US20030013315A1 - Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates - Google Patents
Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates Download PDFInfo
- Publication number
- US20030013315A1 US20030013315A1 US10/237,111 US23711102A US2003013315A1 US 20030013315 A1 US20030013315 A1 US 20030013315A1 US 23711102 A US23711102 A US 23711102A US 2003013315 A1 US2003013315 A1 US 2003013315A1
- Authority
- US
- United States
- Prior art keywords
- process chamber
- semiconductor wafer
- wafer
- focus ring
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 214
- 238000000034 method Methods 0.000 title claims abstract description 150
- 230000008569 process Effects 0.000 title claims abstract description 144
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000011109 contamination Methods 0.000 title description 3
- 238000005530 etching Methods 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims description 49
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 8
- 239000010453 quartz Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- 235000012431 wafers Nutrition 0.000 description 161
- 229920000642 polymer Polymers 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910015844 BCl3 Inorganic materials 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- 229910020323 ClF3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4585—Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
- H01J37/32642—Focus rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68735—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
Definitions
- ICs integrated circuits
- semiconductor wafers formed of, for example, silicon.
- steps for example, photo masking, deposition of material layers, oxidation, nitridation, ion implantation, diffusion and etching, are conducted to obtain a final product.
- Most of these steps are carried out in a process chamber.
- Particulates are generated in a process chamber depending on the structure of the process chamber, the material used to form the chamber, and the types of reaction gases used in the chamber.
- the process chamber is contaminated by particulates due to the following two reasons.
- FIG. 1 is a view illustrating the generation of particulates in a process chamber during an etching process.
- FIG. 1 is a sectional view illustrating an electrostatic chuck supporting a semiconductor wafer in a conventional process chamber for an etching process using plasma.
- FIG. 2 is an enlarged view of the edge (portion A) of the semiconductor wafer shown in FIG. 1, and
- FIG. 3 is a plan view of FIG. 1.
- FIG. 4 is another view illustrating the generation of particulates in a process chamber used for an etching process.
- FIG. 4 is a sectional view of an electrostatic chuck 20 in which a focus ring 40 is included but not the edge ring shown in FIG. 3.
- an etching gas used for etching the metal layer for example, Cl 2 or BCl 3 , generates polymers of Al X Cl Y .
- Such polymers lie on the protruding portion of the focus ring 40 , which is the farthest away from a heat source (not shown), and may fall onto the semiconductor wafer 10 due to a change in internal pressure, thereby causing the process to fail.
- FIG. 3 is a plan view of FIG. 1;
- FIG. 5 is a sectional view of yet another example of a wafer support portion in a conventional process chamber used in the manufacture of a semiconductor device
- FIG. 19 is a plan view of FIG. 17;
- the focus ring preferably has a first upper surface which overlaps the periphery of the bottom surface of the semiconductor wafer and contacts the bottom surface of the semiconductor wafer.
- the focus ring may have a second side facing the side of the electrostatic chuck, and the second side preferably has a shape such that the contact area between the second side and the side of the electrostatic chuck is minimal.
- the second side of the focus ring may be slanted such that only the edge of the second side contacts the side of the electrostatic chuck.
- the focus ring is preferably fixed such that the edge ring cannot rotate.
- the edge ring may be fixed by a fixing pin.
- the focus ring may be fixed at two or more points separated from each other by a maximum distance.
- the focus ring is made of quartz, silicon or aluminum nitride.
- the surface temperature of the focus ring is maintained to be above at least 50° C. across the entire surface of the focus ring during a reaction.
- the upper surface of the focus ring is preferably flat without protrusions, and the upper surface, which is the farthest away from a heat source, is maintained to be above the surface temperature.
- the thickness of the focus ring, from the flat upper surface to the base thereof may be equal to or less than 20 mm.
- the edge of the edge ring 240 which contacts the electrostatic chuck 200 , is preferably slanted, forming a triangular space at the contact region. As a result, only one edge point of the edge ring 240 contacts the electrostatic chuck 200 , so that the contact area between the edge ring and the electrostatic chuck 200 is minimized.
- the edge of the chuck may be slanted to create the triangular space. Thus, even when polymers accumulate at the periphery of the bottom surface of the semiconductor wafer 100 , a binding area between the edge ring 240 and the electrostatic chuck 200 by the polymers is minimized, so that the edge ring 240 can be easily separated from the semiconductor wafer 100 .
- an electrostatic chuck 310 holds a semiconductor wafer 300 by electrostatic adsorption.
- a power supply (not shown) for supplying a high voltage is connected to the electrostatic chuck 310 in order to induce static electricity, and lift pins (not shown) which are moved when loading or unloading the semiconductor wafer 100 , pass through the electrostatic chuck 310 .
- an annular focus ring 320 is installed around the edge of the electrostatic chuck 310 .
- the focus ring 320 draws a plasma forming region to the edge of the semiconductor wafer 300 during the etching process, such that the plasma forming region is uniformly formed across the semiconductor wafer 300 .
- the focus ring 320 can also fix the semiconductor wafer 300 .
- the amount of polymers adhering to the focus ring and the adhesion status of the polymers vary according to the difference in temperature at the surface of the focus ring.
- the reason for the occurrence of a temperature difference in the focus ring is that the distance from a heat source to each portion of the focus ring is different.
- a heater is installed below an electrostatic chuck as a heat source.
- the temperature of the focus ring is the highest at the base, and the temperature of the focus ring decreases toward the upper portion of the focus ring.
- the largest amount of polymers adheres to the upper protruding portion of the focus ring having the lowest temperature, and the adhesion status of the polymers at the upper portion is worst.
- a semiconductor wafer is placed adjacent to the protruding portion of the focus ring, and the semiconductor wafer can be deteriorated by the large amount of polymers which are poorly adhered to the focus ring.
- the temperature can be evenly distributed over the focus ring.
- the thickness of the focus ring is controlled such that the temperature of the focus ring is maintained at above 60° C., thereby reducing the amount of loosely adhered polymers.
- the level of uniformity with which the plasma 630 is distributed greatly affects the result of the process. That is, the distribution of the plasma 630 must be uniform in the space on the semiconductor wafer 640 . However, the plasma 630 can be drawn to the edge of the semiconductor wafer 640 due to the focus ring formed around the semiconductor wafer 640 , so that the plasma 630 may be concentrated near the edge of the semiconductor wafer 640 . Thus, the structure of the holes 620 of the gas supply plate 600 , which directly affects the distribution of plasma 630 , is changed such that the density of the plasma 630 is higher at the center than near the edge of the semiconductor wafer 640 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
A process chamber used in the manufacture of a semiconductor device for etching a material layer on a semiconductor wafer includes an electrostatic chuck for holding the semiconductor wafer, and an annular edge ring which surrounds the side of the semiconductor wafer on the electrostatic chuck to prevent the semiconductor wafer from departing from its original position. The annular edge ring has a first side which faces the side of the semiconductor wafer and contacts firmly with the side of the semiconductor wafer.
Description
- 1. Field of the Invention
- The present invention relates to equipment for manufacturing semiconductor devices, and more particularly, to a process chamber used in the manufacture of semiconductor devices, capable of reducing contamination by particulates.
- 2. Description of the Related Art
- In general, integrated circuits (ICs) are manufactured on semiconductor wafers formed of, for example, silicon. During the manufacture of the ICs, a series of steps, for example, photo masking, deposition of material layers, oxidation, nitridation, ion implantation, diffusion and etching, are conducted to obtain a final product. Most of these steps are carried out in a process chamber. Thus, reducing contamination by particulate in the process chamber has been recognized as a critical factor for determining the quality of a semiconductor device. Particulates are generated in a process chamber depending on the structure of the process chamber, the material used to form the chamber, and the types of reaction gases used in the chamber. In general, the process chamber is contaminated by particulates due to the following two reasons.
- The first reason, which usually occurs in a process chamber used for etching, is the difference in temperature between edge rings (or focus rings) near a semiconductor wafer and the parts from which the process chamber is constructed. The second reason, which usually occurs in a process chamber used for a deposition process, is the unsmooth flow of a reaction gas near guide rings for guiding the edge of a semiconductor wafer.
- FIG. 1 is a view illustrating the generation of particulates in a process chamber during an etching process. In detail, FIG. 1 is a sectional view illustrating an electrostatic chuck supporting a semiconductor wafer in a conventional process chamber for an etching process using plasma. FIG. 2 is an enlarged view of the edge (portion A) of the semiconductor wafer shown in FIG. 1, and FIG. 3 is a plan view of FIG. 1.
- Referring to FIG. 1, an
electrostatic chuck 20 holds asemiconductor wafer 10 using electrostatic adsorption. Although not shown in FIG. 1, a power supply for supplying a high voltage is connected to theelectrostatic chuck 20 to induce static electricity.Lift pins 21 for moving the semiconductor wafer 10 up and down when loading or unloading thesemiconductor wafer 10, pass through the center of theelectrostatic chuck 20. Thelift pins 21 are in contact with asupport plate 22 installed below theelectrostatic chuck 20. Thesupport plate 22 moves upwards in response to force applied by an external lifter (not shown), in a direction indicated by anarrow 23. Thelift pins 21 move upwards in response to upward movement of thesupport plate 22. Then, thelift pins 21 protrude past the surface of theelectrostatic chuck 20, and thesemiconductor wafer 10 supported by thelift pins 21 is separated from the surface of theelectrostatic chuck 20. -
Edge rings 24 are installed at the upper edges of theelectrostatic chuck 20 to fix thesemiconductor wafer 10. As shown in FIGS. 2 and 3, theedge ring 24 is separated from the edge of the semiconductor wafer 10 by asmall gap 25. Also, there is aspace 26 between part of the surface of theedge ring 24 and the periphery of the bottom surface of the semiconductor wafer 10. Also, acoupling ring 27 made of aluminum (Al) is interposed between theedge ring 24 and theelectrostatic chuck 20. Thesemiconductor wafer 10 is surrounded by afocus ring 28. Thefocus ring 28 draws a plasma forming region to the edge of the semiconductor wafer 10 during the etching process, such that the plasma forming region is uniformly formed across thesemiconductor wafer 10. - However, in such a conventional process chamber, plasma enters into the
small gap 25 between theedge ring 24 and the edge of the semiconductor wafer 10, and thus the bottom surface of the semiconductor wafer may be etched. Polymers, which are byproducts generated by the etching, adhere to the bottom surface of the semiconductor wafer 10 and bind theedge ring 24 to theelectrostatic chuck 20. When theedge ring 24 is separated from theelectrostatic chuck 20 for repair and maintenance after the process is completed, theedge ring 24 can be broken due to it being bound to theelectrostatic chuck 20 by the polymer. - When the etching is repeated several times, the
edge ring 24 is etched along its inner circumference, so that the gap between theedge ring 24 and thesemiconductor wafer 10 becomes wider. As a result, theedge ring 24 strikes against the edge of a platen zone of the semiconductor wafer (portion B of FIG. 3), so that a part of thesemiconductor wafer 10 can be broken. - FIG. 4 is another view illustrating the generation of particulates in a process chamber used for an etching process. In detail, FIG. 4 is a sectional view of an
electrostatic chuck 20 in which afocus ring 40 is included but not the edge ring shown in FIG. 3. - Referring to FIG. 4, a
semiconductor wafer 10 is held by an electrostatic force produced by anelectrostatic chuck 20, through whichlift pins 21 are inserted. Anannular focus ring 40 is arranged around the edge of theelectrostatic chuck 20. Thefocus ring 40 draws a plasma forming region to the edge of the semiconductor wafer 10 during the etching process, such that the plasma forming region is uniformly formed across thesemiconductor wafer 10. Further, thefocus ring 40 acts as an edge ring, thereby preventing the semiconductor wafer 10 from deviating from its original position. - The upper part of the
focus ring 40 is rounded, and the height of the focus ring is higher than the surface of thesemiconductor wafer 10. Most of the polymers generated in the process chamber accumulate on the protruding top of thefocus ring 40. Here, the amount and type of accumulated polymer varies according to the material forming the metal layer to be etched, and the distribution in temperature in the reaction chamber. For example, if a metal layer to be etched is formed of tungsten (W), an etching gas used for etching the metal layer, for example, SF6, reacts with the Al component of the process chamber and increases the concentration of Al in the process chamber, thereby generating floating particulates of AlXFY. Also, if a metal layer to be etched is formed of Al, an etching gas used for etching the metal layer, for example, Cl2 or BCl3, generates polymers of AlXClY. Such polymers lie on the protruding portion of thefocus ring 40, which is the farthest away from a heat source (not shown), and may fall onto the semiconductor wafer 10 due to a change in internal pressure, thereby causing the process to fail. - FIG. 5 is a sectional view illustrating the generation of particulates in a process chamber used for a deposition process. FIG. 5 shows a wafer support portion of a process chamber for chemical vapor deposition (CVD). FIG. 6 is an enlarged view of the portion C of FIG. 5.
- Referring to FIGS. 5 and 6, a
semiconductor wafer 10 is seated on awafer chuck 50, and aheater 51 is placed below thewafer chuck 50. Thesemiconductor wafer 10 is guided by anannular guide ring 52 placed around the edge of thewafer chuck 50. However, because a space d between theguide ring 52 and thewafer chuck 50 is very narrow, a reaction gas is stagnant in the space d and does not flow smoothly therein. As a result, the reaction gases staying in the space d react with each other abnormally, which results in the growth of anundesirable material layer 53. Thematerial layer 53 may undesirably contaminate thewafer 10. - As described above, a process chamber used for etching or deposition produces particulates for various reasons, increasing the likelihood of failure of the semiconductor devices on
wafer 10. Thus, it would be desirable to prevent such a failure by eliminating factors which may cause the generation of particulates in the process chamber during the manufacturing of the devices. - Consistent with the present invention, a process chamber for use in the manufacture of a semiconductor device, changes the structure or material of the process chamber to suppress generation of particulates.
- In one aspect, a process chamber used in the manufacture of semiconductor device for etching a material on a semiconductor wafer using plasma includes an electrostatic chuck for holding the semiconductor wafer, and an annular edge ring which surrounds a side of the semiconductor wafer on the electrostatic chuck to prevent the semiconductor wafer from departing from its original position. The distance between the side of the semiconductor wafer and the first side is preferably less than 0.15 mm.
- In another aspect, a process chamber used in the manufacture of a semiconductor device for etching a material on a semiconductor wafer using plasma includes an electrostatic chuck for holding the semiconductor wafer, and an annular focus ring which surrounds the side of the semiconductor wafer on the electrostatic chuck to prevent the semiconductor wafer from departing from its original position and to make the plasma distribution uniform by drawing the plasma. The annular focus ring has a first side which faces the side of the semiconductor wafer and contacts the side of the semiconductor wafer.
- In another aspect, a process chamber used in the manufacture of a semiconductor device for etching a material on a semiconductor wafer using plasma includes an electrostatic chuck for holding the semiconductor wafer, a gas supply conduit, installed facing the upper surface of the semiconductor wafer, for supplying reaction gases to the upper space of the semiconductor wafer, wherein the gas supply conduit formed is slanted at a first angle with respect to the vertical direction, such that relatively more reaction gases are provided to a center of the semiconductor wafer than to a periphery of the semiconductor wafer, and a radio frequency power source for forming plasma in the upper space of the semiconductor wafer by ionizing the supplied reaction gases.
- In another aspect, a process chamber used in the manufacture of a semiconductor device for etching a material layer on a semiconductor wafer using plasma includes an electrostatic chuck for holding the semiconductor wafer, a slit valve, attached to a sidewall of the process chamber and separated by a first distance from the electrostatic chuck, having a wafer transfer path through which the semiconductor wafer placed above the electrostatic chuck can be loaded or unloaded in the horizontal direction from or to the outside of the process chamber, wherein the temperature of the slit valve is maintained at a higher temperature than the sidewall of the process chamber during an etching process.
- In another aspect, a process chamber used in the manufacture of a semiconductor device for depositing a material layer on a semiconductor wafer includes an electrostatic chuck for holding the semiconductor wafer, a heater installed below the wafer chuck, for supplying heat, and a guide ring for guiding the semiconductor wafer, the guide ring installed at the edge of an upper surface of the wafer chuck and separated from the chuck by about 15-25 mm.
- The above object and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
- FIG. 1 is a sectional view of a wafer support portion in a conventional process chamber used in the manufacture of a semiconductor device;
- FIG. 2 is an enlarged sectional view of the portion A shown in FIG. 1;
- FIG. 3 is a plan view of FIG. 1;
- FIG. 4 is a sectional view of another example of a wafer support portion in a conventional process chamber used in the manufacture of a semiconductor device;
- FIG. 5 is a sectional view of yet another example of a wafer support portion in a conventional process chamber used in the manufacture of a semiconductor device;
- FIG. 6 is an enlarged sectional view of the portion C of FIG. 5;
- FIG. 7 is a sectional view of a wafer support portion in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention;
- FIG. 8 is an enlarged sectional view of the portion D in FIG. 7;
- FIG. 9 is a plan view of FIG. 7;
- FIG. 10 is a sectional view of a wafer support portion in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention;
- FIG. 11 is a sectional view showing a focus ring used in a process chamber in accordance with an aspect of the present invention;
- FIG. 12 is a graph showing the adhering condition of polymer and the amount of adhering polymer with respect to the temperature across the surface of the focus ring shown in FIG. 11;
- FIG. 13 is a sectional view showing a sidewall of a process chamber in accordance with an aspect of the present invention;
- FIG. 14 is a sectional view showing a gas supply portion in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention;
- FIG. 15 is a sectional view showing a part of a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention;
- FIG. 16 is a graph comparatively showing the amount of particulates generated in the processor chamber of FIG. 15 and in a conventional processor chamber;
- FIG. 17 is a sectional view of a wafer support portion in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention;
- FIG. 18 is an enlarged view of the portion E of FIG. 17;
- FIG. 19 is a plan view of FIG. 17;
- FIG. 20 is a plan view showing another example of the guide ring of FIG. 17; and
- FIGS. 21A and 21B are graphs comparatively showing the amount of particulates generated in a conventional process chamber and the process chamber of FIG. 17.
- The present invention now will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. In addition, Korean application nos. 98-39486 and 99-22541, filed Sep. 23, 1998 and Jun. 16, 1999, respectively, are hereby incorporated by reference as if fully set forth herein.
- In accordance with more preferred embodiments of the present invention, the annular edge ring has a first side which faces the side of the semiconductor wafer and contacts the side of the semiconductor wafer. The edge ring preferably has a first upper surface which overlaps the periphery of the bottom surface of the semiconductor wafer and contacts the bottom surface of the semiconductor wafer. Also, the edge ring may have a second side facing the side of the electrostatic chuck, the second side having a shape such that the contact area between the second side and the side of the electrostatic chuck is minimal. To minimize the contact area, the second side of the edge ring may be slanted such that only the edge of the second side contacts the side of the electrostatic chuck. Also, the edge ring may be fixed such that the edge ring cannot rotate. In this case, the edge ring may be fixed by a fixing pin, and may be fixed at two or more points separated from each other by a maximum distance.
- The edge ring is preferably made of quartz, silicon or aluminum nitride. Also, the process chamber may further comprise a focus ring formed around the edge ring to make distribution of the plasma uniform.
- The focus ring preferably has a first upper surface which overlaps the periphery of the bottom surface of the semiconductor wafer and contacts the bottom surface of the semiconductor wafer. Also, the focus ring may have a second side facing the side of the electrostatic chuck, and the second side preferably has a shape such that the contact area between the second side and the side of the electrostatic chuck is minimal. To minimize the contact area, the second side of the focus ring may be slanted such that only the edge of the second side contacts the side of the electrostatic chuck.
- The focus ring is preferably fixed such that the edge ring cannot rotate. Also, the edge ring may be fixed by a fixing pin. In this case, the focus ring may be fixed at two or more points separated from each other by a maximum distance. Preferably, the focus ring is made of quartz, silicon or aluminum nitride.
- Preferably, the surface temperature of the focus ring is maintained to be above at least 50° C. across the entire surface of the focus ring during a reaction. To achieve this, the upper surface of the focus ring is preferably flat without protrusions, and the upper surface, which is the farthest away from a heat source, is maintained to be above the surface temperature. In this case, the thickness of the focus ring, from the flat upper surface to the base thereof, may be equal to or less than 20 mm.
- The slant angle of the gas supply path in the vertical direction is preferably at least 2 degrees, and the gas supply plate is preferably formed of quartz, silicon or aluminum nitride.
- Heat transfer lines are preferably formed to pass near the slit valve, and the number of the heat transfer lines formed near the slit valve is larger than the number of heat transfer lines formed passing through the sidewall. Also, the temperature of the upper part of the sidewall, which is positioned above the wafer transfer path, is the same as or higher than that of the lower part of the sidewall.
- Preferably, the inner circumference of the guide ring comprises a first portion protruding toward the semiconductor wafer and separated from the semiconductor wafer by a first interval, and a second portion separated from the semiconductor wafer by a second interval which is longer than the first interval, to guide the semiconductor wafer. In this case, the first interval may be 0.5-1.0 mm, and the second interval may be 2-30 mm.
- In a process chamber for etching using plasma in accordance with aspects of the present invention, the edge ring (or focus ring) and a semiconductor wafer preferably contact each other firmly, such that the plasma cannot enter below the bottom surface of the semiconductor wafer, thereby suppressing generation of particulates. Also, because the contact area between the edge ring (or focus ring) and the electrostatic chuck is minimized, the edge ring (or focus ring) can be easily separated from the electrostatic chuck even when particulates are generated. Also, the edge ring (or focus ring) is preferably fixed, so that bumping into the semiconductor wafer due to rotation of the edge ring can be prevented. Also, by changing the temperature distribution in the process chamber or the materials used for the process chamber, the generation of particulates, which depends on the temperature and materials of the process chamber, can be reduced such that the effect of the particulates on the semiconductor wafer can be minimized.
- In a process chamber for CVD, the space between the guide ring and the wafer chuck can be maintained at a predetermined level such that reaction gases flow smoothly in the space, thereby suppressing the deposition of a foreign layer by reaction gases in the space between the guide ring and wafer chuck.
- FIG. 7 is a sectional view of an electrostatic chuck for supporting a semiconductor wafer in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention. FIG. 8 is an enlarged sectional view of the edge (portion D) of the semiconductor wafer of FIG. 7, and FIG. 9 is a plan view of FIG. 7.
- Referring to FIG. 7, an
electrostatic chuck 200 holds asemiconductor wafer 100 by electrostatic adsorption. A power supply (not shown) for supplying a high voltage is connected to theelectrostatic chuck 200 in order to induce static electricity. Lift pins 210 for moving thesemiconductor wafer 100 up and down when loading or unloading thesemiconductor wafer 100, pass through the center of theelectrostatic chuck 200. The lift pins 210 are in contact with asupport plate 220 installed below theelectrostatic chuck 200. Thesupport plate 220 can move upwards in response to a force applied by an external lifter (not shown), in a direction indicated by anarrow 230. The lift pins 210 move upwards in response to upward movement of thesupport plate 220. Then, the lift pins 210 protrude past the surface of theelectrostatic chuck 200 and thesemiconductor wafer 100 supported by the lift pins 210 is separated from the surface of theelectrostatic chuck 200. - Edge rings240 are installed at the upper edge of the
electrostatic chuck 200 to fix thesemiconductor wafer 100. Also, acoupling ring 270 made of, for example, aluminum (Al), is interposed between theedge ring 240 and theelectrostatic chuck 200. Thesemiconductor wafer 100 is surrounded by afocus ring 280. Thefocus ring 280 draws a plasma forming region to the edge of thesemiconductor wafer 100 during the etching process, such that the plasma forming region is uniformly formed across thesemiconductor wafer 100. - As shown in FIG. 8, there is almost no gap between the
edge ring 240 and thesemiconductor wafer 100. Such a gap between theedge ring 240 and thesemiconductor wafer 100 can be reduced to about 0.1-0.15 mm. However, it is preferable to reduce the gap as much as possible. Also, a space between theedge ring 240 and the periphery of the bottom surface of thesemiconductor wafer 100 is reduced to a minimal distance. By minimizing the distance between theedge ring 240 and thesemiconductor wafer 100, infiltration of parasitic plasma into the space between theedge ring 240 and the bottom surface of thesemiconductor wafer 100 can be suppressed as much as possible. Further, the edge of theedge ring 240, which contacts theelectrostatic chuck 200, is preferably slanted, forming a triangular space at the contact region. As a result, only one edge point of theedge ring 240 contacts theelectrostatic chuck 200, so that the contact area between the edge ring and theelectrostatic chuck 200 is minimized. Alternatively, the edge of the chuck may be slanted to create the triangular space. Thus, even when polymers accumulate at the periphery of the bottom surface of thesemiconductor wafer 100, a binding area between theedge ring 240 and theelectrostatic chuck 200 by the polymers is minimized, so that theedge ring 240 can be easily separated from thesemiconductor wafer 100. - Also, as shown in FIG. 9, the
edge ring 240 is preferably fixed to thecoupling ring 270 or the electrostatic chuck 200 (see FIGS. 7 and 8) by fixingpins 290. The rotation of theedge ring 240 is prevented by the fixingpin 290, so that damage to the semiconductor wafer, which may occur by the rotation of theedge ring 240, can also be prevented. - FIG. 10 is a sectional view of an electrostatic chuck for supporting a semiconductor wafer in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention. The process chamber of FIG. 10 is different from that of FIG. 7 in that only a focus ring is used without an edge ring.
- Referring to FIG. 10, an
electrostatic chuck 310 holds asemiconductor wafer 300 by electrostatic adsorption. A power supply (not shown) for supplying a high voltage is connected to theelectrostatic chuck 310 in order to induce static electricity, and lift pins (not shown) which are moved when loading or unloading thesemiconductor wafer 100, pass through theelectrostatic chuck 310. Also, anannular focus ring 320 is installed around the edge of theelectrostatic chuck 310. Thefocus ring 320 draws a plasma forming region to the edge of thesemiconductor wafer 300 during the etching process, such that the plasma forming region is uniformly formed across thesemiconductor wafer 300. Thefocus ring 320 can also fix thesemiconductor wafer 300. - In the case of only using the focus ring without the edge ring, as mentioned above, the gap between the
focus ring 320 and thesemiconductor wafer 300 and the space between thefocus ring 320 and the periphery of the bottom surface of thesemiconductor wafer 300 are both minimized. Also, the edge of thefocus ring 320, facing the upper side of theelectrostatic chuck 310, is preferably slanted to reduce the contact area between thefocus ring 320 and theelectrostatic chuck 310 as much as possible. Alternatively, the edge of the chuck may be slanted to create the triangular space. By doing so, the area between thefocus ring 320 and theelectrostatic chuck 310, which is bound by polymers can be minimized, so that thefocus ring 320 can be easily separated from theelectrostatic chuck 310 without damage to thefocus ring 320. Also, thefocus ring 320 is fixed to theelectrostatic chuck 310 by fixingpins 330. Because thefocus ring 320 is fixed, thefocus ring 320 does not rotate even though thefocus ring 320 is spaced further apart from thesemiconductor wafer 300. As a result, bumping of thefocus ring 320 into the semiconductor wafer can be minimized or prevented. - In general, the upper surface of the
focus ring 320 is partially etched during the etching process, so that the lifetime of thefocus ring 320 is shortened. In general, because the thickness d1 of thefocus ring 320 may affect the processing result, the thickness of thefocus ring 320 must be restricted. The thickness d1 of thefocus ring 320 which is widely in use, is approximately 3.6 mm. However, in the this embodiment, the thickness d1 of the focus ring was increased to approximately 4.5 mm. As a result, the lifetime of thefocus ring 320 was increased by about 2-3 times, without affecting the processing result. - FIG. 11 shows a focus ring in a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention. Referring to FIG. 11, a
focus ring 420 used in a process chamber used in the manufacture of a semiconductor device is installed around the edge of theelectrostatic chuck 410 and has an annular shape, such that thefocus ring 420 is separated from the edge of thesemiconductor wafer 400 by a predetermined distance. However, aportion 420′ of thefocus ring 420 contacts firmly with the periphery of the bottom surface of thesemiconductor wafer 400 in order to prevent parasitic plasma from infiltrating into the space between the bottom surface of thesemiconductor wafer 400 and thefocus ring 420. The total height d2 of thefocus ring 420 is half that of the conventional focus ring. For example, assuming that the total height of the conventional focus ring from the base to the protruding portion is approximately 30 mm, the total height d2 of the focus ring used in a process chamber for manufacturing a semiconductor device can be less than 20 mm, preferably approximately 15 mm. That is, as shown in FIG. 11, the upper surface of the focus ring can be flattened by removing the protruding portion from a conventional focus ring (drawn with dashed lines), such that the temperature distribution across the surface of thefocus ring 420 becomes uniform. In the case of adopting such a focus ring, the amount of polymer accumulated on the focus ring varies according to the difference in temperature of the focus ring. - FIG. 12 is a graph showing the amount of adhered polymer with respect to the temperature at the surface of the focus ring. Referring to FIG. 12, at a portion of the focus ring at below 50° C. (hereinafter, referred to as portion A), the amount of adhered polymer is the largest and the adhering status is also very poor. Polymer also adheres to a portion of the focus ring at 50˜55° C. (hereinafter, referred to as portion B). However, the amount of polymer adhering to the portion B is less than that adhering to the portion A, and the adhesion status is better than in the portion A. However, polymers do not adhere to a portion of the focus ring, at a temperature higher than 60° C.
- The amount of polymers adhering to the focus ring and the adhesion status of the polymers vary according to the difference in temperature at the surface of the focus ring. The reason for the occurrence of a temperature difference in the focus ring is that the distance from a heat source to each portion of the focus ring is different. In general, a heater is installed below an electrostatic chuck as a heat source. Thus, the temperature of the focus ring is the highest at the base, and the temperature of the focus ring decreases toward the upper portion of the focus ring. Thus, the largest amount of polymers adheres to the upper protruding portion of the focus ring having the lowest temperature, and the adhesion status of the polymers at the upper portion is worst. In addition, a semiconductor wafer is placed adjacent to the protruding portion of the focus ring, and the semiconductor wafer can be deteriorated by the large amount of polymers which are poorly adhered to the focus ring. However, in the focus ring which is flattened by removing the upper protruding portion having the lowest temperature, the temperature can be evenly distributed over the focus ring. Here, the thickness of the focus ring is controlled such that the temperature of the focus ring is maintained at above 60° C., thereby reducing the amount of loosely adhered polymers.
- Such a change in the adhesion status of polymers due to the difference in temperature of each portion of the focus ring can be applied to other parts. The change in adhesion status of the polymer in other parts of the process chamber will be described with reference to FIG. 13.
- FIG. 13 is a sectional view showing a sidewall of a process chamber used for manufacturing a semiconductor device in accordance with an aspect of the present invention. Referring to FIG. 13, a
slit valve 520 for transferring asemiconductor wafer 560 is installed in asidewall 510 attached to anexternal wall 500 of the process chamber. Thesidewall 510 is formed of anodized aluminum (Al) andliners sidewall 510, facing the inner space of the process chamber. Theliners sidewall 510 of the process chamber. Thesemiconductor wafer 560 is guided by afocus ring 550 placed on thewafer chuck 540, and theliners semiconductor wafer 560 by a predetermined distance d3. In such a process chamber, a heater is placed below thewafer chuck 540 as a heat source. Thus, the temperatures of theliners lower liner 530 b, which is closer to the heater, is higher than that of theupper liner 530 b, which is farther from the heater. Thus, as described above, a larger amount of polymers accumulate on theupper liner 530 a than on thelower liner 530 b, and the adhesion status of polymers is poorer in theupper liner 530 a. If theupper liner 530 a is placed above a wafer transfer path, the polymer adhering to theupper liner 530 a may fall onto thesemiconductor wafer 560. Thus, by controlling the temperature of theupper liner 530 a so that is not lower than the temperature of thelower liner 530 b, the possibility of failure in the process can be lowered. In the same manner, the temperature of theslit valve 520, which forms the wafer transfer path, can be increased as much as possible, thereby preventing theslit valve 520 from being contaminated by the polymers. To accomplish this increase in temperature, more heat transfer lines passing near theslit valve 520 are installed than those passing through thesidewall 510 of the process chamber. - FIG. 14 is a sectional view showing a gas supply portion used in a process chamber for manufacturing a semiconductor device in accordance with an aspect of the present invention. Referring to FIG. 14, a
gas supply plate 600 is located in acover 610 of the process chamber. A gas supply line (not shown) for supplying gas is connected to the upper portion of thegas supply plate 600. A reaction gas, such as an etching gas, is supplied into the process chamber throughholes 620 formed in thegas supply plate 600. The energy of the etching gas supplied into the process chamber is increased by a high radio frequency (RF) power. High energy gas molecules collide with neighboring neutral molecules, generating electrons and ions. Due to repeated collisions, aplasma 630 is formed in the reaction chamber, and in particular, above thesemiconductor wafer 640. - In the etching process, the level of uniformity with which the
plasma 630 is distributed greatly affects the result of the process. That is, the distribution of theplasma 630 must be uniform in the space on thesemiconductor wafer 640. However, theplasma 630 can be drawn to the edge of thesemiconductor wafer 640 due to the focus ring formed around thesemiconductor wafer 640, so that theplasma 630 may be concentrated near the edge of thesemiconductor wafer 640. Thus, the structure of theholes 620 of thegas supply plate 600, which directly affects the distribution ofplasma 630, is changed such that the density of theplasma 630 is higher at the center than near the edge of thesemiconductor wafer 640. In particular, thegas supply lines 620 which pass through thegas supply plate 600 are slanted such that gas discharge portions thereof point toward the center of the semiconductor wafer. Preferably, the slant angle α of the gas discharge portion with respect to the vertical direction of the gas supply line 632 can be about 2-5° . If the angle α of thegas supply line 620 is too large, theplasma 630 is so dense at the center of the semiconductor substrate that theplasma 630 cannot distribute uniformly. Because the reaction gas is supplied toward the center of thesemiconductor wafer 640, the plasma density is locally increased at the center. However, since the focus ring draws the plasma, the distribution of plasma becomes uniform. - The sidewall, gas supply plate, focus ring or edge ring of FIGS.7-14 can be made of, for example, quartz, silicon or aluminum nitride. That is, when a metal layer to be etched is formed of tungsten (W), SF3 is used as an etching gas for removing the tungsten layer, and Cl2 and BCl3 are used as etching gases for removing a barrier metal layer. In particular, SF6 gas leads to isotropic etching by a reaction with Al2O3 which is used to form a conventional focus ring, and increases etching damage by F ions, resulting in Al, F and O byproducts. However, the generation of byproducts can be suppressed by using quartz, silicon or aluminum nitride.
- FIG. 15 is a sectional view showing a part of a process chamber used in the manufacture of a semiconductor device in accordance with an aspect of the present invention. Referring to FIG. 15, a
semiconductor wafer 710 is seated on anelectrostatic chuck 720 in aprocess chamber 700. Theelectrostatic chuck 720 is placed on asupport stand 730. Asemiconductor wafer 710 is guided by anannular focus ring 740 formed around the edge of theelectrostatic chuck 720. Thefocus ring 740 also makes the density of plasma uniform across thesemiconductor wafer 710. Thefocus ring 740 for these functions has anupper portion 750. - The thickness d4 of the
upper portion 750 of thefocus ring 740 is controlled to be higher than the upper surface of thesemiconductor wafer 710. Preferably, the thickness d4 of theupper portion 750 is approximately 2.4-3.0 mm. If the thickness d4 of theupper portion 750 is more than 3 mm, a wafer transfer means, for example, a robotic arm (not shown), used to transfer thesemiconductor wafer 710, may contact theupper portion 750. If the thickness d4 of theupper portion 750 is less than 2.4 mm, the original function of theupper portion 750 is deteriorated, thereby shortening the lifetime of theupper portion 750. - FIG. 16 is a graph comparatively showing the amount of particulates generated in a conventional process chamber and in a process chamber as shown in FIG. 15. The conventional process chamber used for this comparison was a process chamber having a focus ring which has a wing extended in the vertical direction.
- As shown in FIG. 16, the number of particulates generated in the process chamber according to the present invention is markedly reduced compared to the number of particulates generated in the conventional process. FIG. 17 is a sectional view of another process chamber used in manufacturing a semiconductor device in accordance with an aspect of the present invention, and in particular, showing a wafer support portion in a process chamber for chemical vapor deposition (CVD). FIG. 18 is an enlarged view of the portion E of FIG. 17, and FIG. 19 is a plan view of FIG. 17.
- Referring to FIGS. 17 through 19, a
semiconductor wafer 800 is seated on awafer chuck 810, and aheater 820 is installed below thewafer chuck 810. Also, anannular guide ring 830 is arranged around the edge of the upper surface of thewafer chuck 810. Theguide ring 830 is for preventing thesemiconductor wafer 800 from departing from its original position during the CVD process. For this, theguide ring 830 is separated by a predetermined distance, for example, about 0.1-1.0 mm, from thesemiconductor wafer 800. Theguide ring 830 is separated by a distance of approximately 15-25 mm from the upper surface of thewafer chuck 810, which allows reaction gases to flow smoothly in the space. As a result, the formation of an undesirable layer can be suppressed. - FIG. 20 is a plan view showing another example of the guide ring shown in FIG. 17. Referring to FIG. 20, a
guide ring 830′ is separated by a first interval, for example, about 2-30 mm, from asemiconductor wafer 800 around its inner circumference, which permits the reaction gas to flow smoothly in the space between thesemiconductor wafer 800 and theguide ring 830′. Also, to guide thesemiconductor wafer 800, a plurality ofprotrusions 831 are spaced around the inner circumstance of theguide ring 830′, and the plurality ofprotrusions 831 are separated by a second interval which is smaller than the first interval, for example, about 0.5-1.0 mm, from thesemiconductor wafer 800. - FIG. 21A is a graph showing the number of particulates generated in a conventional process chamber with respect to the number of processed wafers, and FIG. 21B is a graph showing the number of particulates in a process chamber as shown in FIG. 17 with respect to the number of processed wafers. In FIGS. 21A and 21B, ♦ indicates the number of particulates having a diameter larger than 0.2 μm which are generated on the semiconductor wafer, and • indicates the number of particulates having a diameter larger than 0.2 μm which are generated in the process chamber.
- Referring to FIG. 21A, because the reaction gas cannot flow smoothly between a semiconductor wafer and a wafer chuck in the conventional process chamber, a cleaning process has to be performed using a predetermined cleaning gas, such as ClF3, after processing 500 sheets of semiconductor wafers. Nevertheless, when the number of processed semiconductor wafers reaches about 1000 sheets, a large amount of particulates are generated as shown in FIG. 21A.
- However, referring to FIG. 21B, in the process chamber according to the present invention, a small number of particulates are generated after 1000 or more sheets of semiconductor wafers are processed. Thus, an intermediate cleaning process is not required, thereby reducing the number of steps in processing.
Claims (42)
1. A process chamber used in the manufacture of a semiconductor device for etching a material on a semiconductor wafer using plasma, the process chamber comprising:
an electrostatic chuck for holding the semiconductor wafer; and
an annular edge ring, which surrounds a side of the semiconductor wafer on the electrostatic chuck to prevent the semiconductor wafer from departing from its original position, having a first side which faces the side of the semiconductor wafer,
wherein a distance between the side of the semiconductor wafer and the first side is less than 0.15 mm.
2. The process chamber of claim 1 , wherein the first side contacts the side of the semiconductor wafer.
3. The process chamber of claim 1 , wherein the edge ring has a first upper surface which overlaps the periphery of a bottom surface of the semiconductor wafer and contacts the bottom surface of the semiconductor wafer.
4. The process chamber of claim 1 , wherein the edge ring has a second side facing a side of the electrostatic chuck, the second side of the edge ring having a shape such that the contact area between the second side and a side of the electrostatic chuck is minimal.
5. The process chamber of claim 4 , wherein the second side of the edge ring is slanted such that only the edge of the second side contacts the side of the electrostatic chuck.
6. The process chamber of claim 1 , wherein the edge ring is fixed such that the edge ring cannot rotate.
7. The process chamber of claim 6 , wherein the edge ring is fixed by a fixing pin.
8. The process chamber of claim 6 , wherein the edge ring is fixed at two or more points separated from each other by a maximum distance.
9. The process chamber of claim 1 , wherein the edge ring comprises quartz, silicon or aluminum nitride.
10. The process chamber of claim 1 , further comprising a focus ring formed around the edge ring to make distribution of the plasma uniform.
11. A process chamber used in the manufacture of a semiconductor device for etching a material on a semiconductor wafer using plasma, the process chamber comprising:
an electrostatic chuck for holding the semiconductor wafer; and
an annular focus ring, which surrounds a side of the semiconductor wafer on the electrostatic chuck to prevent the semiconductor wafer from departing from its original position and to make the plasma distribution uniform by drawing the plasma, having a first side which faces the side of the semiconductor wafer and contacts the side of the semiconductor wafer.
12. The process chamber of claim 11 , wherein the focus ring has a first upper surface portion which overlaps the periphery of a bottom surface of the semiconductor wafer and contacts the bottom surface of the semiconductor wafer.
13. The process chamber of claim 12 , wherein the focus ring has a second upper surface portion which is higher than an upper surface of the semiconductor wafer.
14. The process chamber of claim 11 , wherein the focus ring has a second side facing a side of the electrostatic chuck, the second side of the edge ring having a shape such that the contact area between the second side and the side of the electrostatic chuck is minimal.
15. The process chamber of claim 14 , wherein the second side of the focus ring is slanted such that only the edge of the second side contacts the side of the electrostatic chuck.
16. The process chamber of claim 11 , wherein the focus ring is fixed such that the focus ring cannot rotate.
17. The process chamber of claim 16 , wherein the focus ring is fixed by at least two fixing pins fixed at points separated from each other by a maximum distance.
18. The process chamber of claim 11 , wherein the focus ring contains a flat second upper surface portion.
19. The process chamber of claim 11 , wherein the edge ring comprises quartz, silicon or aluminum nitride.
20. The process chamber of claim 11 , wherein a surface temperature of the focus ring is maintained to be above at least 50° C. across the entire surface of the focus ring during etching.
21. The process chamber of claim 11 , wherein a surface temperature of the focus ring is maintained to be above or about 60° C. across the entire surface of the focus ring during etching.
22. The process chamber of claim 20 , wherein a second upper surface portion of the focus ring is flat without protrusions, and wherein the thickness of the focus ring is sufficient to maintain about the same temperature throughout the focus ring.
23. The process chamber of claim 22 , wherein a thickness of the focus ring from the flat upper surface to the base thereof is equal to or less than 20 mm.
24. A process chamber used in the manufacture of a semiconductor device for etching a material on a semiconductor wafer using plasma, the process chamber comprising:
an electrostatic chuck for holding the semiconductor wafer;
a gas supply conduit, installed facing an upper surface of the semiconductor wafer, for supplying reaction gases to a space over the semiconductor wafer, wherein the gas supply conduit is slanted at a first angle with respect to the vertical direction such that relatively more reaction gases are provided to a center of the semiconductor wafer than to a periphery of the semiconductor wafer; and
a radio frequency power source for forming plasma in the space over the semiconductor wafer by ionizing the supplied reaction gases.
25. The process chamber of claim 24 , wherein the gas supply conduit is formed in a gas supply plate.
26. The process chamber of claim 24 , wherein the slant angle of the gas supply conduit in the vertical direction is about 2-5 degrees.
27. The process chamber of claim 25 , wherein the gas supply plate is formed of quartz, silicon or aluminum nitride.
28. A process chamber used in the manufacture of a semiconductor device for etching a material on a semiconductor wafer using plasma, the process chamber comprising:
an electrostatic chuck for holding the semiconductor wafer; and
a slit valve, attached to a sidewall of the process chamber and separated by a first distance from the electrostatic chuck, having a wafer transfer path through which the semiconductor wafer placed above the electrostatic chuck can be loaded or unloaded in the horizontal direction from or to the outside of the process chamber,
wherein the temperature of the slit valve is maintained at a higher temperature than the sidewall of the process chamber during an etching process.
29. The process chamber of claim 28 , wherein heat transfer lines are formed passing near the slit valve, and the number of the heat transfer lines formed near the slit valve is larger than the number of heat transfer lines formed passing through the sidewall.
30. The process chamber of claim 28 , wherein the temperature of an upper part of the sidewall, which is positioned above the wafer transfer path, is the same as or higher than the temperature of a lower part of the sidewall during the etching process.
31. A process chamber used in the manufacture of a semiconductor device for depositing a material on a semiconductor wafer, the process chamber comprising:
an electrostatic chuck for holding the semiconductor wafer;
a heater, installed below the wafer chuck, for supplying heat;
a guide ring for guiding the semiconductor wafer, the guide ring installed at the edge of an upper surface of the wafer chuck and separated from the chuck by about 15-25 mm.
32. The process chamber of claim 31 , wherein the inner circumference of the guide ring comprises a first portion, protruding toward the semiconductor wafer and separated from the semiconductor wafer by a first interval, and a second portion, separated from the semiconductor wafer by a second interval which is longer than the first interval, to guide the semiconductor wafer.
33. The process chamber of claim 32 , wherein the first interval is 0.5-1.0 mm and the second interval is 2-30 mm.
34. A method of making a semiconductor device, comprising:
placing a semiconductor wafer on a wafer chuck such that a portion of the wafer contacts one of:
(a) an edge ring which prevents lateral deviation of the wafer, and
(b) a focus ring which makes plasma distribution uniform above the wafer; and
etching a layer over the wafer or a portion of the wafer.
35. A semiconductor device made by the method of claim 34 .
36. The method of claim 34 , wherein the wafer contacts the focus ring, which is maintained at a substantially uniform temperature throughout its thickness during the etching step.
37. The method of claim 34 , wherein the uniform temperature is at least 60° C.
38. A method of making a semiconductor device, comprising:
placing a semiconductor wafer on a wafer chuck;
supplying an etching gas toward the wafer at a first angle with respect to the vertical direction such that relatively more etching gas is provided to the center of the wafer than to the periphery of the wafer;
ionizing the etching gas to form an etching gas plasma; and
etching a layer over the wafer or a portion of the wafer.
39. The method of claim 38 , wherein the first angle is about 2 to 5 degrees.
40. A semiconductor device made by the method of claim 38 .
41. A method of making a semiconductor device, comprising:
loading a semiconductor wafer on a wafer chuck through a wafer transfer path of a slit valve, which is attached to a sidewall of a process chamber and separated by a first distance from the wafer chuck; and
etching a layer over the wafer or a portion of the wafer while maintaining the temperature of the slit valve at a higher temperature than the sidewall of the process chamber during the etching.
42. A semiconductor device made by the method of claim 41.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/237,111 US20030013315A1 (en) | 1998-09-23 | 2002-09-09 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR98-39486 | 1998-09-23 | ||
KR19980039486 | 1998-09-23 | ||
KR99-22541 | 1999-06-16 | ||
KR1019990022541A KR100292410B1 (en) | 1998-09-23 | 1999-06-16 | Process chamber for reducing particulate contamination for manufacturing semiconductor device |
US09/404,631 US6464794B1 (en) | 1998-09-23 | 1999-09-23 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US10/237,111 US20030013315A1 (en) | 1998-09-23 | 2002-09-09 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/404,631 Division US6464794B1 (en) | 1998-09-23 | 1999-09-23 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030013315A1 true US20030013315A1 (en) | 2003-01-16 |
Family
ID=26634146
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/404,631 Expired - Fee Related US6464794B1 (en) | 1998-09-23 | 1999-09-23 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US10/234,135 Abandoned US20030000648A1 (en) | 1998-09-23 | 2002-09-05 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US10/235,976 Expired - Fee Related US6797109B2 (en) | 1998-09-23 | 2002-09-06 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US10/237,111 Abandoned US20030013315A1 (en) | 1998-09-23 | 2002-09-09 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US11/506,833 Abandoned US20060278341A1 (en) | 1998-09-23 | 2006-08-21 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/404,631 Expired - Fee Related US6464794B1 (en) | 1998-09-23 | 1999-09-23 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US10/234,135 Abandoned US20030000648A1 (en) | 1998-09-23 | 2002-09-05 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
US10/235,976 Expired - Fee Related US6797109B2 (en) | 1998-09-23 | 2002-09-06 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/506,833 Abandoned US20060278341A1 (en) | 1998-09-23 | 2006-08-21 | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates |
Country Status (2)
Country | Link |
---|---|
US (5) | US6464794B1 (en) |
KR (1) | KR100292410B1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040123801A1 (en) * | 2002-12-27 | 2004-07-01 | Korea Institute Of Science And Technology | Apparatus and method for synthesizing spherical diamond powder by using chemical vapor deposition method |
DE10319894A1 (en) * | 2003-04-28 | 2004-11-25 | Infineon Technologies Ag | Dielectric focus ring for wafer located in processing position on electrostatic chuck in plasma etching installation with potential difference between wafer potential and focus ring potential |
US20050078953A1 (en) * | 2003-10-10 | 2005-04-14 | Applied Materials, Inc. | Substrate heater assembly |
US20060172542A1 (en) * | 2005-01-28 | 2006-08-03 | Applied Materials, Inc. | Method and apparatus to confine plasma and to enhance flow conductance |
US20070000614A1 (en) * | 2003-03-21 | 2007-01-04 | Tokyo Electron Limited | Method and apparatus for reducing substrate backside deposition during processing |
US20070032081A1 (en) * | 2005-08-08 | 2007-02-08 | Jeremy Chang | Edge ring assembly with dielectric spacer ring |
US20090162952A1 (en) * | 2007-12-19 | 2009-06-25 | Applied Materials, Inc. | Apparatus and method for controlling edge performance in an inductively coupled plasma chamber |
WO2013089911A1 (en) * | 2011-12-15 | 2013-06-20 | Applied Materials, Inc. | Process kit components for use with an extended and independent rf powered cathode substrate for extreme edge tunability |
US9251999B2 (en) | 2006-12-29 | 2016-02-02 | Lam Research Corporation | Capacitively-coupled plasma processing system having a plasma processing chamber for processing a substrate |
US20160148801A1 (en) * | 2014-11-25 | 2016-05-26 | Tokyo Electron Limited | Substrate processing apparatus, substrate processing method and storage medium |
US9536711B2 (en) | 2007-03-30 | 2017-01-03 | Lam Research Corporation | Method and apparatus for DC voltage control on RF-powered electrode |
US20170229317A1 (en) * | 2016-02-05 | 2017-08-10 | Lam Research Corporation | Chamber for patterning non-volatile metals |
CN114008738A (en) * | 2019-06-18 | 2022-02-01 | 朗姆研究公司 | Reduced diameter carrier ring hardware for substrate processing systems |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4151749B2 (en) * | 1998-07-16 | 2008-09-17 | 東京エレクトロンAt株式会社 | Plasma processing apparatus and method |
JP4419237B2 (en) * | 1999-12-22 | 2010-02-24 | 東京エレクトロン株式会社 | Film forming apparatus and processing method for object to be processed |
KR100635975B1 (en) * | 2000-02-14 | 2006-10-20 | 동경 엘렉트론 주식회사 | Apparatus and method for plasma treatment |
US6475336B1 (en) * | 2000-10-06 | 2002-11-05 | Lam Research Corporation | Electrostatically clamped edge ring for plasma processing |
JP3393118B2 (en) * | 2000-12-21 | 2003-04-07 | 株式会社半導体先端テクノロジーズ | Plasma etching apparatus and method of manufacturing semiconductor device |
JP2002203832A (en) * | 2001-01-05 | 2002-07-19 | Seiko Epson Corp | Dry etching apparatus |
TWI234417B (en) * | 2001-07-10 | 2005-06-11 | Tokyo Electron Ltd | Plasma procesor and plasma processing method |
US6620736B2 (en) * | 2001-07-24 | 2003-09-16 | Tokyo Electron Limited | Electrostatic control of deposition of, and etching by, ionized materials in semiconductor processing |
JP4485737B2 (en) * | 2002-04-16 | 2010-06-23 | 日本エー・エス・エム株式会社 | Plasma CVD equipment |
US20030224604A1 (en) * | 2002-05-31 | 2003-12-04 | Intel Corporation | Sacrificial polishing substrate for improved film thickness uniformity and planarity |
US20040000375A1 (en) * | 2002-06-27 | 2004-01-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Plasma etch chamber equipped with multi-layer insert ring |
US6963043B2 (en) * | 2002-08-28 | 2005-11-08 | Tokyo Electron Limited | Asymmetrical focus ring |
US20040040663A1 (en) * | 2002-08-29 | 2004-03-04 | Ryujiro Udo | Plasma processing apparatus |
US7252738B2 (en) * | 2002-09-20 | 2007-08-07 | Lam Research Corporation | Apparatus for reducing polymer deposition on a substrate and substrate support |
US20060226003A1 (en) * | 2003-01-22 | 2006-10-12 | John Mize | Apparatus and methods for ionized deposition of a film or thin layer |
DE10329762A1 (en) * | 2003-07-02 | 2005-01-27 | Mtu Friedrichshafen Gmbh | Cover plate for a crankcase |
US7910218B2 (en) | 2003-10-22 | 2011-03-22 | Applied Materials, Inc. | Cleaning and refurbishing chamber components having metal coatings |
US7338578B2 (en) * | 2004-01-20 | 2008-03-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Step edge insert ring for etch chamber |
KR100520229B1 (en) * | 2004-03-11 | 2005-10-11 | 삼성전자주식회사 | Dry etching apparatus for semiconductor |
KR100610010B1 (en) * | 2004-07-20 | 2006-08-08 | 삼성전자주식회사 | Apparatus for |
US7578945B2 (en) * | 2004-09-27 | 2009-08-25 | Lam Research Corporation | Method and apparatus for tuning a set of plasma processing steps |
US7670436B2 (en) * | 2004-11-03 | 2010-03-02 | Applied Materials, Inc. | Support ring assembly |
JP2006173560A (en) * | 2004-11-16 | 2006-06-29 | Sumitomo Electric Ind Ltd | Wafer guide, metal organic vapor phase growing device and method for depositing nitride semiconductor |
US7552521B2 (en) * | 2004-12-08 | 2009-06-30 | Tokyo Electron Limited | Method and apparatus for improved baffle plate |
US7601242B2 (en) * | 2005-01-11 | 2009-10-13 | Tokyo Electron Limited | Plasma processing system and baffle assembly for use in plasma processing system |
US9659758B2 (en) | 2005-03-22 | 2017-05-23 | Honeywell International Inc. | Coils utilized in vapor deposition applications and methods of production |
US20060225654A1 (en) * | 2005-03-29 | 2006-10-12 | Fink Steven T | Disposable plasma reactor materials and methods |
US20060278520A1 (en) * | 2005-06-13 | 2006-12-14 | Lee Eal H | Use of DC magnetron sputtering systems |
KR100733269B1 (en) * | 2005-08-18 | 2007-06-28 | 피에스케이 주식회사 | chuck assembly of ashing equipment for fabricating semiconductor device |
US9127362B2 (en) | 2005-10-31 | 2015-09-08 | Applied Materials, Inc. | Process kit and target for substrate processing chamber |
US8790499B2 (en) | 2005-11-25 | 2014-07-29 | Applied Materials, Inc. | Process kit components for titanium sputtering chamber |
TWI354320B (en) * | 2006-02-21 | 2011-12-11 | Nuflare Technology Inc | Vopor phase deposition apparatus and support table |
WO2007099786A1 (en) * | 2006-02-23 | 2007-09-07 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus and semiconductor device manufacturing method |
US7860379B2 (en) * | 2007-01-15 | 2010-12-28 | Applied Materials, Inc. | Temperature measurement and control of wafer support in thermal processing chamber |
JP5035884B2 (en) * | 2007-03-27 | 2012-09-26 | 東京エレクトロン株式会社 | Thermal conductive sheet and substrate mounting apparatus using the same |
US20080289766A1 (en) * | 2007-05-22 | 2008-11-27 | Samsung Austin Semiconductor Lp | Hot edge ring apparatus and method for increased etch rate uniformity and reduced polymer buildup |
US20090162570A1 (en) * | 2007-12-19 | 2009-06-25 | Applied Materials, Inc. | Apparatus and method for processing a substrate using inductively coupled plasma technology |
CN101488468B (en) * | 2008-01-17 | 2010-12-08 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Wafer retaining system and semiconductor processing apparatus applying the system |
US20090194414A1 (en) * | 2008-01-31 | 2009-08-06 | Nolander Ira G | Modified sputtering target and deposition components, methods of production and uses thereof |
US20100018648A1 (en) * | 2008-07-23 | 2010-01-28 | Applied Marterials, Inc. | Workpiece support for a plasma reactor with controlled apportionment of rf power to a process kit ring |
US8454027B2 (en) * | 2008-09-26 | 2013-06-04 | Lam Research Corporation | Adjustable thermal contact between an electrostatic chuck and a hot edge ring by clocking a coupling ring |
CN102341902A (en) * | 2009-03-03 | 2012-02-01 | 东京毅力科创株式会社 | Placing table structure, film forming apparatus, and raw material recovery method |
KR101794069B1 (en) * | 2010-05-26 | 2017-12-04 | 삼성전자주식회사 | equipment for manufacturing semiconductor device and seasoning process optimization method of the same |
DE102010052689A1 (en) * | 2010-11-26 | 2012-05-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrate holder for the surface treatment of substrates and use of the substrate holder |
CN102368467A (en) * | 2011-11-24 | 2012-03-07 | 上海宏力半导体制造有限公司 | Plasma processing apparatus and protection ring thereof |
JP2014107387A (en) * | 2012-11-27 | 2014-06-09 | Tokyo Electron Ltd | Pedestal structure and method of holding focus ring |
JP6069654B2 (en) * | 2013-03-29 | 2017-02-01 | Sppテクノロジーズ株式会社 | Plasma processing stage for substrate to be processed and plasma processing apparatus using the same |
WO2014209492A1 (en) * | 2013-06-26 | 2014-12-31 | Applied Materials, Inc. | Single ring design for high yield, substrate extreme edge defect reduction in icp plasma processing chamber |
JP6444641B2 (en) * | 2014-07-24 | 2018-12-26 | 株式会社ニューフレアテクノロジー | Film forming apparatus, susceptor, and film forming method |
KR102424818B1 (en) * | 2015-05-27 | 2022-07-25 | 도쿄엘렉트론가부시키가이샤 | Plasma processing apparatus and focus ring |
US10854492B2 (en) * | 2015-08-18 | 2020-12-01 | Lam Research Corporation | Edge ring assembly for improving feature profile tilting at extreme edge of wafer |
CN105895513A (en) * | 2016-05-25 | 2016-08-24 | 上海华力微电子有限公司 | Atomic layer oxide thin film deposition equipment |
KR102102320B1 (en) * | 2016-06-28 | 2020-04-22 | 주식회사 원익아이피에스 | Wafer Processing Apparatus And Method of depositing Thin film Using The Same |
KR20180080520A (en) * | 2017-01-04 | 2018-07-12 | 삼성전자주식회사 | Focus ring and plasma processing apparatus including the same |
US11183373B2 (en) | 2017-10-11 | 2021-11-23 | Honeywell International Inc. | Multi-patterned sputter traps and methods of making |
KR102538177B1 (en) * | 2017-11-16 | 2023-05-31 | 삼성전자주식회사 | Deposition apparatus including upper shower head and lower shower head |
KR102404061B1 (en) | 2017-11-16 | 2022-05-31 | 삼성전자주식회사 | Deposition apparatus including upper shower head and lower shower head |
KR102647177B1 (en) * | 2019-02-11 | 2024-03-15 | 삼성전자주식회사 | Plasma processing apparatus |
CN113078091B (en) * | 2020-01-06 | 2023-03-14 | 中芯国际集成电路制造(北京)有限公司 | Wafer sucking disc protection device and semiconductor manufacturing equipment |
CN112614769B (en) * | 2020-12-11 | 2021-12-31 | 无锡邑文电子科技有限公司 | Silicon carbide etching process cavity device and using method |
CN115440558A (en) * | 2021-06-03 | 2022-12-06 | 长鑫存储技术有限公司 | Semiconductor etching equipment |
CN113436955B (en) * | 2021-06-24 | 2022-05-27 | 长江存储科技有限责任公司 | Focusing ring and etching equipment |
CN113921365B (en) * | 2021-09-29 | 2024-03-26 | 北京北方华创微电子装备有限公司 | Semiconductor process equipment and edge protection mechanism thereof |
KR20240029761A (en) * | 2022-08-25 | 2024-03-06 | 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. | Multilayer focus ring for plasma semiconductor processing |
WO2024195079A1 (en) * | 2023-03-23 | 2024-09-26 | 株式会社Kokusai Electric | Substrate processing apparatus, substrate processing method, method for producing semiconductor device, and program |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447570A (en) * | 1990-04-23 | 1995-09-05 | Genus, Inc. | Purge gas in wafer coating area selection |
JPH0521670A (en) * | 1991-07-12 | 1993-01-29 | Sumitomo Electric Ind Ltd | Heat sink, and method and apparatus for manufacture thereof |
US5411624A (en) * | 1991-07-23 | 1995-05-02 | Tokyo Electron Limited | Magnetron plasma processing apparatus |
US5803977A (en) * | 1992-09-30 | 1998-09-08 | Applied Materials, Inc. | Apparatus for full wafer deposition |
US5534110A (en) * | 1993-07-30 | 1996-07-09 | Lam Research Corporation | Shadow clamp |
JPH0794480A (en) * | 1993-09-24 | 1995-04-07 | Sumitomo Metal Ind Ltd | Plasma processing and plasma processing device |
KR100264445B1 (en) * | 1993-10-04 | 2000-11-01 | 히가시 데쓰로 | Plasma treatment equipment |
US5484485A (en) | 1993-10-29 | 1996-01-16 | Chapman; Robert A. | Plasma reactor with magnet for protecting an electrostatic chuck from the plasma |
JP3257741B2 (en) * | 1994-03-03 | 2002-02-18 | 東京エレクトロン株式会社 | Plasma etching apparatus and method |
US5437757A (en) * | 1994-01-21 | 1995-08-01 | Applied Materials, Inc. | Clamp ring for domed pedestal in wafer processing chamber |
US5783492A (en) * | 1994-03-04 | 1998-07-21 | Tokyo Electron Limited | Plasma processing method, plasma processing apparatus, and plasma generating apparatus |
US5641375A (en) * | 1994-08-15 | 1997-06-24 | Applied Materials, Inc. | Plasma etching reactor with surface protection means against erosion of walls |
US5643394A (en) * | 1994-09-16 | 1997-07-01 | Applied Materials, Inc. | Gas injection slit nozzle for a plasma process reactor |
US5891350A (en) * | 1994-12-15 | 1999-04-06 | Applied Materials, Inc. | Adjusting DC bias voltage in plasma chambers |
US5673922A (en) * | 1995-03-13 | 1997-10-07 | Applied Materials, Inc. | Apparatus for centering substrates on support members |
JP3121524B2 (en) * | 1995-06-07 | 2001-01-09 | 東京エレクトロン株式会社 | Etching equipment |
US5635244A (en) * | 1995-08-28 | 1997-06-03 | Lsi Logic Corporation | Method of forming a layer of material on a wafer |
US5707485A (en) | 1995-12-20 | 1998-01-13 | Micron Technology, Inc. | Method and apparatus for facilitating removal of material from the backside of wafers via a plasma etch |
US5805408A (en) * | 1995-12-22 | 1998-09-08 | Lam Research Corporation | Electrostatic clamp with lip seal for clamping substrates |
US5891348A (en) * | 1996-01-26 | 1999-04-06 | Applied Materials, Inc. | Process gas focusing apparatus and method |
US6070551A (en) * | 1996-05-13 | 2000-06-06 | Applied Materials, Inc. | Deposition chamber and method for depositing low dielectric constant films |
US5788799A (en) * | 1996-06-11 | 1998-08-04 | Applied Materials, Inc. | Apparatus and method for cleaning of semiconductor process chamber surfaces |
US6013155A (en) * | 1996-06-28 | 2000-01-11 | Lam Research Corporation | Gas injection system for plasma processing |
US5740009A (en) * | 1996-11-29 | 1998-04-14 | Applied Materials, Inc. | Apparatus for improving wafer and chuck edge protection |
US6113731A (en) * | 1997-01-02 | 2000-09-05 | Applied Materials, Inc. | Magnetically-enhanced plasma chamber with non-uniform magnetic field |
US5920797A (en) * | 1996-12-03 | 1999-07-06 | Applied Materials, Inc. | Method for gaseous substrate support |
US6055927A (en) * | 1997-01-14 | 2000-05-02 | Applied Komatsu Technology, Inc. | Apparatus and method for white powder reduction in silicon nitride deposition using remote plasma source cleaning technology |
US6158384A (en) * | 1997-06-05 | 2000-12-12 | Applied Materials, Inc. | Plasma reactor with multiple small internal inductive antennas |
US6051122A (en) * | 1997-08-21 | 2000-04-18 | Applied Materials, Inc. | Deposition shield assembly for a semiconductor wafer processing system |
US6258170B1 (en) * | 1997-09-11 | 2001-07-10 | Applied Materials, Inc. | Vaporization and deposition apparatus |
US5922133A (en) * | 1997-09-12 | 1999-07-13 | Applied Materials, Inc. | Multiple edge deposition exclusion rings |
US6200388B1 (en) * | 1998-02-11 | 2001-03-13 | Applied Materials, Inc. | Substrate support for a thermal processing chamber |
US6117349A (en) * | 1998-08-28 | 2000-09-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Composite shadow ring equipped with a sacrificial inner ring |
US6406545B2 (en) * | 1999-07-27 | 2002-06-18 | Kabushiki Kaisha Toshiba | Semiconductor workpiece processing apparatus and method |
-
1999
- 1999-06-16 KR KR1019990022541A patent/KR100292410B1/en not_active IP Right Cessation
- 1999-09-23 US US09/404,631 patent/US6464794B1/en not_active Expired - Fee Related
-
2002
- 2002-09-05 US US10/234,135 patent/US20030000648A1/en not_active Abandoned
- 2002-09-06 US US10/235,976 patent/US6797109B2/en not_active Expired - Fee Related
- 2002-09-09 US US10/237,111 patent/US20030013315A1/en not_active Abandoned
-
2006
- 2006-08-21 US US11/506,833 patent/US20060278341A1/en not_active Abandoned
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040123801A1 (en) * | 2002-12-27 | 2004-07-01 | Korea Institute Of Science And Technology | Apparatus and method for synthesizing spherical diamond powder by using chemical vapor deposition method |
US6907841B2 (en) * | 2002-12-27 | 2005-06-21 | Korea Institute Of Science And Technology | Apparatus and method for synthesizing spherical diamond powder by using chemical vapor deposition method |
US20070000614A1 (en) * | 2003-03-21 | 2007-01-04 | Tokyo Electron Limited | Method and apparatus for reducing substrate backside deposition during processing |
US8382942B2 (en) * | 2003-03-21 | 2013-02-26 | Tokyo Electron Limited | Method and apparatus for reducing substrate backside deposition during processing |
DE10319894A1 (en) * | 2003-04-28 | 2004-11-25 | Infineon Technologies Ag | Dielectric focus ring for wafer located in processing position on electrostatic chuck in plasma etching installation with potential difference between wafer potential and focus ring potential |
WO2005038081A2 (en) * | 2003-10-10 | 2005-04-28 | Applied Materials, Inc. | Substrate heater assembly |
US7024105B2 (en) | 2003-10-10 | 2006-04-04 | Applied Materials Inc. | Substrate heater assembly |
WO2005038081A3 (en) * | 2003-10-10 | 2005-08-18 | Applied Materials Inc | Substrate heater assembly |
JP2007513255A (en) * | 2003-10-10 | 2007-05-24 | アプライド マテリアルズ インコーポレイテッド | Substrate heater assembly |
US20050078953A1 (en) * | 2003-10-10 | 2005-04-14 | Applied Materials, Inc. | Substrate heater assembly |
US20060172542A1 (en) * | 2005-01-28 | 2006-08-03 | Applied Materials, Inc. | Method and apparatus to confine plasma and to enhance flow conductance |
US20060193102A1 (en) * | 2005-01-28 | 2006-08-31 | Kallol Bera | Method and apparatus to confine plasma and to enhance flow conductance |
US20070023145A1 (en) * | 2005-01-28 | 2007-02-01 | Kallol Bera | Apparatus to confine plasma and to enhance flow conductance |
US7618516B2 (en) | 2005-01-28 | 2009-11-17 | Applied Materials, Inc. | Method and apparatus to confine plasma and to enhance flow conductance |
US7674353B2 (en) | 2005-01-28 | 2010-03-09 | Applied Materials, Inc. | Apparatus to confine plasma and to enhance flow conductance |
US20090186487A1 (en) * | 2005-08-08 | 2009-07-23 | Lam Research Corporation | Edge ring assembly with dielectric spacer ring |
US8911589B2 (en) | 2005-08-08 | 2014-12-16 | Lam Research Corporation | Edge ring assembly with dielectric spacer ring |
US20070032081A1 (en) * | 2005-08-08 | 2007-02-08 | Jeremy Chang | Edge ring assembly with dielectric spacer ring |
US8500953B2 (en) | 2005-08-08 | 2013-08-06 | Lam Research Corporation | Edge ring assembly with dielectric spacer ring |
US9251999B2 (en) | 2006-12-29 | 2016-02-02 | Lam Research Corporation | Capacitively-coupled plasma processing system having a plasma processing chamber for processing a substrate |
US9536711B2 (en) | 2007-03-30 | 2017-01-03 | Lam Research Corporation | Method and apparatus for DC voltage control on RF-powered electrode |
US8999106B2 (en) | 2007-12-19 | 2015-04-07 | Applied Materials, Inc. | Apparatus and method for controlling edge performance in an inductively coupled plasma chamber |
US20090162952A1 (en) * | 2007-12-19 | 2009-06-25 | Applied Materials, Inc. | Apparatus and method for controlling edge performance in an inductively coupled plasma chamber |
US8988848B2 (en) | 2011-12-15 | 2015-03-24 | Applied Materials, Inc. | Extended and independent RF powered cathode substrate for extreme edge tunability |
WO2013089911A1 (en) * | 2011-12-15 | 2013-06-20 | Applied Materials, Inc. | Process kit components for use with an extended and independent rf powered cathode substrate for extreme edge tunability |
US10825708B2 (en) | 2011-12-15 | 2020-11-03 | Applied Materials, Inc. | Process kit components for use with an extended and independent RF powered cathode substrate for extreme edge tunability |
US20160148801A1 (en) * | 2014-11-25 | 2016-05-26 | Tokyo Electron Limited | Substrate processing apparatus, substrate processing method and storage medium |
US20170229317A1 (en) * | 2016-02-05 | 2017-08-10 | Lam Research Corporation | Chamber for patterning non-volatile metals |
US9953843B2 (en) * | 2016-02-05 | 2018-04-24 | Lam Research Corporation | Chamber for patterning non-volatile metals |
CN114008738A (en) * | 2019-06-18 | 2022-02-01 | 朗姆研究公司 | Reduced diameter carrier ring hardware for substrate processing systems |
EP3987081A4 (en) * | 2019-06-18 | 2023-07-05 | Lam Research Corporation | Reduced diameter carrier ring hardware for substrate processing systems |
Also Published As
Publication number | Publication date |
---|---|
KR100292410B1 (en) | 2001-06-01 |
US6464794B1 (en) | 2002-10-15 |
US6797109B2 (en) | 2004-09-28 |
US20030000459A1 (en) | 2003-01-02 |
US20030000648A1 (en) | 2003-01-02 |
KR20000022645A (en) | 2000-04-25 |
US20060278341A1 (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6797109B2 (en) | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates | |
CN108987304B (en) | Substrate supporting device | |
US20200176244A1 (en) | Method of cleaning substrate processing apparatus | |
US7160392B2 (en) | Method for dechucking a substrate | |
US5762714A (en) | Plasma guard for chamber equipped with electrostatic chuck | |
KR102401704B1 (en) | Moveable edge ring designs | |
US6623597B1 (en) | Focus ring and apparatus for processing a semiconductor wafer comprising the same | |
KR101174816B1 (en) | Focus Ring of Plasma Processing Apparatus and Plasma Processing Apparatus Having the Same | |
US6048403A (en) | Multi-ledge substrate support for a thermal processing chamber | |
US7527694B2 (en) | Substrate gripping apparatus | |
US20080072823A1 (en) | Self aligning non contact shadow ring process kit | |
US20080194113A1 (en) | Methods and apparatus for semiconductor etching including an electro static chuck | |
TWI686861B (en) | Edge ring for bevel polymer reduction | |
TW200947172A (en) | Etching chamber having flow equalizer and lower liner | |
US20080149032A1 (en) | Lift pin, apparatus for processing a substrate and method of processing a substrate | |
CN114709119A (en) | Carrier plate for plasma processing system | |
US20230369026A1 (en) | Moveable edge rings for plasma processing systems | |
CN111463146A (en) | Susceptor design for heating with improved heat transfer and temperature uniformity | |
US20060272561A1 (en) | Deposition apparatus | |
US10036091B2 (en) | Semiconductor manufacturing apparatus and manufacturing method of semiconductor device | |
US11515194B2 (en) | Substrate processing apparatus, substrate processing system, and substrate transporting method | |
CN114026273B (en) | Epitaxial growth device and epitaxial wafer manufacturing method | |
US6350698B1 (en) | Dry etching apparatus and its manufacturing method | |
US8854790B1 (en) | Electrostatic chuck assembly | |
US20230114751A1 (en) | Substrate support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |