US20030210287A1 - Microdroplet dispensing methods for a medical diagnostic device - Google Patents
Microdroplet dispensing methods for a medical diagnostic device Download PDFInfo
- Publication number
- US20030210287A1 US20030210287A1 US10/461,219 US46121903A US2003210287A1 US 20030210287 A1 US20030210287 A1 US 20030210287A1 US 46121903 A US46121903 A US 46121903A US 2003210287 A1 US2003210287 A1 US 2003210287A1
- Authority
- US
- United States
- Prior art keywords
- reagent
- substrate
- sample
- area
- stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 25
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 102
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000007639 printing Methods 0.000 claims abstract description 18
- 210000004369 blood Anatomy 0.000 claims abstract description 17
- 239000008280 blood Substances 0.000 claims abstract description 17
- 230000002745 absorbent Effects 0.000 claims abstract description 5
- 239000002250 absorbent Substances 0.000 claims abstract description 5
- 239000012530 fluid Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 15
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 claims description 11
- 108010000499 Thromboplastin Proteins 0.000 claims description 11
- 102000002262 Thromboplastin Human genes 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 239000012491 analyte Substances 0.000 claims description 9
- 239000013060 biological fluid Substances 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 6
- 239000003086 colorant Substances 0.000 claims description 3
- 230000005661 hydrophobic surface Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229920006352 transparent thermoplastic Polymers 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 16
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 230000023555 blood coagulation Effects 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 230000015271 coagulation Effects 0.000 abstract 1
- 238000005345 coagulation Methods 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 19
- 238000003556 assay Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 241000283690 Bos taurus Species 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 230000035602 clotting Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000005660 hydrophilic surface Effects 0.000 description 4
- 238000007641 inkjet printing Methods 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 206010053567 Coagulopathies Diseases 0.000 description 3
- 206010039238 Rouleaux formation Diseases 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 108010013773 recombinant FVIIa Proteins 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 108010094028 Prothrombin Proteins 0.000 description 2
- 102100027378 Prothrombin Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229940039716 prothrombin Drugs 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000007655 standard test method Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 108010071241 Factor XIIa Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 1
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229940006612 barium citrate Drugs 0.000 description 1
- PAVWOHWZXOQYDB-UHFFFAOYSA-H barium(2+);2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PAVWOHWZXOQYDB-UHFFFAOYSA-H 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001446 dark-field microscopy Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000002821 viper venom Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/14—Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
- G01N33/4905—Determining clotting time of blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
- G01N33/521—Single-layer analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
- G01N33/525—Multi-layer analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
- G01N33/5304—Reaction vessels, e.g. agglutination plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54386—Analytical elements
- G01N33/54387—Immunochromatographic test strips
- G01N33/54388—Immunochromatographic test strips based on lateral flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/86—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0621—Control of the sequence of chambers filled or emptied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/12—Specific details about manufacturing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/16—Reagents, handling or storing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0822—Slides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0825—Test strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8483—Investigating reagent band
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/745—Assays involving non-enzymic blood coagulation factors
- G01N2333/7454—Tissue factor (tissue thromboplastin, Factor III)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/948—Hydrolases (3) acting on peptide bonds (3.4)
- G01N2333/95—Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
- G01N2333/964—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
- G01N2333/96425—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
- G01N2333/96427—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
- G01N2333/9643—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
- G01N2333/96433—Serine endopeptidases (3.4.21)
- G01N2333/96441—Serine endopeptidases (3.4.21) with definite EC number
- G01N2333/96447—Factor VII (3.4.21.21)
Definitions
- a variety of medical diagnostic procedures involve tests on biological fluids, such as blood, urine, or saliva, and are based on a change in a physical characteristic of such a fluid or an element of the fluid, such as blood serum.
- the characteristic can be an electrical, magnetic, fluidic, or optical property.
- optical property When an optical property is monitored, these procedures may make use of a transparent or translucent device to contain the biological fluid and a reagent.
- a change in light absorption of the fluid can be related to an analyte concentration in, or property of, the fluid.
- a light source is located adjacent to one surface of the device and a detector is adjacent to the opposite surface. The detector measures light transmitted through a fluid sample.
- the light source and detector can be on the same side of the device, in which case the detector measures light scattered and/or reflected by the sample.
- a reflector may be located at or adjacent to the opposite surface.
- References to “light” throughout this specification and the appended claims should be understood to include the infrared and ultraviolet spectra, as well as the visible. References to “absorption” are meant to refer to the reduction in intensity as a light beam passes through a medium; thus, it encompasses both “true” absorption and scattering.
- FIG. 1 An example of a transparent test device is described in Wells et al. W094/02850, published on Feb. 3, 1994.
- Their device comprises a sealed housing, which is transparent or translucent, impervious, and rigid or semi-rigid.
- An assay material is contained within the housing, together with one or more assay reagents at predetermined sites.
- the housing is opened and the sample introduced just before conducting the assay.
- the combination of assay reagents and analyte in the sample results in a change in optical properties, such as color, of selected reagents at the end of the assay.
- the results can be read visually or with an optical instrument.
- the indicator includes a “half-bulb cavity”, which is compressible.
- the bulb is compressed and released to form a suction that draws fluid from a source, through a half-tubular cavity that has an indicator imprinted on its wall.
- the only controls on fluid flow into the indicator are how much the bulb is compressed and how long the indicator inlet is immersed in the source, while the bulb is released.
- U.S. Pat. No. 3,640,267 issued on Feb. 8, 1972 to Hurtig et al., discloses a container for collecting samples of body fluid that includes a chamber that has resilient, collapsible walls. The walls are squeezed before the container inlet is placed into the fluid being collected. When released, the walls are restored to their uncollapsed condition, drawing fluid into and through the inlet. As with the Davis device, discussed above, control of fluid flow into the indicator is very limited.
- U.S. Pat. No. 4,088,448, issued on May 9, 1978 to Lilja et al. discloses a cuvette, which permits optical analysis of a sample mixed with a reagent.
- the reagent is coated on the walls of a cavity, which is then filled with a liquid sample.
- the sample mixes with the reagent to cause an optically-detectable change.
- test devices described above and in the cited references typically comprise a dry strip having a reagent coated on one or more predetermined positions. Applying these reagents to their intended positions on large numbers of these devices can, in principle, be accomplished by standard printing processes; however, nonimpact printing provides some distinct advantages. For example, nonimpact printers can be smaller, lighter, and less expensive, since they don't have to endure the repeated impact of print head on substrate. They also permit the use of transparent substrates, as required for optical devices that involve changes in light transmission. Information on the varieties of nonimpact printing appears in J. L. Johnson, Principles of Nonimpact Printing, 3d ed., Palatino Press, Irvine, Calif. 1998.
- a piezo-electric print head was used.
- the ink-jet printer used was a Hewlett-Packard ThinkjetTM printer, which is a thermal ink-jet printer (see Hewlett-Packard Journal, May, 1985).
- the element is fabricated by ink-jet printing of reagents in a series of “compartments,” using a thermal ink-jet print head.
- the present invention provides a method for preparing a medical diagnostic reagent device, comprising the steps of
- a diagnostic reagent device of the present invention measures an analyte concentration or characteristic of a biological fluid and comprises
- the sample application and reagent areas may coincide or, alternatively, be spaced apart, with an intermediate path to convey the sample.
- the measurement is generally, but not necessarily, made when the sample is on the reagent area, and in the description below, the measurement of interest is made when the sample is in the reagent area.
- the method is particularly well adapted for preparing a device for measuring prothrombin time (PT time), with the target area being coated with a reagent composition that catalyzes the blood clotting cascade.
- the diagnostic reagent strip of the invention is particularly well adapted for measuring the PT time of a whole blood sample.
- microdroplet refers to droplets having a volume in the range from about 1 picoliter to 1 microliter.
- FIG. 1 is a plan view of a device of the present invention.
- FIG. 2 is an exploded view of the device of FIG. 1.
- FIG. 3 is a perspective view of the device of FIG. 1.
- FIG. 4 is a schematic of a meter for use with a device of this invention.
- FIG. 5 is a graph of data that is used to determine PT time.
- FIG. 6 is a plan view of an alternative embodiment of a device of this invention.
- FIG. 7 is a plan view of a coating prepared by the method of the present invention.
- FIG. 8 is a schematic of a nonimpact printing process of this invention.
- FIG. 9 is a graph that demonstrates an advantage of the present invention.
- the medical diagnostic reagent device of this invention is prepared by depositing a reagent upon a hydrophilic “reagent area” of a non-absorbent substrate by a nonimpact printing process.
- the device is of the type that relates a physical parameter of a biological fluid, or an element of the fluid, to an analyte concentration in the fluid or to a property of the fluid.
- physical parameters e.g., electrical, magnetic, fluidic, or optical
- a preferred embodiment of the device includes a planar substrate, such as a thermoplastic sheet.
- the substrate has on its surface a sample application area and the reagent area, in which the sample undergoes a change in an optical parameter, such as light scattering.
- the substrate, or “bottom layer,” forms with “intermediate” and “top” layers a bladder, to create a suction force to draw the sample into the device, and a stop junction, to precisely stop flow after filling the reagent area.
- the device is substantially transparent over the reagent area, so that the area can be illuminated by a light source on one side and the transmitted light measured on the opposite side.
- the nonimpact-printed reagent causes the sample to undergo a change, and the change in transmitted light is a measure of the analyte or fluid property of interest.
- light that is scattered from a fluid sample or light that passes through the sample and is reflected back through a second time can be detected by a detector on the same side as the light source.
- This type of device is suitable for a variety of analytical tests of biological fluids, such as determining biochemical or hematological characteristics, or measuring the concentration in such fluids of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc.
- analytical tests of biological fluids, such as determining biochemical or hematological characteristics, or measuring the concentration in such fluids of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc.
- the procedures for performing these tests have been described in the literature. Among the tests, and where they are described, are the following:
- Chromogenic Factor XIIa Assay (and other clotting factors as well): Rand, M. D. et al., Blood, 88, 3432 (1996).
- TPA Assay Mann, K. G., et.al., Blood, 76, 755, (1990).; and Hartshorn, J. N. et al., Blood, 78, 833 (1991).
- APTT Activated Partial Thromboplastin Time Assay: Proctor, R. R. and Rapaport, S. I. Amer. J. Clin. Path, 36, 212 (1961); Brandt, J. T. and Triplett, D. A. Amer. J. Clin. Path., 76, 530 (1981); and Kelsey, P. R. Thromb. Haemost. 52, 172 (1984).
- HbA1c Assay (Glycosylated Hemoglobin Assay): Nicol, D. J. et al., Clin. Chem. 29, 1694 (1983).
- the present device is particularly well suited for measuring blood-clotting time—“prothrombin time” or “PT time”—and details regarding such a device appear below.
- the modifications needed to adapt the device for applications such as those listed above require no more than routine experimentation.
- FIG. 1 is a plan view of a device 10 of the present invention.
- FIG. 2 is an exploded view and FIG. 3 a perspective view of the device.
- Sample is applied to sample port 12 after bladder 14 has been compressed.
- the region of layer 26 and/or layer 28 that adjoins the cutout for bladder 14 must be resilient, to permit bladder 14 to be compressed.
- Polyester of about 0.1 mm thickness has suitable resilience and springiness.
- top layer 26 has a thickness of about 0.125 mm, bottom layer 28 about 0.100 mm.
- the volume of bladder 14 is preferably at least about equal to the combined volume of channel 16 and reagent area 18 . If reagent area 18 is to be illuminated from below, layer 28 must be transparent where it adjoins reagent area 18 .
- reagent 20 contains thromboplastin that is free of bulking reagents normally found in lyophilized reagents.
- stop junction 22 adjoins bladder 14 and reagent area 18 ; however, a continuation of channel 16 may be on either or both sides of stop junction 22 , separating the stop junction from reagent area 18 and/or bladder 14 .
- sample flow stops When the sample reaches stop junction 22 , sample flow stops.
- the principle of operation of stop junctions is described in U.S. Pat. No. 5,230,866, incorporated herein by reference.
- all the above elements are formed by cutouts in intermediate layer 24 , sandwiched between top layer 26 and bottom layer 28 .
- layer 24 is double-sided adhesive tape.
- Stop junction 22 is formed by an additional cutout in layer 26 and/or 28 , aligned with the cutout in layer 24 and sealed with sealing layer 30 and/or 32 .
- the stop junction comprises cutouts in both layers 26 and 28 , with sealing layers 30 and 32 .
- Each cutout for stop junction 22 is at least as wide as channel 16 .
- an optional filter 12 A to cover sample port 12 .
- the filter may separate out red blood cells from a whole blood sample and/or may contain a reagent to interact with the blood to provide additional information.
- a suitable filter comprises an anisotropic membrane, preferably a polysulfone membrane of the type available from Spectral Diagnostics, Inc., Toronto, Canada.
- Optional reflector 18 A may be on, or adjacent to, a surface of layer 26 and positioned over reagent area 18 . If the reflector is present, the device becomes a transflectance device.
- FIGS. 1, 2, and 3 The method of using the strip of FIGS. 1, 2, and 3 can be understood with reference to a schematic of the elements of a meter shown in FIG. 4, which contemplates an automated meter. Alternatively, manual operation is also possible. (In that case, bladder 14 is manually depressed before sample is applied to sample port 12 , then released.)
- the first step the user performs is to turn on the meter, thereby energizing strip detector 40 , sample detector 42 , measurement system 44 , and optional heater 46 .
- the second step is to insert the strip.
- the strip is not transparent over at least a part of its area, so that an inserted strip will block the illumination by LED 40 a of detector 40 b .
- the intermediate layer is formed of a non-transparent material, so that background light does not enter measurement system 44 .
- Detector 40 b thereby senses that a strip has been inserted and triggers bladder actuator 48 to compress bladder 14 .
- a meter display 50 then directs the user to apply a sample to sample port 12 as the third and last step the user must perform to initiate the measurement sequence.
- the empty sample port is reflective. When a sample is introduced into the sample port, it absorbs light from LED 42 a and thereby reduces the light that is reflected to detector 42 b . That reduction in light, in turn, signals actuator 48 to release bladder 14 . The resultant suction in channel 16 draws sample through reagent area 18 to stop junction 22 . Light from LED 44 a passes through reagent area 18 , and detector 44 b monitors the light transmitted through the sample as it is clotting. When there are multiple reagent areas, measurement system 44 includes an LED/detector pair (like 44 a and 44 b ) for each reagent area. Analysis of the transmitted light as a function of time (as described below) permits a calculation of the PT time, which is displayed on the meter display 50 . Preferably, sample temperature is maintained at about 37° C. by heater 46 .
- FIG. 5 depicts a typical “clot signature” curve in which the current from detector 44 b is plotted as a function of time.
- Blood is first detected in the reagent area by 44 b at time 1.
- the blood fills the reagent area.
- the reduction in current during that time interval is due to light scattered by red cells and is thus an approximate measure of the hematocrit.
- sample has filled the reagent area and is at rest, its movement having been stopped by the stop junction.
- the red cells begin to stack up like coins (rouleaux formation).
- the rouleaux effect allows increasing light transmission through the sample (and less scattering) in the time interval between points 2 and 3 .
- clot formation ends rouleaux formation and transmission through the sample reaches a maximum.
- the PT time can be calculated from the interval B between points 1 and 3 or between 2 and 3 .
- blood changes state from liquid to a semi-solid gel, with a corresponding reduction in light transmission.
- the reduction in current C between the maximum 3 and endpoint 4 correlates with fibrinogen in the sample.
- FIG. 6 depicts a preferred embodiment of the present device. It is a multi-channel device that includes a bypass channel 52 .
- Bypass channel 52 provides a path for sample to travel after sample has been drawn into reagent areas 118 , 218 , and 318 .
- Sample is drawn into the bypass channel by the reduced pressure on the bladder side of stop junction 122 .
- Reagent area 118 contains thromboplastin.
- reagent areas 218 and 318 contain controls, more preferably, the controls described below. Area 218 contains thromboplastin, bovine eluate, and recombinant Factor VIIa.
- the composition is selected to normalize the clotting time of a blood sample by counteracting the effect of an anticoagulant, such as warfarin.
- Reagent area 318 contains thromboplastin and bovine eluate alone, to partially overcome the effect of an anticoagulant.
- three measurements are made on the strip.
- PT time of the sample the measurement of primary interest, is measured on area 118 .
- that measurement is validated only when measurements on areas 218 and 318 yield results within a predetermined range. If either or both of these control measurements are outside the range, then a retest is indicated.
- Extended stop junction 122 stops flow in all three reagent areas.
- the device pictured in FIGS. 1 and 2 and described above is preferably formed by laminating thermoplastic sheets 26 and 28 to a thermoplastic intermediate layer 24 that has adhesive on both of its surfaces.
- the cutouts that form the elements shown in FIG. 1 may be formed, for example, by laser- or die-cutting of layers 24 , 26 , and 28 .
- the reagent area 18 on bottom layer 28 is defined by the cutout in intermediate layer 24 .
- the bottom surface of top layer 26 , facing bottom layer 28 is hydrophobic, at least in the region of channel 16 and reagent area 18 .
- the surface of reagent area 18 is hydrophilic.
- the surface of sample port 12 is hydrophilic as well, to facilitate filling of the device; i.e., moving the sample from port 12 to reagent area 18 .
- a convenient way to have hydrophilic sample and reagent areas is to have the entire surface of bottom layer 28 be hydrophilic.
- thermoplastic films having suitably hydrophilic surfaces include 3M 9962 Antifog Film (“Antifog”), available from Medical Specialties, 3M Health Care, St. Paul, Minn.; FMC GelBond Film, available from Bio Whittaker Molecular Applications, Rockland, Me.; polyethylene terephthalate (PET) film, whose surface has been flame-corona- or plasma-treated; ionomer film; and other conventional thermoplastic films having hydrophilic surfaces or coatings.
- the Antifog is PET film coated with a 3M-proprietary coating and is the preferred substrate material.
- the surface hydrophilicity can be determined in several different ways.
- Contact angle is nominally the angle between the edge of a drop of fluid (usually purified water) that sits atop a wettable surface and the surface itself.
- the method for measuring the contact angle has been standardized, and can be carried out using manual or automated equipment. (ASTM Test Method D5946-96, Standard Test Method for Corona-Tested Polymer Films Using Water Contact Angle Measurements.)
- the data can generally by considered accurate and reproducible when the measured angle is greater than 25°, and films are considered quite wettable if the contact angle is about 60° or less.
- the angles measured for Antifog were about 25°.
- Wetting tension is measured by spreading solutions of known surface tension onto a surface to be tested and observing if the solutions “bead up.” (ASTM Test Method D2578-94, Standard Test Method for Wetting Tension of Polyethylene and Polypropylene Films). Beading up indicates that internal liquid attractive forces overcome adsorptive attraction of the surface.
- the solutions are calibrated in units of dynes/cm, and are referred to as dyne solutions. They are commercially available in the range of 30 to 60 dynes/cm.
- a surface is tested starting with the lowest value solution and progressing to the highest.
- a surface is assigned the dyne/cm value corresponding to that solution that remains spread out for approximately two seconds. Since Antifog wetted out all the solutions, it has been characterized as having a surface wetting tension greater than 60 dynes/cm.
- 3 M's Medical Specialties Department has developed a wetting test to characterize water-wetting of film. (3M SMD #6122, Wetting Test, Dec. 4, 1998—available from 3M Center, St. Paul, Minn. 55144-1000.) The test involves careful placement of an aqueous dye solution onto a surface, drying it, and measuring the diameter of the dried spots. The data collected were generally in the 35 to 40 point range, which indicates a very wettable surface.
- the Antifog surface is extremely hydrophilic.
- reagent droplets spread over the surface and, providing sufficient droplets are deposited, form a substantially uniform layer of the reagent over the desired area.
- substantially uniform should not be construed as necessarily suggesting that the surface coating thickness is the same over the entire target area, nor even that the entire surface is coated.
- FIG. 7 depicts a plan view of part of a typical coated target area. Note that part of the surface (A) remains uncoated, although most of the surface (B) is coated. Preferably, at least about 80% of the target area is coated. Preferably, thickness variations in the coated areas (B) are minimized; e.g., thickest region less than three times the average thickness of the coated area. Average coating thickness in coated areas is generally about 0.1 micrometer-about 1 micrometer, depending on the nature of the reagent and the particular application.
- FIG. 8 depicts a schematic of an apparatus for nonimpact printing of reagent onto the reagent area of a substrate of the present invention.
- Print head 60 repeatedly ejects a stream of reagent droplets onto web 62 , which moves in the direction shown by the arrow.
- Optional masks 64 and 66 ensure that the droplet stream only reaches web 62 in reagent areas 18 .
- mask 66 i.e., the mask closest to print head 60
- mask 66 optionally has a hydrophobic surface 68 facing the print head.
- Reagent from the multiple dispenser nozzles of print head 60 forms multiple reagent dots on mask surface 68 .
- the surface is hydrophobic, the dots remain isolated and can be individually viewed by a downstream optical system 70 .
- the hydrophilicity of surface 18 causes the droplets arriving on that surface to spread and/or coalesce, so it is more difficult for optical system 70 to detect individual dots directly on the reagent area.
- Optical system 70 can detect and, if desired, reject defective product. For example, an absence of dots may indicate that one or more dispenser nozzles are defective.
- suitable optical detection methods are dark field microscopy, shadowing, patterning, laser illumination, etc.
- a colorant, or a fluorescent dye can be added to the reagent to make it more easily visible to optical system 70 .
- methylene blue dye added to a reagent to about 0.1% final concentration, makes the reagent visible to an optical system, without substantially altering the measurements made with the reagent.
- Print head 60 may be any nonimpact print head known in the art, including ultrasonic, electrographic, ion projection, etc.
- print head 60 is an ink-jet print head, more preferably, a thermal ink-jet print head.
- FIGS. 1 - 3 Two strips of the type described above for PT measurements were prepared (see FIGS. 1 - 3 ). The difference between the strips was that strip A had a bottom layer 28 of untreated polyethylene terephthalate;, while strip B had a bottom layer 28 of FMC GelBond Film.
- a blood sample was applied to each strip and PT measurements made in an apparatus of the type depicted in FIG. 4.
- FIG. 9 depicts the resultant clotting curves.
- the curve for strip A has a relatively flat peak (corresponding to peak 3 in FIG. 5). The flatness of the peak limits the precision of the resultant PT calculation.
- the curve for strip B has a much sharper peak, which permits much greater precision. (Note that the PT times for the samples measured with the two strips are different.)
- a device of this invention is made by first passing a double-sided adhesive tape (RX 675SLT, available from Scapa Tapes, Windsor, CT) sandwiched between two release liners into a laminating and rotary die-cutting converting system.
- RX 675SLT double-sided adhesive tape
- the pattern shown in FIG. 2, with the exception of the stop junction, is cut through the top release liner and tape, but not through the bottom release liner, which is then removed as waste, along with the cutouts from the tape.
- 3M Antifog Film is laminated to the exposed bottom side of the tape.
- Reagent thromboplastin, available from Ortho Clinical Diagnostics, Raritan, N.J.
- Reagent is then printed onto the reagent area ( 18 ) of the film by thermal ink-jet printing, using printing heads 51612A from Hewlett Packard, Corvallis, Oreg.
- a sample port is cut in untreated polyester film (AR1235, available from Adhesives Research, Glen Rock, Pa.) and then laminated, in register, to the top of the double-sided tape (after removing the release layer).
- a die then cuts the stop junction through the three layers of the sandwich.
- Reagent that is thermal ink-jet printed onto areas 118 P, 218 P, and 318 P is, respectively, thromboplastin; thromboplastin, bovine eluate, and recombinant Factor VIIa; and thromboplastin and bovine eluate alone.
- the bovine eluate (plasma barium citrate bovine eluate) is available from Haemotologic Technologies, Burlington, Vt.; and recombinant Factor VIIa from American Diagnostica, Greenwich, Conn.
- Measurements made on a whole blood sample using the strip of this Example yield a curve of the type shown in FIG. 5 for each of the reagent areas.
- the data from the curves for the controls (reagent areas 218 P and 318 P) are used to qualify the data from the curve for reagent area 118 P.
- the PT time can be determined more reliably than can be done with a strip having a single reagent area.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Biophysics (AREA)
- Ecology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A medical diagnostic device has a non-absorbent substrate that has a hydrophilic target area on which a reagent is deposited by non-impact printing of microdroplets. During deposition, the device is moved relative to the stream of microdroplets to form a substantially uniform reagent layer on the substrate. The device is particularly well adapted for measuring blood coagulation times. In a preferred embodiment, coagulation times are determined by monitoring the optical transmission of light through the target area as an applied blood sample interacts with the reagent.
Description
- This application is a continuation-in-part of application Ser. No. 09/333,765, filed Jun. 15, 1999.
- 1. Field of the Invention
- This invention relates to a medical diagnostic device that is prepared by nonimpact printing; more particularly, by nonimpact printing of a reagent onto a hydrophilic surface of the device.
- 2. Description of the Related Art
- A variety of medical diagnostic procedures involve tests on biological fluids, such as blood, urine, or saliva, and are based on a change in a physical characteristic of such a fluid or an element of the fluid, such as blood serum. The characteristic can be an electrical, magnetic, fluidic, or optical property. When an optical property is monitored, these procedures may make use of a transparent or translucent device to contain the biological fluid and a reagent. A change in light absorption of the fluid can be related to an analyte concentration in, or property of, the fluid. Typically, a light source is located adjacent to one surface of the device and a detector is adjacent to the opposite surface. The detector measures light transmitted through a fluid sample. Alternatively, the light source and detector can be on the same side of the device, in which case the detector measures light scattered and/or reflected by the sample. Finally, a reflector may be located at or adjacent to the opposite surface. A device of this latter type, in which light is first transmitted through the sample area, then reflected through a second time, is called a “transflectance” device. References to “light” throughout this specification and the appended claims should be understood to include the infrared and ultraviolet spectra, as well as the visible. References to “absorption” are meant to refer to the reduction in intensity as a light beam passes through a medium; thus, it encompasses both “true” absorption and scattering.
- An example of a transparent test device is described in Wells et al. W094/02850, published on Feb. 3, 1994. Their device comprises a sealed housing, which is transparent or translucent, impervious, and rigid or semi-rigid. An assay material is contained within the housing, together with one or more assay reagents at predetermined sites. The housing is opened and the sample introduced just before conducting the assay. The combination of assay reagents and analyte in the sample results in a change in optical properties, such as color, of selected reagents at the end of the assay. The results can be read visually or with an optical instrument.
- U.S. Pat. No. 3,620,676, issued on Nov. 16, 1971 to Davis, discloses a calorimetric indicator for liquids. The indicator includes a “half-bulb cavity”, which is compressible. The bulb is compressed and released to form a suction that draws fluid from a source, through a half-tubular cavity that has an indicator imprinted on its wall. The only controls on fluid flow into the indicator are how much the bulb is compressed and how long the indicator inlet is immersed in the source, while the bulb is released.
- U.S. Pat. No. 3,640,267, issued on Feb. 8, 1972 to Hurtig et al., discloses a container for collecting samples of body fluid that includes a chamber that has resilient, collapsible walls. The walls are squeezed before the container inlet is placed into the fluid being collected. When released, the walls are restored to their uncollapsed condition, drawing fluid into and through the inlet. As with the Davis device, discussed above, control of fluid flow into the indicator is very limited.
- U.S. Pat. No. 4,088,448, issued on May 9, 1978 to Lilja et al., discloses a cuvette, which permits optical analysis of a sample mixed with a reagent. The reagent is coated on the walls of a cavity, which is then filled with a liquid sample. The sample mixes with the reagent to cause an optically-detectable change.
- The test devices described above and in the cited references typically comprise a dry strip having a reagent coated on one or more predetermined positions. Applying these reagents to their intended positions on large numbers of these devices can, in principle, be accomplished by standard printing processes; however, nonimpact printing provides some distinct advantages. For example, nonimpact printers can be smaller, lighter, and less expensive, since they don't have to endure the repeated impact of print head on substrate. They also permit the use of transparent substrates, as required for optical devices that involve changes in light transmission. Information on the varieties of nonimpact printing appears in J. L. Johnson,Principles of Nonimpact Printing, 3d ed., Palatino Press, Irvine, Calif. 1998. (See, also, “No-splatter spray makes better wafers,” H. L. Berger, Machine Design, Feb. 5, 1998, pp. 52-55). Among the varieties of nonimpact printing, ink-jet printing has been identified as suitable for use in connection with reagent fluids.
- British Patent Specification, 1,526,708, published on Sep. 27, 1978, discloses a reagent test device that comprises a carrier on which are printed two different substances, separated by a “predetermined interspace.” Ink-jet printing is one of the printing techniques disclosed.
- U.S. Pat. No. 4,877,745, issued on Oct. 31, 1989, to Hayes et al., discloses a system for printing reagents onto a printing medium by propelling droplets from a jetting tube and repeating the process until a-desired configuration of the reagent is printed on the medium. A piezo-electric print head was used.
- U.S. Pat. No. 5,108,926, issued on Apr. 28, 1992, to Klebe, discloses an apparatus for precisely locating cells on a substrate by using an ink-jet printer either to deposit the cells directly onto the substrate or to deposit cell adhesion materials. The ink-jet printer used was a Hewlett-Packard Thinkjet™ printer, which is a thermal ink-jet printer (see Hewlett-Packard Journal, May, 1985).
- U.S. Pat. No. 5,378,638, issued on Jan. 3, 1995, to Deeg et al., discloses an analysis element for the determination of an analyte in a liquid sample. The element is fabricated by ink-jet printing of reagents in a series of “compartments,” using a thermal ink-jet print head.
- Each of the references cited above are concerned, explicitly or implicitly, with image spreading on the print medium, because the sharpness of an image is degraded to the extent that the liquid “ink” spreads across the surface before drying. For diagnostic applications, sharp “images” are typically required, because different reagents are positioned close together on a surface of a device but must not come into contact (e.g., to react) until the device is wetted by an applied sample.
- The present invention provides a method for preparing a medical diagnostic reagent device, comprising the steps of
- a) providing a non-absorbent substrate, having on its surface at least one hydrophilic target area,
- b) providing from a nonimpact print head onto a point within the target area a pulsed stream of microdroplets of a diagnostic reagent liquid,
- c) moving the stream relative to the substrate, and
- d) repeating steps b) and c) at least enough times to provide a substantially uniform layer of the liquid over the target area.
- A diagnostic reagent device of the present invention measures an analyte concentration or characteristic of a biological fluid and comprises
- a) a sample application area for accepting a sample of the biological fluid for analysis and
- b) a predetermined hydrophilic reagent area, onto which has been applied, by nonimpact printing, a diagnostic reagent liquid that interacts with the sample to cause in the sample a physically-measurable change that can be related to the analyte concentration or characteristic of the fluid.
- The sample application and reagent areas may coincide or, alternatively, be spaced apart, with an intermediate path to convey the sample. The measurement is generally, but not necessarily, made when the sample is on the reagent area, and in the description below, the measurement of interest is made when the sample is in the reagent area.
- The method is particularly well adapted for preparing a device for measuring prothrombin time (PT time), with the target area being coated with a reagent composition that catalyzes the blood clotting cascade. Similarly, the diagnostic reagent strip of the invention is particularly well adapted for measuring the PT time of a whole blood sample.
- As used in this specification and the appended claims, the term “microdroplet” refers to droplets having a volume in the range from about 1 picoliter to 1 microliter.
- It is surprising that the hydrophilicity of the target area provides superior results, since the hydrophilic surface would be expected to spread the reagent that is deposited, which had been thought to be undesirable.
- FIG. 1 is a plan view of a device of the present invention.
- FIG. 2 is an exploded view of the device of FIG. 1.
- FIG. 3 is a perspective view of the device of FIG. 1.
- FIG. 4 is a schematic of a meter for use with a device of this invention.
- FIG. 5 is a graph of data that is used to determine PT time.
- FIG. 6 is a plan view of an alternative embodiment of a device of this invention.
- FIG. 7 is a plan view of a coating prepared by the method of the present invention.
- FIG. 8 is a schematic of a nonimpact printing process of this invention.
- FIG. 9 is a graph that demonstrates an advantage of the present invention.
- The medical diagnostic reagent device of this invention is prepared by depositing a reagent upon a hydrophilic “reagent area” of a non-absorbent substrate by a nonimpact printing process. The device is of the type that relates a physical parameter of a biological fluid, or an element of the fluid, to an analyte concentration in the fluid or to a property of the fluid. Although a variety of physical parameters—e.g., electrical, magnetic, fluidic, or optical—can form the basis for the measurement, a change in optical parameters is a preferred basis, and the details that follow refer to an optical device. A preferred embodiment of the device includes a planar substrate, such as a thermoplastic sheet. The substrate has on its surface a sample application area and the reagent area, in which the sample undergoes a change in an optical parameter, such as light scattering. The substrate, or “bottom layer,” forms with “intermediate” and “top” layers a bladder, to create a suction force to draw the sample into the device, and a stop junction, to precisely stop flow after filling the reagent area.
- Preferably, the device is substantially transparent over the reagent area, so that the area can be illuminated by a light source on one side and the transmitted light measured on the opposite side. The nonimpact-printed reagent causes the sample to undergo a change, and the change in transmitted light is a measure of the analyte or fluid property of interest. Alternatively, light that is scattered from a fluid sample or light that passes through the sample and is reflected back through a second time (by a reflector on that opposite side) can be detected by a detector on the same side as the light source.
- This type of device is suitable for a variety of analytical tests of biological fluids, such as determining biochemical or hematological characteristics, or measuring the concentration in such fluids of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc. The procedures for performing these tests have been described in the literature. Among the tests, and where they are described, are the following:
- (1) Chromogenic Factor XIIa Assay (and other clotting factors as well): Rand, M. D. et al., Blood, 88, 3432 (1996).
- (2) Factor X Assay: Bick, R. L. Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. Chicago, ASCP Press, 1992.
- (3) DRVVT (Dilute Russells Viper Venom Test): Exner, T. et al., Blood Coag. Fibrinol., 1, 259 (1990).
- (4) Immunonephelometric and Immunoturbidimetric Assays for Proteins: Whicher, J. T., CRC Crit. Rev. Clin Lab Sci. 18:213 (1983).
- (5) TPA Assay: Mann, K. G., et.al., Blood, 76, 755, (1990).; and Hartshorn, J. N. et al., Blood, 78, 833 (1991).
- (6) APTT (Activated Partial Thromboplastin Time Assay): Proctor, R. R. and Rapaport, S. I. Amer. J. Clin. Path, 36, 212 (1961); Brandt, J. T. and Triplett, D. A. Amer. J. Clin. Path., 76, 530 (1981); and Kelsey, P. R. Thromb. Haemost. 52, 172 (1984).
- (7) HbA1c Assay (Glycosylated Hemoglobin Assay): Nicol, D. J. et al., Clin. Chem. 29, 1694 (1983).
- (8) Total Hemoglobin: Schneck et al., Clinical Chem., 32/33, 526 (1986); and U.S. Pat. No. 4,088,448.
- (9) Factor Xa: Vinazzer, H., Proc. Symp. Dtsch. Ges. Klin. Chem., 203 (1977), ed. By Witt, I
- (10) Colorimetric Assay for Nitric Oxide: Schmidt, H. H., et al., Biochemica, 2, 22 (1995).
- The present device is particularly well suited for measuring blood-clotting time—“prothrombin time” or “PT time”—and details regarding such a device appear below. The modifications needed to adapt the device for applications such as those listed above require no more than routine experimentation.
- FIG. 1 is a plan view of a
device 10 of the present invention. FIG. 2 is an exploded view and FIG. 3 a perspective view of the device. Sample is applied to sampleport 12 afterbladder 14 has been compressed. Clearly, the region oflayer 26 and/orlayer 28 that adjoins the cutout forbladder 14 must be resilient, to permitbladder 14 to be compressed. Polyester of about 0.1 mm thickness has suitable resilience and springiness. Preferably,top layer 26 has a thickness of about 0.125 mm,bottom layer 28 about 0.100 mm. When the bladder is released, suction draws sample throughchannel 16 toreagent area 18, which contains a nonimpact-printedreagent 20. In order to ensure thatreagent area 18 can be filled with sample, the volume ofbladder 14 is preferably at least about equal to the combined volume ofchannel 16 andreagent area 18. Ifreagent area 18 is to be illuminated from below,layer 28 must be transparent where it adjoinsreagent area 18. For a PT test,reagent 20 contains thromboplastin that is free of bulking reagents normally found in lyophilized reagents. - As shown in FIGS. 1, 2, and3, stop
junction 22 adjoinsbladder 14 andreagent area 18; however, a continuation ofchannel 16 may be on either or both sides ofstop junction 22, separating the stop junction fromreagent area 18 and/orbladder 14. When the sample reaches stopjunction 22, sample flow stops. For PT measurements, it is important to stop the flow of sample as it reaches that point to permit reproducible “rouleaux formation”—the stacking of red blood cells—which is an important step in monitoring blood clotting using the present invention. The principle of operation of stop junctions is described in U.S. Pat. No. 5,230,866, incorporated herein by reference. - As shown in FIG. 2, all the above elements are formed by cutouts in
intermediate layer 24, sandwiched betweentop layer 26 andbottom layer 28. Preferably,layer 24 is double-sided adhesive tape. Stopjunction 22 is formed by an additional cutout inlayer 26 and/or 28, aligned with the cutout inlayer 24 and sealed with sealinglayer 30 and/or 32. Preferably, as shown, the stop junction comprises cutouts in bothlayers layers stop junction 22 is at least as wide aschannel 16. Also shown in FIG. 2 is anoptional filter 12A to coversample port 12. The filter may separate out red blood cells from a whole blood sample and/or may contain a reagent to interact with the blood to provide additional information. A suitable filter comprises an anisotropic membrane, preferably a polysulfone membrane of the type available from Spectral Diagnostics, Inc., Toronto, Canada.Optional reflector 18A may be on, or adjacent to, a surface oflayer 26 and positioned overreagent area 18. If the reflector is present, the device becomes a transflectance device. - The method of using the strip of FIGS. 1, 2, and3 can be understood with reference to a schematic of the elements of a meter shown in FIG. 4, which contemplates an automated meter. Alternatively, manual operation is also possible. (In that case,
bladder 14 is manually depressed before sample is applied to sampleport 12, then released.) - The first step the user performs is to turn on the meter, thereby energizing
strip detector 40,sample detector 42,measurement system 44, andoptional heater 46. The second step is to insert the strip. Preferably, the strip is not transparent over at least a part of its area, so that an inserted strip will block the illumination byLED 40 a ofdetector 40 b. (More preferably, the intermediate layer is formed of a non-transparent material, so that background light does not entermeasurement system 44.)Detector 40 b thereby senses that a strip has been inserted and triggersbladder actuator 48 to compressbladder 14. Ameter display 50 then directs the user to apply a sample to sampleport 12 as the third and last step the user must perform to initiate the measurement sequence. - The empty sample port is reflective. When a sample is introduced into the sample port, it absorbs light from
LED 42 a and thereby reduces the light that is reflected todetector 42 b. That reduction in light, in turn, signals actuator 48 to releasebladder 14. The resultant suction inchannel 16 draws sample throughreagent area 18 to stopjunction 22. Light fromLED 44 a passes throughreagent area 18, anddetector 44 b monitors the light transmitted through the sample as it is clotting. When there are multiple reagent areas,measurement system 44 includes an LED/detector pair (like 44 a and 44 b) for each reagent area. Analysis of the transmitted light as a function of time (as described below) permits a calculation of the PT time, which is displayed on themeter display 50. Preferably, sample temperature is maintained at about 37° C. byheater 46. - FIG. 5 depicts a typical “clot signature” curve in which the current from
detector 44 b is plotted as a function of time. Blood is first detected in the reagent area by 44 b attime 1. In the time interval A, betweenpoints point 2, sample has filled the reagent area and is at rest, its movement having been stopped by the stop junction. The red cells begin to stack up like coins (rouleaux formation). The rouleaux effect allows increasing light transmission through the sample (and less scattering) in the time interval betweenpoints point 3, clot formation ends rouleaux formation and transmission through the sample reaches a maximum. The PT time can be calculated from the interval B betweenpoints endpoint 4 correlates with fibrinogen in the sample. - FIG. 6 depicts a preferred embodiment of the present device. It is a multi-channel device that includes a
bypass channel 52.Bypass channel 52 provides a path for sample to travel after sample has been drawn intoreagent areas stop junction 122. Sample flow stops when the ambient pressure is equalized on both sides of the stop junction.Reagent area 118 contains thromboplastin. Preferably,reagent areas Area 218 contains thromboplastin, bovine eluate, and recombinant Factor VIIa. The composition is selected to normalize the clotting time of a blood sample by counteracting the effect of an anticoagulant, such as warfarin.Reagent area 318 contains thromboplastin and bovine eluate alone, to partially overcome the effect of an anticoagulant. Thus, three measurements are made on the strip. PT time of the sample, the measurement of primary interest, is measured onarea 118. However, that measurement is validated only when measurements onareas Extended stop junction 122 stops flow in all three reagent areas. - The device pictured in FIGS. 1 and 2 and described above is preferably formed by laminating
thermoplastic sheets intermediate layer 24 that has adhesive on both of its surfaces. The cutouts that form the elements shown in FIG. 1 may be formed, for example, by laser- or die-cutting oflayers - The
reagent area 18 onbottom layer 28 is defined by the cutout inintermediate layer 24. Preferably; the bottom surface oftop layer 26, facingbottom layer 28, is hydrophobic, at least in the region ofchannel 16 andreagent area 18. The surface ofreagent area 18 is hydrophilic. Preferably, the surface ofsample port 12 is hydrophilic as well, to facilitate filling of the device; i.e., moving the sample fromport 12 toreagent area 18. A convenient way to have hydrophilic sample and reagent areas is to have the entire surface ofbottom layer 28 be hydrophilic. Commercially available thermoplastic films having suitably hydrophilic surfaces include 3M 9962 Antifog Film (“Antifog”), available from Medical Specialties, 3M Health Care, St. Paul, Minn.; FMC GelBond Film, available from Bio Whittaker Molecular Applications, Rockland, Me.; polyethylene terephthalate (PET) film, whose surface has been flame-corona- or plasma-treated; ionomer film; and other conventional thermoplastic films having hydrophilic surfaces or coatings. The Antifog is PET film coated with a 3M-proprietary coating and is the preferred substrate material. - In determining the suitability of a substrate for the present device and method, the surface hydrophilicity can be determined in several different ways.
- Contact angle is nominally the angle between the edge of a drop of fluid (usually purified water) that sits atop a wettable surface and the surface itself. The method for measuring the contact angle has been standardized, and can be carried out using manual or automated equipment. (ASTM Test Method D5946-96, Standard Test Method for Corona-Tested Polymer Films Using Water Contact Angle Measurements.) The data can generally by considered accurate and reproducible when the measured angle is greater than 25°, and films are considered quite wettable if the contact angle is about 60° or less. The angles measured for Antifog were about 25°.
- Wetting tension is measured by spreading solutions of known surface tension onto a surface to be tested and observing if the solutions “bead up.” (ASTM Test Method D2578-94, Standard Test Method for Wetting Tension of Polyethylene and Polypropylene Films). Beading up indicates that internal liquid attractive forces overcome adsorptive attraction of the surface. The solutions are calibrated in units of dynes/cm, and are referred to as dyne solutions. They are commercially available in the range of 30 to 60 dynes/cm. A surface is tested starting with the lowest value solution and progressing to the highest. A surface is assigned the dyne/cm value corresponding to that solution that remains spread out for approximately two seconds. Since Antifog wetted out all the solutions, it has been characterized as having a surface wetting tension greater than 60 dynes/cm.
-
- Based on the measurements described above, we conclude that the Antifog surface is extremely hydrophilic. When a surface is adequately hydrophilic, then reagent droplets spread over the surface and, providing sufficient droplets are deposited, form a substantially uniform layer of the reagent over the desired area. As used in this specification and the appended claims, the term “substantially uniform” should not be construed as necessarily suggesting that the surface coating thickness is the same over the entire target area, nor even that the entire surface is coated.
- FIG. 7 depicts a plan view of part of a typical coated target area. Note that part of the surface (A) remains uncoated, although most of the surface (B) is coated. Preferably, at least about 80% of the target area is coated. Preferably, thickness variations in the coated areas (B) are minimized; e.g., thickest region less than three times the average thickness of the coated area. Average coating thickness in coated areas is generally about 0.1 micrometer-about 1 micrometer, depending on the nature of the reagent and the particular application.
- FIG. 8 depicts a schematic of an apparatus for nonimpact printing of reagent onto the reagent area of a substrate of the present invention.
Print head 60 repeatedly ejects a stream of reagent droplets ontoweb 62, which moves in the direction shown by the arrow.Optional masks web 62 inreagent areas 18. - To control the printing,
mask 66; i.e., the mask closest to printhead 60, optionally has ahydrophobic surface 68 facing the print head. Reagent from the multiple dispenser nozzles ofprint head 60 forms multiple reagent dots onmask surface 68. Because the surface is hydrophobic, the dots remain isolated and can be individually viewed by a downstreamoptical system 70. The hydrophilicity ofsurface 18 causes the droplets arriving on that surface to spread and/or coalesce, so it is more difficult foroptical system 70 to detect individual dots directly on the reagent area. -
Optical system 70 can detect and, if desired, reject defective product. For example, an absence of dots may indicate that one or more dispenser nozzles are defective. Among the suitable optical detection methods are dark field microscopy, shadowing, patterning, laser illumination, etc. Optionally, a colorant, or a fluorescent dye, can be added to the reagent to make it more easily visible tooptical system 70. For example, methylene blue dye, added to a reagent to about 0.1% final concentration, makes the reagent visible to an optical system, without substantially altering the measurements made with the reagent. -
Print head 60 may be any nonimpact print head known in the art, including ultrasonic, electrographic, ion projection, etc. Preferably,print head 60 is an ink-jet print head, more preferably, a thermal ink-jet print head. - The following examples demonstrate the present invention in its various embodiments, but are not intended to be in any way limiting.
- Two strips of the type described above for PT measurements were prepared (see FIGS.1-3). The difference between the strips was that strip A had a
bottom layer 28 of untreated polyethylene terephthalate;, while strip B had abottom layer 28 of FMC GelBond Film. A blood sample was applied to each strip and PT measurements made in an apparatus of the type depicted in FIG. 4. FIG. 9 depicts the resultant clotting curves. The curve for strip A has a relatively flat peak (corresponding to peak 3 in FIG. 5). The flatness of the peak limits the precision of the resultant PT calculation. By contrast, the curve for strip B has a much sharper peak, which permits much greater precision. (Note that the PT times for the samples measured with the two strips are different.) - A device of this invention is made by first passing a double-sided adhesive tape (RX 675SLT, available from Scapa Tapes, Windsor, CT) sandwiched between two release liners into a laminating and rotary die-cutting converting system. The pattern shown in FIG. 2, with the exception of the stop junction, is cut through the top release liner and tape, but not through the bottom release liner, which is then removed as waste, along with the cutouts from the tape. 3M Antifog Film is laminated to the exposed bottom side of the tape. Reagent (thromboplastin, available from Ortho Clinical Diagnostics, Raritan, N.J.) is then printed onto the reagent area (18) of the film by thermal ink-jet printing, using printing heads 51612A from Hewlett Packard, Corvallis, Oreg. A sample port is cut in untreated polyester film (AR1235, available from Adhesives Research, Glen Rock, Pa.) and then laminated, in register, to the top of the double-sided tape (after removing the release layer). A die then cuts the stop junction through the three layers of the sandwich. Finally, strips of single-sided adhesive tape—Catalog No. 9843 (MSX4841), available from 3M, St. Paul, Minn.—are applied to the outside of the polyester layers to seal the stop junction.
- A procedure that is similar to the one described in Example 1 is followed to make a strip of the type depicted in FIG. 6. Reagent that is thermal ink-jet printed onto areas118P, 218P, and 318P is, respectively, thromboplastin; thromboplastin, bovine eluate, and recombinant Factor VIIa; and thromboplastin and bovine eluate alone. The bovine eluate (plasma barium citrate bovine eluate) is available from Haemotologic Technologies, Burlington, Vt.; and recombinant Factor VIIa from American Diagnostica, Greenwich, Conn.
- Measurements made on a whole blood sample using the strip of this Example yield a curve of the type shown in FIG. 5 for each of the reagent areas. The data from the curves for the controls (reagent areas218P and 318P) are used to qualify the data from the curve for reagent area 118P. As a result, the PT time can be determined more reliably than can be done with a strip having a single reagent area.
Claims (20)
1. A method for preparing a medical diagnostic reagent device, comprising the steps of
a) providing a non-absorbent substrate, having on its surface at least one hydrophilic target area,
b) providing from a nonimpact print head onto a point within the target area a pulsed stream of microdroplets of a diagnostic reagent liquid.
c) moving the stream relative to the substrate, and
d) repeating steps b) and c) at least enough times to provide a substantially uniform layer of the liquid over the target area.
2. The method of claim 1 , in which the substrate comprises a substantially planar sheet.
3. The method of claim 1 , in which the substrate comprises a thermoplastic sheet.
4. The method of claim 1 , in which each of the at least one target areas has a water contact angle of no more than about 60°.
5. The method of claim 1 , in which the print head is a thermal ink-jet print head.
6. The method of claim 1 , in which the reagent liquid comprises thromboplastin.
7. The method of claim 2 , in which the stream travels in a direction that is substantially perpendicular to the substrate, and the stream is moved relative to the substrate by moving the substrate in a direction that is substantially perpendicular to the direction of stream travel.
8. The method of claim 1 , in which the stream passes through a hole in a sheet that is positioned between the dispenser and substrate.
9. The method of claim 8 , in which the sheet has a hydrophobic surface that faces the dispenser.
10. The method of claim 9 , in which the reagent comprises a colorant.
11. A diagnostic reagent device for measuring an analyte concentration or characteristic of a biological fluid, including a non-absorbent substrate comprising
a) a sample application area for accepting a sample of the biological fluid for analysis and
b) a predetermined hydrophilic reagent area, onto which has been applied, by nonimpact printing, a diagnostic reagent liquid that interacts with the sample to cause in the sample a physically-measurable change that can be related to the analyte concentration or characteristic of the fluid.
12. The device of claim 11 , in which the sample application area and reagent area substantially coincide.
13. The device of claim 11 , further comprising means for conveying the sample from the application area to the reagent area.
14. The device of claim 11 , in which the sample application area is hydrophilic.
15. The device of claim 11 , in which the substrate comprises a substantially transparent planar sheet.
16. The device of claim 11 , in which the substrate comprises a substantially transparent thermoplastic sheet.
17. The device of claim 11 , in which the reagent liquid comprises thromboplastin.
18. The device of claim 11 , in which the reagent liquid comprises a colorant.
19. The device of claim 13 , in which the means for conveying the sample from the application area to the reagent area comprises a top layer, separated from the substrate by an intermediate layer that has a through hole and adjoining channel cut into it, the top layer, intermediate layer, and substrate forming a bladder that, when compressed, and released causes in the channel a reduced pressure that draws blood into the reagent area.
20. The device of claim 19 , in which the top layer has a hydrophobic surface facing the substrate, at least in the channel and reagent area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/461,219 US20030210287A1 (en) | 1998-07-20 | 2003-06-13 | Microdroplet dispensing methods for a medical diagnostic device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9342198P | 1998-07-20 | 1998-07-20 | |
US09/333,765 US6521182B1 (en) | 1998-07-20 | 1999-06-15 | Fluidic device for medical diagnostics |
US09/454,196 US6830934B1 (en) | 1999-06-15 | 1999-12-03 | Microdroplet dispensing for a medical diagnostic device |
US10/461,219 US20030210287A1 (en) | 1998-07-20 | 2003-06-13 | Microdroplet dispensing methods for a medical diagnostic device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/454,196 Continuation US6830934B1 (en) | 1998-07-20 | 1999-12-03 | Microdroplet dispensing for a medical diagnostic device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030210287A1 true US20030210287A1 (en) | 2003-11-13 |
Family
ID=23803682
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/454,196 Expired - Lifetime US6830934B1 (en) | 1998-07-20 | 1999-12-03 | Microdroplet dispensing for a medical diagnostic device |
US10/061,723 Abandoned US20020098114A1 (en) | 1998-07-20 | 2002-02-01 | Microdroplet dispensing for a medical diagnostic device |
US10/461,219 Abandoned US20030210287A1 (en) | 1998-07-20 | 2003-06-13 | Microdroplet dispensing methods for a medical diagnostic device |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/454,196 Expired - Lifetime US6830934B1 (en) | 1998-07-20 | 1999-12-03 | Microdroplet dispensing for a medical diagnostic device |
US10/061,723 Abandoned US20020098114A1 (en) | 1998-07-20 | 2002-02-01 | Microdroplet dispensing for a medical diagnostic device |
Country Status (21)
Country | Link |
---|---|
US (3) | US6830934B1 (en) |
EP (1) | EP1107004B1 (en) |
JP (1) | JP2001201504A (en) |
KR (1) | KR20010062005A (en) |
CN (1) | CN1213302C (en) |
AR (1) | AR026703A1 (en) |
AT (1) | ATE325342T1 (en) |
AU (1) | AU775559B2 (en) |
BR (1) | BR0005697A (en) |
CA (1) | CA2327305A1 (en) |
DE (1) | DE60027677T2 (en) |
DK (1) | DK1107004T3 (en) |
ES (1) | ES2264921T3 (en) |
HK (2) | HK1036838A1 (en) |
IL (1) | IL139789A (en) |
MX (1) | MXPA00011830A (en) |
NO (1) | NO320095B1 (en) |
PT (1) | PT1107004E (en) |
RU (1) | RU2256167C2 (en) |
SG (1) | SG89361A1 (en) |
TW (1) | TW539546B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
WO2005090987A1 (en) * | 2004-03-17 | 2005-09-29 | Cozart Bioscience Limited | Procedure for manufacture of strips for lateral flow immunochromatographic devices |
EP1625888A2 (en) * | 2004-08-13 | 2006-02-15 | Alps Electric Co., Ltd. | Test plate and test method using the same |
WO2007025559A1 (en) * | 2005-08-31 | 2007-03-08 | Egomedical Technologies Ag | Coagulation test system |
US20100035245A1 (en) * | 2005-08-31 | 2010-02-11 | Egomedical Technologies Ag | Analyte test system using non-enzymatic analyte recognition elements |
US20100140116A1 (en) * | 2007-01-29 | 2010-06-10 | Matthias Stiene | Resealable container for storing moisture sensitive test elements |
US20100152554A1 (en) * | 2006-12-14 | 2010-06-17 | Matthias Steine | Monitoring device |
US20110005341A1 (en) * | 2008-03-11 | 2011-01-13 | Koninklijke Philips Electronics N.V. | Filtering apparatus for filtering a fluid |
US7901875B2 (en) | 2004-03-05 | 2011-03-08 | Egomedical Swiss Ag | Analyte test system for determining the concentration of an analyte in a physiological or aqueous fluid |
US7998666B2 (en) | 2004-08-13 | 2011-08-16 | Egomedical Technologies Ag | Analyte test system for determining the concentration of an analyte in a physiological or aqueous fluid |
US9341639B2 (en) | 2013-07-26 | 2016-05-17 | Industrial Technology Research Institute | Apparatus for microfluid detection |
US9586399B2 (en) | 2015-03-30 | 2017-03-07 | Funai Electric Co., Ltd. | Fluid ejection device for depositing a discrete quantity of fluid onto a surface |
US10928289B2 (en) * | 2017-05-04 | 2021-02-23 | University Of Connecticut | Assembly for measuring the viscosity of fluids using microchannels |
Families Citing this family (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
EP1404235A4 (en) | 2001-06-12 | 2008-08-20 | Pelikan Technologies Inc | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7316700B2 (en) | 2001-06-12 | 2008-01-08 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
CA2448790C (en) | 2001-06-12 | 2010-09-07 | Pelikan Technologies, Inc. | Electric lancet actuator |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
EP1323465A1 (en) | 2001-12-31 | 2003-07-02 | Corning Incorporated | Flexible high density array print head with systems and methods for aligning pin plate, reservoir and substrate with respect to each other |
US6673617B2 (en) * | 2002-03-14 | 2004-01-06 | Lifescan, Inc. | Test strip qualification system |
US6682933B2 (en) * | 2002-03-14 | 2004-01-27 | Lifescan, Inc. | Test strip qualification system |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7175642B2 (en) | 2002-04-19 | 2007-02-13 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7226461B2 (en) | 2002-04-19 | 2007-06-05 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
JP4253178B2 (en) * | 2002-12-02 | 2009-04-08 | アークレイ株式会社 | Method for manufacturing analytical tool |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
EP1628567B1 (en) | 2003-05-30 | 2010-08-04 | Pelikan Technologies Inc. | Method and apparatus for fluid injection |
WO2004107964A2 (en) | 2003-06-06 | 2004-12-16 | Pelikan Technologies, Inc. | Blood harvesting device with electronic control |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
EP1671096A4 (en) | 2003-09-29 | 2009-09-16 | Pelikan Technologies Inc | Method and apparatus for an improved sample capture device |
EP1680014A4 (en) | 2003-10-14 | 2009-01-21 | Pelikan Technologies Inc | Method and apparatus for a variable user interface |
WO2005065414A2 (en) | 2003-12-31 | 2005-07-21 | Pelikan Technologies, Inc. | Method and apparatus for improving fluidic flow and sample capture |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
EP1765194A4 (en) | 2004-06-03 | 2010-09-29 | Pelikan Technologies Inc | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
CN101137908B (en) * | 2005-03-07 | 2012-07-04 | 可乐丽股份有限公司 | Microchannel array and method for producing the same, and blood measuring method employing it |
GB2426334A (en) * | 2005-05-20 | 2006-11-22 | Orion Diagnostica Oy | Application of a reagent to a matrix material |
US8263414B2 (en) | 2005-05-23 | 2012-09-11 | Siemens Healthcare Diagnostics Inc. | Dispensing of a diagnostic liquid onto a diagnostic reagent |
US8323464B2 (en) * | 2005-05-25 | 2012-12-04 | Universal Biosensors Pty Ltd | Method and apparatus for electrochemical analysis |
US8016154B2 (en) * | 2005-05-25 | 2011-09-13 | Lifescan, Inc. | Sensor dispenser device and method of use |
US8192599B2 (en) * | 2005-05-25 | 2012-06-05 | Universal Biosensors Pty Ltd | Method and apparatus for electrochemical analysis |
US7749371B2 (en) | 2005-09-30 | 2010-07-06 | Lifescan, Inc. | Method and apparatus for rapid electrochemical analysis |
US8529751B2 (en) | 2006-03-31 | 2013-09-10 | Lifescan, Inc. | Systems and methods for discriminating control solution from a physiological sample |
US7837941B2 (en) * | 2006-04-07 | 2010-11-23 | Agamatrix, Inc. | Method and apparatus for monitoring alteration of flow characteristics in a liquid sample |
JP4751275B2 (en) * | 2006-08-23 | 2011-08-17 | 近藤工業株式会社 | Soft X-ray shielding sheet used for soft X-ray electrostatic removal apparatus and method for producing the same |
GB0617035D0 (en) * | 2006-08-30 | 2006-10-11 | Inverness Medical Switzerland | Fluidic indicator device |
CN101720432A (en) * | 2007-06-20 | 2010-06-02 | Mec戴内米克公司 | Methods and apparatus for measuring blood coagulation |
EP2040073A1 (en) * | 2007-09-20 | 2009-03-25 | Iline Microsystems, S.L. | Microfluidic device and method for fluid clotting time determination |
US8778168B2 (en) | 2007-09-28 | 2014-07-15 | Lifescan, Inc. | Systems and methods of discriminating control solution from a physiological sample |
US8001825B2 (en) * | 2007-11-30 | 2011-08-23 | Lifescan, Inc. | Auto-calibrating metering system and method of use |
US8603768B2 (en) | 2008-01-17 | 2013-12-10 | Lifescan, Inc. | System and method for measuring an analyte in a sample |
EP2265324B1 (en) | 2008-04-11 | 2015-01-28 | Sanofi-Aventis Deutschland GmbH | Integrated analyte measurement system |
US8551320B2 (en) | 2008-06-09 | 2013-10-08 | Lifescan, Inc. | System and method for measuring an analyte in a sample |
EP2166352A1 (en) * | 2008-09-17 | 2010-03-24 | F.Hoffmann-La Roche Ag | Device and method for determining an analyte in a fluid sample |
RU2529395C2 (en) * | 2008-12-31 | 2014-09-27 | Конинклейке Филипс Электроникс Н.В. | Method and device to monitor process of injury treatment |
KR100909342B1 (en) * | 2009-01-22 | 2009-07-23 | 박효남 | Apparatus for minutely regulating liquid medicine |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US8101065B2 (en) * | 2009-12-30 | 2012-01-24 | Lifescan, Inc. | Systems, devices, and methods for improving accuracy of biosensors using fill time |
US8877034B2 (en) * | 2009-12-30 | 2014-11-04 | Lifescan, Inc. | Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
EP2601520B1 (en) | 2010-08-02 | 2014-05-14 | Cilag GmbH International | Method for improved accuracy for temperature correction of glucose results for control solution |
US8932445B2 (en) | 2010-09-30 | 2015-01-13 | Cilag Gmbh International | Systems and methods for improved stability of electrochemical sensors |
US8617370B2 (en) | 2010-09-30 | 2013-12-31 | Cilag Gmbh International | Systems and methods of discriminating between a control sample and a test fluid using capacitance |
WO2012062651A1 (en) * | 2010-11-10 | 2012-05-18 | Boehringer Ingelheim Microparts Gmbh | Device for filtering blood |
US8956518B2 (en) | 2011-04-20 | 2015-02-17 | Lifescan, Inc. | Electrochemical sensors with carrier field |
WO2013109549A2 (en) | 2012-01-16 | 2013-07-25 | Abram Scientific, Inc. | Methods, devices, and systems for measuring physical properties of fluid |
US9063091B2 (en) | 2012-04-06 | 2015-06-23 | Ixensor Inc. | Test strips and method for reading test strips |
US9063121B2 (en) | 2012-05-09 | 2015-06-23 | Stat-Diagnostica & Innovation, S.L. | Plurality of reaction chambers in a test cartridge |
EP2696193A1 (en) * | 2012-08-06 | 2014-02-12 | Andrew Wheeler | Assay detection systems and methods |
AU2012389272B2 (en) | 2012-09-07 | 2018-02-22 | Cilag Gmbh International | Electrochemical sensors and a method for their manufacture |
US9778200B2 (en) | 2012-12-18 | 2017-10-03 | Ixensor Co., Ltd. | Method and apparatus for analyte measurement |
GB201223079D0 (en) * | 2012-12-20 | 2013-02-06 | Sepsis Ltd | Point of care sepsis assay device and method |
US8926369B2 (en) | 2012-12-20 | 2015-01-06 | Lifescan Scotland Limited | Electrical connector for substrate having conductive tracks |
ES2746070T3 (en) * | 2013-01-07 | 2020-03-04 | Ixensor Co Ltd | Test strips and test strip reading procedure |
US20150072365A1 (en) | 2013-09-10 | 2015-03-12 | Cilag Gmbh International | Magnetically aligning test strips in test meter |
US9291593B2 (en) | 2013-11-22 | 2016-03-22 | Cilag Gmbh International | Dual-chamber analytical test strip |
US20150176049A1 (en) | 2013-12-23 | 2015-06-25 | Cilag Gmbh International | Determining usability of analytical test strip |
CN106605144B (en) * | 2014-04-30 | 2019-09-27 | 仪器实验室公司 | Method for measuring and system are solidified for carrying out point-of-care by light detection |
US10126264B2 (en) | 2014-07-14 | 2018-11-13 | Li-Cor, Inc. | Analyte separator with electrohydrodynamic Taylor cone jet blotter |
DE102014214579A1 (en) * | 2014-07-24 | 2016-01-28 | Robert Bosch Gmbh | Windshield wiper device |
US20160067709A1 (en) * | 2014-09-05 | 2016-03-10 | Htc Corporation | Micro-channel module |
US9795963B2 (en) * | 2014-09-26 | 2017-10-24 | Picosys Incorporated | Method and apparatus for taped interlayer flow cell with masking and conductive traces |
US9377457B1 (en) * | 2015-10-19 | 2016-06-28 | Naishu Wang | Progressive compression driven flow cartridge for analyte detecting strip and method |
EP3411896A4 (en) | 2016-02-01 | 2019-09-04 | Li-Cor, Inc. | Capillary electrophoresis inkjet dispensing |
EP3497434B1 (en) | 2016-08-08 | 2021-05-19 | Li-Cor, Inc. | Microchip electrophoresis inkjet dispensing |
US10737268B2 (en) | 2016-08-08 | 2020-08-11 | Li-Cor, Inc. | Multi-sheath flow and on-chip terminating electrode for microfluidic direct-blotting |
CN108956543B (en) * | 2017-05-18 | 2021-02-26 | 微采视像科技股份有限公司 | Method for measuring prothrombin time |
AU2018279083B2 (en) * | 2017-06-08 | 2022-07-14 | Integra Biosciences Ag | Sample and reagent reservoir kits and liners with anti-vacuum feature |
GB201801019D0 (en) * | 2018-01-22 | 2018-03-07 | Q Linea Ab | Sample holder |
WO2020037031A1 (en) * | 2018-08-17 | 2020-02-20 | Becton, Dickinson And Company | Antimicrobial susceptibility testing using microdroplets |
TWI737135B (en) * | 2020-01-21 | 2021-08-21 | 微采視像科技股份有限公司 | Slide sets, machine and method for optical blood coagulation test |
GB2599162A (en) * | 2020-09-29 | 2022-03-30 | Ffei Ltd | Cell deposition and imaging apparatus |
CN114624453B (en) * | 2022-05-11 | 2022-10-28 | 深圳市帝迈生物技术有限公司 | Sample analyzer for coagulation and immunity joint detection and detection method thereof |
Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620676A (en) * | 1969-02-20 | 1971-11-16 | Sterilizer Control Royalties A | Disposable colorimetric indicator and sampling device for liquids |
US3640267A (en) * | 1969-12-15 | 1972-02-08 | Damon Corp | Clinical sample container |
US4088448A (en) * | 1975-09-29 | 1978-05-09 | Lilja Jan Evert | Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses |
US4420566A (en) * | 1982-06-10 | 1983-12-13 | Eastman Kodak Company | Method and apparatus for detecting sample fluid on an analysis slide |
US4426451A (en) * | 1981-01-28 | 1984-01-17 | Eastman Kodak Company | Multi-zoned reaction vessel having pressure-actuatable control means between zones |
US4756884A (en) * | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4761381A (en) * | 1985-09-18 | 1988-08-02 | Miles Inc. | Volume metering capillary gap device for applying a liquid sample onto a reactive surface |
US4822568A (en) * | 1986-03-28 | 1989-04-18 | Minoru Tomita | Apparatus for measuring aggregation rate of whole blood red blood cells |
US4847209A (en) * | 1987-11-09 | 1989-07-11 | Miles Inc. | Latex agglutination immunoassay in the presence of hemoglobin |
US4849340A (en) * | 1987-04-03 | 1989-07-18 | Cardiovascular Diagnostics, Inc. | Reaction system element and method for performing prothrombin time assay |
US4868129A (en) * | 1987-08-27 | 1989-09-19 | Biotrack Inc. | Apparatus and method for dilution and mixing of liquid samples |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US4935346A (en) * | 1986-08-13 | 1990-06-19 | Lifescan, Inc. | Minimum procedure system for the determination of analytes |
US5039617A (en) * | 1989-04-20 | 1991-08-13 | Biotrack, Inc. | Capillary flow device and method for measuring activated partial thromboplastin time |
US5049487A (en) * | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
US5068181A (en) * | 1989-12-01 | 1991-11-26 | Akzo N.V. | Method of monitoring reagent delivery in a scanning spectrophotometer |
US5100620A (en) * | 1989-05-15 | 1992-03-31 | Miles, Inc. | Capillary tube/gap reagent format |
US5104813A (en) * | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5108926A (en) * | 1987-09-08 | 1992-04-28 | Board Of Regents, The University Of Texas System | Apparatus for the precise positioning of cells |
US5196926A (en) * | 1990-05-19 | 1993-03-23 | Goldstar Co., Ltd. | Optical system for an lcd projector |
US5208163A (en) * | 1990-08-06 | 1993-05-04 | Miles Inc. | Self-metering fluid analysis device |
US5230866A (en) * | 1991-03-01 | 1993-07-27 | Biotrack, Inc. | Capillary stop-flow junction having improved stability against accidental fluid flow |
US5242606A (en) * | 1990-06-04 | 1993-09-07 | Abaxis, Incorporated | Sample metering port for analytical rotor having overflow chamber |
US5338688A (en) * | 1990-08-02 | 1994-08-16 | Boehringer Mannheim Gmbh | Method for the metered application of a biochemical analytical liquid to a target |
US5366902A (en) * | 1990-10-30 | 1994-11-22 | Hypoguard (Uk) Limited | Collection and display device |
US5378638A (en) * | 1990-08-02 | 1995-01-03 | Boehringer Mannheim Gmbh | Analysis element and process for its manufacture |
US5472603A (en) * | 1992-04-02 | 1995-12-05 | Abaxis, Inc. | Analytical rotor with dye mixing chamber |
US5504011A (en) * | 1994-10-21 | 1996-04-02 | International Technidyne Corporation | Portable test apparatus and associated method of performing a blood coagulation test |
US5508521A (en) * | 1994-12-05 | 1996-04-16 | Cardiovascular Diagnostics Inc. | Method and apparatus for detecting liquid presence on a reflecting surface using modulated light |
US5610287A (en) * | 1993-12-06 | 1997-03-11 | Molecular Tool, Inc. | Method for immobilizing nucleic acid molecules |
US5627041A (en) * | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
US5628961A (en) * | 1993-10-28 | 1997-05-13 | I-Stat Corporation | Apparatus for assaying viscosity changes in fluid samples and method of conducting same |
US5674699A (en) * | 1993-06-08 | 1997-10-07 | Chronomed, Inc. | Two-phase optical assay |
US5677195A (en) * | 1991-11-22 | 1997-10-14 | Affymax Technologies N.V. | Combinatorial strategies for polymer synthesis |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5708278A (en) * | 1996-05-13 | 1998-01-13 | Johnson & Johnson Clinical Diagnostics, Inc. | Reflective wetness detector |
US5728352A (en) * | 1994-11-14 | 1998-03-17 | Advanced Care Products | Disposable electronic diagnostic instrument |
US5736404A (en) * | 1995-12-27 | 1998-04-07 | Zia Yassinzadeh | Flow detection appartus and method |
US5827681A (en) * | 1996-12-20 | 1998-10-27 | University Technology Corporation | Rapid detection and drug sensitivity of malaria |
US5847209A (en) * | 1997-12-03 | 1998-12-08 | Gupta; Anurag Ateet | Process for recovery of solid and reusable urea from the urea adduction process |
US6001307A (en) * | 1996-04-26 | 1999-12-14 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US6033866A (en) * | 1997-12-08 | 2000-03-07 | Biomedix, Inc. | Highly sensitive amperometric bi-mediator-based glucose biosensor |
US6066504A (en) * | 1997-06-27 | 2000-05-23 | Hemosense, Inc. | Coagulation or lysis assays using an electroactive species |
US6066448A (en) * | 1995-03-10 | 2000-05-23 | Meso Sclae Technologies, Llc. | Multi-array, multi-specific electrochemiluminescence testing |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US6207369B1 (en) * | 1995-03-10 | 2001-03-27 | Meso Scale Technologies, Llc | Multi-array, multi-specific electrochemiluminescence testing |
US6261519B1 (en) * | 1998-07-20 | 2001-07-17 | Lifescan, Inc. | Medical diagnostic device with enough-sample indicator |
US6362890B1 (en) * | 1999-06-14 | 2002-03-26 | Roche Diagnostics Gmbh | Method and device for checking the liquid take up of a test layer of an analysis element |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
US6640267B1 (en) * | 1999-09-27 | 2003-10-28 | Cypress Semiconductor Corp. | Architecture for multi-queue storage element |
US6991762B1 (en) * | 1996-04-26 | 2006-01-31 | Arkray, Inc. | Device for analyzing a sample |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US567715A (en) * | 1896-09-15 | William houghton | ||
IL52322A (en) | 1976-06-18 | 1980-10-26 | Alfa Laval Ab | Method of making reagent test device and device made accorording to this method |
AU4681493A (en) | 1992-07-21 | 1994-02-14 | Medix Biotech, Inc. | Transparent assay test devices and methods |
US5478751A (en) * | 1993-12-29 | 1995-12-26 | Abbott Laboratories | Self-venting immunodiagnositic devices and methods of performing assays |
-
1999
- 1999-12-03 US US09/454,196 patent/US6830934B1/en not_active Expired - Lifetime
-
2000
- 2000-11-20 IL IL13978900A patent/IL139789A/en not_active IP Right Cessation
- 2000-11-27 SG SG200007245A patent/SG89361A1/en unknown
- 2000-11-29 AU AU71890/00A patent/AU775559B2/en not_active Ceased
- 2000-11-29 MX MXPA00011830A patent/MXPA00011830A/en active IP Right Grant
- 2000-11-30 CA CA002327305A patent/CA2327305A1/en not_active Abandoned
- 2000-11-30 KR KR1020000071844A patent/KR20010062005A/en not_active Application Discontinuation
- 2000-12-01 DK DK00310691T patent/DK1107004T3/en active
- 2000-12-01 EP EP00310691A patent/EP1107004B1/en not_active Expired - Lifetime
- 2000-12-01 AT AT00310691T patent/ATE325342T1/en active
- 2000-12-01 PT PT00310691T patent/PT1107004E/en unknown
- 2000-12-01 DE DE60027677T patent/DE60027677T2/en not_active Expired - Lifetime
- 2000-12-01 JP JP2000367717A patent/JP2001201504A/en active Pending
- 2000-12-01 NO NO20006106A patent/NO320095B1/en not_active IP Right Cessation
- 2000-12-01 AR ARP000106380A patent/AR026703A1/en unknown
- 2000-12-01 RU RU2000130159/14A patent/RU2256167C2/en not_active IP Right Cessation
- 2000-12-01 ES ES00310691T patent/ES2264921T3/en not_active Expired - Lifetime
- 2000-12-02 CN CNB001373196A patent/CN1213302C/en not_active Expired - Fee Related
- 2000-12-04 BR BR0005697-9A patent/BR0005697A/en not_active IP Right Cessation
-
2001
- 2001-01-18 TW TW089125534A patent/TW539546B/en not_active IP Right Cessation
- 2001-10-08 HK HK01107069A patent/HK1036838A1/en not_active IP Right Cessation
- 2001-11-26 HK HK01108314A patent/HK1037723A1/en not_active IP Right Cessation
-
2002
- 2002-02-01 US US10/061,723 patent/US20020098114A1/en not_active Abandoned
-
2003
- 2003-06-13 US US10/461,219 patent/US20030210287A1/en not_active Abandoned
Patent Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620676A (en) * | 1969-02-20 | 1971-11-16 | Sterilizer Control Royalties A | Disposable colorimetric indicator and sampling device for liquids |
US3640267A (en) * | 1969-12-15 | 1972-02-08 | Damon Corp | Clinical sample container |
US4088448A (en) * | 1975-09-29 | 1978-05-09 | Lilja Jan Evert | Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses |
US4426451A (en) * | 1981-01-28 | 1984-01-17 | Eastman Kodak Company | Multi-zoned reaction vessel having pressure-actuatable control means between zones |
US4420566A (en) * | 1982-06-10 | 1983-12-13 | Eastman Kodak Company | Method and apparatus for detecting sample fluid on an analysis slide |
US4756884A (en) * | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4761381A (en) * | 1985-09-18 | 1988-08-02 | Miles Inc. | Volume metering capillary gap device for applying a liquid sample onto a reactive surface |
US4822568A (en) * | 1986-03-28 | 1989-04-18 | Minoru Tomita | Apparatus for measuring aggregation rate of whole blood red blood cells |
US4935346A (en) * | 1986-08-13 | 1990-06-19 | Lifescan, Inc. | Minimum procedure system for the determination of analytes |
US5049487A (en) * | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US4849340A (en) * | 1987-04-03 | 1989-07-18 | Cardiovascular Diagnostics, Inc. | Reaction system element and method for performing prothrombin time assay |
US4868129A (en) * | 1987-08-27 | 1989-09-19 | Biotrack Inc. | Apparatus and method for dilution and mixing of liquid samples |
US5108926A (en) * | 1987-09-08 | 1992-04-28 | Board Of Regents, The University Of Texas System | Apparatus for the precise positioning of cells |
US4847209A (en) * | 1987-11-09 | 1989-07-11 | Miles Inc. | Latex agglutination immunoassay in the presence of hemoglobin |
US5104813A (en) * | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5039617A (en) * | 1989-04-20 | 1991-08-13 | Biotrack, Inc. | Capillary flow device and method for measuring activated partial thromboplastin time |
US5100620A (en) * | 1989-05-15 | 1992-03-31 | Miles, Inc. | Capillary tube/gap reagent format |
US5068181A (en) * | 1989-12-01 | 1991-11-26 | Akzo N.V. | Method of monitoring reagent delivery in a scanning spectrophotometer |
US5196926A (en) * | 1990-05-19 | 1993-03-23 | Goldstar Co., Ltd. | Optical system for an lcd projector |
US5242606A (en) * | 1990-06-04 | 1993-09-07 | Abaxis, Incorporated | Sample metering port for analytical rotor having overflow chamber |
US5378638A (en) * | 1990-08-02 | 1995-01-03 | Boehringer Mannheim Gmbh | Analysis element and process for its manufacture |
US5338688A (en) * | 1990-08-02 | 1994-08-16 | Boehringer Mannheim Gmbh | Method for the metered application of a biochemical analytical liquid to a target |
US5208163A (en) * | 1990-08-06 | 1993-05-04 | Miles Inc. | Self-metering fluid analysis device |
US5366902A (en) * | 1990-10-30 | 1994-11-22 | Hypoguard (Uk) Limited | Collection and display device |
US5230866A (en) * | 1991-03-01 | 1993-07-27 | Biotrack, Inc. | Capillary stop-flow junction having improved stability against accidental fluid flow |
US5677195A (en) * | 1991-11-22 | 1997-10-14 | Affymax Technologies N.V. | Combinatorial strategies for polymer synthesis |
US5472603A (en) * | 1992-04-02 | 1995-12-05 | Abaxis, Inc. | Analytical rotor with dye mixing chamber |
US5674699A (en) * | 1993-06-08 | 1997-10-07 | Chronomed, Inc. | Two-phase optical assay |
US5628961A (en) * | 1993-10-28 | 1997-05-13 | I-Stat Corporation | Apparatus for assaying viscosity changes in fluid samples and method of conducting same |
US5610287A (en) * | 1993-12-06 | 1997-03-11 | Molecular Tool, Inc. | Method for immobilizing nucleic acid molecules |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5627041A (en) * | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
US5504011A (en) * | 1994-10-21 | 1996-04-02 | International Technidyne Corporation | Portable test apparatus and associated method of performing a blood coagulation test |
US5591403A (en) * | 1994-10-21 | 1997-01-07 | International Technidyne Corporation | Portable prothrombin time test apparatus and associated method of performing a prothrombin time test |
US5728352A (en) * | 1994-11-14 | 1998-03-17 | Advanced Care Products | Disposable electronic diagnostic instrument |
US5508521A (en) * | 1994-12-05 | 1996-04-16 | Cardiovascular Diagnostics Inc. | Method and apparatus for detecting liquid presence on a reflecting surface using modulated light |
US6207369B1 (en) * | 1995-03-10 | 2001-03-27 | Meso Scale Technologies, Llc | Multi-array, multi-specific electrochemiluminescence testing |
US6066448A (en) * | 1995-03-10 | 2000-05-23 | Meso Sclae Technologies, Llc. | Multi-array, multi-specific electrochemiluminescence testing |
US5736404A (en) * | 1995-12-27 | 1998-04-07 | Zia Yassinzadeh | Flow detection appartus and method |
US6103196A (en) * | 1995-12-27 | 2000-08-15 | Yassinzadeh; Zia | Flow detection apparatus and method |
US6991762B1 (en) * | 1996-04-26 | 2006-01-31 | Arkray, Inc. | Device for analyzing a sample |
US6001307A (en) * | 1996-04-26 | 1999-12-14 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US6180062B1 (en) * | 1996-04-26 | 2001-01-30 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US5708278A (en) * | 1996-05-13 | 1998-01-13 | Johnson & Johnson Clinical Diagnostics, Inc. | Reflective wetness detector |
US5827681A (en) * | 1996-12-20 | 1998-10-27 | University Technology Corporation | Rapid detection and drug sensitivity of malaria |
US6066504A (en) * | 1997-06-27 | 2000-05-23 | Hemosense, Inc. | Coagulation or lysis assays using an electroactive species |
US5847209A (en) * | 1997-12-03 | 1998-12-08 | Gupta; Anurag Ateet | Process for recovery of solid and reusable urea from the urea adduction process |
US6033866A (en) * | 1997-12-08 | 2000-03-07 | Biomedix, Inc. | Highly sensitive amperometric bi-mediator-based glucose biosensor |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
US20020110486A1 (en) * | 1998-07-20 | 2002-08-15 | Shartle Robert Justice | Analyte test strip with two controls |
US20030031594A1 (en) * | 1998-07-20 | 2003-02-13 | Shartle Robert Justice | Vacuum loaded test strip with stop junction and bypass channel |
US6521182B1 (en) * | 1998-07-20 | 2003-02-18 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US20030156984A1 (en) * | 1998-07-20 | 2003-08-21 | John Lemke | Fluidic device for medical diagnostics |
US20030156983A1 (en) * | 1998-07-20 | 2003-08-21 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US6261519B1 (en) * | 1998-07-20 | 2001-07-17 | Lifescan, Inc. | Medical diagnostic device with enough-sample indicator |
US6362890B1 (en) * | 1999-06-14 | 2002-03-26 | Roche Diagnostics Gmbh | Method and device for checking the liquid take up of a test layer of an analysis element |
US6640267B1 (en) * | 1999-09-27 | 2003-10-28 | Cypress Semiconductor Corp. | Architecture for multi-queue storage element |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7022286B2 (en) | 1998-07-20 | 2006-04-04 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
US20020110922A1 (en) * | 1998-07-20 | 2002-08-15 | Shartle Robert Justice | Vacuum loaded test strip and method of use |
US20020110486A1 (en) * | 1998-07-20 | 2002-08-15 | Shartle Robert Justice | Analyte test strip with two controls |
US20030156984A1 (en) * | 1998-07-20 | 2003-08-21 | John Lemke | Fluidic device for medical diagnostics |
US20030156983A1 (en) * | 1998-07-20 | 2003-08-21 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20040109790A1 (en) * | 1998-07-20 | 2004-06-10 | Shartle Robert Justice | Vacuum loaded test strip with stop junction and bypass channel |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20110136249A1 (en) * | 2004-03-05 | 2011-06-09 | Egomedical Swiss Ag | Analyte test system for determining the concentration of an analyte in a physiological or aqueous fluid |
US7901875B2 (en) | 2004-03-05 | 2011-03-08 | Egomedical Swiss Ag | Analyte test system for determining the concentration of an analyte in a physiological or aqueous fluid |
GB2426585A (en) * | 2004-03-17 | 2006-11-29 | Cozart Bioscience Ltd | Procedure for manufacture of strips for lateral flow immunochromatographic devices |
WO2005090987A1 (en) * | 2004-03-17 | 2005-09-29 | Cozart Bioscience Limited | Procedure for manufacture of strips for lateral flow immunochromatographic devices |
EP1625888A2 (en) * | 2004-08-13 | 2006-02-15 | Alps Electric Co., Ltd. | Test plate and test method using the same |
US20060034727A1 (en) * | 2004-08-13 | 2006-02-16 | Alps Electric Co., Ltd. | Test plate and test method using the same |
US7998666B2 (en) | 2004-08-13 | 2011-08-16 | Egomedical Technologies Ag | Analyte test system for determining the concentration of an analyte in a physiological or aqueous fluid |
EP1625888A3 (en) * | 2004-08-13 | 2006-06-07 | Alps Electric Co., Ltd. | Test plate and test method using the same |
US20090221011A1 (en) * | 2005-08-31 | 2009-09-03 | Matthias Stiene | Coagulation test system |
US20100035245A1 (en) * | 2005-08-31 | 2010-02-11 | Egomedical Technologies Ag | Analyte test system using non-enzymatic analyte recognition elements |
WO2007025559A1 (en) * | 2005-08-31 | 2007-03-08 | Egomedical Technologies Ag | Coagulation test system |
US20100152554A1 (en) * | 2006-12-14 | 2010-06-17 | Matthias Steine | Monitoring device |
US20100140116A1 (en) * | 2007-01-29 | 2010-06-10 | Matthias Stiene | Resealable container for storing moisture sensitive test elements |
US20110005341A1 (en) * | 2008-03-11 | 2011-01-13 | Koninklijke Philips Electronics N.V. | Filtering apparatus for filtering a fluid |
US8475734B2 (en) * | 2008-03-11 | 2013-07-02 | Koninklijke Philips Electronics N.V. | Filtering apparatus for filtering a fluid |
US9341639B2 (en) | 2013-07-26 | 2016-05-17 | Industrial Technology Research Institute | Apparatus for microfluid detection |
US9586399B2 (en) | 2015-03-30 | 2017-03-07 | Funai Electric Co., Ltd. | Fluid ejection device for depositing a discrete quantity of fluid onto a surface |
US10928289B2 (en) * | 2017-05-04 | 2021-02-23 | University Of Connecticut | Assembly for measuring the viscosity of fluids using microchannels |
Also Published As
Publication number | Publication date |
---|---|
ATE325342T1 (en) | 2006-06-15 |
HK1037723A1 (en) | 2002-02-15 |
KR20010062005A (en) | 2001-07-07 |
PT1107004E (en) | 2006-08-31 |
ES2264921T3 (en) | 2007-02-01 |
CA2327305A1 (en) | 2001-06-03 |
AR026703A1 (en) | 2003-02-26 |
IL139789A0 (en) | 2002-02-10 |
US6830934B1 (en) | 2004-12-14 |
HK1036838A1 (en) | 2002-01-18 |
CN1213302C (en) | 2005-08-03 |
NO20006106L (en) | 2001-06-05 |
AU775559B2 (en) | 2004-08-05 |
TW539546B (en) | 2003-07-01 |
NO320095B1 (en) | 2005-10-24 |
MXPA00011830A (en) | 2002-08-20 |
DE60027677T2 (en) | 2007-05-03 |
NO20006106D0 (en) | 2000-12-01 |
IL139789A (en) | 2005-12-18 |
AU7189000A (en) | 2001-06-14 |
EP1107004A3 (en) | 2003-04-16 |
CN1301965A (en) | 2001-07-04 |
BR0005697A (en) | 2001-08-21 |
EP1107004B1 (en) | 2006-05-03 |
SG89361A1 (en) | 2002-06-18 |
US20020098114A1 (en) | 2002-07-25 |
DE60027677D1 (en) | 2006-06-08 |
DK1107004T3 (en) | 2006-08-21 |
EP1107004A2 (en) | 2001-06-13 |
RU2256167C2 (en) | 2005-07-10 |
JP2001201504A (en) | 2001-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6830934B1 (en) | Microdroplet dispensing for a medical diagnostic device | |
AU752645B2 (en) | Fluidic device for medical diagnostics | |
US6521182B1 (en) | Fluidic device for medical diagnostics | |
EP1069427B1 (en) | Initiation of an analytical measurement procedure for blood | |
TW381044B (en) | Process for the production of analytical devices | |
US5208163A (en) | Self-metering fluid analysis device | |
US7008799B1 (en) | Analytical test element with a capillary channel | |
EP0470438B1 (en) | Self-metering fluid analysis device | |
PL192977B1 (en) | Strip holder for use in a test strip meter | |
EP1291085A2 (en) | Test strip compression element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIFESCAN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARDING, IAN A.;SHARTLE, ROBERT JUSTICE;REEL/FRAME:016265/0175 Effective date: 19991130 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |