US20050191548A1 - Recombinant separator - Google Patents
Recombinant separator Download PDFInfo
- Publication number
- US20050191548A1 US20050191548A1 US10/831,625 US83162504A US2005191548A1 US 20050191548 A1 US20050191548 A1 US 20050191548A1 US 83162504 A US83162504 A US 83162504A US 2005191548 A1 US2005191548 A1 US 2005191548A1
- Authority
- US
- United States
- Prior art keywords
- cellulose
- canceled
- film
- polymer
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920002678 cellulose Polymers 0.000 claims abstract description 34
- 239000001913 cellulose Substances 0.000 claims abstract description 34
- 239000001257 hydrogen Substances 0.000 claims abstract description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229920000642 polymer Polymers 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 230000035699 permeability Effects 0.000 claims abstract description 7
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims abstract description 3
- 235000010980 cellulose Nutrition 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 14
- 239000001856 Ethyl cellulose Substances 0.000 claims description 13
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical group CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 13
- 229920001249 ethyl cellulose Polymers 0.000 claims description 13
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 7
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 4
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 3
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims 2
- 230000015271 coagulation Effects 0.000 claims 2
- 238000005345 coagulation Methods 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 229920000875 Dissolving pulp Polymers 0.000 claims 1
- 229920013820 alkyl cellulose Polymers 0.000 claims 1
- 239000000010 aprotic solvent Substances 0.000 claims 1
- 229920003086 cellulose ether Polymers 0.000 claims 1
- 230000001112 coagulating effect Effects 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 claims 1
- 229910017053 inorganic salt Inorganic materials 0.000 claims 1
- 239000003880 polar aprotic solvent Substances 0.000 claims 1
- 230000032258 transport Effects 0.000 abstract description 10
- 239000012528 membrane Substances 0.000 abstract description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 5
- 150000002431 hydrogen Chemical class 0.000 abstract description 5
- 229910052725 zinc Inorganic materials 0.000 abstract description 5
- 239000011701 zinc Substances 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 210000001787 dendrite Anatomy 0.000 abstract description 3
- 230000001747 exhibiting effect Effects 0.000 abstract 2
- 230000037427 ion transport Effects 0.000 abstract 1
- 239000000499 gel Substances 0.000 description 17
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 12
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 9
- -1 hydroxyl ions Chemical class 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000004627 regenerated cellulose Substances 0.000 description 5
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QLIMAARBRDAYGQ-UHFFFAOYSA-N 1,6-diiodohexane Chemical compound ICCCCCCI QLIMAARBRDAYGQ-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UHFFFAOYSA-N 2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 1
- 239000000899 Gutta-Percha Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 240000000342 Palaquium gutta Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920000588 gutta-percha Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- SZKTYYIADWRVSA-UHFFFAOYSA-N zinc manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Zn++] SZKTYYIADWRVSA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0014—Alkaline electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
- Y10T428/31975—Of cellulosic next to another carbohydrate
- Y10T428/31978—Cellulosic next to another cellulosic
- Y10T428/31986—Regenerated or modified
Definitions
- This invention relates to a separator for an alkaline battery and, more particularly, this invention relates to a cellulosic separator for a secondary zinc ion battery such as a silver-zinc battery.
- Separators play a crucial role in alkaline batteries. They keep the positive and negative sides of the battery separate while letting certain ions go through and blocking others.
- the separator is a passive element that has to perform the same task unchanged for the life of the battery. Meanwhile, it must be able to withstand a strongly alkaline environment both at ambient and elevated temperatures. In addition, it must be capable of resisting oxidative attacks.
- a separator In an alkaline battery, a separator should conduct hydroxyl ions at a sufficiently rapid rate to meet the increasingly high current demands of modern electronics. Films of cellulose in the form of regenerated cellulose have been used since World War II as the separator of choice for this purpose because of its superior ability to conduct hydroxyl ions in strongly alkaline media. Its low electrical resistance of 10 milliohm-in 2 has also led to its favor for use in zinc-based batteries, such as silver-zinc, zinc-nickel, and zinc manganese dioxide batteries. Additionally, it acts as a physical barrier to migration of other ions in the battery, such as that of zincate ions and silver ions in a silver-zinc battery.
- Regenerated cellulose has some intrinsic limitations. During overcharge, an alkaline battery tends to break down water and evolve hydrogen in sufficient quantities as to materially affect the internal impedance of the battery. Unless this hydrogen is removed efficiently, a parasitic feedback results in which the battery continues to be overcharged with resultant pressure buildup and venting of hydrogen or catastrophic rupture of the battery case. Regenerated cellulose, however, exhibits one of the lowest hydrogen permeability coefficients of known polymers, reported in the Polymer Handbook as 2.044 ⁇ 10 ⁇ 15 cm 3 cm ⁇ 1 s ⁇ 1 Pa ⁇ 1 .
- Prior batteries incorporate in recombinant separators comprising porous melt-blown polymer fibers that incorporate surfactants or lubricants that facilitate gas transport within a battery.
- U.S. Pat. No. 6,054,084 describes separators for lead-acid batteries made of polytetrafluoroethylene (PTFE) fibril matrix incorporating particulate silica filler and non-evaporative lubricant as gas transport agents.
- PTFE polytetrafluoroethylene
- Nelson teaches a method for making a composite membrane made from a mixture of polymethyl methacrylate and a cellulosic derivative, such as cellulose acetate.
- a gas stream containing hydrogen is selectively cleaned of the hydrogen by the presence of the methyl methacrylate.
- Polymethyl methacrylate is, however, unsuitable as a battery separator capable of handling high currents because of its high electrical resistance.
- the separator provided by the present invention consists of a membrane having both high hydroxyl conductivity and high hydrogen transport. When the separator is placed in a silver-zinc battery, hydrogen buildup in the battery is diminished.
- the present invention relates to a recombinant separator that-is able to transport hydrogen while conducting hydroxyl ions.
- the separator of the invention help maintain low electrical impedance and exhibit resistance against formation of zinc dendrites.
- a preferred battery separator according to the inventor contains a solution of cellulose having of a degree of polymerization between 200 and 1200 that is mixed with particles of a polymer having a hydrogen permeability greater than 1 ⁇ 10 ⁇ 13 cm 3 cm ⁇ 1 s ⁇ 1 Pa ⁇ 1 . The resulting mixture is then coagulated under controlled environmental conditions to produce a heterogeneous gel that when dehydrated yields a membrane useful as a recombinant battery separator.
- FIG. 1 is a schematic drawing of the heterogeneous recombinant separator of the invention.
- FIG. 2 is a spectra of cellulose.
- FIG. 3 is a spectra of ethyl cellulose
- FIG. 4 is a line scan view of the separator of the invention.
- the recombinant separator of the invention is formed of a mixture of a hydrophilic polymer, cellulose and hydrophobic agents.
- the hydrophilic polymers preferably have relatively high hydrogen permeability. The mixture is then coagulated under controlled conditions to yield a membrane that maintains the macroscopic properties of the two substituents.
- Cellulose with a degree of polymerization from 200 to 1200, in the form of, but not limited to, microcrystalline cellulose, cotton fiber, paper and microgranular cellulose, is dissolved using a variety of different solvents.
- solvents include, but are not limited to, LiCl/DMAC, trifluoroacetic acid and N-morpholine N-oxide.
- the applicable range in the case of LiCl/DMAC solution for the percent weight of the solution of cellulose to the solvent is 1 to 11%.
- the cellulose may be crosslinked with standard methods and then dissolved.
- a polymer having a hydrogen permeability greater than 1 ⁇ 10 ⁇ 13 cm 3 cm ⁇ 1 s ⁇ 1 Pa ⁇ 1 can include, but is not limited to, ethyl cellulose, polyphenyl oxide, polymethyl siloxane, cellulose acetate, and gutta percha.
- the polymer is dissolved in a solvent that is miscible with the solvent that dissolves the cellulose, and is added either concurrently or separately. Whether mixed concurrently or separately, a preferable concentration range of 2 to 10% weight of solvent is used.
- a softener such as glycerol or decane, may be added at this point, as long as it is soluble in the solvent.
- Hydrophilic fibers may also be added at this point.
- the solution containing both cellulose and the high hydrogen permeability polymer is then cast into a film using a variety of techniques known to those skilled in the art of membrane fabrication. These techniques include extrusion of the solution onto a conveyor belt, casting onto a glass plate with a casting knife or casting onto a well-leveled glass plate.
- An important aspect of the invention is that the controlled introduction of into the film or to the atmosphere above the solution in film form induces the formation of macroscopic domains and phase separation for both the hydrophobic and hydrophilic constituents in the cast solution.
- a properly formed heterogeneous gel exhibits intertwined domains. These separate domains include one that is mostly the cellulose material and one that is mostly the hydrophobic agent.
- the hydrophobic regions are sufficiently large as to exhibit macroscopic transport characteristic of the bulk hydrophobic polymer.
- FIG. 1 A schematic representation is shown in FIG. 1 which illustrates a recombinant film 10 having a continuous cellulose phase 12 and discontinuous regions 14 that are permeable to hydrogen. It has been observed via local measurements that hydrogen readily permeates through the hydrophobic rich regions, but not the cellulose regions. Nevertheless, cellulose molecules surround the hydrophobic regions, giving the film the zinc dendrite resistance, mechanical strength and ionic conductivity required for high performance.
- the rate of introduction of water to the cast mixture cannot be too slow or too fast. If it is too slow, no gel will form in a meaningful amount of time. If it is too fast, the gel formed will not be cohesive, and the film will not be strong.
- the solution can be coagulated with conventional techniques, either be exposure to ambient moisture, exposure to an alcohol atmosphere or by direct application of a water stream or alcohol stream to the resulting solution. It has been observed that an ambient atmosphere having a relative humidity range of 35 to 80% at a temperature range of 15 to 30 degrees Celsius yields acceptable gels within a 1 to 3 hour range.
- the coagulated cellulose material in the form of a cohesive gel, is washed to remove the solvent and the salt. It is possible to employ alcohols mixed with water, but it is preferable that the percentage of alcohol be kept below a 50% volume ratio.
- the gel may be dried with any conventional technique such as air drying, vacuum drying or press drying.
- MCC microcrystalline cellulose
- EC ethyl cellulose
- the separator film is tested for hydrogen transport using an assembly containing a mass spectrometer.
- a cavity whose walls are made of a hydrogen impermeable material is filled with hydrogen on one side is capped with a separator film to form a tight seal around the cavity.
- a mass spectrometer equipped with an external probe is placed on the exposed part of the separator and the partial pressure of hydrogen is read after a suitable amount of time. Representative data after 1 minute follows: Base H 2 pressure Measured H 2 pressure Membrane ID ( ⁇ 10e ⁇ 10 Torr) ( ⁇ 10e ⁇ 10 Torr) Cellulose 1.5 1.5 Recombinant 685b 1.5 20.9 Recombinant 959c 1.5 89
- the separators were presoaked in 50% by weight KOH for 2 minutes and placed in the above apparatus. Similar differentiation in hydrogen transport properties was obtained between regenerated cellulose and recombinant separators.
- the recombinant separators were placed in silver-zinc batteries with the result that the batteries were fast charged, and their impedance was indistinguishable from regenerated cellulose.
- FIGS. 2 and 3 show a scan of plain cellulose and of plain ethyl cellulose.
- FIGS. 2 and 3 show a scan of plain cellulose and of plain ethyl cellulose.
- the most obvious differentiation between the two spectra is the presence of a peak at 2970 cm ⁇ 1 in the EC spectrum corresponding to a C—H stretch of the ethyl group.
- FIG. 4 shows a plot of 100 IR scans where each scan is taken every 25 microns along a particular direction. It is observed from the spectra that agglomerated regions of EC are juxtaposed to regions that are comprised mostly of cellulose.
- a microprobe attached to a mass spectrometer as described above when placed on the ethyl cellulose-rich regions, detected transport of hydrogen through these regions, whereas the probe, when placed over a cellulose-rich region, failed to detect any passage of hydrogen.
- microgranular cellulose (Aldrich C6413) is dissolved in 22 kg of 5% LiCl/DMAC and heated to 130 degrees Celsius for 1 hour. The solution is cooled and then mixed with 5% by weight EC in DMAC in a 60/40 weight ratio cellulose/EC. 45 g of solution is cast and gelled with a humidifier over the glass tray. A thermohygrometer close to the tray registered 20 degrees Celsius and 65% relative humidity. After 1 hour, a cohesive gel forms, which is then rinsed to yield a solvent and salt-free gel. The gel is dried under vacuum to yield a separator that is 75 microns in thickness.
- cellulose of powder form International Filler Corporation
- degree of polymerization 1200 20 g. cellulose of powder form (International Filler Corporation) of degree of polymerization 1200 is dissolved in 2 kg of 3% LiCl/DMAC.
- Cellulose is crosslinked by reacting with NaOH and 1,6 diiodohexane.
- the resulting cellulose solution is mixed with 4% polyphenyl oxide in DMAC and both solutions are heated to 70 degrees Celsius and then cooled. Solutions are cast onto a conveyor belt and allowed to gel on the conveyor belt. Gel is moved to a different section where it is washed and rinsed along another belt and then taken to a drying drum.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
A heterogeneous, cellulose battery separator made of a mixture of cellulose and a polymer with hydrogen permeability for use in zinc-based batteries exhibiting increased hydrogen transport through the membrane while maintaining low electrical impedance and exhibiting resistance to zinc ion transport preventing zinc dendrite formation.
Description
- This invention relates to a separator for an alkaline battery and, more particularly, this invention relates to a cellulosic separator for a secondary zinc ion battery such as a silver-zinc battery.
- Separators play a crucial role in alkaline batteries. They keep the positive and negative sides of the battery separate while letting certain ions go through and blocking others. The separator is a passive element that has to perform the same task unchanged for the life of the battery. Meanwhile, it must be able to withstand a strongly alkaline environment both at ambient and elevated temperatures. In addition, it must be capable of resisting oxidative attacks.
- In an alkaline battery, a separator should conduct hydroxyl ions at a sufficiently rapid rate to meet the increasingly high current demands of modern electronics. Films of cellulose in the form of regenerated cellulose have been used since World War II as the separator of choice for this purpose because of its superior ability to conduct hydroxyl ions in strongly alkaline media. Its low electrical resistance of 10 milliohm-in2 has also led to its favor for use in zinc-based batteries, such as silver-zinc, zinc-nickel, and zinc manganese dioxide batteries. Additionally, it acts as a physical barrier to migration of other ions in the battery, such as that of zincate ions and silver ions in a silver-zinc battery.
- Despite its advantages as a battery separator, regenerated cellulose has some intrinsic limitations. During overcharge, an alkaline battery tends to break down water and evolve hydrogen in sufficient quantities as to materially affect the internal impedance of the battery. Unless this hydrogen is removed efficiently, a parasitic feedback results in which the battery continues to be overcharged with resultant pressure buildup and venting of hydrogen or catastrophic rupture of the battery case. Regenerated cellulose, however, exhibits one of the lowest hydrogen permeability coefficients of known polymers, reported in the Polymer Handbook as 2.044×10−15 cm3cm−1s−1Pa−1.
- Prior batteries incorporate in recombinant separators comprising porous melt-blown polymer fibers that incorporate surfactants or lubricants that facilitate gas transport within a battery. U.S. Pat. No. 6,054,084 describes separators for lead-acid batteries made of polytetrafluoroethylene (PTFE) fibril matrix incorporating particulate silica filler and non-evaporative lubricant as gas transport agents. Zucker in U.S. Pat. No. 5,962,161 describes a recombinant separator for lead-acid batteries that comprises melt-blown polypropylene made wettable by a surfactant agent thus enabling transport of oxygen.
- In U.S. Pat. No. 4,919,865 Nelson teaches a method for making a composite membrane made from a mixture of polymethyl methacrylate and a cellulosic derivative, such as cellulose acetate. A gas stream containing hydrogen is selectively cleaned of the hydrogen by the presence of the methyl methacrylate. Polymethyl methacrylate is, however, unsuitable as a battery separator capable of handling high currents because of its high electrical resistance.
- The separator provided by the present invention consists of a membrane having both high hydroxyl conductivity and high hydrogen transport. When the separator is placed in a silver-zinc battery, hydrogen buildup in the battery is diminished. The present invention relates to a recombinant separator that-is able to transport hydrogen while conducting hydroxyl ions. The separator of the invention help maintain low electrical impedance and exhibit resistance against formation of zinc dendrites. A preferred battery separator according to the inventor contains a solution of cellulose having of a degree of polymerization between 200 and 1200 that is mixed with particles of a polymer having a hydrogen permeability greater than 1×10−13 cm3cm−1s−1Pa−1. The resulting mixture is then coagulated under controlled environmental conditions to produce a heterogeneous gel that when dehydrated yields a membrane useful as a recombinant battery separator.
- These and many other features and attendant advantages of the invention will become apparent as the invention becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
-
FIG. 1 is a schematic drawing of the heterogeneous recombinant separator of the invention. -
FIG. 2 is a spectra of cellulose. -
FIG. 3 is a spectra of ethyl cellulose; and -
FIG. 4 is a line scan view of the separator of the invention. - The recombinant separator of the invention is formed of a mixture of a hydrophilic polymer, cellulose and hydrophobic agents. The hydrophilic polymers preferably have relatively high hydrogen permeability. The mixture is then coagulated under controlled conditions to yield a membrane that maintains the macroscopic properties of the two substituents.
- Cellulose, with a degree of polymerization from 200 to 1200, in the form of, but not limited to, microcrystalline cellulose, cotton fiber, paper and microgranular cellulose, is dissolved using a variety of different solvents. These solvents include, but are not limited to, LiCl/DMAC, trifluoroacetic acid and N-morpholine N-oxide. The applicable range in the case of LiCl/DMAC solution for the percent weight of the solution of cellulose to the solvent is 1 to 11%. The cellulose may be crosslinked with standard methods and then dissolved.
- A polymer having a hydrogen permeability greater than 1×10−13 cm3cm−1s−1Pa−1 can include, but is not limited to, ethyl cellulose, polyphenyl oxide, polymethyl siloxane, cellulose acetate, and gutta percha. The polymer is dissolved in a solvent that is miscible with the solvent that dissolves the cellulose, and is added either concurrently or separately. Whether mixed concurrently or separately, a preferable concentration range of 2 to 10% weight of solvent is used.
- A softener, such as glycerol or decane, may be added at this point, as long as it is soluble in the solvent. Hydrophilic fibers may also be added at this point.
- The solution containing both cellulose and the high hydrogen permeability polymer is then cast into a film using a variety of techniques known to those skilled in the art of membrane fabrication. These techniques include extrusion of the solution onto a conveyor belt, casting onto a glass plate with a casting knife or casting onto a well-leveled glass plate.
- An important aspect of the invention is that the controlled introduction of into the film or to the atmosphere above the solution in film form induces the formation of macroscopic domains and phase separation for both the hydrophobic and hydrophilic constituents in the cast solution. A properly formed heterogeneous gel exhibits intertwined domains. These separate domains include one that is mostly the cellulose material and one that is mostly the hydrophobic agent. In the final film the hydrophobic regions are sufficiently large as to exhibit macroscopic transport characteristic of the bulk hydrophobic polymer.
- A schematic representation is shown in
FIG. 1 which illustrates arecombinant film 10 having acontinuous cellulose phase 12 anddiscontinuous regions 14 that are permeable to hydrogen. It has been observed via local measurements that hydrogen readily permeates through the hydrophobic rich regions, but not the cellulose regions. Nevertheless, cellulose molecules surround the hydrophobic regions, giving the film the zinc dendrite resistance, mechanical strength and ionic conductivity required for high performance. - The rate of introduction of water to the cast mixture cannot be too slow or too fast. If it is too slow, no gel will form in a meaningful amount of time. If it is too fast, the gel formed will not be cohesive, and the film will not be strong.
- The solution can be coagulated with conventional techniques, either be exposure to ambient moisture, exposure to an alcohol atmosphere or by direct application of a water stream or alcohol stream to the resulting solution. It has been observed that an ambient atmosphere having a relative humidity range of 35 to 80% at a temperature range of 15 to 30 degrees Celsius yields acceptable gels within a 1 to 3 hour range.
- The coagulated cellulose material, in the form of a cohesive gel, is washed to remove the solvent and the salt. It is possible to employ alcohols mixed with water, but it is preferable that the percentage of alcohol be kept below a 50% volume ratio.
- After thorough washing of the resulting gel, the gel may be dried with any conventional technique such as air drying, vacuum drying or press drying.
- 40 grams of microcrystalline cellulose (MCC, Aldrich 31,069-7) is placed in a solution of 2 kg of 5% LiCl/DMAC and heated to 120 degrees Celsius for 15 minutes. The cooled solution affords a clear solution of MCC. 5 grams of ethyl cellulose (EC) is dissolved in 100 ml DMAC separately. The MCC and EC solutions are combined in a 60/40 weight ratio by polymer weight. 40 ml of the combined solution is placed on a glass tray. Exposure to ambient moisture at 21 degrees Celsius at 55-60% relative humidity yields a cohesive gel in approximately 2 hours. This gel contains phases of MCC and EC. The gel is then washed with water repeatedly until all DMAC and LiCl are removed. The gel is then dried with a press-dry, affording a film useful as a separator.
- The separator film is tested for hydrogen transport using an assembly containing a mass spectrometer. A cavity whose walls are made of a hydrogen impermeable material is filled with hydrogen on one side is capped with a separator film to form a tight seal around the cavity. A mass spectrometer equipped with an external probe is placed on the exposed part of the separator and the partial pressure of hydrogen is read after a suitable amount of time. Representative data after 1 minute follows:
Base H2 pressure Measured H2 pressure Membrane ID (×10e−10 Torr) (×10e−10 Torr) Cellulose 1.5 1.5 Recombinant 685b 1.5 20.9 Recombinant 959c 1.5 89 - The separators were presoaked in 50% by weight KOH for 2 minutes and placed in the above apparatus. Similar differentiation in hydrogen transport properties was obtained between regenerated cellulose and recombinant separators.
- The recombinant separators were placed in silver-zinc batteries with the result that the batteries were fast charged, and their impedance was indistinguishable from regenerated cellulose.
- Further confirmation of phase separation was obtained by performing a scanning reflective Fourier Transform Infrared spectrograms of the film surface over a
region 2500 microns in length. A Perkin Elmer Autoimage FTIR microscope was used to collect the data. For illustrative purposes a scan of plain cellulose and of plain ethyl cellulose is shown inFIGS. 2 and 3 , respectively. The most obvious differentiation between the two spectra is the presence of a peak at 2970 cm−1 in the EC spectrum corresponding to a C—H stretch of the ethyl group.FIG. 4 shows a plot of 100 IR scans where each scan is taken every 25 microns along a particular direction. It is observed from the spectra that agglomerated regions of EC are juxtaposed to regions that are comprised mostly of cellulose. - Furthermore, a microprobe attached to a mass spectrometer as described above, when placed on the ethyl cellulose-rich regions, detected transport of hydrogen through these regions, whereas the probe, when placed over a cellulose-rich region, failed to detect any passage of hydrogen.
- 20 g of microgranular cellulose (Aldrich C6413) is dissolved in 22 kg of 5% LiCl/DMAC and heated to 130 degrees Celsius for 1 hour. The solution is cooled and then mixed with 5% by weight EC in DMAC in a 60/40 weight ratio cellulose/EC. 45 g of solution is cast and gelled with a humidifier over the glass tray. A thermohygrometer close to the tray registered 20 degrees Celsius and 65% relative humidity. After 1 hour, a cohesive gel forms, which is then rinsed to yield a solvent and salt-free gel. The gel is dried under vacuum to yield a separator that is 75 microns in thickness.
- 20 g. cellulose of powder form (International Filler Corporation) of degree of polymerization 1200 is dissolved in 2 kg of 3% LiCl/DMAC. Cellulose is crosslinked by reacting with NaOH and 1,6 diiodohexane. The resulting cellulose solution is mixed with 4% polyphenyl oxide in DMAC and both solutions are heated to 70 degrees Celsius and then cooled. Solutions are cast onto a conveyor belt and allowed to gel on the conveyor belt. Gel is moved to a different section where it is washed and rinsed along another belt and then taken to a drying drum.
- The procedure of example was repeated except washing was performed with 50% methanol, 50% water.
- It is to be realized that only preferred embodiments of the invention have been described and that numerous substitutions, modifications and alterations are permissible without departing from the spirit and scope of the invention as defined in the following claims.
Claims (31)
1. A method of forming a recombinant separator for a zinc ion battery comprising the steps of;
dissolving cellulose in a first solvent to form a first solution;
dissolving a polymer having a hydrogen permeability of at least 1×10−13 cm3cm−1s−1Pa−1 in a second solvent to form a second solution;
combining the solutions into a third solution;
forming a film of the third solution containing domains of the polymer dispersed in the cellulose; and
drying the film to form said separator.
2. A method according to claim 1 in which the domains are formed in the film by coagulating the film in presence of water or alcohol.
3. A method according to claim 2 in which water is indirectly applied to the film.
4. A method according to claim in which the ambient atmosphere above the film during coagulation has a relative humidity from 35 to 80%.
5. A method according to claim 4 further including the step of maintaining the ambient atmosphere at a temperature of 15 to 30 degrees Celsius during coagulation.
6. A method according to claim 1 in which the film is washed to remove solvent before drying.
7. A method according to claim 1 in which the polymer is present in the film in an amount of from 10 to 60 parts by weight of polymer to 100 parts by weight of cellulose.
8. A method according to claim 1 in which the cellulose is selected from the group consisting of microcrystalline cellulose, cotton fiber, paper, microgranular cellulose and crosslinked cellulose.
9. A method according to claim 8 in which the cellulose has a degree of polymerization from 200 to 2500.
10. A method according to claim 9 in which the cellulose is crosslinked with a hydrocarbon bridge containing from 2 to 12 carbon atoms between cellulose chains.
11. A method according to claim 10 in which the bridge is an alkylene bridge containing from 4 to 8 carbon atoms.
12. A method according to claim 1 in which the film is formed by casting.
13. A method according to claim 12 in which the film has a thickness from 10 microns to 250 microns.
14. A method according to claim 1 in which the first solvent is a mixture of an inorganic salt and a polar aprotic solvent.
15. A method according to claim 14 in which the second solvent is a miscible polar, aprotic solvent.
16. A method according to claim 1 in which the polymer is a cellulose ether.
17. A method according to claim 16 in which the polymer is alkyl cellulose.
18. A method according to claim 17 in which the polymer is ethyl cellulose.
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/831,625 US20050191548A1 (en) | 2001-04-19 | 2004-04-23 | Recombinant separator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/839,276 US6733920B2 (en) | 2001-04-19 | 2001-04-19 | Recombinant separator |
US10/831,625 US20050191548A1 (en) | 2001-04-19 | 2004-04-23 | Recombinant separator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/839,276 Division US6733920B2 (en) | 2001-04-19 | 2001-04-19 | Recombinant separator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050191548A1 true US20050191548A1 (en) | 2005-09-01 |
Family
ID=25279303
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/839,276 Expired - Fee Related US6733920B2 (en) | 2001-04-19 | 2001-04-19 | Recombinant separator |
US10/831,397 Expired - Fee Related US7029792B2 (en) | 2001-04-19 | 2004-04-23 | Recombinant separator |
US10/831,625 Abandoned US20050191548A1 (en) | 2001-04-19 | 2004-04-23 | Recombinant separator |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/839,276 Expired - Fee Related US6733920B2 (en) | 2001-04-19 | 2001-04-19 | Recombinant separator |
US10/831,397 Expired - Fee Related US7029792B2 (en) | 2001-04-19 | 2004-04-23 | Recombinant separator |
Country Status (9)
Country | Link |
---|---|
US (3) | US6733920B2 (en) |
EP (1) | EP1388183A4 (en) |
JP (1) | JP4288076B2 (en) |
KR (1) | KR100627442B1 (en) |
CN (1) | CN1264232C (en) |
DE (1) | DE10296641T5 (en) |
DK (1) | DK200301442A (en) |
GB (1) | GB2389224B (en) |
WO (1) | WO2002086991A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9960399B2 (en) | 2008-03-27 | 2018-05-01 | Zpower, Llc | Electrode separator |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7488558B2 (en) * | 2001-04-19 | 2009-02-10 | Michael Cheiky | Homogeneous separator |
JP4787473B2 (en) * | 2004-06-18 | 2011-10-05 | ニッポン高度紙工業株式会社 | Separator paper for alkaline battery and alkaline battery |
US9142835B2 (en) | 2007-11-20 | 2015-09-22 | Sekisui Specialty Chemicals America, Llc | Separator film for batteries including oxidation resistant vinyl alcohol copolymer |
US10448137B1 (en) | 2018-06-21 | 2019-10-15 | Bose Corporation | Dual zone discharge of rechargeable batteries |
CN115732770B (en) * | 2022-12-07 | 2024-07-19 | 北京理工大学 | Flexible self-healing electrolyte membrane, preparation method thereof and battery |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754877A (en) * | 1972-02-04 | 1973-08-28 | Hercules Inc | Gelled fuel compositions |
US4352770A (en) * | 1980-04-30 | 1982-10-05 | International Telephone And Telegraph Corporation | Process for forming shaped cellulosic product |
US4367191A (en) * | 1981-03-25 | 1983-01-04 | Research Corporation | Preparation of cellulose films or fibers from cellulose solutions |
US4919865A (en) * | 1987-11-05 | 1990-04-24 | Union Carbide Industrial Gases Technology Corporation | Composite membranes of poly (methyl methacrylate) blends, their manufacture and their use |
US5942354A (en) * | 1997-12-02 | 1999-08-24 | Viskase Corporation | Reduced curl battery separator and method |
US5947354A (en) * | 1997-02-06 | 1999-09-07 | Bradley Stewart Fraser | Carrier for vehicle roofs |
US5962161A (en) * | 1997-01-14 | 1999-10-05 | Daramic, Inc. | Recombinant battery separator |
US6051335A (en) * | 1998-06-22 | 2000-04-18 | Viskase Corporation | Noncircular fiber battery separator and method |
US6054084A (en) * | 1997-04-11 | 2000-04-25 | Khavari; Mehrgan | Method of making a gas recombinant battery separator |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2872498A (en) * | 1955-04-18 | 1959-02-03 | Union Carbide Corp | High density barrier film separators |
US3216859A (en) * | 1961-11-17 | 1965-11-09 | Electric Storage Battery Co | Secondary battery separator and electrode assembly |
US3519484A (en) * | 1967-11-02 | 1970-07-07 | Borden Inc | Separator for alkaline electric cells and method of making |
US3980497A (en) * | 1970-08-03 | 1976-09-14 | The Gates Rubber Company | Separators for alkaline batteries |
US4158649A (en) * | 1977-10-17 | 1979-06-19 | The United States Of America As Represented By The Secretary Of The Navy | Polymeric membranes which contain polyphenylquinoxalines and which are useful as battery separators |
DE2757583C2 (en) * | 1977-12-23 | 1984-10-25 | Varta Batterie Ag, 3000 Hannover | Galvanic cell with alkaline electrolyte and process for its manufacture |
US4298666A (en) * | 1980-02-27 | 1981-11-03 | Celanese Corporation | Coated open-celled microporous membranes |
-
2001
- 2001-04-19 US US09/839,276 patent/US6733920B2/en not_active Expired - Fee Related
-
2002
- 2002-04-19 GB GB0318085A patent/GB2389224B/en not_active Expired - Fee Related
- 2002-04-19 KR KR1020037010279A patent/KR100627442B1/en not_active IP Right Cessation
- 2002-04-19 DE DE10296641T patent/DE10296641T5/en not_active Withdrawn
- 2002-04-19 CN CNB028055713A patent/CN1264232C/en not_active Expired - Fee Related
- 2002-04-19 WO PCT/US2002/012520 patent/WO2002086991A1/en active Application Filing
- 2002-04-19 JP JP2002584406A patent/JP4288076B2/en not_active Expired - Fee Related
- 2002-04-19 EP EP02734020A patent/EP1388183A4/en not_active Withdrawn
-
2003
- 2003-10-02 DK DK200301442A patent/DK200301442A/en not_active Application Discontinuation
-
2004
- 2004-04-23 US US10/831,397 patent/US7029792B2/en not_active Expired - Fee Related
- 2004-04-23 US US10/831,625 patent/US20050191548A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754877A (en) * | 1972-02-04 | 1973-08-28 | Hercules Inc | Gelled fuel compositions |
US4352770A (en) * | 1980-04-30 | 1982-10-05 | International Telephone And Telegraph Corporation | Process for forming shaped cellulosic product |
US4367191A (en) * | 1981-03-25 | 1983-01-04 | Research Corporation | Preparation of cellulose films or fibers from cellulose solutions |
US4919865A (en) * | 1987-11-05 | 1990-04-24 | Union Carbide Industrial Gases Technology Corporation | Composite membranes of poly (methyl methacrylate) blends, their manufacture and their use |
US5962161A (en) * | 1997-01-14 | 1999-10-05 | Daramic, Inc. | Recombinant battery separator |
US5947354A (en) * | 1997-02-06 | 1999-09-07 | Bradley Stewart Fraser | Carrier for vehicle roofs |
US6054084A (en) * | 1997-04-11 | 2000-04-25 | Khavari; Mehrgan | Method of making a gas recombinant battery separator |
US5942354A (en) * | 1997-12-02 | 1999-08-24 | Viskase Corporation | Reduced curl battery separator and method |
US6051335A (en) * | 1998-06-22 | 2000-04-18 | Viskase Corporation | Noncircular fiber battery separator and method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9960399B2 (en) | 2008-03-27 | 2018-05-01 | Zpower, Llc | Electrode separator |
Also Published As
Publication number | Publication date |
---|---|
JP2004523084A (en) | 2004-07-29 |
GB2389224B (en) | 2004-09-08 |
US7029792B2 (en) | 2006-04-18 |
KR100627442B1 (en) | 2006-09-25 |
DE10296641T5 (en) | 2004-04-22 |
CN1524302A (en) | 2004-08-25 |
GB0318085D0 (en) | 2003-09-03 |
DK200301442A (en) | 2003-10-02 |
WO2002086991A1 (en) | 2002-10-31 |
US20020182510A1 (en) | 2002-12-05 |
GB2389224A (en) | 2003-12-03 |
EP1388183A1 (en) | 2004-02-11 |
US20050191552A1 (en) | 2005-09-01 |
EP1388183A4 (en) | 2007-12-05 |
CN1264232C (en) | 2006-07-12 |
JP4288076B2 (en) | 2009-07-01 |
US6733920B2 (en) | 2004-05-11 |
KR20030093202A (en) | 2003-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium‐ion batteries | |
KR101903189B1 (en) | A separator, the manufacturing method thereof, and electrochemical device containing the same | |
KR102375723B1 (en) | Polymer-ion-permeable membrane, composite-ion-permeable membrane, battery electrolyte membrane, and electrode composite body | |
EP3235858B1 (en) | Polymer-ion-permeable membrane, composite-ion-permeable membrane, battery electrolyte membrane, and electrode composite | |
BRPI0617556A2 (en) | lithium battery and battery | |
US20200006737A1 (en) | Separator, lithium secondary battery including separator, and manufacturing method thereof | |
WO2011089785A1 (en) | Aromatic polyamide porous film and separator for capacitor or battery using the same | |
JP6398298B2 (en) | Aromatic polyamide / aromatic polyimide composite porous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
EP3320574B1 (en) | Separator having adhesive layer, manufacturing method of the same, and electrochemical device having the same | |
EP0760383B1 (en) | Ion-conductive film and precursor film therefor | |
KR100628305B1 (en) | Manufacturing method for nanoparticle-filled phase inversion polymer electrolytes | |
Niu et al. | Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery | |
KR20150036701A (en) | High temperature melt integrity separator | |
JPH08138644A (en) | Battery separator | |
CN110938228B (en) | Preparation method and application of zeolite/polyimide composite membrane | |
US6733920B2 (en) | Recombinant separator | |
US11158903B2 (en) | Separators, articles and methods of making thereof | |
KR101942640B1 (en) | Separator for energy storage device | |
JP5929469B2 (en) | Aromatic polyamide porous membrane, battery separator and method for producing the same | |
JP3942277B2 (en) | Composite polymer electrolyte membrane and method for producing the same | |
CN105932197A (en) | Preparation method of poly (p-phenylene terephthalamide) porous membrane | |
JPH06163023A (en) | Battery separator | |
JPH01157513A (en) | Separator for electrolytic capacitor | |
JP2927440B2 (en) | Method for producing positive electrode in non-aqueous electrolyte battery | |
CN118572303A (en) | Battery separator, preparation method thereof and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ZPOWER, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ZINC MATRIX POWER, INC.;REEL/FRAME:020976/0823 Effective date: 20071212 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |