Nothing Special   »   [go: up one dir, main page]

US20110168364A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US20110168364A1
US20110168364A1 US12/930,644 US93064411A US2011168364A1 US 20110168364 A1 US20110168364 A1 US 20110168364A1 US 93064411 A US93064411 A US 93064411A US 2011168364 A1 US2011168364 A1 US 2011168364A1
Authority
US
United States
Prior art keywords
core plate
tank body
tubes
position determination
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/930,644
Inventor
Tomomi Okuyama
Hiroshi Tanaka
Sumio Susa
Mitsuharu Inagaki
Hironobu Fujiyoshi
Ryuji Shirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010004781A external-priority patent/JP2011144974A/en
Priority claimed from JP2010004780A external-priority patent/JP2011144973A/en
Priority claimed from JP2010059529A external-priority patent/JP2011191038A/en
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIYOSHI, HIRONOBU, SHIRAKAWA, RYUJI, OKUYAMA, TOMOMI, TANAKA, HIROSHI, INAGAKI, MITSUHARU, SUSA, SUMIO
Publication of US20110168364A1 publication Critical patent/US20110168364A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape

Definitions

  • the present invention relates to a heat exchanger.
  • the heat exchanger may be suitably used for a vehicle, and may be adapted as an intercooler for cooling intake air of an internal combustion engine.
  • Patent Document 1 JP 2002-286396A corresponding to US 2002/0134529A1 describes regarding a heat exchanger used as an intercooler for cooling intake air to be supplied to an internal combustion engine.
  • the heat exchanger includes tubes in which intake air flows, fins adapted to facilitate heat exchange between cooling air and the intake air, and a pair of header tanks configured to communicate with each of the tubes.
  • each header tank of the intercooler is configured by a core plate made of an aluminum material and brazed to the tubes, and a resinous tank body fastened to the core plate to form therein a tank space.
  • a circular packing (seal member) made of an elastic member is inserted between a tip end portion of the tank body and a groove portion provided at an outer peripheral portion of the core plate.
  • claw portions provided in the core plate are bent along the outer shape of the tank body, and thereby the tank body and the core plate are fastened and fixed to each other.
  • the packing arranged in the groove portion of the core plate is pressed between the bottom surface of the groove portion of the core plate and an end surface of the tip end portion of the tank body, thereby to be elastically deformed.
  • the space defined by the groove portion of the core plate and the end surface of the tip end portion of the tank body is provided with a space into which the deformed portion of the packing is moved and escaped when the packing is pressed and is elastically deformed.
  • the space is provided in a width direction of the groove portion, perpendicular to the pressing direction of the packing, such that the elastically deformed packing does not contact a wall portion perpendicular to the pressing direction.
  • the packing arrangement position in the groove portion may be shifted when the packing is fitted into the groove portion of the core plate.
  • an elastically deformed portion of the packing may be pressed to one side wall portion, and thereby the packing may receive a reaction force from the one side wall portion.
  • the heat exchanger adapted as the intercooler when mounted to a vehicle, it is desired to reduce the dimension of the heat exchanger in a vehicle front-rear direction.
  • the outermost fins or insert plates of the heat exchanging core portion may protrude outside from the core plate of the header tank in a tank longitudinal direction corresponding to an arrangement direction of the tubes and the fins. In this case, the heat exchanging core portion may be easily damaged.
  • Patent Document 2 (EP 0779488A1) describes regarding a heat exchanger for a vehicle, which includes a plurality of tubes, a plurality of fins each of which is disposed between adjacent tubes to facilitate heat exchange on the fin side, and header tanks communicating with the tubes.
  • the core plate connected to tubes and the tank body are formed integrally.
  • a circular packing (seal member) made of an elastic member is inserted between a tip end portion of the tank body and a groove portion provided at an outer peripheral portion of the core plate.
  • claw portions provided in the core plate are bent along the outer shape of the tank body, and thereby the tank body and the core plate are fastened and fixed to each other.
  • the seal performance of the packing may be deteriorated, and the fluid may be leaked from a clearance between the tank body and the core plate.
  • a protrusion portion is provided to protrude from a bottom surface of an expanding portion of the tank body to a bottom surface of a groove portion.
  • the protrusion portion of the expanding portion of the tank body contacts the bottom surface of the groove portion of the core plate, so that a clearance between the expanding portion of the tank body and the bottom surface of the groove portion can be made uniform.
  • a heat exchanger including a header tank, in which an elastic member is disposed between a core plate and a tank body to have a uniform elastic force along an entire periphery of the elastic member.
  • a heat exchanger includes a heat exchanging core portion and a header tank.
  • the heat exchanging core portion includes a plurality of tubes arranged in an arrangement direction, and a plurality of fins connected to outer surfaces of the tubes to facilitate heat exchange between a first fluid flowing inside of the tubes and a second fluid flowing outside of the tubes.
  • the header tank is disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes.
  • the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, a tank body fixed to the core plate to defined therein a tank space, an elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween.
  • the tip end portion of the tank body is inserted into the groove portion of the core plate, while the elastic member is placed between bottom portion of the groove portion of the core plate and the tip end portion of the tank body.
  • the elastic member is provided with a position determination portion which protrudes approximately in parallel with an inner bottom surface of the bottom portion of the groove portion to prevent a position shift of the elastic member with respect to the core plate, and the position determination portion is configured in the elastic member to have a clearance between the position determination portion and the bottom surface of the bottom portion of the groove portion, and a clearance between the position determination portion and the tip end portion of the tank body.
  • the position determination portion is provided in the elastic member, the position of the elastic member with respect to the core plate can be easily set by using the position determination portion. Furthermore, even when the position determination portion is moved and is pressed to the wall portion of the groove portion in accordance with an elastic deformation of the elastic member, it is possible for the deformed portion of the position determination portion to be moved to the clearances. As a result, the elastic force of the elastic member between the core plate and the tank body can be made in uniform in the entire periphery of the elastic member.
  • the core plate includes extending portions extending in a tube longitudinal direction and defining a plurality of tube insertion holes into which the tubes are respectively inserted, and the extending portions are configured to define a wall portion of the groove portion.
  • the position determination portion includes a longitudinal position determination portion of the elastic member at an inner side of the elastic member in a position extending in the arrangement direction of the tubes, and the longitudinal position determination portion is configured by protrusion portions to protrude respectively to portions between adjacent tube insertion holes and to contact the wall portion of the groove portion.
  • the position determination portion may include a longitudinal position determination portion of the elastic member at an inner side of the elastic member in a position extending in the arrangement direction of the tubes, and a minor-direction position determination portion of the elastic member at an inner side of the elastic member in a position extending in a direction perpendicular to the arrangement direction of the tubes.
  • a protrusion dimension of the longitudinal position determination portion protruding to the inner side of the elastic member may be different from a protrusion dimension of the minor-direction position determination portion protruding to the inner side of the elastic member.
  • a heat exchanger includes a heat exchanging core portion and a header tank.
  • the heat exchanging core portion includes a plurality of tubes arranged in an arrangement direction, and a plurality of fins connected to outer surfaces of the tubes to facilitate heat exchange between a first fluid flowing inside of the tubes and a second fluid flowing outside of the tubes.
  • the header tank is disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes.
  • the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded and a tank body fixed to the core plate to defined therein a tank space, and a tip end portion of the tank body is inserted into a groove portion provided at an outer peripheral portion of the core plate when the tank body is fixed to the core plate.
  • the groove portion has a first groove part provided at two end sides of the core plate in the arrangement direction, and a second groove part provided at two end sides of the core plate in a direction perpendicular to the arrangement direction.
  • the first groove part has a groove width dimension different from a groove width dimension of the second groove part.
  • the header tank has a dimension in the arrangement direction, which is equal to or larger than a dimension of the heat exchanging core portion in the arrangement direction.
  • the groove width dimension of the first groove part can be different from the groove width dimension of the second groove part, the dimension of the header tank in the arrangement direction of the tubes can be easily changed in a conventional heat exchanger.
  • the groove width dimension of the first groove part may be larger than the groove width dimension of the second groove part.
  • the tip end portion of the tank body may includes a first expanding portion located at two end sides of the arrangement direction to extend in the direction perpendicular to the arrangement direction, and a second expanding portion located at two end sides in the direction perpendicular to the arrangement direction to extend in the arrangement direction.
  • the first expanding portion has an expanding dimension expanding in the arrangement direction, which is larger than an expanding dimension of the second expanding portion expanding in the direction perpendicular to the arrangement direction.
  • an elastic member may be arranged between a bottom portion of the groove portion of the core plate and the tip end portion of the tank body to be elastically deformable therebetween.
  • the tip end portion of the tank body is inserted into the groove portion of the core plate, while the elastic member is placed between the bottom portion of the groove portion of the core plate and the tip end portion of the tank body.
  • a heat exchanger includes a plurality of tubes arranged in an arrangement direction, in which a fluid flows, and a header tank disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes.
  • the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, a tank body fixed to the core plate to defined therein a tank space, and a circular elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween.
  • the tip end portion of the tank body is inserted into the groove portion of the core plate in an insertion direction, while the elastic member is placed between the bottom portion of the groove portion of the core plate and the tip end portion of the tank body.
  • the core plate has a claw portion protruding from an outer peripheral wall portion of the groove portion and bent along an outer surface of the tank body to be fixed to the tank body, and a contact surface provided to cross with the insertion direction of the tip end portion of the tank body
  • the tank body is provided with a plurality of position determination portions protruding to a side perpendicular to the insertion direction of the tip end portion of the tank body, and the position determination portions of the tank body contact the contact surface of the core plate.
  • the position determination portions of the tank body contact the contact surface of the core plate, it is unnecessary to increase the groove width dimension due to the position determination portions of the tank body, and thereby reducing the size of the heat exchanger. Furthermore, a relative distance between the bottom surface of the tip end portion of the tank body and the bottom portion of the groove portion can be made uniform in the entire periphery. Therefore, the elastic member can be deformed in uniform, thereby preventing the fluid from being leaked from a clearance between the core plate and the tank body.
  • a plurality of the claw portions may be provided to protrude from the outer peripheral wall portion of the groove portion of the core plate toward the tank body, and the contact surface may be provided between adjacent claw portions in the core plate.
  • the core plate of the header tank may have a polygon shape.
  • the position determination portion may be provided at least at an angular portion of the core plate.
  • the position determination portions may be positioned inside of the outermost peripheral portion of the core plate.
  • FIG. 1 is a front view showing an intercooler as an example of a heat exchanger according to a first embodiment of the invention
  • FIG. 2 is a partially sectional view showing a part of a header tank of the intercooler, in a section along a tank minor direction (tank width direction) A 3 of the header tank, according to the first embodiment;
  • FIG. 3 is a partially sectional view showing a part of the header tank of the intercooler, in a section along a tank longitudinal direction (tank major direction) A 2 of the header tank, according to the first embodiment;
  • FIG. 4 is a perspective view showing a core plate and a packing of the header tank according to the first embodiment
  • FIG. 5 is a top view showing the core plate and the packing of the header tank according to the first embodiment
  • FIG. 6 is a partially sectional view showing a part of the header tank and the packing of the intercooler, in a section along the tank minor direction A 3 of the header tank before fastening, according to the first embodiment;
  • FIG. 7 is a partially sectional view showing a part of the header tank and the packing of the intercooler, in a section along the tank longitudinal direction (tank major direction) A 2 of the header tank before fastening, according to the first embodiment;
  • FIG. 8 is a perspective view showing a header tank of a heat exchanger according to a second embodiment of the invention.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8 ;
  • FIG. 10 is a cross-sectional view taken along the line X-X of FIG. 8 ;
  • FIG. 11 is a perspective view showing a core plate and a packing of the header tank, according to the second embodiment.
  • FIG. 12 is a perspective view showing a header tank of a heat exchanger according to another embodiment of the invention.
  • a heat exchanger of the present invention is typically applied to an intercooler 100 for a vehicle.
  • the intercooler 100 is a cooling heat exchanger in which air (intake air) for fuel combustion to be drawn into an internal combustion engine is heat-exchanged with exterior air (cooling air), thereby cooling the intake air.
  • intake air intake air
  • exterior air cooling air
  • FIG. 1 is a front view showing the intercooler 100 as an example of a heat exchanger according to the first embodiment.
  • FIG. 2 is a partially sectional view showing a part of a header tank 120 of the intercooler 100 , in a section along a tank minor direction (tank width direction) A 3 of the header tank 120 , according to the first embodiment. That is, FIG. 2 is a partially sectional view in a section perpendicular to a longitudinal direction A 2 of the header tank 120 .
  • FIG. 3 is a partially sectional view showing a part of the header tank 120 of the intercooler 100 , in a section along a tank longitudinal direction A 2 of the header tank 120 , according to the first embodiment. That is, FIG. 3 is a partially sectional view in a section perpendicular to the tank minor direction A 3 of the header tank 120 .
  • FIG. 4 is a perspective view showing a core plate 121 and a packing (elastic member) 123 when being viewed from an inside of the header tank 120 .
  • the intercooler 100 includes a plurality of tubes 111 and fins 112 bonded to the adjacent tubes 111 .
  • the tubes 111 may be flat tubes in cross section.
  • the fins 112 are bonded to flat surfaces of the flat tubes 111 .
  • Intake air as a first fluid flows in the tubes 111 , to be heat-exchanged with cooling air as a second fluid flowing outside of the tubes 111 .
  • the fins 112 are formed by bending a plate member in a wave shape and are made of aluminum.
  • the fins 112 are attached to the tubes 111 to facilitate heat exchange between the intake air flowing therein and the cooling air flowing outside of the tubes 111 .
  • the plural tubes 111 and the plural fins 112 are alternatively arranged in an arrangement direction corresponding to the tank longitudinal direction A 2 , so that a heat exchanging core portion 110 having approximately a rectangular shape is formed to cool the intake air.
  • the cooling air passes through the core portion 110 in the paper face-back direction of FIG. 1 , thereby cooling the intake air flowing in the tubes 111 .
  • a part of the tubes 111 and fins 112 are indicated in the core portion 110 .
  • the tubes 111 and the fins 112 are arranged in the whole area of the core portion 110 .
  • the paper face-back direction of FIG. 1 corresponds to the tank minor direction A 3 .
  • the tube 111 is a welded tube that is formed by bending and electric welding of a plate material, clad with a brazing material (e.g., aluminum alloy such as A4045, A4343 or the like) on front and back both sides.
  • a brazing material e.g., aluminum alloy such as A4045, A4343 or the like
  • the fins 112 is brazed and bonded to the tubes 111 by using the brazing material clad on the outer surfaces of the tubes 111 .
  • louvers 113 are formed by cutting and bending a part of the fins 112 , so as to disturb an air flow and prevent a temperature boundary layer from being increasing.
  • a pair of header tanks 120 are located at two longitudinal end sides of the tubes 111 to extend in the tank longitudinal direction A 2 perpendicular to a tube longitudinal direction A 1 .
  • the tank longitudinal direction A 2 corresponds to the arrangement direction of the tubes 111 and the fins 112 .
  • the header tanks 120 are disposed to communicate with the tubes 111 .
  • the header tank 120 of the intercooler 100 is configured by a core plate 121 made of an aluminum material and brazed to the tubes 111 , and a resinous tank body 122 air-tightly fixed to the core plate 121 to form therein a tank space.
  • the tubes 111 are inserted into tube insertion holes of the core plate 121 , and are brazed to the core plate 121 by using a brazing material clad on both front and back surfaces of the core plate 121 .
  • the core plate 121 is a plate member provided with a groove portion 121 a recessed to a side of the core portion 110 along an entire periphery portion of the core plate 121 .
  • the plural tube insertion holes 121 c, into which the tubes 111 are inserted, are provided in an inside area of the core plate 121 enclosed by the groove portion 121 a.
  • the tube insertion holes 121 c are holes penetrating through the core plate 121 , and are formed by burring to have extending portion 121 d protruding and extending from a plate surface (base surface) of the core plate 121 to outside of the longitudinal direction A 1 of the tubes 111 .
  • the extending portions 121 d of the tube insertion holes 121 c extend along the outer surface of the inserted tube 111 , thereby increasing brazing area between the core plate 121 and the tubes 111 . Because the extending portion 121 d is provided in the tube insertion hole 121 c of the core plate 121 , a contact area between the core plate 121 and the tubes 111 can be increased.
  • a claw portion 121 b as a fixing portion is provided in an outer wall portion of the groove portion 121 a of the core plate 121 , to be fastened and fixed to an expanding portion at a tip end side of the tank body 122 .
  • the expanding portion 122 a of the tank body 122 is inserted into the groove portion 121 a of the core plate 121 .
  • the end side of the claw portion 121 b is bent along the outer shape of the end portion of the tank body 122 , so that the tank body 122 and the core plate 121 are fastened and fixed to each other.
  • a circular packing 123 is fitted into the groove portion 121 a to be elastically deformed between the bottom surface of the expanding portion 122 a and an inner bottom surface of the groove portion 121 a of the core plate 121 .
  • the packing 123 is an example of an elastic member made of an elastic material such as rubber, and is adapted to seal a connection portion between the tank body 122 and the core plate 121 .
  • Reinforcement ribs 122 b are provided in the tank body 122 at positions without being fastened by the claw portion 121 b, thereby increasing the strength of the tank body 122 .
  • reinforcement insert plates 130 are formed at two end portions of the core portion 110 in the arrangement direction of the tubes 111 , to extend in a direction substantially parallel to the tube longitudinal direction A 1 , thereby reinforcing the strength at the two end sides of the core portion 110 in the arrangement direction.
  • a brazing material is applied to a surface of the insert plate 130 on an inner side of the core portion 110 to be bonded to an outermost fin 112 arranged at the outermost side of the core portion 110 in the arrangement direction of the tubes 111 .
  • the two longitudinal end portions of each insert plate 130 is brazed to the core plate 121 of the head tank 120 by using the brazing material clad on the core plate 121 .
  • a core assemble step is performed.
  • the tubes 111 , the fins 112 and the insert plates 130 are stacked on an operation plate, and the core plates 121 are assembled such that the tubes 111 are inserted into the tube insertion holes 121 c of the core plates 121 , respectively.
  • the core portion 110 temporally assembled in the core assemble step is heated and burned in a furnace while the assembling state of the core portion 110 is maintained by using a jig such as wires, in a brazing step.
  • the core portion 110 is cooled so that melted brazing material is solidified again.
  • the packing 123 is fitted into the groove portion 121 a of the core plate 121 , and thereafter the tank body 122 is fastened and fixed to the core plate 121 .
  • errors such as a brazing error, a fastening error, a seal error and a dimension error are checked to remove product with any error, thereby ending the manufacturing of the intercooler 100 .
  • the groove portion 121 a provided at an outer peripheral portion of the core plate 121 is provided adjacent to the tube insertion hole 121 c of the core plate 121 . More specifically, as shown in FIG. 2 , the extending portion 121 d is provided with a wall portion extending to the longitudinal direction A 1 of the tube 111 to be approximately perpendicular to the bottom surface of the groove portion 121 a.
  • the extending portion 121 d is formed as a flat surface portion in the core plate 121 , between the groove portion 121 a and the tube insertion hole 121 c adjacent to the groove portion 121 a. Therefore, it is possible to reduce the dimensions of the core plate 121 , in a longitudinal direction (tank major direction) A 2 of the core plate 121 and a width direction (tank minor direction A 3 ) of the core plate 121 , perpendicular to the longitudinal direction of the core plate 121 , as shown in FIGS. 2 and 3 .
  • the width direction of the core plate 121 is parallel with the air flow direction passing through the core portion 110 , and corresponds to a vehicle front-rear direction when the intercooler 100 is mounted to a vehicle.
  • the dimension of the core plate 121 of the intercooler 100 in the vehicle front-rear direction can be effectively reduced.
  • the fins 112 and the insert plates 130 located at the outermost sides of the core portion 110 may protrude outside from the longitudinal ends of the core plate 121 .
  • the fins 112 and the insert plates 130 protrude from the core plate 121 in a direction parallel to the longitudinal direction of the core plate 121 , the fins 112 and the insert plates 130 of the core portion 110 may be easily damaged due to the protrusion portion of the core portion 110 .
  • FIG. 5 is a top view showing the core plate 121 and the packing 123 , according to the first embodiment.
  • a 1 indicates the tube longitudinal direction
  • a 2 indicates the tank longitudinal direction corresponding to the longitudinal direction of the core plate 121 perpendicular to the tube longitudinal direction A 1
  • a 3 indicates the minor direction of the core plate 121 of the header tank 120 perpendicular to the tube longitudinal direction A 1 and the tank longitudinal direction A 2
  • the tank longitudinal direction A 2 corresponds to the arrangement direction of the tubes 111 and the fins 112 of the core portion 110 .
  • the width dimension X of the groove portion 121 a of the core plate 121 is a groove width dimension in a direction parallel to the tank longitudinal direction A 2
  • the width dimension Y of the groove portion 121 a is a groove width dimension in the tank minor direction A 3 corresponding to the air flow direction.
  • the width dimension X of the groove portion 121 a at two end sides of the tank longitudinal direction A 2 of the core plate 121 is made larger than the width dimension Y of the groove portion 121 a at two end sides of the tank minor direction A 3 of the core plate 121 . Therefore, the two end portions of the core plate 121 of the header tank 120 in the tank longitudinal direction A 2 can be placed outside of the core portion 110 in the tank longitudinal direction A 2 corresponding to the tube arrangement direction of the core portion 110 .
  • the dimensions of the expanding portion 122 a of the tank body 122 in the tank longitudinal direction A 2 and the tank minor direction A 3 are set to respectively correspond to the width direction X and the width direction Y of the groove portion 121 a.
  • the expanding portion 122 a of the tank body 122 has a first potion extending in the tank minor direction A 3 that is perpendicular to the tank longitudinal direction A 2 .
  • the first portion of the expanding portion 122 a of the tank body 122 expands and protrudes outside of the tank longitudinal direction A 2 corresponding to the arrangement direction of the tubes 111 .
  • the first portion of the expending portion 122 a of the tank body 122 has a dimension in the tank longitudinal direction A 2 , which corresponds to the groove width dimension X of the groove portion 121 a.
  • the expanding portion 122 a of the tank body 122 has a second potion extending in the tank minor direction A 3 .
  • the second portion of the expanding portion 122 a of the tank body 122 expands and protrudes outside of the tank minor direction A 3 perpendicular to the arrangement direction of the tubes 111 .
  • the second portion of the expending portion 122 a of the tank body 122 has a dimension in the tank minor direction A 3 , which corresponds to the groove width dimension Y of the groove portion 121 a.
  • the expanding dimension of the first portion of the expanding portion 122 a expended in the tank longitudinal direction A 2 is made larger than the expanding dimension of the second portion of the expanding portion 122 a expended in the tank minor direction A 3 .
  • a wall thickness of the first portion of the expanding portion 122 a of the tank body 122 positioned on two end sides of the tank longitudinal direction A 2 is made thicker than a wall thickness of the second portion of the expanding portion 122 a of the tank body 122 positioned on two end sides of the tank minor direction A 3 .
  • FIG. 6 is a partially sectional view showing a part of the header tank 120 and the packing 123 in a section along the tank minor direction A 3 , before the claw portion 121 b is bent to be fastened to the tank body 122 .
  • FIG. 2 is a partially sectional view in a section including the tube insertion hole 121 c of the core plate 121 and the rib 122 b of the tank body 122
  • FIG. 6 is a partially sectional view in a section without including the tube insertion hole 121 c of the core plate 121 and the rib 122 b of the tank body 122 .
  • FIG. 7 is a partially sectional view showing a part of the header tank 120 and the packing 123 in a section along the tank longitudinal direction A 2 , before the claw portion 121 b is bent and is fastened to the tank body 122 .
  • FIG. 3 is a partially sectional view showing a part of the header tank 120 and the packing 123 in the section along the tank longitudinal direction A 2 , after the claw portion 121 b is bent and is fastened to the tank body 122 .
  • the packing 123 has a circular cross section, and extends circularly along the shape of the groove portion 121 a.
  • the packing 123 includes a pair of first packing portions extending in the tank minor direction A 3 , and a pair of second packing portions extending in the tank longitudinal direction A 2 . As shown in FIGS. 5 and 6 , the second packing portion of the packing 123 extending in the tank minor direction A 3 has a plurality of position determination portions 123 a configured to determine the position of the packing 123 in the tank longitudinal direction A 2 with respect to the core plate 121 .
  • a plurality of protrusion portions are formed as the position determination portions 123 a in the packing portion 123 to protrude approximately in parallel with the bottom surface of the groove portion 121 a respectively toward a portion between adjacent the tube insertion holes 121 c.
  • the position determination portion 123 a of the packing 123 is made to contact opposite wall surfaces formed by the expending portions 121 d of the adjacent tube insertion holes 121 c, thereby preventing the packing 123 from being removed.
  • the position determining portion 123 a is thinned along the opposite wall surfaces of the adjacent tube insertion hole 121 c, and may be formed into approximately a triangular shape.
  • the first packing portion of the packing 123 extending to the tank minor direction A 3 at two longitudinal end sides of the core plate 121 is provided integrally with a position determination portion 123 b configured to determine the position of the second packing portion of the packing 123 with respect to the core plate 121 .
  • the position determination portion 123 b is provided integrally in the first packing portion of the packing 123 to extend approximately in parallel with the bottom surface of the groove portion 121 a.
  • the position determination portion 123 b protrudes from the packing 123 having the circular section toward the extending portion 121 d of the tube insertion hole 121 c positioned outermost in the arrangement direction of the tubes 111 .
  • the position determination portion 123 b of the first packing portion of the packing 123 located at two longitudinal end sides of the core plate 121 does not contact the extending portion 121 d. before the fastening.
  • the position determination portion 123 b provided in the first packing portion of the packing 123 continuously extends in the tank minor direction A 3 that is perpendicular to the arrangement direction of the tubes 111 .
  • the position determination portion 123 a is a longitudinal position determination portion of the packing 123
  • the position determination portion 123 b is a minion-direction position determination portion.
  • the protrusion dimension of the longitudinal position determination portion 123 a is made larger than the protrusion dimension of the minion-direction position determination portion, in accordance with the dimension difference of the grove width dimensions X and Y.
  • the position determination portions 123 a, 123 b are configured to not contact the bottom surface of the expanding portion 122 a of the tank body 122 and the bottom surface of the groove portion 121 a of the core plate 121 , before the fastening.
  • the longitudinal position determination portions 123 a are respectively moved toward portions between the adjacent tube insertion holes 121 c, in accordance with an elastic deformation of the sectional shape of the packing 123 . That is, each of the longitudinal position determination portions 123 a is elastically deformed and moved to a position between the adjacent tube insertion holes 121 c.
  • the longitudinal position determination portions 123 a are pressed by the extending portions 121 d of the tube insertion hole 121 c to be slightly elastically deformed.
  • the reaction force due to this elastic deformation of the longitudinal position determination portions 123 a is hardly applied to a direction for separating the core plate 121 and the tank body 122 from each other.
  • the elastic deformation can be escaped to a space between the longitudinal position determination portion 123 a and the bottom surface of the expending portion 122 a, and to a space between the longitudinal position determination portion 123 a and the bottom surface of the groove portion 121 a.
  • the minor-direction position determination portion 123 b is moved toward the extending portion 121 d of the tube insertion hole 121 c at the outermost side in the tank longitudinal direction A 2 , as shown in FIGS. 3 and 7 .
  • the minor-direction position determination portion 123 b is elastically deformed in a degree contacting the extending portion 121 d of the tube insertion hole 121 c. At this time, the minor-direction position determination portion 123 b is hardly elastically deformed, and thereby the reaction force due to this elastic deformation is hardly applied to the direction for separating the core plate 121 and the tank body 122 from each other.
  • the position determination portions 123 a, 123 b almost do not contact the bottom surface of the expanding portion 122 a of the tank body 122 and the bottom surface of the groove portion 121 a of the core plate 121 . That is, dimensions of the position determination portions 123 a, 123 b before the fastening are set, such that a clearance can be maintained between the position determination portion 123 a, 123 b and the bottom surface of the expanding portion 122 a of the tank body 122 , and between the position determination portion 123 a, 123 b and the bottom surface of the groove portion 121 a of the core plate 121 after the fastening.
  • the reaction force due to the elastic deformation of the longitudinal position determination portion 123 a and the minor-direction position determination portion 123 b is hardly applied to the direction for separating the core plate 121 and the tank body 122 from each other.
  • the elastic force, applied to the direction for separating the core plate 121 and the tank body 122 from each other is about the elastic deformation force of a circular section portion of the packing 123 in the entire periphery of the packing 123 .
  • the width dimension X of the groove portion 121 a in the first portion extending to the minor-direction A 3 of the core plate 121 is made larger than the width dimension Y of the groove portion 121 a in the second portion extending to the tank longitudinal direction A 2 that corresponds to the arrangement direction of the tubes 111 . Therefore, the two end portions of the core plate 121 of the header tank 120 in the tank longitudinal direction A 2 can be placed outside of the core portion 110 in the tank longitudinal direction A 2 corresponding to the tube arrangement direction of the core portion 110 .
  • the dimension of the header tank 120 in the tank longitudinal direction A 2 is set equal to or larger than the dimension of the core portion 110 in the tank longitudinal direction A 2 corresponding to the tube arrangement direction.
  • it can prevent the end portions of the core portion 110 from protruding outside of the header tank 120 in the tube arrangement direction. Therefore, a damage of the core portion 110 can be prevented when the intercooler 100 is moved or mounted to a vehicle.
  • the dimension of the first portion of the expanding portion 122 a of the tank body 122 is set to correspond to the groove width dimension X of the groove portion 121 a
  • the dimension of the second portion of the expanding portion 122 a of the tank body 122 is set to correspond to the groove width dimension Y of the groove portion 121 a. Therefore, it can prevent the engagement position between the core plate 121 and the tank body 122 from being shifted.
  • the dimension of the first portion of the expanding portion 122 a expending in the tank longitudinal direction A 2 is made larger than the dimension of the second portion of the expanding portion 122 a expending in the tank minor direction A 3 . Therefore, the dimension of the header tank 120 in the tank minor direction A 3 perpendicular to the tank longitudinal direction A 2 can be reduced.
  • the dimension of the intercooler 100 in the air flow direction can be reduced, thereby reducing the dimension of the intercooler 100 . Accordingly, when the intercooler 100 is mounted to a vehicle, the dimension of the intercooler 100 in the vehicle from-rear direction corresponding to the tank minor direction A 3 can be effectively reduced.
  • the plural longitudinal position determination portions 123 a are formed integrally with the packing 123 , so that a part of the longitudinal position determination portions 123 a contacts the extending portion 121 d forming a part of the groove portion 121 a. Therefore, the position of the packing 123 with respect to the core plate 121 can be easily determined.
  • the clearance is formed between the longitudinal position determination portion 123 a and the bottom surface of the groove portion 121 a, and between the longitudinal position determination portion 123 a and the bottom surface of the expanding portion 122 a, after the claw portions 121 b are fastened.
  • the longitudinal position determination portion 123 a is deformed due to the elastic deformation of the packing 123 , and the deformed longitudinal position determination portion is pressed to the extending portion 121 d forming the groove portion 121 a, the elastic deformation of the longitudinal position determination portion 123 a can be escaped to the clearance.
  • the longitudinal position determination portions 123 a respectively protrude and deform toward the portions between the adjacent tube insertion holes 121 c. Therefore, in the fastening, the elastic deformation of the longitudinal position determination portion 123 a can be escaped toward the portions between the adjacent tube insertion holes 121 c. Thus, the reaction force due to this elastic deformation of the longitudinal position determination portions 123 a is hardly applied to the direction for separating the core plate 121 and the tank body 122 from each other.
  • the reaction force due to this elastic deformation of the packing 123 is not unequally applied to the direction for separating the core plate 121 and the tank body 122 from each other, and thereby restricting an unequal force from being generated due to the reaction force. Therefore, the elastic force of the packing 123 can be made uniform in the entire periphery of the packing 123 .
  • the protrusion dimension of the minor-direction position determination portion 123 b is set such that the minor-direction position determination portion 123 b does not contact a wall surface of the extending portion 121 d, before the fastening.
  • the protrusion dimension of the minor-direction position determination portion 123 b may be set such that the minor-direction position determination portion 123 b contacts the wall surface of the extending portion 121 d, before the fastening.
  • the minor-direction position determination portion 123 b When the minor-direction position determination portion 123 b contacts the wall surface of the extending portion 121 d before the fastening, the minor-direction position determination portion 123 b is pressed to the extending portion 121 d, in accordance with the elastic deformation of the circular section portion of the packing 123 . Even in this case, the minor-direction position determination portion 123 b is elastically deformed to a clearance between the minor-direction position determination portion 123 b and the bottom surface of the groove portion 121 a, and to a clearance between the minor-direction position determination portion 123 b and the extending portion 122 a.
  • the reaction force from the wall portion of the tube insertion hole 121 c due to the elastic deformation can be made very small, and thereby the reaction force is hardly applied on the direction of separating the groove portion 121 a and the expanding portion 122 a from each other.
  • the groove portion 121 a is provided at the outer peripheral portion of the core plate 121 adjacent to the tube insertion hole 121 c of the core plate 121 . More specifically, as shown in FIG. 2 , a part of the groove portion 121 a is formed by the extending portion 121 d of the tube insertion hole 121 c.
  • the extending portion 121 d is formed as a flat wall portion in the core plate 121 , to partition the groove portion 121 a and the tube insertion hole 121 c adjacent to the groove portion 121 a from each other. Therefore, it is possible to effectively reduce the dimensions of the core plate 121 , in the longitudinal direction A 2 of the core plate 121 and in the width direction A 3 of the core plate 121 , perpendicular to the longitudinal direction A 2 of the core plate 121 .
  • the intercooler 100 is a cooling heat exchanger in which air (intake air) for fuel combustion to be supplied to an internal combustion engine of a vehicle is heat-exchanged with exterior air (cooling air), thereby cooling the intake air.
  • the basic structure of the intercooler 100 is similar that of the above-described first embodiment shown in FIG. 1 , and the detail description thereof is omitted.
  • FIG. 8 is a perspective view showing the header tank 120 of the intercooler 100 according to the second embodiment.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8
  • FIG. 10 a cross-sectional view taken along the line X-X of FIG. 8 .
  • FIG. 8 shows a state of the header tank 120 before a tank body 122 is fastened and fixed to a core plate 121 .
  • FIG. 11 is a perspective view showing the core plate 121 and a packing (elastic member) 123 when being viewed from an inside of the header tank 120 .
  • the core plate 121 is a plate member provided with a groove portion 121 a recessed to the side of the core portion 110 along an entire outer periphery portion of the core plate 121 .
  • the core plate 121 has approximately a rectangular shape, as shown in FIG. 11 .
  • the plural tube insertion holes 121 c, into which the tubes 111 are inserted and brazed, are provided in an inside area of the core plate 121 enclosed by the groove portion 121 a.
  • the tube insertion holes 121 c are holes penetrating through the core plate 121 , and are formed by burring to have extending portions 121 d protruding and extending from a plate surface (base surface) of the core plate 121 to outside of the longitudinal direction of the tubes 111 .
  • the extending portions 121 d of the tube insertion holes 121 c extend to the outer surface of the inserted tube 111 , thereby increasing brazing area between the core plate 121 and the tubes 111 . Because the extending portion 121 d is provided in the tube insertion hole 121 c, a contact area between the core plate 121 and the tubes 111 can be increased, similarly to the above-described first embodiment.
  • a plurality of claw portions 121 b are provided in a side wall portion 121 e along the groove portion 121 a of the core plate 121 .
  • the side wall portion 121 e is provided at an outer peripheral side of the groove portion 121 a in the core plate 121 .
  • the claw portions 121 b are bent along the outer peripheral shape of an expanding portion 122 a of the tank body 122 to be fastened and fixed to the expanding portion 122 a at an end side of the tank body 122 .
  • the claw portions 121 b are provided in the core plate 121 to extend from the side wall portion 121 e of the core plate 121 to the side of the tank body 122 .
  • Flat surfaces are provided in the side wall portion 121 e of the core plate 121 between adjacent claw portions 121 b to have the same wall thickness as the core plate 121 .
  • the flat surfaces between the adjacent claw portions 121 b of the side wall portion 121 e are adapted as contact surfaces 121 f which respectively contact position determination portions 122 b of the tank body 122 , when the core plate 121 and the tank body 122 are fastened.
  • each of the contact surfaces 121 f is provided in the side wall portion 121 e defining the outer peripheral side of the groove portion 121 a, to be cross with the insertion direction of the expanding portion 122 a of the tank body 122 into the groove portion 121 a of the core plate 121 .
  • the tank body 122 is fixed to the core plate 121 to form therein a tank space.
  • the tank body 122 is opened at its one end side where the core plate 121 is fixed, and the expanding portion 122 a is provided at the one end side of the tank body 122 .
  • a flow inlet or a flow outlet is provided in the tank body 122 at an end portion opposite to the one end side where the core plate 121 is fixed. The intake air flows into the header tank 120 of the intercooler 100 through the flow inlet or flows out of the header tank 120 of the intercooler 100 through the flow outlet.
  • the expending portion 122 a of the tank body 122 to be inserted into the groove portion 121 a is formed into approximately a rectangular shape in cross-section. More specifically, a circular packing (seal member) 123 made of an elastic member and the expending portion 122 a of the tank body 122 are inserted into the groove portion 121 a provided at the outer peripheral portion of the core plate 121 . That is, the circular packing 123 is inserted between the groove portion 121 a of the core plate 121 and the expanding portion 122 a of the tank body 122 . In this state, the end sides of the claw portions 121 b provided in the core plate 121 are bent respectively along the outer shape of the tank body 122 , and thereby the tank body 122 and the core plate 121 are fastened and fixed to each other.
  • a circular packing (seal member) 123 made of an elastic member and the expending portion 122 a of the tank body 122 are inserted into the groove portion 121 a provided at the outer peripheral portion of the core
  • a plurality of the position determination portions 122 b are provided in the tank body 122 to continuously extend from the expending portion 122 a in the tank body 122 , as shown in FIG. 9 .
  • Each of the position determination portions 122 b protrudes in a direction approximately perpendicular to the insertion direction of the expanding portion 122 a inserted into the groove portion 121 a.
  • Each of the position determination portions 122 b is formed to be positioned between adjacent claw portions 121 b in the tank body 122 , and to contact the contact surface 121 f provided between the adjacent claw portions 121 b.
  • the contact surface 121 f is also formed in each rectangular corner portion of the core plate 121 to be positioned between the claw portions 121 b arranged in the longitudinal direction of the core plate 121 and the claw portions 121 b arranged in the minor direction of the core plate 121 . Therefore, the position determination portion 122 b contacts the contact surface 121 f provided at the rectangular corner portion. Because the position determination portion 122 b is provided at each rectangular corner portion of the core plate 121 , the arrangement position between the core plate 121 and the tank body 122 can be more accurately determined.
  • the outermost peripheral portion of the position determination portion 122 b is positioned inside of an outermost periphery of the core plate 121 without protruding to outside from the outermost periphery of the core plate 121 .
  • each of the position determination portion 122 b arranged in the longitudinal direction A 2 of the core plate 121 extends in the insertion direction of the expanding portion 122 a inserted into the groove portion 121 a. Therefore, the position determination portions 122 b arranged in the longitudinal direction A 2 of the core plate 121 are adapted as reinforcement ribs for increasing the strength of the tank body 122 .
  • the circular packing 123 having an approximately circular shape in cross section is fitted into the groove portion 121 a to be elastically deformed between the bottom surface of the expanding portion 122 a and the inner bottom surface of the groove portion 121 a of the core plate 121 .
  • the packing 123 is an example of an elastic member made of an elastic material such as rubber, and is adapted to seal a connection portion between the tank body 122 and the core plate 121 .
  • the packing 123 has approximately a rectangular cross section, and extends circularly along the shape of the groove portion 121 a of the core plate 121 .
  • the packing 123 may be provided integrally with position determination portions 123 a, similarly to the above-described first embodiment, at least in the portions corresponding to the longitudinal direction of the core plate 121 .
  • the position determination portion 123 a may be provided in the packing portion 123 to protrude approximately in parallel with the bottom surface of the groove portion 121 a respectively toward the portions between adjacent the tube insertion holes 121 c.
  • each of the position determination portions 123 a of the packing 123 may be formed into approximately a triangular shape or a semi-circular shape along the shape between adjacent tube insertion holes 121 c of the core plate 121 .
  • the position determination portions 122 b are provided in the tank body 122 to respectively contact the contact surfaces 121 f of the core plate 121 . Therefore, it is easy to uniformly set a relative distance between the bottom surface of the expending portion 122 a of the tank body 122 and the bottom surface of the groove portion 121 a of the core portion 121 , in the entire periphery.
  • the packing 123 can be elastically deformed by a uniform load applied thereto along the entire periphery of the packing 123 , thereby preventing the fluid from being leaked from a clearance between the tank body 122 and the core plate 121 .
  • the contact surfaces 121 f are formed by the flat surfaces provided in the side wall portion 121 e of the core plate 121 adjacent to the end side of the tank body 122 . Therefore, it is unnecessary to accommodate the position determination portions 122 b into the groove portion 121 a when the core plate 121 and the tank body 122 are fixed to each other.
  • the width dimension of the groove portion 121 a can be set at the minimum dimension required to accommodate the packing 123 , thereby preventing the width dimension of the groove portion 121 a from being unnecessarily increased. As a result, it can accurately prevent the fluid from being leaked from a clearance between the tank body 122 and the core plate 121 , without increasing the entire size of the heat exchanger. Therefore, it is possible to easily mount the heat exchanger in a small space of the vehicle.
  • the plural claw portions 121 b are provided as described above, and each contact surface 121 f is provided between adjacent claw portions 121 b.
  • the claw portions 121 b and the contact surfaces 121 f are alternately arranged in an outer peripheral direction of the core plate 121 .
  • the core plate 121 has an approximately a rectangular peripheral shape, and the position determination portions 122 b are arranged to correspond to the peripheral shape of the core plate 121 .
  • the contact portions between the position determination portions 122 b of the tank body 122 and the contact surfaces 121 f can be uniformly arranged in the entire periphery of the core plate 121 . Therefore, it can effectively prevent the relative distance between the bottom surface of the expanding portion 122 a and the inner bottom surface of the groove portion 121 a from being unequal.
  • each position determination portion 122 b is positioned inside of the outermost periphery of the core plate 121 , it can prevent the position determination portions 122 b from protruding to outside more than the outermost periphery of the core plate 121 . Therefore, the entire size of the heat exchanger can be effectively reduced.
  • a heat exchanger of the present invention is adapted to an intercooler for a vehicle.
  • the present invention is not limited to the intercooler, and may be applied to other-type heat exchanger.
  • the heat exchanger of the present invention may be applied to a refrigerant radiator or a condenser for a refrigerant cycle, a radiator for en engine coolant system, or an oil cooler or the like.
  • a pair of the header tanks 120 are located at two longitudinal end sides of the tubes 111 .
  • the present invention may be applied to a heat exchanger in which the header tank 120 is provided at one longitudinal end side of the tubes 111 of the core portion 110 .
  • the plural claw portions 121 b are separately arranged in the longitudinal direction of the core plate 121 .
  • the number and the shape of the claw portions 121 b may be suitably changed without being limited to the examples described in the above embodiments.
  • the claw portions 121 b may be formed into a band shape continuously connected to each other in the longitudinal direction of the core plate 121 .
  • the ribs 122 b may be omitted.
  • the groove width dimension X is set larger than the groove width dimension Y.
  • the groove width dimension X may be set equal to or smaller than the groove width dimension Y.
  • the insert plates 130 are provided at two end sides of the core portion 110 in the arrangement direction of the tubes 111 of the core portion 110 .
  • the insert plates 130 may be omitted.
  • the longitudinal position determination portion 123 a and the minor-side position determination portion 123 b are formed integrally with the packing 123 .
  • the packing 123 may be formed uniformly in the sectional shape in the entire periphery of the packing 123 , without being provided with the longitudinal position determination portions 123 a and the minor-direction position determination portions 123 b different from the longitudinal position determination portions 123 a.
  • the claw portions 121 b and the contact surfaces 121 f are alternatively arranged at the peripheral portion of the core plate 121 .
  • the number and the shape of the claw portions 121 b may be suitably changed without being limited to the examples described in the above-described second embodiment.
  • the claw portions 121 b may be formed into a band shape continuously connected in the longitudinal direction of the core plate 121 .
  • the contact surfaces 121 f may be provided only at the corner portions of the rectangular shape of the core plate 121
  • the position determination portions 122 b of the tank body 122 may be arranged at positions corresponding to the corner portions of the rectangular shape of the core plate 121 .
  • the core plate 121 may be formed into the other polygon shape without being limited to the approximately rectangular shape.
  • the shape of the claw portions 121 b may be suitably changed.
  • the claw portions 121 b may be formed into the shapes shown in FIG. 12 , to have plural slit holes in the side wall portion 121 e of the core plate 121 .
  • the claw portions 121 b may be bent to inside of the side wall portion 121 e to contact an upper side portion of the expanding portion 122 a of the tank body 122 .
  • the contact surfaces 121 f may be provided between adjacent claw portions 121 b to respectively contact the position determination portions 122 b of the tank body 122 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In a heat exchanger with a plurality of tubes, a header tank includes a core plate bonded to the tubes, a tank body fixed to the core plate, and an elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween. The elastic member is provided with a position determination portion which protrudes approximately in parallel with an inner bottom surface of the bottom portion of the groove portion. Furthermore, the position determination portion is configured in the elastic member to have a clearance between the position determination portion and the bottom surface of the bottom portion of the groove portion, and a clearance between the position determination portion and the tip end portion of the tank body.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is based on Japanese Patent Applications No. 2010-004780 filed on Jan. 13, 2010, No. 2010-004781 filed on Jan. 13, 2010, and No. 2010-059529 filed on Mar. 16, 2010, the contents of which are incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a heat exchanger. For example, the heat exchanger may be suitably used for a vehicle, and may be adapted as an intercooler for cooling intake air of an internal combustion engine.
  • BACKGROUND OF THE INVENTION
  • Patent Document 1 (JP 2002-286396A corresponding to US 2002/0134529A1) describes regarding a heat exchanger used as an intercooler for cooling intake air to be supplied to an internal combustion engine. The heat exchanger includes tubes in which intake air flows, fins adapted to facilitate heat exchange between cooling air and the intake air, and a pair of header tanks configured to communicate with each of the tubes.
  • In the intercooler, a plurality of the tubes and fins are alternatively arranged to form a heat exchanging core portion. Each header tank of the intercooler is configured by a core plate made of an aluminum material and brazed to the tubes, and a resinous tank body fastened to the core plate to form therein a tank space.
  • More specifically, a circular packing (seal member) made of an elastic member is inserted between a tip end portion of the tank body and a groove portion provided at an outer peripheral portion of the core plate. In this state, claw portions provided in the core plate are bent along the outer shape of the tank body, and thereby the tank body and the core plate are fastened and fixed to each other.
  • When the tank body is fastened to the core plate, the packing arranged in the groove portion of the core plate is pressed between the bottom surface of the groove portion of the core plate and an end surface of the tip end portion of the tank body, thereby to be elastically deformed. Generally, the space defined by the groove portion of the core plate and the end surface of the tip end portion of the tank body is provided with a space into which the deformed portion of the packing is moved and escaped when the packing is pressed and is elastically deformed.
  • The space is provided in a width direction of the groove portion, perpendicular to the pressing direction of the packing, such that the elastically deformed packing does not contact a wall portion perpendicular to the pressing direction. Thus, even when the packing is elastically deformed, the packing does not receive a reaction force from the wall portion, and thereby an elastic force of the packing applied to a separation direction for separating the groove portion of the core plate and the tip end portion of the tank body can be made uniform along the entire periphery of the packing.
  • However, when the space for escaping the elastically deformed portion of the packing is provided, the packing arrangement position in the groove portion may be shifted when the packing is fitted into the groove portion of the core plate. For example, when the packing is shifted to an outer wall side or an inner wall side of the groove portion, an elastically deformed portion of the packing may be pressed to one side wall portion, and thereby the packing may receive a reaction force from the one side wall portion.
  • As a result, it may be difficult for an elastic force of the packing to be made uniform along the entire periphery of the packing. Furthermore, because of the unequal elastic force of the packing, the seal performance of the packing is lowered at a low elastic portion of the packing, and thereby intake air may be leaked from the low elastic portion of the packing.
  • Furthermore, when the heat exchanger adapted as the intercooler is mounted to a vehicle, it is desired to reduce the dimension of the heat exchanger in a vehicle front-rear direction. However, if the dimension of the core plate of the header tank is simply reduced with respect to the heat exchanging core portion, the outermost fins or insert plates of the heat exchanging core portion may protrude outside from the core plate of the header tank in a tank longitudinal direction corresponding to an arrangement direction of the tubes and the fins. In this case, the heat exchanging core portion may be easily damaged.
  • Patent Document 2 (EP 0779488A1) describes regarding a heat exchanger for a vehicle, which includes a plurality of tubes, a plurality of fins each of which is disposed between adjacent tubes to facilitate heat exchange on the fin side, and header tanks communicating with the tubes. In the heat exchanger of the Patent Document 2, the core plate connected to tubes and the tank body are formed integrally.
  • More specifically, a circular packing (seal member) made of an elastic member is inserted between a tip end portion of the tank body and a groove portion provided at an outer peripheral portion of the core plate. In this state, claw portions provided in the core plate are bent along the outer shape of the tank body, and thereby the tank body and the core plate are fastened and fixed to each other.
  • Therefore, it can prevent a fluid from being leaked from a clearance between the tank body and the core plate.
  • If the packing is not deformed in uniform, the seal performance of the packing may be deteriorated, and the fluid may be leaked from a clearance between the tank body and the core plate.
  • In the Patent Document 2, a protrusion portion is provided to protrude from a bottom surface of an expanding portion of the tank body to a bottom surface of a groove portion. When the fastening is performed, the protrusion portion of the expanding portion of the tank body contacts the bottom surface of the groove portion of the core plate, so that a clearance between the expanding portion of the tank body and the bottom surface of the groove portion can be made uniform.
  • Thus, in the Patent Document 2, when the fastening is performed, not only the packing is accommodated in the groove portion of the core plate, but also the protrusion portion of the tank body is accommodated in the groove portion of the core plate. Therefore, the width dimension of the groove portion becomes larger by the protrusion portion accommodated in the groove portion, thereby increasing the size of the entire heat exchanger.
  • Furthermore, when the tank body and the core plate are fastened in a state where a part of the packing is inserted between the protrusion portion of the tank body and the groove portion of the core plate, it is difficult for the packing to be deformed in uniform. Accordingly, it may be difficult to accurately prevent the fluid from being leaked from a clearance between the tank body and the core plate.
  • In view of the foregoing problems, it is an object of the present invention to provide a heat exchanger including a header tank, in which an elastic member is disposed between a core plate and a tank body to have a uniform elastic force along an entire periphery of the elastic member.
  • It is another object of the present invention to prevent a damage of a heat exchanging core portion of a heat exchanger having a header tank, which is formed by fixing a core plate and a tank body.
  • It is another object of the present invention to reduce the entire size of a heat exchanger having a header tank, which is formed by fixing a core plate and a tank body, while preventing a fluid from being leaked from a clearance between the core plate and the tank body.
  • According to an aspect of the present invention, a heat exchanger includes a heat exchanging core portion and a header tank. The heat exchanging core portion includes a plurality of tubes arranged in an arrangement direction, and a plurality of fins connected to outer surfaces of the tubes to facilitate heat exchange between a first fluid flowing inside of the tubes and a second fluid flowing outside of the tubes. The header tank is disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes. The header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, a tank body fixed to the core plate to defined therein a tank space, an elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween. The tip end portion of the tank body is inserted into the groove portion of the core plate, while the elastic member is placed between bottom portion of the groove portion of the core plate and the tip end portion of the tank body. In addition, the elastic member is provided with a position determination portion which protrudes approximately in parallel with an inner bottom surface of the bottom portion of the groove portion to prevent a position shift of the elastic member with respect to the core plate, and the position determination portion is configured in the elastic member to have a clearance between the position determination portion and the bottom surface of the bottom portion of the groove portion, and a clearance between the position determination portion and the tip end portion of the tank body.
  • Thus, because the position determination portion is provided in the elastic member, the position of the elastic member with respect to the core plate can be easily set by using the position determination portion. Furthermore, even when the position determination portion is moved and is pressed to the wall portion of the groove portion in accordance with an elastic deformation of the elastic member, it is possible for the deformed portion of the position determination portion to be moved to the clearances. As a result, the elastic force of the elastic member between the core plate and the tank body can be made in uniform in the entire periphery of the elastic member.
  • For example, the core plate includes extending portions extending in a tube longitudinal direction and defining a plurality of tube insertion holes into which the tubes are respectively inserted, and the extending portions are configured to define a wall portion of the groove portion. In this case, the position determination portion includes a longitudinal position determination portion of the elastic member at an inner side of the elastic member in a position extending in the arrangement direction of the tubes, and the longitudinal position determination portion is configured by protrusion portions to protrude respectively to portions between adjacent tube insertion holes and to contact the wall portion of the groove portion.
  • Alternatively, the position determination portion may include a longitudinal position determination portion of the elastic member at an inner side of the elastic member in a position extending in the arrangement direction of the tubes, and a minor-direction position determination portion of the elastic member at an inner side of the elastic member in a position extending in a direction perpendicular to the arrangement direction of the tubes. In this case, a protrusion dimension of the longitudinal position determination portion protruding to the inner side of the elastic member may be different from a protrusion dimension of the minor-direction position determination portion protruding to the inner side of the elastic member.
  • According to another aspect of the present invention, a heat exchanger includes a heat exchanging core portion and a header tank. The heat exchanging core portion includes a plurality of tubes arranged in an arrangement direction, and a plurality of fins connected to outer surfaces of the tubes to facilitate heat exchange between a first fluid flowing inside of the tubes and a second fluid flowing outside of the tubes. The header tank is disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes. In the heat exchanger, the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded and a tank body fixed to the core plate to defined therein a tank space, and a tip end portion of the tank body is inserted into a groove portion provided at an outer peripheral portion of the core plate when the tank body is fixed to the core plate. The groove portion has a first groove part provided at two end sides of the core plate in the arrangement direction, and a second groove part provided at two end sides of the core plate in a direction perpendicular to the arrangement direction. Furthermore, the first groove part has a groove width dimension different from a groove width dimension of the second groove part. In addition, the header tank has a dimension in the arrangement direction, which is equal to or larger than a dimension of the heat exchanging core portion in the arrangement direction.
  • Thus, it can prevent a damage of the heat exchanging core portion when the heat exchanger is moved or assembled to a vehicle, for example. Furthermore, by setting the groove width dimension of the first groove part to be different from the groove width dimension of the second groove part, the dimension of the header tank in the arrangement direction of the tubes can be easily changed in a conventional heat exchanger.
  • For example, the groove width dimension of the first groove part may be larger than the groove width dimension of the second groove part.
  • Furthermore, the tip end portion of the tank body may includes a first expanding portion located at two end sides of the arrangement direction to extend in the direction perpendicular to the arrangement direction, and a second expanding portion located at two end sides in the direction perpendicular to the arrangement direction to extend in the arrangement direction. In this case, the first expanding portion has an expanding dimension expanding in the arrangement direction, which is larger than an expanding dimension of the second expanding portion expanding in the direction perpendicular to the arrangement direction.
  • Even in the heat exchanger, an elastic member may be arranged between a bottom portion of the groove portion of the core plate and the tip end portion of the tank body to be elastically deformable therebetween. In this case, the tip end portion of the tank body is inserted into the groove portion of the core plate, while the elastic member is placed between the bottom portion of the groove portion of the core plate and the tip end portion of the tank body.
  • According to another aspect of the present invention, a heat exchanger includes a plurality of tubes arranged in an arrangement direction, in which a fluid flows, and a header tank disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes. The header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, a tank body fixed to the core plate to defined therein a tank space, and a circular elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween. Furthermore, the tip end portion of the tank body is inserted into the groove portion of the core plate in an insertion direction, while the elastic member is placed between the bottom portion of the groove portion of the core plate and the tip end portion of the tank body. In the heat exchanger, the core plate has a claw portion protruding from an outer peripheral wall portion of the groove portion and bent along an outer surface of the tank body to be fixed to the tank body, and a contact surface provided to cross with the insertion direction of the tip end portion of the tank body, the tank body is provided with a plurality of position determination portions protruding to a side perpendicular to the insertion direction of the tip end portion of the tank body, and the position determination portions of the tank body contact the contact surface of the core plate.
  • Because the position determination portions of the tank body contact the contact surface of the core plate, it is unnecessary to increase the groove width dimension due to the position determination portions of the tank body, and thereby reducing the size of the heat exchanger. Furthermore, a relative distance between the bottom surface of the tip end portion of the tank body and the bottom portion of the groove portion can be made uniform in the entire periphery. Therefore, the elastic member can be deformed in uniform, thereby preventing the fluid from being leaked from a clearance between the core plate and the tank body.
  • For example, a plurality of the claw portions may be provided to protrude from the outer peripheral wall portion of the groove portion of the core plate toward the tank body, and the contact surface may be provided between adjacent claw portions in the core plate.
  • The core plate of the header tank may have a polygon shape. In this case, the position determination portion may be provided at least at an angular portion of the core plate. Furthermore, the position determination portions may be positioned inside of the outermost peripheral portion of the core plate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages of the present invention will become more apparent from the following description made with reference to the accompanying drawings, in which like parts are designated by like reference numbers and in which:
  • FIG. 1 is a front view showing an intercooler as an example of a heat exchanger according to a first embodiment of the invention;
  • FIG. 2 is a partially sectional view showing a part of a header tank of the intercooler, in a section along a tank minor direction (tank width direction) A3 of the header tank, according to the first embodiment;
  • FIG. 3 is a partially sectional view showing a part of the header tank of the intercooler, in a section along a tank longitudinal direction (tank major direction) A2 of the header tank, according to the first embodiment;
  • FIG. 4 is a perspective view showing a core plate and a packing of the header tank according to the first embodiment;
  • FIG. 5 is a top view showing the core plate and the packing of the header tank according to the first embodiment;
  • FIG. 6 is a partially sectional view showing a part of the header tank and the packing of the intercooler, in a section along the tank minor direction A3 of the header tank before fastening, according to the first embodiment;
  • FIG. 7 is a partially sectional view showing a part of the header tank and the packing of the intercooler, in a section along the tank longitudinal direction (tank major direction) A2 of the header tank before fastening, according to the first embodiment;
  • FIG. 8 is a perspective view showing a header tank of a heat exchanger according to a second embodiment of the invention;
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8;
  • FIG. 10 is a cross-sectional view taken along the line X-X of FIG. 8;
  • FIG. 11 is a perspective view showing a core plate and a packing of the header tank, according to the second embodiment; and
  • FIG. 12 is a perspective view showing a header tank of a heat exchanger according to another embodiment of the invention.
  • EMBODIMENTS
  • Embodiments for carrying out the present invention will be described hereafter referring to drawings. In the embodiments, a part that corresponds to a matter described in a preceding embodiment may be assigned with the same reference numeral, and redundant explanation for the part may be omitted. When only a part of a configuration is described in an embodiment, another preceding embodiment may be applied to the other parts of the configuration. The parts may be combined even if it is not explicitly described that the parts can be combined. The embodiments may be partially combined even if it is not explicitly described that the embodiments can be combined, provided there is no harm in the combination.
  • A first embodiment of the invention will be described below with reference to FIGS. 1 to 7. In the present embodiment, a heat exchanger of the present invention is typically applied to an intercooler 100 for a vehicle. The intercooler 100 is a cooling heat exchanger in which air (intake air) for fuel combustion to be drawn into an internal combustion engine is heat-exchanged with exterior air (cooling air), thereby cooling the intake air. Next, the configuration of the intercooler 100 according to the present embodiment will be described.
  • FIG. 1 is a front view showing the intercooler 100 as an example of a heat exchanger according to the first embodiment. FIG. 2 is a partially sectional view showing a part of a header tank 120 of the intercooler 100, in a section along a tank minor direction (tank width direction) A3 of the header tank 120, according to the first embodiment. That is, FIG. 2 is a partially sectional view in a section perpendicular to a longitudinal direction A2 of the header tank 120.
  • FIG. 3 is a partially sectional view showing a part of the header tank 120 of the intercooler 100, in a section along a tank longitudinal direction A2 of the header tank 120, according to the first embodiment. That is, FIG. 3 is a partially sectional view in a section perpendicular to the tank minor direction A3 of the header tank 120. FIG. 4 is a perspective view showing a core plate 121 and a packing (elastic member) 123 when being viewed from an inside of the header tank 120.
  • The intercooler 100 includes a plurality of tubes 111 and fins 112 bonded to the adjacent tubes 111. For example, the tubes 111 may be flat tubes in cross section. In this case, the fins 112 are bonded to flat surfaces of the flat tubes 111. Intake air as a first fluid flows in the tubes 111, to be heat-exchanged with cooling air as a second fluid flowing outside of the tubes 111. The fins 112 are formed by bending a plate member in a wave shape and are made of aluminum. The fins 112 are attached to the tubes 111 to facilitate heat exchange between the intake air flowing therein and the cooling air flowing outside of the tubes 111.
  • The plural tubes 111 and the plural fins 112 are alternatively arranged in an arrangement direction corresponding to the tank longitudinal direction A2, so that a heat exchanging core portion 110 having approximately a rectangular shape is formed to cool the intake air. In FIG. 1, the cooling air passes through the core portion 110 in the paper face-back direction of FIG. 1, thereby cooling the intake air flowing in the tubes 111. In FIG. 1, a part of the tubes 111 and fins 112 are indicated in the core portion 110. Actually, the tubes 111 and the fins 112 are arranged in the whole area of the core portion 110. The paper face-back direction of FIG. 1 corresponds to the tank minor direction A3.
  • The tube 111 is a welded tube that is formed by bending and electric welding of a plate material, clad with a brazing material (e.g., aluminum alloy such as A4045, A4343 or the like) on front and back both sides. The fins 112 is brazed and bonded to the tubes 111 by using the brazing material clad on the outer surfaces of the tubes 111.
  • Furthermore, as shown in FIG. 3, louvers 113 are formed by cutting and bending a part of the fins 112, so as to disturb an air flow and prevent a temperature boundary layer from being increasing. As shown in FIG. 1, a pair of header tanks 120 are located at two longitudinal end sides of the tubes 111 to extend in the tank longitudinal direction A2 perpendicular to a tube longitudinal direction A1. The tank longitudinal direction A2 corresponds to the arrangement direction of the tubes 111 and the fins 112. The header tanks 120 are disposed to communicate with the tubes 111.
  • The header tank 120 of the intercooler 100 is configured by a core plate 121 made of an aluminum material and brazed to the tubes 111, and a resinous tank body 122 air-tightly fixed to the core plate 121 to form therein a tank space. The tubes 111 are inserted into tube insertion holes of the core plate 121, and are brazed to the core plate 121 by using a brazing material clad on both front and back surfaces of the core plate 121.
  • As shown in FIGS. 2 to 4, the core plate 121 is a plate member provided with a groove portion 121 a recessed to a side of the core portion 110 along an entire periphery portion of the core plate 121. The plural tube insertion holes 121 c, into which the tubes 111 are inserted, are provided in an inside area of the core plate 121 enclosed by the groove portion 121 a.
  • The tube insertion holes 121 c are holes penetrating through the core plate 121, and are formed by burring to have extending portion 121 d protruding and extending from a plate surface (base surface) of the core plate 121 to outside of the longitudinal direction A1 of the tubes 111. The extending portions 121 d of the tube insertion holes 121 c extend along the outer surface of the inserted tube 111, thereby increasing brazing area between the core plate 121 and the tubes 111. Because the extending portion 121 d is provided in the tube insertion hole 121 c of the core plate 121, a contact area between the core plate 121 and the tubes 111 can be increased.
  • A claw portion 121 b as a fixing portion is provided in an outer wall portion of the groove portion 121 a of the core plate 121, to be fastened and fixed to an expanding portion at a tip end side of the tank body 122.
  • Next, a fastening and fixing structure between the core plate 121 and the tank body 122 of the header tank 120 will be described. In the present embodiment, the expanding portion 122 a of the tank body 122 is inserted into the groove portion 121 a of the core plate 121. In this insertion state, the end side of the claw portion 121 b is bent along the outer shape of the end portion of the tank body 122, so that the tank body 122 and the core plate 121 are fastened and fixed to each other.
  • Furthermore, a circular packing 123 is fitted into the groove portion 121 a to be elastically deformed between the bottom surface of the expanding portion 122 a and an inner bottom surface of the groove portion 121 a of the core plate 121. The packing 123 is an example of an elastic member made of an elastic material such as rubber, and is adapted to seal a connection portion between the tank body 122 and the core plate 121. Next, the structure of the packing 123 will be described in detail.
  • Reinforcement ribs 122 b are provided in the tank body 122 at positions without being fastened by the claw portion 121 b, thereby increasing the strength of the tank body 122. As shown in FIGS. 1 and 3, reinforcement insert plates 130 are formed at two end portions of the core portion 110 in the arrangement direction of the tubes 111, to extend in a direction substantially parallel to the tube longitudinal direction A1, thereby reinforcing the strength at the two end sides of the core portion 110 in the arrangement direction.
  • A brazing material is applied to a surface of the insert plate 130 on an inner side of the core portion 110 to be bonded to an outermost fin 112 arranged at the outermost side of the core portion 110 in the arrangement direction of the tubes 111. The two longitudinal end portions of each insert plate 130 is brazed to the core plate 121 of the head tank 120 by using the brazing material clad on the core plate 121.
  • Next, a method of manufacturing the intercooler 100 according to the present embodiment will be described. First, a core assemble step is performed. In the core assemble step, the tubes 111, the fins 112 and the insert plates 130 are stacked on an operation plate, and the core plates 121 are assembled such that the tubes 111 are inserted into the tube insertion holes 121 c of the core plates 121, respectively. The core portion 110 temporally assembled in the core assemble step is heated and burned in a furnace while the assembling state of the core portion 110 is maintained by using a jig such as wires, in a brazing step.
  • After the brazing step, the core portion 110 is cooled so that melted brazing material is solidified again. Then, in a fastening step, the packing 123 is fitted into the groove portion 121 a of the core plate 121, and thereafter the tank body 122 is fastened and fixed to the core plate 121. Thereafter, errors such as a brazing error, a fastening error, a seal error and a dimension error are checked to remove product with any error, thereby ending the manufacturing of the intercooler 100.
  • In the present embodiment, the groove portion 121 a provided at an outer peripheral portion of the core plate 121 is provided adjacent to the tube insertion hole 121 c of the core plate 121. More specifically, as shown in FIG. 2, the extending portion 121 d is provided with a wall portion extending to the longitudinal direction A1 of the tube 111 to be approximately perpendicular to the bottom surface of the groove portion 121 a.
  • Thus, the extending portion 121 d is formed as a flat surface portion in the core plate 121, between the groove portion 121 a and the tube insertion hole 121 c adjacent to the groove portion 121 a. Therefore, it is possible to reduce the dimensions of the core plate 121, in a longitudinal direction (tank major direction) A2 of the core plate 121 and a width direction (tank minor direction A3) of the core plate 121, perpendicular to the longitudinal direction of the core plate 121, as shown in FIGS. 2 and 3. Generally, the width direction of the core plate 121 is parallel with the air flow direction passing through the core portion 110, and corresponds to a vehicle front-rear direction when the intercooler 100 is mounted to a vehicle. Thus, the dimension of the core plate 121 of the intercooler 100 in the vehicle front-rear direction can be effectively reduced.
  • However, if the longitudinal dimension of the header tank 120 is simply made shorter than the dimension of the core portion 110, the fins 112 and the insert plates 130 located at the outermost sides of the core portion 110 may protrude outside from the longitudinal ends of the core plate 121.
  • If the fins 112 and the insert plates 130 protrude from the core plate 121 in a direction parallel to the longitudinal direction of the core plate 121, the fins 112 and the insert plates 130 of the core portion 110 may be easily damaged due to the protrusion portion of the core portion 110.
  • In the core plate 121 of the present embodiment, as shown in FIGS. 2, 3 and 5, a width dimension X of the groove portion 121 a at two longitudinal end sides of the core plate 121 is made larger than a width dimension Y of the groove portion 121 a at two minor end sides of the core plate 121. FIG. 5 is a top view showing the core plate 121 and the packing 123, according to the first embodiment. In FIGS. 1 and 5, A1 indicates the tube longitudinal direction, A2 indicates the tank longitudinal direction corresponding to the longitudinal direction of the core plate 121 perpendicular to the tube longitudinal direction A1, and A3 indicates the minor direction of the core plate 121 of the header tank 120 perpendicular to the tube longitudinal direction A1 and the tank longitudinal direction A2. The tank longitudinal direction A2 corresponds to the arrangement direction of the tubes 111 and the fins 112 of the core portion 110.
  • More specifically, the width dimension X of the groove portion 121 a of the core plate 121 is a groove width dimension in a direction parallel to the tank longitudinal direction A2, and the width dimension Y of the groove portion 121 a is a groove width dimension in the tank minor direction A3 corresponding to the air flow direction.
  • In the present embodiment, the width dimension X of the groove portion 121 a at two end sides of the tank longitudinal direction A2 of the core plate 121 is made larger than the width dimension Y of the groove portion 121 a at two end sides of the tank minor direction A3 of the core plate 121. Therefore, the two end portions of the core plate 121 of the header tank 120 in the tank longitudinal direction A2 can be placed outside of the core portion 110 in the tank longitudinal direction A2 corresponding to the tube arrangement direction of the core portion 110.
  • The dimensions of the expanding portion 122 a of the tank body 122 in the tank longitudinal direction A2 and the tank minor direction A3 are set to respectively correspond to the width direction X and the width direction Y of the groove portion 121 a. The expanding portion 122 a of the tank body 122 has a first potion extending in the tank minor direction A3 that is perpendicular to the tank longitudinal direction A2. The first portion of the expanding portion 122 a of the tank body 122 expands and protrudes outside of the tank longitudinal direction A2 corresponding to the arrangement direction of the tubes 111. The first portion of the expending portion 122 a of the tank body 122 has a dimension in the tank longitudinal direction A2, which corresponds to the groove width dimension X of the groove portion 121 a.
  • Furthermore, the expanding portion 122 a of the tank body 122 has a second potion extending in the tank minor direction A3. The second portion of the expanding portion 122 a of the tank body 122 expands and protrudes outside of the tank minor direction A3 perpendicular to the arrangement direction of the tubes 111. The second portion of the expending portion 122 a of the tank body 122 has a dimension in the tank minor direction A3, which corresponds to the groove width dimension Y of the groove portion 121 a.
  • Furthermore, the expanding dimension of the first portion of the expanding portion 122 a expended in the tank longitudinal direction A2 is made larger than the expanding dimension of the second portion of the expanding portion 122 a expended in the tank minor direction A3. Thus, a wall thickness of the first portion of the expanding portion 122 a of the tank body 122 positioned on two end sides of the tank longitudinal direction A2 is made thicker than a wall thickness of the second portion of the expanding portion 122 a of the tank body 122 positioned on two end sides of the tank minor direction A3.
  • As shown in FIGS. 5 to 7, the packing 123 is located in the groove portion 121 a to correspond to the groove width dimensions X and Y of the groove portion 121 a. FIG. 6 is a partially sectional view showing a part of the header tank 120 and the packing 123 in a section along the tank minor direction A3, before the claw portion 121 b is bent to be fastened to the tank body 122. FIG. 2 is a partially sectional view in a section including the tube insertion hole 121 c of the core plate 121 and the rib 122 b of the tank body 122, and FIG. 6 is a partially sectional view in a section without including the tube insertion hole 121 c of the core plate 121 and the rib 122 b of the tank body 122.
  • FIG. 7 is a partially sectional view showing a part of the header tank 120 and the packing 123 in a section along the tank longitudinal direction A2, before the claw portion 121 b is bent and is fastened to the tank body 122. FIG. 3 is a partially sectional view showing a part of the header tank 120 and the packing 123 in the section along the tank longitudinal direction A2, after the claw portion 121 b is bent and is fastened to the tank body 122. As shown in FIG. 7, before the claw portion 121 b of the core plate 121 is fastened to the tank body 122, the packing 123 has a circular cross section, and extends circularly along the shape of the groove portion 121 a.
  • The packing 123 includes a pair of first packing portions extending in the tank minor direction A3, and a pair of second packing portions extending in the tank longitudinal direction A2. As shown in FIGS. 5 and 6, the second packing portion of the packing 123 extending in the tank minor direction A3 has a plurality of position determination portions 123 a configured to determine the position of the packing 123 in the tank longitudinal direction A2 with respect to the core plate 121.
  • A plurality of protrusion portions are formed as the position determination portions 123 a in the packing portion 123 to protrude approximately in parallel with the bottom surface of the groove portion 121 a respectively toward a portion between adjacent the tube insertion holes 121 c. Before the fastening, the position determination portion 123 a of the packing 123 is made to contact opposite wall surfaces formed by the expending portions 121 d of the adjacent tube insertion holes 121 c, thereby preventing the packing 123 from being removed. The position determining portion 123 a is thinned along the opposite wall surfaces of the adjacent tube insertion hole 121 c, and may be formed into approximately a triangular shape.
  • On the other hand, as shown in FIGS. 5 and 7, the first packing portion of the packing 123 extending to the tank minor direction A3 at two longitudinal end sides of the core plate 121 is provided integrally with a position determination portion 123 b configured to determine the position of the second packing portion of the packing 123 with respect to the core plate 121.
  • The position determination portion 123 b is provided integrally in the first packing portion of the packing 123 to extend approximately in parallel with the bottom surface of the groove portion 121 a. The position determination portion 123 b protrudes from the packing 123 having the circular section toward the extending portion 121 d of the tube insertion hole 121 c positioned outermost in the arrangement direction of the tubes 111. As shown in FIG. 7, the position determination portion 123 b of the first packing portion of the packing 123 located at two longitudinal end sides of the core plate 121 does not contact the extending portion 121 d. before the fastening. The position determination portion 123 b provided in the first packing portion of the packing 123 continuously extends in the tank minor direction A3 that is perpendicular to the arrangement direction of the tubes 111.
  • In the present embodiment, the position determination portion 123 a is a longitudinal position determination portion of the packing 123, and the position determination portion 123 b is a minion-direction position determination portion. The protrusion dimension of the longitudinal position determination portion 123 a is made larger than the protrusion dimension of the minion-direction position determination portion, in accordance with the dimension difference of the grove width dimensions X and Y.
  • Next, reaction force due to the elastic deformations of the position determination portions 123 a, 123 b will be described. As shown in FIGS. 6 and 7, the position determination portions 123 a, 123 b are configured to not contact the bottom surface of the expanding portion 122 a of the tank body 122 and the bottom surface of the groove portion 121 a of the core plate 121, before the fastening.
  • Before the fastening, because the position determination portions 123 a, 123 b are thinned with step portions at two sides of the packing 123 in a pressing direction corresponding to the tube longitudinal direction A1, clearances are formed between each of the expanding portions 123 a, 123 b and the bottom surface of the expanding portion 122 a, and between each of the expanding portions 123 a, 123 b and the bottom surface of the groove portion 121 a.
  • After the fastening, the longitudinal position determination portions 123 a are respectively moved toward portions between the adjacent tube insertion holes 121 c, in accordance with an elastic deformation of the sectional shape of the packing 123. That is, each of the longitudinal position determination portions 123 a is elastically deformed and moved to a position between the adjacent tube insertion holes 121 c.
  • At this time, the longitudinal position determination portions 123 a are pressed by the extending portions 121 d of the tube insertion hole 121 c to be slightly elastically deformed. However, the reaction force due to this elastic deformation of the longitudinal position determination portions 123 a is hardly applied to a direction for separating the core plate 121 and the tank body 122 from each other. Even when the longitudinal position determination portion 123 a is slightly elastically deformed, the elastic deformation can be escaped to a space between the longitudinal position determination portion 123 a and the bottom surface of the expending portion 122 a, and to a space between the longitudinal position determination portion 123 a and the bottom surface of the groove portion 121 a.
  • Furthermore, in accordance with the elastic deformation of the sectional shape of the second packing portion of the packing 123, the minor-direction position determination portion 123 b is moved toward the extending portion 121 d of the tube insertion hole 121 c at the outermost side in the tank longitudinal direction A2, as shown in FIGS. 3 and 7.
  • In, the fastening state shown in FIG. 3, the minor-direction position determination portion 123 b is elastically deformed in a degree contacting the extending portion 121 d of the tube insertion hole 121 c. At this time, the minor-direction position determination portion 123 b is hardly elastically deformed, and thereby the reaction force due to this elastic deformation is hardly applied to the direction for separating the core plate 121 and the tank body 122 from each other.
  • Furthermore, even after the fastening, the position determination portions 123 a, 123 b almost do not contact the bottom surface of the expanding portion 122 a of the tank body 122 and the bottom surface of the groove portion 121 a of the core plate 121. That is, dimensions of the position determination portions 123 a, 123 b before the fastening are set, such that a clearance can be maintained between the position determination portion 123 a, 123 b and the bottom surface of the expanding portion 122 a of the tank body 122, and between the position determination portion 123 a, 123 b and the bottom surface of the groove portion 121 a of the core plate 121 after the fastening.
  • Thus, the reaction force due to the elastic deformation of the longitudinal position determination portion 123 a and the minor-direction position determination portion 123 b is hardly applied to the direction for separating the core plate 121 and the tank body 122 from each other. As a result, the elastic force, applied to the direction for separating the core plate 121 and the tank body 122 from each other, is about the elastic deformation force of a circular section portion of the packing 123 in the entire periphery of the packing 123.
  • Next, effects of the intercooler 100 according to the present embodiment will be described. In the present embodiment, the width dimension X of the groove portion 121 a in the first portion extending to the minor-direction A3 of the core plate 121 is made larger than the width dimension Y of the groove portion 121 a in the second portion extending to the tank longitudinal direction A2 that corresponds to the arrangement direction of the tubes 111. Therefore, the two end portions of the core plate 121 of the header tank 120 in the tank longitudinal direction A2 can be placed outside of the core portion 110 in the tank longitudinal direction A2 corresponding to the tube arrangement direction of the core portion 110.
  • That is, the dimension of the header tank 120 in the tank longitudinal direction A2 is set equal to or larger than the dimension of the core portion 110 in the tank longitudinal direction A2 corresponding to the tube arrangement direction. Thus, it can prevent the end portions of the core portion 110 from protruding outside of the header tank 120 in the tube arrangement direction. Therefore, a damage of the core portion 110 can be prevented when the intercooler 100 is moved or mounted to a vehicle.
  • Furthermore, the dimension of the first portion of the expanding portion 122 a of the tank body 122, positioned at the two sides of the tank longitudinal direction A2, is set to correspond to the groove width dimension X of the groove portion 121 a, and the dimension of the second portion of the expanding portion 122 a of the tank body 122, positioned at the two sides of the tank minor direction A3, is set to correspond to the groove width dimension Y of the groove portion 121 a. Therefore, it can prevent the engagement position between the core plate 121 and the tank body 122 from being shifted.
  • Furthermore, the dimension of the first portion of the expanding portion 122 a expending in the tank longitudinal direction A2 is made larger than the dimension of the second portion of the expanding portion 122 a expending in the tank minor direction A3. Therefore, the dimension of the header tank 120 in the tank minor direction A3 perpendicular to the tank longitudinal direction A2 can be reduced.
  • As a result, the dimension of the intercooler 100 in the air flow direction can be reduced, thereby reducing the dimension of the intercooler 100. Accordingly, when the intercooler 100 is mounted to a vehicle, the dimension of the intercooler 100 in the vehicle from-rear direction corresponding to the tank minor direction A3 can be effectively reduced.
  • According to the present embodiment, the plural longitudinal position determination portions 123 a are formed integrally with the packing 123, so that a part of the longitudinal position determination portions 123 a contacts the extending portion 121 d forming a part of the groove portion 121 a. Therefore, the position of the packing 123 with respect to the core plate 121 can be easily determined.
  • Furthermore, the clearance is formed between the longitudinal position determination portion 123 a and the bottom surface of the groove portion 121 a, and between the longitudinal position determination portion 123 a and the bottom surface of the expanding portion 122 a, after the claw portions 121 b are fastened. Thus, even when the longitudinal position determination portion 123 a is deformed due to the elastic deformation of the packing 123, and the deformed longitudinal position determination portion is pressed to the extending portion 121 d forming the groove portion 121 a, the elastic deformation of the longitudinal position determination portion 123 a can be escaped to the clearance.
  • Furthermore, the longitudinal position determination portions 123 a respectively protrude and deform toward the portions between the adjacent tube insertion holes 121 c. Therefore, in the fastening, the elastic deformation of the longitudinal position determination portion 123 a can be escaped toward the portions between the adjacent tube insertion holes 121 c. Thus, the reaction force due to this elastic deformation of the longitudinal position determination portions 123 a is hardly applied to the direction for separating the core plate 121 and the tank body 122 from each other.
  • Thus, the reaction force due to this elastic deformation of the packing 123 is not unequally applied to the direction for separating the core plate 121 and the tank body 122 from each other, and thereby restricting an unequal force from being generated due to the reaction force. Therefore, the elastic force of the packing 123 can be made uniform in the entire periphery of the packing 123.
  • In the present embodiment, as shown in FIG. 7, the protrusion dimension of the minor-direction position determination portion 123 b is set such that the minor-direction position determination portion 123 b does not contact a wall surface of the extending portion 121 d, before the fastening. However, the protrusion dimension of the minor-direction position determination portion 123 b may be set such that the minor-direction position determination portion 123 b contacts the wall surface of the extending portion 121 d, before the fastening.
  • When the minor-direction position determination portion 123 b contacts the wall surface of the extending portion 121 d before the fastening, the minor-direction position determination portion 123 b is pressed to the extending portion 121 d, in accordance with the elastic deformation of the circular section portion of the packing 123. Even in this case, the minor-direction position determination portion 123 b is elastically deformed to a clearance between the minor-direction position determination portion 123 b and the bottom surface of the groove portion 121 a, and to a clearance between the minor-direction position determination portion 123 b and the extending portion 122 a.
  • Thus, even when the minor-direction position determination portion 123 b is pressed to the wall portion of the tube insertion hole 121 c, the reaction force from the wall portion of the tube insertion hole 121 c due to the elastic deformation can be made very small, and thereby the reaction force is hardly applied on the direction of separating the groove portion 121 a and the expanding portion 122 a from each other.
  • As a result, even when the protrusion dimension of the minor-direction position determination portion 123 b is set to contact the wall surface of the extending portion 121 d, it is possible for the elastic force of the packing 123 inserted between the core plate 121 and the tank body 122 to be made uniform in the entire periphery of the packing 123.
  • In the present embodiment, the groove portion 121 a is provided at the outer peripheral portion of the core plate 121 adjacent to the tube insertion hole 121 c of the core plate 121. More specifically, as shown in FIG. 2, a part of the groove portion 121 a is formed by the extending portion 121 d of the tube insertion hole 121 c.
  • Furthermore, the extending portion 121 d is formed as a flat wall portion in the core plate 121, to partition the groove portion 121 a and the tube insertion hole 121 c adjacent to the groove portion 121 a from each other. Therefore, it is possible to effectively reduce the dimensions of the core plate 121, in the longitudinal direction A2 of the core plate 121 and in the width direction A3 of the core plate 121, perpendicular to the longitudinal direction A2 of the core plate 121.
  • Second Embodiment
  • A second embodiment of the invention will be described below with reference to FIGS. 8 to 11. In the present embodiment, the heat exchanger of the present invention is typically applied to the intercooler 100 shown in FIG. 1. The intercooler 100 is a cooling heat exchanger in which air (intake air) for fuel combustion to be supplied to an internal combustion engine of a vehicle is heat-exchanged with exterior air (cooling air), thereby cooling the intake air. The basic structure of the intercooler 100 is similar that of the above-described first embodiment shown in FIG. 1, and the detail description thereof is omitted.
  • A detail structure of a header tank 120 according to the present embodiment will be described with reference to FIGS. 8 to 11. FIG. 8 is a perspective view showing the header tank 120 of the intercooler 100 according to the second embodiment. FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8, and FIG. 10 a cross-sectional view taken along the line X-X of FIG. 8. FIG. 8 shows a state of the header tank 120 before a tank body 122 is fastened and fixed to a core plate 121. FIG. 11 is a perspective view showing the core plate 121 and a packing (elastic member) 123 when being viewed from an inside of the header tank 120.
  • As shown in FIG. 11, the core plate 121 is a plate member provided with a groove portion 121 a recessed to the side of the core portion 110 along an entire outer periphery portion of the core plate 121. The core plate 121 has approximately a rectangular shape, as shown in FIG. 11. The plural tube insertion holes 121 c, into which the tubes 111 are inserted and brazed, are provided in an inside area of the core plate 121 enclosed by the groove portion 121 a.
  • The tube insertion holes 121 c are holes penetrating through the core plate 121, and are formed by burring to have extending portions 121 d protruding and extending from a plate surface (base surface) of the core plate 121 to outside of the longitudinal direction of the tubes 111. The extending portions 121 d of the tube insertion holes 121 c extend to the outer surface of the inserted tube 111, thereby increasing brazing area between the core plate 121 and the tubes 111. Because the extending portion 121 d is provided in the tube insertion hole 121 c, a contact area between the core plate 121 and the tubes 111 can be increased, similarly to the above-described first embodiment.
  • A plurality of claw portions 121 b are provided in a side wall portion 121 e along the groove portion 121 a of the core plate 121. The side wall portion 121 e is provided at an outer peripheral side of the groove portion 121 a in the core plate 121. The claw portions 121 b are bent along the outer peripheral shape of an expanding portion 122 a of the tank body 122 to be fastened and fixed to the expanding portion 122 a at an end side of the tank body 122. The claw portions 121 b are provided in the core plate 121 to extend from the side wall portion 121 e of the core plate 121 to the side of the tank body 122.
  • Flat surfaces are provided in the side wall portion 121 e of the core plate 121 between adjacent claw portions 121 b to have the same wall thickness as the core plate 121. The flat surfaces between the adjacent claw portions 121 b of the side wall portion 121 e are adapted as contact surfaces 121 f which respectively contact position determination portions 122 b of the tank body 122, when the core plate 121 and the tank body 122 are fastened.
  • That is, each of the contact surfaces 121 f is provided in the side wall portion 121 e defining the outer peripheral side of the groove portion 121 a, to be cross with the insertion direction of the expanding portion 122 a of the tank body 122 into the groove portion 121 a of the core plate 121.
  • As described above, the tank body 122 is fixed to the core plate 121 to form therein a tank space. The tank body 122 is opened at its one end side where the core plate 121 is fixed, and the expanding portion 122 a is provided at the one end side of the tank body 122. A flow inlet or a flow outlet is provided in the tank body 122 at an end portion opposite to the one end side where the core plate 121 is fixed. The intake air flows into the header tank 120 of the intercooler 100 through the flow inlet or flows out of the header tank 120 of the intercooler 100 through the flow outlet.
  • In the present embodiment, as shown in FIG. 9, the expending portion 122 a of the tank body 122 to be inserted into the groove portion 121 a is formed into approximately a rectangular shape in cross-section. More specifically, a circular packing (seal member) 123 made of an elastic member and the expending portion 122 a of the tank body 122 are inserted into the groove portion 121 a provided at the outer peripheral portion of the core plate 121. That is, the circular packing 123 is inserted between the groove portion 121 a of the core plate 121 and the expanding portion 122 a of the tank body 122. In this state, the end sides of the claw portions 121 b provided in the core plate 121 are bent respectively along the outer shape of the tank body 122, and thereby the tank body 122 and the core plate 121 are fastened and fixed to each other.
  • A plurality of the position determination portions 122 b are provided in the tank body 122 to continuously extend from the expending portion 122 a in the tank body 122, as shown in FIG. 9. Each of the position determination portions 122 b protrudes in a direction approximately perpendicular to the insertion direction of the expanding portion 122 a inserted into the groove portion 121 a. Each of the position determination portions 122 b is formed to be positioned between adjacent claw portions 121 b in the tank body 122, and to contact the contact surface 121 f provided between the adjacent claw portions 121 b.
  • Furthermore, in the present embodiment, as shown in FIGS. 8 and 10, the contact surface 121 f is also formed in each rectangular corner portion of the core plate 121 to be positioned between the claw portions 121 b arranged in the longitudinal direction of the core plate 121 and the claw portions 121 b arranged in the minor direction of the core plate 121. Therefore, the position determination portion 122 b contacts the contact surface 121 f provided at the rectangular corner portion. Because the position determination portion 122 b is provided at each rectangular corner portion of the core plate 121, the arrangement position between the core plate 121 and the tank body 122 can be more accurately determined.
  • Furthermore, as shown in FIG. 10, the outermost peripheral portion of the position determination portion 122 b is positioned inside of an outermost periphery of the core plate 121 without protruding to outside from the outermost periphery of the core plate 121.
  • As shown in FIGS. 8 and 9, each of the position determination portion 122 b arranged in the longitudinal direction A2 of the core plate 121 extends in the insertion direction of the expanding portion 122 a inserted into the groove portion 121 a. Therefore, the position determination portions 122 b arranged in the longitudinal direction A2 of the core plate 121 are adapted as reinforcement ribs for increasing the strength of the tank body 122.
  • Furthermore, the circular packing 123 having an approximately circular shape in cross section is fitted into the groove portion 121 a to be elastically deformed between the bottom surface of the expanding portion 122 a and the inner bottom surface of the groove portion 121 a of the core plate 121. The packing 123 is an example of an elastic member made of an elastic material such as rubber, and is adapted to seal a connection portion between the tank body 122 and the core plate 121.
  • As shown in FIG. 11, before the claw portion 121 b of the core plate 121 is fastened to the tank body 122, the packing 123 has approximately a rectangular cross section, and extends circularly along the shape of the groove portion 121 a of the core plate 121. The packing 123 may be provided integrally with position determination portions 123 a, similarly to the above-described first embodiment, at least in the portions corresponding to the longitudinal direction of the core plate 121.
  • Similarly to the above-described first embodiment, the position determination portion 123 a may be provided in the packing portion 123 to protrude approximately in parallel with the bottom surface of the groove portion 121 a respectively toward the portions between adjacent the tube insertion holes 121 c. In this case, each of the position determination portions 123 a of the packing 123 may be formed into approximately a triangular shape or a semi-circular shape along the shape between adjacent tube insertion holes 121 c of the core plate 121.
  • According to the present embodiment, the position determination portions 122 b are provided in the tank body 122 to respectively contact the contact surfaces 121 f of the core plate 121. Therefore, it is easy to uniformly set a relative distance between the bottom surface of the expending portion 122 a of the tank body 122 and the bottom surface of the groove portion 121 a of the core portion 121, in the entire periphery. Thus, the packing 123 can be elastically deformed by a uniform load applied thereto along the entire periphery of the packing 123, thereby preventing the fluid from being leaked from a clearance between the tank body 122 and the core plate 121.
  • Furthermore, the contact surfaces 121 f are formed by the flat surfaces provided in the side wall portion 121 e of the core plate 121 adjacent to the end side of the tank body 122. Therefore, it is unnecessary to accommodate the position determination portions 122 b into the groove portion 121 a when the core plate 121 and the tank body 122 are fixed to each other.
  • Thus, the width dimension of the groove portion 121 a can be set at the minimum dimension required to accommodate the packing 123, thereby preventing the width dimension of the groove portion 121 a from being unnecessarily increased. As a result, it can accurately prevent the fluid from being leaked from a clearance between the tank body 122 and the core plate 121, without increasing the entire size of the heat exchanger. Therefore, it is possible to easily mount the heat exchanger in a small space of the vehicle.
  • In the present embodiment, the plural claw portions 121 b are provided as described above, and each contact surface 121 f is provided between adjacent claw portions 121 b. Thus, the claw portions 121 b and the contact surfaces 121 f are alternately arranged in an outer peripheral direction of the core plate 121. As shown in FIG. 11, the core plate 121 has an approximately a rectangular peripheral shape, and the position determination portions 122 b are arranged to correspond to the peripheral shape of the core plate 121.
  • Because the claw portions 121 b and the contact surfaces 121 f are alternately arranged in the outer peripheral direction of the core plate 121, the contact portions between the position determination portions 122 b of the tank body 122 and the contact surfaces 121 f can be uniformly arranged in the entire periphery of the core plate 121. Therefore, it can effectively prevent the relative distance between the bottom surface of the expanding portion 122 a and the inner bottom surface of the groove portion 121 a from being unequal.
  • Furthermore, because the outermost peripheral portion of each position determination portion 122 b is positioned inside of the outermost periphery of the core plate 121, it can prevent the position determination portions 122 b from protruding to outside more than the outermost periphery of the core plate 121. Therefore, the entire size of the heat exchanger can be effectively reduced.
  • Other Embodiments
  • Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art.
  • In the above-described embodiments, a heat exchanger of the present invention is adapted to an intercooler for a vehicle. However, the present invention is not limited to the intercooler, and may be applied to other-type heat exchanger. For example, the heat exchanger of the present invention may be applied to a refrigerant radiator or a condenser for a refrigerant cycle, a radiator for en engine coolant system, or an oil cooler or the like. In the above described first and second embodiments, a pair of the header tanks 120 are located at two longitudinal end sides of the tubes 111. However, the present invention may be applied to a heat exchanger in which the header tank 120 is provided at one longitudinal end side of the tubes 111 of the core portion 110.
  • In the above-described first embodiment, the plural claw portions 121 b are separately arranged in the longitudinal direction of the core plate 121. However, the number and the shape of the claw portions 121 b may be suitably changed without being limited to the examples described in the above embodiments. For example, the claw portions 121 b may be formed into a band shape continuously connected to each other in the longitudinal direction of the core plate 121. Alternatively, the ribs 122 b may be omitted.
  • In the above-described first embodiment, the groove width dimension X is set larger than the groove width dimension Y. However, the groove width dimension X may be set equal to or smaller than the groove width dimension Y. In the above-described embodiments, the insert plates 130 are provided at two end sides of the core portion 110 in the arrangement direction of the tubes 111 of the core portion 110. However, the insert plates 130 may be omitted.
  • In the above-described first embodiment, the longitudinal position determination portion 123 a and the minor-side position determination portion 123 b are formed integrally with the packing 123. However, the packing 123 may be formed uniformly in the sectional shape in the entire periphery of the packing 123, without being provided with the longitudinal position determination portions 123 a and the minor-direction position determination portions 123 b different from the longitudinal position determination portions 123 a.
  • In the above-described second embodiment, the claw portions 121 b and the contact surfaces 121 f are alternatively arranged at the peripheral portion of the core plate 121. However, the number and the shape of the claw portions 121 b may be suitably changed without being limited to the examples described in the above-described second embodiment. For example, the claw portions 121 b may be formed into a band shape continuously connected in the longitudinal direction of the core plate 121. In this case, the contact surfaces 121 f may be provided only at the corner portions of the rectangular shape of the core plate 121, and the position determination portions 122 b of the tank body 122 may be arranged at positions corresponding to the corner portions of the rectangular shape of the core plate 121.
  • The core plate 121 may be formed into the other polygon shape without being limited to the approximately rectangular shape.
  • In the above-described second embodiment, the shape of the claw portions 121 b may be suitably changed. For example, the claw portions 121 b may be formed into the shapes shown in FIG. 12, to have plural slit holes in the side wall portion 121 e of the core plate 121. As shown in FIG. 12, the claw portions 121 b may be bent to inside of the side wall portion 121 e to contact an upper side portion of the expanding portion 122 a of the tank body 122. Even in this case, the contact surfaces 121 f may be provided between adjacent claw portions 121 b to respectively contact the position determination portions 122 b of the tank body 122.
  • Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.

Claims (11)

1. A heat exchanger comprising:
a heat exchanging core portion including a plurality of tubes arranged in an arrangement direction, and a plurality of fins connected to outer surfaces of the tubes to facilitate heat exchange between a first fluid flowing inside of the tubes and a second fluid flowing outside of the tubes; and
a header tank disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes, wherein
the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, a tank body fixed to the core plate to defined therein a tank space, an elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween,
the tip end portion of the tank body is inserted into the groove portion of the core plate, while the elastic member is placed between bottom portion of the groove portion of the core plate and the tip end portion of the tank body,
the elastic member is provided with a position determination portion which protrudes approximately in parallel with an inner bottom surface of the bottom portion of the groove portion to prevent a position shift of the elastic member with respect to the core plate, and
the position determination portion is configured in the elastic member to have a clearance between the position determination portion and the bottom surface of the bottom portion of the groove portion, and a clearance between the position determination portion and the tip end portion of the tank body.
2. The heat exchanger according to claim 1, wherein
the core plate includes extending portions extending in a tube longitudinal direction and defining a plurality of tube insertion holes into which the tubes are respectively inserted,
the extending portions are configured to define a wall portion of the groove portion,
the position determination portion includes a longitudinal position determination portion of the elastic member at an inner side of the elastic member in a position extending in the arrangement direction of the tubes, and
the longitudinal position determination portion is configured by protrusion portions to protrude respectively to portions between adjacent tube insertion holes and to contact the wall portion of the groove portion.
3. The heat exchanger according to claim 1, wherein
the position determination portion includes a longitudinal position determination portion of the elastic member at an inner side of the elastic member in a position extending in the arrangement direction of the tubes, and a minor-direction position determination portion of the elastic member at an inner side of the elastic member in a position extending in a direction perpendicular to the arrangement direction of the tubes, and
a protrusion dimension of the longitudinal position determination portion protruding to the inner side of the elastic member is different from a protrusion dimension of the minor-direction position determination portion protruding to the inner side of the elastic member.
4. A heat exchanger comprising:
a heat exchanging core portion including a plurality of tubes arranged in an arrangement direction, and a plurality of fins connected to outer surfaces of the tubes to facilitate heat exchange between a first fluid flowing inside of the tubes and a second fluid flowing outside of the tubes; and
a header tank disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes, wherein
the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, and a tank body fixed to the core plate to defined therein a tank space,
a tip end portion of the tank body is inserted into a groove portion provided at an outer-peripheral portion of the core plate when the tank body is fixed to the core plate,
the groove portion has a first groove part provided at two end sides of the core plate in the arrangement direction, and a second groove part provided at two end sides of the core plate in a direction perpendicular to the arrangement direction,
the first groove part has a groove width dimension different from a groove width dimension of the second groove part, and
the header tank has a dimension in the arrangement direction, which is equal to or larger than a dimension of the heat exchanging core portion in the arrangement direction.
5. The heat exchanger according to claim 4, wherein the groove width dimension of the first groove part is larger than the groove width dimension of the second groove part.
6. The heat exchanger according to claim 5, wherein
the tip end portion of the tank body includes a first expanding portion located at two end sides of the arrangement direction to extend in the direction perpendicular to the arrangement direction, and a second expanding portion located at two end sides in the direction perpendicular to the arrangement direction to extend in the arrangement direction, and
the first expanding portion has an expanding dimension expanding in the arrangement direction, which is larger than an expanding dimension of the second expanding portion expanding in the direction perpendicular to the arrangement direction.
7. The heat exchanger according to claim 4, further comprising
an elastic member arranged between a bottom portion of the groove portion of the core plate and the tip end portion of the tank body to be elastically deformable therebetween, wherein
the tip end portion of the tank body is inserted into the groove portion of the core plate, while the elastic member is placed between the bottom portion of the groove portion of the core plate and the tip end portion of the tank body.
8. A heat exchanger comprising:
a plurality of tubes arranged in an arrangement direction, in which a fluid flows; and
a header tank disposed at one longitudinal end sides of the tubes to extend in the arrangement direction of the tubes and to communicate with the tubes, wherein
the header tank includes a core plate to which the one longitudinal end sides of the tubes are bonded, a tank body fixed to the core plate to defined therein a tank space, a circular elastic member arranged between a bottom portion of a groove portion provided at an outer peripheral portion of the core plate and a tip end portion of the tank body to be elastically deformable therebetween,
the tip end portion of the tank body is inserted into the groove portion of the core plate in an insertion direction, while the elastic member is placed between the bottom portion of the groove portion of the core plate and the tip end portion of the tank body,
the core plate has a claw portion protruding from an outer peripheral wall portion of the groove portion and bent along an outer surface of the tank body to be fixed to the tank body, and a contact surface provided to cross with the insertion direction of the tip end portion of the tank body,
the tank body is provided with a plurality of position determination portions protruding to a side perpendicular to the insertion direction of the tip end portion of the tank body, and
the position determination portions of the tank body contact the contact surface of the core plate.
9. The heat exchanger according to claim 8, wherein
a plurality of the claw portions are provided to protrude from the outer peripheral wall portion of the groove portion of the core plate toward the tank body, and
the contact surface is provided between adjacent claw portions.
10. The heat exchanger according to claim 8, wherein
the core plate has a polygon shape, and
the position determination portion is provided at least at an angular portion of the core plate.
11. The heat exchanger according to claim 8, wherein the position determination portions are positioned inside of the outermost peripheral portion of the core plate.
US12/930,644 2010-01-13 2011-01-12 Heat exchanger Abandoned US20110168364A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010004781A JP2011144974A (en) 2010-01-13 2010-01-13 Heat exchanger
JP2010-4780 2010-01-13
JP2010-4781 2010-01-13
JP2010004780A JP2011144973A (en) 2010-01-13 2010-01-13 Heat exchanger
JP2010-59529 2010-03-16
JP2010059529A JP2011191038A (en) 2010-03-16 2010-03-16 Heat exchanger

Publications (1)

Publication Number Publication Date
US20110168364A1 true US20110168364A1 (en) 2011-07-14

Family

ID=44257615

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/930,644 Abandoned US20110168364A1 (en) 2010-01-13 2011-01-12 Heat exchanger

Country Status (2)

Country Link
US (1) US20110168364A1 (en)
DE (1) DE102011008220A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013104889A1 (en) 2012-05-14 2013-11-14 Visteon Global Technologies, Inc. Upper collecting tank
US9383042B2 (en) 2012-03-30 2016-07-05 Hanon Systems Tank and spout interface for heat exchanger and its manufacturing
US20170038163A1 (en) * 2013-11-27 2017-02-09 Denso Corporation Heat exchanger
CN107208984A (en) * 2014-09-23 2017-09-26 法雷奥热系统公司 Heat exchanger
WO2018020137A1 (en) * 2016-07-29 2018-02-01 Valeo Systemes Thermiques Collector box, sealing means and corresponding heat exchanger
CN110873453A (en) * 2018-08-30 2020-03-10 林内株式会社 Heat exchange device
US10598444B2 (en) 2013-10-30 2020-03-24 Denso Corporation Heat exchanger
US10844773B2 (en) 2016-04-20 2020-11-24 Denso Corporation Heat exchanger
US11073073B2 (en) 2016-03-23 2021-07-27 Calsonic Kansei Corporation Flow-path structure
US20210231392A1 (en) * 2018-05-15 2021-07-29 Valeo Autosystemy Sp. Z O.O. A header for a heat exchanger
US11280562B2 (en) * 2018-06-07 2022-03-22 Valeo Termico Sa. De Cv Heat exchanger tank with reinforcement element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013227113A1 (en) * 2013-12-23 2015-07-09 MAHLE Behr GmbH & Co. KG Heat exchanger with circumferential seal
DE102018109233A1 (en) 2018-04-18 2019-10-24 Hanon Systems System for connecting housing elements of a device for heat transfer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134529A1 (en) * 2001-03-23 2002-09-26 Takahiro Nozaki Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742529B1 (en) 1995-12-13 1998-01-30 Valeo Thermique Moteur Sa HEAT EXCHANGER WITH A SET COLLECTOR PLATE, PARTICULARLY FOR A MOTOR VEHICLE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134529A1 (en) * 2001-03-23 2002-09-26 Takahiro Nozaki Heat exchanger

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383042B2 (en) 2012-03-30 2016-07-05 Hanon Systems Tank and spout interface for heat exchanger and its manufacturing
JP2013238391A (en) * 2012-05-14 2013-11-28 Visteon Global Technologies Inc Head collecting tank
CN103424026A (en) * 2012-05-14 2013-12-04 威斯通全球技术公司 Head collecting tank
DE102013104889A1 (en) 2012-05-14 2013-11-14 Visteon Global Technologies, Inc. Upper collecting tank
US10598444B2 (en) 2013-10-30 2020-03-24 Denso Corporation Heat exchanger
US10317148B2 (en) * 2013-11-27 2019-06-11 Denso Corporation Heat exchanger
US20170038163A1 (en) * 2013-11-27 2017-02-09 Denso Corporation Heat exchanger
US11162743B2 (en) 2013-11-27 2021-11-02 Denso Corporation Heat exchanger tank
CN107208984A (en) * 2014-09-23 2017-09-26 法雷奥热系统公司 Heat exchanger
US10634432B2 (en) * 2014-09-23 2020-04-28 Valeo Systemes Thermiques Heat exchanger
US20170284743A1 (en) * 2014-09-23 2017-10-05 Valeo Systemes Thermiques Heat exchanger
US11073073B2 (en) 2016-03-23 2021-07-27 Calsonic Kansei Corporation Flow-path structure
US10844773B2 (en) 2016-04-20 2020-11-24 Denso Corporation Heat exchanger
WO2018020137A1 (en) * 2016-07-29 2018-02-01 Valeo Systemes Thermiques Collector box, sealing means and corresponding heat exchanger
EP3491324A1 (en) * 2016-07-29 2019-06-05 Valeo Systemes Thermiques Collector box, sealing means and corresponding heat exchanger
CN110546449A (en) * 2016-07-29 2019-12-06 法雷奥热系统公司 Header tank, sealing device and corresponding heat exchanger
FR3054652A1 (en) * 2016-07-29 2018-02-02 Valeo Systemes Thermiques COLLECTOR BOX, SEALING MEANS AND THERMAL HEAT EXCHANGER
US11274885B2 (en) 2016-07-29 2022-03-15 Valeo Systemes Thermiques Collector box, sealing means and corresponding heat exchanger
US20210231392A1 (en) * 2018-05-15 2021-07-29 Valeo Autosystemy Sp. Z O.O. A header for a heat exchanger
US11703288B2 (en) * 2018-05-15 2023-07-18 Valeo Autosystemy Sp. Z O.O. Header for a heat exchanger
US11280562B2 (en) * 2018-06-07 2022-03-22 Valeo Termico Sa. De Cv Heat exchanger tank with reinforcement element
CN110873453A (en) * 2018-08-30 2020-03-10 林内株式会社 Heat exchange device

Also Published As

Publication number Publication date
DE102011008220A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
US20110168364A1 (en) Heat exchanger
US8074708B2 (en) Heat exchanger
US8910704B2 (en) Heat exchanger
CN108139183B (en) heat exchanger
US7721791B2 (en) Heat exchanger with side plate having pipe near bridge portion
JP2011099631A (en) Heat exchanger
US20150168080A1 (en) Heat exchanger
JP5029166B2 (en) Heat exchanger
US20120118543A1 (en) Heat exchanger
US7823630B2 (en) Tube for heat exchanger and method of manufacturing tube
US20070012425A1 (en) Heat exchanger
US20080000627A1 (en) Heat exchanger
US7255158B2 (en) Heat exchanger
US11835297B2 (en) Heat exchanger
JP5598565B2 (en) Heat exchanger
JP2011191038A (en) Heat exchanger
US11573058B2 (en) Easily assembled heat exchanger
CN114787574A (en) Heat exchanger and method for manufacturing heat exchanger
US20100206533A1 (en) Heat exchanger
JP2011144974A (en) Heat exchanger
US20060113069A1 (en) Heat exchanger
US20060048930A1 (en) Heat exchanger
KR100666927B1 (en) Heat exchanger of header type
JP6384344B2 (en) Heat exchanger
JP2011144973A (en) Heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKUYAMA, TOMOMI;TANAKA, HIROSHI;SUSA, SUMIO;AND OTHERS;SIGNING DATES FROM 20110107 TO 20110111;REEL/FRAME:025775/0529

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION