Nothing Special   »   [go: up one dir, main page]

US20100000239A1 - Pulse width modulation control for heat pump fan to eliminate cold blow - Google Patents

Pulse width modulation control for heat pump fan to eliminate cold blow Download PDF

Info

Publication number
US20100000239A1
US20100000239A1 US12/447,549 US44754909A US2010000239A1 US 20100000239 A1 US20100000239 A1 US 20100000239A1 US 44754909 A US44754909 A US 44754909A US 2010000239 A1 US2010000239 A1 US 2010000239A1
Authority
US
United States
Prior art keywords
air
set forth
heat exchanger
heat pump
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/447,549
Inventor
Alexander Lifson
Michael F. Taras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIFSON, ALEXANDER, TARAS, MICHAEL F.
Publication of US20100000239A1 publication Critical patent/US20100000239A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger

Definitions

  • This application relates to a heat pump, wherein a fan for moving air into a conditioned environment is provided with a pulse width modulation control to address the problem of “cold blow”.
  • Heat pumps are known in the art and utilized to provide cooling to a conditioned environment during time periods of hot weather or excessive internal thermal load generation, and to provide heat to the same indoor environment when the weather is cold. Also, there are known a more simplistic heat pump designs that are able to operate just in a heating mode. Heat pumps have great potential to provide efficient conditioning to the indoor environment, however, there have been impediments to their use.
  • Cold blow occurs when the heat pump does not have sufficient heat rejection capability to adequately heat air being driven into the environment to be conditioned.
  • variable speed drive It has been known to address “cold blow” by reducing the volume of air delivered into the environment to be conditioned either through the use of a variable speed drive, or through a two-speed fan motor.
  • a two-speed fan motor does not provide sufficient flexibility to adequately tailor the airflow to achieve the desired temperature.
  • a variable speed drive may provide such flexibility, however, it is quite expensive, represent an additional source of potential reliability problems and associated with efficiency losses. Thus, there has not been an adequate cost effective solution offered to resolve this problem.
  • Pulse width modulation controls are known for controlling the amount of refrigerant passing to a compressor in a refrigerant system, such as an air conditioning system or a heat pump. However, pulse width modulation controls have not been utilized to address the “cold blow” problem mentioned above.
  • fan moving air over an indoor heat exchanger is operated in a pulse width modulated manner.
  • the use of the pulse width modulation control precisely tailors the amount of air moved over the indoor heat exchanger and into the climate-controlled environment, such that the heat rejected by the indoor heat exchanger, in the heating mode of operation, to the indoor air stream is sufficient to heat the controlled volume of air to the desired temperature.
  • the amount of air being driven into the environment will be reduced accordingly, such that air is delivered to a climate-controlled environment at the target temperature.
  • the present invention is able to precisely control the temperature of air delivered to the indoor space. If a two-speed fan is utilized, the pulse width modulation control can cycle the fan between the lower and a higher speed to achieve the desired effect. In the tatter case, the cycling between a lower speed and zero speed as well as a higher speed and zero speed is also permissible, if desired.
  • the time interval during which the fan is engaged in a full-speed position, for a single-speed fan, or in a higher speed position, for a two-speed fan is determined by the temperature requirement and comfort level, while the cycle rate is primarily determined by fan assembly reliability requirements and temperature variation tolerance bounds. Further, frequent cycling is not necessary, since refrigerant system thermal inertia compensates for sudden changes in fan speed. Also, the fan does not have to be brought to a full stop state, between activation and deactivation of the pulse width modulation signal, since the mechanical inertia allows for a softer start in a subsequent cycle.
  • FIG. 1 shows a schematic of a heat pump incorporating the present invention.
  • FIG. 2 shows a cycling sequence for a single-speed fan.
  • FIG. 2 shows a cycling sequence for a two-speed fan.
  • a refrigerant system 20 is illustrated in FIG. 1 and includes a compressor 22 delivering a refrigerant to a discharge line 23 , and through a four-way valve 24 (if a heat pump is dedicated to heating applications only, then a four-way valve is not required) to an indoor heat exchanger 26 . Downstream of the indoor heat exchanger 26 , the refrigerant passes through an expansion device 28 , and then to an outdoor heat exchanger 30 . The outdoor heat exchanger 30 is provided with a fan 32 to move air over the external heat transfer surfaces of the outdoor heat exchanger 30 . Downstream of the outdoor heat exchanger 30 , the refrigerant passes again through the four-way valve 24 , and into a suction line 33 returning the refrigerant to the compressor 22 .
  • the refrigerant system 20 is illustrated in FIG. 1 in a heating mode of operation.
  • the refrigerant system 20 can be moved to an air conditioning cooling mode of operation by switching the four-valve 24 and routing the refrigerant from the discharge line 23 initially to the outdoor heat exchanger 30 , through the expansion device 28 , and returning the refrigerant from the indoor heat exchanger 26 to the suction line 33 .
  • the present invention is directed to an improvement that is particularly applicable when the refrigerant system is in a heating mode of operation.
  • the FIG. 1 schematic for the heat pump 20 is a basic schematic, and as known to a person ordinarily skilled in the art, can be improved by adding a number of enhancement features and various options. All these designs are within the scope and can benefit from the invention.
  • an air-moving device such as fan 34 moves air over the indoor heat exchanger 26 and into an environment to be conditioned 36 .
  • the heat exchanger 26 performs a condenser (or a gas cooler, for transcritical applications) function.
  • a condenser or a gas cooler, for transcritical applications
  • the indoor air stream does not reach the desired temperature creating uncomfortable so-called “cold blow” conditions for an occupant of the indoor environment 36 .
  • a control 38 (that could be a stand-alone control or a refrigerant system control) is provided with a feedback communication loop from a temperature sensor 49 and is capable to operate the indoor fan 34 in a pulse width modulation mode. Therefore, the control 38 can detect a lower than desired temperature of the air being delivered into the indoor environment 36 . In such cases, the control 38 is operable to provide a pulse width modulation control to a motor for the indoor fan 34 such that the average volume of air supplied by the indoor fan 34 to the conditioned environment 36 is reduced. As the average volume of air is sufficiently reduced the heat rejected by the indoor heat exchanger 26 is sufficient enough to heat that reduced volume of air to a temperature desired by an occupant of the conditioned environment 36 . As known, the desired temperature may be set by a thermostat 50 . Alternatively, the thermostat 50 can be utilized as a feed back device for the control 38 .
  • a single-speed motor for the indoor fan 34 is rapidly cycled between “on” and “off” (or fully engaged and fully disengaged) positions.
  • the indoor fan motor may be rapidly cycled between its higher and lower speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”.
  • the volume of air delivered into the environment 36 is precisely adjusted, such that the heat rejected by the indoor heat exchanger 26 is adequate to heat this adjusted air volume to the desired temperature.
  • the pulse width modulation cycling can be executed between any of the speeds, including a speed of zero.
  • the cycling frequency is determined by the indoor fan assembly reliability and temperature variation tolerance requirements.
  • the time interval at each speed position is defined by the required air temperature values and comfort level to be achieved and efficiency considerations. Frequent cycling will not be necessary and is avoided, since refrigerant system thermal inertia smoothes sharp variation of operational parameters and compensates for sudden abrupt peeks and valleys.
  • Cycling can be executed between a zero and-full speed, for a single-speed fan, and between the lower and the higher speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”, for a dual-fan speed fan.
  • Multi-speed fans provide even a higher degree of flexibility and precision control.
  • indoor fan mechanical inertia may assist in continuous rotation of the indoor fan (although at a constantly reducing speed), while the pulse width modulation signal is activated and deactivated allowing for a softer start in a subsequent cycle.
  • FIG. 2 is an exemplary chart of a temperature of air supplied to the conditioned space versus time, for a refrigerant system wherein the indoor fan motor is operable at a single, full speed, in an “on” or fully engaged position, and at a zero speed, in an “off” or fully disengaged position.
  • the indoor heat exchanger is not capable to provide sufficient amount of heat to the nominal volume of air supplied to the conditioned environment, and the actual temperature is below the desired temperature, promoting “cold blow” conditions.
  • the indoor fan motor begins to cycle between a full speed (or an “on” position) and a zero speed (or an “off” position), reducing the time-average amount of air supplied to the conditioned environment.
  • the actual supply air temperature increases, as well as approaches and reaches the desired temperature, while the pulse width modulation cycle parameters are adjusted to the correct values.
  • FIG. 3 shows another embodiment, wherein the fan motor is operable at two speeds and can be cycled by the pulse width modulation control between the higher and lower speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”.
  • the fan is cycled between the lower speed position and the higher speed position.
  • the actual supply air temperature increases and soon approaches the desired temperature, with this arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heat pump refrigerant system is provided with a pulse width modulation control for a fan moving air over the indoor heat exchanger. When it is determined that there is insufficient heat rejected by the indoor heat exchanger to heat the volume of air being delivered by the fan into the conditioned environment, the volume of air supplied to the conditioned environment is reduced by utilizing one of pulse width modulation techniques to cycle the indoor fan motor to reduce the average volume of supplied air. Therefore, a precise control over the temperature of air delivered to the conditioned space is achieved, temperature of the delivered air is increased to the target value, and so-called “cold blow” conditions are avoided.

Description

    BACKGROUND OF THE INVENTION
  • This application relates to a heat pump, wherein a fan for moving air into a conditioned environment is provided with a pulse width modulation control to address the problem of “cold blow”.
  • Heat pumps are known in the art and utilized to provide cooling to a conditioned environment during time periods of hot weather or excessive internal thermal load generation, and to provide heat to the same indoor environment when the weather is cold. Also, there are known a more simplistic heat pump designs that are able to operate just in a heating mode. Heat pumps have great potential to provide efficient conditioning to the indoor environment, however, there have been impediments to their use.
  • One known problem with existing heat pump designs is so-called “cold blow.” “Cold blow” occurs when the heat pump does not have sufficient heat rejection capability to adequately heat air being driven into the environment to be conditioned.
  • When this phenomenon occurs, air driven over the indoor heat exchanger and into the environment to be conditioned is not heated to the temperature desired by the occupant of the environment, causing uncomfortable conditions to the occupant, that is of course undesirable.
  • It has been known to address “cold blow” by reducing the volume of air delivered into the environment to be conditioned either through the use of a variable speed drive, or through a two-speed fan motor. A two-speed fan motor does not provide sufficient flexibility to adequately tailor the airflow to achieve the desired temperature. A variable speed drive may provide such flexibility, however, it is quite expensive, represent an additional source of potential reliability problems and associated with efficiency losses. Thus, there has not been an adequate cost effective solution offered to resolve this problem.
  • Pulse width modulation controls are known for controlling the amount of refrigerant passing to a compressor in a refrigerant system, such as an air conditioning system or a heat pump. However, pulse width modulation controls have not been utilized to address the “cold blow” problem mentioned above.
  • SUMMARY OF THE INVENTION
  • In a disclosed embodiment of this invention, fan moving air over an indoor heat exchanger is operated in a pulse width modulated manner. The use of the pulse width modulation control precisely tailors the amount of air moved over the indoor heat exchanger and into the climate-controlled environment, such that the heat rejected by the indoor heat exchanger, in the heating mode of operation, to the indoor air stream is sufficient to heat the controlled volume of air to the desired temperature. Thus, if less heat is rejected by the indoor heat exchanger and available to heat the air, the amount of air being driven into the environment will be reduced accordingly, such that air is delivered to a climate-controlled environment at the target temperature.
  • By closely controlling and cycling the fan between “on” and “off” positions, in single-speed fan applications, the present invention is able to precisely control the temperature of air delivered to the indoor space. If a two-speed fan is utilized, the pulse width modulation control can cycle the fan between the lower and a higher speed to achieve the desired effect. In the tatter case, the cycling between a lower speed and zero speed as well as a higher speed and zero speed is also permissible, if desired.
  • The time interval during which the fan is engaged in a full-speed position, for a single-speed fan, or in a higher speed position, for a two-speed fan, is determined by the temperature requirement and comfort level, while the cycle rate is primarily determined by fan assembly reliability requirements and temperature variation tolerance bounds. Further, frequent cycling is not necessary, since refrigerant system thermal inertia compensates for sudden changes in fan speed. Also, the fan does not have to be brought to a full stop state, between activation and deactivation of the pulse width modulation signal, since the mechanical inertia allows for a softer start in a subsequent cycle.
  • These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic of a heat pump incorporating the present invention.
  • FIG. 2 shows a cycling sequence for a single-speed fan.
  • FIG. 2 shows a cycling sequence for a two-speed fan.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A refrigerant system 20 is illustrated in FIG. 1 and includes a compressor 22 delivering a refrigerant to a discharge line 23, and through a four-way valve 24 (if a heat pump is dedicated to heating applications only, then a four-way valve is not required) to an indoor heat exchanger 26. Downstream of the indoor heat exchanger 26, the refrigerant passes through an expansion device 28, and then to an outdoor heat exchanger 30. The outdoor heat exchanger 30 is provided with a fan 32 to move air over the external heat transfer surfaces of the outdoor heat exchanger 30. Downstream of the outdoor heat exchanger 30, the refrigerant passes again through the four-way valve 24, and into a suction line 33 returning the refrigerant to the compressor 22. The refrigerant system 20 is illustrated in FIG. 1 in a heating mode of operation. The refrigerant system 20 can be moved to an air conditioning cooling mode of operation by switching the four-valve 24 and routing the refrigerant from the discharge line 23 initially to the outdoor heat exchanger 30, through the expansion device 28, and returning the refrigerant from the indoor heat exchanger 26 to the suction line 33. However, the present invention is directed to an improvement that is particularly applicable when the refrigerant system is in a heating mode of operation. The FIG. 1 schematic for the heat pump 20 is a basic schematic, and as known to a person ordinarily skilled in the art, can be improved by adding a number of enhancement features and various options. All these designs are within the scope and can benefit from the invention.
  • As shown in FIG. 1, an air-moving device, such as fan 34, moves air over the indoor heat exchanger 26 and into an environment to be conditioned 36. In the heating mode of operation, the heat exchanger 26 performs a condenser (or a gas cooler, for transcritical applications) function. At times (for instance, at lower ambient temperatures or at high heating load demands in the conditioned space), there may be insufficient heat rejection capacity provided by the heat exchanger 26 to adequately heat a nominal volume of air driven by the fan 34 over external heat transfer surfaces of the heat exchanger 26 and into the indoor environment 36. In such situations, the indoor air stream does not reach the desired temperature creating uncomfortable so-called “cold blow” conditions for an occupant of the indoor environment 36. A control 38 (that could be a stand-alone control or a refrigerant system control) is provided with a feedback communication loop from a temperature sensor 49 and is capable to operate the indoor fan 34 in a pulse width modulation mode. Therefore, the control 38 can detect a lower than desired temperature of the air being delivered into the indoor environment 36. In such cases, the control 38 is operable to provide a pulse width modulation control to a motor for the indoor fan 34 such that the average volume of air supplied by the indoor fan 34 to the conditioned environment 36 is reduced. As the average volume of air is sufficiently reduced the heat rejected by the indoor heat exchanger 26 is sufficient enough to heat that reduced volume of air to a temperature desired by an occupant of the conditioned environment 36. As known, the desired temperature may be set by a thermostat 50. Alternatively, the thermostat 50 can be utilized as a feed back device for the control 38.
  • By utilizing the pulse width modulation control, a single-speed motor for the indoor fan 34 is rapidly cycled between “on” and “off” (or fully engaged and fully disengaged) positions. In the case of a two-speed fan, the indoor fan motor may be rapidly cycled between its higher and lower speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”. In either case, the volume of air delivered into the environment 36 is precisely adjusted, such that the heat rejected by the indoor heat exchanger 26 is adequate to heat this adjusted air volume to the desired temperature. As mentioned above, when a multi-speed fan motor is used, the pulse width modulation cycling can be executed between any of the speeds, including a speed of zero.
  • It is proposed to control the indoor fan 34, in the heating mode of operation, by pulse width modulation method to precisely adjust the temperature of the conditioned (heated) air delivered to the indoor environment 36. This control is straightforward and does not require additional components. The cycling frequency is determined by the indoor fan assembly reliability and temperature variation tolerance requirements. The time interval at each speed position is defined by the required air temperature values and comfort level to be achieved and efficiency considerations. Frequent cycling will not be necessary and is avoided, since refrigerant system thermal inertia smoothes sharp variation of operational parameters and compensates for sudden abrupt peeks and valleys. Cycling can be executed between a zero and-full speed, for a single-speed fan, and between the lower and the higher speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”, for a dual-fan speed fan. Multi-speed fans provide even a higher degree of flexibility and precision control. Lastly, indoor fan mechanical inertia may assist in continuous rotation of the indoor fan (although at a constantly reducing speed), while the pulse width modulation signal is activated and deactivated allowing for a softer start in a subsequent cycle.
  • FIG. 2 is an exemplary chart of a temperature of air supplied to the conditioned space versus time, for a refrigerant system wherein the indoor fan motor is operable at a single, full speed, in an “on” or fully engaged position, and at a zero speed, in an “off” or fully disengaged position. As can be seen, initially, the indoor heat exchanger is not capable to provide sufficient amount of heat to the nominal volume of air supplied to the conditioned environment, and the actual temperature is below the desired temperature, promoting “cold blow” conditions. Also, as can be seen, when the pulse width modulation control for the indoor fan is engaged, the indoor fan motor begins to cycle between a full speed (or an “on” position) and a zero speed (or an “off” position), reducing the time-average amount of air supplied to the conditioned environment. As a result, the actual supply air temperature, increases, as well as approaches and reaches the desired temperature, while the pulse width modulation cycle parameters are adjusted to the correct values.
  • Similarly, FIG. 3 shows another embodiment, wherein the fan motor is operable at two speeds and can be cycled by the pulse width modulation control between the higher and lower speed positions, as well as between the lower speed position and an “off” position and between the higher speed position and an “off” position”. As an example, here, the fan is cycled between the lower speed position and the higher speed position. Again, the actual supply air temperature increases and soon approaches the desired temperature, with this arrangement.
  • It has to be noted that although a square waveform is used in FIGS. 2 and 3 embodiments for the pulse width modulation control, other waveforms are also feasible and within the scope of the invention. For instance, a trapezoidal, a triangular, a rounded square or any other waveform can be utilized instead.
  • Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims (30)

1. A heat pump comprising:
a compressor for compressing refrigerant and delivering the refrigerant to a downstream indoor heat exchanger, said indoor heat exchanger being provided with an air-moving device for moving air over said indoor heat exchanger and into an environment to be conditioned, refrigerant passing from said indoor heat exchanger through an expansion device and then through an outdoor heat exchanger, refrigerant from the outdoor heat exchanger returning to the compressor; and
a control for said air-moving device for said indoor heat exchanger, said control providing a pulse width modulation signal to adjust the time-average volume of air moved by said air-moving device over said indoor heat exchanger when it has been determined that there is insufficient heat rejected by said indoor heat exchanger to heat a nominal volume of air to a desired temperature.
2. The heat pump as set forth in claim 1, wherein a four-way valve selectively routes refrigerant from said compressor to said indoor heat exchanger when the heat pump is operating in a heating mode, and to said outdoor heat exchanger when the heat pump is operating in a cooling mode.
3. The heat pump as set forth in claim 1, wherein said air-moving device is a fan.
4. The heat pump as set forth in claim 1, wherein a motor for said air-moving device is a single-speed motor, and said pulse width modulation control rapidly cycles the motor.
5. The heat pump as set forth in claim 4, wherein said pulse width modulation control rapidly cycles the motor between an “on” position and an “off” position.
6. The heat pump as set forth in claim 5, wherein a time interval for said “on” position is determined by at least one of temperature requirements and efficiency considerations.
7. The heat pump as set forth in claim 1, wherein a motor for said air-moving device is a two-speed motor, and said pulse width modulation control rapidly cycles the two-speed motor between at least one of a higher speed and a lower speed, the lower speed and the “off” position and the higher speed and the “off” position.
8. The heat pump as set forth in claim 7, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
9. The heat pump as set forth in claim 1, wherein a motor for said air-moving device is a multi-speed motor, and said pulse width modulation control rapidly cycles the multi-speed motor between multiple speeds, including the motor “off” position.
10. The heat pump as set forth in claim 9, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
11. The heat pump as set forth in claim 1, wherein the environment to be conditioned is provided with a temperature sensor for sensing the temperature of air being delivered into the environment, and said sensed temperature being provided to said control, such that said control can adjust the time-average volume of air moved into the environment by utilizing said pulse width modulation technique to match the sensed temperature to a desired temperature.
12. The heat pump as set forth in claim 1, wherein said indoor heat exchanger is a condenser, while said heat pump operates in a subcritical region at least for a portion of the time.
13. The heat pump as set forth in claim 1, wherein said indoor heat exchanger is a gas cooler, while said heat pump operates in a transcritical region at least for a portion of the time.
14. The heat pump as set forth in claim 1, wherein the pulse width modulation cycling rate is determined by at least one of the air-moving device reliability requirements, the temperature variation tolerance band requirements and efficiency considerations.
15. The heat pump as set forth in claim 1, wherein the pulse width modulation control cycles said air-moving device between at or near zero speed and a non-zero speed, and the consequent cycle starts while the air-moving device is still in motion.
16. A method of operating a heat pump comprising the steps of:
(1) compressing refrigerant and delivering the refrigerant to a downstream indoor heat exchanger, indoor heat exchanger being provided with an air-moving device moving air over said indoor heat exchanger and into an environment to be conditioned, refrigerant passing from said indoor heat exchanger through an expansion device and then through an outdoor heat exchanger, refrigerant from the outdoor heat exchanger returning to the compressor; and
(2) controlling said air-moving device for said indoor heat exchanger, by providing a pulse width modulation signal to adjust the time-average volume of air moved by said air-moving device over said indoor heat exchanger when it has been determined that there is insufficient heat rejected by said indoor heat exchanger to heat a nominal volume of air to a desired temperature.
17. The method as set forth in claim 16, wherein a four-way valve selectively routes refrigerant from said compressor to said indoor heat exchanger when the heat pump is operating in a heating mode, and to said outdoor heat exchanger when the heat pump is operating in a cooling mode.
18. The method as set forth in claim 16, wherein said air-moving device is a fan.
19. The method as set forth in claim 16, wherein a motor for said air-moving device is a single-speed motor, and said pulse width modulation control rapidly cycles the motor.
20. The method as set forth in claim 19, wherein said pulse width modulation control rapidly cycles the motor between an “on” and an “off” position.
21. The method as set forth in claim 20, wherein a time interval for said “on” position is determined by at least one of temperature requirements and efficiency considerations.
22. The method as set forth in claim 16, wherein a motor for said air-moving device is a two-speed motor, and said pulse width modulation control rapidly cycles the two-speed motor between at least one of a higher speed and a lower speed, the lower speed and the “off” position and the higher speed and the “off” position.
23. The method as set forth in claim 22, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
24. The method as set forth in claim 16, wherein a motor for said air-moving device is a multi-speed motor, and said pulse width modulation control rapidly cycles the multi-speed motor between multiple speeds, including the motor “off” position.
25. The method as set forth in claim 24, wherein the time interval at each speed position is determined by at least one of temperature requirements and efficiency considerations.
26. The method as set forth in claim 16, wherein the environment to be conditioned is provided with a temperature sensor for sensing the temperature of air being delivered into the environment, and said sensed temperature being provided to said control, such that said control can adjust the time-average volume of air moved into the environment by utilizing said pulse width modulation technique to match the sensed temperature to a desired temperature.
27. The method as set forth in claim 16, wherein said indoor heat exchanger is a condenser, while said heat pump operates in a subcritical region at least for a portion of the time.
28. The method as set forth in claim 16, wherein said indoor heat exchanger is a gas cooler, while said heat pump operates in a transcritical region at least for a portion of the time.
29. The method as set forth in claim 16, wherein the pulse width modulation cycling rate is determined by at least one of the air-moving device reliability requirements, the temperature variation tolerance band requirements and efficiency considerations.
30. The method as set forth in claim 16, wherein the pulse width modulation control cycles said air-moving device between at or near zero speed and non-zero speed, and the consequent cycle starts while the air-moving device is still in motion.
US12/447,549 2006-12-21 2006-12-21 Pulse width modulation control for heat pump fan to eliminate cold blow Abandoned US20100000239A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/048896 WO2008076119A1 (en) 2006-12-21 2006-12-21 Pulse width modulation control for heat pump fan to eliminate cold blow

Publications (1)

Publication Number Publication Date
US20100000239A1 true US20100000239A1 (en) 2010-01-07

Family

ID=39536591

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/447,549 Abandoned US20100000239A1 (en) 2006-12-21 2006-12-21 Pulse width modulation control for heat pump fan to eliminate cold blow

Country Status (4)

Country Link
US (1) US20100000239A1 (en)
EP (1) EP2095040A1 (en)
CN (1) CN101809380A (en)
WO (1) WO2008076119A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478447B2 (en) 2010-11-19 2013-07-02 Nest Labs, Inc. Computational load distribution in a climate control system having plural sensing microsystems
US8620841B1 (en) 2012-08-31 2013-12-31 Nest Labs, Inc. Dynamic distributed-sensor thermostat network for forecasting external events
US8695888B2 (en) 2004-10-06 2014-04-15 Nest Labs, Inc. Electronically-controlled register vent for zone heating and cooling
US8708242B2 (en) * 2012-09-21 2014-04-29 Nest Labs, Inc. Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
US9091453B2 (en) 2012-03-29 2015-07-28 Google Inc. Enclosure cooling using early compressor turn-off with extended fan operation
US9092039B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US9098096B2 (en) 2012-04-05 2015-08-04 Google Inc. Continuous intelligent-control-system update using information requests directed to user devices
US9116529B2 (en) 2011-02-24 2015-08-25 Google Inc. Thermostat with self-configuring connections to facilitate do-it-yourself installation
US9208676B2 (en) 2013-03-14 2015-12-08 Google Inc. Devices, methods, and associated information processing for security in a smart-sensored home
US9268344B2 (en) 2010-11-19 2016-02-23 Google Inc. Installation of thermostat powered by rechargeable battery
US20190203970A1 (en) * 2018-01-03 2019-07-04 Haier Us Appliance Solutions, Inc. Method for operating a packaged terminal air conditioner
US10452083B2 (en) 2010-11-19 2019-10-22 Google Llc Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US10481780B2 (en) 2010-11-19 2019-11-19 Google Llc Adjusting proximity thresholds for activating a device user interface
US10732651B2 (en) 2010-11-19 2020-08-04 Google Llc Smart-home proxy devices with long-polling
US10771868B2 (en) 2010-09-14 2020-09-08 Google Llc Occupancy pattern detection, estimation and prediction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371822B2 (en) 2008-08-05 2013-02-12 Lennox Industries Inc. Dual-powered airflow generator
CN105241016B (en) * 2015-10-26 2018-04-17 四川长虹电器股份有限公司 Multi-connected air conditioner indoor fan control device and method
CN106765940B (en) * 2016-12-16 2019-10-11 奥克斯空调股份有限公司 The control method of solar heat protection outlet air when a kind of air conditioner freezes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867997A (en) * 1997-06-27 1999-02-09 Samsung Electronics Co., Ltd. Heating control apparatus of air conditioner and method thereof
US6131402A (en) * 1998-06-03 2000-10-17 Carrier Corporation Apparatus and method of operating a heat pump to improve heating supply air temperature
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867997A (en) * 1997-06-27 1999-02-09 Samsung Electronics Co., Ltd. Heating control apparatus of air conditioner and method thereof
US6131402A (en) * 1998-06-03 2000-10-17 Carrier Corporation Apparatus and method of operating a heat pump to improve heating supply air temperature
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222692B2 (en) 2004-10-06 2015-12-29 Google Inc. Wireless zone control via mechanically adjustable airflow elements
US10215437B2 (en) 2004-10-06 2019-02-26 Google Llc Battery-operated wireless zone controllers having multiple states of power-related operation
US8695888B2 (en) 2004-10-06 2014-04-15 Nest Labs, Inc. Electronically-controlled register vent for zone heating and cooling
US10126011B2 (en) 2004-10-06 2018-11-13 Google Llc Multiple environmental zone control with integrated battery status communications
US9995497B2 (en) 2004-10-06 2018-06-12 Google Llc Wireless zone control via mechanically adjustable airflow elements
US9618223B2 (en) 2004-10-06 2017-04-11 Google Inc. Multi-nodal thermostat control system
US9353964B2 (en) 2004-10-06 2016-05-31 Google Inc. Systems and methods for wirelessly-enabled HVAC control
US9353963B2 (en) 2004-10-06 2016-05-31 Google Inc. Occupancy-based wireless control of multiple environmental zones with zone controller identification
US9316407B2 (en) 2004-10-06 2016-04-19 Google Inc. Multiple environmental zone control with integrated battery status communications
US9303889B2 (en) 2004-10-06 2016-04-05 Google Inc. Multiple environmental zone control via a central controller
US9273879B2 (en) 2004-10-06 2016-03-01 Google Inc. Occupancy-based wireless control of multiple environmental zones via a central controller
US9182140B2 (en) 2004-10-06 2015-11-10 Google Inc. Battery-operated wireless zone controllers having multiple states of power-related operation
US9194599B2 (en) 2004-10-06 2015-11-24 Google Inc. Control of multiple environmental zones based on predicted changes to environmental conditions of the zones
US9194600B2 (en) 2004-10-06 2015-11-24 Google Inc. Battery charging by mechanical impeller at forced air vent outputs
US9605858B2 (en) 2010-09-14 2017-03-28 Google Inc. Thermostat circuitry for connection to HVAC systems
US9494332B2 (en) 2010-09-14 2016-11-15 Google Inc. Thermostat wiring connector
US10771868B2 (en) 2010-09-14 2020-09-08 Google Llc Occupancy pattern detection, estimation and prediction
US10309672B2 (en) 2010-09-14 2019-06-04 Google Llc Thermostat wiring connector
US9715239B2 (en) 2010-09-14 2017-07-25 Google Inc. Computational load distribution in an environment having multiple sensing microsystems
US9702579B2 (en) 2010-09-14 2017-07-11 Google Inc. Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat
US9026254B2 (en) 2010-09-14 2015-05-05 Google Inc. Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat
US10452083B2 (en) 2010-11-19 2019-10-22 Google Llc Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US9268344B2 (en) 2010-11-19 2016-02-23 Google Inc. Installation of thermostat powered by rechargeable battery
US9092039B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US9995499B2 (en) 2010-11-19 2018-06-12 Google Llc Electronic device controller with user-friendly installation features
US9575496B2 (en) 2010-11-19 2017-02-21 Google Inc. HVAC controller with user-friendly installation features with wire insertion detection
US8478447B2 (en) 2010-11-19 2013-07-02 Nest Labs, Inc. Computational load distribution in a climate control system having plural sensing microsystems
US9092040B2 (en) 2010-11-19 2015-07-28 Google Inc. HVAC filter monitoring
US10191727B2 (en) 2010-11-19 2019-01-29 Google Llc Installation of thermostat powered by rechargeable battery
US10732651B2 (en) 2010-11-19 2020-08-04 Google Llc Smart-home proxy devices with long-polling
US8924027B2 (en) 2010-11-19 2014-12-30 Google Inc. Computational load distribution in a climate control system having plural sensing microsystems
US10481780B2 (en) 2010-11-19 2019-11-19 Google Llc Adjusting proximity thresholds for activating a device user interface
US9933794B2 (en) 2011-02-24 2018-04-03 Google Llc Thermostat with self-configuring connections to facilitate do-it-yourself installation
US10684633B2 (en) 2011-02-24 2020-06-16 Google Llc Smart thermostat with active power stealing an processor isolation from switching elements
US9116529B2 (en) 2011-02-24 2015-08-25 Google Inc. Thermostat with self-configuring connections to facilitate do-it-yourself installation
US9534805B2 (en) 2012-03-29 2017-01-03 Google Inc. Enclosure cooling using early compressor turn-off with extended fan operation
US9091453B2 (en) 2012-03-29 2015-07-28 Google Inc. Enclosure cooling using early compressor turn-off with extended fan operation
US10151503B2 (en) 2012-04-05 2018-12-11 Google Llc Continuous intelligent-control-system update using information requests directed to user devices
US10502444B2 (en) 2012-04-05 2019-12-10 Google Llc Continuous intelligent-control-system update using information requests directed to user devices
US11118803B2 (en) 2012-04-05 2021-09-14 Google Llc Continuous intelligent-control-system update using information requests directed to user devices
US9098096B2 (en) 2012-04-05 2015-08-04 Google Inc. Continuous intelligent-control-system update using information requests directed to user devices
US10433032B2 (en) 2012-08-31 2019-10-01 Google Llc Dynamic distributed-sensor network for crowdsourced event detection
US8620841B1 (en) 2012-08-31 2013-12-31 Nest Labs, Inc. Dynamic distributed-sensor thermostat network for forecasting external events
US9286781B2 (en) 2012-08-31 2016-03-15 Google Inc. Dynamic distributed-sensor thermostat network for forecasting external events using smart-home devices
US9746859B2 (en) 2012-09-21 2017-08-29 Google Inc. Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
US8708242B2 (en) * 2012-09-21 2014-04-29 Nest Labs, Inc. Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
US9208676B2 (en) 2013-03-14 2015-12-08 Google Inc. Devices, methods, and associated information processing for security in a smart-sensored home
US9798979B2 (en) 2013-03-14 2017-10-24 Google Inc. Devices, methods, and associated information processing for security in a smart-sensored home
US10853733B2 (en) 2013-03-14 2020-12-01 Google Llc Devices, methods, and associated information processing for security in a smart-sensored home
US12055905B2 (en) 2013-03-14 2024-08-06 Google Llc Smart-home environment networking systems and methods
US10663188B2 (en) * 2018-01-03 2020-05-26 Haier Us Appliance Solutions, Inc. Method for operating a packaged terminal air conditioner
US20190203970A1 (en) * 2018-01-03 2019-07-04 Haier Us Appliance Solutions, Inc. Method for operating a packaged terminal air conditioner

Also Published As

Publication number Publication date
WO2008076119A1 (en) 2008-06-26
CN101809380A (en) 2010-08-18
EP2095040A1 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US20100000239A1 (en) Pulse width modulation control for heat pump fan to eliminate cold blow
US11435095B2 (en) Hybrid heat pump with improved dehumidification
EP2102569B1 (en) Methods and systems for controlling an air conditioning system operating in free cooling mode
KR101471813B1 (en) Heat source system
US9097449B2 (en) Pressure based control of parallel compressors in multiple refrigeration units
US5385030A (en) Air conditioner
US11639819B2 (en) Vector drive for vapor compression systems
CN111433522B (en) System and method for detecting and adjusting modulation range of compressor based on balance point of adjustment space
JPS62184916A (en) Cooling device including variable displacement compressor
US6874329B2 (en) Refrigerant cooled variable frequency drive and method for using same
US20150338111A1 (en) Variable Speed Outdoor Fan Control
JP2003214729A (en) Air conditioner
CN105371403A (en) variable-frequency air-cooled air conditioning unit and control method
KR102384051B1 (en) A control system and method for an HVAC unit, and a medium containing such processor-executable instructions
US6112534A (en) Refrigeration and heating cycle system and method
US20100212337A1 (en) Engine driven refrigerant compressor with pulse width modulation control
JP2012107790A (en) Air conditioning device
JP2003237360A (en) Air-conditioning system for vehicle
CN108140917B (en) Battery preheating system
JP2508528Y2 (en) Air conditioner
KR100547417B1 (en) Compressor Operation Control Method of Air Conditioner
JP2009192197A (en) Heat pump cycle system
US20240035711A1 (en) Two-stage compressor having variable speed first stage
JP4289257B2 (en) Engine-driven air conditioner
JP2023057699A (en) Air conditioner

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIFSON, ALEXANDER;TARAS, MICHAEL F.;REEL/FRAME:022604/0841

Effective date: 20061218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION