US20060009712A1 - Dual lumen device for biopsy and treatment of breast tumors and method for use - Google Patents
Dual lumen device for biopsy and treatment of breast tumors and method for use Download PDFInfo
- Publication number
- US20060009712A1 US20060009712A1 US11/229,250 US22925005A US2006009712A1 US 20060009712 A1 US20060009712 A1 US 20060009712A1 US 22925005 A US22925005 A US 22925005A US 2006009712 A1 US2006009712 A1 US 2006009712A1
- Authority
- US
- United States
- Prior art keywords
- cannula
- lumen
- distal
- tumor
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/0041—Detection of breast cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0283—Pointed or sharp biopsy instruments with vacuum aspiration, e.g. caused by retractable plunger or by connected syringe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00273—Anchoring means for temporary attachment of a device to tissue
- A61B2018/00291—Anchoring means for temporary attachment of a device to tissue using suction
Definitions
- the devices and method described below relate to the diagnosis and treatment of breast lesions, and more generally, to the diagnosis and treatment of tumors and lesions throughout the body.
- Biopsy is an important procedure used for the diagnosis of patients with cancerous tumors, pre-malignant conditions, and other diseases and disorders.
- a biopsy is performed. The biopsy will help determine whether the cells are cancerous, the type of cancer, and what treatment should be used to treat the cancer.
- Biopsy may be done by an open or percutaneous technique. Open biopsy, which is an invasive surgical procedure using a scalpel and involving direct vision of the target area, removes the entire mass (excisional biopsy) or a part of the mass (incisional biopsy).
- Percutaneous biopsy is usually done with a needle-like instrument through a relatively small incision, blindly or with the aid of an imaging device, and may be either a fine needle aspiration (FNA) or a core biopsy.
- FNA biopsy individual cells or clusters of cells are obtained for cytologic examination and may be prepared such as in a Papanicolaou smear.
- core biopsy as the term suggests, a core or fragment of tissue is obtained for histologic examination which may be done via a frozen section or paraffin section.
- One important area where biopsies are performed is the diagnosis of breast tumors.
- the biopsy technique for breast tumors involves placing a biopsy device multiple times into the breast and taking several samples of tissue from a mass or tumor which is suspected of being cancerous. Several samples are required to be sure that some tissue from the suspect mass has been captured, and enough tissue has been sampled to ensure that, if disperse cancer cells exist in the suspect mass some of those cancer cells will be captured in the samples. Each time the device is placed the physician must locate and direct the device with ultrasound imaging into the correct position near the suspect mass. Some breast tumors and lesions are very well defined, hard spherical masses which grow within the soft, compliant breast tissue. It is difficult to force a needle into these lesions because they are resistant to puncture and fairly mobile. Forcing the biopsy needle into the lesion is like trying to spear an apple floating in water.
- Vacuum assisted biopsy system proposed by Biopsys involves sucking a breast lesion into a cannula and shearing off the captured edge of the lesion to obtain a biopsy sample.
- the device uses a vacuum to collect tissue into the side of an open tubular device, and then uses a rotating corer to cut the tissue collected.
- the rotating corer is slidable within the tubular section and can be pulled back to remove the tissue collected in the rotating corer.
- An additional stylet inside the rotating corer can be used to push the tissue out of the core.
- the device can be rotated on its axis to remove a sample, 360 degrees around the central placement of the device.
- physicians sample six to eight cores.
- One advantage of this device is that the physician does not have to remove the device for additional biopsy samples.
- Tumors may be too tough to yield to the suction and deform as necessary to enter the side opening of the cannula. Doctors also currently use the device to take a circular sequence of cores by rotating the device about its long axis or by sideways movement of the suction head to take a line of cores.
- the tumor After biopsy and analysis, the tumor must be treated with a separate device, as Biopsys teaches that their coring device should not be used for resection. Indeed, the device is not designed to perform resection with assurance that complete resection of a suspect mass has been accomplished. Mechanical cutting and disruption of the tissue structure and cancer cell dispersion (that is, tearing of the tissue around the cancer and movement of the cancer cells amongst normal tissue) will result in unintentional delivery of cancer cells into healthy tissue adjacent the lesion.
- the devices and methods described below provide for diagnosis and treatment of tumors within the breast.
- the devices include structures which permit the surgeon to secure a suspect mass or tumor within the breast for an extended period of time and for several biopsies, coring procedures, or resections.
- the suspect mass or tumor is secured to a cannula for the entire diagnostic and treatment procedure, or subsets of the procedure such as biopsy or ablation. This allows the placement of the cannula with a single step utilizing methods such as ultrasound to guide the cannula toward the tumor.
- the cannula includes a lumen adapted to be connected to a source of vacuum, which can be used to secure a breast lesion to the cannula.
- a ring seal on the proximal end of the catheter permits biopsy needles, cryoprobes or other ablation devices to be inserted through the cannula and into the lesion while the vacuum on the cannula is maintained. In this manner, the needles and ablation devices may be inserted into the lesion while the lesion in held securely in place by the suction applied to the cannula.
- FIG. 1 illustrates the cannula adapted for use in securing a breast tumor during a biopsy or ablation procedure.
- FIG. 2 illustrates the biopsy needle in use with the cannula of FIG. 1 .
- FIG. 3 illustrates a multiple coring needle which may be used with the cannula of FIG. 1 .
- FIG. 4 illustrates the placement of a cryoprobe or other ablative device within the cannula of FIG. 1 .
- FIG. 5 illustrates a method of breast tumor ablation for tumors located near the skin.
- FIG. 6 illustrates a method of breast tumor ablation for tumors located near the skin.
- FIG. 7 illustrates an adaptation of the cannula to provide additional protection to the skin.
- FIG. 1 illustrates the biopsy and treatment device adapted for use in securing a breast tumor during the biopsy and treatment procedure.
- the patient 1 and the patient's breast 2 and skin 3 of the breast are shown schematically.
- the tumor, lesion or other suspect mass 4 is located within the breast, surrounded by soft tissue and fatty tissue.
- the tumor in this illustration is a well defined, hard mass ranging in size from 3 to 40 mm in diameter, typical of a benign palpable tumor or fibro-adenoma, although the device and method may be used to treat fibrocystic disease and other conditions.
- the device comprises a cannula 5 with a straight cut distal edge 6 adapted for insertion through a small incision in the skin overlying the tumor and a proximal end 7 which remains outside the breast.
- the proximal end of the cannula is fitted with hub 8 which serves as a handle and a manifold for the several connections to the cannula.
- This hub may be integral with the cannula or provided as a separate piece secured to the proximal end of the cannula.
- the cannula has a lumen 9 extending through the cannula from the distal edge to the proximal end of the cannula.
- a vacuum connection 10 in the form of Luer fitting provides a fluid connection between the lumen of the cannula and a vacuum hose 11 .
- the vacuum hose may be connected to any source of vacuum or suction.
- a valve 12 seals the cannula proximal end against air pressure but allows passage of the needles and probes used in the procedure.
- the valve may be a self-sealing silicone plug 13 provided with a slit 14 capable of accommodating the needles and probes by resiliently expanding and conforming around a needle or probe when a needle or probe is forced through the slit, and resiliently closing to an airtight seal when the needles or probes are removed.
- the valve allows for insertion of various instruments and elongate medical devices while maintaining the seal necessary to provide sufficient suction to hold the tumor.
- a stopper or cap 15 is provided for insertion into the slit when the valve is not occupied by a needle or probe to positively seal the valve.
- a backup valve such as ball valve which opens to form a clear and straight lumen, may be placed in line before the valve 12 in place of the stopper.
- the cannula is made of an acceptable biological material such as TeflonTM (polytetrafluoroethylene (PTFE) or expanded polytetrafluoroethylene (ePTFE)), carbon fiber, metal or metal composite for maximum strength with minimal wall thickness.
- the self-sealing valve is comprised of silicone or other material of similar resilience and conformability.
- An additional valve 16 may be added on the proximal handle, controlling a port 17 communicating between the vacuum lumen and the exterior of the cannula.
- the valve illustrated is merely a thumbslide mounted in a recess 18 . This valve may be used to break the vacuum established in the vacuum lumen to release a lesion from the distal tip of the device, or to bleed the vacuum from the lumen to lessen the suction on a lesion.
- FIG. 2 illustrates the cannula in use with a biopsy needle 20 in place within the lumen.
- a biopsy needle 20 fits within the lumen of the cannula and passes through the valve 12 .
- the valve deforms and opens enough to allow the needle to pass through, yet still maintains a sufficiently airtight seal to maintain the vacuum within the cannula lumen.
- the needle has a sharp distal tip 21 which can pierce the tumor 4 .
- the distal tip is shaped with a coring edge to collect tissue within the lumen 22 of the needle.
- suction has been applied to the cannula lumen through the vacuum hose 11 and connection 10 , thus drawing the tumor to the distal edge of the cannula and securely holding it in place.
- the biopsy needle has been inserted through the self-sealing valve and through the cannula lumen into and through the tumor.
- a small core of tumor tissue 23 has been forced into the lumen of the needle.
- the needle may now be removed and the core of tumor tissue extracted and analyzed for the presence of cancer cells.
- the suction is maintained on the cannula lumen and the tumor remains securely engaged with the cannula distal edge.
- the biopsy needle (or another) can then be inserted through the cannula and into the tumor without having to relocate and reengage the tumor with the cannula. After all necessary biopsies have been taken, the sample tissue may be analyzed for the presence of cancer cells or other undesirable tissue for which ablation is indicated.
- FIG. 3 illustrates a multiple coring needle 24 for use with the system.
- This needle includes several coring lumens 25 opening at the distal end of the needle into coring edges 26 .
- the coring lumens are spaced in a circle about the circumference of the needle, and extend from the distal tip 21 of the needle proximally to the proximal end of the needle. It may be used in place of the single biopsy coring needle as illustrated in FIG. 2 . By providing suction to one or more of the lumens, the tumor is secured to the coring needle.
- FIG. 4 illustrates the use of an ablative device, such as cryoprobe, with the cannula.
- the cryoprobe 27 fits within the lumen of the cannula and passes through the valve 12 , and the distal tip of the cryoprobe is forced into the tumor until the active freezing portion of the probe resides within the tumor.
- the vacuum is maintained within the lumen so that the tumor is securely engaged by the cannula. With the tumor secured by the vacuum, the cryoprobe may be easily forced into the tumor.
- the cryoprobe may be operated to ablate the tumor with cryogenic freezing as required to destroy the tumor.
- liquid or gas cryogenic fluids such as liquid nitrogen, or gaseous argon in combination with a Joule-Thomson cryostat in the probe tip
- a cryosurgical control system not shown
- the operation of the cryoprobe creates an iceball 28 which encompasses the lesion 4 , and cools the lesion to lethal cryogenic temperatures.
- Any ablation device may be used in place of the cryoprobe, including RF ablation probes, microwave ablation probes, laser ablation probes, or focused ultrasound energy probes.
- Temperature sensors 29 may be mounted on the skin over the lesion in order to monitor skin temperature, so that the surgeon may avoid ablating the skin.
- the devices described above are used in place of traditional biopsy, coring and ablation devices.
- the patient Prior to use, the patient is prepared and the breast is appropriately prepped and draped.
- the site is prepared using local anesthesia and, optionally, intravenous sedation.
- the patient is positioned on an operating table in the supine position, with the patient on her back. (If the procedure is accomplished under stereotactic guidance, the patient may be prone on a stereotactic table, exposing the breast below the table.)
- the breast is imaged, if not previously imaged, to determine the location of lesions. A small incision is made in the breast to allow the cannula to be easily inserted into the skin.
- the surgeon inserts the cannula into the patient's breast through the incision, pushes it into the breast until the distal edge of the cannula is proximate to the boundary of the tumor.
- An ultrasound scanner, MRI, stereotactic, mammographic, infrared or other imaging device is used to obtain an image of the breast, including the tumor and any device inserted into the breast, and the surgeon uses the display from the imaging device to assist in guidance of the cannula to the tumor.
- the surgeon applies vacuum to the cannula through the side port on the cannula. The vacuum draws the tumor toward the cannula, and the cannula securely engages the tumor until the suction is broken at the end of the procedure.
- the surgical biopsy needle can be inserted through the cannula and into the tumor to retrieve a sample of tissue for analysis. Because coring can be accomplished without removing the portion of the tumor engaged by the cannula, or otherwise disrupting the suction between the cannula and the tumor, several biopsy samples may be taken without having to relocate and re-engage the tumor.
- an ablation instrument can be inserted through the cannula and into the tumor. If so, the surgeon inserts an ablation instrument, such as a small caliber cryoprobe, into the tumor. Preferably, the surgeon inserts a cryoprobe through the valve and cannula and into the tumor, while maintaining suction on the cannula.
- the surgeon initiates cooling of the cryoprobe, and cools the tumor through one or more cycles of cooling to cryogenic temperatures and subsequent warming and thawing.
- a double freeze-thaw cycle is currently recommended. Each cycle consists of a 6 to 15 minute freeze followed by thawing until the internal cryoprobe temperature reaches 0° C. (approximately 6 to 15 minutes).
- the device may also be used without regard to biopsy results. Patients prefer to have these lesions treated, even if they prove to be benign. In current practice, should biopsy results indicate the presence of cancer, the patient must return to the operating room shortly after the biopsy, undergo preparation, anesthesia, relocation of the lesion and ablation.
- the lesions may be ablated intraoperatively with the biopsy, immediately after biopsy and without interrupting the procedure to await the biopsy results. Should the biopsy prove negative for the presence of cancer, the patient will have received a substantially cosmetic treatment. Should the biopsy prove positive, the patient will have received a necessary therapeutic procedure. In addition to the ablative procedure, the positive biopsy may indicate the need for additional monitoring and treatment.
- cryoprobe For lesions deeper than 1 cm from the skin surface, the cryoprobe is advanced until the distal tip is located approximately in the center of the lesion or just beyond the lesion. For smaller lesions ( ⁇ 2 cm diameter) the ice ball may grow beyond the margins of the tumor, while for larger lesions, the ice ball may remain within the confines of the tumor.
- the cryoprobe tip temperatures and skin mounted thermocouple readings are monitored throughout the ablation procedure. If the temperature of the skin overlying the cryoprobe measures below freezing, freezing operation of the cryoprobes should be paused until it returns to 10° C. (the temperature at the edge of the ice ball edge is 0° C. and exposure to such a temperature for the few minutes will not harm the skin, but caution should always be employed).
- cryogenic enhancement agents may be injected directly into the tumor through a hypodermic needle inserted through the valve and cannula and into the tumor while it is secured by suction to the cannula.
- warm saline may be washed over the skin overlying the tumor and iceball to prevent freezing of the skin.
- a resorbable material such as sterile saline may be injected or inserted into the subcutaneous tissue between the skin and the lesion.
- a resorbable material such as sterile saline
- Thermal protection may arise from insulative effect of the thermally protective mass or merely by the distension or separation of the skin away from the tumor and thus away from the iceball.
- the thermally protective mass 30 is injected between the skin 3 and the subcutaneous fat 31 of the breast.
- the ice-ball 32 When the cryoprobe 27 is operated to create the iceball, the ice-ball 32 either grows into the thermally protective mass or is inhibited in growth in the direction of the thermally protective mass (as illustrated by the non-spherical shape of the iceball in this illustration).
- This method basically distends the skin away from the iceball. This may also be accomplished by dissecting the skin away from the tumor with a balloon inserted between the skin and fat in the area overlying the tumor. Balloon dissection can be accomplished as illustrated in FIG. 6 .
- a balloon 33 has been inserted subcutaneously between the tumor 4 and the overlying skin 3 .
- the balloon is inflated with air or other sterile gas, through inflation tube 34 , creating a good layer of insulation between the cryoprobe and the overlying skin.
- FIG. 7 illustrates an adaptation of the cannula to provide additional protection to the skin.
- the cryoprobe 27 is inserted through a side lumen 35 provided on the cannula 5 .
- the breast lesion 4 is drawn by vacuum to the tip of the cannula.
- the cryoprobe is advanced distally out of the side lumen until the freezing region underlies the lesion, and it operated to create the iceball 36 .
- the iceball extends superficially toward the skin and to encompass the lesion, and also extends posteriorly into the breast, where some healthy breast tissue is ablated but the overlying skin is not.
- This system and procedure also has the advantage that the lesion itself is not punctured, limiting the potential for seeding due to the release of cancerous cells from the disruption of the tissue of the tumor.
- the cannula illustrated above is preferably 10 to 20 cm in length and about 3 mm in diameter with an internal diameter of 2.8 mm, and a clearance of about 0.25 mm between the inner bore of the cannula and any device inserted through the cannula during suction.
- the cryoprobes may be Joule-Thomson probes, liquid cryogen probes, or probes of other designs.
- Various other ablative devices may be used in place of the cryoprobe, including laser ablation devices, RF ablation devices, chemical ablation catheters and any other ablative technology proposed for use to destroy tumors and lesions.
- the vacuum applied is preferably in the range of 14 to 21 inches of mercury vacuum.
- the devices and methods illustrated above have been illustrated in relation to the treatment of tumors and lesions within the breast. However, they may be used to treat tumors and lesions throughout the body wherever the tumors which are difficult to secure and locate are encountered, and wherever nearby tissue must be protected from freezing. Thus the devices and methods may be used for tumors and lesions of the uterine tube (such as uterine fibroids), kidney, liver, prostate or brain.
- the uterine tube such as uterine fibroids
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 10/321,136, filed Dec. 16, 2002, now U.S. Pat. No. 6,945,942, which is a continuation of U.S. application Ser. No. 09/598,124, filed Jun. 21, 2000, now U.S. Pat. No. 6,494,844.
- The devices and method described below relate to the diagnosis and treatment of breast lesions, and more generally, to the diagnosis and treatment of tumors and lesions throughout the body.
- Biopsy is an important procedure used for the diagnosis of patients with cancerous tumors, pre-malignant conditions, and other diseases and disorders. Typically, in the case of cancer, when the physician establishes by means of procedures such as palpation, mammography or x-ray, or ultrasound imaging that suspicious circumstances exist, a biopsy is performed. The biopsy will help determine whether the cells are cancerous, the type of cancer, and what treatment should be used to treat the cancer. Biopsy may be done by an open or percutaneous technique. Open biopsy, which is an invasive surgical procedure using a scalpel and involving direct vision of the target area, removes the entire mass (excisional biopsy) or a part of the mass (incisional biopsy). Percutaneous biopsy, on the other hand, is usually done with a needle-like instrument through a relatively small incision, blindly or with the aid of an imaging device, and may be either a fine needle aspiration (FNA) or a core biopsy. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and may be prepared such as in a Papanicolaou smear. In core biopsy, as the term suggests, a core or fragment of tissue is obtained for histologic examination which may be done via a frozen section or paraffin section. One important area where biopsies are performed is the diagnosis of breast tumors.
- Traditionally, the biopsy technique for breast tumors involves placing a biopsy device multiple times into the breast and taking several samples of tissue from a mass or tumor which is suspected of being cancerous. Several samples are required to be sure that some tissue from the suspect mass has been captured, and enough tissue has been sampled to ensure that, if disperse cancer cells exist in the suspect mass some of those cancer cells will be captured in the samples. Each time the device is placed the physician must locate and direct the device with ultrasound imaging into the correct position near the suspect mass. Some breast tumors and lesions are very well defined, hard spherical masses which grow within the soft, compliant breast tissue. It is difficult to force a needle into these lesions because they are resistant to puncture and fairly mobile. Forcing the biopsy needle into the lesion is like trying to spear an apple floating in water.
- Vacuum assisted biopsy system proposed by Biopsys involves sucking a breast lesion into a cannula and shearing off the captured edge of the lesion to obtain a biopsy sample. The device uses a vacuum to collect tissue into the side of an open tubular device, and then uses a rotating corer to cut the tissue collected. The rotating corer is slidable within the tubular section and can be pulled back to remove the tissue collected in the rotating corer. An additional stylet inside the rotating corer can be used to push the tissue out of the core. The device can be rotated on its axis to remove a sample, 360 degrees around the central placement of the device. Typically, physicians sample six to eight cores. One advantage of this device is that the physician does not have to remove the device for additional biopsy samples. However, the tumor itself must be re-engaged after every coring operation, which entails substantial effort in relocation and confirmation that the target suspect mass has been engaged by the side aperture. Tumors may be too tough to yield to the suction and deform as necessary to enter the side opening of the cannula. Doctors also currently use the device to take a circular sequence of cores by rotating the device about its long axis or by sideways movement of the suction head to take a line of cores.
- After biopsy and analysis, the tumor must be treated with a separate device, as Biopsys teaches that their coring device should not be used for resection. Indeed, the device is not designed to perform resection with assurance that complete resection of a suspect mass has been accomplished. Mechanical cutting and disruption of the tissue structure and cancer cell dispersion (that is, tearing of the tissue around the cancer and movement of the cancer cells amongst normal tissue) will result in unintentional delivery of cancer cells into healthy tissue adjacent the lesion.
- The devices and methods described below provide for diagnosis and treatment of tumors within the breast. The devices include structures which permit the surgeon to secure a suspect mass or tumor within the breast for an extended period of time and for several biopsies, coring procedures, or resections. The suspect mass or tumor is secured to a cannula for the entire diagnostic and treatment procedure, or subsets of the procedure such as biopsy or ablation. This allows the placement of the cannula with a single step utilizing methods such as ultrasound to guide the cannula toward the tumor.
- The cannula includes a lumen adapted to be connected to a source of vacuum, which can be used to secure a breast lesion to the cannula. A ring seal on the proximal end of the catheter permits biopsy needles, cryoprobes or other ablation devices to be inserted through the cannula and into the lesion while the vacuum on the cannula is maintained. In this manner, the needles and ablation devices may be inserted into the lesion while the lesion in held securely in place by the suction applied to the cannula.
-
FIG. 1 illustrates the cannula adapted for use in securing a breast tumor during a biopsy or ablation procedure. -
FIG. 2 illustrates the biopsy needle in use with the cannula ofFIG. 1 . -
FIG. 3 illustrates a multiple coring needle which may be used with the cannula ofFIG. 1 . -
FIG. 4 illustrates the placement of a cryoprobe or other ablative device within the cannula ofFIG. 1 . -
FIG. 5 illustrates a method of breast tumor ablation for tumors located near the skin. -
FIG. 6 illustrates a method of breast tumor ablation for tumors located near the skin. -
FIG. 7 illustrates an adaptation of the cannula to provide additional protection to the skin. -
FIG. 1 illustrates the biopsy and treatment device adapted for use in securing a breast tumor during the biopsy and treatment procedure. Thepatient 1 and the patient'sbreast 2 andskin 3 of the breast are shown schematically. The tumor, lesion orother suspect mass 4 is located within the breast, surrounded by soft tissue and fatty tissue. The tumor in this illustration is a well defined, hard mass ranging in size from 3 to 40 mm in diameter, typical of a benign palpable tumor or fibro-adenoma, although the device and method may be used to treat fibrocystic disease and other conditions. The device comprises acannula 5 with a straight cutdistal edge 6 adapted for insertion through a small incision in the skin overlying the tumor and aproximal end 7 which remains outside the breast. The proximal end of the cannula is fitted withhub 8 which serves as a handle and a manifold for the several connections to the cannula. This hub may be integral with the cannula or provided as a separate piece secured to the proximal end of the cannula. The cannula has alumen 9 extending through the cannula from the distal edge to the proximal end of the cannula. On the hub, avacuum connection 10 in the form of Luer fitting provides a fluid connection between the lumen of the cannula and avacuum hose 11. The vacuum hose may be connected to any source of vacuum or suction. On the proximal end of the hub, avalve 12 seals the cannula proximal end against air pressure but allows passage of the needles and probes used in the procedure. The valve may be a self-sealingsilicone plug 13 provided with aslit 14 capable of accommodating the needles and probes by resiliently expanding and conforming around a needle or probe when a needle or probe is forced through the slit, and resiliently closing to an airtight seal when the needles or probes are removed. Thus, the valve allows for insertion of various instruments and elongate medical devices while maintaining the seal necessary to provide sufficient suction to hold the tumor. A stopper orcap 15 is provided for insertion into the slit when the valve is not occupied by a needle or probe to positively seal the valve. A backup valve, such as ball valve which opens to form a clear and straight lumen, may be placed in line before thevalve 12 in place of the stopper. The cannula is made of an acceptable biological material such as Teflon™ (polytetrafluoroethylene (PTFE) or expanded polytetrafluoroethylene (ePTFE)), carbon fiber, metal or metal composite for maximum strength with minimal wall thickness. The self-sealing valve is comprised of silicone or other material of similar resilience and conformability. Anadditional valve 16 may be added on the proximal handle, controlling aport 17 communicating between the vacuum lumen and the exterior of the cannula. The valve illustrated is merely a thumbslide mounted in arecess 18. This valve may be used to break the vacuum established in the vacuum lumen to release a lesion from the distal tip of the device, or to bleed the vacuum from the lumen to lessen the suction on a lesion. -
FIG. 2 illustrates the cannula in use with abiopsy needle 20 in place within the lumen. Abiopsy needle 20 fits within the lumen of the cannula and passes through thevalve 12. The valve deforms and opens enough to allow the needle to pass through, yet still maintains a sufficiently airtight seal to maintain the vacuum within the cannula lumen. The needle has a sharpdistal tip 21 which can pierce thetumor 4. The distal tip is shaped with a coring edge to collect tissue within thelumen 22 of the needle. As depicted inFIG. 2 , suction has been applied to the cannula lumen through thevacuum hose 11 andconnection 10, thus drawing the tumor to the distal edge of the cannula and securely holding it in place. The biopsy needle has been inserted through the self-sealing valve and through the cannula lumen into and through the tumor. A small core oftumor tissue 23 has been forced into the lumen of the needle. The needle may now be removed and the core of tumor tissue extracted and analyzed for the presence of cancer cells. When the needle is removed, the suction is maintained on the cannula lumen and the tumor remains securely engaged with the cannula distal edge. The biopsy needle (or another) can then be inserted through the cannula and into the tumor without having to relocate and reengage the tumor with the cannula. After all necessary biopsies have been taken, the sample tissue may be analyzed for the presence of cancer cells or other undesirable tissue for which ablation is indicated. -
FIG. 3 illustrates amultiple coring needle 24 for use with the system. This needle includesseveral coring lumens 25 opening at the distal end of the needle into coring edges 26. The coring lumens are spaced in a circle about the circumference of the needle, and extend from thedistal tip 21 of the needle proximally to the proximal end of the needle. It may be used in place of the single biopsy coring needle as illustrated inFIG. 2 . By providing suction to one or more of the lumens, the tumor is secured to the coring needle. -
FIG. 4 illustrates the use of an ablative device, such as cryoprobe, with the cannula. Thecryoprobe 27 fits within the lumen of the cannula and passes through thevalve 12, and the distal tip of the cryoprobe is forced into the tumor until the active freezing portion of the probe resides within the tumor. During placement of the cryoprobe, the vacuum is maintained within the lumen so that the tumor is securely engaged by the cannula. With the tumor secured by the vacuum, the cryoprobe may be easily forced into the tumor. The cryoprobe may be operated to ablate the tumor with cryogenic freezing as required to destroy the tumor. To operate the cryoprobe, liquid or gas cryogenic fluids (such as liquid nitrogen, or gaseous argon in combination with a Joule-Thomson cryostat in the probe tip) are passed through the probe, supplied from a cryosurgical control system (not shown). The operation of the cryoprobe creates aniceball 28 which encompasses thelesion 4, and cools the lesion to lethal cryogenic temperatures. Any ablation device may be used in place of the cryoprobe, including RF ablation probes, microwave ablation probes, laser ablation probes, or focused ultrasound energy probes.Temperature sensors 29 may be mounted on the skin over the lesion in order to monitor skin temperature, so that the surgeon may avoid ablating the skin. - In use, the devices described above are used in place of traditional biopsy, coring and ablation devices. Prior to use, the patient is prepared and the breast is appropriately prepped and draped. The site is prepared using local anesthesia and, optionally, intravenous sedation. The patient is positioned on an operating table in the supine position, with the patient on her back. (If the procedure is accomplished under stereotactic guidance, the patient may be prone on a stereotactic table, exposing the breast below the table.) The breast is imaged, if not previously imaged, to determine the location of lesions. A small incision is made in the breast to allow the cannula to be easily inserted into the skin. The surgeon inserts the cannula into the patient's breast through the incision, pushes it into the breast until the distal edge of the cannula is proximate to the boundary of the tumor. An ultrasound scanner, MRI, stereotactic, mammographic, infrared or other imaging device is used to obtain an image of the breast, including the tumor and any device inserted into the breast, and the surgeon uses the display from the imaging device to assist in guidance of the cannula to the tumor. With the cannula distal edge in position near the tumor, the surgeon applies vacuum to the cannula through the side port on the cannula. The vacuum draws the tumor toward the cannula, and the cannula securely engages the tumor until the suction is broken at the end of the procedure. The surgical biopsy needle can be inserted through the cannula and into the tumor to retrieve a sample of tissue for analysis. Because coring can be accomplished without removing the portion of the tumor engaged by the cannula, or otherwise disrupting the suction between the cannula and the tumor, several biopsy samples may be taken without having to relocate and re-engage the tumor.
- Depending on the analysis of the biopsy (whether or not the samples obtained contain cancerous cells or other conditions), treatment of the tumor may be required. If analysis can be accomplished intra-operatively (that is, during a period of time in which it is feasible to keep the patient in the operating room and maintain the tumor engaged with the cannula), and indicates the presence of cancerous cells or other condition for which ablation is indicated, an ablation instrument can be inserted through the cannula and into the tumor. If so, the surgeon inserts an ablation instrument, such as a small caliber cryoprobe, into the tumor. Preferably, the surgeon inserts a cryoprobe through the valve and cannula and into the tumor, while maintaining suction on the cannula. The surgeon initiates cooling of the cryoprobe, and cools the tumor through one or more cycles of cooling to cryogenic temperatures and subsequent warming and thawing. A double freeze-thaw cycle is currently recommended. Each cycle consists of a 6 to 15 minute freeze followed by thawing until the internal cryoprobe temperature reaches 0° C. (approximately 6 to 15 minutes). The device may also be used without regard to biopsy results. Patients prefer to have these lesions treated, even if they prove to be benign. In current practice, should biopsy results indicate the presence of cancer, the patient must return to the operating room shortly after the biopsy, undergo preparation, anesthesia, relocation of the lesion and ablation. Instead, the lesions may be ablated intraoperatively with the biopsy, immediately after biopsy and without interrupting the procedure to await the biopsy results. Should the biopsy prove negative for the presence of cancer, the patient will have received a substantially cosmetic treatment. Should the biopsy prove positive, the patient will have received a necessary therapeutic procedure. In addition to the ablative procedure, the positive biopsy may indicate the need for additional monitoring and treatment.
- For lesions deeper than 1 cm from the skin surface, the cryoprobe is advanced until the distal tip is located approximately in the center of the lesion or just beyond the lesion. For smaller lesions (<2 cm diameter) the ice ball may grow beyond the margins of the tumor, while for larger lesions, the ice ball may remain within the confines of the tumor. The cryoprobe tip temperatures and skin mounted thermocouple readings are monitored throughout the ablation procedure. If the temperature of the skin overlying the cryoprobe measures below freezing, freezing operation of the cryoprobes should be paused until it returns to 10° C. (the temperature at the edge of the ice ball edge is 0° C. and exposure to such a temperature for the few minutes will not harm the skin, but caution should always be employed).
- The procedure may be augmented with additional steps. Just prior to ablation treatment, prophylactic antibiotics can be administered at the surgeon's discretion. Just prior to cryosurgical ablation, cryogenic enhancement agents may be injected directly into the tumor through a hypodermic needle inserted through the valve and cannula and into the tumor while it is secured by suction to the cannula. During cooling operation of the cryoprobes, warm saline may be washed over the skin overlying the tumor and iceball to prevent freezing of the skin.
- If the lesion being treated is close to the skin such that cryoablation of the lesion entails a danger of cryoablation of the overlying skin, several milliliters of a resorbable material such as sterile saline may be injected or inserted into the subcutaneous tissue between the skin and the lesion. This will create a thermally protective mass or barrier layer between the tumor and the skin. Thermal protection may arise from insulative effect of the thermally protective mass or merely by the distension or separation of the skin away from the tumor and thus away from the iceball. As illustrated in
FIG. 5 , where thetumor 4 is close to theskin 3, the thermallyprotective mass 30 is injected between theskin 3 and the subcutaneous fat 31 of the breast. When thecryoprobe 27 is operated to create the iceball, the ice-ball 32 either grows into the thermally protective mass or is inhibited in growth in the direction of the thermally protective mass (as illustrated by the non-spherical shape of the iceball in this illustration). This method basically distends the skin away from the iceball. This may also be accomplished by dissecting the skin away from the tumor with a balloon inserted between the skin and fat in the area overlying the tumor. Balloon dissection can be accomplished as illustrated inFIG. 6 . Here, aballoon 33 has been inserted subcutaneously between thetumor 4 and theoverlying skin 3. The balloon is inflated with air or other sterile gas, throughinflation tube 34, creating a good layer of insulation between the cryoprobe and the overlying skin. -
FIG. 7 illustrates an adaptation of the cannula to provide additional protection to the skin. Thecryoprobe 27 is inserted through aside lumen 35 provided on thecannula 5. Thebreast lesion 4 is drawn by vacuum to the tip of the cannula. The cryoprobe is advanced distally out of the side lumen until the freezing region underlies the lesion, and it operated to create theiceball 36. The iceball extends superficially toward the skin and to encompass the lesion, and also extends posteriorly into the breast, where some healthy breast tissue is ablated but the overlying skin is not. This system and procedure also has the advantage that the lesion itself is not punctured, limiting the potential for seeding due to the release of cancerous cells from the disruption of the tissue of the tumor. - The cannula illustrated above is preferably 10 to 20 cm in length and about 3 mm in diameter with an internal diameter of 2.8 mm, and a clearance of about 0.25 mm between the inner bore of the cannula and any device inserted through the cannula during suction. The cryoprobes may be Joule-Thomson probes, liquid cryogen probes, or probes of other designs. Various other ablative devices may be used in place of the cryoprobe, including laser ablation devices, RF ablation devices, chemical ablation catheters and any other ablative technology proposed for use to destroy tumors and lesions. The vacuum applied is preferably in the range of 14 to 21 inches of mercury vacuum.
- The devices and methods illustrated above have been illustrated in relation to the treatment of tumors and lesions within the breast. However, they may be used to treat tumors and lesions throughout the body wherever the tumors which are difficult to secure and locate are encountered, and wherever nearby tissue must be protected from freezing. Thus the devices and methods may be used for tumors and lesions of the uterine tube (such as uterine fibroids), kidney, liver, prostate or brain.
- Thus, while the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the inventions. Other embodiments and configurations may be devised without departing from the spirit of the inventions and the scope of the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/229,250 US20060009712A1 (en) | 2000-06-21 | 2005-09-16 | Dual lumen device for biopsy and treatment of breast tumors and method for use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/598,124 US6494844B1 (en) | 2000-06-21 | 2000-06-21 | Device for biopsy and treatment of breast tumors |
US10/321,136 US6945942B2 (en) | 2000-06-21 | 2002-12-16 | Device for biopsy and treatment of breast tumors |
US11/229,250 US20060009712A1 (en) | 2000-06-21 | 2005-09-16 | Dual lumen device for biopsy and treatment of breast tumors and method for use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/321,136 Continuation US6945942B2 (en) | 2000-06-21 | 2002-12-16 | Device for biopsy and treatment of breast tumors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060009712A1 true US20060009712A1 (en) | 2006-01-12 |
Family
ID=24394333
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/598,124 Expired - Lifetime US6494844B1 (en) | 2000-06-21 | 2000-06-21 | Device for biopsy and treatment of breast tumors |
US10/321,136 Expired - Fee Related US6945942B2 (en) | 2000-06-21 | 2002-12-16 | Device for biopsy and treatment of breast tumors |
US11/229,250 Abandoned US20060009712A1 (en) | 2000-06-21 | 2005-09-16 | Dual lumen device for biopsy and treatment of breast tumors and method for use |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/598,124 Expired - Lifetime US6494844B1 (en) | 2000-06-21 | 2000-06-21 | Device for biopsy and treatment of breast tumors |
US10/321,136 Expired - Fee Related US6945942B2 (en) | 2000-06-21 | 2002-12-16 | Device for biopsy and treatment of breast tumors |
Country Status (8)
Country | Link |
---|---|
US (3) | US6494844B1 (en) |
EP (1) | EP1296607B1 (en) |
JP (1) | JP2004508850A (en) |
AT (1) | ATE303767T1 (en) |
AU (2) | AU2001268527B2 (en) |
CA (1) | CA2412826A1 (en) |
DE (1) | DE60113261T2 (en) |
WO (1) | WO2001097702A1 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258956A1 (en) * | 2004-05-21 | 2006-11-16 | Haberstich Wells D | MRI Biopsy Device |
US20070083129A1 (en) * | 2002-10-07 | 2007-04-12 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
US20070093726A1 (en) * | 2004-10-13 | 2007-04-26 | Leopold Phillip M | Site marker visible under multiple modalities |
US20070123815A1 (en) * | 2005-09-28 | 2007-05-31 | Mark Joseph L | System and method for minimally invasive disease therapy |
US20080183164A1 (en) * | 2005-05-20 | 2008-07-31 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20080194985A1 (en) * | 2003-08-27 | 2008-08-14 | Nicoson Zachary R | System and method for minimally invasive disease therapy |
US20080200834A1 (en) * | 2005-09-28 | 2008-08-21 | Mark Joseph L | Introducer device for improved imaging |
US20080269603A1 (en) * | 2004-10-13 | 2008-10-30 | Nicoson Zachary R | Site marker visible under multiple modalities |
US20090088663A1 (en) * | 2007-10-01 | 2009-04-02 | Miller Michael E | Surgical system |
US20090248001A1 (en) * | 2007-11-14 | 2009-10-01 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US7713266B2 (en) | 2005-05-20 | 2010-05-11 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20100198202A1 (en) * | 2007-06-26 | 2010-08-05 | Klaus Fischer | Cryobiopsy probe |
US20110184401A1 (en) * | 2008-07-15 | 2011-07-28 | Kansei Iwata | Cryotherapy planning device and cryotherapy device |
US8409185B2 (en) | 2007-02-16 | 2013-04-02 | Myoscience, Inc. | Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling |
US8444573B2 (en) | 2010-03-30 | 2013-05-21 | Siteselect Medical Technologies, Inc. | Tissue excision device |
US8808200B2 (en) | 2007-10-01 | 2014-08-19 | Suros Surgical Systems, Inc. | Surgical device and method of using same |
WO2014186319A1 (en) * | 2013-05-13 | 2014-11-20 | The Johns Hopkins University | Encapsulated cryoprobe for flexible bronchoscope |
US9017318B2 (en) | 2012-01-20 | 2015-04-28 | Myoscience, Inc. | Cryogenic probe system and method |
US9066712B2 (en) | 2008-12-22 | 2015-06-30 | Myoscience, Inc. | Integrated cryosurgical system with refrigerant and electrical power source |
US9155584B2 (en) | 2012-01-13 | 2015-10-13 | Myoscience, Inc. | Cryogenic probe filtration system |
US9241753B2 (en) | 2012-01-13 | 2016-01-26 | Myoscience, Inc. | Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments |
US9254162B2 (en) | 2006-12-21 | 2016-02-09 | Myoscience, Inc. | Dermal and transdermal cryogenic microprobe systems |
US9295512B2 (en) | 2013-03-15 | 2016-03-29 | Myoscience, Inc. | Methods and devices for pain management |
US9314290B2 (en) | 2012-01-13 | 2016-04-19 | Myoscience, Inc. | Cryogenic needle with freeze zone regulation |
US9610112B2 (en) | 2013-03-15 | 2017-04-04 | Myoscience, Inc. | Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis |
US9638770B2 (en) | 2004-05-21 | 2017-05-02 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating an imageable penetrating portion |
US9668800B2 (en) | 2013-03-15 | 2017-06-06 | Myoscience, Inc. | Methods and systems for treatment of spasticity |
US9724073B2 (en) | 2012-04-16 | 2017-08-08 | Jeff M. Hathaway | Biopsy device |
US9795365B2 (en) | 2004-05-21 | 2017-10-24 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating a sleeve and multi-function obturator |
US10130409B2 (en) | 2013-11-05 | 2018-11-20 | Myoscience, Inc. | Secure cryosurgical treatment system |
US10888366B2 (en) | 2013-03-15 | 2021-01-12 | Pacira Cryotech, Inc. | Cryogenic blunt dissection methods and devices |
US11065372B2 (en) * | 2018-03-27 | 2021-07-20 | Gyrus Acmi, Inc. | Needle system restrictor |
US11134998B2 (en) | 2017-11-15 | 2021-10-05 | Pacira Cryotech, Inc. | Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods |
US11311327B2 (en) | 2016-05-13 | 2022-04-26 | Pacira Cryotech, Inc. | Methods and systems for locating and treating nerves with cold therapy |
WO2022204092A1 (en) * | 2021-03-23 | 2022-09-29 | Overture Life, Inc. | Cryostorage device |
Families Citing this family (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6494844B1 (en) * | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
JP4064243B2 (en) | 2000-11-06 | 2008-03-19 | スルーズ サージカル システムズ、インク | Biological tissue examination device |
US6758824B1 (en) * | 2000-11-06 | 2004-07-06 | Suros Surgical Systems, Inc. | Biopsy apparatus |
US20030013972A1 (en) * | 2001-05-29 | 2003-01-16 | Makin Inder Raj. S. | Treatment of lung lesions using ultrasound |
WO2003026476A2 (en) * | 2001-09-27 | 2003-04-03 | Galil Medical Ltd. | Apparatus and method for cryosurgical treatment of tumors of the breast |
WO2003026719A2 (en) * | 2001-09-27 | 2003-04-03 | Galil Medical Ltd. | Cryoplasty apparatus and method |
US7769432B2 (en) * | 2001-12-10 | 2010-08-03 | Board Of Trustees Of The University Of Arkansas | Minimally invasive diagnosis and treatment for breast cancer |
US7367341B2 (en) | 2002-03-15 | 2008-05-06 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
MXPA04008781A (en) | 2002-03-19 | 2005-12-15 | Bard Dublin Itc Ltd | Biopsy device and biopsy needle module that can be inserted into the biopsy device. |
EP1487346B1 (en) | 2002-03-19 | 2005-08-31 | Bard Dublin ITC Limited | Vacuum biopsy device |
US6789545B2 (en) * | 2002-10-04 | 2004-09-14 | Sanarus Medical, Inc. | Method and system for cryoablating fibroadenomas |
US7347829B2 (en) * | 2002-10-07 | 2008-03-25 | Suros Surgical Systems, Inc. | Introduction system for minimally invasive surgical instruments |
US20070260267A1 (en) * | 2002-10-07 | 2007-11-08 | Nicoson Zachary R | Localizing obturator |
US20040147917A1 (en) * | 2003-01-23 | 2004-07-29 | Mueller Richard L. | Device and method for treatment of breast tissue with electromagnetic radiation |
US20040215177A1 (en) * | 2003-04-24 | 2004-10-28 | Scimed Life Systems, Inc. | Therapeutic apparatus having insulated region at the insertion area |
US20050113816A1 (en) * | 2003-05-23 | 2005-05-26 | Whitmore Willet F.Iii | Instrument guide with capture and release in an image plane |
US7909815B2 (en) * | 2003-05-23 | 2011-03-22 | Civco Medical Instruments Co., Inc. | Instrument guide for use with needles and catheters |
US7179232B2 (en) * | 2003-06-27 | 2007-02-20 | Depuy Acromed, Inc. | Controlled orifice sampling needle |
US8357103B2 (en) * | 2003-10-14 | 2013-01-22 | Suros Surgical Systems, Inc. | Vacuum assisted biopsy needle set |
US8048003B2 (en) | 2003-10-14 | 2011-11-01 | Suros Surgical Systems, Inc. | Vacuum assisted biopsy device |
US7988642B2 (en) | 2003-10-14 | 2011-08-02 | Suros Surgical Systems, Inc. | Vacuum assisted biopsy device |
WO2005037106A2 (en) | 2003-10-14 | 2005-04-28 | Suros Surgical Systems, Inc. | Vacuum assisted biopsy needle set |
US20060009693A1 (en) * | 2004-04-08 | 2006-01-12 | Techniscan, Inc. | Apparatus for imaging and treating a breast |
WO2005122870A2 (en) | 2004-06-14 | 2005-12-29 | Pneumrx, Inc. | Lung access device |
US20060004400A1 (en) * | 2004-06-16 | 2006-01-05 | Mcgurk Erin | Method of treating a lung |
DE102004030155B4 (en) * | 2004-06-22 | 2020-04-23 | Robert Bosch Gmbh | Metering device and method for operating the same |
JP5113519B2 (en) | 2004-07-08 | 2013-01-09 | ヌームアールエックス・インコーポレーテッド | Treatment device, treatment method and material for pleural effusion |
US7766891B2 (en) | 2004-07-08 | 2010-08-03 | Pneumrx, Inc. | Lung device with sealing features |
PT1768572E (en) | 2004-07-09 | 2008-07-03 | Bard Peripheral Vascular Inc | Length detection system for biopsy device |
US7440793B2 (en) * | 2004-07-22 | 2008-10-21 | Sunita Chauhan | Apparatus and method for removing abnormal tissue |
JP4874259B2 (en) * | 2004-11-23 | 2012-02-15 | ヌームアールエックス・インコーポレーテッド | Steerable device for accessing the target site |
US7517321B2 (en) | 2005-01-31 | 2009-04-14 | C. R. Bard, Inc. | Quick cycle biopsy system |
US7942873B2 (en) * | 2005-03-25 | 2011-05-17 | Angiodynamics, Inc. | Cavity ablation apparatus and method |
US20060251581A1 (en) * | 2005-05-09 | 2006-11-09 | Mcintyre Jon T | Method for treatment of uterine fibroid tumors |
US7862552B2 (en) | 2005-05-09 | 2011-01-04 | Boston Scientific Scimed, Inc. | Medical devices for treating urological and uterine conditions |
US8263109B2 (en) * | 2005-05-09 | 2012-09-11 | Boston Scientific Scimed, Inc. | Injectable bulking compositions |
ATE541517T1 (en) | 2005-08-10 | 2012-02-15 | Bard Inc C R | TRANSPORT SYSTEM FOR BIOPSY DEVICE WITH MULTIPLE SAMPLING BY SINGLE INSERTION |
EP1921998B8 (en) | 2005-08-10 | 2021-07-07 | C.R.Bard, Inc. | Single-insertion, multiple sampling biopsy device with linear drive |
US20070149959A1 (en) | 2005-12-23 | 2007-06-28 | Sanarus Medical, Inc. | Cryoprobe for low pressure systems |
US20070156125A1 (en) * | 2005-12-30 | 2007-07-05 | Russell Delonzor | Encodable cryogenic device |
US7854754B2 (en) | 2006-02-22 | 2010-12-21 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
US7670299B2 (en) | 2006-03-07 | 2010-03-02 | Ethincon Endo-Surgery, Inc. | Device for minimally invasive internal tissue removal |
US7806834B2 (en) | 2006-03-07 | 2010-10-05 | Devicor Medical Products, Inc. | Device for minimally invasive internal tissue removal |
US8888800B2 (en) | 2006-03-13 | 2014-11-18 | Pneumrx, Inc. | Lung volume reduction devices, methods, and systems |
US9402633B2 (en) | 2006-03-13 | 2016-08-02 | Pneumrx, Inc. | Torque alleviating intra-airway lung volume reduction compressive implant structures |
US8157837B2 (en) | 2006-03-13 | 2012-04-17 | Pneumrx, Inc. | Minimally invasive lung volume reduction device and method |
US7465278B2 (en) | 2006-03-29 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Device for minimally invasive internal tissue removal |
JP2009534156A (en) * | 2006-04-24 | 2009-09-24 | トーマス・ジェファーソン・ユニバーシティ | Cryoneedle and cryotherapy system |
KR101039758B1 (en) | 2006-04-28 | 2011-06-09 | 젤티크 애스세틱스, 인코포레이티드. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US20140025056A1 (en) * | 2006-05-24 | 2014-01-23 | Kambiz Dowlatshahi | Image-guided removal and thermal therapy of breast cancer |
WO2008024684A2 (en) | 2006-08-21 | 2008-02-28 | C.R. Bard, Inc. | Self-contained handheld biopsy needle |
WO2008029408A1 (en) * | 2006-09-08 | 2008-03-13 | Arbel Medical Ltd. | Method and device for combined treatment |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US8485987B2 (en) | 2006-10-06 | 2013-07-16 | Bard Peripheral Vascular, Inc. | Tissue handling system with reduced operator exposure |
EP2086417B1 (en) | 2006-10-24 | 2015-07-01 | C.R.Bard, Inc. | Large sample low aspect ratio biopsy needle |
DE102007020582A1 (en) * | 2006-12-19 | 2008-06-26 | Erbe Elektromedizin Gmbh | A cryosurgical instrument and method for separating a tissue sample from surrounding tissue of a biological tissue to be treated |
US20090306646A1 (en) * | 2007-05-14 | 2009-12-10 | Bsd Medical Corporation | Apparatus and method for injection enhancement of selective heating of a deposit in tissues in a body |
US8423152B2 (en) * | 2007-05-14 | 2013-04-16 | Bsd Medical Corporation | Apparatus and method for selectively heating a deposit in fatty tissue in a body |
US9387036B2 (en) * | 2007-05-14 | 2016-07-12 | Pyrexar Medical Inc. | Apparatus and method for selectively heating a deposit in fatty tissue in a body |
US8246543B2 (en) * | 2007-05-15 | 2012-08-21 | CVUS Clinical Trials, LLC | Imaging method utilizing attenuation and speed parameters in inverse scattering techniques |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
US7866223B2 (en) * | 2007-06-04 | 2011-01-11 | Swift & Company | Method of obtaining samples of meat to assay for microbial contamination |
US8523927B2 (en) | 2007-07-13 | 2013-09-03 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
WO2009018323A1 (en) * | 2007-07-30 | 2009-02-05 | Critical Care Innovations, Inc. | Fluid flowing device and method for tissue diagnosis or therapy |
JP5474791B2 (en) | 2007-08-21 | 2014-04-16 | ゼルティック エステティックス インコーポレイテッド | Monitoring of cooling of subcutaneous lipid-rich cells such as cooling of adipose tissue |
US8241225B2 (en) | 2007-12-20 | 2012-08-14 | C. R. Bard, Inc. | Biopsy device |
US20090247901A1 (en) * | 2008-03-25 | 2009-10-01 | Brian Zimmer | Latching side removal spacer |
US20090247900A1 (en) * | 2008-03-25 | 2009-10-01 | Brian Zimmer | Push button adjustable spacer |
US8043316B2 (en) * | 2008-05-02 | 2011-10-25 | Suros Surgical Systems, Inc. | Adjustable spacer |
US8449478B2 (en) * | 2008-05-16 | 2013-05-28 | Conquest Medical Technologies | Biopsy device |
US8845627B2 (en) | 2008-08-22 | 2014-09-30 | Boston Scientific Scimed, Inc. | Regulating pressure to lower temperature in a cryotherapy balloon catheter |
US8632605B2 (en) | 2008-09-12 | 2014-01-21 | Pneumrx, Inc. | Elongated lung volume reduction devices, methods, and systems |
WO2010036732A1 (en) | 2008-09-25 | 2010-04-01 | Zeltiq Aesthetics, Inc. | Treatment planning systems and methods for body contouring applications |
US9186128B2 (en) | 2008-10-01 | 2015-11-17 | Covidien Lp | Needle biopsy device |
US9782565B2 (en) | 2008-10-01 | 2017-10-10 | Covidien Lp | Endoscopic ultrasound-guided biliary access system |
US9332973B2 (en) | 2008-10-01 | 2016-05-10 | Covidien Lp | Needle biopsy device with exchangeable needle and integrated needle protection |
US11298113B2 (en) | 2008-10-01 | 2022-04-12 | Covidien Lp | Device for needle biopsy with integrated needle protection |
US8968210B2 (en) | 2008-10-01 | 2015-03-03 | Covidien LLP | Device for needle biopsy with integrated needle protection |
US8603073B2 (en) | 2008-12-17 | 2013-12-10 | Zeltiq Aesthetics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
US8480664B2 (en) * | 2009-01-15 | 2013-07-09 | Boston Scientific Scimed, Inc. | Controlling depth of cryoablation |
WO2010124109A1 (en) | 2009-04-22 | 2010-10-28 | Nuvue Therapeutics, Inc. | Fluid flowing device and method for tissue diagnosis or therapy |
KR101701137B1 (en) | 2009-04-30 | 2017-02-01 | 젤티크 애스세틱스, 인코포레이티드. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
WO2010135352A1 (en) | 2009-05-18 | 2010-11-25 | Pneumrx, Inc. | Cross-sectional modification during deployment of an elongate lung volume reduction device |
US8529468B2 (en) | 2009-07-01 | 2013-09-10 | Suros Surgical Systems, Inc. | Surgical system |
WO2011019343A1 (en) | 2009-08-12 | 2011-02-17 | C.R. Bard, Inc. | Biopsy appaparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula |
USD640977S1 (en) | 2009-09-25 | 2011-07-05 | C. R. Bard, Inc. | Charging station for a battery operated biopsy device |
US8430824B2 (en) | 2009-10-29 | 2013-04-30 | Bard Peripheral Vascular, Inc. | Biopsy driver assembly having a control circuit for conserving battery power |
US9844461B2 (en) | 2010-01-25 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
US9332970B2 (en) * | 2010-02-25 | 2016-05-10 | Kohala Inc. | Full core biopsy device |
US20110224576A1 (en) * | 2010-03-12 | 2011-09-15 | Biotex, Inc. | Methods and devices for tissue collection and analysis |
TWI578997B (en) | 2010-06-04 | 2017-04-21 | 輝瑞疫苗有限責任公司 | Conjugates for the prevention or treatment of nicotine addiction |
US8676338B2 (en) | 2010-07-20 | 2014-03-18 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
WO2012103242A1 (en) | 2011-01-25 | 2012-08-02 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
ES2693162T3 (en) * | 2011-07-21 | 2018-12-07 | The General Hospital Corporation | Instrumental to damage and eliminate grease |
EP2609895B1 (en) * | 2011-12-28 | 2015-11-04 | The Cleveland Clinic Foundation | Endoluminal prosthesis with valve arrangement |
US20140073907A1 (en) | 2012-09-12 | 2014-03-13 | Convergent Life Sciences, Inc. | System and method for image guided medical procedures |
US9295454B2 (en) * | 2012-09-21 | 2016-03-29 | Ko-Pen Wang | Double lumen or double wire endobronchial ultrasound-guided histology needle (EBUS) |
US10543127B2 (en) | 2013-02-20 | 2020-01-28 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
ES2711107T3 (en) | 2013-03-20 | 2019-04-30 | Bard Peripheral Vascular Inc | Biopsy device |
JP6348587B2 (en) | 2013-11-05 | 2018-06-27 | シー・アール・バード・インコーポレーテッドC R Bard Incorporated | Biopsy device with integrated aspirator |
WO2015117036A2 (en) | 2014-01-30 | 2015-08-06 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing for other treatments |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US10390838B1 (en) | 2014-08-20 | 2019-08-27 | Pneumrx, Inc. | Tuned strength chronic obstructive pulmonary disease treatment |
EP3188666B1 (en) | 2014-09-05 | 2021-03-17 | Pave, LLC | Improvements for a full core biopsy device |
JP2017533774A (en) | 2014-11-14 | 2017-11-16 | サイトレリス バイオシステムズ,インコーポレーテッド | Device and method for skin ablation |
US10463350B2 (en) | 2015-05-01 | 2019-11-05 | C. R. Bard, Inc. | Biopsy device |
US10159971B2 (en) * | 2015-05-03 | 2018-12-25 | Clear Labs Inc. | Apparatus and method for economic, fast and easy sampling of food and environmental samples |
WO2017070112A1 (en) | 2015-10-19 | 2017-04-27 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
US20170119432A1 (en) * | 2015-10-28 | 2017-05-04 | Warsaw Orthopedic, Inc. | Nerve and soft tissue surgical device |
JP6833869B2 (en) | 2016-01-07 | 2021-02-24 | ゼルティック エステティックス インコーポレイテッド | Temperature-dependent adhesion between applicator and skin during tissue cooling |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US10786224B2 (en) | 2016-04-21 | 2020-09-29 | Covidien Lp | Biopsy devices and methods of use thereof |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
KR102515836B1 (en) | 2016-09-21 | 2023-03-31 | 사이트렐리스 바이오시스템즈, 인크. | Device and method for cosmetic skin resurfacing |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
US20180310977A1 (en) * | 2017-04-28 | 2018-11-01 | Kyphon SÀRL | Introducer and cryoprobe |
US11737805B2 (en) | 2017-09-14 | 2023-08-29 | The Regents Of The University Of California | Cryoablation devices and related methods |
US11331161B2 (en) | 2018-03-23 | 2022-05-17 | Covidien Lp | Surgical assemblies facilitating tissue marking and methods of use thereof |
KR20210038661A (en) | 2018-07-31 | 2021-04-07 | 젤티크 애스세틱스, 인코포레이티드. | Methods, devices, and systems for improving skin properties |
EP3636162B1 (en) | 2018-10-09 | 2023-07-19 | BibbInstruments AB | Biopsy instrument and kit of parts |
RU2704779C1 (en) * | 2018-10-09 | 2019-10-30 | Андрей Анатольевич Анохин | Device for removal of soft tissue mass |
US10610280B1 (en) | 2019-02-02 | 2020-04-07 | Ayad K. M. Agha | Surgical method and apparatus for destruction and removal of intraperitoneal, visceral, and subcutaneous fat |
CN109805968B (en) * | 2019-03-05 | 2024-08-06 | 上海医萃医疗科技中心(有限合伙) | Device for establishing CT-guided ultra-low temperature frozen intrapulmonary airtight negative pressure tunnel |
CN109758190A (en) * | 2019-03-11 | 2019-05-17 | 南京市第一医院 | A kind of biopsy needle of improvement |
US11517294B2 (en) | 2019-05-07 | 2022-12-06 | Covidien Lp | Biopsy devices and methods of use thereof |
EP3972512A4 (en) * | 2019-05-20 | 2023-06-28 | Innoblative Designs, Inc. | Minimally invasive assembly for lung ablation |
CN113116502A (en) * | 2019-12-30 | 2021-07-16 | 杭州诺诚医疗器械有限公司 | Puncture needle assembly and ablation needle assembly |
US11633224B2 (en) | 2020-02-10 | 2023-04-25 | Icecure Medical Ltd. | Cryogen pump |
CN115802952A (en) | 2020-04-08 | 2023-03-14 | 比博器械公司 | Biopsy instrument, kit and method |
KR102416005B1 (en) * | 2020-04-29 | 2022-06-30 | 연세대학교 산학협력단 | Apparatus and Method for Cutting and Retrieving Breast Specimen |
JP2023538213A (en) | 2020-08-14 | 2023-09-07 | イクテロ メディカル,インコーポレイテッド | Systems, devices, and methods for ablation and defunctionalization of the gallbladder |
CN118557270A (en) * | 2023-02-28 | 2024-08-30 | 上海澍能医疗科技有限公司 | Biopsy and ablation device, biopsy and ablation system |
CN116746966B (en) * | 2023-03-23 | 2023-11-28 | 上海导向医疗系统有限公司 | Low-temperature freezing rotary cutting device |
DE102023124190B3 (en) | 2023-09-07 | 2024-09-19 | Karl Storz Se & Co. Kg | Device for guiding a biopsy element, system for performing a biopsy and method for operating such a system |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644951A (en) * | 1985-09-16 | 1987-02-24 | Concept, Inc. | Vacuum sleeve for a surgical appliance |
US4784156A (en) * | 1987-09-16 | 1988-11-15 | Garg Rakesh K | Cannula including a valve structure and associated instrument elements and method for using same |
US5027827A (en) * | 1990-03-28 | 1991-07-02 | Cody Michael P | Vacuum biopsy apparatus |
US5056532A (en) * | 1989-07-25 | 1991-10-15 | Medtronic, Inc. | Esophageal pacing lead |
US5056523A (en) * | 1989-11-22 | 1991-10-15 | Board Of Regents, The University Of Texas System | Precision breast lesion localizer |
US5300046A (en) * | 1992-03-30 | 1994-04-05 | Symbiosis Corporation | Thoracentesis sheath catheter assembly |
US5353804A (en) * | 1990-09-18 | 1994-10-11 | Peb Biopsy Corporation | Method and device for percutaneous exisional breast biopsy |
US5429596A (en) * | 1992-10-09 | 1995-07-04 | Symbiosis Corporation | Endoscopic electrosurgical suction-irrigation instrument |
US5505210A (en) * | 1989-11-06 | 1996-04-09 | Mectra Labs, Inc. | Lavage with tissue cutting cannula |
US5649547A (en) * | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5713368A (en) * | 1990-02-28 | 1998-02-03 | Medical Device Technologies, Inc. | Single use automated soft tissue aspiration biopsy device |
US5769086A (en) * | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
US5868673A (en) * | 1995-03-28 | 1999-02-09 | Sonometrics Corporation | System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly |
US5913857A (en) * | 1996-08-29 | 1999-06-22 | Ethicon End0-Surgery, Inc. | Methods and devices for collection of soft tissue |
US5928164A (en) * | 1994-03-24 | 1999-07-27 | Ethicon Endo-Surgery, Inc. | Apparatus for automated biopsy and collection of soft tissue |
US5944673A (en) * | 1998-05-14 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with multi-port needle |
US5964716A (en) * | 1998-05-14 | 1999-10-12 | Ethicon Endo-Surgery, Inc. | Method of use for a multi-port biopsy instrument |
US6007497A (en) * | 1998-06-30 | 1999-12-28 | Ethicon Endo-Surgery, Inc. | Surgical biopsy device |
US6017316A (en) * | 1997-06-18 | 2000-01-25 | Biopsys Medical | Vacuum control system and method for automated biopsy device |
US6032675A (en) * | 1997-03-17 | 2000-03-07 | Rubinsky; Boris | Freezing method for controlled removal of fatty tissue by liposuction |
US6494844B1 (en) * | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
US6505629B1 (en) * | 1996-07-23 | 2003-01-14 | Endocare, Inc. | Cryosurgical system with protective warming feature |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902310A (en) | 1996-08-12 | 1999-05-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for marking tissue |
US5810806A (en) | 1996-08-29 | 1998-09-22 | Ethicon Endo-Surgery | Methods and devices for collection of soft tissue |
US6041787A (en) * | 1997-03-17 | 2000-03-28 | Rubinsky; Boris | Use of cryoprotective agent compounds during cryosurgery |
US6331166B1 (en) | 1998-03-03 | 2001-12-18 | Senorx, Inc. | Breast biopsy system and method |
US6540693B2 (en) | 1998-03-03 | 2003-04-01 | Senorx, Inc. | Methods and apparatus for securing medical instruments to desired locations in a patients body |
ATE495602T1 (en) | 2005-11-09 | 2011-01-15 | Xyzmo Software Gmbh | METHOD FOR GENERATING AN ADVANCED ELECTRONIC SIGNATURE OF AN ELECTRONIC DOCUMENT |
-
2000
- 2000-06-21 US US09/598,124 patent/US6494844B1/en not_active Expired - Lifetime
-
2001
- 2001-06-19 JP JP2002503180A patent/JP2004508850A/en active Pending
- 2001-06-19 AU AU2001268527A patent/AU2001268527B2/en not_active Ceased
- 2001-06-19 CA CA002412826A patent/CA2412826A1/en not_active Abandoned
- 2001-06-19 AT AT01946481T patent/ATE303767T1/en not_active IP Right Cessation
- 2001-06-19 EP EP01946481A patent/EP1296607B1/en not_active Expired - Lifetime
- 2001-06-19 WO PCT/US2001/019454 patent/WO2001097702A1/en active IP Right Grant
- 2001-06-19 AU AU6852701A patent/AU6852701A/en active Pending
- 2001-06-19 DE DE60113261T patent/DE60113261T2/en not_active Expired - Lifetime
-
2002
- 2002-12-16 US US10/321,136 patent/US6945942B2/en not_active Expired - Fee Related
-
2005
- 2005-09-16 US US11/229,250 patent/US20060009712A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644951A (en) * | 1985-09-16 | 1987-02-24 | Concept, Inc. | Vacuum sleeve for a surgical appliance |
US4784156A (en) * | 1987-09-16 | 1988-11-15 | Garg Rakesh K | Cannula including a valve structure and associated instrument elements and method for using same |
US5056532A (en) * | 1989-07-25 | 1991-10-15 | Medtronic, Inc. | Esophageal pacing lead |
US5505210A (en) * | 1989-11-06 | 1996-04-09 | Mectra Labs, Inc. | Lavage with tissue cutting cannula |
US5056523A (en) * | 1989-11-22 | 1991-10-15 | Board Of Regents, The University Of Texas System | Precision breast lesion localizer |
US5713368A (en) * | 1990-02-28 | 1998-02-03 | Medical Device Technologies, Inc. | Single use automated soft tissue aspiration biopsy device |
US5027827A (en) * | 1990-03-28 | 1991-07-02 | Cody Michael P | Vacuum biopsy apparatus |
US5353804A (en) * | 1990-09-18 | 1994-10-11 | Peb Biopsy Corporation | Method and device for percutaneous exisional breast biopsy |
US5300046A (en) * | 1992-03-30 | 1994-04-05 | Symbiosis Corporation | Thoracentesis sheath catheter assembly |
US5429596A (en) * | 1992-10-09 | 1995-07-04 | Symbiosis Corporation | Endoscopic electrosurgical suction-irrigation instrument |
US5649547A (en) * | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5928164A (en) * | 1994-03-24 | 1999-07-27 | Ethicon Endo-Surgery, Inc. | Apparatus for automated biopsy and collection of soft tissue |
US5868673A (en) * | 1995-03-28 | 1999-02-09 | Sonometrics Corporation | System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly |
US5769086A (en) * | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
US6505629B1 (en) * | 1996-07-23 | 2003-01-14 | Endocare, Inc. | Cryosurgical system with protective warming feature |
US5913857A (en) * | 1996-08-29 | 1999-06-22 | Ethicon End0-Surgery, Inc. | Methods and devices for collection of soft tissue |
US6032675A (en) * | 1997-03-17 | 2000-03-07 | Rubinsky; Boris | Freezing method for controlled removal of fatty tissue by liposuction |
US6017316A (en) * | 1997-06-18 | 2000-01-25 | Biopsys Medical | Vacuum control system and method for automated biopsy device |
US5964716A (en) * | 1998-05-14 | 1999-10-12 | Ethicon Endo-Surgery, Inc. | Method of use for a multi-port biopsy instrument |
US5944673A (en) * | 1998-05-14 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with multi-port needle |
US6007497A (en) * | 1998-06-30 | 1999-12-28 | Ethicon Endo-Surgery, Inc. | Surgical biopsy device |
US6494844B1 (en) * | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070083129A1 (en) * | 2002-10-07 | 2007-04-12 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
US8123698B2 (en) * | 2002-10-07 | 2012-02-28 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
US20080194985A1 (en) * | 2003-08-27 | 2008-08-14 | Nicoson Zachary R | System and method for minimally invasive disease therapy |
US9504453B2 (en) | 2004-05-21 | 2016-11-29 | Devicor Medical Products, Inc. | MRI biopsy device |
US9638770B2 (en) | 2004-05-21 | 2017-05-02 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating an imageable penetrating portion |
US9795365B2 (en) | 2004-05-21 | 2017-10-24 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating a sleeve and multi-function obturator |
US9392999B2 (en) | 2004-05-21 | 2016-07-19 | Devicor Medical Products, Inc. | MRI biopsy device |
US20060258956A1 (en) * | 2004-05-21 | 2006-11-16 | Haberstich Wells D | MRI Biopsy Device |
US8932233B2 (en) | 2004-05-21 | 2015-01-13 | Devicor Medical Products, Inc. | MRI biopsy device |
US8060183B2 (en) | 2004-10-13 | 2011-11-15 | Suros Surgical Systems, Inc. | Site marker visible under multiple modalities |
US20080269603A1 (en) * | 2004-10-13 | 2008-10-30 | Nicoson Zachary R | Site marker visible under multiple modalities |
US8442623B2 (en) | 2004-10-13 | 2013-05-14 | Suros Surgical Systems, Inc. | Site marker visible under multiple modalities |
US8352014B2 (en) | 2004-10-13 | 2013-01-08 | Suros Surgical Systems, Inc. | Site marker visible under multiple modalities |
US20070093726A1 (en) * | 2004-10-13 | 2007-04-26 | Leopold Phillip M | Site marker visible under multiple modalities |
US9072498B2 (en) | 2005-05-20 | 2015-07-07 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US10363080B2 (en) | 2005-05-20 | 2019-07-30 | Pacira Cryotech, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7862558B2 (en) | 2005-05-20 | 2011-01-04 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20110144631A1 (en) * | 2005-05-20 | 2011-06-16 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US9345526B2 (en) | 2005-05-20 | 2016-05-24 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7998137B2 (en) | 2005-05-20 | 2011-08-16 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7850683B2 (en) | 2005-05-20 | 2010-12-14 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20100198207A1 (en) * | 2005-05-20 | 2010-08-05 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US11350979B2 (en) | 2005-05-20 | 2022-06-07 | Pacira Cryotech, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US11963706B2 (en) | 2005-05-20 | 2024-04-23 | Pacira Cryotech, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7713266B2 (en) | 2005-05-20 | 2010-05-11 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20080183164A1 (en) * | 2005-05-20 | 2008-07-31 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20090171334A1 (en) * | 2005-05-20 | 2009-07-02 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20070123815A1 (en) * | 2005-09-28 | 2007-05-31 | Mark Joseph L | System and method for minimally invasive disease therapy |
US20080200834A1 (en) * | 2005-09-28 | 2008-08-21 | Mark Joseph L | Introducer device for improved imaging |
US8172770B2 (en) | 2005-09-28 | 2012-05-08 | Suros Surgical Systems, Inc. | System and method for minimally invasive disease therapy |
US9254162B2 (en) | 2006-12-21 | 2016-02-09 | Myoscience, Inc. | Dermal and transdermal cryogenic microprobe systems |
US10939947B2 (en) | 2006-12-21 | 2021-03-09 | Pacira Cryotech, Inc. | Dermal and transdermal cryogenic microprobe systems |
US8409185B2 (en) | 2007-02-16 | 2013-04-02 | Myoscience, Inc. | Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling |
US9113855B2 (en) | 2007-02-16 | 2015-08-25 | Myoscience, Inc. | Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling |
US20100198202A1 (en) * | 2007-06-26 | 2010-08-05 | Klaus Fischer | Cryobiopsy probe |
US8216153B2 (en) * | 2007-06-26 | 2012-07-10 | Erbe Elektromedizin Gmbh | Cryobiopsy probe |
US8187204B2 (en) | 2007-10-01 | 2012-05-29 | Suros Surgical Systems, Inc. | Surgical device and method for using same |
US8808200B2 (en) | 2007-10-01 | 2014-08-19 | Suros Surgical Systems, Inc. | Surgical device and method of using same |
US20090088663A1 (en) * | 2007-10-01 | 2009-04-02 | Miller Michael E | Surgical system |
US20090088666A1 (en) * | 2007-10-01 | 2009-04-02 | Miller Michael E | Surgical device |
US8202229B2 (en) | 2007-10-01 | 2012-06-19 | Suros Surgical Systems, Inc. | Surgical device |
US8298216B2 (en) | 2007-11-14 | 2012-10-30 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US11672694B2 (en) | 2007-11-14 | 2023-06-13 | Pacira Cryotech, Inc. | Pain management using cryogenic remodeling |
US9907693B2 (en) | 2007-11-14 | 2018-03-06 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US8715275B2 (en) | 2007-11-14 | 2014-05-06 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US20090248001A1 (en) * | 2007-11-14 | 2009-10-01 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US10869779B2 (en) | 2007-11-14 | 2020-12-22 | Pacira Cryotech, Inc. | Pain management using cryogenic remodeling |
US9101346B2 (en) | 2007-11-14 | 2015-08-11 | Myoscience, Inc. | Pain management using cryogenic remodeling |
US10864112B2 (en) | 2007-11-14 | 2020-12-15 | Pacira Cryotech, Inc. | Pain management using cryogenic remodeling |
US20110184401A1 (en) * | 2008-07-15 | 2011-07-28 | Kansei Iwata | Cryotherapy planning device and cryotherapy device |
US9066712B2 (en) | 2008-12-22 | 2015-06-30 | Myoscience, Inc. | Integrated cryosurgical system with refrigerant and electrical power source |
US8535240B2 (en) | 2010-03-30 | 2013-09-17 | Siteselect Medical Technologies, Inc. | Tissue excision device with a retracting stylet blade |
US8597204B2 (en) | 2010-03-30 | 2013-12-03 | Siteselect Medical Technologies, Inc. | Tissue excision device with an independent needle |
US8485988B2 (en) | 2010-03-30 | 2013-07-16 | Siteselect Medical Technologies, Inc. | Tissue excision device |
US8444573B2 (en) | 2010-03-30 | 2013-05-21 | Siteselect Medical Technologies, Inc. | Tissue excision device |
US8597202B2 (en) | 2010-03-30 | 2013-12-03 | Siteselect Medical Technologies, Inc. | Tissue excision device with a modified cutting edge |
US8597200B2 (en) | 2010-03-30 | 2013-12-03 | Siteselect Medial Technologies, Inc. | Tissue excision device |
US9226733B2 (en) | 2010-03-30 | 2016-01-05 | Siteselect Medical Technologies, Inc. | Tissue excision device with an independent needle |
US8529466B2 (en) | 2010-03-30 | 2013-09-10 | Siteselect Medical Technologies, Inc. | Tissue excision device with rotating stylet blades |
US8529467B2 (en) | 2010-03-30 | 2013-09-10 | Siteselect Medical Technologies, Inc. | Tissue excision device with a collapsible stylet |
US8597203B2 (en) | 2010-03-30 | 2013-12-03 | Siteselect Medical Technologies, Inc. | Tissue excision device with a reduced diameter cannula |
US8740809B2 (en) | 2010-03-30 | 2014-06-03 | Siteselect Medical Technologies, Inc. | Tissue excision device with a retractable backhook |
US8597201B2 (en) | 2010-03-30 | 2013-12-03 | Siteselect Medical Technologies, Inc. | Tissue excision device with a flexible transection blade |
US9241753B2 (en) | 2012-01-13 | 2016-01-26 | Myoscience, Inc. | Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments |
US10213244B2 (en) | 2012-01-13 | 2019-02-26 | Myoscience, Inc. | Cryogenic needle with freeze zone regulation |
US11857239B2 (en) | 2012-01-13 | 2024-01-02 | Pacira Cryotech, Inc. | Cryogenic needle with freeze zone regulation |
US9314290B2 (en) | 2012-01-13 | 2016-04-19 | Myoscience, Inc. | Cryogenic needle with freeze zone regulation |
US10188444B2 (en) | 2012-01-13 | 2019-01-29 | Myoscience, Inc. | Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments |
US9155584B2 (en) | 2012-01-13 | 2015-10-13 | Myoscience, Inc. | Cryogenic probe filtration system |
US9017318B2 (en) | 2012-01-20 | 2015-04-28 | Myoscience, Inc. | Cryogenic probe system and method |
US9724073B2 (en) | 2012-04-16 | 2017-08-08 | Jeff M. Hathaway | Biopsy device |
US10314739B2 (en) | 2013-03-15 | 2019-06-11 | Myoscience, Inc. | Methods and devices for pain management |
US11253393B2 (en) | 2013-03-15 | 2022-02-22 | Pacira Cryotech, Inc. | Methods, systems, and devices for treating neuromas, fibromas, nerve entrapment, and/or pain associated therewith |
US10596030B2 (en) | 2013-03-15 | 2020-03-24 | Pacira Cryotech, Inc. | Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis |
US9295512B2 (en) | 2013-03-15 | 2016-03-29 | Myoscience, Inc. | Methods and devices for pain management |
US10085881B2 (en) | 2013-03-15 | 2018-10-02 | Myoscience, Inc. | Methods, systems, and devices for treating neuromas, fibromas, nerve entrapment, and/or pain associated therewith |
US10085789B2 (en) | 2013-03-15 | 2018-10-02 | Myoscience, Inc. | Methods and systems for treatment of occipital neuralgia |
US10888366B2 (en) | 2013-03-15 | 2021-01-12 | Pacira Cryotech, Inc. | Cryogenic blunt dissection methods and devices |
US10016229B2 (en) | 2013-03-15 | 2018-07-10 | Myoscience, Inc. | Methods and systems for treatment of occipital neuralgia |
US11865038B2 (en) | 2013-03-15 | 2024-01-09 | Pacira Cryotech, Inc. | Methods, systems, and devices for treating nerve spasticity |
US9610112B2 (en) | 2013-03-15 | 2017-04-04 | Myoscience, Inc. | Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis |
US11134999B2 (en) | 2013-03-15 | 2021-10-05 | Pacira Cryotech, Inc. | Methods and systems for treatment of occipital neuralgia |
US11642241B2 (en) | 2013-03-15 | 2023-05-09 | Pacira Cryotech, Inc. | Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis |
US9668800B2 (en) | 2013-03-15 | 2017-06-06 | Myoscience, Inc. | Methods and systems for treatment of spasticity |
WO2014186319A1 (en) * | 2013-05-13 | 2014-11-20 | The Johns Hopkins University | Encapsulated cryoprobe for flexible bronchoscope |
US10130409B2 (en) | 2013-11-05 | 2018-11-20 | Myoscience, Inc. | Secure cryosurgical treatment system |
US11690661B2 (en) | 2013-11-05 | 2023-07-04 | Pacira Cryotech, Inc. | Secure cryosurgical treatment system |
US10864033B2 (en) | 2013-11-05 | 2020-12-15 | Pacira Cryotech, Inc. | Secure cryosurgical treatment system |
US11311327B2 (en) | 2016-05-13 | 2022-04-26 | Pacira Cryotech, Inc. | Methods and systems for locating and treating nerves with cold therapy |
US12076069B2 (en) | 2016-05-13 | 2024-09-03 | Pacira Cryotech, Inc. | Methods and systems for locating and treating nerves with cold therapy |
US11134998B2 (en) | 2017-11-15 | 2021-10-05 | Pacira Cryotech, Inc. | Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods |
US11065372B2 (en) * | 2018-03-27 | 2021-07-20 | Gyrus Acmi, Inc. | Needle system restrictor |
WO2022204092A1 (en) * | 2021-03-23 | 2022-09-29 | Overture Life, Inc. | Cryostorage device |
Also Published As
Publication number | Publication date |
---|---|
JP2004508850A (en) | 2004-03-25 |
WO2001097702A1 (en) | 2001-12-27 |
US6945942B2 (en) | 2005-09-20 |
CA2412826A1 (en) | 2001-12-27 |
EP1296607A4 (en) | 2003-07-30 |
US6494844B1 (en) | 2002-12-17 |
EP1296607B1 (en) | 2005-09-07 |
EP1296607A1 (en) | 2003-04-02 |
DE60113261D1 (en) | 2005-10-13 |
US20030093008A1 (en) | 2003-05-15 |
DE60113261T2 (en) | 2006-06-08 |
ATE303767T1 (en) | 2005-09-15 |
AU2001268527B2 (en) | 2005-10-13 |
AU6852701A (en) | 2002-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6494844B1 (en) | Device for biopsy and treatment of breast tumors | |
AU2001268527A1 (en) | Device for biopsy and treatment of breast tumors | |
US6540694B1 (en) | Device for biopsy tumors | |
JP4108473B2 (en) | Tumor biopsy device | |
CA2443966C (en) | Surgical biopsy device | |
US20020087152A1 (en) | Systems and methods for delivering a probe into tissue | |
US20060118127A1 (en) | Tissue protective system and method for thermoablative therapies | |
Saliken et al. | CT for monitoring cryotherapy. | |
AU2002211568A1 (en) | Device for biopsy of tumors | |
AU2002258866A1 (en) | Surgical biopsy device | |
KR20070117552A (en) | Gynecological ablation procedure and system | |
JP2007527729A (en) | Apparatus and method for protecting tissue during cryoablation | |
US11844559B2 (en) | Surgical method and apparatus for destruction and removal of intraperitoneal, visceral, and subcutaneous fat | |
Whitworth et al. | Cryoablation and cryolocalization in the management of breast disease | |
US7699839B2 (en) | Thermally conductive surgical probe | |
AU2005239746B2 (en) | Device for biopsy and treatment of breast tumors | |
CN109893176B (en) | Mammary gland biopsy residual cavity accurate positioner, positioning method and tumor-free excision method | |
WO2007139555A1 (en) | Tissue protective system and method for thermoablative therapies | |
AU2007205759A1 (en) | Method for biopsy of tumors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANARUS MEDICAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN BLADEL, KEVIN H.;STABINSKY, SETH;ZINDEL, LISA;AND OTHERS;REEL/FRAME:021196/0491;SIGNING DATES FROM 20001004 TO 20031008 |
|
AS | Assignment |
Owner name: HORIZON TECHNOLOGY FUNDING COMPANY LLC, CONNECTICU Free format text: SECURITY AGREEMENT;ASSIGNOR:SANARUS MEDICAL INCORPORATED;REEL/FRAME:021651/0897 Effective date: 20080619 Owner name: HORIZON TECHNOLOGY FUNDING COMPANY LLC,CONNECTICUT Free format text: SECURITY AGREEMENT;ASSIGNOR:SANARUS MEDICAL INCORPORATED;REEL/FRAME:021651/0897 Effective date: 20080619 |
|
AS | Assignment |
Owner name: SANARUS TECHNOLOGIES, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANARUS MEDICAL, INC.;REEL/FRAME:023220/0001 Effective date: 20090710 Owner name: SANARUS TECHNOLOGIES, LLC,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANARUS MEDICAL, INC.;REEL/FRAME:023220/0001 Effective date: 20090710 |
|
AS | Assignment |
Owner name: SANARUS MEDICAL INCORPORATED, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HORIZON TECHNOLOGY FUNDING COMPANY LLC;REEL/FRAME:023373/0658 Effective date: 20090714 Owner name: HORIZON TECHNOLOGY FUNDING COMPANY LLC, CONNECTICU Free format text: SECURITY AGREEMENT;ASSIGNOR:SANARUS TECHNOLOGIES, LLC;REEL/FRAME:023373/0908 Effective date: 20090710 Owner name: SANARUS MEDICAL INCORPORATED,CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HORIZON TECHNOLOGY FUNDING COMPANY LLC;REEL/FRAME:023373/0658 Effective date: 20090714 Owner name: HORIZON TECHNOLOGY FUNDING COMPANY LLC,CONNECTICUT Free format text: SECURITY AGREEMENT;ASSIGNOR:SANARUS TECHNOLOGIES, LLC;REEL/FRAME:023373/0908 Effective date: 20090710 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SANARUS TECHNOLOGIES, LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HORIZON TECHNOLOGY FUNDING COMPANY LLC;REEL/FRAME:030144/0939 Effective date: 20130403 |