Nothing Special   »   [go: up one dir, main page]

US20050228243A1 - System and method for providing feedback to an individual patient - Google Patents

System and method for providing feedback to an individual patient Download PDF

Info

Publication number
US20050228243A1
US20050228243A1 US11/146,558 US14655805A US2005228243A1 US 20050228243 A1 US20050228243 A1 US 20050228243A1 US 14655805 A US14655805 A US 14655805A US 2005228243 A1 US2005228243 A1 US 2005228243A1
Authority
US
United States
Prior art keywords
measures
patient
feedback
collected
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/146,558
Inventor
Gust Bardy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Pacemakers Inc
Original Assignee
Cardiac Pacemakers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Pacemakers Inc filed Critical Cardiac Pacemakers Inc
Priority to US11/146,558 priority Critical patent/US20050228243A1/en
Publication of US20050228243A1 publication Critical patent/US20050228243A1/en
Assigned to CARDIAC PACEMAKERS, INC. reassignment CARDIAC PACEMAKERS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDIAC INTELLIGENCE CORP.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4803Speech analysis specially adapted for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics

Definitions

  • the present invention relates in general to automated data collection and analysis, and, in particular, to a system and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring.
  • Implantable pulse generators are medical devices commonly used to treat irregular heartbeats, known as arrhythmias.
  • Cardiac pacemakers are used to manage bradycardia, an abnormally slow or irregular heartbeat. Bradycardia can cause symptoms such as fatigue, dizziness, and fainting.
  • Implantable cardioverter defibrillators are used to treat tachycardia, heart rhythms that are abnormally fast and life threatening. Tachycardia can result in sudden cardiac death (SCD).
  • Implantable cardiovascular monitors and therapeutic devices are used to monitor and treat structural problems of the heart, such as congestive heart failure, as well as rhythm problems.
  • stored device information is retrieved using a proprietary interrogator or programmer, often during a clinic visit or following a device event.
  • the volume of data retrieved from a single device interrogation “snapshot” can be large and proper interpretation and analysis can require significant physician time and detailed subspecialty knowledge, particularly by cardiologists and cardiac electrophysiologists.
  • the sequential logging and analysis of regularly scheduled interrogations can create an opportunity for recognizing subtle and incremental changes in patient condition otherwise undetectable by inspection of a single “snapshot.”
  • present approaches to data interpretation and understanding and practical limitations on time and physician availability make such analysis impracticable.
  • a prior art system for collecting and analyzing pacemaker and ICD telemetered signals in a clinical or office setting is the Model 9790 Programmer, manufactured by Medtronic, Inc., Minneapolis, Minn. This programmer can be used to retrieve data, such as patient electrocardiogram and any measured physiological conditions, collected by the IPG for recordation, display and printing. The retrieved data is displayed in chronological order and analyzed by a physician.
  • Comparable prior art systems are available from other IPG manufacturers, such as the Model 2901 Programmer Recorder Monitor, manufactured by Guidant Corporation, Indianapolis, Ind., which includes a removable floppy diskette mechanism for patient data storage. These prior art systems lack remote communications facilities and must be operated with the patient present. These systems present a limited analysis of the collected data based on a single device interrogation and lack the capability to recognize trends in the data spanning multiple episodes over time or relative to a disease specific peer group.
  • the implanted device includes a telemetry transceiver for communicating data and operating instructions between the implanted device and an external patient communications device.
  • the communications device includes a communication link to a remote medical support network, a global positioning satellite receiver, and a patient activated link for permitting patient initiated communication with the medical support network.
  • Patient voice communications through the patient link include both actual patient voice and manually actuated signaling which may convey an emergency situation.
  • the patient voice is converted to an audio signal, digitized, encoded, and transmitted by data bus to a system controller.
  • an implanted AECG monitor can be automatically interrogated at preset times of day to telemeter out accumulated data to a telephonic communicator or a full disclosure recorder.
  • the communicator can be automatically triggered to establish a telephonic communication link and transmit the accumulated data to an office or clinic through a modem.
  • telemetered data is downloaded to a larger capacity, external data recorder and is forwarded to a clinic using an auto-dialer and fax modem operating in a personal computer-based programmer/interrogator.
  • the '976 telemetry transceiver, '869 communicator, and '245 programmer/interrogator are limited to facilitating communication and transferal of downloaded patient data and do not include an ability to automatically track, recognize, and analyze trends in the data itself.
  • the '976 telemetry transceiver facilitates patient voice communications through transmission of a digitized audio signal and does not perform voice recognition or other processing to the patient's voice.
  • implantable medical device information such as telemetered signals
  • the automated analysis would include recognizing a trend and determining whether medical intervention is necessary.
  • the normalized voice feedback a semi-quantitative self-assessment of an individual patient's physical and emotional well being at a time substantially contemporaneous to the collection of the telemetered signals.
  • a further embodiment is a system and method for interactively monitoring patient status in an automated patient care system using voice feedback.
  • Physiological measures are monitored for an implant recipient.
  • Device measures are collected through an implantable medical device on a substantially continuous basis from the implant recipient.
  • the device measures are periodically stored as at least one of collected or derived physiological measures into an individual patient care record.
  • Quality of life measures are monitored for the implant recipient.
  • Patient wellness indicators are obtained through voice feedback provided by the implant recipient substantially contemporaneous to the collection of the device measures.
  • the voice feedback is processed against a stored speech grammar and vocabulary.
  • the processed voice feedback is stored as standardized quality of life measures into the patient care record.
  • the physiological measures and the quality of life measures from the patient care record are recurrently evaluated against at least one of other physiological measures and other quality of life measures to generate a patient status indicator.
  • the present invention facilitates the gathering, storage, and analysis of critical patient information obtained on a routine basis and analyzed in an automated manner.
  • the burden on physicians and trained personnel to evaluate the volumes of information is significantly minimized while the benefits to patients are greatly enhanced.
  • FIG. 1 is a block diagram showing a system for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care in accordance with the present invention
  • FIG. 2 is a block diagram showing the hardware components of the server system of the system of FIG. 1 ;
  • FIG. 3 is a block diagram showing the software modules of the server system of the system of FIG. 1 ;
  • FIG. 6 is a record view showing, by way of example, a set of partial cardiac patient care records stored in the database of the system of FIG. 1 ;
  • FIG. 8 is a flow diagram showing a routine for analyzing collected measures sets for use in the method of FIG. 7 ;
  • FIG. 9 is a flow diagram showing a routine for comparing sibling collected measures sets for use in the routine of FIG. 8 ;
  • FIGS. 10A and 10B are flow diagrams showing a routine for comparing peer collected measures sets for use in the routine of FIG. 8 ;
  • FIG. 11 is a flow diagram showing a routine for providing feedback for use in the method of FIG. 7 ;
  • FIG. 12 is a block diagram showing a system for providing patient status feedback via an automated patient care system with speech-based wellness monitoring
  • FIG. 13 is a block diagram showing the software modules of the remote client of the system of FIG. 12 ;
  • FIG. 14 is a block diagram showing the software modules of the server system of the system of FIG. 12 ;
  • FIG. 15 is a database schema showing, by way of example, the organization of a quality of life record for cardiac patient care stored as part of a patient care record in the database of the system of FIG. 12 ;
  • FIGS. 16A-16B are flow diagrams showing a method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring
  • FIG. 17 is a flow diagram showing a routine for processing voice feedback for use in the method of FIGS. 16A-16B ;
  • FIG. 18 is a flow diagram showing a routine for requesting a quality of life measure for use in the routine of FIG. 17 ;
  • FIG. 19 is a flow diagram showing a routine for recognizing and translating individual spoken words for use in the routine of FIG. 17 ;
  • FIG. 20 is a block diagram showing the software modules of the server system in a further embodiment of the system of FIG. 12 .
  • FIG. 1 is a block diagram showing a system 10 for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care in accordance with the present invention.
  • a patient 11 is a recipient of an implantable medical device 12 , such as, by way of example, an IPG or a heart failure or event monitor, with a set of leads extending into his or her heart.
  • the implantable medical device 12 includes circuitry for recording into a short-term, volatile memory telemetered signals, which are stored as a set of collected measures for later retrieval.
  • the patient 11 has a cardiac implantable medical device.
  • a wide range of related implantable medical devices are used in other areas of medicine and a growing number of these devices are also capable of measuring and recording patient information for later retrieval.
  • These implantable medical devices include monitoring and therapeutic devices for use in metabolism, endocrinology, hematology, neurology, muscular disorders, gastroenterology, urology, ophthalmology, otolaryngology, orthopedics, and similar medical subspecialties.
  • One skilled in the art would readily recognize the applicability of the present invention to these related implantable medical devices.
  • a magnetized reed switch within the implantable medical device 12 closes in response to the placement of a wand 13 over the location of the implantable medical device 12 .
  • the programmer 14 communicates with the implantable medical device 12 via RF signals exchanged through the wand 13 .
  • Programming or interrogating instructions are sent to the implantable medical device 12 and the stored telemetered signals are downloaded into the programmer 14 .
  • the telemetered signals are sent via an internetwork 15 , such as the Internet, to a server system 16 which periodically receives and stores the telemetered signals in a database 17 , as further described below with reference to FIG. 2 .
  • An example of a programmer 14 suitable for use in the present invention is the Model 2901 Programmer Recorder Monitor, manufactured by Guidant Corporation, Indianapolis, Ind., which includes the capability to store retrieved telemetered signals on a proprietary removable floppy diskette.
  • the telemetered signals could later be electronically transferred using a personal computer or similar processing device to the internetwork 15 , as is known in the art.
  • FIG. 2 is a block diagram showing the hardware components of the server system 16 of the system 10 of FIG. 1 .
  • the server system 16 consists of three individual servers: network server 31 , database server 34 , and application server 35 . These servers are interconnected via an intranetwork 33 . In the described embodiment, the functionality of the server system 16 is distributed among these three servers for efficiency and processing speed, although the functionality could also be performed by a single server or cluster of servers.
  • the network server 31 is the primary interface of the server system 16 onto the internetwork 15 .
  • the network server 31 periodically receives the collected telemetered signals sent by remote implantable medical devices over the internetwork 15 .
  • the network server 31 is interfaced to the internetwork 15 through a router 32 . To ensure reliable data exchange, the network server 31 implements a TCP/IP protocol stack, although other forms of network protocol stacks are suitable.
  • the application server 35 operates management applications and performs data analysis of the patient care records, as further described below with reference to FIG. 3 .
  • the application server 35 communicates feedback to the individual patients either through electronic mail sent back over the internetwork 15 via the network server 31 or as automated voice mail or facsimile messages through the telephone interface device 19 .
  • the database 17 consists of a high-capacity storage medium configured to store individual patient care records and related health care information.
  • the database 17 is configured as a set of high-speed, high capacity hard drives, such as organized into a Redundant Array of Inexpensive Disks (RAID) volume.
  • RAID Redundant Array of Inexpensive Disks
  • any form of volatile storage, non-volatile storage, removable storage, fixed storage, random access storage, sequential access storage, permanent storage, erasable storage, and the like would be equally suitable.
  • the organization of the database 17 is further described below with reference to FIG. 3 .
  • Each system is preferably equipped with 128 MB RAM, 100 GB hard drive capacity, data backup facilities, and related hardware for interconnection to the intranetwork 33 and internetwork 15 .
  • the workstations 36 are also Intel Pentium-based personal computer or workstation systems, also available from Dell Computers, Austin, Tex., or Compaq Computers, Houston, Tex.
  • Each workstation is preferably equipped with 64 MB RAM, 10 GB hard drive capacity, and related hardware for interconnection to the intranetwork 33 .
  • Other types of server and workstation systems including personal computers, minicomputers, mainframe computers, supercomputers, parallel computers, workstations, digital data processors and the like would be equally suitable, as is known in the art.
  • FIG. 3 is a block diagram showing the software modules of the server system 16 of the system 10 of FIG. 1 .
  • Each module is a computer program written as source code in a conventional programming language, such as the C or Java programming languages, and is presented for execution by the CPU as object or byte code, as is known in the arts.
  • the various implementations of the source code and object and byte codes can be held on a computer-readable storage medium or embodied on a transmission medium in a carrier wave.
  • the analysis module 53 analyzes the collected measures sets 50 stored in the patient care records in the database 52 .
  • the analysis module 53 makes an automated determination of patient wellness in the form of a patient status indicator 54 .
  • Collected measures sets 50 are periodically received from implantable medical devices and maintained by the database module 51 in the database 52 . Through the use of this collected information, the analysis module 53 can continuously follow the medical well being of a patient and can recognize any trends in the collected information that might warrant medical intervention.
  • the analysis module 53 compares individual measures and derived measures obtained from both the care records for the individual patient and the care records for a disease specific group of patients or the patient population in general.
  • the analytic operations performed by the analysis module 53 are further described below with reference to FIG. 4 .
  • the application server 35 (shown in FIG. 2 ) performs the functionality of the analysis module 53 .
  • the feedback module 55 provides automated feedback to the individual patient based, in part, on the patient status indicator 54 .
  • the feedback could be by electronic mail or by automated voice mail or facsimile.
  • the feedback is provided in a tiered manner.
  • four levels of automated feedback are provided. At a first level, an interpretation of the patient status indicator 54 is provided. At a second level, a notification of potential medical concern based on the patient status indicator 54 is provided. This feedback level could also be coupled with human contact by specially trained technicians or medical personnel. At a third level, the notification of potential medical concern is forwarded to medical practitioners located in the patient's geographic area.
  • a set of reprogramming instructions based on the patient status indicator 54 could be transmitted directly to the implantable medical device to modify the programming instructions contained therein.
  • the basic tiered feedback scheme would be modified in the event of bona fide medical emergency.
  • the application server 35 (shown in FIG. 2 ) performs the functionality of the feedback module 55 .
  • FIG. 4 is a block diagram showing the analysis module 53 of the server system 16 of FIG. 3 .
  • the analysis module 53 contains two functional submodules: comparison module 62 and derivation module 63 .
  • the purpose of the comparison module 62 is to compare two or more individual measures, either collected or derived.
  • the purpose of the derivation module 63 is to determine a derived measure based on one or more collected measures which is then used by the comparison module 62 . For instance, a new and improved indicator of impending heart failure could be derived based on the exemplary cardiac collected measures set described with reference to FIG. 5 .
  • the analysis module 53 can operate either in a batch mode of operation wherein patient status indicators are generated for a set of individual patients or in a dynamic mode wherein a patient status indicator is generated on the fly for an individual patient.
  • the comparison module 62 receives as inputs from the database 17 two input sets functionally defined as peer collected measures sets 60 and sibling collected measures sets 61 , although in practice, the collected measures sets are stored on a per sampling basis.
  • Peer collected measures sets 60 contain individual collected measures sets that all relate to the same type of patient information, for instance, atrial electrical activity, but which have been periodically collected over time.
  • Sibling collected measures sets 61 contain individual collected measures sets that relate to different types of patient information, but which may have been collected at the same time or different times. In practice, the collected measures sets are not separately stored as “peer” and “sibling” measures. Rather, each individual patient care record stores multiple sets of sibling collected measures. The distinction between peer collected measures sets 60 and sibling collected measures sets 61 is further described below with reference to FIG. 6 .
  • the derivation module 63 determines derived measures sets 64 on an as-needed basis in response to requests from the comparison module 62 .
  • the derived measures 64 are determined by performing linear and non-linear mathematical operations on selected peer measures 60 and sibling measures 61 , as is known in the art.
  • FIG. 5 is a database schema showing, by way of example, the organization of a cardiac patient care record stored 70 in the database 17 of the system 10 of FIG. 1 . Only the information pertaining to collected measures sets are shown. Each patient care record would also contain normal identifying and treatment profile information, as well as medical history and other pertinent data (not shown). Each patient care record stores a multitude of collected measures sets for an individual patient. Each individual set represents a recorded snapshot of telemetered signals data which was recorded, for instance, per heartbeat or binned average basis by the implantable medical device 12 .
  • the implantable medical device 12 would also communicate device specific information, including battery status 81 and program settings 82 .
  • Other types of collected measures are possible.
  • a well-documented set of derived measures can be determined based on the collected measures, as is known in the art.
  • FIG. 6 is a record view showing, by way of example, a set of partial cardiac patient care records stored in the database 17 of the system 10 of FIG. 1 .
  • Three patient care records are shown for Patient 1 , Patient 2 , and Patient 3 .
  • three sets of measures are shown, X, Y, and Z.
  • measures representing the same type of patient information such as measure X
  • peer measures These are measures, which are monitored over time in a disease-matched peer group.
  • measures X, Y, and Z are sibling measures. These are measures which are also measured over time, but which might have medically significant meaning when compared to each other within a single set.
  • measures X, Y, and Z could be either collected or derived measures.
  • the analysis module 53 (shown in FIG. 4 ) performs two basic forms of comparison. First, individual measures for a given patient can be compared to other individual measures for that same patient. These comparisons might be peer-to-peer measures projected over time, for instance, X n , X n-1 , X n-2 , . . .
  • X 0 sibling-to-sibling measures for a single snapshot, for instance, X n , Y n , and Z n , or projected over time, for instance, X n , Y n , Z n , X n-1 , Y n-1 , Z n-1 , X n-2 , Y n-2 , Z n-2 . . . X 0 , Y 0 , Z 0 .
  • individual measures for a given patient can be compared to other individual measures for a group of other patients sharing the same disease-specific characteristics or to the patient population in general.
  • these comparisons might be peer-to-peer measures projected over time, for instance, X n , X n′ , X n′′ , X n-1 , X n-1′′, X n-1′′ , X n-2 , X n-2′ , X n-2′′ . . . X 0 , X 0′ , X 0′′ , or comparing the individual patient's measures to an average from the group.
  • these comparisons might be sibling-to-sibling measures for single snapshots, for instance, X n , X n′ , X n′′ , Y n , Y n , Y n′′ , and Z n , Z n′ , Z n′′ , or projected over time, for instance, X n , X n′ , X n′′ , Y n , Y n′, Y n′′ , Z n , Z n′ , Z n′′ , X n-1 , X n-1′ , X n-′′ , Y n-1 , Y n-1′, Y n-1′′, Z n-1 , Z n-1′ , Z n-1′′ , X n-2 , X n-2′ , X n-2′′ , Y n-2 , Y n-2′ , Y n-2′′ ,
  • FIG. 7 is a flow diagram showing a method 90 for automated collection and analysis of patient information retrieved from an implantable medical device 12 for remote patient care in accordance with the present invention.
  • the method 90 is implemented as a conventional computer program for execution by the server system 16 (shown in FIG. 1 ).
  • the patient care records are organized in the database 17 with a unique patient care record assigned to each individual patient (block 91 ).
  • the collected measures sets for an individual patient are retrieved from the implantable medical device 12 (block 92 ) using a programmer, interrogator, telemetered signals transceiver, and the like.
  • the retrieved collected measures sets are sent, on a substantially regular basis, over the internetwork 15 or similar communications link (block 93 ) and periodically received by the server system 16 (block 94 ).
  • the collected measures sets are stored into the patient care record in the database 17 for that individual patient (block 95 ).
  • One or more of the collected measures sets for that patient are analyzed (block 96 ), as further described below with reference to FIG. 8 .
  • feedback based on the analysis is sent to that patient over the internetwork 15 as an email message, via telephone line as an automated voice mail or facsimile message, or by similar feedback communications link (block 97 ), as further described below with reference to FIG. 11 .
  • FIG. 8 is a flow diagram showing the routine for analyzing collected measures sets 96 for use in the method of FIG. 7 .
  • the purpose of this routine is to make a determination of general patient wellness based on comparisons and heuristic trends analyses of the measures, both collected and derived, in the patient care records in the database 17 .
  • a first collected measures set is selected from a patient care record in the database 17 (block 100 ). If the measures comparison is to be made to other measures originating from the patient care record for the same individual patient (block 101 ), a second collected measures set is selected from that patient care record (block 102 ). Otherwise, a group measures comparison is being made (block 101 ) and a second collected measures set is selected from another patient care record in the database 17 (block 103 ).
  • the second collected measures set could also contain averaged measures for a group of disease specific patients or for the patient population in general.
  • a sibling measures comparison is to be made (block 104 )
  • a routine for comparing sibling collected measures sets is performed (block 105 ), as further described below with reference to FIG. 9 .
  • a peer measures comparison is to be made (block 106 )
  • a routine for comparing sibling collected measures sets is performed (block 107 ), as further described below with reference to FIGS. 10A and 10B .
  • a patient status indicator is generated (block 108 ).
  • cardiac output could ordinarily be approximately 5.0 liters per minute with a standard deviation of ⁇ 1.0.
  • An actionable medical phenomenon could occur when the cardiac output of a patient is ⁇ 3.0-4.0 standard deviations out of the norm.
  • a comparison of the cardiac output measures 75 (shown in FIG. 5 ) for an individual patient against previous cardiac output measures 75 would establish the presence of any type of downward health trend as to the particular patient.
  • a comparison of the cardiac output measures 75 of the particular patient to the cardiac output measures 75 of a group of patients would establish whether the patient is trending out of the norm. From this type of analysis, the analysis module 53 generates a patient status indicator 54 and other metrics of patient wellness, as is known in the art.
  • FIG. 9 is a flow diagram showing the routine for comparing sibling collected measures sets 105 for use in the routine of FIG. 8 .
  • Sibling measures originate from the patient care records for an individual patient. The purpose of this routine is either to compare sibling derived measures to sibling derived measures (blocks 111 - 113 ) or sibling collected measures to sibling collected measures (blocks 115 - 117 ). Thus, if derived measures are being compared (block 110 ), measures are selected from each collected measures set (block 111 ). First and second derived measures are derived from the selected measures (block 112 ) using the derivation module 63 (shown in FIG. 4 ).
  • the first and second derived measures are then compared (block 113 ) using the comparison module 62 (also shown in FIG. 4 ).
  • the steps of selecting, determining, and comparing (blocks 111 - 113 ) are repeated until no further comparisons are required (block 114 ), whereupon the routine returns.
  • measures are selected from each collected measures set (block 115 ).
  • the first and second collected measures are then compared (block 116 ) using the comparison module 62 (also shown in FIG. 4 ).
  • the steps of selecting and comparing (blocks 115 - 116 ) are repeated until no further comparisons are required (block 117 ), whereupon the routine returns.
  • FIGS. 10A and 10B are a flow diagram showing the routine for comparing peer collected measures sets 107 for use in the routine of FIG. 8 .
  • Peer measures originate from patient care records for different patients, including groups of disease specific patients or the patient population in general.
  • the purpose of this routine is to compare peer derived measures to peer derived measures (blocks 122 - 125 ), peer derived measures to peer collected measures (blocks 126 - 129 ), peer collected measures to peer derived measures (block 131 - 134 ), or peer collected measures to peer collected measures (blocks 135 - 137 ).
  • first measure being compared is a derived measure (block 120 ) and the second measure being compared is also a derived measure (block 121 )
  • measures are selected from each collected measures set (block 122 ).
  • First and second derived measures are derived from the selected measures (block 123 ) using the derivation module 63 (shown in FIG. 4 ).
  • the first and second derived measures are then compared (block 124 ) using the comparison module 62 (also shown in FIG. 4 ).
  • the steps of selecting, determining, and comparing (blocks 122 - 124 ) are repeated until no further comparisons are required (block 115 ), whereupon the routine returns.
  • first measure being compared is a derived measure (block 120 ) but the second measure being compared is a collected measure (block 121 )
  • a first measure is selected from the first collected measures set (block 126 ).
  • a first derived measure is derived from the first selected measure (block 127 ) using the derivation module 63 (shown in FIG. 4 ).
  • the first derived and second collected measures are then compared (block 128 ) using the comparison module 62 (also shown in FIG. 4 ).
  • the steps of selecting, determining, and comparing (blocks 126 - 128 ) are repeated until no further comparisons are required (block 129 ), whereupon the routine returns.
  • a second measure is selected from the second collected measures set (block 131 ).
  • a second derived measure is derived from the second selected measure (block 132 ) using the derivation module 63 (shown in FIG. 4 ).
  • the first collected and second derived measures are then compared (block 133 ) using the comparison module 62 (also shown in FIG. 4 ).
  • the steps of selecting, determining, and comparing (blocks 131 - 133 ) are repeated until no further comparisons are required (block 134 ), whereupon the routine returns.
  • first measure being compared is a collected measure (block 120 ) and the second measure being compared is also a collected measure (block 130 )
  • measures are selected from each collected measures set (block 135 ).
  • the first and second collected measures are then compared (block 136 ) using the comparison module 62 (also shown in FIG. 4 ).
  • the steps of selecting and comparing (blocks 135 - 136 ) are repeated until no further comparisons are required (block 137 ), whereupon the routine returns.
  • FIG. 11 is a flow diagram showing the routine for providing feedback 97 for use in the method of FIG. 7 .
  • the purpose of this routine is to provide tiered feedback based on the patient status indicator.
  • Four levels of feedback are provided with increasing levels of patient involvement and medical care intervention.
  • an interpretation of the patient status indicator 54 preferably phrased in lay terminology, and related health care information is sent to the individual patient (block 151 ) using the feedback module 55 (shown in FIG. 3 ).
  • a notification of potential medical concern is sent to the individual patient (block 153 ) using the feedback module 55 .
  • the notification of potential medical concern is forwarded to the physician responsible for the individual patient or similar health care professionals (block 155 ) using the feedback module 55 .
  • reprogramming instructions are sent to the implantable medical device 12 (block 157 ) using the feedback module 55 .
  • FIG. 12 is a block diagram showing a system 200 for providing normalized voice feedback from an individual patient 11 in an automated collection and analysis patient care system, such as the system 10 of FIG. 1 .
  • the remote client 18 includes a microphone 201 and a speaker 202 which is interfaced internally within the remote client 18 to sound recordation and reproduction hardware.
  • the patient 11 provides spoken feedback into the microphone 201 in response to voice prompts reproduced by the remote client 18 on the speaker 202 , as further described below with reference to FIG. 13 .
  • the raw spoken feedback is processed into a normalized set of quality of life measures which each relate to uniform self-assessment indicators, as further described below with reference to FIG. 15 .
  • the patient 11 can provide spoken feedback via a telephone network 203 using a standard telephone 203 , including a conventional wired telephone or a wireless telephone, such as a cellular telephone, as further described below with reference to FIG. 20 .
  • a standard telephone 203 including a conventional wired telephone or a wireless telephone, such as a cellular telephone, as further described below with reference to FIG. 20 .
  • the microphone 201 and the speaker 202 are standard, off-the-shelf components commonly included with consumer personal computer systems, as is known in the art.
  • the system 200 continuously monitors and collects sets of device measures from the implantable medical device 12 .
  • a quality of life measures set can be recorded by the remote client 18
  • each quality of life measures set is recorded substantially contemporaneous to the collection of an identified collected device measures set.
  • the date and time of day at which the quality of life measures set was recorded can be used to correlate the quality of life measures set to the collected device measures set recorded closest in time to the quality of life measures set.
  • the pairing of the quality of life measures set and an identified collected device measures set provides medical practitioners with a more complete picture of the patient's medical status by combining physiological “hard” machine-recorded data with semi-quantitative “soft” patient-provided data.
  • FIG. 13 is a block diagram showing the software modules of the remote client 18 of the system 200 of FIG. 12 .
  • each module here is also a computer program written as source code in a conventional programming language, such as the C or Java programming languages, and is presented for execution by the CPU as object or byte code, as is known in the arts.
  • the remote client 18 includes a secondary storage 219 , such as a hard drive, a CD ROM player, and the like, within which is stored data used by the software modules.
  • the voice reproduction and recognition functions performed by the audio prompter 210 and speech engine 214 can be described separately, but those same functions could also be performed by a single voice processing module, as is known in the art.
  • the audio prompter 210 generates voice prompts 226 which are played back to the patient 11 on the speaker 202 .
  • Each voice prompt is in the form of a question or phrase seeking to develop a self-assessment of the patient's physical and emotional well being. For example, the patient 11 might be prompted with, “Are you short of breath?”
  • the voice prompts 226 are either from a written script 220 reproduced by speech synthesizer 211 or pre-recorded speech 221 played back by playback module 212 .
  • the written script 220 is stored within the secondary storage 219 and consists of written quality of life measure requests.
  • the pre-recorded speech 221 is also stored within the secondary storage 219 and consists of sound “bites” of recorded quality of life measure requests in either analog or digital format.
  • the speech engine 214 receives voice responses 227 spoken by the patient 11 into the microphone 201 .
  • the voice responses 227 can be unstructured, natural language phrases and sentences.
  • a voice grammar 222 provides a lexical structuring for use in determining the meaning of each spoken voice response 227 .
  • the voice grammar 222 allows the speech engine 214 to “normalize” the voice responses 227 into recognized quality of life measures 228 .
  • Individual spoken words in each voice response 227 are recognized by a speech recognition module 215 and translated into written words. In turn, the written words are parsed into tokens by a parser 216 .
  • a lexical analyzer 217 analyzes the tokens as complete phrases in accordance with a voice grammar 222 stored within the secondary storage 219 .
  • the individual words are normalized to uniform terms by a lookup module 218 which retrieves synonyms maintained as a vocabulary 223 stored within the secondary storage 218 .
  • a lookup module 218 retrieves synonyms maintained as a vocabulary 223 stored within the secondary storage 218 .
  • synonyms maintained as a vocabulary 223 stored within the secondary storage 218 .
  • the speech recognition module 215 would interpret these phrases to imply dyspnea with a corresponding quality of life measure indicating an awareness by the patient of abnormal breathing.
  • the voice reproduction and recognition functions can be performed by the various natural voice software programs licensed by Dragon Systems, Inc., Newton, Mass.
  • the written script 220 , voice grammar 222 , and vocabulary 223 could be expressed as a script written in a voice page markup language for interpretation by a voice browser operating on the remote client 18 .
  • Two exemplary voice page description languages include the VoxML markup language, licensed by Motorola, Inc., Chicago, Ill., and described at http://www.voxml.com, and the Voice eXtensible Markup Language (VXML), currently being jointly developed by AT&T, Motorola, Lucent Technologies, and IBM, and described at http://www.vxmlforum.com.
  • VXML Voice eXtensible Markup Language
  • the module functions are further described below in more detail beginning with reference to FIGS. 16A-16B .
  • FIG. 14 is a block diagram showing the software modules of the server system 16 of the system 200 of FIG. 12 .
  • the database module 51 also receives the collected quality of life measures set 228 from the remote client 18 , which the database module 51 stores into the appropriate patient care record in the database 52 .
  • the date and time of day 236 (shown in FIG. 15 ) of the quality of life measures set 228 is matched to the date and time of day 73 (shown in FIG. 5 ) of the collected measures set 50 recorded closest in time to the quality of life measures set 228 .
  • the matching collected measures set 50 is identified in the patient care record and can be analyzed with the quality of life measures set 228 by the analysis module 53 , such as described above with reference to FIG. 8 .
  • FIG. 15 is a database schema showing, by way of example, the organization of a quality of life record 230 for cardiac patient care stored as part of a patient care record in the database 17 of the system 200 of FIG. 12 .
  • a quality of life score is a semi-quantitative self-assessment of an individual patient's physical and emotional well being.
  • Non-commercial, non-proprietary standardized automated quality of life scoring systems are readily available, such as provided by the Duke Activities Status Indicator.
  • the quality of life record 230 stores the following information: health wellness 231 , shortness of breath 232 , energy level 233 , chest discomfort 235 , time of day 234 , and other quality of life measures as would be known to one skilled in the art. Other types of quality of life measures are possible.
  • a quality of life indicator is a vehicle through which a patient can remotely communicate to the patient care system how he or she is subjectively feeling.
  • the quality of life indicators can include symptoms of disease.
  • a quality of life indicator can provide valuable additional information to medical practitioners and the automated collection and analysis patient care system 200 not otherwise discernible without having the patient physically present. For instance, a scoring system using a scale of 1.0 to 10.0 could be used with 10.0 indicating normal wellness and 1.0 indicating severe health problems.
  • a patient Upon the completion of an initial observation period, a patient might indicate a health wellness score 231 of 5.0 and a cardiac output score of 5.0.
  • the patient After one month of remote patient care, the patient might then indicate a health wellness score 231 of 4.0 and a cardiac output score of 4.0 and a week later indicate a health wellness score 231 of 3.5 and a cardiac output score of 3.5. Based on a comparison of the health wellness scores 231 and the cardiac output scores, the system 200 would identify a trend indicating the necessity of potential medical intervention while a comparison of the cardiac output scores alone might not lead to the same prognosis.
  • FIGS. 16A-16B are flow diagrams showing a method 239 for providing normalized voice feedback from an individual patient 11 in an automated collection and analysis patient care system 200 .
  • this method is also implemented as a conventional computer program and performs the same set of steps as described with reference to FIG. 7 with the following additional functionality.
  • voice feedback spoken by the patient 11 into the remote client 18 is processed into a quality of life measures set 228 (block 240 ), as further described below with reference to FIG. 17 .
  • the voice feedback is spoken substantially contemporaneous to the collection of an identified device measures set 50 .
  • the appropriate collected device measures set 50 can be matched to and identified with (not shown) the quality of life measures set 228 either by matching their respective dates and times of day or by similar means, either by the remote client 18 or the server system 16 .
  • the quality of life measures set 228 and the identified collected measures set 50 are sent over the internetwork 15 to the server system 16 (block 241 ). Note the quality of life measures set 228 and the identified collected measures set 50 both need not be sent over the internetwork 15 at the same time, so long as the two sets are ultimately paired based on, for example, date and time of day.
  • the quality of life measures set 228 and the identified collected measures set 50 are received by the server system 16 (block 242 ) and stored in the appropriate patient care record in the database 52 (block 243 ).
  • the quality of life measures set 228 , identified collected measures set 50 , and one or more collected measures sets 50 are analyzed (block 244 ) and feedback, including a patient status indicator 54 (shown in FIG. 14 ), is provided to the patient (block 245 ).
  • FIG. 17 is a flow diagram showing the routine for processing voice feedback 240 for use in the method of FIGS. 16A-16B .
  • the purpose of this routine is to facilitate a voice interactive session with the patient 11 during which is developed a normalized set of quality of life measures.
  • the remote client 18 requests a quality of life measure via a voice prompt (block 250 ), played on the speaker 202 (shown in FIG. 13 ), as further described below with reference to FIG. 18 .
  • the remote client 18 receives the spoken feedback from the patient 11 (block 251 ) via the microphone 201 (shown in FIG. 13 ).
  • the remote client 18 recognizes individual words in the spoken feedback and translates those words into written words (block 252 ), as further described below with reference to FIG. 19 .
  • the routine returns at the end of the voice interactive session.
  • FIG. 18 is a flow diagram showing the routine for requesting a quality of life measure 251 for use in the routine 240 of FIG. 17 .
  • the purpose of this routine is to present a voice prompt 226 to the user via the speaker 202 .
  • Either pre-recorded speech 221 or speech synthesized from a written script 220 can be used.
  • synthesized speech is employed by the remote client 18 (block 260 )
  • a written script such as a voice markup language script, specifying questions and phrases which with to request quality of life measures is stored (block 261 ) on the secondary storage 219 of the remote client 18 .
  • Each written quality of life measure request is retrieved by the remote client 18 (block 262 ) and synthesized into speech for playback to the patient 11 (block 263 ).
  • pre-recorded speech is employed by the remote client 18 (block 260 )
  • pre-recorded voice “bites” are stored (block 264 ) on the secondary storage 219 of the remote client 18 .
  • Each pre-recorded quality of life measure request is retrieved by the remote client 18 (block 265 ) and played back to the patient 11 (block 266 ). The routine then returns.
  • the voice feedback is then lexically analyzed using the tokens and in accordance with the voice grammar 222 (block 274 ) to determine the meaning of the voice feedback. If necessary, the vocabulary 223 is referenced to lookup synonyms of the individual words (block 275 ). The routine then returns.
  • FIG. 20 is a block diagram showing the software modules of the server system in a further embodiment of the system 200 of FIG. 12 .
  • the functionality of the remote client 18 in providing normalized voice feedback is incorporated directly into the server system 16 .
  • the system 200 of FIG. 12 requires the patient 11 to provide spoken feedback via a locally situated remote client 18 .
  • the system 280 enables a patient 11 to alternatively provide spoken feedback via a telephone network 203 using a standard telephone 203 , including a conventional wired telephone or a wireless telephone, such as a cellular telephone.
  • the server system 16 is augmented to include the audio prompter 210 , the speech engine 214 , and the data stored in the secondary storage 219 .
  • a telephonic interface 280 interfaces the server system 16 to the telephone network 203 and receives voice responses 227 and sends voice prompts 226 to and from the server system 16 . Telephonic interfacing devices are commonly known in the art.
  • the present invention makes possible immediate access to expert medical care at any time and in any place.
  • the database server could contain a virtually up-to-date patient history, which is available to medical providers for the remote diagnosis and prevention of serious illness regardless of the relative location of the patient or time of day.
  • the gathering and storage of multiple sets of critical patient information obtained on a routine basis makes possible treatment methodologies based on an algorithmic analysis of the collected data sets.
  • Each successive introduction of a new collected measures set into the database server would help to continually improve the accuracy and effectiveness of the algorithms used.
  • the present invention potentially enables the detection, prevention, and cure of previously unknown forms of disorders based on a trends analysis and by a cross-referencing approach to create continuously improving peer-group reference databases.
  • the present invention makes possible the provision of tiered patient feedback based on the automated analysis of the collected measures sets.
  • This type of feedback system is suitable for use in, for example, a subscription based health care service.
  • informational feedback can be provided by way of a simple interpretation of the collected data.
  • the feedback could be built up to provide a gradated response to the patient, for example, to notify the patient that he or she is trending into a potential trouble zone. Human interaction could be introduced, both by remotely situated and local medical practitioners.
  • the feedback could include direct interventive measures, such as remotely reprogramming a patient's IPG.
  • the present invention allows “live” patient voice feedback to be captured simultaneously with the collection of physiological measures by their implantable medical device.
  • the voice feedback is normalized to a standardized set of quality of life measures which can be analyzed in a remote, automated fashion.
  • the voice feedback could also be coupled with visual feedback, such as through digital photography or video, to provide a more complete picture of the patient's physical well-being.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pulmonology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A system for providing feedback to an individual patient for automated remote patient care is presented. An implantable medical device collects device measures on a substantially continuous basis from an implant recipient. A remote client obtains patient wellness indicators through voice feedback provided by the implant recipient substantially contemporaneous to the collection of at least one set of the device measures. A database stores the collected device measures into a patient care record. A server receiving and processing the device measures includes a feedback module processing the voice feedback against a stored speech vocabulary into normalized quality of life measures for storage into the patient care record, and an analysis module analyzing the physiological measures and the quality of life measures stored in the patient care record relative to at least one of other physiological measures and other quality of life measures to generate patient status feedback.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This patent application is a continuation of U.S. patent application Ser. No. 10/646,679, filed Aug. 22, 2003, pending; which is a continuation of U.S. patent application Ser. No. 10/251,473, filed Sep. 20, 2002, pending; which is a continuation of U.S. Pat. No. 6,478,737, issued Nov. 12, 2002, which is a continuation of U.S. Pat. No. 6,331,160, issued Dec. 18, 2001, which is a continuation of U.S. Pat. No. 6,203,495, issued Mar. 20, 2001, which is a continuation-in-part of U.S. Pat. No. 6,312,378, issued on Nov. 6, 2001, the priority of filing dates of which are claimed, and the disclosures of which are incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates in general to automated data collection and analysis, and, in particular, to a system and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring.
  • BACKGROUND OF THE INVENTION
  • Implantable pulse generators (IPGs) are medical devices commonly used to treat irregular heartbeats, known as arrhythmias. There are three basic types. Cardiac pacemakers are used to manage bradycardia, an abnormally slow or irregular heartbeat. Bradycardia can cause symptoms such as fatigue, dizziness, and fainting. Implantable cardioverter defibrillators (ICDs) are used to treat tachycardia, heart rhythms that are abnormally fast and life threatening. Tachycardia can result in sudden cardiac death (SCD). Implantable cardiovascular monitors and therapeutic devices are used to monitor and treat structural problems of the heart, such as congestive heart failure, as well as rhythm problems.
  • Pacemakers and ICDs are equipped with an on-board, volatile memory in which telemetered signals can be stored for later retrieval and analysis. In addition, a growing class of cardiac medical devices, including implantable heart failure monitors, implantable event monitors, cardiovascular monitors, and therapy devices, are being used to provide similar stored device information. These devices are able to store more than thirty minutes of per heartbeat data. Typically, the telemetered signals can provide patient device information recorded on a per heartbeat, binned average basis, or derived basis from, for example, atrial electrical activity, ventricular electrical activity, minute ventilation, patient activity score, cardiac output score, mixed venous oxygen score, cardiovascular pressure measures, time of day, and any interventions and the relative success of such interventions. Telemetered signals are also stored in a broader class of monitors and therapeutic devices for other areas of medicine, including metabolism, endocrinology, hematology, neurology, muscular disorders, gastroenterology, urology, ophthalmology, otolaryngology, orthopedics, and similar medical subspecialties.
  • Presently, stored device information is retrieved using a proprietary interrogator or programmer, often during a clinic visit or following a device event. The volume of data retrieved from a single device interrogation “snapshot” can be large and proper interpretation and analysis can require significant physician time and detailed subspecialty knowledge, particularly by cardiologists and cardiac electrophysiologists. The sequential logging and analysis of regularly scheduled interrogations can create an opportunity for recognizing subtle and incremental changes in patient condition otherwise undetectable by inspection of a single “snapshot.” However, present approaches to data interpretation and understanding and practical limitations on time and physician availability make such analysis impracticable.
  • Similarly, the determination and analysis of the quality of life issues which typically accompany the onset of a chronic yet stable diseases, such as coronary-artery disease, is a crucial adjunct to assessing patient wellness and progress. However, unlike in a traditional clinical setting, physicians participating in providing remote patient care are not able to interact with their patients in person. Consequently, quality of life measures, such as how the patient subjectively looks and feels, whether the patient has shortness of breath, can work, can sleep, is depressed, is sexually active, can perform activities of daily life, and so on, cannot be implicitly gathered and evaluated.
  • A prior art system for collecting and analyzing pacemaker and ICD telemetered signals in a clinical or office setting is the Model 9790 Programmer, manufactured by Medtronic, Inc., Minneapolis, Minn. This programmer can be used to retrieve data, such as patient electrocardiogram and any measured physiological conditions, collected by the IPG for recordation, display and printing. The retrieved data is displayed in chronological order and analyzed by a physician. Comparable prior art systems are available from other IPG manufacturers, such as the Model 2901 Programmer Recorder Monitor, manufactured by Guidant Corporation, Indianapolis, Ind., which includes a removable floppy diskette mechanism for patient data storage. These prior art systems lack remote communications facilities and must be operated with the patient present. These systems present a limited analysis of the collected data based on a single device interrogation and lack the capability to recognize trends in the data spanning multiple episodes over time or relative to a disease specific peer group.
  • A prior art system for locating and communicating with a remote medical device implanted in an ambulatory patient is disclosed in U.S. Pat. No. 5,752,976 ('976). The implanted device includes a telemetry transceiver for communicating data and operating instructions between the implanted device and an external patient communications device. The communications device includes a communication link to a remote medical support network, a global positioning satellite receiver, and a patient activated link for permitting patient initiated communication with the medical support network. Patient voice communications through the patient link include both actual patient voice and manually actuated signaling which may convey an emergency situation. The patient voice is converted to an audio signal, digitized, encoded, and transmitted by data bus to a system controller.
  • Related prior art systems for remotely communicating with and receiving telemetered signals from a medical device are disclosed in U.S. Pat. No. 5,113,869 ('869) and U.S. Pat. No. 5,336,245 ('245). In the '869 patent, an implanted AECG monitor can be automatically interrogated at preset times of day to telemeter out accumulated data to a telephonic communicator or a full disclosure recorder. The communicator can be automatically triggered to establish a telephonic communication link and transmit the accumulated data to an office or clinic through a modem. In the '245 patent, telemetered data is downloaded to a larger capacity, external data recorder and is forwarded to a clinic using an auto-dialer and fax modem operating in a personal computer-based programmer/interrogator. However, the '976 telemetry transceiver, '869 communicator, and '245 programmer/interrogator are limited to facilitating communication and transferal of downloaded patient data and do not include an ability to automatically track, recognize, and analyze trends in the data itself. Moreover, the '976 telemetry transceiver facilitates patient voice communications through transmission of a digitized audio signal and does not perform voice recognition or other processing to the patient's voice.
  • Thus, there is a need for a system and method for providing continuous retrieval, transferal, and automated analysis of retrieved implantable medical device information, such as telemetered signals, retrieved in general from a broad class of implantable medical devices and, in particular, from IPGs and cardiovascular monitors. Preferably, the automated analysis would include recognizing a trend and determining whether medical intervention is necessary.
  • There is a further need for a system and method that would allow consideration of sets of collected measures, both actual and derived, from multiple device interrogations. These collected measures sets could then be compared and analyzed against short and long term periods of observation.
  • There is a further need for a system and method that would enable the measures sets for an individual patient to be self-referenced and cross-referenced to similar or dissimilar patients and to the general patient population. Preferably, the historical collected measures sets of an individual patient could be compared and analyzed against those of other patients in general or of a disease specific peer group in particular.
  • There is a further need for a system and method for accepting and normalizing live voice feedback spoken by an individual patient while an identifiable set of telemetered signals is collected by a implantable medical device. Preferably, the normalized voice feedback a semi-quantitative self-assessment of an individual patient's physical and emotional well being at a time substantially contemporaneous to the collection of the telemetered signals.
  • SUMMARY OF THE INVENTION
  • The present invention provides a system and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care. The patient device information relates to individual measures recorded by and retrieved from implantable medical devices, such as IPGs and monitors. The patient device information is received on a regular, e.g., daily, basis as sets of collected measures which are stored along with other patient records in a database. The information can be analyzed in an automated fashion and feedback provided to the patient at any time and in any location.
  • The present invention also provides a system and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system. As before, patient device information is received on a regular, e.g., daily, basis as sets of collected measures which are stored along with other patient records in a database. Voice feedback spoken by an individual patient is processed into a set of quality of life measures by a remote client substantially contemporaneous to the recordation of an identifiable set of collected device measures by the implantable medical device. The processed voice feedback and identifiable collected device measures set are both received and stored into the patient record in the database for subsequent evaluation.
  • An embodiment of the present invention is a system and method for analyzing normalized patient voice feedback in an automated collection and analysis patient care system. Device measures providing physiological measures collected by an implantable medical device on a substantially continuous basis are received for storage into a patient care record. Voice feedback spoken by an individual patient substantially contemporaneous to the collection of at least one set of the device measures is received. The voice feedback is processed into normalized quality of life measures for storage into the patient care record. The physiological measures and the quality of life measures stored in the patient care record are analyzed relative to at least one of other physiological measures and other quality of life measures to determine a patient status indicator.
  • A further embodiment is a system and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring. Device measures are collected through an implantable medical device on a substantially continuous basis from an implant recipient. The device measures are received as physiological measures for storage into a patient care record. The physiological measures include at least one of collected or derived physiological measures. Patient wellness indicators are obtained through voice feedback provided by the implant recipient substantially contemporaneous to the collection of at least one set of the device measures. The voice feedback is processed against a stored speech vocabulary into normalized quality of life measures for storage into the patient care record. The physiological measures and the quality of life measures stored in the patient care record are analyzed relative to at least one of other physiological measures and other quality of life measures to generate patient status feedback
  • A further embodiment is a system and method for interactively monitoring patient status in an automated patient care system using voice feedback. Physiological measures are monitored for an implant recipient. Device measures are collected through an implantable medical device on a substantially continuous basis from the implant recipient. The device measures are periodically stored as at least one of collected or derived physiological measures into an individual patient care record. Quality of life measures are monitored for the implant recipient. Patient wellness indicators are obtained through voice feedback provided by the implant recipient substantially contemporaneous to the collection of the device measures. The voice feedback is processed against a stored speech grammar and vocabulary. The processed voice feedback is stored as standardized quality of life measures into the patient care record. The physiological measures and the quality of life measures from the patient care record are recurrently evaluated against at least one of other physiological measures and other quality of life measures to generate a patient status indicator.
  • The present invention facilitates the gathering, storage, and analysis of critical patient information obtained on a routine basis and analyzed in an automated manner. Thus, the burden on physicians and trained personnel to evaluate the volumes of information is significantly minimized while the benefits to patients are greatly enhanced.
  • The present invention also enables the simultaneous collection of both physiological measures from implantable medical devices and quality of life measures spoken in the patient's own words. Voice recognition technology enables the spoken patient feedback to be normalized to a standardized set of semi-quantitative quality of life measures, thereby facilitating holistic remote, automated patient care.
  • Still other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein is described embodiments of the invention by way of illustrating the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modifications in various obvious respects, all without departing from the spirit and the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing a system for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care in accordance with the present invention;
  • FIG. 2 is a block diagram showing the hardware components of the server system of the system of FIG. 1;
  • FIG. 3 is a block diagram showing the software modules of the server system of the system of FIG. 1;
  • FIG. 4 is a block diagram showing the analysis module of the server system of FIG. 3;
  • FIG. 5 is a database schema showing, by way of example, the organization of a cardiac patient care record stored in the database of the system of FIG. 1;
  • FIG. 6 is a record view showing, by way of example, a set of partial cardiac patient care records stored in the database of the system of FIG. 1;
  • FIG. 7 is a flow diagram showing a method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care in accordance with the present invention;
  • FIG. 8 is a flow diagram showing a routine for analyzing collected measures sets for use in the method of FIG. 7;
  • FIG. 9 is a flow diagram showing a routine for comparing sibling collected measures sets for use in the routine of FIG. 8;
  • FIGS. 10A and 10B are flow diagrams showing a routine for comparing peer collected measures sets for use in the routine of FIG. 8;
  • FIG. 11 is a flow diagram showing a routine for providing feedback for use in the method of FIG. 7;
  • FIG. 12 is a block diagram showing a system for providing patient status feedback via an automated patient care system with speech-based wellness monitoring;
  • FIG. 13 is a block diagram showing the software modules of the remote client of the system of FIG. 12;
  • FIG. 14 is a block diagram showing the software modules of the server system of the system of FIG. 12;
  • FIG. 15 is a database schema showing, by way of example, the organization of a quality of life record for cardiac patient care stored as part of a patient care record in the database of the system of FIG. 12;
  • FIGS. 16A-16B are flow diagrams showing a method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring;
  • FIG. 17 is a flow diagram showing a routine for processing voice feedback for use in the method of FIGS. 16A-16B;
  • FIG. 18 is a flow diagram showing a routine for requesting a quality of life measure for use in the routine of FIG. 17;
  • FIG. 19 is a flow diagram showing a routine for recognizing and translating individual spoken words for use in the routine of FIG. 17; and
  • FIG. 20 is a block diagram showing the software modules of the server system in a further embodiment of the system of FIG. 12.
  • DETAILED DESCRIPTION
  • FIG. 1 is a block diagram showing a system 10 for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care in accordance with the present invention. A patient 11 is a recipient of an implantable medical device 12, such as, by way of example, an IPG or a heart failure or event monitor, with a set of leads extending into his or her heart. The implantable medical device 12 includes circuitry for recording into a short-term, volatile memory telemetered signals, which are stored as a set of collected measures for later retrieval.
  • For an exemplary cardiac implantable medical device, the telemetered signals non-exclusively present patient information recorded on a per heartbeat, binned average or derived basis and relating to: atrial electrical activity, ventricular electrical activity, minute ventilation, patient activity score, cardiac output score, mixed venous oxygenation score, cardiovascular pressure measures, time of day, the number and types of interventions made, and the relative success of any interventions, plus the status of the batteries and programmed settings. Examples of pacemakers suitable for use in the present invention include the Discovery line of pacemakers, manufactured by Guidant Corporation, Indianapolis, Ind. Examples of ICDs suitable for use in the present invention include the Gem line of ICDs, manufactured by Medtronic Corporation, Minneapolis, Minn.
  • In the described embodiment, the patient 11 has a cardiac implantable medical device. However, a wide range of related implantable medical devices are used in other areas of medicine and a growing number of these devices are also capable of measuring and recording patient information for later retrieval. These implantable medical devices include monitoring and therapeutic devices for use in metabolism, endocrinology, hematology, neurology, muscular disorders, gastroenterology, urology, ophthalmology, otolaryngology, orthopedics, and similar medical subspecialties. One skilled in the art would readily recognize the applicability of the present invention to these related implantable medical devices.
  • On a regular basis, the telemetered signals stored in the implantable medical device 12 are retrieved. By way of example, a programmer 14 can be used to retrieve the telemetered signals. However, any form of programmer, interrogator, recorder, monitor, or telemetered signals transceiver suitable for communicating with an implantable medical device 12 could be used, as is known in the art. In addition, a personal computer or digital data processor could be interfaced to the implantable medical device 12, either directly or via a telemetered signals transceiver configured to communicate with the implantable medical device 12.
  • Using the programmer 14, a magnetized reed switch (not shown) within the implantable medical device 12 closes in response to the placement of a wand 13 over the location of the implantable medical device 12. The programmer 14 communicates with the implantable medical device 12 via RF signals exchanged through the wand 13. Programming or interrogating instructions are sent to the implantable medical device 12 and the stored telemetered signals are downloaded into the programmer 14. Once downloaded, the telemetered signals are sent via an internetwork 15, such as the Internet, to a server system 16 which periodically receives and stores the telemetered signals in a database 17, as further described below with reference to FIG. 2.
  • An example of a programmer 14 suitable for use in the present invention is the Model 2901 Programmer Recorder Monitor, manufactured by Guidant Corporation, Indianapolis, Ind., which includes the capability to store retrieved telemetered signals on a proprietary removable floppy diskette. The telemetered signals could later be electronically transferred using a personal computer or similar processing device to the internetwork 15, as is known in the art.
  • Other alternate telemetered signals transfer means could also be employed. For instance, the stored telemetered signals could be retrieved from the implantable medical device 12 and electronically transferred to the internetwork 15 using the combination of a remote external programmer and analyzer and a remote telephonic communicator, such as described in U.S. Pat. No. 5,113,869, the disclosure of which is incorporated herein by reference. Similarly, the stored telemetered signals could be retrieved and remotely downloaded to the server system 16 using a world-wide patient location and data telemetry system, such as described in U.S. Pat. No. 5,752,976, the disclosure of which is incorporated herein by reference.
  • The received telemetered signals are analyzed by the server system 16, which generates a patient status indicator. The feedback is then provided back to the patient 11 through a variety of means. By way of example, the feedback can be sent as an electronic mail message generated automatically by the server system 16 for transmission over the internetwork 15. The electronic mail message is received by a remote client 18, such as a personal computer (PC), situated for local access by the patient 11. Alternatively, the feedback can be sent through a telephone interface device 19 as an automated voice mail message to a telephone 21 or as an automated facsimile message to a facsimile machine 22, both also situated for local access by the patient 11. In addition to a remote client 18, telephone 21, and facsimile machine 22, feedback could be sent to other related devices, including a network computer, wireless computer, personal data assistant, television, or digital data processor. Preferably, the feedback is provided in a tiered fashion, as further described below with reference to FIG. 3.
  • FIG. 2 is a block diagram showing the hardware components of the server system 16 of the system 10 of FIG. 1. The server system 16 consists of three individual servers: network server 31, database server 34, and application server 35. These servers are interconnected via an intranetwork 33. In the described embodiment, the functionality of the server system 16 is distributed among these three servers for efficiency and processing speed, although the functionality could also be performed by a single server or cluster of servers. The network server 31 is the primary interface of the server system 16 onto the internetwork 15. The network server 31 periodically receives the collected telemetered signals sent by remote implantable medical devices over the internetwork 15. The network server 31 is interfaced to the internetwork 15 through a router 32. To ensure reliable data exchange, the network server 31 implements a TCP/IP protocol stack, although other forms of network protocol stacks are suitable.
  • The database server 34 organizes the patient care records in the database 17 and provides storage of and access to information held in those records. A high volume of data in the form of collected measures sets from individual patients is received. The database server 34 frees the network server 31 from having to categorize and store the individual collected measures sets in the appropriate patient care record.
  • The application server 35 operates management applications and performs data analysis of the patient care records, as further described below with reference to FIG. 3. The application server 35 communicates feedback to the individual patients either through electronic mail sent back over the internetwork 15 via the network server 31 or as automated voice mail or facsimile messages through the telephone interface device 19.
  • The server system 16 also includes a plurality of individual workstations 36 (WS) interconnected to the intranetwork 33, some of which can include peripheral devices, such as a printer 37. The workstations 36 are for use by the data management and programming staff, nursing staff, office staff, and other consultants and authorized personnel.
  • The database 17 consists of a high-capacity storage medium configured to store individual patient care records and related health care information. Preferably, the database 17 is configured as a set of high-speed, high capacity hard drives, such as organized into a Redundant Array of Inexpensive Disks (RAID) volume. However, any form of volatile storage, non-volatile storage, removable storage, fixed storage, random access storage, sequential access storage, permanent storage, erasable storage, and the like would be equally suitable. The organization of the database 17 is further described below with reference to FIG. 3.
  • The individual servers and workstations are general purpose, programmed digital computing devices consisting of a central processing unit (CPU), random access memory (RAM), non-volatile secondary storage, such as a hard drive or CD ROM drive, network interfaces, and peripheral devices, including user interfacing means, such as a keyboard and display. Program code, including software programs, and data are loaded into the RAM for execution and processing by the CPU and results are generated for display, output, transmittal, or storage. In the described embodiment, the individual servers are Intel Pentium-based server systems, such as available from Dell Computers, Austin, Tex., or Compaq Computers, Houston, Tex. Each system is preferably equipped with 128 MB RAM, 100 GB hard drive capacity, data backup facilities, and related hardware for interconnection to the intranetwork 33 and internetwork 15. In addition, the workstations 36 are also Intel Pentium-based personal computer or workstation systems, also available from Dell Computers, Austin, Tex., or Compaq Computers, Houston, Tex. Each workstation is preferably equipped with 64 MB RAM, 10 GB hard drive capacity, and related hardware for interconnection to the intranetwork 33. Other types of server and workstation systems, including personal computers, minicomputers, mainframe computers, supercomputers, parallel computers, workstations, digital data processors and the like would be equally suitable, as is known in the art.
  • The telemetered signals are communicated over an internetwork 15, such as the Internet. However, any type of electronic communications link could be used, including an intranetwork link, serial link, data telephone link, satellite link, radio-frequency link, infrared link, fiber optic link, coaxial cable link, television link, and the like, as is known in the art. Also, the network server 31 is interfaced to the internetwork 15 using a T-1 network router 32, such as manufactured by Cisco Systems, Inc., San Jose, Calif. However, any type of interfacing device suitable for interconnecting a server to a network could be used, including a data modem, cable modem, network interface, serial connection, data port, hub, frame relay, digital PBX, and the like, as is known in the art.
  • FIG. 3 is a block diagram showing the software modules of the server system 16 of the system 10 of FIG. 1. Each module is a computer program written as source code in a conventional programming language, such as the C or Java programming languages, and is presented for execution by the CPU as object or byte code, as is known in the arts. The various implementations of the source code and object and byte codes can be held on a computer-readable storage medium or embodied on a transmission medium in a carrier wave. There are three basic software modules, which functionally define the primary operations performed by the server system 16: database module 51, analysis module 53, and feedback module 55. In the described embodiment, these modules are executed in a distributed computing environment, although a single server or a cluster of servers could also perform the functionality of the modules. The module functions are further described below in more detail beginning with reference to FIG. 7.
  • For each patient being provided remote patient care, the server system 16 periodically receives a collected measures set 50 which is forwarded to the database module 51 for processing. The database module 51 organizes the individual patent care records stored in the database 52 and provides the facilities for efficiently storing and accessing the collected measures sets 50 and patient data maintained in those records. An exemplary database schema for use in storing collected measures sets 50 in a patient care record is described below, by way of example, with reference to FIG. 5. The database server 34 (shown in FIG. 2) performs the functionality of the database module 51. Any type of database organization could be utilized, including a flat file system, hierarchical database, relational database, or distributed database, such as provided by database vendors, such as Oracle Corporation, Redwood Shores, Calif.
  • The analysis module 53 analyzes the collected measures sets 50 stored in the patient care records in the database 52. The analysis module 53 makes an automated determination of patient wellness in the form of a patient status indicator 54. Collected measures sets 50 are periodically received from implantable medical devices and maintained by the database module 51 in the database 52. Through the use of this collected information, the analysis module 53 can continuously follow the medical well being of a patient and can recognize any trends in the collected information that might warrant medical intervention. The analysis module 53 compares individual measures and derived measures obtained from both the care records for the individual patient and the care records for a disease specific group of patients or the patient population in general. The analytic operations performed by the analysis module 53 are further described below with reference to FIG. 4. The application server 35 (shown in FIG. 2) performs the functionality of the analysis module 53.
  • The feedback module 55 provides automated feedback to the individual patient based, in part, on the patient status indicator 54. As described above, the feedback could be by electronic mail or by automated voice mail or facsimile. Preferably, the feedback is provided in a tiered manner. In the described embodiment, four levels of automated feedback are provided. At a first level, an interpretation of the patient status indicator 54 is provided. At a second level, a notification of potential medical concern based on the patient status indicator 54 is provided. This feedback level could also be coupled with human contact by specially trained technicians or medical personnel. At a third level, the notification of potential medical concern is forwarded to medical practitioners located in the patient's geographic area. Finally, at a fourth level, a set of reprogramming instructions based on the patient status indicator 54 could be transmitted directly to the implantable medical device to modify the programming instructions contained therein. As is customary in the medical arts, the basic tiered feedback scheme would be modified in the event of bona fide medical emergency. The application server 35 (shown in FIG. 2) performs the functionality of the feedback module 55.
  • FIG. 4 is a block diagram showing the analysis module 53 of the server system 16 of FIG. 3. The analysis module 53 contains two functional submodules: comparison module 62 and derivation module 63. The purpose of the comparison module 62 is to compare two or more individual measures, either collected or derived. The purpose of the derivation module 63 is to determine a derived measure based on one or more collected measures which is then used by the comparison module 62. For instance, a new and improved indicator of impending heart failure could be derived based on the exemplary cardiac collected measures set described with reference to FIG. 5. The analysis module 53 can operate either in a batch mode of operation wherein patient status indicators are generated for a set of individual patients or in a dynamic mode wherein a patient status indicator is generated on the fly for an individual patient.
  • The comparison module 62 receives as inputs from the database 17 two input sets functionally defined as peer collected measures sets 60 and sibling collected measures sets 61, although in practice, the collected measures sets are stored on a per sampling basis. Peer collected measures sets 60 contain individual collected measures sets that all relate to the same type of patient information, for instance, atrial electrical activity, but which have been periodically collected over time. Sibling collected measures sets 61 contain individual collected measures sets that relate to different types of patient information, but which may have been collected at the same time or different times. In practice, the collected measures sets are not separately stored as “peer” and “sibling” measures. Rather, each individual patient care record stores multiple sets of sibling collected measures. The distinction between peer collected measures sets 60 and sibling collected measures sets 61 is further described below with reference to FIG. 6.
  • The derivation module 63 determines derived measures sets 64 on an as-needed basis in response to requests from the comparison module 62. The derived measures 64 are determined by performing linear and non-linear mathematical operations on selected peer measures 60 and sibling measures 61, as is known in the art.
  • FIG. 5 is a database schema showing, by way of example, the organization of a cardiac patient care record stored 70 in the database 17 of the system 10 of FIG. 1. Only the information pertaining to collected measures sets are shown. Each patient care record would also contain normal identifying and treatment profile information, as well as medical history and other pertinent data (not shown). Each patient care record stores a multitude of collected measures sets for an individual patient. Each individual set represents a recorded snapshot of telemetered signals data which was recorded, for instance, per heartbeat or binned average basis by the implantable medical device 12. For example, for a cardiac patient, the following information would be recorded as a collected measures set: atrial electrical activity 71, ventricular electrical activity 72, time of day 73, activity level 74, cardiac output 75, oxygen level 76, cardiovascular pressure measures 77, pulmonary measures 78, interventions made by the implantable medical device 78, and the relative success of any interventions made 80. In addition, the implantable medical device 12 would also communicate device specific information, including battery status 81 and program settings 82. Other types of collected measures are possible. In addition, a well-documented set of derived measures can be determined based on the collected measures, as is known in the art.
  • FIG. 6 is a record view showing, by way of example, a set of partial cardiac patient care records stored in the database 17 of the system 10 of FIG. 1. Three patient care records are shown for Patient 1, Patient 2, and Patient 3. For each patent, three sets of measures are shown, X, Y, and Z. The measures are organized into sets with Set 0 representing sibling measures made at a reference time t=0. Similarly, Set n-2, Set n-1 and Set n each represent sibling measures made at later reference times t=n-2, t=n-1 and t=n, respectively.
  • For a given patient, for instance, Patient 1, all measures representing the same type of patient information, such as measure X, are peer measures. These are measures, which are monitored over time in a disease-matched peer group. All measures representing different types of patient information, such as measures X, Y, and Z, are sibling measures. These are measures which are also measured over time, but which might have medically significant meaning when compared to each other within a single set. Each of the measures, X, Y, and Z, could be either collected or derived measures.
  • The analysis module 53 (shown in FIG. 4) performs two basic forms of comparison. First, individual measures for a given patient can be compared to other individual measures for that same patient. These comparisons might be peer-to-peer measures projected over time, for instance, Xn, Xn-1, Xn-2, . . . X0, or sibling-to-sibling measures for a single snapshot, for instance, Xn, Yn, and Zn, or projected over time, for instance, Xn, Yn, Zn, Xn-1, Yn-1, Zn-1, Xn-2, Yn-2, Zn-2 . . . X0, Y0, Z0. Second, individual measures for a given patient can be compared to other individual measures for a group of other patients sharing the same disease-specific characteristics or to the patient population in general. Again, these comparisons might be peer-to-peer measures projected over time, for instance, Xn, Xn′, Xn″, Xn-1, Xn-1″, X n-1″, Xn-2, Xn-2′, Xn-2″ . . . X0, X0′, X0″, or comparing the individual patient's measures to an average from the group. Similarly, these comparisons might be sibling-to-sibling measures for single snapshots, for instance, Xn, Xn′, Xn″, Yn, Yn, Yn″, and Zn, Zn′, Zn″, or projected over time, for instance, Xn, Xn′, Xn″, Yn, Yn′, Y n″, Zn, Zn′, Zn″, Xn-1, Xn-1′, Xn-″, Yn-1, Yn-1′, Y n-1″, Z n-1, Zn-1′, Zn-1″, Xn-2, Xn-2′, Xn-2″, Yn-2, Yn-2′, Yn-2″, Zn-2, Zn-2′, Xn-2″ . . . X0, X0′, X0″, Y0, Y0′, Y0″, and Z0, Z0′, Z0″. Other forms of comparisons are feasible.
  • FIG. 7 is a flow diagram showing a method 90 for automated collection and analysis of patient information retrieved from an implantable medical device 12 for remote patient care in accordance with the present invention. The method 90 is implemented as a conventional computer program for execution by the server system 16 (shown in FIG. 1). As a preparatory step, the patient care records are organized in the database 17 with a unique patient care record assigned to each individual patient (block 91). Next, the collected measures sets for an individual patient are retrieved from the implantable medical device 12 (block 92) using a programmer, interrogator, telemetered signals transceiver, and the like. The retrieved collected measures sets are sent, on a substantially regular basis, over the internetwork 15 or similar communications link (block 93) and periodically received by the server system 16 (block 94). The collected measures sets are stored into the patient care record in the database 17 for that individual patient (block 95). One or more of the collected measures sets for that patient are analyzed (block 96), as further described below with reference to FIG. 8. Finally, feedback based on the analysis is sent to that patient over the internetwork 15 as an email message, via telephone line as an automated voice mail or facsimile message, or by similar feedback communications link (block 97), as further described below with reference to FIG. 11.
  • FIG. 8 is a flow diagram showing the routine for analyzing collected measures sets 96 for use in the method of FIG. 7. The purpose of this routine is to make a determination of general patient wellness based on comparisons and heuristic trends analyses of the measures, both collected and derived, in the patient care records in the database 17. A first collected measures set is selected from a patient care record in the database 17 (block 100). If the measures comparison is to be made to other measures originating from the patient care record for the same individual patient (block 101), a second collected measures set is selected from that patient care record (block 102). Otherwise, a group measures comparison is being made (block 101) and a second collected measures set is selected from another patient care record in the database 17 (block 103). Note the second collected measures set could also contain averaged measures for a group of disease specific patients or for the patient population in general.
  • Next, if a sibling measures comparison is to be made (block 104), a routine for comparing sibling collected measures sets is performed (block 105), as further described below with reference to FIG. 9. Similarly, if a peer measures comparison is to be made (block 106), a routine for comparing sibling collected measures sets is performed (block 107), as further described below with reference to FIGS. 10A and 10B.
  • Finally, a patient status indicator is generated (block 108). By way of example, cardiac output could ordinarily be approximately 5.0 liters per minute with a standard deviation of ±1.0. An actionable medical phenomenon could occur when the cardiac output of a patient is ±3.0-4.0 standard deviations out of the norm. A comparison of the cardiac output measures 75 (shown in FIG. 5) for an individual patient against previous cardiac output measures 75 would establish the presence of any type of downward health trend as to the particular patient. A comparison of the cardiac output measures 75 of the particular patient to the cardiac output measures 75 of a group of patients would establish whether the patient is trending out of the norm. From this type of analysis, the analysis module 53 generates a patient status indicator 54 and other metrics of patient wellness, as is known in the art.
  • FIG. 9 is a flow diagram showing the routine for comparing sibling collected measures sets 105 for use in the routine of FIG. 8. Sibling measures originate from the patient care records for an individual patient. The purpose of this routine is either to compare sibling derived measures to sibling derived measures (blocks 111-113) or sibling collected measures to sibling collected measures (blocks 115-117). Thus, if derived measures are being compared (block 110), measures are selected from each collected measures set (block 111). First and second derived measures are derived from the selected measures (block 112) using the derivation module 63 (shown in FIG. 4). The first and second derived measures are then compared (block 113) using the comparison module 62 (also shown in FIG. 4). The steps of selecting, determining, and comparing (blocks 111-113) are repeated until no further comparisons are required (block 114), whereupon the routine returns.
  • If collected measures are being compared (block 110), measures are selected from each collected measures set (block 115). The first and second collected measures are then compared (block 116) using the comparison module 62 (also shown in FIG. 4). The steps of selecting and comparing (blocks 115-116) are repeated until no further comparisons are required (block 117), whereupon the routine returns.
  • FIGS. 10A and 10B are a flow diagram showing the routine for comparing peer collected measures sets 107 for use in the routine of FIG. 8. Peer measures originate from patient care records for different patients, including groups of disease specific patients or the patient population in general. The purpose of this routine is to compare peer derived measures to peer derived measures (blocks 122-125), peer derived measures to peer collected measures (blocks 126-129), peer collected measures to peer derived measures (block 131-134), or peer collected measures to peer collected measures (blocks 135-137). Thus, if the first measure being compared is a derived measure (block 120) and the second measure being compared is also a derived measure (block 121), measures are selected from each collected measures set (block 122). First and second derived measures are derived from the selected measures (block 123) using the derivation module 63 (shown in FIG. 4). The first and second derived measures are then compared (block 124) using the comparison module 62 (also shown in FIG. 4). The steps of selecting, determining, and comparing (blocks 122-124) are repeated until no further comparisons are required (block 115), whereupon the routine returns.
  • If the first measure being compared is a derived measure (block 120) but the second measure being compared is a collected measure (block 121), a first measure is selected from the first collected measures set (block 126). A first derived measure is derived from the first selected measure (block 127) using the derivation module 63 (shown in FIG. 4). The first derived and second collected measures are then compared (block 128) using the comparison module 62 (also shown in FIG. 4). The steps of selecting, determining, and comparing (blocks 126-128) are repeated until no further comparisons are required (block 129), whereupon the routine returns.
  • If the first measure being compared is a collected measure (block 120) but the second measure being compared is a derived measure (block 130), a second measure is selected from the second collected measures set (block 131). A second derived measure is derived from the second selected measure (block 132) using the derivation module 63 (shown in FIG. 4). The first collected and second derived measures are then compared (block 133) using the comparison module 62 (also shown in FIG. 4). The steps of selecting, determining, and comparing (blocks 131-133) are repeated until no further comparisons are required (block 134), whereupon the routine returns.
  • If the first measure being compared is a collected measure (block 120) and the second measure being compared is also a collected measure (block 130), measures are selected from each collected measures set (block 135). The first and second collected measures are then compared (block 136) using the comparison module 62 (also shown in FIG. 4). The steps of selecting and comparing (blocks 135-136) are repeated until no further comparisons are required (block 137), whereupon the routine returns.
  • FIG. 11 is a flow diagram showing the routine for providing feedback 97 for use in the method of FIG. 7. The purpose of this routine is to provide tiered feedback based on the patient status indicator. Four levels of feedback are provided with increasing levels of patient involvement and medical care intervention. At a first level (block 150), an interpretation of the patient status indicator 54, preferably phrased in lay terminology, and related health care information is sent to the individual patient (block 151) using the feedback module 55 (shown in FIG. 3). At a second level (block 152), a notification of potential medical concern, based on the analysis and heuristic trends analysis, is sent to the individual patient (block 153) using the feedback module 55. At a third level (block 154), the notification of potential medical concern is forwarded to the physician responsible for the individual patient or similar health care professionals (block 155) using the feedback module 55. Finally, at a fourth level (block 156), reprogramming instructions are sent to the implantable medical device 12 (block 157) using the feedback module 55.
  • FIG. 12 is a block diagram showing a system 200 for providing normalized voice feedback from an individual patient 11 in an automated collection and analysis patient care system, such as the system 10 of FIG. 1. The remote client 18 includes a microphone 201 and a speaker 202 which is interfaced internally within the remote client 18 to sound recordation and reproduction hardware. The patient 11 provides spoken feedback into the microphone 201 in response to voice prompts reproduced by the remote client 18 on the speaker 202, as further described below with reference to FIG. 13. The raw spoken feedback is processed into a normalized set of quality of life measures which each relate to uniform self-assessment indicators, as further described below with reference to FIG. 15. Alternatively, in a further embodiment of the system 200, the patient 11 can provide spoken feedback via a telephone network 203 using a standard telephone 203, including a conventional wired telephone or a wireless telephone, such as a cellular telephone, as further described below with reference to FIG. 20. In the described embodiment, the microphone 201 and the speaker 202 are standard, off-the-shelf components commonly included with consumer personal computer systems, as is known in the art.
  • The system 200 continuously monitors and collects sets of device measures from the implantable medical device 12. To augment the on-going monitoring process with a patient's self-assessment of physical and emotional well-being, a quality of life measures set can be recorded by the remote client 18 Importantly, each quality of life measures set is recorded substantially contemporaneous to the collection of an identified collected device measures set. The date and time of day at which the quality of life measures set was recorded can be used to correlate the quality of life measures set to the collected device measures set recorded closest in time to the quality of life measures set. The pairing of the quality of life measures set and an identified collected device measures set provides medical practitioners with a more complete picture of the patient's medical status by combining physiological “hard” machine-recorded data with semi-quantitative “soft” patient-provided data.
  • FIG. 13 is a block diagram showing the software modules of the remote client 18 of the system 200 of FIG. 12. As with the software modules of the system 10 of FIG. 1, each module here is also a computer program written as source code in a conventional programming language, such as the C or Java programming languages, and is presented for execution by the CPU as object or byte code, as is known in the arts. There are two basic software modules, which functionally define the primary operations performed by the remote client 18 in providing normalized voice feedback: audio prompter 210 and speech engine 214. The remote client 18 includes a secondary storage 219, such as a hard drive, a CD ROM player, and the like, within which is stored data used by the software modules. Conceptually, the voice reproduction and recognition functions performed by the audio prompter 210 and speech engine 214 can be described separately, but those same functions could also be performed by a single voice processing module, as is known in the art.
  • The audio prompter 210 generates voice prompts 226 which are played back to the patient 11 on the speaker 202. Each voice prompt is in the form of a question or phrase seeking to develop a self-assessment of the patient's physical and emotional well being. For example, the patient 11 might be prompted with, “Are you short of breath?” The voice prompts 226 are either from a written script 220 reproduced by speech synthesizer 211 or pre-recorded speech 221 played back by playback module 212. The written script 220 is stored within the secondary storage 219 and consists of written quality of life measure requests. Similarly, the pre-recorded speech 221 is also stored within the secondary storage 219 and consists of sound “bites” of recorded quality of life measure requests in either analog or digital format.
  • The speech engine 214 receives voice responses 227 spoken by the patient 11 into the microphone 201. The voice responses 227 can be unstructured, natural language phrases and sentences. A voice grammar 222 provides a lexical structuring for use in determining the meaning of each spoken voice response 227. The voice grammar 222 allows the speech engine 214 to “normalize” the voice responses 227 into recognized quality of life measures 228. Individual spoken words in each voice response 227 are recognized by a speech recognition module 215 and translated into written words. In turn, the written words are parsed into tokens by a parser 216. A lexical analyzer 217 analyzes the tokens as complete phrases in accordance with a voice grammar 222 stored within the secondary storage 219. Finally, if necessary, the individual words are normalized to uniform terms by a lookup module 218 which retrieves synonyms maintained as a vocabulary 223 stored within the secondary storage 218. For example, in response to the query, “Are you short of breath?,” a patient might reply, “I can hardly breath,” “I am panting,” or “I am breathless.” The speech recognition module 215 would interpret these phrases to imply dyspnea with a corresponding quality of life measure indicating an awareness by the patient of abnormal breathing. In the described embodiment, the voice reproduction and recognition functions can be performed by the various natural voice software programs licensed by Dragon Systems, Inc., Newton, Mass. Alternatively, the written script 220, voice grammar 222, and vocabulary 223 could be expressed as a script written in a voice page markup language for interpretation by a voice browser operating on the remote client 18. Two exemplary voice page description languages include the VoxML markup language, licensed by Motorola, Inc., Chicago, Ill., and described at http://www.voxml.com, and the Voice eXtensible Markup Language (VXML), currently being jointly developed by AT&T, Motorola, Lucent Technologies, and IBM, and described at http://www.vxmlforum.com. The module functions are further described below in more detail beginning with reference to FIGS. 16A-16B.
  • FIG. 14 is a block diagram showing the software modules of the server system 16 of the system 200 of FIG. 12. The database module 51, previously described above with reference to FIG. 3, also receives the collected quality of life measures set 228 from the remote client 18, which the database module 51 stores into the appropriate patient care record in the database 52. The date and time of day 236 (shown in FIG. 15) of the quality of life measures set 228 is matched to the date and time of day 73 (shown in FIG. 5) of the collected measures set 50 recorded closest in time to the quality of life measures set 228. The matching collected measures set 50 is identified in the patient care record and can be analyzed with the quality of life measures set 228 by the analysis module 53, such as described above with reference to FIG. 8.
  • FIG. 15 is a database schema showing, by way of example, the organization of a quality of life record 230 for cardiac patient care stored as part of a patient care record in the database 17 of the system 200 of FIG. 12. A quality of life score is a semi-quantitative self-assessment of an individual patient's physical and emotional well being. Non-commercial, non-proprietary standardized automated quality of life scoring systems are readily available, such as provided by the Duke Activities Status Indicator. For example, for a cardiac patient, the quality of life record 230 stores the following information: health wellness 231, shortness of breath 232, energy level 233, chest discomfort 235, time of day 234, and other quality of life measures as would be known to one skilled in the art. Other types of quality of life measures are possible.
  • A quality of life indicator is a vehicle through which a patient can remotely communicate to the patient care system how he or she is subjectively feeling. The quality of life indicators can include symptoms of disease. When tied to machine-recorded physiological measures, a quality of life indicator can provide valuable additional information to medical practitioners and the automated collection and analysis patient care system 200 not otherwise discernible without having the patient physically present. For instance, a scoring system using a scale of 1.0 to 10.0 could be used with 10.0 indicating normal wellness and 1.0 indicating severe health problems. Upon the completion of an initial observation period, a patient might indicate a health wellness score 231 of 5.0 and a cardiac output score of 5.0. After one month of remote patient care, the patient might then indicate a health wellness score 231 of 4.0 and a cardiac output score of 4.0 and a week later indicate a health wellness score 231 of 3.5 and a cardiac output score of 3.5. Based on a comparison of the health wellness scores 231 and the cardiac output scores, the system 200 would identify a trend indicating the necessity of potential medical intervention while a comparison of the cardiac output scores alone might not lead to the same prognosis.
  • FIGS. 16A-16B are flow diagrams showing a method 239 for providing normalized voice feedback from an individual patient 11 in an automated collection and analysis patient care system 200. As with the method 90 of FIG. 7, this method is also implemented as a conventional computer program and performs the same set of steps as described with reference to FIG. 7 with the following additional functionality. First, voice feedback spoken by the patient 11 into the remote client 18 is processed into a quality of life measures set 228 (block 240), as further described below with reference to FIG. 17. The voice feedback is spoken substantially contemporaneous to the collection of an identified device measures set 50. The appropriate collected device measures set 50 can be matched to and identified with (not shown) the quality of life measures set 228 either by matching their respective dates and times of day or by similar means, either by the remote client 18 or the server system 16. The quality of life measures set 228 and the identified collected measures set 50 are sent over the internetwork 15 to the server system 16 (block 241). Note the quality of life measures set 228 and the identified collected measures set 50 both need not be sent over the internetwork 15 at the same time, so long as the two sets are ultimately paired based on, for example, date and time of day. The quality of life measures set 228 and the identified collected measures set 50 are received by the server system 16 (block 242) and stored in the appropriate patient care record in the database 52 (block 243). Finally, the quality of life measures set 228, identified collected measures set 50, and one or more collected measures sets 50 are analyzed (block 244) and feedback, including a patient status indicator 54 (shown in FIG. 14), is provided to the patient (block 245).
  • FIG. 17 is a flow diagram showing the routine for processing voice feedback 240 for use in the method of FIGS. 16A-16B. The purpose of this routine is to facilitate a voice interactive session with the patient 11 during which is developed a normalized set of quality of life measures. Thus, the remote client 18 requests a quality of life measure via a voice prompt (block 250), played on the speaker 202 (shown in FIG. 13), as further described below with reference to FIG. 18. The remote client 18 receives the spoken feedback from the patient 11 (block 251) via the microphone 201 (shown in FIG. 13). The remote client 18 recognizes individual words in the spoken feedback and translates those words into written words (block 252), as further described below with reference to FIG. 19. The routine returns at the end of the voice interactive session.
  • FIG. 18 is a flow diagram showing the routine for requesting a quality of life measure 251 for use in the routine 240 of FIG. 17. The purpose of this routine is to present a voice prompt 226 to the user via the speaker 202. Either pre-recorded speech 221 or speech synthesized from a written script 220 can be used. Thus, if synthesized speech is employed by the remote client 18 (block 260), a written script, such as a voice markup language script, specifying questions and phrases which with to request quality of life measures is stored (block 261) on the secondary storage 219 of the remote client 18. Each written quality of life measure request is retrieved by the remote client 18 (block 262) and synthesized into speech for playback to the patient 11 (block 263). Alternatively, if pre-recorded speech is employed by the remote client 18 (block 260), pre-recorded voice “bites” are stored (block 264) on the secondary storage 219 of the remote client 18. Each pre-recorded quality of life measure request is retrieved by the remote client 18 (block 265) and played back to the patient 11 (block 266). The routine then returns.
  • FIG. 19 is a flow diagram showing the routine for recognizing and translating individual spoken words 252 for use in the routine 240 of FIG. 17. The purpose of this routine is to receive and interpret a free-form voice response 227 from the user via the microphone 201. First, a voice grammar consisting of a lexical structuring of words, phrases, and sentences is stored (block 270) on the secondary storage 219 of the remote client 18. Similarly, a vocabulary of individual words and their commonly accepted synonyms is stored (block 271) on the secondary storage 219 of the remote client 18. After individual words in the voice feedback are recognized (block 272), the individual words are parsed into tokens (block 273). The voice feedback is then lexically analyzed using the tokens and in accordance with the voice grammar 222 (block 274) to determine the meaning of the voice feedback. If necessary, the vocabulary 223 is referenced to lookup synonyms of the individual words (block 275). The routine then returns.
  • FIG. 20 is a block diagram showing the software modules of the server system in a further embodiment of the system 200 of FIG. 12. The functionality of the remote client 18 in providing normalized voice feedback is incorporated directly into the server system 16. The system 200 of FIG. 12 requires the patient 11 to provide spoken feedback via a locally situated remote client 18. However, the system 280 enables a patient 11 to alternatively provide spoken feedback via a telephone network 203 using a standard telephone 203, including a conventional wired telephone or a wireless telephone, such as a cellular telephone. The server system 16 is augmented to include the audio prompter 210, the speech engine 214, and the data stored in the secondary storage 219. A telephonic interface 280 interfaces the server system 16 to the telephone network 203 and receives voice responses 227 and sends voice prompts 226 to and from the server system 16. Telephonic interfacing devices are commonly known in the art.
  • Therefore, through the use of the collected measures sets, the present invention makes possible immediate access to expert medical care at any time and in any place. For example, after establishing and registering for each patient an appropriate baseline set of measures, the database server could contain a virtually up-to-date patient history, which is available to medical providers for the remote diagnosis and prevention of serious illness regardless of the relative location of the patient or time of day.
  • Moreover, the gathering and storage of multiple sets of critical patient information obtained on a routine basis makes possible treatment methodologies based on an algorithmic analysis of the collected data sets. Each successive introduction of a new collected measures set into the database server would help to continually improve the accuracy and effectiveness of the algorithms used. In addition, the present invention potentially enables the detection, prevention, and cure of previously unknown forms of disorders based on a trends analysis and by a cross-referencing approach to create continuously improving peer-group reference databases.
  • Similarly, the present invention makes possible the provision of tiered patient feedback based on the automated analysis of the collected measures sets. This type of feedback system is suitable for use in, for example, a subscription based health care service. At a basic level, informational feedback can be provided by way of a simple interpretation of the collected data. The feedback could be built up to provide a gradated response to the patient, for example, to notify the patient that he or she is trending into a potential trouble zone. Human interaction could be introduced, both by remotely situated and local medical practitioners. Finally, the feedback could include direct interventive measures, such as remotely reprogramming a patient's IPG.
  • Finally, the present invention allows “live” patient voice feedback to be captured simultaneously with the collection of physiological measures by their implantable medical device. The voice feedback is normalized to a standardized set of quality of life measures which can be analyzed in a remote, automated fashion. The voice feedback could also be coupled with visual feedback, such as through digital photography or video, to provide a more complete picture of the patient's physical well-being.
  • While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims (1)

1. A system for providing feedback to an individual patient for automated remote patient care, comprising:
an implantable medical device collecting device measures on a substantially continuous basis from an implant recipient;
a remote client obtaining patient wellness indicators through voice feedback provided by the implant recipient substantially contemporaneous to the collection of at least one set of the device measures;
a database storing the collected device measures as physiological measures into a patient care record in a database, the physiological measures comprising at least one of collected or derived physiological measures; and
a server receiving and processing the device measures, comprising:
a feedback module processing the voice feedback against a stored speech vocabulary into normalized quality of life measures for storage into the patient care record;
an analysis module analyzing the physiological measures and the quality of life measures stored in the patient care record through derived measure determination and statistical value calculation relative to at least one of other physiological measures and other quality of life measures to generate patient status feedback.
US11/146,558 1999-06-03 2005-06-07 System and method for providing feedback to an individual patient Abandoned US20050228243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/146,558 US20050228243A1 (en) 1999-06-03 2005-06-07 System and method for providing feedback to an individual patient

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/324,894 US6312378B1 (en) 1999-06-03 1999-06-03 System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US09/361,777 US6203495B1 (en) 1999-06-03 1999-07-26 System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US09/686,712 US6331160B1 (en) 1999-06-03 2000-10-10 System and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring
US09/860,979 US6478737B2 (en) 1999-06-03 2001-05-18 System and method for analyzing normalized patient voice feedback an automated collection and analysis patient care system
US10/251,473 US6926668B2 (en) 1999-06-03 2002-09-20 System and method for analyzing normalized patient voice feedback in an automated collection and analysis patient care system
US10/646,679 US6905463B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US11/146,558 US20050228243A1 (en) 1999-06-03 2005-06-07 System and method for providing feedback to an individual patient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/646,679 Continuation US6905463B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care

Publications (1)

Publication Number Publication Date
US20050228243A1 true US20050228243A1 (en) 2005-10-13

Family

ID=46203620

Family Applications (13)

Application Number Title Priority Date Filing Date
US09/324,894 Expired - Lifetime US6312378B1 (en) 1999-06-03 1999-06-03 System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US09/361,777 Expired - Fee Related US6203495B1 (en) 1999-06-03 1999-07-26 System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US09/686,712 Expired - Lifetime US6331160B1 (en) 1999-06-03 2000-10-10 System and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring
US09/789,456 Expired - Lifetime US6358203B2 (en) 1999-06-03 2001-02-20 System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US09/860,979 Expired - Lifetime US6478737B2 (en) 1999-06-03 2001-05-18 System and method for analyzing normalized patient voice feedback an automated collection and analysis patient care system
US09/948,307 Expired - Lifetime US7144369B2 (en) 1999-06-03 2001-09-06 System and method for providing collection and analysis of patient information for use in automated patient care
US10/251,473 Expired - Fee Related US6926668B2 (en) 1999-06-03 2002-09-20 System and method for analyzing normalized patient voice feedback in an automated collection and analysis patient care system
US10/646,037 Expired - Fee Related US6908431B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US10/646,084 Expired - Lifetime US6860897B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US10/646,679 Expired - Fee Related US6905463B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US11/104,969 Abandoned US20050182309A1 (en) 1999-06-03 2005-04-12 Product and method for analyzing normalized patient voice feedback in an automated collection and analysis patient care system
US11/146,558 Abandoned US20050228243A1 (en) 1999-06-03 2005-06-07 System and method for providing feedback to an individual patient
US11/894,326 Abandoned US20070293772A1 (en) 1999-06-03 2007-08-20 System and method for processing voice feedback in conjunction with heart failure assessment

Family Applications Before (11)

Application Number Title Priority Date Filing Date
US09/324,894 Expired - Lifetime US6312378B1 (en) 1999-06-03 1999-06-03 System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US09/361,777 Expired - Fee Related US6203495B1 (en) 1999-06-03 1999-07-26 System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US09/686,712 Expired - Lifetime US6331160B1 (en) 1999-06-03 2000-10-10 System and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring
US09/789,456 Expired - Lifetime US6358203B2 (en) 1999-06-03 2001-02-20 System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US09/860,979 Expired - Lifetime US6478737B2 (en) 1999-06-03 2001-05-18 System and method for analyzing normalized patient voice feedback an automated collection and analysis patient care system
US09/948,307 Expired - Lifetime US7144369B2 (en) 1999-06-03 2001-09-06 System and method for providing collection and analysis of patient information for use in automated patient care
US10/251,473 Expired - Fee Related US6926668B2 (en) 1999-06-03 2002-09-20 System and method for analyzing normalized patient voice feedback in an automated collection and analysis patient care system
US10/646,037 Expired - Fee Related US6908431B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US10/646,084 Expired - Lifetime US6860897B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US10/646,679 Expired - Fee Related US6905463B2 (en) 1999-06-03 2003-08-22 System and method for providing feedback to an individual patient for automated remote patient care
US11/104,969 Abandoned US20050182309A1 (en) 1999-06-03 2005-04-12 Product and method for analyzing normalized patient voice feedback in an automated collection and analysis patient care system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/894,326 Abandoned US20070293772A1 (en) 1999-06-03 2007-08-20 System and method for processing voice feedback in conjunction with heart failure assessment

Country Status (1)

Country Link
US (13) US6312378B1 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070027723A1 (en) * 1999-06-03 2007-02-01 Bardy Gust H System and method for collection and analysis of patient information for automated remote patient care
US20120095304A1 (en) * 2005-12-15 2012-04-19 Cardiopulmonary Corporation System and Method for Determining a Patient Clinical Status
US8613708B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor with jumpered sensing electrode
US8613709B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor for providing ease of use in women
US8626277B2 (en) 2010-10-08 2014-01-07 Cardiac Science Corporation Computer-implemented electrocardiographic data processor with time stamp correlation
US20140297300A1 (en) * 2011-06-29 2014-10-02 Insung Information Co., Ltd. Disease management system and method using a wired/wireless communication network
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
US9037477B2 (en) 2010-10-08 2015-05-19 Cardiac Science Corporation Computer-implemented system and method for evaluating ambulatory electrocardiographic monitoring of cardiac rhythm disorders
US9149237B2 (en) 1999-06-03 2015-10-06 Cardiac Pacemakers, Inc. System and method for evaluating a patient status for use in heart failure assessment
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
US20180182475A1 (en) * 2014-06-13 2018-06-28 University Hospitals Cleveland Medical Center Artificial-intelligence-based facilitation of healthcare delivery
USD831833S1 (en) 2013-11-07 2018-10-23 Bardy Diagnostics, Inc. Extended wear electrode patch
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
USD892340S1 (en) 2013-11-07 2020-08-04 Bardy Diagnostics, Inc. Extended wear electrode patch
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11587653B2 (en) 2014-06-13 2023-02-21 University Hospitals Of Cleveland Graphical user interface for tracking and displaying patient information over the course of care
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch

Families Citing this family (731)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD386557S (en) * 1996-06-10 1997-11-18 David Thompson Fishing rod holder
US6699187B2 (en) * 1997-03-27 2004-03-02 Medtronic, Inc. System and method for providing remote expert communications and video capabilities for use during a medical procedure
US6801916B2 (en) * 1998-04-01 2004-10-05 Cyberpulse, L.L.C. Method and system for generation of medical reports from data in a hierarchically-organized database
US7747325B2 (en) * 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US8762065B2 (en) * 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US7403820B2 (en) * 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US7277758B2 (en) * 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US9113801B2 (en) * 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US7209787B2 (en) * 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6872187B1 (en) 1998-09-01 2005-03-29 Izex Technologies, Inc. Orthoses for joint rehabilitation
US6312378B1 (en) * 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US7429243B2 (en) * 1999-06-03 2008-09-30 Cardiac Intelligence Corporation System and method for transacting an automated patient communications session
US7416537B1 (en) 1999-06-23 2008-08-26 Izex Technologies, Inc. Rehabilitative orthoses
US7256708B2 (en) * 1999-06-23 2007-08-14 Visicu, Inc. Telecommunications network for remote patient monitoring
US7467094B2 (en) * 1999-06-23 2008-12-16 Visicu, Inc. System and method for accounting and billing patients in a hospital environment
CA2314517A1 (en) 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2314513A1 (en) * 1999-07-26 2001-01-26 Gust H. Bardy System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US6221011B1 (en) * 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6535763B1 (en) * 1999-08-22 2003-03-18 Cardia Pacemakers, Inc. Event marker alignment by inclusion of event marker transmission latency in the real-time data stream
US6721594B2 (en) 1999-08-24 2004-04-13 Cardiac Pacemakers, Inc. Arrythmia display
US6802811B1 (en) * 1999-09-17 2004-10-12 Endoluminal Therapeutics, Inc. Sensing, interrogating, storing, telemetering and responding medical implants
US6535996B1 (en) * 1999-10-07 2003-03-18 International Business Machines Corporation Method and apparatus for protecting user data during power failures in a data processing system
US6827670B1 (en) * 1999-10-11 2004-12-07 Izex Technologies, Inc. System for medical protocol management
US6453201B1 (en) 1999-10-20 2002-09-17 Cardiac Pacemakers, Inc. Implantable medical device with voice responding and recording capacity
US6386882B1 (en) * 1999-11-10 2002-05-14 Medtronic, Inc. Remote delivery of software-based training for implantable medical device systems
US6409675B1 (en) 1999-11-10 2002-06-25 Pacesetter, Inc. Extravascular hemodynamic monitor
US6942622B1 (en) 1999-11-10 2005-09-13 Pacesetter, Inc. Method for monitoring autonomic tone
US6336903B1 (en) 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US8369937B2 (en) 1999-11-16 2013-02-05 Cardiac Pacemakers, Inc. System and method for prioritizing medical conditions
US6440066B1 (en) 1999-11-16 2002-08-27 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder
US6411840B1 (en) * 1999-11-16 2002-06-25 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring the outcomes of atrial fibrillation
US6612984B1 (en) 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
US6687341B1 (en) * 1999-12-21 2004-02-03 Bellsouth Intellectual Property Corp. Network and method for the specification and delivery of customized information content via a telephone interface
US6920360B2 (en) * 1999-12-21 2005-07-19 Medtronic, Inc. Large-scale processing loop for implantable medical devices
CA2401777A1 (en) * 1999-12-21 2001-06-28 Bozidar Ferek-Petric System for dynamic remote networking with implantable medical devices
US20050240246A1 (en) * 1999-12-24 2005-10-27 Medtronic, Inc. Large-scale processing loop for implantable medical devices
US20010039504A1 (en) * 2000-03-15 2001-11-08 Linberg Kurt R. Individualized, integrated and informative internet portal for holistic management of patients with implantable devices
US6400986B1 (en) 2000-04-10 2002-06-04 Cardiac Pacemakers, Inc. Adaptive anti-tachycardia therapy apparatus and method
US9741001B2 (en) 2000-05-18 2017-08-22 Carefusion 303, Inc. Predictive medication safety
JP4937481B2 (en) 2000-05-18 2012-05-23 ケアフュージョン 303、インコーポレイテッド Distributed remote assets and drug management drug administration systems
US9069887B2 (en) 2000-05-18 2015-06-30 Carefusion 303, Inc. Patient-specific medication management system
US9427520B2 (en) 2005-02-11 2016-08-30 Carefusion 303, Inc. Management of pending medication orders
US7860583B2 (en) 2004-08-25 2010-12-28 Carefusion 303, Inc. System and method for dynamically adjusting patient therapy
US10353856B2 (en) 2011-03-17 2019-07-16 Carefusion 303, Inc. Scalable communication system
US10062457B2 (en) 2012-07-26 2018-08-28 Carefusion 303, Inc. Predictive notifications for adverse patient events
US11087873B2 (en) 2000-05-18 2021-08-10 Carefusion 303, Inc. Context-aware healthcare notification system
US7295988B1 (en) * 2000-05-25 2007-11-13 William Reeves Computer system for optical scanning, storage, organization, authentication and electronic transmitting and receiving of medical records and patient information, and other sensitive legal documents
US8388530B2 (en) 2000-05-30 2013-03-05 Vladimir Shusterman Personalized monitoring and healthcare information management using physiological basis functions
US9183351B2 (en) 2000-05-30 2015-11-10 Vladimir Shusterman Mobile system with network-distributed data processing for biomedical applications
US6408277B1 (en) * 2000-06-21 2002-06-18 Banter Limited System and method for automatic task prioritization
DE60111223T2 (en) * 2000-06-23 2006-04-27 Medtronic, Inc., Minneapolis PORTABLE EXPANSION DEVICE FOR DATA TRANSMISSION IN A COMMUNICATION SYSTEM OF A MEDICAL DEVICE
US7117239B1 (en) 2000-07-28 2006-10-03 Axeda Corporation Reporting the state of an apparatus to a remote computer
DE60136962D1 (en) * 2000-08-22 2009-01-22 Medtronic Inc NETWORK-IMPLEMENTED MEDICAL SYSTEMS FOR REMOTE PATIENT MANAGEMENT
US7685005B2 (en) * 2000-08-29 2010-03-23 Medtronic, Inc. Medical device systems implemented network scheme for remote patient management
EP1367936A2 (en) 2000-08-29 2003-12-10 Medtronic, Inc. Medical device systems implemented network scheme for remote patient management
US8108543B2 (en) 2000-09-22 2012-01-31 Axeda Corporation Retrieving data from a server
US7185014B1 (en) 2000-09-22 2007-02-27 Axeda Corporation Retrieving data from a server
US7369890B2 (en) * 2000-11-02 2008-05-06 Cardiac Pacemakers, Inc. Technique for discriminating between coordinated and uncoordinated cardiac rhythms
US8862656B2 (en) * 2000-11-21 2014-10-14 Chironet, Llc Performance outcomes benchmarking
US8548576B2 (en) 2000-12-15 2013-10-01 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US6941167B2 (en) * 2000-12-15 2005-09-06 Cardiac Pacemakers, Inc. System and method for displaying cardiac events
US6665558B2 (en) 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US6689117B2 (en) * 2000-12-18 2004-02-10 Cardiac Pacemakers, Inc. Drug delivery system for implantable medical device
US7181285B2 (en) 2000-12-26 2007-02-20 Cardiac Pacemakers, Inc. Expert system and method
US6493581B2 (en) * 2000-12-28 2002-12-10 Koninklijke Philips Electronics N.V. System and method for rapid recruitment of widely distributed easily operated automatic external defibrillators
US6654767B2 (en) 2000-12-29 2003-11-25 General Electric Company Methods and systems for managing invention disclosures
US7644057B2 (en) 2001-01-03 2010-01-05 International Business Machines Corporation System and method for electronic communication management
US7464021B1 (en) * 2001-02-02 2008-12-09 Cerner Innovation, Inc. Computer system for translating medical test results into plain language
CA2439089A1 (en) * 2001-02-21 2002-09-06 Delphi Health Systems, Inc. Chronic disease outcomes education and communication system
US20070118389A1 (en) 2001-03-09 2007-05-24 Shipon Jacob A Integrated teleconferencing system
US7233903B2 (en) * 2001-03-26 2007-06-19 International Business Machines Corporation Systems and methods for marking and later identifying barcoded items using speech
US20020143576A1 (en) * 2001-03-28 2002-10-03 Rainer Nolvak Remote patient health management system
US7052466B2 (en) 2001-04-11 2006-05-30 Cardiac Pacemakers, Inc. Apparatus and method for outputting heart sounds
KR100797458B1 (en) * 2001-04-17 2008-01-24 엘지전자 주식회사 System for performing a medical diagnosis, mobile telephone and method for the same
JP2004530982A (en) * 2001-05-04 2004-10-07 ユニシス コーポレーション Dynamic generation of voice application information from a Web server
US7409349B2 (en) * 2001-05-04 2008-08-05 Microsoft Corporation Servers for web enabled speech recognition
US7506022B2 (en) * 2001-05-04 2009-03-17 Microsoft.Corporation Web enabled recognition architecture
US7610547B2 (en) * 2001-05-04 2009-10-27 Microsoft Corporation Markup language extensions for web enabled recognition
EP1260926A3 (en) * 2001-05-23 2009-12-09 Siemens Aktiengesellschaft System for capturing and informing of regionally grouped , daily-updated medical data
US7054939B2 (en) * 2001-06-28 2006-05-30 Bellsouth Intellectual Property Corportion Simultaneous visual and telephonic access to interactive information delivery
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US20030007609A1 (en) * 2001-07-03 2003-01-09 Yuen Michael S. Method and apparatus for development, deployment, and maintenance of a voice software application for distribution to one or more consumers
US20030014279A1 (en) * 2001-07-11 2003-01-16 Roman Linda L. System and method for providing patient care management
US7340303B2 (en) * 2001-09-25 2008-03-04 Cardiac Pacemakers, Inc. Evoked response sensing for ischemia detection
US8229753B2 (en) * 2001-10-21 2012-07-24 Microsoft Corporation Web server controls for web enabled recognition and/or audible prompting
US7711570B2 (en) 2001-10-21 2010-05-04 Microsoft Corporation Application abstraction with dialog purpose
US7225029B2 (en) * 2001-10-26 2007-05-29 Pacesetter, Inc. Implantable cardiac therapy device with dual chamber can to isolate high-frequency circuitry
US6766200B2 (en) 2001-11-01 2004-07-20 Pacesetter, Inc. Magnetic coupling antennas for implantable medical devices
US6763269B2 (en) 2001-11-02 2004-07-13 Pacesetter, Inc. Frequency agile telemetry system for implantable medical device
CA2465702A1 (en) * 2001-11-02 2003-05-15 Siemens Medical Solutions Usa, Inc. Patient data mining for diagnosis and projections of patient states
US7383088B2 (en) * 2001-11-07 2008-06-03 Cardiac Pacemakers, Inc. Centralized management system for programmable medical devices
US6842645B2 (en) 2001-11-09 2005-01-11 Pacesetter, Inc. Presentation architecture for network supporting implantable cardiac therapy device
US7457731B2 (en) * 2001-12-14 2008-11-25 Siemens Medical Solutions Usa, Inc. Early detection of disease outbreak using electronic patient data to reduce public health threat from bio-terrorism
US6909916B2 (en) * 2001-12-20 2005-06-21 Cardiac Pacemakers, Inc. Cardiac rhythm management system with arrhythmia classification and electrode selection
US7254601B2 (en) 2001-12-20 2007-08-07 Questra Corporation Method and apparatus for managing intelligent assets in a distributed environment
US6666826B2 (en) * 2002-01-04 2003-12-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring left ventricular pressure
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US20040034288A1 (en) * 2002-02-20 2004-02-19 Hennessy Gary R. Chronic disease outcomes education and communication system
WO2003073354A2 (en) * 2002-02-25 2003-09-04 Scott Laboratories, Inc. Remote monitoring and control of sedation and analgesia systems
US8391989B2 (en) 2002-12-18 2013-03-05 Cardiac Pacemakers, Inc. Advanced patient management for defining, identifying and using predetermined health-related events
US8043213B2 (en) 2002-12-18 2011-10-25 Cardiac Pacemakers, Inc. Advanced patient management for triaging health-related data using color codes
US7983759B2 (en) 2002-12-18 2011-07-19 Cardiac Pacemakers, Inc. Advanced patient management for reporting multiple health-related parameters
US20040122296A1 (en) * 2002-12-18 2004-06-24 John Hatlestad Advanced patient management for triaging health-related data
US20040122487A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with composite parameter indices
US7043305B2 (en) * 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7468032B2 (en) * 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
US20040122294A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with environmental data
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US7178149B2 (en) 2002-04-17 2007-02-13 Axeda Corporation XML scripting of soap commands
US20040176667A1 (en) * 2002-04-30 2004-09-09 Mihai Dan M. Method and system for medical device connectivity
US20040172300A1 (en) * 2002-04-30 2004-09-02 Mihai Dan M. Method and system for integrating data flows
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US20050065817A1 (en) * 2002-04-30 2005-03-24 Mihai Dan M. Separation of validated information and functions in a healthcare system
US20040172301A1 (en) * 2002-04-30 2004-09-02 Mihai Dan M. Remote multi-purpose user interface for a healthcare system
US20040167804A1 (en) * 2002-04-30 2004-08-26 Simpson Thomas L.C. Medical data communication notification and messaging system and method
US7113825B2 (en) * 2002-05-03 2006-09-26 Cardiac Pacemakers, Inc. Method and apparatus for detecting acoustic oscillations in cardiac rhythm
US7328146B1 (en) * 2002-05-31 2008-02-05 At&T Corp. Spoken language understanding that incorporates prior knowledge into boosting
US7822609B2 (en) * 2002-06-14 2010-10-26 Nuance Communications, Inc. Voice browser with integrated TCAP and ISUP interfaces
US20040054775A1 (en) * 2002-06-26 2004-03-18 Poliac Research Corporation Medical data collection and deliver system
US20040044545A1 (en) * 2002-08-28 2004-03-04 Wiesmann William P. Home care monitor systems
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
US7680086B2 (en) 2002-09-09 2010-03-16 Siemens Canada Limited Wireless local area network with clients having extended freedom of movement
US7400928B2 (en) * 2002-10-11 2008-07-15 Cardiac Pacemakers, Inc. Methods and devices for detection of context when addressing a medical condition of a patient
US20040088189A1 (en) * 2002-11-06 2004-05-06 Veome Edmond A. System and method for monitoring , reporting, managing and administering the treatment of a blood component
US7072711B2 (en) * 2002-11-12 2006-07-04 Cardiac Pacemakers, Inc. Implantable device for delivering cardiac drug therapy
US8332233B2 (en) * 2002-11-13 2012-12-11 Biomedical Systems Corporation Method and system for collecting and analyzing holter data employing a web site
US7353179B2 (en) * 2002-11-13 2008-04-01 Biomedical Systems System and method for handling the acquisition and analysis of medical data over a network
US20040103001A1 (en) * 2002-11-26 2004-05-27 Mazar Scott Thomas System and method for automatic diagnosis of patient health
US20040158289A1 (en) * 2002-11-30 2004-08-12 Girouard Steven D. Method and apparatus for cell and electrical therapy of living tissue
US7627373B2 (en) * 2002-11-30 2009-12-01 Cardiac Pacemakers, Inc. Method and apparatus for cell and electrical therapy of living tissue
US20040111293A1 (en) * 2002-12-09 2004-06-10 Catherine Firanek System and a method for tracking patients undergoing treatment and/or therapy for renal disease
US7890341B2 (en) 2002-12-09 2011-02-15 Baxter International Inc. System and a method for providing integrated access management for peritoneal dialysis and hemodialysis
US7065409B2 (en) * 2002-12-13 2006-06-20 Cardiac Pacemakers, Inc. Device communications of an implantable medical device and an external system
US7009511B2 (en) * 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
US7395117B2 (en) * 2002-12-23 2008-07-01 Cardiac Pacemakers, Inc. Implantable medical device having long-term wireless capabilities
US7127300B2 (en) 2002-12-23 2006-10-24 Cardiac Pacemakers, Inc. Method and apparatus for enabling data communication between an implantable medical device and a patient management system
US20040128161A1 (en) * 2002-12-27 2004-07-01 Mazar Scott T. System and method for ad hoc communications with an implantable medical device
US6978182B2 (en) 2002-12-27 2005-12-20 Cardiac Pacemakers, Inc. Advanced patient management system including interrogator/transceiver unit
US20050080348A1 (en) * 2003-09-18 2005-04-14 Stahmann Jeffrey E. Medical event logbook system and method
US7972275B2 (en) 2002-12-30 2011-07-05 Cardiac Pacemakers, Inc. Method and apparatus for monitoring of diastolic hemodynamics
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7378955B2 (en) * 2003-01-03 2008-05-27 Cardiac Pacemakers, Inc. System and method for correlating biometric trends with a related temporal event
US7136707B2 (en) 2003-01-21 2006-11-14 Cardiac Pacemakers, Inc. Recordable macros for pacemaker follow-up
US20040172284A1 (en) * 2003-02-13 2004-09-02 Roche Diagnostics Corporation Information management system
US7966418B2 (en) 2003-02-21 2011-06-21 Axeda Corporation Establishing a virtual tunnel between two computer programs
WO2004075782A2 (en) * 2003-02-26 2004-09-10 Alfred, E. Mann Institute For Biomedical Engineering At The University Of Southern California An implantable device with sensors for differential monitoring of internal condition
US8201256B2 (en) * 2003-03-28 2012-06-12 Trustwave Holdings, Inc. Methods and systems for assessing and advising on electronic compliance
US7587287B2 (en) * 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US7555335B2 (en) 2003-04-11 2009-06-30 Cardiac Pacemakers, Inc. Biopotential signal source separation using source impedances
US7302294B2 (en) 2003-04-11 2007-11-27 Cardiac Pacemakers, Inc. Subcutaneous cardiac sensing and stimulation system employing blood sensor
US7493175B2 (en) * 2003-04-11 2009-02-17 Cardiac Pacemakers, Inc. Subcutaneous lead with tined fixation
US20040230282A1 (en) * 2003-04-11 2004-11-18 Cates Adam W. Acute and chronic fixation for subcutaneous electrodes
US20040230229A1 (en) * 2003-04-11 2004-11-18 Lovett Eric G. Hybrid transthoracic/intrathoracic cardiac stimulation devices and methods
US7865233B2 (en) * 2003-04-11 2011-01-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac signal discrimination employing non-electrophysiologic signal
US7499758B2 (en) 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Helical fixation elements for subcutaneous electrodes
US7389138B2 (en) 2003-04-11 2008-06-17 Cardiac Pacemakers, Inc. Electrode placement determination for subcutaneous cardiac monitoring and therapy
US20050004615A1 (en) * 2003-04-11 2005-01-06 Sanders Richard S. Reconfigurable implantable cardiac monitoring and therapy delivery device
US20040215240A1 (en) * 2003-04-11 2004-10-28 Lovett Eric G. Reconfigurable subcutaneous cardiac device
US7570997B2 (en) 2003-04-11 2009-08-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac rhythm management with asystole prevention therapy
US7979122B2 (en) 2003-04-11 2011-07-12 Cardiac Pacemakers, Inc. Implantable sudden cardiac death prevention device with reduced programmable feature set
US20040230230A1 (en) * 2003-04-11 2004-11-18 Lindstrom Curtis Charles Methods and systems involving subcutaneous electrode positioning relative to a heart
US7236819B2 (en) 2003-04-11 2007-06-26 Cardiac Pacemakers, Inc. Separation of a subcutaneous cardiac signal from a plurality of composite signals
US7499750B2 (en) * 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Noise canceling cardiac electrodes
US7349742B2 (en) 2003-04-11 2008-03-25 Cardiac Pacemakers, Inc. Expandable fixation elements for subcutaneous electrodes
US7218966B2 (en) 2003-04-11 2007-05-15 Cardiac Pacemakers, Inc. Multi-parameter arrhythmia discrimination
US7260535B2 (en) 2003-04-28 2007-08-21 Microsoft Corporation Web server controls for web enabled recognition and/or audible prompting for call controls
US20040230637A1 (en) * 2003-04-29 2004-11-18 Microsoft Corporation Application controls for speech enabled recognition
US20130268296A1 (en) * 2003-05-06 2013-10-10 M-3 Information Llc Method and apparatus for identifying, monitoring and treating medical signs and symptoms
US8495002B2 (en) * 2003-05-06 2013-07-23 International Business Machines Corporation Software tool for training and testing a knowledge base
US20040230456A1 (en) * 2003-05-14 2004-11-18 Lozier Luke R. System for identifying candidates for ICD implantation
US7477932B2 (en) 2003-05-28 2009-01-13 Cardiac Pacemakers, Inc. Cardiac waveform template creation, maintenance and use
US20040243443A1 (en) * 2003-05-29 2004-12-02 Sanyo Electric Co., Ltd. Healthcare support apparatus, health care support system, health care support method and health care support program
US8239045B2 (en) * 2003-06-04 2012-08-07 Synecor Llc Device and method for retaining a medical device within a vessel
US20050234431A1 (en) * 2004-02-10 2005-10-20 Williams Michael S Intravascular delivery system for therapeutic agents
US7082336B2 (en) 2003-06-04 2006-07-25 Synecor, Llc Implantable intravascular device for defibrillation and/or pacing
JP4616252B2 (en) * 2003-06-04 2011-01-19 シネコー・エルエルシー Intravascular electrophysiology system and method
US7617007B2 (en) * 2003-06-04 2009-11-10 Synecor Llc Method and apparatus for retaining medical implants within body vessels
US8066639B2 (en) * 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7539803B2 (en) * 2003-06-13 2009-05-26 Agere Systems Inc. Bi-directional interface for low data rate application
WO2004114181A1 (en) * 2003-06-18 2004-12-29 Matsushita Electric Industrial Co., Ltd. Biological information utilization system, biological information utilization method, program, and recording medium
US7289761B2 (en) * 2003-06-23 2007-10-30 Cardiac Pacemakers, Inc. Systems, devices, and methods for selectively preventing data transfer from a medical device
US20050033369A1 (en) * 2003-08-08 2005-02-10 Badelt Steven W. Data Feedback loop for medical therapy adjustment
US7680537B2 (en) * 2003-08-18 2010-03-16 Cardiac Pacemakers, Inc. Therapy triggered by prediction of disordered breathing
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US7364547B2 (en) * 2003-09-18 2008-04-29 Cardiac Pacemakers, Inc. Use of external respiratory therapy device to detect cardiac electrical activity
US7616988B2 (en) * 2003-09-18 2009-11-10 Cardiac Pacemakers, Inc. System and method for detecting an involuntary muscle movement disorder
US7336996B2 (en) * 2003-09-18 2008-02-26 Cardiac Pacemakers, Inc. Rate regularization of cardiac pacing for disordered breathing therapy
US7610094B2 (en) * 2003-09-18 2009-10-27 Cardiac Pacemakers, Inc. Synergistic use of medical devices for detecting medical disorders
US7510531B2 (en) * 2003-09-18 2009-03-31 Cardiac Pacemakers, Inc. System and method for discrimination of central and obstructive disordered breathing events
US8251061B2 (en) 2003-09-18 2012-08-28 Cardiac Pacemakers, Inc. Methods and systems for control of gas therapy
US7662101B2 (en) 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
US7591265B2 (en) * 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US20050142070A1 (en) * 2003-09-18 2005-06-30 Hartley Jesse W. Methods and systems for assessing pulmonary disease with drug therapy control
US7572225B2 (en) 2003-09-18 2009-08-11 Cardiac Pacemakers, Inc. Sleep logbook
US7787946B2 (en) 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7970470B2 (en) 2003-09-18 2011-06-28 Cardiac Pacemakers, Inc. Diagnosis and/or therapy using blood chemistry/expired gas parameter analysis
US7468040B2 (en) 2003-09-18 2008-12-23 Cardiac Pacemakers, Inc. Methods and systems for implantably monitoring external breathing therapy
US7396333B2 (en) * 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
US7532934B2 (en) * 2003-09-18 2009-05-12 Cardiac Pacemakers, Inc. Snoring detection system and method
US7678061B2 (en) * 2003-09-18 2010-03-16 Cardiac Pacemakers, Inc. System and method for characterizing patient respiration
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US7720541B2 (en) * 2003-08-18 2010-05-18 Cardiac Pacemakers, Inc. Adaptive therapy for disordered breathing
US7967756B2 (en) 2003-09-18 2011-06-28 Cardiac Pacemakers, Inc. Respiratory therapy control based on cardiac cycle
US7469697B2 (en) 2003-09-18 2008-12-30 Cardiac Pacemakers, Inc. Feedback system and method for sleep disordered breathing therapy
US7575553B2 (en) * 2003-09-18 2009-08-18 Cardiac Pacemakers, Inc. Methods and systems for assessing pulmonary disease
US7757690B2 (en) * 2003-09-18 2010-07-20 Cardiac Pacemakers, Inc. System and method for moderating a therapy delivered during sleep using physiologic data acquired during non-sleep
US8192376B2 (en) 2003-08-18 2012-06-05 Cardiac Pacemakers, Inc. Sleep state classification
US7668591B2 (en) 2003-09-18 2010-02-23 Cardiac Pacemakers, Inc. Automatic activation of medical processes
US7664546B2 (en) * 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Posture detection system and method
CA2539547A1 (en) * 2003-08-20 2005-03-03 Philometron, Inc. Hydration monitoring
US7320675B2 (en) * 2003-08-21 2008-01-22 Cardiac Pacemakers, Inc. Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure
US20060089855A1 (en) * 2003-10-07 2006-04-27 Holland Geoffrey N Medication management system
US7286872B2 (en) * 2003-10-07 2007-10-23 Cardiac Pacemakers, Inc. Method and apparatus for managing data from multiple sensing channels
US20060089854A1 (en) * 2003-10-07 2006-04-27 Holland Geoffrey N Medication management system
US9123077B2 (en) 2003-10-07 2015-09-01 Hospira, Inc. Medication management system
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US7490021B2 (en) 2003-10-07 2009-02-10 Hospira, Inc. Method for adjusting pump screen brightness
US7895053B2 (en) * 2003-10-07 2011-02-22 Hospira, Inc. Medication management system
US20060100907A1 (en) * 2003-10-07 2006-05-11 Holland Geoffrey N Medication management system
US20050278194A1 (en) * 2003-10-07 2005-12-15 Holland Geoffrey N Medication management system
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
AU2004290596B2 (en) * 2003-11-17 2010-12-02 Boston Scientific Limited Systems and methods relating to associating a medical implant with a delivery device
AU2004298025B9 (en) 2003-12-05 2010-12-09 Carefusion 303, Inc. System and method for network monitoring of multiple medical devices
US7319900B2 (en) 2003-12-11 2008-01-15 Cardiac Pacemakers, Inc. Cardiac response classification using multiple classification windows
US20060247693A1 (en) 2005-04-28 2006-11-02 Yanting Dong Non-captured intrinsic discrimination in cardiac pacing response classification
US7774064B2 (en) 2003-12-12 2010-08-10 Cardiac Pacemakers, Inc. Cardiac response classification using retriggerable classification windows
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
CA2549006A1 (en) * 2003-12-12 2005-06-30 Synecor, Llc Implantable medical device having pre-implant exoskeleton
CN101421432A (en) * 2003-12-18 2009-04-29 北美Agc平板玻璃公司 Protective layer for optical coatings with enhanced corrosion and scratch resistance
US20050137626A1 (en) * 2003-12-19 2005-06-23 Pastore Joseph M. Drug delivery system and method employing external drug delivery device in conjunction with computer network
US7471980B2 (en) * 2003-12-22 2008-12-30 Cardiac Pacemakers, Inc. Synchronizing continuous signals and discrete events for an implantable medical device
US7115096B2 (en) 2003-12-24 2006-10-03 Cardiac Pacemakers, Inc. Third heart sound activity index for heart failure monitoring
US8160883B2 (en) * 2004-01-10 2012-04-17 Microsoft Corporation Focus tracking in dialogs
US7552055B2 (en) 2004-01-10 2009-06-23 Microsoft Corporation Dialog component re-use in recognition systems
US20050165622A1 (en) * 2004-01-26 2005-07-28 Neel Gary T. Medical diagnostic testing device with voice message capability
CA2556331A1 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US20050187593A1 (en) * 2004-02-23 2005-08-25 Medtronic, Inc. Implantable medical device system with communication link to home appliances
US20050192838A1 (en) * 2004-02-27 2005-09-01 Cardiac Pacemakers, Inc. Systems and methods for accessing and distributing medical information
US20050192837A1 (en) * 2004-02-27 2005-09-01 Cardiac Pacemakers, Inc. Systems and methods for uploading and distributing medical data sets
US20050192843A1 (en) * 2004-02-27 2005-09-01 Cardiac Pacemakers, Inc. Systems and methods for validating patient and medical devices information
US20050215884A1 (en) * 2004-02-27 2005-09-29 Greicius Michael D Evaluation of Alzheimer's disease using an independent component analysis of an individual's resting-state functional MRI
US7840263B2 (en) 2004-02-27 2010-11-23 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression
US20050192649A1 (en) * 2004-02-27 2005-09-01 Cardiac Pacemakers, Inc. Systems and methods for providing variable medical information
US7751894B1 (en) 2004-03-04 2010-07-06 Cardiac Pacemakers, Inc. Systems and methods for indicating aberrant behavior detected by an implanted medical device
US20060025931A1 (en) * 2004-07-30 2006-02-02 Richard Rosen Method and apparatus for real time predictive modeling for chronically ill patients
US7697993B2 (en) * 2004-05-13 2010-04-13 Cardiac Pacemakers, Inc. Method and apparatus for question-based programming of cardiac rhythm management devices
US7764995B2 (en) 2004-06-07 2010-07-27 Cardiac Pacemakers, Inc. Method and apparatus to modulate cellular regeneration post myocardial infarct
US7596413B2 (en) 2004-06-08 2009-09-29 Cardiac Pacemakers, Inc. Coordinated therapy for disordered breathing including baroreflex modulation
US7794499B2 (en) 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US7706866B2 (en) 2004-06-24 2010-04-27 Cardiac Pacemakers, Inc. Automatic orientation determination for ECG measurements using multiple electrodes
US7223234B2 (en) * 2004-07-10 2007-05-29 Monitrix, Inc. Apparatus for determining association variables
US7433853B2 (en) 2004-07-12 2008-10-07 Cardiac Pacemakers, Inc. Expert system for patient medical information analysis
US20060015372A1 (en) * 2004-07-13 2006-01-19 Patricia Graham System and method of coordinating medical screening and treatment data
US20060020491A1 (en) * 2004-07-20 2006-01-26 Medtronic, Inc. Batch processing method for patient management
WO2006011124A1 (en) * 2004-07-28 2006-02-02 National University Of Ireland, Galway Portable medical motoring and diagnostic system
US7559901B2 (en) * 2004-07-28 2009-07-14 Cardiac Pacemakers, Inc. Determining a patient's posture from mechanical vibrations of the heart
US7567841B2 (en) 2004-08-20 2009-07-28 Cardiac Pacemakers, Inc. Method and apparatus for delivering combined electrical and drug therapies
US20060052844A1 (en) * 2004-09-02 2006-03-09 Tom Newman System and method for measuring modifying and reporting treatment compliance
US8285378B1 (en) * 2004-09-27 2012-10-09 Cardiac Pacemakers, Inc System and method for determining patient-specific implantable medical device programming parameters
US7917196B2 (en) 2005-05-09 2011-03-29 Cardiac Pacemakers, Inc. Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US7797036B2 (en) 2004-11-30 2010-09-14 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring for ischemia detection
US7647108B2 (en) * 2004-09-30 2010-01-12 Cardiac Pacemakers, Inc. Methods and systems for selection of cardiac pacing electrode configurations
US7890159B2 (en) 2004-09-30 2011-02-15 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring and tracking
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7805185B2 (en) 2005-05-09 2010-09-28 Cardiac Pacemakers, In. Posture monitoring using cardiac activation sequences
US7277747B2 (en) * 2004-11-23 2007-10-02 Cardiac Pacemakers, Inc. Arrhythmia memory for tachyarrhythmia discrimination
US7933651B2 (en) * 2004-11-23 2011-04-26 Cardiac Pacemakers, Inc. Cardiac template generation based on patient response information
US7894893B2 (en) 2004-09-30 2011-02-22 Cardiac Pacemakers, Inc. Arrhythmia classification and therapy selection
US7228173B2 (en) * 2004-11-23 2007-06-05 Cardiac Pacemakers, Inc. Cardiac tachyarrhythmia therapy selection based on patient response information
US8230097B2 (en) * 2004-10-05 2012-07-24 Vectormax Corporation Method and system for broadcasting multimedia data
US20060089856A1 (en) * 2004-10-21 2006-04-27 Cardiac Pacemakers Integrated pharmaceutical dispensing and patient management monitoring
US8150509B2 (en) 2004-10-21 2012-04-03 Cardiac Pacemakers, Inc. Systems and methods for drug therapy enhancement using expected pharmacodynamic models
US7418293B2 (en) * 2004-11-09 2008-08-26 Cardiac Pacemakers, Inc. Multiple pulse defibrillation for subcutaneous implantable cardiac devices
US8308794B2 (en) 2004-11-15 2012-11-13 IZEK Technologies, Inc. Instrumented implantable stents, vascular grafts and other medical devices
WO2006055547A2 (en) 2004-11-15 2006-05-26 Izex Technologies, Inc. Instrumented orthopedic and other medical implants
US7761162B2 (en) * 2004-12-13 2010-07-20 Cardiac Pacemakers, Inc. Capture verification with intrinsic response discrimination
US7908006B2 (en) * 2004-12-15 2011-03-15 Cardiac Pacemakers, Inc. Cardiac pacing response classification using an adaptable classification interval
US7587240B2 (en) * 2004-12-15 2009-09-08 Cardiac Pacemakers, Inc. Atrial capture verification
US7930029B2 (en) 2004-12-15 2011-04-19 Cardiac Pacemakers, Inc. Template initialization for evoked response detection
US8229561B2 (en) * 2004-12-15 2012-07-24 Cardiac Pacemakers, Inc. Atrial retrograde management
US8818504B2 (en) 2004-12-16 2014-08-26 Cardiac Pacemakers Inc Leadless cardiac stimulation device employing distributed logic
US8060219B2 (en) 2004-12-20 2011-11-15 Cardiac Pacemakers, Inc. Epicardial patch including isolated extracellular matrix with pacing electrodes
US7981065B2 (en) 2004-12-20 2011-07-19 Cardiac Pacemakers, Inc. Lead electrode incorporating extracellular matrix
US7996072B2 (en) * 2004-12-21 2011-08-09 Cardiac Pacemakers, Inc. Positionally adaptable implantable cardiac device
JP2006185060A (en) * 2004-12-27 2006-07-13 Fujitsu Ltd Method for inputting password
US7662104B2 (en) 2005-01-18 2010-02-16 Cardiac Pacemakers, Inc. Method for correction of posture dependence on heart sounds
US8565867B2 (en) * 2005-01-28 2013-10-22 Cyberonics, Inc. Changeable electrode polarity stimulation by an implantable medical device
US9314633B2 (en) 2008-01-25 2016-04-19 Cyberonics, Inc. Contingent cardio-protection for epilepsy patients
US8260426B2 (en) 2008-01-25 2012-09-04 Cyberonics, Inc. Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device
US7814324B2 (en) * 2005-02-24 2010-10-12 Hewlett-Packard Development Company, L.P. Method of making a patient monitor
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7761159B2 (en) * 2005-03-17 2010-07-20 Cardiac Pacemakers, Inc. Cardiac rhythm pacing rate selection for automatic capture threshold testing
US7818056B2 (en) 2005-03-24 2010-10-19 Cardiac Pacemakers, Inc. Blending cardiac rhythm detection processes
US8036749B2 (en) * 2005-03-31 2011-10-11 Medtronic, Inc. System for characterizing chronic physiological data
US7257447B2 (en) * 2005-04-20 2007-08-14 Cardiac Pacemakers, Inc. Method and apparatus for indication-based programming of cardiac rhythm management devices
US7392086B2 (en) * 2005-04-26 2008-06-24 Cardiac Pacemakers, Inc. Implantable cardiac device and method for reduced phrenic nerve stimulation
US7499751B2 (en) * 2005-04-28 2009-03-03 Cardiac Pacemakers, Inc. Cardiac signal template generation using waveform clustering
US7316846B2 (en) * 2005-04-28 2008-01-08 Ppg Industries Ohio, Inc. Hard coat compositions with acid functional organosiloxane polyol
US7392088B2 (en) * 2005-04-28 2008-06-24 Cardiac Pacemakers, Inc. Capture detection for multi-chamber pacing
US7337000B2 (en) 2005-04-28 2008-02-26 Cardiac Pacemakers Inc. Selection of cardiac signal features detected in multiple classification intervals for cardiac pacing response classification
US7574260B2 (en) * 2005-04-28 2009-08-11 Cardiac Pacemakers, Inc. Adaptive windowing for cardiac waveform discrimination
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7630755B2 (en) * 2005-05-04 2009-12-08 Cardiac Pacemakers Inc. Syncope logbook and method of using same
US7404802B2 (en) * 2005-05-05 2008-07-29 Cardiac Pacemakers, Inc. Trending of systolic murmur intensity for monitoring cardiac disease with implantable device
US8391990B2 (en) 2005-05-18 2013-03-05 Cardiac Pacemakers, Inc. Modular antitachyarrhythmia therapy system
US20060265253A1 (en) * 2005-05-18 2006-11-23 Rao R B Patient data mining improvements
US7457666B2 (en) 2005-05-25 2008-11-25 Cardiac Pacemakers, Inc. Retrograde atrial sensing for identifying sub-threshold atrial pacing
US7670298B2 (en) 2005-06-01 2010-03-02 Cardiac Pacemakers, Inc. Sensing rate of change of pressure in the left ventricle with an implanted device
US8972002B2 (en) 2005-06-01 2015-03-03 Cardiac Pacemakers, Inc. Remote closed-loop titration of decongestive therapy for the treatment of advanced heart failure
US7922669B2 (en) 2005-06-08 2011-04-12 Cardiac Pacemakers, Inc. Ischemia detection using a heart sound sensor
GB0512413D0 (en) * 2005-06-17 2005-07-27 Remote Diagnostic Technologies Patient monitor
ATE492208T1 (en) * 2005-06-22 2011-01-15 Koninkl Philips Electronics Nv DEVICE FOR MEASURING A PATIENT'S IMMEDIATE PERCEPTIONAL VALUES
US9265949B2 (en) * 2005-06-28 2016-02-23 Cardiac Pacemakers, Inc. Method and apparatus for controlling cardiac therapy based on electromechanical timing
US7752059B2 (en) 2005-07-05 2010-07-06 Cardiac Pacemakers, Inc. Optimization of timing for data collection and analysis in advanced patient management system
US7529578B2 (en) * 2005-07-12 2009-05-05 Cardiac Pacemakers, Inc. Multi channel approach to capture verification
US7471983B2 (en) * 2005-07-19 2008-12-30 Cardiac Pacemakers, Inc. Pacing output determination based on selected capture threshold values
US7585279B2 (en) 2005-07-26 2009-09-08 Cardiac Pacemakers, Inc. Managing preload reserve by tracking the ventricular operating point with heart sounds
EP1919558A4 (en) * 2005-08-04 2009-06-03 Access Cardiosystems Inc Automatic external defibrillator (aed) with wireless communications
US7634309B2 (en) * 2005-08-19 2009-12-15 Cardiac Pacemakers, Inc. Tracking progression of congestive heart failure via a force-frequency relationship
US7908001B2 (en) * 2005-08-23 2011-03-15 Cardiac Pacemakers, Inc. Automatic multi-level therapy based on morphologic organization of an arrhythmia
US20070055115A1 (en) * 2005-09-08 2007-03-08 Jonathan Kwok Characterization of sleep disorders using composite patient data
US20070061164A1 (en) * 2005-09-15 2007-03-15 James Broselow Healthcare information storage system
US7775983B2 (en) 2005-09-16 2010-08-17 Cardiac Pacemakers, Inc. Rapid shallow breathing detection for use in congestive heart failure status determination
US7731663B2 (en) * 2005-09-16 2010-06-08 Cardiac Pacemakers, Inc. System and method for generating a trend parameter based on respiration rate distribution
US7927284B2 (en) * 2005-09-16 2011-04-19 Cardiac Pacemakers, Inc. Quantifying hemodynamic response to drug therapy using implantable sensor
US8764654B2 (en) 2008-03-19 2014-07-01 Zin Technologies, Inc. Data acquisition for modular biometric monitoring system
US8951190B2 (en) 2005-09-28 2015-02-10 Zin Technologies, Inc. Transfer function control for biometric monitoring system
US20070073266A1 (en) * 2005-09-28 2007-03-29 Zin Technologies Compact wireless biometric monitoring and real time processing system
US8364264B2 (en) * 2005-10-03 2013-01-29 Cardiac Pacemakers, Inc. Pacing interval adjustment for cardiac pacing response determination
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8046060B2 (en) 2005-11-14 2011-10-25 Cardiac Pacemakers, Inc. Differentiating arrhythmic events having different origins
US20070118180A1 (en) * 2005-11-18 2007-05-24 Quan Ni Cardiac resynchronization therapy for improved hemodynamics based on disordered breathing detection
US8366641B2 (en) 2005-11-18 2013-02-05 Cardiac Pacemakers, Inc. Posture detector calibration and use
US7471290B2 (en) * 2005-11-18 2008-12-30 Cardiac Pacemakers, Inc. Posture detection system
US20070118399A1 (en) * 2005-11-22 2007-05-24 Avinash Gopal B System and method for integrated learning and understanding of healthcare informatics
US8108034B2 (en) 2005-11-28 2012-01-31 Cardiac Pacemakers, Inc. Systems and methods for valvular regurgitation detection
US8634925B2 (en) * 2005-11-30 2014-01-21 Medtronic, Inc. Portable programmer for providing patient status information
US7479114B2 (en) * 2005-12-01 2009-01-20 Cardiac Pacemakers, Inc. Determining blood gas saturation based on measured parameter of respiration
US7766840B2 (en) * 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US20070129641A1 (en) * 2005-12-01 2007-06-07 Sweeney Robert J Posture estimation at transitions between states
US20070135847A1 (en) * 2005-12-12 2007-06-14 Kenknight Bruce H Subcutaneous defibrillation system and method using same
US7662105B2 (en) 2005-12-14 2010-02-16 Cardiac Pacemakers, Inc. Systems and methods for determining respiration metrics
US7761158B2 (en) * 2005-12-20 2010-07-20 Cardiac Pacemakers, Inc. Detection of heart failure decompensation based on cumulative changes in sensor signals
US7653431B2 (en) * 2005-12-20 2010-01-26 Cardiac Pacemakers, Inc. Arrhythmia discrimination based on determination of rate dependency
US8532762B2 (en) 2005-12-20 2013-09-10 Cardiac Pacemakers, Inc. Discriminating polymorphic and monomorphic cardiac rhythms using template generation
US8204585B2 (en) * 2005-12-20 2012-06-19 Cardiac Pacemakers, Inc. Bio-impedance sensor and sensing method
US9155896B2 (en) * 2005-12-22 2015-10-13 Cardiac Pacemakers, Inc. Method and apparatus for improving cardiac efficiency based on myocardial oxygen consumption
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US20070149952A1 (en) * 2005-12-28 2007-06-28 Mike Bland Systems and methods for characterizing a patient's propensity for a neurological event and for communicating with a pharmacological agent dispenser
US8868172B2 (en) * 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US20070179349A1 (en) * 2006-01-19 2007-08-02 Hoyme Kenneth P System and method for providing goal-oriented patient management based upon comparative population data analysis
US20070168222A1 (en) * 2006-01-19 2007-07-19 Hoyme Kenneth P System and method for providing hierarchical medical device control for automated patient management
US7996079B2 (en) 2006-01-24 2011-08-09 Cyberonics, Inc. Input response override for an implantable medical device
US7606617B2 (en) * 2006-01-31 2009-10-20 Cardiac Pacemakers, Inc. Urinalysis for the early detection of and recovery from worsening heart failure
US20070287931A1 (en) * 2006-02-14 2007-12-13 Dilorenzo Daniel J Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
EP2965781B1 (en) * 2006-03-29 2019-06-05 Dignity Health Synchronization of vagus nerve stimulation with the cardiac cycle of a patient
US7819816B2 (en) 2006-03-29 2010-10-26 Cardiac Pacemakers, Inc. Periodic disordered breathing detection
US7780606B2 (en) 2006-03-29 2010-08-24 Cardiac Pacemakers, Inc. Hemodynamic stability assessment based on heart sounds
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7962220B2 (en) 2006-04-28 2011-06-14 Cyberonics, Inc. Compensation reduction in tissue stimulation therapy
US7869885B2 (en) * 2006-04-28 2011-01-11 Cyberonics, Inc Threshold optimization for tissue stimulation therapy
US20070282186A1 (en) * 2006-05-02 2007-12-06 Adrian Gilmore Blood glucose monitor with an integrated data management system
US7551078B2 (en) * 2006-05-08 2009-06-23 Ihc Intellectual Asset Management, Llc Device alert system and method
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US8000780B2 (en) 2006-06-27 2011-08-16 Cardiac Pacemakers, Inc. Detection of myocardial ischemia from the time sequence of implanted sensor measurements
US8527048B2 (en) 2006-06-29 2013-09-03 Cardiac Pacemakers, Inc. Local and non-local sensing for cardiac pacing
US7599741B2 (en) * 2006-06-29 2009-10-06 Cardiac Pacemakers, Inc. Systems and methods for improving heart rate kinetics in heart failure patients
US20080004665A1 (en) * 2006-06-29 2008-01-03 Mccabe Aaron R Determination of cardiac pacing parameters based on non-localized sensing
US8620430B2 (en) * 2006-06-30 2013-12-31 Cardiac Pacemakers, Inc. Selection of pacing sites to enhance cardiac performance
US20080027499A1 (en) * 2006-07-28 2008-01-31 Muralidharan Srivathsa Integrated health care home communication and monitoring system
US7738950B2 (en) * 2006-09-13 2010-06-15 Cardiac Pacemakers, Inc. Method and apparatus for identifying potentially misclassified arrhythmic episodes
US8948867B2 (en) 2006-09-14 2015-02-03 Cardiac Pacemakers, Inc. Capture detection with cross chamber backup pacing
US8209013B2 (en) 2006-09-14 2012-06-26 Cardiac Pacemakers, Inc. Therapeutic electrical stimulation that avoids undesirable activation
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US8370479B2 (en) 2006-10-03 2013-02-05 Axeda Acquisition Corporation System and method for dynamically grouping devices based on present device conditions
AU2007317669A1 (en) 2006-10-16 2008-05-15 Hospira, Inc. System and method for comparing and utilizing activity information and configuration information from mulitple device management systems
US7869867B2 (en) 2006-10-27 2011-01-11 Cyberonics, Inc. Implantable neurostimulator with refractory stimulation
US8462678B2 (en) * 2006-11-06 2013-06-11 Cardiac Pacemakers, Inc. System and method for operating a wireless medical device interrogation network
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US8725255B2 (en) * 2006-11-17 2014-05-13 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy optimization using cardiac activation sequence information
US8290590B2 (en) 2006-11-17 2012-10-16 Cardiac Pacemakers, Inc. Dynamic morphology based atrial automatic threshold
US7801610B2 (en) * 2006-11-17 2010-09-21 Cardiac Pacemakers, Inc. Methods and systems for management of atrial retrograde conduction and pacemaker mediated tachyarrhythmia
US20080119749A1 (en) * 2006-11-20 2008-05-22 Cardiac Pacemakers, Inc. Respiration-synchronized heart sound trending
US8540515B2 (en) 2006-11-27 2013-09-24 Pharos Innovations, Llc Optimizing behavioral change based on a population statistical profile
US8540517B2 (en) 2006-11-27 2013-09-24 Pharos Innovations, Llc Calculating a behavioral path based on a statistical profile
US8540516B2 (en) 2006-11-27 2013-09-24 Pharos Innovations, Llc Optimizing behavioral change based on a patient statistical profile
US8096954B2 (en) 2006-11-29 2012-01-17 Cardiac Pacemakers, Inc. Adaptive sampling of heart sounds
US8065397B2 (en) 2006-12-26 2011-11-22 Axeda Acquisition Corporation Managing configurations of distributed devices
US20080214919A1 (en) * 2006-12-26 2008-09-04 Lifescan, Inc. System and method for implementation of glycemic control protocols
US9022930B2 (en) * 2006-12-27 2015-05-05 Cardiac Pacemakers, Inc. Inter-relation between within-patient decompensation detection algorithm and between-patient stratifier to manage HF patients in a more efficient manner
EP2127349A4 (en) * 2007-01-10 2011-03-30 Camillo Ricordi Mobile emergency alert system
US7890172B2 (en) * 2007-01-18 2011-02-15 Cardiac Pacemakers, Inc. Pacing output configuration selection for cardiac resynchronization therapy patients
US7736319B2 (en) 2007-01-19 2010-06-15 Cardiac Pacemakers, Inc. Ischemia detection using heart sound timing
EP2126785A2 (en) 2007-01-25 2009-12-02 NeuroVista Corporation Systems and methods for identifying a contra-ictal condition in a subject
WO2008092133A2 (en) 2007-01-25 2008-07-31 Neurovista Corporation Methods and systems for measuring a subject's susceptibility to a seizure
US8308801B2 (en) 2007-02-12 2012-11-13 Brigham Young University Spinal implant
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US20080208074A1 (en) * 2007-02-21 2008-08-28 David Snyder Methods and Systems for Characterizing and Generating a Patient-Specific Seizure Advisory System
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US7678060B1 (en) * 2007-03-08 2010-03-16 Millen Ernest W Method of monitoring a state of health, and a wellness/emotional state monitor implementing the method
US20080228093A1 (en) * 2007-03-13 2008-09-18 Yanting Dong Systems and methods for enhancing cardiac signal features used in morphology discrimination
US8052611B2 (en) 2007-03-14 2011-11-08 Cardiac Pacemakers, Inc. Method and apparatus for management of heart failure hospitalization
US20080228040A1 (en) * 2007-03-16 2008-09-18 Arthur Solomon Thompson International medical expert diagnosis
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US8229557B2 (en) 2007-03-29 2012-07-24 Cardiac Pacemakers, Inc. Estimating acute response to cardiac resynchronization therapy
US7853327B2 (en) 2007-04-17 2010-12-14 Cardiac Pacemakers, Inc. Heart sound tracking system and method
US7974701B2 (en) * 2007-04-27 2011-07-05 Cyberonics, Inc. Dosing limitation for an implantable medical device
US8103343B2 (en) 2007-05-03 2012-01-24 Cardiac Pacemakers, Inc. Automatic modulation of pacing timing intervals using beat to beat measures
US20080278332A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20080281171A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8271080B2 (en) 2007-05-23 2012-09-18 Cardiac Pacemakers, Inc. Decongestive therapy titration for heart failure patients using implantable sensor
AU2008265542B2 (en) * 2007-06-21 2014-07-24 Abbott Diabetes Care Inc. Health monitor
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
US8478861B2 (en) 2007-07-06 2013-07-02 Axeda Acquisition Corp. Managing distributed devices with limited connectivity
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
CN102831293B (en) * 2007-08-10 2016-05-18 施曼信医疗Asd公司 The formulating method of Medical Equipment Maintenance timetable and management system
US7957802B2 (en) * 2007-08-20 2011-06-07 Cardiac Pacemakers, Inc. Method, apparatus, and system to optimize cardiac preload based on measured pulmonary artery pressure
US7904156B2 (en) * 2007-08-20 2011-03-08 Cardiac Pacemakers, Inc. Modulation of AV delay to control ventricular interval variability
US9848058B2 (en) 2007-08-31 2017-12-19 Cardiac Pacemakers, Inc. Medical data transport over wireless life critical network employing dynamic communication link mapping
US8515547B2 (en) 2007-08-31 2013-08-20 Cardiac Pacemakers, Inc. Wireless patient communicator for use in a life critical network
EP3922171A1 (en) 2007-09-14 2021-12-15 Medtronic Monitoring, Inc. Adherent cardiac monitor with advanced sensing capabilities
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
EP2194858B1 (en) 2007-09-14 2017-11-22 Corventis, Inc. Medical device automatic start-up upon contact to patient tissue
US8374688B2 (en) 2007-09-14 2013-02-12 Corventis, Inc. System and methods for wireless body fluid monitoring
WO2009036256A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
WO2009036327A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent device for respiratory monitoring and sleep disordered breathing
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
EP2207590A1 (en) * 2007-09-26 2010-07-21 Medtronic, INC. Therapy program selection
US20090264789A1 (en) * 2007-09-26 2009-10-22 Medtronic, Inc. Therapy program selection
US8380314B2 (en) * 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
US20090088651A1 (en) * 2007-09-28 2009-04-02 Allan Charles Shuros Method and apparatus to perform transvascular hemodynamic sensing
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US20090099848A1 (en) * 2007-10-16 2009-04-16 Moshe Lerner Early diagnosis of dementia
EP2211986B1 (en) 2007-10-16 2013-11-20 Medtronic, Inc. Therapy control based on a patient movement state
US8838240B2 (en) * 2007-11-21 2014-09-16 Cardiac Pacemakers Inc. Hemodynamic status assessment during tachycardia
US8229556B2 (en) * 2007-11-21 2012-07-24 Cardiac Pacemakers, Inc. Tachycardia hemodynamics detection based on cardiac mechanical sensor signal regularity
US8894687B2 (en) 2011-04-25 2014-11-25 Nexus Spine, L.L.C. Coupling system for surgical construct
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090171168A1 (en) * 2007-12-28 2009-07-02 Leyde Kent W Systems and Method for Recording Clinical Manifestations of a Seizure
US9259591B2 (en) * 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
JP5276118B2 (en) 2008-01-22 2013-08-28 カーディアック ペースメイカーズ, インコーポレイテッド System for assessing patient status
EP2249908B1 (en) 2008-01-25 2014-01-01 Medtronic, Inc. Sleep stage detection
US9579506B2 (en) 2008-01-25 2017-02-28 Flint Hills Scientific, L.L.C. Contingent cardio-protection for epilepsy patients
CN101939051B (en) * 2008-02-14 2013-07-10 心脏起搏器公司 Method and apparatus for phrenic stimulation detection
JP5405500B2 (en) 2008-03-12 2014-02-05 コーヴェンティス,インク. Predicting cardiac decompensation based on cardiac rhythm
WO2009146214A1 (en) 2008-04-18 2009-12-03 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
JP2011519592A (en) 2008-04-21 2011-07-14 フィロメトロン,インコーポレイティド Metabolic energy monitoring system
US8204603B2 (en) 2008-04-25 2012-06-19 Cyberonics, Inc. Blocking exogenous action potentials by an implantable medical device
US8147415B2 (en) * 2008-05-07 2012-04-03 Cardiac Pacemakers, Inc. System and method for detection of pulmonary embolism
US8103346B2 (en) * 2008-05-22 2012-01-24 Cardiac Pacemakers, Inc. Regulatory compliant transmission of medical data employing a patient implantable medical device and a generic network access device
US20090318773A1 (en) * 2008-06-24 2009-12-24 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Involuntary-response-dependent consequences
US20090326981A1 (en) * 2008-06-27 2009-12-31 Microsoft Corporation Universal health data collector and advisor for people
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US20100030579A1 (en) * 2008-07-29 2010-02-04 Pocham Dhauvan Health Care Package
EP2349468B1 (en) * 2008-10-03 2014-08-13 Cardiac Pacemakers, Inc. Apparatuses for cardiac resynchronization therapy mode selection based on intrinsic conduction
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
US8457747B2 (en) 2008-10-20 2013-06-04 Cyberonics, Inc. Neurostimulation with signal duration determined by a cardiac cycle
EP2369986A4 (en) * 2008-12-23 2013-08-28 Neurovista Corp Brain state analysis based on select seizure onset characteristics and clinical manifestations
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US20100169220A1 (en) * 2008-12-31 2010-07-01 Microsoft Corporation Wearing health on your sleeve
US8588933B2 (en) * 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US20100191304A1 (en) 2009-01-23 2010-07-29 Scott Timothy L Implantable Medical Device for Providing Chronic Condition Therapy and Acute Condition Therapy Using Vagus Nerve Stimulation
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
WO2010091073A2 (en) * 2009-02-03 2010-08-12 Emory University Display of patient-specific data
US20100222823A1 (en) * 2009-02-19 2010-09-02 Bowden Anton E Method Of Surgically Implanting A Spinal Implant
WO2010096829A2 (en) 2009-02-23 2010-08-26 Crocker Spinal, L.L.C. Press-on link for surgical screws
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US8812841B2 (en) 2009-03-04 2014-08-19 Cardiac Pacemakers, Inc. Communications hub for use in life critical network
JP5749658B2 (en) 2009-03-04 2015-07-15 マシモ・コーポレイション Medical monitoring system
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US8319631B2 (en) 2009-03-04 2012-11-27 Cardiac Pacemakers, Inc. Modular patient portable communicator for use in life critical network
US8401639B2 (en) * 2009-04-13 2013-03-19 Cardiac Pacemakers, Inc. Anodal stimulation detection and avoidance
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8452405B2 (en) * 2009-05-05 2013-05-28 Cardiac Pacemakers, Inc. Methods and systems for mitigating the occurrence of arrhythmia during atrial pacing
US9149642B2 (en) * 2009-05-27 2015-10-06 Cardiac Pacemakers, Inc. Method and apparatus for phrenic nerve activation detection with respiration cross-checking
US8634915B2 (en) 2009-05-27 2014-01-21 Cardiac Pacemakers, Inc. Activity sensor processing for phrenic nerve activation detection
EP2435132B1 (en) 2009-05-27 2013-08-21 Cardiac Pacemakers, Inc. Phrenic nerve activation detection
US8626292B2 (en) * 2009-05-27 2014-01-07 Cardiac Pacemakers, Inc. Respiration sensor processing for phrenic nerve activation detection
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US8190651B2 (en) * 2009-06-15 2012-05-29 Nxstage Medical, Inc. System and method for identifying and pairing devices
US20110009760A1 (en) * 2009-07-10 2011-01-13 Yi Zhang Hospital Readmission Alert for Heart Failure Patients
AU2010286917B2 (en) 2009-08-31 2016-03-10 Abbott Diabetes Care Inc. Medical devices and methods
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US8483808B2 (en) 2009-09-25 2013-07-09 Yanting Dong Methods and systems for characterizing cardiac signal morphology using K-fit analysis
ES2753273T3 (en) 2009-10-08 2020-04-07 Delos Living Llc LED lighting system
WO2011050283A2 (en) 2009-10-22 2011-04-28 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
US20110106200A1 (en) * 2009-10-29 2011-05-05 Medtronic, Inc. Stroke risk monitoring system including implantable medical device
US9157497B1 (en) 2009-10-30 2015-10-13 Brigham Young University Lamina emergent torsional joint and related methods
US9770204B2 (en) 2009-11-11 2017-09-26 Medtronic, Inc. Deep brain stimulation for sleep and movement disorders
US20110145822A1 (en) * 2009-12-10 2011-06-16 The Go Daddy Group, Inc. Generating and recommending task solutions
US20110145823A1 (en) * 2009-12-10 2011-06-16 The Go Daddy Group, Inc. Task management engine
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US20110141116A1 (en) 2009-12-16 2011-06-16 Baxter International Inc. Methods and apparatus for displaying flow rate graphs and alarms on a dialysis system
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US20110219325A1 (en) * 2010-03-02 2011-09-08 Himes David M Displaying and Manipulating Brain Function Data Including Enhanced Data Scrolling Functionality
US20110218820A1 (en) * 2010-03-02 2011-09-08 Himes David M Displaying and Manipulating Brain Function Data Including Filtering of Annotations
US9075910B2 (en) 2010-03-11 2015-07-07 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
US9183560B2 (en) 2010-05-28 2015-11-10 Daniel H. Abelow Reality alternate
US10943676B2 (en) 2010-06-08 2021-03-09 Cerner Innovation, Inc. Healthcare information technology system for predicting or preventing readmissions
US8229559B2 (en) 2010-07-15 2012-07-24 Medtronic, Inc. Evaluation of implantable medical device data
US9211411B2 (en) 2010-08-26 2015-12-15 Medtronic, Inc. Therapy for rapid eye movement behavior disorder (RBD)
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
US8562523B2 (en) 2011-03-04 2013-10-22 Flint Hills Scientific, Llc Detecting, assessing and managing extreme epileptic events
US8562524B2 (en) 2011-03-04 2013-10-22 Flint Hills Scientific, Llc Detecting, assessing and managing a risk of death in epilepsy
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
US9626650B2 (en) 2011-04-14 2017-04-18 Elwha Llc Cost-effective resource apportionment technologies suitable for facilitating therapies
US10445846B2 (en) 2011-04-14 2019-10-15 Elwha Llc Cost-effective resource apportionment technologies suitable for facilitating therapies
US8968760B2 (en) 2011-04-27 2015-03-03 Covidien Lp Attachment of a biomaterial to tissue
EP2717807A2 (en) 2011-06-07 2014-04-16 Brigham Young University Serpentine spinal stability device and associated methods
US20130006330A1 (en) 2011-06-28 2013-01-03 Greatbatch, Ltd. Dual patient controllers
US20130197607A1 (en) 2011-06-28 2013-08-01 Greatbatch Ltd. Dual patient controllers
US9710788B2 (en) 2011-07-05 2017-07-18 Saudi Arabian Oil Company Computer mouse system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9526455B2 (en) 2011-07-05 2016-12-27 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9844344B2 (en) * 2011-07-05 2017-12-19 Saudi Arabian Oil Company Systems and method to monitor health of employee when positioned in association with a workstation
US9962083B2 (en) * 2011-07-05 2018-05-08 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
EP2729058B1 (en) 2011-07-05 2019-03-13 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9492120B2 (en) 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
US20170026504A1 (en) 2011-07-13 2017-01-26 Andrew Nichols System and apparatus for mitigating of bad posture and property loss through computer-assisted appliance
US20130184611A1 (en) * 2011-07-13 2013-07-18 Andrew Nichols System and apparatus for posture and body position correction and improvement through a computer-assisted biofeedback system
US8599009B2 (en) 2011-08-16 2013-12-03 Elwha Llc Systematic distillation of status data relating to regimen compliance
WO2013028497A1 (en) 2011-08-19 2013-02-28 Hospira, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US8774909B2 (en) 2011-09-26 2014-07-08 Medtronic, Inc. Episode classifier algorithm
US8437840B2 (en) 2011-09-26 2013-05-07 Medtronic, Inc. Episode classifier algorithm
US20130085550A1 (en) * 2011-09-30 2013-04-04 Greatbatch, Ltd. Medical implant range extension bridge apparatus and method
US9668668B2 (en) 2011-09-30 2017-06-06 Medtronic, Inc. Electrogram summary
EP2575064A1 (en) * 2011-09-30 2013-04-03 General Electric Company Telecare and/or telehealth communication method and system
US8744560B2 (en) 2011-09-30 2014-06-03 Medtronic, Inc. Electrogram summary
WO2013056160A2 (en) 2011-10-13 2013-04-18 Masimo Corporation Medical monitoring hub
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US8886296B2 (en) 2011-10-14 2014-11-11 Medtronic, Inc. T-wave oversensing
US8521281B2 (en) 2011-10-14 2013-08-27 Medtronic, Inc. Electrogram classification algorithm
EP2769357B1 (en) 2011-10-21 2023-08-30 ICU Medical, Inc. Medical device update system
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013070794A2 (en) 2011-11-07 2013-05-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
BR112014014841A2 (en) * 2011-12-21 2017-06-13 Koninklijke Philips Nv clinical support system for monitoring one or more patients, method for monitoring one or more patients, one or more processors programmed to perform the method, and system for evaluating the stability of a patient's physiological condition
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
EP2830687B1 (en) 2012-03-30 2019-07-24 ICU Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
US20140002241A1 (en) 2012-06-29 2014-01-02 Zoll Medical Corporation Response system with emergency response equipment locator
EP3586891A1 (en) 2012-07-31 2020-01-01 ICU Medical, Inc. Patient care system for critical medications
EP3702685A1 (en) 2012-08-28 2020-09-02 Delos Living LLC Environmental control system and method of operation such system
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
EP3346444B1 (en) 2012-10-26 2020-09-23 Baxter Corporation Englewood Improved image acquisition for medical dose preparation system
US9375079B2 (en) 2012-10-26 2016-06-28 Baxter Corporation Englewood Work station for medical dose preparation system
US11182728B2 (en) 2013-01-30 2021-11-23 Carefusion 303, Inc. Medication workflow management
US10430554B2 (en) 2013-05-23 2019-10-01 Carefusion 303, Inc. Medication preparation queue
WO2014133993A1 (en) * 2013-02-27 2014-09-04 Interactive Intelligence, Inc. System and method for remote management and detection of client complications
US9641432B2 (en) 2013-03-06 2017-05-02 Icu Medical, Inc. Medical device communication method
US9864755B2 (en) 2013-03-08 2018-01-09 Go Daddy Operating Company, LLC Systems for associating an online file folder with a uniform resource locator
CN114267429A (en) 2013-03-13 2022-04-01 康尔福盛303公司 Predictive medication safety
ES2831801T3 (en) 2013-03-13 2021-06-09 Carefusion 303 Inc Patient-specific medication management system
US9238144B2 (en) 2013-03-14 2016-01-19 Neuropace, Inc. Optimizing data retrieval from an active implantable medical device
US9314639B2 (en) 2013-03-15 2016-04-19 Boston Scientific Neuromodulation Corporation Techniques for logging and using programming history in a neurostimulation system
EP3000094A4 (en) 2013-05-22 2017-02-01 Carefusion 303 Inc. Medication workflow management
AU2014268355B2 (en) 2013-05-24 2018-06-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
AU2014274146B2 (en) 2013-05-29 2019-01-24 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
WO2014194065A1 (en) 2013-05-29 2014-12-04 Hospira, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
KR20160100900A (en) 2013-06-17 2016-08-24 아디 매쉬아취 Implant unit delivery tool
WO2015020979A1 (en) 2013-08-05 2015-02-12 Cardiac Pacemakers, Inc. System and method for detecting worsening of heart failure based on rapid shallow breathing index
EP3039596A4 (en) 2013-08-30 2017-04-12 Hospira, Inc. System and method of monitoring and managing a remote infusion regimen
US9830424B2 (en) 2013-09-18 2017-11-28 Hill-Rom Services, Inc. Bed/room/patient association systems and methods
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
EP3071253B1 (en) 2013-11-19 2019-05-22 ICU Medical, Inc. Infusion pump automation system and method
US9722472B2 (en) 2013-12-11 2017-08-01 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for harvesting human energy in the workplace
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
CN106102830B (en) 2014-01-10 2019-07-16 心脏起搏器股份公司 For improving the method and system of the communication between medical device
JP6636442B2 (en) 2014-02-28 2020-01-29 アイシーユー・メディカル・インコーポレーテッド Infusion systems and methods utilizing dual wavelength optical in-pipe air detection
MX2016011107A (en) 2014-02-28 2017-02-17 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments.
KR20150121940A (en) * 2014-04-22 2015-10-30 삼성전자주식회사 Method and system for providing information related to a medical device
US9764082B2 (en) 2014-04-30 2017-09-19 Icu Medical, Inc. Patient care system with conditional alarm forwarding
WO2015184366A1 (en) 2014-05-29 2015-12-03 Hospira, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
WO2015191884A1 (en) 2014-06-12 2015-12-17 Brigham Young University Inverted serpentine spinal stability device and associated methods
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
WO2016003902A1 (en) 2014-06-30 2016-01-07 Baxter Corporation Englewood Managed medical information exchange
CN107073275B (en) 2014-08-28 2020-09-01 心脏起搏器股份公司 Medical device with triggered blanking period
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
EP3937116A1 (en) 2014-12-05 2022-01-12 Baxter Corporation Englewood Dose preparation data analytics
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
WO2016115230A1 (en) 2015-01-13 2016-07-21 Delos Living Llc Systems, methods and articles for monitoring and enhancing human wellness
CN107206242B (en) 2015-02-06 2020-10-30 心脏起搏器股份公司 Systems and methods for safe delivery of electrical stimulation therapy
WO2016126613A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
WO2016141216A1 (en) 2015-03-03 2016-09-09 Baxter Corporation Englewood Pharmacy workflow management with integrated alerts
CN107530002B (en) 2015-03-04 2021-04-30 心脏起搏器股份公司 System and method for treating cardiac arrhythmias
JP6515195B2 (en) 2015-03-18 2019-05-15 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device and medical system
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
ES2845725T3 (en) 2015-05-26 2021-07-27 Icu Medical Inc Infusion pump system and method with multiple drug library editor source capability
JP2018524718A (en) 2015-06-25 2018-08-30 ガンブロ・ルンディア・エービーGambro Lundia Ab Medical device system and method with distributed database
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
WO2017040153A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
KR102612874B1 (en) 2015-08-31 2023-12-12 마시모 코오퍼레이션 Wireless patient monitoring systems and methods
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
CN108136185B (en) 2015-10-08 2021-08-31 心脏起搏器股份公司 Apparatus and method for adjusting pacing rate in an implantable medical device
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
EP3411113B1 (en) 2016-02-04 2019-11-27 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US20170245794A1 (en) * 2016-02-29 2017-08-31 Medtronic, Inc. Medical system for seamless therapy adjustment
CN108883286B (en) 2016-03-31 2021-12-07 心脏起搏器股份公司 Implantable medical device with rechargeable battery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
AU2017264784B2 (en) 2016-05-13 2022-04-21 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
WO2018005373A1 (en) 2016-06-27 2018-01-04 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management
WO2018009569A1 (en) 2016-07-06 2018-01-11 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
WO2018009392A1 (en) 2016-07-07 2018-01-11 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
AU2017295722B2 (en) 2016-07-14 2022-08-11 Icu Medical, Inc. Multi-communication path selection and security system for a medical device
CN109475743B (en) 2016-07-20 2022-09-02 心脏起搏器股份公司 System for utilizing atrial contraction timing references in a leadless cardiac pacemaker system
US10391319B2 (en) 2016-08-19 2019-08-27 Cardiac Pacemakers, Inc. Trans septal implantable medical device
EP3503799B1 (en) 2016-08-24 2021-06-30 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing
US11338107B2 (en) 2016-08-24 2022-05-24 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
CN109641129B (en) 2016-08-24 2023-06-30 心脏起搏器股份公司 Cardiac resynchronization with timing management using fusion facilitation
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
EP3532160B1 (en) 2016-10-27 2023-01-25 Cardiac Pacemakers, Inc. Separate device in managing the pace pulse energy of a cardiac pacemaker
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
WO2018081225A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
WO2018081133A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
WO2018081275A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
EP3538213B1 (en) 2016-11-09 2023-04-12 Cardiac Pacemakers, Inc. Systems and devices for setting cardiac pacing pulse parameters for a cardiac pacing device
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
EP3541472B1 (en) 2016-11-21 2023-06-07 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
EP3541473B1 (en) 2016-11-21 2020-11-11 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
CA3044724A1 (en) 2016-12-21 2018-06-28 Gambro Lundia Ab Medical device system including information technology infrastructure having secure cluster domain supporting external domain
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
JP7000438B2 (en) 2017-01-26 2022-01-19 カーディアック ペースメイカーズ, インコーポレイテッド Human device communication with redundant message transmission
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US20180239874A1 (en) * 2017-02-21 2018-08-23 Welltok, Inc. Dynamic intervention for individuals based on detected contextual factors
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
JP6953614B2 (en) 2017-04-03 2021-10-27 カーディアック ペースメイカーズ, インコーポレイテッド Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
WO2019036600A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
WO2019046580A1 (en) 2017-08-30 2019-03-07 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
CN111417432B (en) 2017-12-01 2024-04-30 心脏起搏器股份公司 Leadless cardiac pacemaker with return behavior
WO2019108545A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
CN111432875B (en) 2017-12-01 2024-04-30 心脏起搏器股份公司 Method and system for detecting atrial contraction timing reference and determining cardiac interval from ventricular implanted leadless cardiac pacemaker
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
WO2019136148A1 (en) 2018-01-04 2019-07-11 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
CN111886046A (en) 2018-03-23 2020-11-03 美敦力公司 AV-synchronized VFA cardiac therapy
JP2021519117A (en) 2018-03-23 2021-08-10 メドトロニック,インコーポレイテッド VfA Cardiac Treatment for Tachycardia
WO2019183512A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac resynchronization therapy
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11139058B2 (en) 2018-07-17 2021-10-05 Icu Medical, Inc. Reducing file transfer between cloud environment and infusion pumps
ES2962660T3 (en) 2018-07-17 2024-03-20 Icu Medical Inc Systems and methods to facilitate clinical messaging in a network environment
US10950339B2 (en) 2018-07-17 2021-03-16 Icu Medical, Inc. Converting pump messages in new pump protocol to standardized dataset messages
WO2020018388A1 (en) 2018-07-17 2020-01-23 Icu Medical, Inc. Updating infusion pump drug libraries and operational software in a networked environment
CA3107315C (en) 2018-07-26 2023-01-03 Icu Medical, Inc. Drug library management system
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
EP3850458A4 (en) 2018-09-14 2022-06-08 Delos Living, LLC Systems and methods for air remediation
WO2020065582A1 (en) 2018-09-26 2020-04-02 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
WO2020176503A1 (en) 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
US11911325B2 (en) 2019-02-26 2024-02-27 Hill-Rom Services, Inc. Bed interface for manual location
US11898898B2 (en) 2019-03-25 2024-02-13 Delos Living Llc Systems and methods for acoustic monitoring
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
CA3138528A1 (en) 2019-05-08 2020-11-12 Icu Medical, Inc. Threshold signature based medical device management
WO2021034677A1 (en) * 2019-08-16 2021-02-25 OptimDosing, LLC Application for tracking progression and isolating causes of adverse medical conditions
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
EP4120901A1 (en) 2020-03-20 2023-01-25 Masimo Corporation Wearable device for noninvasive body temperature measurement
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
WO2022020184A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
USD1048908S1 (en) 2022-10-04 2024-10-29 Masimo Corporation Wearable sensor

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832339A (en) * 1970-06-24 1974-08-27 Ciba Geigy Ag Polyazo pigments of the 2-hydroxynaphthalene-3-carboxylic acidarylide series
US4142533A (en) * 1976-10-28 1979-03-06 Research Corporation Monitoring system for cardiac pacers
US4531527A (en) * 1982-04-23 1985-07-30 Survival Technology, Inc. Ambulatory monitoring system with real time analysis and telephone transmission
US4686999A (en) * 1985-04-10 1987-08-18 Tri Fund Research Corporation Multi-channel ventilation monitor and method
US4803625A (en) * 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4809697A (en) * 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US4852570A (en) * 1989-02-09 1989-08-01 Levine Alfred B Comparative medical-physical analysis
US4899758A (en) * 1986-01-31 1990-02-13 Regents Of The University Of Minnesota Method and apparatus for monitoring and diagnosing hypertension and congestive heart failure
US4958645A (en) * 1987-11-18 1990-09-25 Cme Telemetrix Inc. Multi-channel digital medical telemetry system
US4987897A (en) * 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US5040536A (en) * 1990-01-31 1991-08-20 Medtronic, Inc. Intravascular pressure posture detector
US5113859A (en) * 1988-09-19 1992-05-19 Medtronic, Inc. Acoustic body bus medical device communication system
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5301105A (en) * 1991-04-08 1994-04-05 Desmond D. Cummings All care health management system
US5309919A (en) * 1992-03-02 1994-05-10 Siemens Pacesetter, Inc. Method and system for recording, reporting, and displaying the distribution of pacing events over time and for using same to optimize programming
US5313593A (en) * 1992-09-17 1994-05-17 International Business Machines Corp. Personal computer system with bus noise rejection
US5331549A (en) * 1992-07-30 1994-07-19 Crawford Jr John M Medical monitor system
US5336245A (en) * 1992-05-20 1994-08-09 Angeion Corporation Storage interrogation apparatus for cardiac data
US5357427A (en) * 1993-03-15 1994-10-18 Digital Equipment Corporation Remote monitoring of high-risk patients using artificial intelligence
US5355889A (en) * 1992-06-09 1994-10-18 Albert Eisenstein Health Care Foundation Monitoring system for producing patient status indicator
US5390238A (en) * 1992-06-15 1995-02-14 Motorola, Inc. Health support system
US5416695A (en) * 1993-03-09 1995-05-16 Metriplex, Inc. Method and apparatus for alerting patients and medical personnel of emergency medical situations
US5421343A (en) * 1992-04-03 1995-06-06 Feng; Genquan Computer network EEMPI system
US5437278A (en) * 1992-01-10 1995-08-01 Wilk; Peter J. Medical diagnosis system and method
US5438983A (en) * 1993-09-13 1995-08-08 Hewlett-Packard Company Patient alarm detection using trend vector analysis
US5544661A (en) * 1994-01-13 1996-08-13 Charles L. Davis Real time ambulatory patient monitor
US5553609A (en) * 1995-02-09 1996-09-10 Visiting Nurse Service, Inc. Intelligent remote visual monitoring system for home health care service
US5557514A (en) * 1994-06-23 1996-09-17 Medicode, Inc. Method and system for generating statistically-based medical provider utilization profiles
US5591215A (en) * 1994-11-30 1997-01-07 Telectronics Pacing Systems, Inc. Apparatus and method for detection of atrial fibrillation by ventricular stability and ventricular pacing
US5603331A (en) * 1996-02-12 1997-02-18 Cardiac Pacemakers, Inc. Data logging system for implantable cardiac device
US5660183A (en) * 1995-08-16 1997-08-26 Telectronics Pacing Systems, Inc. Interactive probability based expert system for diagnosis of pacemaker related cardiac problems
US5673691A (en) * 1991-01-11 1997-10-07 Pics, Inc. Apparatus to control diet and weight using human behavior modification techniques
US5704366A (en) * 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5711297A (en) * 1993-12-29 1998-01-27 First Opinion Corporation Computerized medical advice system and method including meta function
US5713350A (en) * 1995-09-06 1998-02-03 Fukuda Denshi Kabushiki Kaisha Patient information analysis management system and method
US5720771A (en) * 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability
US5722999A (en) * 1995-08-02 1998-03-03 Pacesetter, Inc. System and method for storing and displaying historical medical data measured by an implantable medical device
US5724580A (en) * 1995-03-31 1998-03-03 Qmed, Inc. System and method of generating prognosis and therapy reports for coronary health management
US5724983A (en) * 1994-08-01 1998-03-10 New England Center Hospitals, Inc. Continuous monitoring using a predictive instrument
US5738102A (en) * 1994-03-31 1998-04-14 Lemelson; Jerome H. Patient monitoring system
US5743267A (en) * 1995-10-19 1998-04-28 Telecom Medical, Inc. System and method to monitor the heart of a patient
US5749908A (en) * 1996-12-18 1998-05-12 Pacesetter, Inc. Methods and apparatus for annotating data in an implantable device programmer using digitally recorded sound
US5749907A (en) * 1997-02-18 1998-05-12 Pacesetter, Inc. System and method for identifying and displaying medical data which violate programmable alarm conditions
US5752976A (en) * 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5769074A (en) * 1994-10-13 1998-06-23 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
US5772586A (en) * 1996-02-12 1998-06-30 Nokia Mobile Phones, Ltd. Method for monitoring the health of a patient
US5772604A (en) * 1997-03-14 1998-06-30 Emory University Method, system and apparatus for determining prognosis in atrial fibrillation
US5772599A (en) * 1996-05-09 1998-06-30 Albert Einstein Healthcare Network Apparatus and method for monitoring a system
US5778882A (en) * 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5785650A (en) * 1995-08-09 1998-07-28 Akasaka; Noboru Medical system for at-home patients
US5785660A (en) * 1996-03-28 1998-07-28 Pacesetter, Inc. Methods and apparatus for storing intracardiac electrograms
US5788640A (en) * 1995-10-26 1998-08-04 Peters; Robert Mitchell System and method for performing fuzzy cluster classification of stress tests
US5792062A (en) * 1996-05-14 1998-08-11 Massachusetts Institute Of Technology Method and apparatus for detecting nonlinearity in an electrocardiographic signal
US5819251A (en) * 1996-02-06 1998-10-06 Oracle Corporation System and apparatus for storage retrieval and analysis of relational and non-relational data
US5855593A (en) * 1995-03-30 1999-01-05 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment for arrhythmias
US5860918A (en) * 1996-11-22 1999-01-19 Hewlett-Packard Company Representation of a review of a patent's physiological parameters
US5876353A (en) * 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US5879375A (en) * 1992-08-06 1999-03-09 Electric Boat Corporation Implantable device monitoring arrangement and method
US5891178A (en) * 1996-05-14 1999-04-06 Pacesetter, Inc. Programmer system and associated methods for rapidly evaluating and programming an implanted cardiac device
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5911132A (en) * 1995-04-26 1999-06-08 Lucent Technologies Inc. Method using central epidemiological database
US5931857A (en) * 1996-12-13 1999-08-03 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5954640A (en) * 1996-06-27 1999-09-21 Szabo; Andrew J. Nutritional optimization method
US5957861A (en) * 1997-01-31 1999-09-28 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US5974124A (en) * 1997-01-21 1999-10-26 Med Graph Method and system aiding medical diagnosis and treatment
US6014581A (en) * 1998-03-26 2000-01-11 Ep Technologies, Inc. Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6038469A (en) * 1994-10-07 2000-03-14 Ortivus Ab Myocardial ischemia and infarction analysis and monitoring method and apparatus
US6047203A (en) * 1997-03-17 2000-04-04 Nims, Inc. Physiologic signs feedback system
US6050940A (en) * 1996-06-17 2000-04-18 Cybernet Systems Corporation General-purpose medical instrumentation
US6063028A (en) * 1997-03-20 2000-05-16 Luciano; Joanne Sylvia Automated treatment selection method
US6067466A (en) * 1998-11-18 2000-05-23 New England Medical Center Hospitals, Inc. Diagnostic tool using a predictive instrument
US6073046A (en) * 1998-04-27 2000-06-06 Patel; Bharat Heart monitor system
US6080106A (en) * 1997-10-28 2000-06-27 Alere Incorporated Patient interface system with a scale
US6083248A (en) * 1995-06-23 2000-07-04 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US6093146A (en) * 1998-06-05 2000-07-25 Matsushita Electric Works, Ltd. Physiological monitoring
US6102856A (en) * 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
US6122351A (en) * 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
US6129675A (en) * 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US6168653B1 (en) * 1997-05-15 2001-01-02 Filtertek, Inc Pressure transmission apparatus
US6169914B1 (en) * 1998-01-13 2001-01-02 Urometrics, Inc. Devices and methods for monitoring female arousal
US6171237B1 (en) * 1998-03-30 2001-01-09 Boaz Avitall Remote health monitoring system
US6171256B1 (en) * 1998-04-30 2001-01-09 Physio-Control Manufacturing Corporation Method and apparatus for detecting a condition associated with acute cardiac ischemia
US6223078B1 (en) * 1999-03-12 2001-04-24 Cardiac Pacemakers, Inc. Discrimination of supraventricular tachycardia and ventricular tachycardia events
US6225901B1 (en) * 1997-03-07 2001-05-01 Cardionet, Inc. Reprogrammable remote sensor monitoring system
US6234964B1 (en) * 1997-03-13 2001-05-22 First Opinion Corporation Disease management system and method
US6246992B1 (en) * 1996-10-16 2001-06-12 Health Hero Network, Inc. Multiple patient monitoring system for proactive health management
US6250309B1 (en) * 1999-07-21 2001-06-26 Medtronic Inc System and method for transferring information relating to an implantable medical device to a remote location
US6283923B1 (en) * 1998-05-28 2001-09-04 The Trustees Of Columbia University In The City Of New York System and method for remotely monitoring asthma severity
US6287252B1 (en) * 1999-06-30 2001-09-11 Monitrak Patient monitor
US6290646B1 (en) * 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6416471B1 (en) * 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6428483B1 (en) * 1999-05-08 2002-08-06 Oridion Medical 1987, Ltd. Waveform interpreter for respiratory analysis
US6454705B1 (en) * 1999-09-21 2002-09-24 Cardiocom Medical wellness parameters management system, apparatus and method
US20030055679A1 (en) * 1999-04-09 2003-03-20 Andrew H. Soll Enhanced medical treatment system

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2553517C3 (en) * 1975-11-28 1978-12-07 Ibm Deutschland Gmbh, 7000 Stuttgart Delay circuit with field effect transistors
US4142530A (en) * 1978-03-06 1979-03-06 Vitatron Medical B. V. Epicardial lead
US4197856A (en) * 1978-04-10 1980-04-15 Northrop Robert B Ultrasonic respiration/convulsion monitoring apparatus and method for its use
JPS57113264A (en) * 1980-12-29 1982-07-14 Fujitsu Ltd Manufacture of mis type capacitor
US4557036A (en) * 1982-03-31 1985-12-10 Nippon Telegraph & Telephone Public Corp. Semiconductor device and process for manufacturing the same
JPH0191834A (en) * 1987-08-20 1989-04-11 Tsuruta Hiroko Abnormal data detection and information method in individual medical data central control system
US4933873A (en) 1988-05-12 1990-06-12 Healthtech Services Corp. Interactive patient assistance device
US5040535A (en) * 1989-01-25 1991-08-20 Siemens-Pacesetter, Inc. Average amplitude controlled rate-responsive pacemaker having automatically adjustable control parameters
JPH02273934A (en) * 1989-04-17 1990-11-08 Oki Electric Ind Co Ltd Semiconductor element and manufacture thereof
US5272361A (en) * 1989-06-30 1993-12-21 Semiconductor Energy Laboratory Co., Ltd. Field effect semiconductor device with immunity to hot carrier effects
US5113869A (en) 1990-08-21 1992-05-19 Telectronics Pacing Systems, Inc. Implantable ambulatory electrocardiogram monitor
US5133346A (en) * 1990-12-03 1992-07-28 Arvee Medical, Incorporated Apnea monitor data system
US5181519A (en) 1991-05-17 1993-01-26 Caliber Medical Corporation Device for detecting abnormal heart muscle electrical activity
EP0531889B1 (en) 1991-09-11 1998-11-11 Hewlett-Packard Company Data processing system and method for automatically performing prioritized nursing diagnoses from patient assessment data
JP3204542B2 (en) * 1992-07-24 2001-09-04 株式会社東芝 Magnetic field source measurement device
US5334222A (en) * 1992-11-03 1994-08-02 Cardiac Pacemakers, Inc. Cardiac stimulating apparatus and method for heart failure therapy
US5576952A (en) * 1993-03-09 1996-11-19 Metriplex, Inc. Medical alert distribution system with selective filtering of medical information
US5464012A (en) * 1993-09-13 1995-11-07 Hewlett-Packard Company Patient alarm detection using target mode
US5855598A (en) * 1993-10-21 1999-01-05 Corvita Corporation Expandable supportive branched endoluminal grafts
DE69435213D1 (en) * 1993-11-05 2009-07-16 Resmed Ltd Device for determining the openness of a respiratory tract
JP3213156B2 (en) 1994-03-15 2001-10-02 富士通株式会社 Electronics
US5520191A (en) 1994-10-07 1996-05-28 Ortivus Medical Ab Myocardial ischemia and infarction analysis and monitoring method and apparatus
US5687734A (en) * 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5698468A (en) * 1995-06-07 1997-12-16 Lsi Logic Corporation Silicidation process with etch stop
US5697959A (en) * 1996-01-11 1997-12-16 Pacesetter, Inc. Method and system for analyzing and displaying complex pacing event records
US5736102A (en) * 1996-02-21 1998-04-07 Biomerieux Vitek, Inc. Test sample positioning system
CA2251718C (en) 1996-04-23 2001-07-10 Zymed Medical Instrumentation, Inc. Process for monitoring patients with chronic congestive heart failure
US6134004A (en) 1996-07-10 2000-10-17 3M Innovative Properties Company Open air optical analysis apparatus and method regarding same
JP2000514682A (en) 1996-07-11 2000-11-07 メドトロニック・インコーポレーテッド Minimal invasive implantable device for monitoring physiological events
US5923056A (en) * 1996-10-10 1999-07-13 Lucent Technologies Inc. Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials
US6060106A (en) * 1996-12-20 2000-05-09 Lipton, A Division Of Conopco, Inc. Opaque low fat salad dressing with an improved mouthfeel
US6461982B2 (en) * 1997-02-27 2002-10-08 Micron Technology, Inc. Methods for forming a dielectric film
US5958010A (en) 1997-03-20 1999-09-28 Firstsense Software, Inc. Systems and methods for monitoring distributed applications including an interface running in an operating system kernel
EP0908481A4 (en) * 1997-03-27 2000-05-31 Kyowa Yuka Kk Polyurethanes and polyester polyols
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US6122361A (en) * 1997-09-12 2000-09-19 Nortel Networks Corporation Automated directory assistance system utilizing priori advisor for predicting the most likely requested locality
US6139494A (en) 1997-10-15 2000-10-31 Health Informatics Tools Method and apparatus for an integrated clinical tele-informatics system
US5937303A (en) * 1997-10-29 1999-08-10 Advanced Micro Devices High dielectric constant gate dielectric integrated with nitrogenated gate electrode
US6477424B1 (en) * 1998-06-19 2002-11-05 Medtronic, Inc. Medical management system integrated programming apparatus for communication with an implantable medical device
US6074124A (en) * 1998-06-23 2000-06-13 Scarr; William Danny Log boom apparatus and method utilizing open-sided hook
US6207252B1 (en) * 1998-06-24 2001-03-27 Verbatim Corporation Magnetic recording medium and production method thereof
US6080108A (en) * 1998-11-17 2000-06-27 Atl Ultrasound, Inc. Scanning aid for quantified three dimensional ultrasonic diagnostic imaging
US6155267A (en) * 1998-12-31 2000-12-05 Medtronic, Inc. Implantable medical device monitoring method and system regarding same
US6302844B1 (en) * 1999-03-31 2001-10-16 Walker Digital, Llc Patient care delivery system
US6312378B1 (en) * 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US6261230B1 (en) * 1999-06-03 2001-07-17 Cardiac Intelligence Corporation System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
GB2351585B (en) * 1999-06-29 2003-09-03 Ncr Int Inc Self service terminal
CA2314517A1 (en) * 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2314513A1 (en) * 1999-07-26 2001-01-26 Gust H. Bardy System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US6263245B1 (en) 1999-08-12 2001-07-17 Pacesetter, Inc. System and method for portable implantable device interogation
US6827670B1 (en) * 1999-10-11 2004-12-07 Izex Technologies, Inc. System for medical protocol management
US6249705B1 (en) 1999-10-21 2001-06-19 Pacesetter, Inc. Distributed network system for use with implantable medical devices
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6363282B1 (en) 1999-10-29 2002-03-26 Medtronic, Inc. Apparatus and method to automatic remote software updates of medical device systems
US6398728B1 (en) * 1999-11-16 2002-06-04 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring respiratory insufficiency and outcomes thereof
US6267252B1 (en) * 1999-12-08 2001-07-31 Kimberly-Clark Worldwide, Inc. Fine particle filtration medium including an airlaid composite
US6497655B1 (en) 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6538856B1 (en) * 2000-06-21 2003-03-25 International Business Machines Corporation Read head with spin valve sensor having sense current in plane (CIP) thence sense current perpendicular to plane (CPP)
US6438963B1 (en) * 2000-08-31 2002-08-27 General Electric Company Liquid fuel and water injection purge systems and method for a gas turbine having a three-way purge valve

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832339A (en) * 1970-06-24 1974-08-27 Ciba Geigy Ag Polyazo pigments of the 2-hydroxynaphthalene-3-carboxylic acidarylide series
US4142533A (en) * 1976-10-28 1979-03-06 Research Corporation Monitoring system for cardiac pacers
US4531527A (en) * 1982-04-23 1985-07-30 Survival Technology, Inc. Ambulatory monitoring system with real time analysis and telephone transmission
US4686999A (en) * 1985-04-10 1987-08-18 Tri Fund Research Corporation Multi-channel ventilation monitor and method
US4899758A (en) * 1986-01-31 1990-02-13 Regents Of The University Of Minnesota Method and apparatus for monitoring and diagnosing hypertension and congestive heart failure
US4803625A (en) * 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4809697A (en) * 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US4958645A (en) * 1987-11-18 1990-09-25 Cme Telemetrix Inc. Multi-channel digital medical telemetry system
US5113859A (en) * 1988-09-19 1992-05-19 Medtronic, Inc. Acoustic body bus medical device communication system
US4852570A (en) * 1989-02-09 1989-08-01 Levine Alfred B Comparative medical-physical analysis
US4987897A (en) * 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US5040536A (en) * 1990-01-31 1991-08-20 Medtronic, Inc. Intravascular pressure posture detector
US5673691A (en) * 1991-01-11 1997-10-07 Pics, Inc. Apparatus to control diet and weight using human behavior modification techniques
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5301105A (en) * 1991-04-08 1994-04-05 Desmond D. Cummings All care health management system
US5437278A (en) * 1992-01-10 1995-08-01 Wilk; Peter J. Medical diagnosis system and method
US5309919A (en) * 1992-03-02 1994-05-10 Siemens Pacesetter, Inc. Method and system for recording, reporting, and displaying the distribution of pacing events over time and for using same to optimize programming
US5421343A (en) * 1992-04-03 1995-06-06 Feng; Genquan Computer network EEMPI system
US5336245A (en) * 1992-05-20 1994-08-09 Angeion Corporation Storage interrogation apparatus for cardiac data
US5355889A (en) * 1992-06-09 1994-10-18 Albert Eisenstein Health Care Foundation Monitoring system for producing patient status indicator
US5390238A (en) * 1992-06-15 1995-02-14 Motorola, Inc. Health support system
US5331549A (en) * 1992-07-30 1994-07-19 Crawford Jr John M Medical monitor system
US5879375A (en) * 1992-08-06 1999-03-09 Electric Boat Corporation Implantable device monitoring arrangement and method
US5313593A (en) * 1992-09-17 1994-05-17 International Business Machines Corp. Personal computer system with bus noise rejection
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5416695A (en) * 1993-03-09 1995-05-16 Metriplex, Inc. Method and apparatus for alerting patients and medical personnel of emergency medical situations
US5357427A (en) * 1993-03-15 1994-10-18 Digital Equipment Corporation Remote monitoring of high-risk patients using artificial intelligence
US5438983A (en) * 1993-09-13 1995-08-08 Hewlett-Packard Company Patient alarm detection using trend vector analysis
US5711297A (en) * 1993-12-29 1998-01-27 First Opinion Corporation Computerized medical advice system and method including meta function
US5544661A (en) * 1994-01-13 1996-08-13 Charles L. Davis Real time ambulatory patient monitor
US5738102A (en) * 1994-03-31 1998-04-14 Lemelson; Jerome H. Patient monitoring system
US5704366A (en) * 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5557514A (en) * 1994-06-23 1996-09-17 Medicode, Inc. Method and system for generating statistically-based medical provider utilization profiles
US5724983A (en) * 1994-08-01 1998-03-10 New England Center Hospitals, Inc. Continuous monitoring using a predictive instrument
US6038469A (en) * 1994-10-07 2000-03-14 Ortivus Ab Myocardial ischemia and infarction analysis and monitoring method and apparatus
US5769074A (en) * 1994-10-13 1998-06-23 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
US5591215A (en) * 1994-11-30 1997-01-07 Telectronics Pacing Systems, Inc. Apparatus and method for detection of atrial fibrillation by ventricular stability and ventricular pacing
US5553609A (en) * 1995-02-09 1996-09-10 Visiting Nurse Service, Inc. Intelligent remote visual monitoring system for home health care service
US5778882A (en) * 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US6095985A (en) * 1995-02-24 2000-08-01 Brigham And Women's Hospital Health monitoring system
US5855593A (en) * 1995-03-30 1999-01-05 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment for arrhythmias
US5724580A (en) * 1995-03-31 1998-03-03 Qmed, Inc. System and method of generating prognosis and therapy reports for coronary health management
US5911132A (en) * 1995-04-26 1999-06-08 Lucent Technologies Inc. Method using central epidemiological database
US5752976A (en) * 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US6083248A (en) * 1995-06-23 2000-07-04 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5720771A (en) * 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US5722999A (en) * 1995-08-02 1998-03-03 Pacesetter, Inc. System and method for storing and displaying historical medical data measured by an implantable medical device
US5785650A (en) * 1995-08-09 1998-07-28 Akasaka; Noboru Medical system for at-home patients
US5660183A (en) * 1995-08-16 1997-08-26 Telectronics Pacing Systems, Inc. Interactive probability based expert system for diagnosis of pacemaker related cardiac problems
US5713350A (en) * 1995-09-06 1998-02-03 Fukuda Denshi Kabushiki Kaisha Patient information analysis management system and method
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability
US5743267A (en) * 1995-10-19 1998-04-28 Telecom Medical, Inc. System and method to monitor the heart of a patient
US5788640A (en) * 1995-10-26 1998-08-04 Peters; Robert Mitchell System and method for performing fuzzy cluster classification of stress tests
US5819251A (en) * 1996-02-06 1998-10-06 Oracle Corporation System and apparatus for storage retrieval and analysis of relational and non-relational data
US5603331A (en) * 1996-02-12 1997-02-18 Cardiac Pacemakers, Inc. Data logging system for implantable cardiac device
US5772586A (en) * 1996-02-12 1998-06-30 Nokia Mobile Phones, Ltd. Method for monitoring the health of a patient
US5785660A (en) * 1996-03-28 1998-07-28 Pacesetter, Inc. Methods and apparatus for storing intracardiac electrograms
US5772599A (en) * 1996-05-09 1998-06-30 Albert Einstein Healthcare Network Apparatus and method for monitoring a system
US5891178A (en) * 1996-05-14 1999-04-06 Pacesetter, Inc. Programmer system and associated methods for rapidly evaluating and programming an implanted cardiac device
US5792062A (en) * 1996-05-14 1998-08-11 Massachusetts Institute Of Technology Method and apparatus for detecting nonlinearity in an electrocardiographic signal
US6050940A (en) * 1996-06-17 2000-04-18 Cybernet Systems Corporation General-purpose medical instrumentation
US5954640A (en) * 1996-06-27 1999-09-21 Szabo; Andrew J. Nutritional optimization method
US6246992B1 (en) * 1996-10-16 2001-06-12 Health Hero Network, Inc. Multiple patient monitoring system for proactive health management
US5860918A (en) * 1996-11-22 1999-01-19 Hewlett-Packard Company Representation of a review of a patent's physiological parameters
US5931857A (en) * 1996-12-13 1999-08-03 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US5749908A (en) * 1996-12-18 1998-05-12 Pacesetter, Inc. Methods and apparatus for annotating data in an implantable device programmer using digitally recorded sound
US5974124A (en) * 1997-01-21 1999-10-26 Med Graph Method and system aiding medical diagnosis and treatment
US6122351A (en) * 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
US5957861A (en) * 1997-01-31 1999-09-28 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US5876353A (en) * 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6102856A (en) * 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
US5749907A (en) * 1997-02-18 1998-05-12 Pacesetter, Inc. System and method for identifying and displaying medical data which violate programmable alarm conditions
US6225901B1 (en) * 1997-03-07 2001-05-01 Cardionet, Inc. Reprogrammable remote sensor monitoring system
US6234964B1 (en) * 1997-03-13 2001-05-22 First Opinion Corporation Disease management system and method
US5772604A (en) * 1997-03-14 1998-06-30 Emory University Method, system and apparatus for determining prognosis in atrial fibrillation
US6047203A (en) * 1997-03-17 2000-04-04 Nims, Inc. Physiologic signs feedback system
US6063028A (en) * 1997-03-20 2000-05-16 Luciano; Joanne Sylvia Automated treatment selection method
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US6168653B1 (en) * 1997-05-15 2001-01-02 Filtertek, Inc Pressure transmission apparatus
US6080106A (en) * 1997-10-28 2000-06-27 Alere Incorporated Patient interface system with a scale
US6169914B1 (en) * 1998-01-13 2001-01-02 Urometrics, Inc. Devices and methods for monitoring female arousal
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6014581A (en) * 1998-03-26 2000-01-11 Ep Technologies, Inc. Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
US6171237B1 (en) * 1998-03-30 2001-01-09 Boaz Avitall Remote health monitoring system
US6073046A (en) * 1998-04-27 2000-06-06 Patel; Bharat Heart monitor system
US6171256B1 (en) * 1998-04-30 2001-01-09 Physio-Control Manufacturing Corporation Method and apparatus for detecting a condition associated with acute cardiac ischemia
US6283923B1 (en) * 1998-05-28 2001-09-04 The Trustees Of Columbia University In The City Of New York System and method for remotely monitoring asthma severity
US6093146A (en) * 1998-06-05 2000-07-25 Matsushita Electric Works, Ltd. Physiological monitoring
US6129675A (en) * 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
US6067466A (en) * 1998-11-18 2000-05-23 New England Medical Center Hospitals, Inc. Diagnostic tool using a predictive instrument
US6223078B1 (en) * 1999-03-12 2001-04-24 Cardiac Pacemakers, Inc. Discrimination of supraventricular tachycardia and ventricular tachycardia events
US20030055679A1 (en) * 1999-04-09 2003-03-20 Andrew H. Soll Enhanced medical treatment system
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6416471B1 (en) * 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6290646B1 (en) * 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6428483B1 (en) * 1999-05-08 2002-08-06 Oridion Medical 1987, Ltd. Waveform interpreter for respiratory analysis
US6287252B1 (en) * 1999-06-30 2001-09-11 Monitrak Patient monitor
US6250309B1 (en) * 1999-07-21 2001-06-26 Medtronic Inc System and method for transferring information relating to an implantable medical device to a remote location
US6454705B1 (en) * 1999-09-21 2002-09-24 Cardiocom Medical wellness parameters management system, apparatus and method

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070027723A1 (en) * 1999-06-03 2007-02-01 Bardy Gust H System and method for collection and analysis of patient information for automated remote patient care
US9526456B2 (en) 1999-06-03 2016-12-27 Cardiac Pacemakers, Inc. System and method for evaluating a patient status for use in heart failure assessment
US8277378B2 (en) 1999-06-03 2012-10-02 Cardiac Pacemakers, Inc System and method for collection and analysis of patient information for automated remote patient care
US8556810B2 (en) 1999-06-03 2013-10-15 Cardiac Pacemakers, Inc. System and method for evaluating a patient status for use in heart failure assessment
US9186061B2 (en) 1999-06-03 2015-11-17 Cardiac Pacemakers, Inc. System and method for evaluating a patient status for use in heart failure assessment
US20070293740A1 (en) * 1999-06-03 2007-12-20 Bardy Gust H System and method for evaluating a patient status for use in heart failure assessment
US9149237B2 (en) 1999-06-03 2015-10-06 Cardiac Pacemakers, Inc. System and method for evaluating a patient status for use in heart failure assessment
US20120095304A1 (en) * 2005-12-15 2012-04-19 Cardiopulmonary Corporation System and Method for Determining a Patient Clinical Status
US8613709B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor for providing ease of use in women
US8938287B2 (en) 2010-10-08 2015-01-20 Cardiac Science Corporation Computer-implemented electrocardiograhic data processor with time stamp correlation
US9037477B2 (en) 2010-10-08 2015-05-19 Cardiac Science Corporation Computer-implemented system and method for evaluating ambulatory electrocardiographic monitoring of cardiac rhythm disorders
US8626277B2 (en) 2010-10-08 2014-01-07 Cardiac Science Corporation Computer-implemented electrocardiographic data processor with time stamp correlation
US8613708B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor with jumpered sensing electrode
US20140297300A1 (en) * 2011-06-29 2014-10-02 Insung Information Co., Ltd. Disease management system and method using a wired/wireless communication network
US10413205B2 (en) 2013-09-25 2019-09-17 Bardy Diagnostics, Inc. Electrocardiography and actigraphy monitoring system
US10264992B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Extended wear sewn electrode electrocardiography monitor
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US11918364B2 (en) 2013-09-25 2024-03-05 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US11826151B2 (en) 2013-09-25 2023-11-28 Bardy Diagnostics, Inc. System and method for physiological data classification for use in facilitating diagnosis
US11793441B2 (en) 2013-09-25 2023-10-24 Bardy Diagnostics, Inc. Electrocardiography patch
US10561328B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Multipart electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US9545228B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography and respiration-monitoring patch
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9554715B2 (en) 2013-09-25 2017-01-31 Bardy Diagnostics, Inc. System and method for electrocardiographic data signal gain determination with the aid of a digital computer
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9642537B2 (en) 2013-09-25 2017-05-09 Bardy Diagnostics, Inc. Ambulatory extended-wear electrocardiography and syncope sensor monitor
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US11786159B2 (en) 2013-09-25 2023-10-17 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9730641B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography value encoding and compression
US9730593B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9737211B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Ambulatory rescalable encoding monitor recorder
US10602977B2 (en) 2013-09-25 2020-03-31 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US11744513B2 (en) 2013-09-25 2023-09-05 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US9820665B2 (en) 2013-09-25 2017-11-21 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US9901274B2 (en) 2013-09-25 2018-02-27 Bardy Diagnostics, Inc. Electrocardiography patch
US11701044B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Electrocardiography patch
US9955911B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor recorder
US9955885B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. System and method for physiological data processing and delivery
US9955888B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for internal signal processing
US10004415B2 (en) 2013-09-25 2018-06-26 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US11701045B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography monitor
US10045709B2 (en) 2013-09-25 2018-08-14 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10052022B2 (en) 2013-09-25 2018-08-21 Bardy Diagnostics, Inc. System and method for providing dynamic gain over non-noise electrocardiographic data with the aid of a digital computer
US11678799B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for test-based data compression
US10111601B2 (en) 2013-09-25 2018-10-30 Bardy Diagnostics, Inc. Extended wear electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US11678832B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. System and method for atrial fibrillation detection in non-noise ECG data with the aid of a digital computer
US10154793B2 (en) 2013-09-25 2018-12-18 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire contact surfaces
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10172534B2 (en) 2013-09-25 2019-01-08 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US11660035B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. Insertable cardiac monitor
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10251575B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10265015B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing
US10624552B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with integrated flexile wire components
US10271755B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with sewn wire interconnects
US10271756B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic signal processing
US10278603B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. System and method for secure physiological data acquisition and storage
US10278606B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US11660037B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. System for electrocardiographic signal acquisition and processing
US10398334B2 (en) 2013-09-25 2019-09-03 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US11653869B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Multicomponent electrocardiography monitor
US10433743B1 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Method for secure physiological data acquisition and storage
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10478083B2 (en) 2013-09-25 2019-11-19 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10499812B2 (en) 2013-09-25 2019-12-10 Bardy Diagnostics, Inc. System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer
US10561326B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic potential processing
US11653870B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. System and method for display of subcutaneous cardiac monitoring data
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10631748B2 (en) 2013-09-25 2020-04-28 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire interconnects
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US10716516B2 (en) 2013-09-25 2020-07-21 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography data compression
US11653868B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for electrocardiographic (ECG) signal acquisition
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10736532B2 (en) 2013-09-25 2020-08-11 Bardy Diagnotics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10813567B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for composite display of subcutaneous cardiac monitoring data
US10813568B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for classifier-based atrial fibrillation detection with the aid of a digital computer
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10849523B2 (en) 2013-09-25 2020-12-01 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders
US11647939B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10939841B2 (en) 2013-09-25 2021-03-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US11006883B2 (en) 2013-09-25 2021-05-18 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11013446B2 (en) 2013-09-25 2021-05-25 Bardy Diagnostics, Inc. System for secure physiological data acquisition and delivery
US11051743B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography patch
US11051754B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11647941B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11103173B2 (en) 2013-09-25 2021-08-31 Bardy Diagnostics, Inc. Electrocardiography patch
US11457852B2 (en) 2013-09-25 2022-10-04 Bardy Diagnostics, Inc. Multipart electrocardiography monitor
US11179087B2 (en) 2013-09-25 2021-11-23 Bardy Diagnostics, Inc. System for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11272872B2 (en) 2013-09-25 2022-03-15 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography and physiological sensor monitor
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11445970B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for neural-network-based atrial fibrillation detection with the aid of a digital computer
US11445908B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for self-optimizing ECG data compression
US11445961B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US11445907B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory encoding monitor recorder optimized for rescalable encoding and method of use
US11445962B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor
US11445966B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11445969B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for event-centered display of subcutaneous cardiac monitoring data
US11445964B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System for electrocardiographic potentials processing and acquisition
US11445965B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long-term electrocardiographic monitoring
US11445967B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Electrocardiography patch
USD831833S1 (en) 2013-11-07 2018-10-23 Bardy Diagnostics, Inc. Extended wear electrode patch
USD892340S1 (en) 2013-11-07 2020-08-04 Bardy Diagnostics, Inc. Extended wear electrode patch
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
USD838370S1 (en) 2013-11-07 2019-01-15 Bardy Diagnostics, Inc. Electrocardiography monitor
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US11587653B2 (en) 2014-06-13 2023-02-21 University Hospitals Of Cleveland Graphical user interface for tracking and displaying patient information over the course of care
US11437125B2 (en) * 2014-06-13 2022-09-06 University Hospitals Cleveland Medical Center Artificial-intelligence-based facilitation of healthcare delivery
US20180182475A1 (en) * 2014-06-13 2018-06-28 University Hospitals Cleveland Medical Center Artificial-intelligence-based facilitation of healthcare delivery
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US10123703B2 (en) 2015-10-05 2018-11-13 Bardy Diagnostics, Inc. Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer
US9936875B2 (en) 2015-10-05 2018-04-10 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient with the aid of a digital computer
US10390700B2 (en) 2015-10-05 2019-08-27 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient based on physiological data with the aid of a digital computer
US9788722B2 (en) 2015-10-05 2017-10-17 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US10869601B2 (en) 2015-10-05 2020-12-22 Bardy Diagnostics, Inc. System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11653880B2 (en) 2019-07-03 2023-05-23 Bardy Diagnostics, Inc. System for cardiac monitoring with energy-harvesting-enhanced data transfer capabilities
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11678798B2 (en) 2019-07-03 2023-06-20 Bardy Diagnostics Inc. System and method for remote ECG data streaming in real-time

Also Published As

Publication number Publication date
US20030023177A1 (en) 2003-01-30
US20050182309A1 (en) 2005-08-18
US20040044274A1 (en) 2004-03-04
US6312378B1 (en) 2001-11-06
US20040147980A1 (en) 2004-07-29
US6860897B2 (en) 2005-03-01
US6331160B1 (en) 2001-12-18
US6908431B2 (en) 2005-06-21
US20020052542A1 (en) 2002-05-02
US20010007053A1 (en) 2001-07-05
US6478737B2 (en) 2002-11-12
US6926668B2 (en) 2005-08-09
US20070293772A1 (en) 2007-12-20
US20010037057A1 (en) 2001-11-01
US6203495B1 (en) 2001-03-20
US20040039262A1 (en) 2004-02-26
US7144369B2 (en) 2006-12-05
US6358203B2 (en) 2002-03-19
US6905463B2 (en) 2005-06-14

Similar Documents

Publication Publication Date Title
US6908431B2 (en) System and method for providing feedback to an individual patient for automated remote patient care
US6852080B2 (en) System and method for providing feedback to an individual patient for automated remote patient care
US6261230B1 (en) System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US7429243B2 (en) System and method for transacting an automated patient communications session
EP1072994B1 (en) System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US7104955B2 (en) System and method for collection and analysis of regularly retrieved patient information for automated remote patient care
US7134996B2 (en) System and method for collection and analysis of patient information for automated remote patient care
AU759502B2 (en) System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDIAC PACEMAKERS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIAC INTELLIGENCE CORP.;REEL/FRAME:022545/0057

Effective date: 20031218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION