.5% (w/w) mannose containing solution. Purified mRNA coding for luciferase with a concentration of 4.9 g/l in WFI was diluted with the sterile 2.5% (w/w) mannose solution to a final mRNA concentration of 0.05 g/l.
- Buffer containing trehalose: 0.5 g trehalose was diluted with 10 ml WFI and passed through a syringe filter tip 0.22 μm resulting in a sterile 5% (w/w) trehalose containing solution. Purified mRNA coding for luciferase with a concentration of 4.9 g/l in WFI was diluted with the sterile 5% (w/w) trehalose solution to a final mRNA concentration of 0.05 g/l.
- Buffer containing mannite: 0.5 g mannite was diluted with 10 ml WFI and passed through a syringe filter tip 0.22 μm resulting in a sterile 5% (w/w) mannite containing solution. Purified mRNA coding for luciferase with a concentration of 4.9 g/l in WFI was diluted with the sterile 5% (w/w) mannite solution to a final mRNA concentration of 0.05 g/l. The dilution errors for mannose, trehalose, and mannite were neclectable.
- Buffer control
Ringer lactate solution 80% in WFI was used (not lyophilized);
- The mRNA containing buffers were frozen by liquid nitrogen for at least min and lyophilized over night at 0.08 mbar in a freeze drier Alpha 1-2 (Fa. Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany). The lyophilisates were dissolved with a sterile salt containing solution (5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 130 mM NaCl in WFI).
- Each group (2 mice per group) of 7 week old female balb/c mice were treated by intradermal injection with 100 μl of each sample. After 24 h mice were killed and the injected tissue was collected and lysed as described ahead. Tissue samples were crushed by a mill after freezing in liquid nitrogen and lysed afterwards by adding 800 μl of lysing buffer (25 mM Tris HCL, 2 mM EDTA, 10% Glycerol, 1% Triton X-100, 2 mM DTT, 1 mM PMSF, pH 7.5-7.8). The lysates were shaked for 6 min and spinned down for another min at 4° C. and 13500 rpm. The supernatants were measured with a luminometer LB9507 and analyzed as grouped analysis using 2-way ANOVA with Bonferroni post test.
- The results are shown in
FIG. 1 .FIG. 1 shows the in vivo luciferase expression in balb/c mice 1) buffer control: Ringer-lactate 2) mRNA/WFI: mRNA coding for luciferase lyophilized in WFI (water for injection) and dissolved in salt containing solution 3) mRNA/trehalose: mRNA coding for luciferase lyophilized in WFI containing 5% trehalose and dissolved in salt containing solution 4) mRNA/mannose: mRNA coding for luciferase lyophilized in WFI containing 2.5% mannose and dissolved in salt containing solution 5) mRNA/mannite: mRNA coding for luciferase lyophilized in WFI containing 5% mannite and dissolved in salt containing solution. - After an intradermal injection in balb/c mice of mRNA coding for Photinus pyrialis luciferase (PpLuc RNA) (0.05 g/L) dissolved in a salt solution (5 mM KCl, 130 mM NaCl, 2 mM Ca, 2 mM Mg) which was lyophilized in WFI (water of injection) plus 2.5% (w/w) mannose, the luciferase expression increases by a factor of more than 20 compared to an injection of mRNA which was lyophilized in WFI without mannose (see
FIG. 1 ). Other sugars (trehalose and mannite) which were added to the solution before lyophilization could not improve the expression of the encoded protein. - In the following a comparison of the stability of RNA in solution and lyophilized RNA and a comparison of the stability of RNA lyophilized from mannose or glucose containing solution was carried out.
- mRNA was complexed with protamine according to the following protocol. RNA was first mixed at a ratio 4:1 RNA/Protamine (w/w) with a protamine containing salt solution (5 mM KCl, 2 mM CaCl, 2 mM MgCl, 130 mM NaCl) to a final RNA concentration of 0.4 g/l. Mannose was added to the solution in a final concentration of 2.5% (w/w).
- The solution was divided into 65 μl containing aliquots in 2 ml polypropylene tubes with crewed caps. Half of the samples were frozen by liquid nitrogen for at least min and lyophilized over night at 0.08 mbar in a freeze drier Alpha 1-2 (Fa. Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany). Liquid and lyophilized samples were stored at 60° C. for 1 to 5 weeks. Every week 2 aliquotes of each lyophilisat were dissolved in 65 μl WFI. 50 μl of each sample were precipitated with 2-propanole. The pellets were diluted in 50 μl WFI again and for 1 g of each sample an agarose gel electrophoresis was conducted. After separation the relative integrity of RNA was measured as the relation between full length product and total RNA calculated in %. 70% relative integrity was found to be a typical limit for an intact product accepted by the authorities.
- The results are described in
FIG. 2 .FIG. 2 shows the relative integrity of RNA in mRNA/protamine containing samples dissolved in salt containing solution (5 mM K, 2 mM Ca, 2 mM Mg, 130 mM Na) and subsequently 1) lyophilized from salt solution (1=RNA-Lyo-Salt) 2) stored in salt solution (2=RNA-Sol-Salt) 3) lyophilized from 2.5% mannose containing salt solution (3=RNA-Lyo_MnSalt) or 4) stored in 2.5% mannose containing salt solution (4=RNA-Sol_MnSalt). - It is remarkable that RNA cannot be stored at 60° C. neither in the salt solution nor in the mannose containing salt solution. Comparison of the lyophilized samples clearly shows that storage of RNA at 60° C. is not possible when lyophilized from a salt containing solution. However, addition of mannose leads to an absolutely unexpected stabilization of the RNA, although it is believed in the state of the art that presence of salts is adverse and therefore should be avoided.
- b) Comparison of the Stability of RNA Lyophilized from Mannose or Glucose Containing Solution
- mRNA was complexed with protamine in the following protocol. RNA was mixed at a ratio 4:1 RNA/Protamine (w/w) with a diluted protamine solution containing protamine, WFI and mannose or glucose to a final RNA concentration of 0.4 g/l and 5% (w/w) mannose or 5% (w/w) glucose.
- The solution was divided into 65 μl containing aliquots in 2 ml polypropylene tubes with crewed caps, frozen by liquid nitrogen for at least 5 min and lyophilized over night at 0.08 mbar in a freeze drier Alpha 1-2 (Fa. Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany). The samples were stored at 60° C. for 0-33 days. At the indicated time points 2 aliquotes of each sample were dissolved in 65 μl WFI. 50 μl of each sample were precipitated with 2-propanole. The pellets were diluted in 50 μl WFI again and for 1 μg of each sample an agarose gel electrophoresis was conducted. After separation the relative integrity of RNA was measured as the relation between full length product and total RNA calculated in %. 70% relative integrity was found to be a typical limit for an intact product accepted by the authorities.
- The results are shown in
FIG. 3 .FIG. 3 depicts the relative integrity of mRNA lyophilized in a glucose or mannose containing solution stored at 60° C. for 0 to 33 days (d). - This experiment shows that mannose clearly increases the stability of lyophilized RNA compared to the addition of glucose. This is remarkable because mannose is the epimer of glucose and therefore nobody skilled in the art would have expected that mannose is more effective in stabilization of RNA than glucose.
- The samples used in this experiment were:
- OVA-RNActive in RiLa: mRNA coding for Gallus gallus ovalbumine complexed with protamine and dissolved in 80% Ringer lactate
- OVA-RNActive lyophilized in 2.5% (w/w) mannose: mRNA coding for Gallus gallus ovalbumine complexed with protamine, lyophilized in WFI containing 2.5% (w/w) mannose and dissolved in 80% Ringer lactate
- RiLa control: 80% Ringer lactate was used as control mRNA coding for ovalbumine was complexed with protamine in the following protocol. RNA was mixed at a ratio 4:1 RNA/Protamine (w/w). Mannose was added to a final concentration of 2.5% (w/w).
- The mannose containing RNA solution was aliquoted into a borosilicate glas typ I and frozen by liquid nitrogen for at least 5 min and lyophilized at 0.055 mbar for 22 h. Sample plates were kept at room temperature for 17 h and were than elevated to 35° C. for another 5 h. The chamber was flooded with dry argon and the samples were closed under this atmosphere by a bromobutyl stopper. The lyophilized and non-lyophilized samples were stored in an exsiccator at 4-8° C. and the lyophilized sample was dissolved in 80% Ringer lactate prior to use. Prior use the samples were controlled for relative integrity by agarose gel chromatography and complex size by dynamic light scattering using a Zetasizer Nano (Malvern Instruments, Malvern, UK).
- 7 week old C57BL/6 mice were vaccinated intradermally with 2 cycles (
Prime day 1/Boost day 9) of 80 μl formulations. As anegative control 80μl 80% Ringer lactate without any RNA were injected. At day 15 1×106 E.G7-OVA cells (tumour cells which stably express ovalbumine) per mice were implanted subcutaneously. Tumour growth was monitored by measuring the tumor size in 3 dimensions using a calliper. - The results are shown in
FIG. 4 .FIG. 4 depicts the tumour growth in mice vaccinated with 1) 80% Ringer lactate as control, 2) mRNA coding for ovalbumine (not lyophilized) in 80% Ringer lactate and 3) mRNA coding for ovalbumine lyophilized in 2.5% (w/w) mannose containing WFI and dissolved in 80% Ringer lactate. - It is remarkable that a mannose-containing solution extremely enhances the efficacy of the mRNA vaccination compared to the sample without mannose. Since the samples were controlled for integrity and complex size it is guaranteed that the RNA was intact in all samples.
- The optimal concentration of mannose is located between 1% and 10%. The formulation of the injection solution can contain different salts (e.g. 0.5 mM to 50 mM potassium, 13 mM to 250 mM sodium, 0.2 mM to 10 mM calcium, and 0.2 mM to 10 mM magnesium). Different injection solutions can be utilized, e.g. PBS, HBSS, Ringer-Lactat.
Claims (28)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2009/008804 WO2011069529A1 (en) | 2009-12-09 | 2009-12-09 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
EPPCT/EP2009/008804 | 2009-12-09 | ||
PCT/EP2010/006788 WO2011069586A1 (en) | 2009-12-09 | 2010-11-08 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/006788 A-371-Of-International WO2011069586A1 (en) | 2009-12-09 | 2010-11-08 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/492,334 Continuation US9616084B2 (en) | 2009-12-09 | 2014-09-22 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120258046A1 true US20120258046A1 (en) | 2012-10-11 |
Family
ID=42126466
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/509,564 Abandoned US20120258046A1 (en) | 2009-12-09 | 2010-11-08 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
US14/492,334 Expired - Fee Related US9616084B2 (en) | 2009-12-09 | 2014-09-22 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
US15/451,675 Abandoned US20170182081A1 (en) | 2009-12-09 | 2017-03-07 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/492,334 Expired - Fee Related US9616084B2 (en) | 2009-12-09 | 2014-09-22 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
US15/451,675 Abandoned US20170182081A1 (en) | 2009-12-09 | 2017-03-07 | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
Country Status (2)
Country | Link |
---|---|
US (3) | US20120258046A1 (en) |
WO (2) | WO2011069529A1 (en) |
Cited By (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2014179335A1 (en) | 2013-04-29 | 2014-11-06 | Memorial Sloan Kettering Cancer Center | Compositions and methods for altering second messenger signaling |
US8968746B2 (en) | 2010-07-30 | 2015-03-03 | Curevac Gmbh | Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
WO2015051214A1 (en) | 2013-10-03 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2015075557A2 (en) | 2013-11-22 | 2015-05-28 | Mina Alpha Limited | C/ebp alpha compositions and methods of use |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9234013B2 (en) | 2010-08-13 | 2016-01-12 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
US9238064B2 (en) | 2008-03-03 | 2016-01-19 | University Of Miami | Allogeneic cancer cell-based immunotherapy |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9314535B2 (en) | 2009-09-03 | 2016-04-19 | Curevac Ag | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9421255B2 (en) | 2011-02-21 | 2016-08-23 | Curevac Ag | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9447431B2 (en) | 2012-02-15 | 2016-09-20 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9517258B2 (en) | 2012-03-15 | 2016-12-13 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
US9623095B2 (en) | 2011-03-02 | 2017-04-18 | Curevac Ag | Vaccination in newborns and infants |
US9669089B2 (en) | 2012-02-15 | 2017-06-06 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
US9683233B2 (en) | 2012-03-27 | 2017-06-20 | Curevac Ag | Artificial nucleic acid molecules for improved protein or peptide expression |
US9688729B2 (en) | 2013-08-21 | 2017-06-27 | Curevac Ag | Respiratory syncytial virus (RSV) vaccine |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US9737595B2 (en) | 2010-12-29 | 2017-08-22 | Curevac Ag | Combination of vaccination and inhibition of MHC class I restricted antigen presentation |
US9890391B2 (en) | 2012-03-27 | 2018-02-13 | Curevac Ag | RNA vector with an open reading frame, an albumin 3′-UTR, and a histone stem loop |
US9974845B2 (en) | 2013-02-22 | 2018-05-22 | Curevac Ag | Combination of vaccination and inhibition of the PD-1 pathway |
US10010592B2 (en) | 2012-02-15 | 2018-07-03 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
US10022431B2 (en) | 2010-02-10 | 2018-07-17 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10047375B2 (en) | 2013-12-30 | 2018-08-14 | Curevac Ag | Artificial nucleic acid molecules |
US10046047B2 (en) | 2015-02-06 | 2018-08-14 | Heat Biologics, Inc. | Vector co-expressing vaccine and costimulatory molecules |
US10080809B2 (en) | 2012-03-27 | 2018-09-25 | Curevac Ag | Artificial nucleic acid molecules comprising a 5′TOP UTR |
US10111967B2 (en) | 2007-09-04 | 2018-10-30 | Curevac Ag | Complexes of RNA and cationic peptides for transfection and for immunostimulation |
WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
WO2018232006A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding coagulation factor viii |
US10188713B2 (en) | 2014-03-19 | 2019-01-29 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2019048632A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
US10232024B2 (en) | 2012-02-15 | 2019-03-19 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
US10293060B2 (en) | 2013-08-21 | 2019-05-21 | Curevac Ag | Method for increasing expression of RNA-encoded proteins |
US10293058B2 (en) | 2015-04-22 | 2019-05-21 | Curevac Ag | RNA containing composition for treatment of tumor diseases |
WO2019104160A2 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding phenylalanine hydroxylase for the treatment of phenylketonuria |
WO2019104152A1 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding ornithine transcarbamylase for the treatment of urea cycle disorders |
WO2019104195A1 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia |
US10307472B2 (en) | 2014-03-12 | 2019-06-04 | Curevac Ag | Combination of vaccination and OX40 agonists |
US10335466B2 (en) | 2014-11-05 | 2019-07-02 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of parkinson's disease |
US10369216B2 (en) | 2014-04-01 | 2019-08-06 | Curevac Ag | Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant |
US10441643B2 (en) | 2014-03-19 | 2019-10-15 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
US10449244B2 (en) | 2015-07-21 | 2019-10-22 | Modernatx, Inc. | Zika RNA vaccines |
US10493143B2 (en) | 2015-10-22 | 2019-12-03 | Modernatx, Inc. | Sexually transmitted disease vaccines |
US10501768B2 (en) | 2015-07-13 | 2019-12-10 | Curevac Ag | Method of producing RNA from circular DNA and corresponding template DNA |
WO2019239144A1 (en) | 2018-06-15 | 2019-12-19 | Mina Therapeutics Limited | Combination therapies comprising c/ebp alpha sarna |
US10517827B2 (en) | 2015-05-20 | 2019-12-31 | Curevac Ag | Dry powder composition comprising long-chain RNA |
WO2020023390A1 (en) | 2018-07-25 | 2020-01-30 | Modernatx, Inc. | Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders |
US10570395B2 (en) | 2014-11-14 | 2020-02-25 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US20200063162A1 (en) * | 2016-12-22 | 2020-02-27 | Avectas Limited | Vector-free intracellular delivery by reversible permeabilisation |
US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
WO2020047201A1 (en) | 2018-09-02 | 2020-03-05 | Modernatx, Inc. | Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency |
US10584337B2 (en) | 2016-05-18 | 2020-03-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US10588959B2 (en) | 2013-08-21 | 2020-03-17 | Curevac Ag | Combination vaccine |
WO2020056155A2 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease |
WO2020056147A2 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease |
WO2020056239A1 (en) | 2018-09-14 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome |
US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
WO2020069169A1 (en) | 2018-09-27 | 2020-04-02 | Modernatx, Inc. | Polynucleotides encoding arginase 1 for the treatment of arginase deficiency |
US10648017B2 (en) | 2013-12-30 | 2020-05-12 | Curevac Real Estate Gmbh | Methods for RNA analysis |
US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
US10653768B2 (en) | 2015-04-13 | 2020-05-19 | Curevac Real Estate Gmbh | Method for producing RNA compositions |
US10682426B2 (en) | 2013-08-21 | 2020-06-16 | Curevac Ag | Rabies vaccine |
US10729654B2 (en) | 2015-05-20 | 2020-08-04 | Curevac Ag | Dry powder composition comprising long-chain RNA |
CN111588859A (en) * | 2020-06-02 | 2020-08-28 | 成都可恩生物科技有限公司 | Freeze-drying protective agent and application thereof, freeze-dried seedling and preparation method thereof |
US10760070B2 (en) | 2015-05-29 | 2020-09-01 | Curevac Real Estate Gmbh | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US10780054B2 (en) | 2015-04-17 | 2020-09-22 | Curevac Real Estate Gmbh | Lyophilization of RNA |
WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
WO2020227642A1 (en) | 2019-05-08 | 2020-11-12 | Modernatx, Inc. | Compositions for skin and wounds and methods of use thereof |
US10837039B2 (en) | 2014-06-10 | 2020-11-17 | Curevac Real Estate Gmbh | Methods and means for enhancing RNA production |
CN112088017A (en) * | 2018-07-19 | 2020-12-15 | 赫利世弥斯株式会社 | Lyophilized pharmaceutical compositions for naked deoxyribonucleotide gene therapy |
US10898584B2 (en) | 2013-11-01 | 2021-01-26 | Curevac Ag | Modified RNA with decreased immunostimulatory properties |
WO2021032777A1 (en) | 2019-08-19 | 2021-02-25 | Mina Therapeutics Limited | Oligonucleotide conjugate compositions and methods of use |
US10980875B2 (en) * | 2015-10-21 | 2021-04-20 | Biontech Ag | Cytotoxic immunostimulating particles and uses thereof |
US10988754B2 (en) | 2017-07-04 | 2021-04-27 | Cure Vac AG | Nucleic acid molecules |
US11045540B2 (en) | 2017-03-15 | 2021-06-29 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11078247B2 (en) | 2016-05-04 | 2021-08-03 | Curevac Ag | RNA encoding a therapeutic protein |
US11103578B2 (en) | 2016-12-08 | 2021-08-31 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
US11141476B2 (en) | 2016-12-23 | 2021-10-12 | Curevac Ag | MERS coronavirus vaccine |
US11141474B2 (en) | 2016-05-04 | 2021-10-12 | Curevac Ag | Artificial nucleic acid molecules encoding a norovirus antigen and uses thereof |
US11149278B2 (en) | 2014-12-12 | 2021-10-19 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
US11225682B2 (en) | 2015-10-12 | 2022-01-18 | Curevac Ag | Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution |
US11235052B2 (en) | 2015-10-22 | 2022-02-01 | Modernatx, Inc. | Chikungunya virus RNA vaccines |
US11241493B2 (en) | 2020-02-04 | 2022-02-08 | Curevac Ag | Coronavirus vaccine |
US11248223B2 (en) | 2015-12-23 | 2022-02-15 | Curevac Ag | Method of RNA in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
US11254951B2 (en) | 2014-12-30 | 2022-02-22 | Curevac Ag | Artificial nucleic acid molecules |
US11279923B2 (en) | 2016-11-28 | 2022-03-22 | Curevac Ag | Method for purifying RNA |
US11298041B2 (en) | 2016-08-30 | 2022-04-12 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
US11299751B2 (en) | 2016-04-29 | 2022-04-12 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11326182B2 (en) | 2016-04-29 | 2022-05-10 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
WO2022104131A1 (en) | 2020-11-13 | 2022-05-19 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
US11357856B2 (en) | 2017-04-13 | 2022-06-14 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
US11384375B2 (en) | 2015-04-30 | 2022-07-12 | Curevac Ag | Immobilized poly(n)polymerase |
US11413346B2 (en) | 2015-11-09 | 2022-08-16 | Curevac Ag | Rotavirus vaccines |
US11434502B2 (en) | 2017-10-16 | 2022-09-06 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
WO2022200810A1 (en) | 2021-03-26 | 2022-09-29 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
US11464847B2 (en) | 2016-12-23 | 2022-10-11 | Curevac Ag | Lassa virus vaccine |
US11464836B2 (en) | 2016-12-08 | 2022-10-11 | Curevac Ag | RNA for treatment or prophylaxis of a liver disease |
US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
US11471525B2 (en) | 2020-02-04 | 2022-10-18 | Curevac Ag | Coronavirus vaccine |
US11478552B2 (en) | 2016-06-09 | 2022-10-25 | Curevac Ag | Hybrid carriers for nucleic acid cargo |
US11497576B2 (en) | 2017-07-17 | 2022-11-15 | Voyager Therapeutics, Inc. | Trajectory array guide system |
US11524066B2 (en) | 2016-12-23 | 2022-12-13 | CureVac SE | Henipavirus vaccine |
US11525158B2 (en) | 2017-12-21 | 2022-12-13 | CureVac SE | Linear double stranded DNA coupled to a single support or a tag and methods for producing said linear double stranded DNA |
US11542490B2 (en) | 2016-12-08 | 2023-01-03 | CureVac SE | RNAs for wound healing |
US11548930B2 (en) | 2017-04-04 | 2023-01-10 | Heat Biologics, Inc. | Intratumoral vaccination |
US11559570B2 (en) | 2015-05-15 | 2023-01-24 | CureVac SE | Prime-boost regimens involving administration of at least one mRNA construct |
US11596699B2 (en) | 2016-04-29 | 2023-03-07 | CureVac SE | RNA encoding an antibody |
US11602557B2 (en) | 2017-08-22 | 2023-03-14 | Cure Vac SE | Bunyavirales vaccine |
US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US11608513B2 (en) | 2015-05-29 | 2023-03-21 | CureVac SE | Method for adding cap structures to RNA using immobilized enzymes |
EP4159741A1 (en) | 2014-07-16 | 2023-04-05 | ModernaTX, Inc. | Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage |
US11643441B1 (en) | 2015-10-22 | 2023-05-09 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
US11661634B2 (en) | 2015-05-08 | 2023-05-30 | CureVac Manufacturing GmbH | Method for producing RNA |
US11666649B2 (en) | 2016-10-11 | 2023-06-06 | University Of Miami | Vectors and vaccine cells for immunity against Zika virus |
WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
US11684665B2 (en) | 2015-12-22 | 2023-06-27 | CureVac SE | Method for producing RNA molecule compositions |
US11692002B2 (en) | 2017-11-08 | 2023-07-04 | CureVac SE | RNA sequence adaptation |
US11690910B2 (en) | 2012-01-31 | 2023-07-04 | CureVac SE | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
US11697816B2 (en) | 2013-12-30 | 2023-07-11 | CureVac SE | Artificial nucleic acid molecules |
US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
US11723967B2 (en) | 2016-02-17 | 2023-08-15 | CureVac SE | Zika virus vaccine |
US11739335B2 (en) | 2017-03-24 | 2023-08-29 | CureVac SE | Nucleic acids encoding CRISPR-associated proteins and uses thereof |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
US11759506B2 (en) | 2017-06-15 | 2023-09-19 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US11872280B2 (en) | 2020-12-22 | 2024-01-16 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
US11920174B2 (en) | 2016-03-03 | 2024-03-05 | CureVac SE | RNA analysis by total hydrolysis and quantification of released nucleosides |
US11931406B2 (en) | 2017-12-13 | 2024-03-19 | CureVac SE | Flavivirus vaccine |
US11931375B2 (en) | 2017-10-16 | 2024-03-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
US11975064B2 (en) | 2011-03-02 | 2024-05-07 | CureVac SE | Vaccination with mRNA-coded antigens |
WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
WO2024175887A1 (en) | 2023-02-22 | 2024-08-29 | Mina Therapeutics Limited | Compositions and methods of using c/ebp alpha sarna |
US12097253B2 (en) | 2018-04-17 | 2024-09-24 | CureVac SE | RSV RNA molecules and compositions for vaccination |
US12128113B2 (en) | 2016-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
US12138348B2 (en) | 2015-05-20 | 2024-11-12 | CureVac SE | Dry powder composition comprising long-chain RNA |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2717893B1 (en) | 2011-06-08 | 2019-05-08 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mrna delivery |
CN107095849A (en) | 2011-06-08 | 2017-08-29 | 夏尔人类遗传性治疗公司 | Cleavable lipid |
EP2814961B1 (en) * | 2012-02-15 | 2018-01-03 | CureVac AG | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
WO2014159813A1 (en) | 2013-03-13 | 2014-10-02 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
SI2970456T1 (en) | 2013-03-14 | 2022-01-31 | Translate Bio, Inc. | Methods and compositions for delivering mrna coded antibodies |
EP3446712A1 (en) | 2013-03-14 | 2019-02-27 | Translate Bio Ma, Inc. | Cftr mrna compositions and related methods and uses |
US10130649B2 (en) | 2013-03-15 | 2018-11-20 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
WO2015065097A1 (en) * | 2013-10-31 | 2015-05-07 | 에스케이텔레콤 주식회사 | Composition for diagnosing pancreatic cancer and method for diagnosing pancreatic cancer using same |
US10626400B2 (en) * | 2014-07-04 | 2020-04-21 | Biontech Ag | Stabilised formulations of RNA |
WO2016184577A2 (en) * | 2015-05-20 | 2016-11-24 | Curevac Ag | Dry powder composition comprising long-chain rna |
EP4286012A3 (en) | 2015-09-17 | 2024-05-29 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
AU2016336344A1 (en) | 2015-10-05 | 2018-04-19 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
EP4086269A1 (en) | 2015-10-16 | 2022-11-09 | ModernaTX, Inc. | Mrna cap analogs with modified phosphate linkage |
WO2017066793A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs and methods of mrna capping |
WO2017066791A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Sugar substituted mrna cap analogs |
WO2017066789A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs with modified sugar |
WO2017066782A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Hydrophobic mrna cap analogs |
EP3364983A4 (en) | 2015-10-22 | 2019-10-23 | ModernaTX, Inc. | Respiratory virus vaccines |
WO2017070613A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
RS63051B1 (en) | 2015-12-22 | 2022-04-29 | Modernatx Inc | Compounds and compositions for intracellular delivery of agents |
WO2017177169A1 (en) | 2016-04-08 | 2017-10-12 | Rana Therapeutics, Inc. | Multimeric coding nucleic acid and uses thereof |
RS62556B1 (en) * | 2016-06-07 | 2021-12-31 | Modernatx Inc | Modified rna encoding vegf-a polypeptides, formulations, and uses relating thereto |
WO2017218524A1 (en) | 2016-06-13 | 2017-12-21 | Rana Therapeutics, Inc. | Messenger rna therapy for the treatment of ornithine transcarbamylase deficiency |
EP3468537A1 (en) | 2016-06-14 | 2019-04-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2018010815A1 (en) * | 2016-07-15 | 2018-01-18 | Biontech Rna Pharmaceuticals Gmbh | Formulation for administration of rna |
EP3528821A4 (en) | 2016-10-21 | 2020-07-01 | ModernaTX, Inc. | Human cytomegalovirus vaccine |
EP3538067A1 (en) | 2016-11-08 | 2019-09-18 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
EP3538146A4 (en) | 2016-11-11 | 2020-07-15 | ModernaTX, Inc. | Influenza vaccine |
WO2018102397A1 (en) | 2016-11-29 | 2018-06-07 | PureTech Health LLC | Exosomes for delivery of therapeutic agents |
EP3582790A4 (en) | 2017-02-16 | 2020-11-25 | ModernaTX, Inc. | High potency immunogenic compositions |
MA47603A (en) | 2017-02-27 | 2020-01-01 | Translate Bio Inc | NEW ARNM CFTR WITH OPTIMIZED CODONS |
EP3595727A1 (en) | 2017-03-15 | 2020-01-22 | ModernaTX, Inc. | Lipid nanoparticle formulation |
MA52262A (en) | 2017-03-15 | 2020-02-19 | Modernatx Inc | BROAD SPECTRUM VACCINE AGAINST THE INFLUENZA VIRUS |
EP4186888A1 (en) | 2017-03-15 | 2023-05-31 | ModernaTX, Inc. | Compound and compositions for intracellular delivery of therapeutic agents |
US20200030432A1 (en) | 2017-03-17 | 2020-01-30 | Modernatx, Inc. | Zoonotic disease rna vaccines |
US20200085944A1 (en) | 2017-03-17 | 2020-03-19 | Curevac Ag | Rna vaccine and immune checkpoint inhibitors for combined anticancer therapy |
MA49138A (en) | 2017-05-16 | 2020-03-25 | Translate Bio Inc | TREATMENT OF CYSTIC FIBROSIS BY ADMINISTRATION OF CODON-OPTIMIZED MRNA CODING FOR CFTR |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2019036638A1 (en) | 2017-08-18 | 2019-02-21 | Modernatx, Inc. | Methods of preparing modified rna |
EP3675817A1 (en) | 2017-08-31 | 2020-07-08 | Modernatx, Inc. | Methods of making lipid nanoparticles |
HUE059049T2 (en) | 2017-10-31 | 2022-10-28 | Astrazeneca Ab | Lipid nanoparticles for delivering modified rna encoding a vegf-a polypeptide |
EP3727428A1 (en) | 2017-12-20 | 2020-10-28 | Translate Bio, Inc. | Improved composition and methods for treatment of ornithine transcarbamylase deficiency |
CN108148870B (en) * | 2018-01-12 | 2021-09-21 | 中国人民解放军第四军医大学 | Method for improving siRNA transferring efficiency in vitro of chitosan |
EP3773702A2 (en) | 2018-04-05 | 2021-02-17 | CureVac AG | Novel yellow fever nucleic acid molecules for vaccination |
US20210260178A1 (en) | 2018-06-27 | 2021-08-26 | Curevac Ag | Novel lassa virus rna molecules and compositions for vaccination |
WO2020002598A1 (en) | 2018-06-28 | 2020-01-02 | Curevac Ag | Bioreactor for rna in vitro transcription |
JP7410135B2 (en) | 2018-09-19 | 2024-01-09 | モデルナティエックス インコーポレイテッド | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2020128031A2 (en) | 2018-12-21 | 2020-06-25 | Curevac Ag | Rna for malaria vaccines |
CA3128488A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Vortex mixers and associated methods, systems, and apparatuses thereof |
BR112021014845A2 (en) | 2019-01-31 | 2021-11-03 | Modernatx Inc | Lipid Nanoparticle Preparation Methods |
CA3125511A1 (en) | 2019-02-08 | 2020-08-13 | Curevac Ag | Coding rna administered into the suprachoroidal space in the treatment of ophthalmic diseases |
US20220313813A1 (en) | 2019-06-18 | 2022-10-06 | Curevac Ag | Rotavirus mrna vaccine |
CA3160511A1 (en) | 2020-02-04 | 2021-08-12 | Susanne RAUCH | Coronavirus vaccine |
WO2021204179A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
WO2021204175A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
CA3170740A1 (en) | 2020-05-29 | 2021-12-02 | Curevac Ag | Nucleic acid based combination vaccines |
US20220331414A1 (en) | 2020-06-30 | 2022-10-20 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
US20230272052A1 (en) | 2020-07-31 | 2023-08-31 | CureVac SE | Nucleic acid encoded antibody mixtures |
AU2021328980A1 (en) | 2020-08-20 | 2023-03-09 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
EP4157344A2 (en) | 2020-08-31 | 2023-04-05 | CureVac SE | Multivalent nucleic acid based coronavirus vaccines |
US20240246056A1 (en) | 2020-09-01 | 2024-07-25 | CureVac RNA Printer GmbH | Manufacturing device for a pharmaceutical product |
WO2022137133A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Rna vaccine against sars-cov-2 variants |
WO2022135993A2 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration |
WO2022152109A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
CN116615472A (en) | 2021-01-14 | 2023-08-18 | 苏州艾博生物科技有限公司 | Polymer conjugated lipid compounds and lipid nanoparticle compositions |
EP4087938A2 (en) | 2021-01-27 | 2022-11-16 | CureVac AG | Method of reducing the immunostimulatory properties of in vitro transcribed rna |
CN112877294B (en) * | 2021-02-23 | 2021-08-24 | 赛浦生物科技(长春)有限公司 | Preparation and application of gene-modified mesenchymal stem cell exosome |
CA3212653A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
WO2022207862A2 (en) | 2021-03-31 | 2022-10-06 | Curevac Ag | Syringes containing pharmaceutical compositions comprising rna |
US20240229075A1 (en) | 2021-05-03 | 2024-07-11 | CureVac SE | Improved nucleic acid sequence for cell type specific expression |
CN116472275A (en) | 2021-05-24 | 2023-07-21 | 苏州艾博生物科技有限公司 | Lipid compounds and lipid nanoparticle compositions |
WO2023044333A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Cyclic lipids and methods of use thereof |
TW202325263A (en) | 2021-09-14 | 2023-07-01 | 美商雷納嘉德醫療管理公司 | Acyclic lipids and methods of use thereof |
KR20240090186A (en) | 2021-10-08 | 2024-06-21 | 쑤저우 아보젠 바이오사이언시스 컴퍼니 리미티드 | Lipid Compounds and Lipid Nanoparticle Compositions |
CN116064598B (en) | 2021-10-08 | 2024-03-12 | 苏州艾博生物科技有限公司 | Nucleic acid vaccine for coronavirus |
AR127312A1 (en) | 2021-10-08 | 2024-01-10 | Suzhou Abogen Biosciences Co Ltd | LIPID COMPOUNDS AND LIPID NANOPARTICLE COMPOSITIONS |
CN114191379A (en) * | 2021-12-17 | 2022-03-18 | 西安交通大学医学院第一附属医院 | Medicine for repairing skin injury by using Pluronic F127 as carrier to perform local transgenosis in vivo and preparation method |
EP4452928A1 (en) | 2021-12-23 | 2024-10-30 | Renagade Therapeutics Management Inc. | Constrained lipids and methods of use thereof |
AU2022422983A1 (en) | 2021-12-23 | 2024-05-16 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compound and lipid nanoparticle composition |
WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
AU2023251104A1 (en) | 2022-04-07 | 2024-10-17 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
AU2023269246A1 (en) | 2022-05-12 | 2024-12-19 | Etherna Immunotherapies Nv | A lyophilized rna composition |
AU2023274371A1 (en) | 2022-05-25 | 2024-10-31 | CureVac SE | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
WO2024037578A1 (en) | 2022-08-18 | 2024-02-22 | Suzhou Abogen Biosciences Co., Ltd. | Composition of lipid nanoparticles |
WO2024068545A1 (en) | 2022-09-26 | 2024-04-04 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
WO2024089229A1 (en) | 2022-10-28 | 2024-05-02 | CureVac SE | Improved formulations comprising lipid-based carriers encapsulating rna |
DE202023106198U1 (en) | 2022-10-28 | 2024-03-21 | CureVac SE | Nucleic acid-based vaccine |
WO2024160936A1 (en) | 2023-02-03 | 2024-08-08 | Glaxosmithkline Biologicals Sa | Rna formulation |
US11833224B1 (en) | 2023-02-08 | 2023-12-05 | Leuvian Llc | Lyoprotectant compositions and uses thereof |
WO2024192291A1 (en) | 2023-03-15 | 2024-09-19 | Renagade Therapeutics Management Inc. | Delivery of gene editing systems and methods of use thereof |
WO2024192277A2 (en) | 2023-03-15 | 2024-09-19 | Renagade Therapeutics Management Inc. | Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents |
WO2024223728A1 (en) | 2023-04-27 | 2024-10-31 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
WO2024223724A1 (en) | 2023-04-27 | 2024-10-31 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313102B1 (en) * | 1994-04-13 | 2001-11-06 | Quardrant Holdings Cambridge, Ltd. | Method for stabilization of biological substances during drying and subsequent storage and compositions thereof |
WO2009125986A2 (en) * | 2008-04-09 | 2009-10-15 | Viromed Co., Ltd. | Lyophilized dna formulations for enhanced expression of plasmid dna |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
US4401796A (en) | 1981-04-30 | 1983-08-30 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5849473A (en) * | 1991-02-15 | 1998-12-15 | Cobe Laboratories, Inc. | Method of lyophilization of mammalian sperm cells |
IL114848A0 (en) * | 1994-08-16 | 1995-12-08 | Chile Lab Sa | New composition and subcompositions of same process for obtaining them and their molecular identification and their anti-inflammatory analgesic antipruritic and local antipyretic therapeutic effect in human beings and animals |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
DE69943068D1 (en) | 1999-09-09 | 2011-02-03 | Curevac Gmbh | Transfer of mRNA using polycationic compounds |
ATE464317T1 (en) | 2001-06-05 | 2010-04-15 | Curevac Gmbh | STABILIZED MRNA WITH INCREASED G/C CONTENT FOR GENE THERAPY |
DE10162480A1 (en) | 2001-12-19 | 2003-08-07 | Ingmar Hoerr | The application of mRNA for use as a therapeutic agent against tumor diseases |
JP4846200B2 (en) | 2002-04-04 | 2011-12-28 | コーリー ファーマシューティカル ゲーエムベーハー | Immunostimulatory G and U-containing oligoribonucleotides |
DE10229872A1 (en) | 2002-07-03 | 2004-01-29 | Curevac Gmbh | Immune stimulation through chemically modified RNA |
DE10335833A1 (en) | 2003-08-05 | 2005-03-03 | Curevac Gmbh | Transfection of blood cells with mRNA for immune stimulation and gene therapy |
DE102004042546A1 (en) | 2004-09-02 | 2006-03-09 | Curevac Gmbh | Combination therapy for immune stimulation |
DE102005023170A1 (en) | 2005-05-19 | 2006-11-23 | Curevac Gmbh | Optimized formulation for mRNA |
AU2007280690C1 (en) | 2006-07-31 | 2012-08-23 | Curevac Gmbh | Nucleic acid of formula (I): GIXmGn, or (II): CIXmCn, in particular as an immune-stimulating agent/adjuvant |
DE102006061015A1 (en) | 2006-12-22 | 2008-06-26 | Curevac Gmbh | Process for the purification of RNA on a preparative scale by HPLC |
DE102007001370A1 (en) | 2007-01-09 | 2008-07-10 | Curevac Gmbh | RNA-encoded antibodies |
EP2125030A2 (en) * | 2007-01-29 | 2009-12-02 | Medipol S.A. | Chitosan-based colloidal particles for rna delivery |
WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
WO2009046739A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating prostate cancer (pca) |
WO2009046738A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating lung cancer, particularly of non-small lung cancers (nsclc) |
DK2176408T5 (en) | 2008-01-31 | 2015-12-14 | Curevac Gmbh | Nucleic acids comprising FORMULA (NuGiXmGnNv) a AND DERIVATIVES AS IMMUNE STIMULATING AGENTS / ADJUVANTS. |
WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
JP5804453B2 (en) | 2009-05-14 | 2015-11-04 | 国立大学法人 東京大学 | Crystalline polyol fine particles and preparation method thereof |
US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
-
2009
- 2009-12-09 WO PCT/EP2009/008804 patent/WO2011069529A1/en active Application Filing
-
2010
- 2010-11-08 WO PCT/EP2010/006788 patent/WO2011069586A1/en active Application Filing
- 2010-11-08 US US13/509,564 patent/US20120258046A1/en not_active Abandoned
-
2014
- 2014-09-22 US US14/492,334 patent/US9616084B2/en not_active Expired - Fee Related
-
2017
- 2017-03-07 US US15/451,675 patent/US20170182081A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6313102B1 (en) * | 1994-04-13 | 2001-11-06 | Quardrant Holdings Cambridge, Ltd. | Method for stabilization of biological substances during drying and subsequent storage and compositions thereof |
WO2009125986A2 (en) * | 2008-04-09 | 2009-10-15 | Viromed Co., Ltd. | Lyophilized dna formulations for enhanced expression of plasmid dna |
Non-Patent Citations (4)
Title |
---|
Brody et al, Acta Chem. Scand. 7(3): 502-506, 1953 * |
Brody, Acta Chem. Scand. 7(3):502-506, 1953 * |
Groth et al, Surgery 64(1):31-38, 1968 * |
mannose isoforms, http://en.wikipedia.org/wiki/Mannose; last visited June 17, 2013 * |
Cited By (285)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10111967B2 (en) | 2007-09-04 | 2018-10-30 | Curevac Ag | Complexes of RNA and cationic peptides for transfection and for immunostimulation |
US9238064B2 (en) | 2008-03-03 | 2016-01-19 | University Of Miami | Allogeneic cancer cell-based immunotherapy |
US10751424B2 (en) | 2009-09-03 | 2020-08-25 | Curevac Ag | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
US9314535B2 (en) | 2009-09-03 | 2016-04-19 | Curevac Ag | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
US9907862B2 (en) | 2009-09-03 | 2018-03-06 | Curevac Ag | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
US10022431B2 (en) | 2010-02-10 | 2018-07-17 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10849964B2 (en) | 2010-02-10 | 2020-12-01 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US8968746B2 (en) | 2010-07-30 | 2015-03-03 | Curevac Gmbh | Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US12109275B2 (en) | 2010-08-13 | 2024-10-08 | CureVac SE | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
US9839697B2 (en) | 2010-08-13 | 2017-12-12 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
US10653799B2 (en) | 2010-08-13 | 2020-05-19 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
US9234013B2 (en) | 2010-08-13 | 2016-01-12 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9701965B2 (en) | 2010-10-01 | 2017-07-11 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US11458193B2 (en) | 2010-12-29 | 2022-10-04 | Curevac Ag | Combination of vaccination and inhibition of MHC class I restricted antigen presentation |
US9737595B2 (en) | 2010-12-29 | 2017-08-22 | Curevac Ag | Combination of vaccination and inhibition of MHC class I restricted antigen presentation |
US10568958B2 (en) | 2011-02-21 | 2020-02-25 | Curevac Ag | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
US9421255B2 (en) | 2011-02-21 | 2016-08-23 | Curevac Ag | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
US11975064B2 (en) | 2011-03-02 | 2024-05-07 | CureVac SE | Vaccination with mRNA-coded antigens |
US10596252B2 (en) | 2011-03-02 | 2020-03-24 | Curevac Ag | Vaccination in newborns and infants |
US10172935B2 (en) | 2011-03-02 | 2019-01-08 | Curevac Ag | Vaccination in newborns and infants |
US9623095B2 (en) | 2011-03-02 | 2017-04-18 | Curevac Ag | Vaccination in newborns and infants |
US12036277B2 (en) | 2011-03-02 | 2024-07-16 | CureVac SE | Vaccination with mRNA-coded antigens |
US11672856B2 (en) | 2011-03-02 | 2023-06-13 | CureVac SE | Vaccination in newborns and infants |
US10729761B2 (en) | 2011-03-02 | 2020-08-04 | Curevac Ag | Vaccination in newborns and infants |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US8754062B2 (en) | 2011-12-16 | 2014-06-17 | Moderna Therapeutics, Inc. | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
EP4144378A1 (en) | 2011-12-16 | 2023-03-08 | ModernaTX, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US8680069B2 (en) | 2011-12-16 | 2014-03-25 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of G-CSF |
US11690910B2 (en) | 2012-01-31 | 2023-07-04 | CureVac SE | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
US9447431B2 (en) | 2012-02-15 | 2016-09-20 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
US10111968B2 (en) | 2012-02-15 | 2018-10-30 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
US10610605B2 (en) | 2012-02-15 | 2020-04-07 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
US10232024B2 (en) | 2012-02-15 | 2019-03-19 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
US9669089B2 (en) | 2012-02-15 | 2017-06-06 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
US10682406B2 (en) | 2012-02-15 | 2020-06-16 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
US10010592B2 (en) | 2012-02-15 | 2018-07-03 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
US11110156B2 (en) | 2012-02-15 | 2021-09-07 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
US10912826B2 (en) | 2012-02-15 | 2021-02-09 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
US10898589B2 (en) | 2012-02-15 | 2021-01-26 | Cure Vac AG | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
US10799577B2 (en) | 2012-02-15 | 2020-10-13 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
US10166283B2 (en) | 2012-02-15 | 2019-01-01 | Curevac Ag | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
US9517258B2 (en) | 2012-03-15 | 2016-12-13 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10029003B2 (en) | 2012-03-15 | 2018-07-24 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10080809B2 (en) | 2012-03-27 | 2018-09-25 | Curevac Ag | Artificial nucleic acid molecules comprising a 5′TOP UTR |
US9890391B2 (en) | 2012-03-27 | 2018-02-13 | Curevac Ag | RNA vector with an open reading frame, an albumin 3′-UTR, and a histone stem loop |
US10738306B2 (en) | 2012-03-27 | 2020-08-11 | Curevac Ag | Artificial nucleic acid molecules for improved protein or peptide expression |
US9683233B2 (en) | 2012-03-27 | 2017-06-20 | Curevac Ag | Artificial nucleic acid molecules for improved protein or peptide expression |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
US10117920B2 (en) | 2013-02-22 | 2018-11-06 | Curevac Ag | Combination of vaccination and inhibition of the PD-1 pathway |
US11458195B2 (en) | 2013-02-22 | 2022-10-04 | Curevac Ag | Combination of vaccination and inhibition of the PD-1 pathway |
US10434158B2 (en) | 2013-02-22 | 2019-10-08 | Curevac Ag | Combination of vaccination and inhibition of the PD-1 pathway |
US9974845B2 (en) | 2013-02-22 | 2018-05-22 | Curevac Ag | Combination of vaccination and inhibition of the PD-1 pathway |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
EP4398254A2 (en) | 2013-04-29 | 2024-07-10 | Memorial Sloan Kettering Cancer Center | Compositions and methods for altering second messenger signaling |
WO2014179335A1 (en) | 2013-04-29 | 2014-11-06 | Memorial Sloan Kettering Cancer Center | Compositions and methods for altering second messenger signaling |
US11266735B2 (en) | 2013-08-21 | 2022-03-08 | Curevac Ag | Combination vaccine |
US10293060B2 (en) | 2013-08-21 | 2019-05-21 | Curevac Ag | Method for increasing expression of RNA-encoded proteins |
US9688729B2 (en) | 2013-08-21 | 2017-06-27 | Curevac Ag | Respiratory syncytial virus (RSV) vaccine |
US12083190B2 (en) | 2013-08-21 | 2024-09-10 | CureVac SE | Rabies vaccine |
US10150797B2 (en) | 2013-08-21 | 2018-12-11 | Curevac Ag | Respiratory syncytial virus (RSV) vaccine |
US10682426B2 (en) | 2013-08-21 | 2020-06-16 | Curevac Ag | Rabies vaccine |
US12139513B2 (en) | 2013-08-21 | 2024-11-12 | CureVac SE | Respiratory syncytial virus (RSV) vaccine |
US11369694B2 (en) | 2013-08-21 | 2022-06-28 | Curevac Ag | Rabies vaccine |
US11965000B2 (en) | 2013-08-21 | 2024-04-23 | CureVac SE | Respiratory syncytial virus (RSV) vaccine |
US11034729B2 (en) | 2013-08-21 | 2021-06-15 | Curevac Ag | Respiratory syncytial virus (RSV) vaccine |
US10799602B2 (en) | 2013-08-21 | 2020-10-13 | Curevac Ag | Method for increasing expression of RNA-encoded proteins |
US11739125B2 (en) | 2013-08-21 | 2023-08-29 | Cure Vac SE | Respiratory syncytial virus (RSV) vaccine |
US10588959B2 (en) | 2013-08-21 | 2020-03-17 | Curevac Ag | Combination vaccine |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2015051214A1 (en) | 2013-10-03 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
US10898584B2 (en) | 2013-11-01 | 2021-01-26 | Curevac Ag | Modified RNA with decreased immunostimulatory properties |
EP3985118A1 (en) | 2013-11-22 | 2022-04-20 | MiNA Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
EP3594348A1 (en) | 2013-11-22 | 2020-01-15 | Mina Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
WO2015075557A2 (en) | 2013-11-22 | 2015-05-28 | Mina Alpha Limited | C/ebp alpha compositions and methods of use |
US10648017B2 (en) | 2013-12-30 | 2020-05-12 | Curevac Real Estate Gmbh | Methods for RNA analysis |
US11697816B2 (en) | 2013-12-30 | 2023-07-11 | CureVac SE | Artificial nucleic acid molecules |
US10047375B2 (en) | 2013-12-30 | 2018-08-14 | Curevac Ag | Artificial nucleic acid molecules |
US10307472B2 (en) | 2014-03-12 | 2019-06-04 | Curevac Ag | Combination of vaccination and OX40 agonists |
US11110157B2 (en) | 2014-03-12 | 2021-09-07 | Curevac Ag | Combination of vaccination and OX40 agonists |
US10441643B2 (en) | 2014-03-19 | 2019-10-15 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10188713B2 (en) | 2014-03-19 | 2019-01-29 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10391159B2 (en) | 2014-03-19 | 2019-08-27 | Mayo Foundation For Medical Education And Research | Methods and materials for treating cancer |
US10369216B2 (en) | 2014-04-01 | 2019-08-06 | Curevac Ag | Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant |
US11110166B2 (en) | 2014-04-01 | 2021-09-07 | Curevac Ag | Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant |
US10577627B2 (en) | 2014-06-09 | 2020-03-03 | Voyager Therapeutics, Inc. | Chimeric capsids |
US10837039B2 (en) | 2014-06-10 | 2020-11-17 | Curevac Real Estate Gmbh | Methods and means for enhancing RNA production |
EP4159741A1 (en) | 2014-07-16 | 2023-04-05 | ModernaTX, Inc. | Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
US11975056B2 (en) | 2014-11-05 | 2024-05-07 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US11027000B2 (en) | 2014-11-05 | 2021-06-08 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US10335466B2 (en) | 2014-11-05 | 2019-07-02 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of parkinson's disease |
US10920227B2 (en) | 2014-11-14 | 2021-02-16 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US12071625B2 (en) | 2014-11-14 | 2024-08-27 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US12123002B2 (en) | 2014-11-14 | 2024-10-22 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US10570395B2 (en) | 2014-11-14 | 2020-02-25 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US11542506B2 (en) | 2014-11-14 | 2023-01-03 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US11198873B2 (en) | 2014-11-14 | 2021-12-14 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US11761009B2 (en) | 2014-12-12 | 2023-09-19 | CureVac SE | Artificial nucleic acid molecules for improved protein expression |
US11149278B2 (en) | 2014-12-12 | 2021-10-19 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
US11286492B2 (en) | 2014-12-12 | 2022-03-29 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
US11345920B2 (en) | 2014-12-12 | 2022-05-31 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
US11697825B2 (en) | 2014-12-12 | 2023-07-11 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scAAV |
US11254951B2 (en) | 2014-12-30 | 2022-02-22 | Curevac Ag | Artificial nucleic acid molecules |
US10780161B2 (en) | 2015-02-06 | 2020-09-22 | Heat Biologics, Inc. | Vector co-expressing vaccine and costimulatory molecules |
US10758611B2 (en) | 2015-02-06 | 2020-09-01 | Heat Biologics, Inc. | Vector co-expressing vaccine and costimulatory molecules |
US10046047B2 (en) | 2015-02-06 | 2018-08-14 | Heat Biologics, Inc. | Vector co-expressing vaccine and costimulatory molecules |
US11744886B2 (en) | 2015-04-13 | 2023-09-05 | CureVac Manufacturing GmbH | Method for producing RNA compositions |
US10653768B2 (en) | 2015-04-13 | 2020-05-19 | Curevac Real Estate Gmbh | Method for producing RNA compositions |
US11491112B2 (en) | 2015-04-17 | 2022-11-08 | CureVac Manufacturing GmbH | Lyophilization of RNA |
US10780054B2 (en) | 2015-04-17 | 2020-09-22 | Curevac Real Estate Gmbh | Lyophilization of RNA |
US11446250B2 (en) | 2015-04-17 | 2022-09-20 | Curevac Real Estate Gmbh | Lyophilization of RNA |
US10918740B2 (en) | 2015-04-22 | 2021-02-16 | Curevac Ag | RNA containing composition for treatment of tumor diseases |
US10869935B2 (en) | 2015-04-22 | 2020-12-22 | Curevac Ag | RNA containing composition for treatment of tumor diseases |
US10293058B2 (en) | 2015-04-22 | 2019-05-21 | Curevac Ag | RNA containing composition for treatment of tumor diseases |
US11384375B2 (en) | 2015-04-30 | 2022-07-12 | Curevac Ag | Immobilized poly(n)polymerase |
US11661634B2 (en) | 2015-05-08 | 2023-05-30 | CureVac Manufacturing GmbH | Method for producing RNA |
US11559570B2 (en) | 2015-05-15 | 2023-01-24 | CureVac SE | Prime-boost regimens involving administration of at least one mRNA construct |
US11179337B2 (en) | 2015-05-20 | 2021-11-23 | Curevac Ag | Dry powder composition comprising long-chain RNA |
US11433027B2 (en) | 2015-05-20 | 2022-09-06 | Curevac Ag | Dry powder composition comprising long-chain RNA |
US10729654B2 (en) | 2015-05-20 | 2020-08-04 | Curevac Ag | Dry powder composition comprising long-chain RNA |
US10517827B2 (en) | 2015-05-20 | 2019-12-31 | Curevac Ag | Dry powder composition comprising long-chain RNA |
US12138348B2 (en) | 2015-05-20 | 2024-11-12 | CureVac SE | Dry powder composition comprising long-chain RNA |
US11534405B2 (en) | 2015-05-20 | 2022-12-27 | Curevac Ag | Dry powder composition comprising long-chain RNA |
US11608513B2 (en) | 2015-05-29 | 2023-03-21 | CureVac SE | Method for adding cap structures to RNA using immobilized enzymes |
US10760070B2 (en) | 2015-05-29 | 2020-09-01 | Curevac Real Estate Gmbh | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11760992B2 (en) | 2015-05-29 | 2023-09-19 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11667910B2 (en) | 2015-05-29 | 2023-06-06 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11834651B2 (en) | 2015-05-29 | 2023-12-05 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11274293B2 (en) | 2015-05-29 | 2022-03-15 | Curevac Real Estate Gmbh | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US10501768B2 (en) | 2015-07-13 | 2019-12-10 | Curevac Ag | Method of producing RNA from circular DNA and corresponding template DNA |
US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
US10449244B2 (en) | 2015-07-21 | 2019-10-22 | Modernatx, Inc. | Zika RNA vaccines |
US10702597B2 (en) | 2015-07-21 | 2020-07-07 | Modernatx, Inc. | CHIKV RNA vaccines |
US11007260B2 (en) | 2015-07-21 | 2021-05-18 | Modernatx, Inc. | Infectious disease vaccines |
US11225682B2 (en) | 2015-10-12 | 2022-01-18 | Curevac Ag | Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution |
US10980875B2 (en) * | 2015-10-21 | 2021-04-20 | Biontech Ag | Cytotoxic immunostimulating particles and uses thereof |
US11278611B2 (en) | 2015-10-22 | 2022-03-22 | Modernatx, Inc. | Zika virus RNA vaccines |
US10493143B2 (en) | 2015-10-22 | 2019-12-03 | Modernatx, Inc. | Sexually transmitted disease vaccines |
US11643441B1 (en) | 2015-10-22 | 2023-05-09 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
US11235052B2 (en) | 2015-10-22 | 2022-02-01 | Modernatx, Inc. | Chikungunya virus RNA vaccines |
US11413346B2 (en) | 2015-11-09 | 2022-08-16 | Curevac Ag | Rotavirus vaccines |
US11786590B2 (en) | 2015-11-09 | 2023-10-17 | CureVac SE | Rotavirus vaccines |
US11684665B2 (en) | 2015-12-22 | 2023-06-27 | CureVac SE | Method for producing RNA molecule compositions |
US11248223B2 (en) | 2015-12-23 | 2022-02-15 | Curevac Ag | Method of RNA in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US11723967B2 (en) | 2016-02-17 | 2023-08-15 | CureVac SE | Zika virus vaccine |
US11920174B2 (en) | 2016-03-03 | 2024-03-05 | CureVac SE | RNA analysis by total hydrolysis and quantification of released nucleosides |
US11326182B2 (en) | 2016-04-29 | 2022-05-10 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11596699B2 (en) | 2016-04-29 | 2023-03-07 | CureVac SE | RNA encoding an antibody |
US11299751B2 (en) | 2016-04-29 | 2022-04-12 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11141474B2 (en) | 2016-05-04 | 2021-10-12 | Curevac Ag | Artificial nucleic acid molecules encoding a norovirus antigen and uses thereof |
US11078247B2 (en) | 2016-05-04 | 2021-08-03 | Curevac Ag | RNA encoding a therapeutic protein |
US12084659B2 (en) | 2016-05-18 | 2024-09-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
US11193129B2 (en) | 2016-05-18 | 2021-12-07 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US10584337B2 (en) | 2016-05-18 | 2020-03-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
US12128113B2 (en) | 2016-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
US11478552B2 (en) | 2016-06-09 | 2022-10-25 | Curevac Ag | Hybrid carriers for nucleic acid cargo |
US11298041B2 (en) | 2016-08-30 | 2022-04-12 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
US11666649B2 (en) | 2016-10-11 | 2023-06-06 | University Of Miami | Vectors and vaccine cells for immunity against Zika virus |
US11279923B2 (en) | 2016-11-28 | 2022-03-22 | Curevac Ag | Method for purifying RNA |
US11542490B2 (en) | 2016-12-08 | 2023-01-03 | CureVac SE | RNAs for wound healing |
US11464836B2 (en) | 2016-12-08 | 2022-10-11 | Curevac Ag | RNA for treatment or prophylaxis of a liver disease |
US11103578B2 (en) | 2016-12-08 | 2021-08-31 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
US20200063162A1 (en) * | 2016-12-22 | 2020-02-27 | Avectas Limited | Vector-free intracellular delivery by reversible permeabilisation |
US11981915B2 (en) * | 2016-12-22 | 2024-05-14 | Avectas Limited | Vector-free intracellular delivery by reversible permeabilization |
US11865084B2 (en) | 2016-12-23 | 2024-01-09 | CureVac SE | MERS coronavirus vaccine |
US11524066B2 (en) | 2016-12-23 | 2022-12-13 | CureVac SE | Henipavirus vaccine |
US11141476B2 (en) | 2016-12-23 | 2021-10-12 | Curevac Ag | MERS coronavirus vaccine |
US11464847B2 (en) | 2016-12-23 | 2022-10-11 | Curevac Ag | Lassa virus vaccine |
US11045540B2 (en) | 2017-03-15 | 2021-06-29 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11918644B2 (en) | 2017-03-15 | 2024-03-05 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
US11739335B2 (en) | 2017-03-24 | 2023-08-29 | CureVac SE | Nucleic acids encoding CRISPR-associated proteins and uses thereof |
US11548930B2 (en) | 2017-04-04 | 2023-01-10 | Heat Biologics, Inc. | Intratumoral vaccination |
US11357856B2 (en) | 2017-04-13 | 2022-06-14 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
WO2018232006A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding coagulation factor viii |
US11759506B2 (en) | 2017-06-15 | 2023-09-19 | Voyager Therapeutics, Inc. | AADC polynucleotides for the treatment of Parkinson's disease |
US10988754B2 (en) | 2017-07-04 | 2021-04-27 | Cure Vac AG | Nucleic acid molecules |
US11497576B2 (en) | 2017-07-17 | 2022-11-15 | Voyager Therapeutics, Inc. | Trajectory array guide system |
US11602557B2 (en) | 2017-08-22 | 2023-03-14 | Cure Vac SE | Bunyavirales vaccine |
WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
WO2019048631A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Hnf4a sarna compositions and methods of use |
EP4233880A2 (en) | 2017-09-08 | 2023-08-30 | MiNA Therapeutics Limited | Hnf4a sarna compositions and methods of use |
WO2019048632A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
EP4219715A2 (en) | 2017-09-08 | 2023-08-02 | MiNA Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
EP4183882A1 (en) | 2017-09-08 | 2023-05-24 | MiNA Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
US11207398B2 (en) | 2017-09-14 | 2021-12-28 | Modernatx, Inc. | Zika virus mRNA vaccines |
US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
US11434502B2 (en) | 2017-10-16 | 2022-09-06 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US11931375B2 (en) | 2017-10-16 | 2024-03-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US12116589B2 (en) | 2017-10-16 | 2024-10-15 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
US11692002B2 (en) | 2017-11-08 | 2023-07-04 | CureVac SE | RNA sequence adaptation |
WO2019104160A2 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding phenylalanine hydroxylase for the treatment of phenylketonuria |
WO2019104152A1 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding ornithine transcarbamylase for the treatment of urea cycle disorders |
WO2019104195A1 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia |
US11931406B2 (en) | 2017-12-13 | 2024-03-19 | CureVac SE | Flavivirus vaccine |
US11525158B2 (en) | 2017-12-21 | 2022-12-13 | CureVac SE | Linear double stranded DNA coupled to a single support or a tag and methods for producing said linear double stranded DNA |
US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
EP4242307A2 (en) | 2018-04-12 | 2023-09-13 | MiNA Therapeutics Limited | Sirt1-sarna compositions and methods of use |
WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
US12097253B2 (en) | 2018-04-17 | 2024-09-24 | CureVac SE | RSV RNA molecules and compositions for vaccination |
WO2019239144A1 (en) | 2018-06-15 | 2019-12-19 | Mina Therapeutics Limited | Combination therapies comprising c/ebp alpha sarna |
CN112088017A (en) * | 2018-07-19 | 2020-12-15 | 赫利世弥斯株式会社 | Lyophilized pharmaceutical compositions for naked deoxyribonucleotide gene therapy |
WO2020023390A1 (en) | 2018-07-25 | 2020-01-30 | Modernatx, Inc. | Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders |
WO2020047201A1 (en) | 2018-09-02 | 2020-03-05 | Modernatx, Inc. | Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency |
WO2020056155A2 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease |
WO2020056147A2 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease |
WO2020056239A1 (en) | 2018-09-14 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome |
WO2020069169A1 (en) | 2018-09-27 | 2020-04-02 | Modernatx, Inc. | Polynucleotides encoding arginase 1 for the treatment of arginase deficiency |
US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
WO2020227642A1 (en) | 2019-05-08 | 2020-11-12 | Modernatx, Inc. | Compositions for skin and wounds and methods of use thereof |
WO2021032777A1 (en) | 2019-08-19 | 2021-02-25 | Mina Therapeutics Limited | Oligonucleotide conjugate compositions and methods of use |
US11964012B2 (en) | 2020-02-04 | 2024-04-23 | CureVac SE | Coronavirus vaccine |
US11471525B2 (en) | 2020-02-04 | 2022-10-18 | Curevac Ag | Coronavirus vaccine |
US11576966B2 (en) | 2020-02-04 | 2023-02-14 | CureVac SE | Coronavirus vaccine |
US11964011B2 (en) | 2020-02-04 | 2024-04-23 | CureVac SE | Coronavirus vaccine |
US11596686B2 (en) | 2020-02-04 | 2023-03-07 | CureVac SE | Coronavirus vaccine |
US11241493B2 (en) | 2020-02-04 | 2022-02-08 | Curevac Ag | Coronavirus vaccine |
CN111588859A (en) * | 2020-06-02 | 2020-08-28 | 成都可恩生物科技有限公司 | Freeze-drying protective agent and application thereof, freeze-dried seedling and preparation method thereof |
WO2022104131A1 (en) | 2020-11-13 | 2022-05-19 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
US11918643B2 (en) | 2020-12-22 | 2024-03-05 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
US11872280B2 (en) | 2020-12-22 | 2024-01-16 | CureVac SE | RNA vaccine against SARS-CoV-2 variants |
WO2022200810A1 (en) | 2021-03-26 | 2022-09-29 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
US12146150B2 (en) | 2022-09-13 | 2024-11-19 | Voyager Therapeutics, Inc. | Rescue of central and peripheral neurological phenotype of friedreich's ataxia by intravenous delivery |
WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
WO2024175887A1 (en) | 2023-02-22 | 2024-08-29 | Mina Therapeutics Limited | Compositions and methods of using c/ebp alpha sarna |
Also Published As
Publication number | Publication date |
---|---|
US20150141498A1 (en) | 2015-05-21 |
WO2011069586A1 (en) | 2011-06-16 |
US9616084B2 (en) | 2017-04-11 |
WO2011069529A1 (en) | 2011-06-16 |
US20170182081A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9616084B2 (en) | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids | |
US20210060175A1 (en) | Methods of immunostimulation with complexes of rna and cationic carriers | |
KR101343043B1 (en) | Composition comprising a complexed (m)RNA and a naked mRNA for providing or enhancing an immunostimulatory response in a mammal and uses thereof | |
US20110053829A1 (en) | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids | |
WO2011069587A1 (en) | Lyophilization of nucleic acids in lactate-containing solutions | |
WO2010088927A1 (en) | Use of pei for the improvement of endosomal release and expression of transfected nucleic acids, complexed with cationic or polycationic compounds | |
EP2510100B1 (en) | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CUREVAC GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUTZKE, THORSTEN;REEL/FRAME:028528/0196 Effective date: 20120418 |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |
|
AS | Assignment |
Owner name: CUREVAC AG, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:CUREVAC GMBH;REEL/FRAME:037115/0430 Effective date: 20150917 |
|
AS | Assignment |
Owner name: CUREVAC SE, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:CUREVAC AG;REEL/FRAME:062684/0132 Effective date: 20220926 |