US20020133835A1 - Kit for transfection, storage and transfer of male germ cells for generation of transgenic species - Google Patents
Kit for transfection, storage and transfer of male germ cells for generation of transgenic species Download PDFInfo
- Publication number
- US20020133835A1 US20020133835A1 US10/054,143 US5414301A US2002133835A1 US 20020133835 A1 US20020133835 A1 US 20020133835A1 US 5414301 A US5414301 A US 5414301A US 2002133835 A1 US2002133835 A1 US 2002133835A1
- Authority
- US
- United States
- Prior art keywords
- vertebrate
- human
- male
- group
- germ
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001890 transfection Methods 0.000 title claims abstract description 50
- 210000003794 male germ cell Anatomy 0.000 title claims abstract description 43
- 230000009261 transgenic effect Effects 0.000 title claims description 69
- 238000003860 storage Methods 0.000 title claims description 7
- 238000012546 transfer Methods 0.000 title abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 167
- 210000004027 cell Anatomy 0.000 claims abstract description 99
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims abstract description 88
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 73
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 65
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 65
- 239000002157 polynucleotide Substances 0.000 claims abstract description 65
- 239000000203 mixture Substances 0.000 claims abstract description 57
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 51
- 238000000338 in vitro Methods 0.000 claims abstract description 26
- 238000001727 in vivo Methods 0.000 claims abstract description 25
- 238000001476 gene delivery Methods 0.000 claims abstract description 23
- 241000700605 Viruses Species 0.000 claims abstract description 16
- 210000000805 cytoplasm Anatomy 0.000 claims abstract description 7
- 230000002101 lytic effect Effects 0.000 claims abstract 5
- 210000004602 germ cell Anatomy 0.000 claims description 91
- 241001465754 Metazoa Species 0.000 claims description 89
- 241000282414 Homo sapiens Species 0.000 claims description 77
- 239000013598 vector Substances 0.000 claims description 53
- 108020004414 DNA Proteins 0.000 claims description 51
- 210000001550 testis Anatomy 0.000 claims description 49
- 241000124008 Mammalia Species 0.000 claims description 34
- 241000894007 species Species 0.000 claims description 21
- 238000002347 injection Methods 0.000 claims description 19
- 239000007924 injection Substances 0.000 claims description 19
- 241000272517 Anseriformes Species 0.000 claims description 18
- 229920000656 polylysine Polymers 0.000 claims description 18
- 241000701161 unidentified adenovirus Species 0.000 claims description 17
- 239000013603 viral vector Substances 0.000 claims description 15
- 238000009395 breeding Methods 0.000 claims description 13
- 230000001488 breeding effect Effects 0.000 claims description 13
- 241000283690 Bos taurus Species 0.000 claims description 12
- 230000014509 gene expression Effects 0.000 claims description 12
- 241000283153 Cetacea Species 0.000 claims description 11
- 241000282412 Homo Species 0.000 claims description 11
- 238000001415 gene therapy Methods 0.000 claims description 11
- 210000002863 seminiferous tubule Anatomy 0.000 claims description 11
- 241000287828 Gallus gallus Species 0.000 claims description 10
- 235000013330 chicken meat Nutrition 0.000 claims description 10
- 230000001177 retroviral effect Effects 0.000 claims description 10
- 241000286209 Phasianidae Species 0.000 claims description 9
- 101000915402 Homo sapiens Deleted in azoospermia protein 1 Proteins 0.000 claims description 8
- 102000015215 Stem Cell Factor Human genes 0.000 claims description 8
- 108010039445 Stem Cell Factor Proteins 0.000 claims description 8
- 102000055460 human DAZ1 Human genes 0.000 claims description 8
- 238000010348 incorporation Methods 0.000 claims description 8
- 210000002149 gonad Anatomy 0.000 claims description 7
- 150000002632 lipids Chemical class 0.000 claims description 7
- 239000012634 fragment Substances 0.000 claims description 6
- 241000713869 Moloney murine leukemia virus Species 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 239000002502 liposome Substances 0.000 claims description 5
- 210000000582 semen Anatomy 0.000 claims description 5
- 241000271566 Aves Species 0.000 claims description 4
- 102100032510 Heat shock protein HSP 90-beta Human genes 0.000 claims description 4
- 101001016856 Homo sapiens Heat shock protein HSP 90-beta Proteins 0.000 claims description 4
- 101000988090 Leishmania donovani Heat shock protein 83 Proteins 0.000 claims description 4
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 claims description 4
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 claims description 4
- 206010043189 Telangiectasia Diseases 0.000 claims description 4
- 101150042435 Xrcc1 gene Proteins 0.000 claims description 4
- 230000035939 shock Effects 0.000 claims description 4
- 208000009056 telangiectasis Diseases 0.000 claims description 4
- 230000008685 targeting Effects 0.000 claims description 3
- 239000002577 cryoprotective agent Substances 0.000 claims description 2
- 238000012248 genetic selection Methods 0.000 claims 17
- 239000003550 marker Substances 0.000 claims 17
- 241000282898 Sus scrofa Species 0.000 claims 9
- 241000283073 Equus caballus Species 0.000 claims 6
- 241000282465 Canis Species 0.000 claims 5
- 241000282324 Felis Species 0.000 claims 5
- 241001529936 Murinae Species 0.000 claims 5
- 241000725303 Human immunodeficiency virus Species 0.000 claims 4
- 208000005647 Mumps Diseases 0.000 claims 4
- 230000001506 immunosuppresive effect Effects 0.000 claims 4
- 208000010805 mumps infectious disease Diseases 0.000 claims 4
- 244000309464 bull Species 0.000 claims 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 claims 2
- 229930105110 Cyclosporin A Natural products 0.000 claims 2
- 108010036949 Cyclosporine Proteins 0.000 claims 2
- 229960001265 ciclosporin Drugs 0.000 claims 2
- 239000003246 corticosteroid Substances 0.000 claims 2
- 229960001334 corticosteroids Drugs 0.000 claims 2
- 229930182912 cyclosporin Natural products 0.000 claims 2
- 239000002243 precursor Substances 0.000 claims 2
- 230000036760 body temperature Effects 0.000 claims 1
- 150000007523 nucleic acids Chemical class 0.000 abstract description 20
- 108020004707 nucleic acids Proteins 0.000 abstract description 14
- 102000039446 nucleic acids Human genes 0.000 abstract description 14
- 108700008625 Reporter Genes Proteins 0.000 abstract description 6
- 108700019146 Transgenes Proteins 0.000 abstract description 6
- 230000001681 protective effect Effects 0.000 abstract description 2
- 239000000825 pharmaceutical preparation Substances 0.000 abstract 1
- 210000000605 viral structure Anatomy 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 24
- 102000004169 proteins and genes Human genes 0.000 description 24
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 22
- 230000002381 testicular Effects 0.000 description 21
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 20
- 239000005090 green fluorescent protein Substances 0.000 description 20
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 17
- 241000699670 Mus sp. Species 0.000 description 16
- 238000007710 freezing Methods 0.000 description 14
- 230000008014 freezing Effects 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 239000005720 sucrose Substances 0.000 description 13
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 210000005239 tubule Anatomy 0.000 description 12
- 235000013601 eggs Nutrition 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 9
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000005089 Luciferase Substances 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 108060001084 Luciferase Proteins 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 239000006285 cell suspension Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 238000001574 biopsy Methods 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000004720 fertilization Effects 0.000 description 6
- 238000012239 gene modification Methods 0.000 description 6
- 230000005017 genetic modification Effects 0.000 description 6
- 235000013617 genetically modified food Nutrition 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 230000013011 mating Effects 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 210000002969 egg yolk Anatomy 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000021595 spermatogenesis Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010257 thawing Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 4
- 230000000735 allogeneic effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000009027 insemination Effects 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000001638 lipofection Methods 0.000 description 4
- 210000001161 mammalian embryo Anatomy 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102000029816 Collagenase Human genes 0.000 description 3
- 108060005980 Collagenase Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 3
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 3
- 208000007466 Male Infertility Diseases 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 229960002424 collagenase Drugs 0.000 description 3
- 238000005138 cryopreservation Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000035558 fertility Effects 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009395 genetic defect Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 208000000509 infertility Diseases 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 210000002830 rete testis Anatomy 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000711386 Mumps virus Species 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 102000007238 Transferrin Receptors Human genes 0.000 description 2
- 108010033576 Transferrin Receptors Proteins 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 206010003883 azoospermia Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 231100000357 carcinogen Toxicity 0.000 description 2
- 239000003183 carcinogenic agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 230000003054 hormonal effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 210000002332 leydig cell Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 210000005000 reproductive tract Anatomy 0.000 description 2
- 238000012340 reverse transcriptase PCR Methods 0.000 description 2
- 210000000717 sertoli cell Anatomy 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229950004616 tribromoethanol Drugs 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- 241001455214 Acinonyx jubatus Species 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 241000272194 Ciconiiformes Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000777300 Congiopodidae Species 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 108700003861 Dominant Genes Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 102100027286 Fanconi anemia group C protein Human genes 0.000 description 1
- 208000001914 Fragile X syndrome Diseases 0.000 description 1
- 241001466538 Gymnogyps Species 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010021929 Infertility male Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108700005079 Recessive Genes Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 241000282806 Rhinoceros Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000271567 Struthioniformes Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- YRQNKMKHABXEJZ-UVQQGXFZSA-N chembl176323 Chemical compound C1C[C@]2(C)[C@@]3(C)CC(N=C4C[C@]5(C)CCC6[C@]7(C)CC[C@@H]([C@]7(CC[C@]6(C)[C@@]5(C)CC4=N4)C)CCCCCCCC)=C4C[C@]3(C)CCC2[C@]2(C)CC[C@H](CCCCCCCC)[C@]21C YRQNKMKHABXEJZ-UVQQGXFZSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000012601 choreatic disease Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000027326 copulation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000008143 early embryonic development Effects 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 230000005014 ectopic expression Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000004420 female germ cell Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000012595 freezing medium Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 210000001173 gonocyte Anatomy 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229940125697 hormonal agent Drugs 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000002570 interstitial cell Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000012470 leptotene Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 230000008627 meiotic prophase Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 208000008634 oligospermia Diseases 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 230000010765 pachytene Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000920 spermatogeneic effect Effects 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 208000005925 vesicular stomatitis Diseases 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000002689 xenotransplantation Methods 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
- 230000009353 zygotene Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0608—Germ cells
- C12N5/061—Sperm cells, spermatogonia
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/02—Animal zootechnically ameliorated
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/02—Animal zootechnically ameliorated
- A01K2267/025—Animal producing cells or organs for transplantation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/02—Cells for production
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
- C12N2799/022—Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus
Definitions
- the present invention relates to the field of transgenics and gene therapy. More specifically, this invention relates to in vitro and in vivo methods for transfecting germ cells and, in some instances, incorporating a nucleic acid segment encoding a specific trait into the male germ cells of an animal. When the nucleic acid becomes incorporated into the germ cell genome, upon mating, or in vitro fertilization and the like, the trait may be transmitted to the progeny.
- the present technology is suitable for breeding progeny with or without a desired trait by modifying their genome. This technology is also suitable for use in introducing a therapeutic gene into the germ or support cells (e.g., Leydig and Sertoli cells) of the testis and is, therefore, suitable for use in gene therapy for males with fertility problems associated with genetic defects.
- transgenics The field of transgenics was initially developed to understand the action of a single gene in the context of the whole animal and phenomena of gene activation, expression, and interaction. This technology has been used to produce models for various diseases in humans and other animals. Transgenic technology is amongst the most powerful tools available for the study of genetics, and the understanding of genetic mechanisms and function. It is also used to study the relationship between genes and diseases. About 5,000 diseases are caused by a single genetic defect. More commonly, other diseases are the result of complex interactions between one or more genes and environmental agents, such as viruses or carcinogens. The understanding of such interactions is of prime importance for the development of therapies, such gene therapy and drug therapies, and also treatments such as organ transplantation. Such treatments compensate for functional deficiencies and/or may eliminate undesirable functions expressed in an organism. Transgenesis has also been used for the improvement of livestock, and for the large scale production of biologically active pharmaceuticals.
- transgenic animals have been produced almost exclusively by micro injection of the fertilized egg.
- the pronuclei of fertilized eggs are micro injected in vitro with foreign, i.e. xenogeneic or allogeneic DNA or hybrid DNA molecules.
- the micro injected fertilized eggs are then transferred to the genital tract of a pseudopregnant female.
- the generation of transgenic animals by this technique is generally reproducible, and for this reason little has been done to improve on it.
- This technique requires large numbers of fertilized eggs. This is partly because there is a high rate of egg loss due to lysis during micro injection. Moreover manipulated embryos are less likely to implant and survive in utero. These factors contribute to the technique's extremely low efficiency.
- 300-500 fertilized eggs may need to be micro injected to produce perhaps three transgenic animals.
- transgenic technology has largely been exploited in mice because of their high fecundity.
- small animals such as mice have proved to be suitable models for certain diseases, their value in this respect is limited.
- Larger animals would be much more suitable to study the effects and treatment of most human diseases because of their greater similarity to humans in many aspects, and also the size of their organs.
- transgenic animals with the potential for human xenotransplantation are being developed, larger animals, of a size comparable to man will be required. Transgenic technology will allow that such donor animals will be immunocompatible with the human recipient.
- This invention relies on the fact that vast numbers of male germ cells are more readily available. Most male mammals generally produce at least 10 8 spermatozoa (male germ cells) in each ejaculate. This is in contrast to only 10-20 eggs in a mouse even after treatment with superovulatory drugs. A similar situation is true for ovulation in nearly all larger animals. For this reason alone, male germ cells will be a better target for introducing foreign DNA into the germ line, leading to the generation of transgenic animals with increased efficiency and after simple, natural mating.
- the present invention relates to the in vivo and ex vivo (in vitro) transfection of eukaryotic animal germ cells with a desired genetic material.
- the in vivo method involves injection of genetic material together with a suitable vector directly into the testicle of the animal. In this method, all or some of the male germ cells within the testicle are transfected in situ, under effective conditions.
- the ex vivo method involves extracting germ cells from the gonad of a suitable donor or from the animal's own gonad, using a novel isolation method, transfecting them in vitro, and then returning them to the testis under suitable conditions where they will spontaneously repopulate it.
- the ex vivo method has the advantage that the transfected germ cells may be screened by various means before being returned to the testis to ensure that the transgene is incorporated into the genome in a stable state. Moreover, after screening and cell sorting only enriched populations of germ cells may be returned. This approach provides a greater chance of transgenic progeny after mating.
- This invention also relates to a novel method for the isolation of spermatogonia, comprising obtaining spermatogonia from a mixed population of testicular cells by extruding the cells from the seminiferous tubules and gentle enzymatic disaggregation.
- the spermatogonia or stem cells which are to be genetically modified may be isolated from a mixed cell population by a novel method including the utilization of a promoter sequence, which is only active in cycling spermatogonia stem cell populations, for example, b-Myb or a spermotogonia specific promoter, such as the c-kit promoter region, c-raf-1 promoter, ATM (axataia-telangiectasia) promoter, RBM (ribosome binding motif) promoter, DAZ (deleted in azoospermia) promoter, XRCC-1 promoter, HSP 90 (heat shock gene) promoter, or FRMI (from fragile X site) promoter, optionally linked to a reporter construct, for example, the Green Fluorescent Protein Gene (EGFP).
- a promoter sequence which is only active in cycling spermatogonia stem cell populations
- a promoter sequence which is only active in cycling spermatogonia stem cell populations
- the spermatogonia thus, are the only cells in the mixed population which will express the reporter construct and they, thus, may be isolated on this basis.
- the cells may be sorted with the aid of, for example, a FACs scanner set at the appropriate wavelength or they may be selected by chemical methods.
- This invention also relates to the repopulation of a testis with germ cells that have been isolated from a fresh or frozen testicular biopsy. These germ cells may or may not be genetically manipulated prior to reimplantation.
- the method of the invention comprises administering to the animal or to germ cells in vitro, a composition comprising amounts of nucleic acid comprising polynucleotides encoding a desired trait.
- the composition comprises, for example, a relevant controlling promoter region made up of nucleotide sequences.
- a gene delivery system comprising a cell transfection promotion agent such as retro viral vectors, adenoviral and adenoviral related vectors, or liposomal reagents or other agents used for gene therapy.
- a cell transfection promotion agent such as retro viral vectors, adenoviral and adenoviral related vectors, or liposomal reagents or other agents used for gene therapy.
- This technology is applicable to the production of transgenic animals for use as animal models, and to the modification of the genome of an animal, including a human, by addition, modification, or subtraction of genetic material, often resulting in phenotypic changes.
- the present methods are also applicable to altering the carrier status of an animal, including a human, where that individual is carrying a gene for a recessive or dominant gene disorder, or where the individual is prone to pass a multigenic disorder to his offspring.
- a preparation suitable for use with the present methods comprises a polynucleotide segment encoding a desired trait and a transfection promotion agent, and optionally an uptake promotion agent which is sometime equipped with agents protective against DNA breakdown.
- the different components of the transfection composition are also provided in the form of a kit, with the components described above in measured form in two or more separate containers.
- the kit generally contains the different components in separate containers.
- Other components may also be provided in the kit as well as a carrier.
- the present invention arose from a desire by the present inventors to improve on existing methods for the genetic modification of an animal's germ cells and for producing transgenic animals.
- the pre-existing art methods rely on direct injection of DNA into zygotes produced in vitro or in vivo, or by the production of chimeric embryos using embryonal stem cells incorporated into a recipient blastocyst. Following this, such treated embryos are transferred to the primed uterus or oviduct.
- the available methods are extremely slow and costly, rely on several invasive steps, and only produce transgenic progeny sporadically and unpredictably.
- a first method delivers the nucleic acid segment using known gene delivery systems in situ to the gonad of the animal (in vivo transfection), allows the transfected germ cells to differentiate in their own milieu, and then selects for animals exhibiting the nucleic acid's integration into its germ cells (transgenic animals).
- the thus selected animals may be mated, or their sperm utilized for insemination or in vitro fertilization to produce transgenic progeny.
- the selection may take place after biopsy of one or both gonads, or after examination of the animal's ejaculate amplified by the polymerase chain reaction to confirm the incorporation of the desired nucleic acid sequence.
- the initial transfection may include a co-transfected reporter gene, such as a gene encoding for Green Fluorescent Protein, which fluoresces under suitable wave-lengths of ultra-violet light.
- male germ cells may be isolated from a donor animal and transfected, or genetically altered in vitro to impart the desired trait. Following this genetic manipulation, germ cells which exhibit any evidence that the DNA has been modified in the desired manner are selected, and transferred to the testis of a suitable recipient animal. Further selection may be attempted after biopsy of one or both gonads, or after examination of the animal's ejaculate amplified by the polymerase chain reaction to confirm whether the desired nucleic acid sequence was actually incorporated. As described above, the initial transfection may have included a co-transfected reporter gene, such as a gene encoding the Green Fluorescent Protein.
- the recipient testis are generally treated in one, or a combination, of a number of ways to inactivate or destroy endogenous germ cells, including by gamma irradiation, by chemical treatment, by means of infectious agents such as viruses, or by autoimmune depletion or by combinations thereof. This treatment facilitates the colonization of the recipient testis by the altered donor cells.
- transgenic progeny may be bred, whether by natural mating or artificial insemination, to obtain further transgenic progeny.
- the method of this invention has a lesser number of invasive procedures than other available methods, and a high rate of success in producing incorporation into the progeny's genome of the nucleic acid sequence encoding a desired trait.
- Primordial germ cells are thought to arise from the embryonic ectoderm, and are first seen in the epithelium of the endodermal yolk sac at the E8 stage. From there they migrate through the hindgut endoderm to the genital ridges.
- the primitive spermatogonial stem cells known as AO/As, differentiate into type B spermatogonia. The latter further differentiate to form primary spermatocytes, and enter a prolonged meiotic prophase during which homologous chromosomes pair and recombine.
- preleptotene preleptotene
- leptotene leptotene
- zygotene pachytene
- secondary spermatocytes secondary spermatocytes
- haploid spermatids The latter undergo further morphological changes during spermatogenesis, including the reshaping of their nucleus, the formation of acrosome, and assembly of the tail.
- the final changes in the spermatozoon take place in the genital tract of the female, prior to fertilization.
- the uptake of the nucleic acid segment administered by the present in vivo method to the gonads will reach germ cells that are at one or more of these stages, and be taken up by those that are at a more receptive stage.
- in the ex vivo (in vitro) method of genetic modification generally only diploid spermatogonia are used for nucleic acid modification.
- the cells may be modified in vivo using gene therapy techniques, or in vitro using a number of different transfection
- the inventors are, thus, providing in this patent a novel and unobvious method for; isolation of male germ cells, and for the in vivo and ex vivo (in vitro) transfection of allogeneic as well as xenogeneic DNA into an animal's germ cells.
- This comprises the administration to an animal of a composition comprising a gene delivery system and at least one nucleic acid segment, in amounts and under conditions effective to modify the animal's germ cells, and allowing the nucleic acid segment to enter, and be released into, the germ cells, and to integrate into their genome.
- the in vivo introduction of the gene delivery mixture to the germ cells may be accomplished by direct delivery into the animal's testis (es), where it is distributed to male germ cells at various stages of development.
- the in vivo method utilizes novel technology, such as injecting the gene delivery mixture either into the vasa efferentia, directly into the seminiferous tubules, or into the rete testis using, for example, a micropipette.
- the injection may be made through the micropipette with the aid of a picopump delivering a precise measured volume under controlled amounts of pressure.
- the micropipette may be made of a suitable material, such as metal or glass, and is usually made from glass tubing which has been drawn to a fine bore at its working tip, e.g. using a pipette puller.
- the tip may be angulated in a convenient manner to facilitate its entry into the testicular tubule system.
- the micropipette may be also provided with a beveled working end to allow a better and less damaging penetration of the fine tubules at the injection site. This bevel may be produced by means of a specially manufactured grinding apparatus.
- the diameter of the tip of the pipette for the in vivo method of injection may be about 15 to 45 microns, although other sizes may be utilized as needed, depending on the animal's size.
- the tip of the pipette may be introduced into the rete testis or the tubule system of the testicle, with the aid of a binocular microscope with coaxial illumination, with care taken not to damage the wall of the tubule opposite the injection point, and keeping trauma to a minimum.
- a magnification of about x25 to x80 is suitable, and bench mounted micromanipulators are not severally required as the procedure may be carried out by a skilled artisan without additional aids.
- a small amount of a suitable, non-toxic dye may be added to the gene delivery fluid to confirm delivery and dissemination to the tubules of the testis. It may include a dilute solution of a suitable, non-toxic dye, which may be visualized and tracked under the microscope.
- the gene delivery mixture is brought into intimate contact with the germ cells.
- the gene delivery mixture typically comprises the modified nucleic acid encoding the desired trait, together with a suitable promoter sequence, and optionally agents which increase the uptake of the nucleic acid sequence, such as liposomes, retroviral vectors, adenoviral vectors, adenovirus enhanced gene delivery systems, or combinations thereof.
- a reporter construct such as the gene encoding for Green Fluorescent Protein may further be added to the gene delivery mixture.
- Targeting molecules such as c-kit ligand may be added to the gene delivery mixture to enhance the transfer of the male germ cell.
- the introduction of the modified germ cells into the recipient testis may be accomplished by direct injection using a suitable micropipette.
- Support cells such as Leydig or Sertoli cells that provide hormonal stimulus to spermatogonial differentiation, may be transferred to a recipient testis along with the modified germ cells.
- These transferred support cells may be unmodified, or, alternatively, may themselves have been transfected, together with or separately from the germ cells.
- These transferred support cells may be autologous or heterologous to either the donor or recipient testis.
- a preferred concentration of cells in the transfer fluid may easily be established by simple experimentation, but will likely be within the range of about 1 ⁇ 10 5 -10 ⁇ 10 5 cells per 10 ⁇ l of fluid.
- This micropipette may be introduced into the vasa efferentia, the rete testis or the seminiferous tubules, optionally with the aid of a picopump to control pressure and/or volume, or this delivery may be done manually.
- the micropipette employed is in most respects similar to that used for the in vivo injection, except that its tip diameter generally will be about 70 microns.
- the microsurgical method of introduction is similar in all respects to that used for the in vivo method described above.
- a suitable dyestuff may also be incorporated into the carrier fluid for easy identification of satisfactory delivery of the transfected germ cells.
- the gene delivery mixture facilitates the uptake and transport of the xenogeneic genetic material into the appropriate cell location for integration into the genome and expression.
- a number of known gene delivery methods may be used for the uptake of nucleic acid sequences into the cell.
- Gene delivery (or transfection) mixture in the context of this patent, means selected genetic material together with an appropriate vector mixed, for example, with an effective amount of lipid transfection agent.
- the amount of each component of the mixture is chosen so that the transfection of a specific species of germ cell is optimized. Such optimization requires no more than routine experimentation.
- the ratio of DNA to lipid is broad, preferably about 1:1, although other proportions may also be utilized depending on the type of lipid agent and the DNA utilized. This proportion is not crucial.
- Transfecting agent means a composition of matter added to the genetic material for enhancing the uptake of exogenous DNA segment(s) into a eukaryotic cell, preferably a mammalian cell, and more preferably a mammalian germ cell. The enhancement is measured relative to the uptake in the absence of the transfecting agent.
- transfecting agents include adenovirus-transferrin-polylysine-DNA complexes. These complexes generally augment the uptake of DNA into the cell and reduce its breakdown during its passage through the cytoplasm to the nucleus of the cell. These complexes may be targeted to the male germ cells using specific ligands which are recognized by receptors on the cell surface of the germ cell, such as the c-kit ligand or modifications thereof.
- Virus means any virus, or transfecting fragment thereof, which may facilitate the delivery of the genetic material into male germ cells.
- viruses which are suitable for use herein are adenoviruses, adeno-associated viruses, retroviruses such as human immune-deficiency virus, lentiviruses, such as Moloney murine leukemia virus and the retrovirus vector derived from Moloney virus called vesicular-stomatitis-virus-glycoprotein (VSV-G)-Moloney murine leukemia virus, mumps virus, and transfecting fragments of any of these viruses, and other viral DNA segments that facilitate the uptake of the desired DNA segment by, and release into, the cytoplasm of germ cells and mixtures thereof.
- VSV-G vesicular-stomatitis-virus-glycoprotein
- the mumps virus is particularly suited because of its affinity for immature sperm cells including spermatogonia. All of the above viruses may require modification to render them non-pathogenic or less antigenic. Other known vector systems, however, may also be utilized within the confines of the invention.
- Geneetic material means DNA sequences capable of imparting novel genetic modification(s), or biologically functional characteristic(s) to the recipient animal.
- the novel genetic modification(s) or characteristic(s) may be encoded by one or more genes or gene segments, or may be caused by removal or mutation of one or more genes, and may additionally contain regulatory sequences.
- the transfected genetic material is preferably functional, that is it expresses a desired trait by means of a product or by suppressing the production of another. Examples of other mechanisms by which a gene's function may be expressed are genomic imprinting, i.e. inactivation of one of a pair of genes (alleles) during very early embryonic development, or inactivation of genetic material by mutation or deletion of gene sequences, or by expression of a dominant negative gene product, among others.
- novel genetic modification(s) may be artificially induced mutations or variations, or natural allelic mutations or variations of a gene(s). Mutations or variations may be induced artificially by a number of techniques, all of which are well known in the art, including chemical treatment, gamma irradiation treatment, ultraviolet radiation treatment, ultraviolet radiation, and the like. Chemicals useful for the induction of mutations or variations include carcinogens such as ethidium bromide and others known in the art.
- DNA segments of specific sequences may also be constructed to thereby incorporate any desired mutation or variation or to disrupt a gene or to alter genomic DNA.
- the genetic material is inheritable and is, therefore, present in almost every cell of future generations of the progeny, including the germ cells.
- novel characteristics are the expression of a previously unexpressed trait augmentation or reduction of an expressed trait, over expression or under expression of a trait, ectopic expression, that is expression of a trait in tissues where it normally would not be expressed, or the attenuation or elimination of a previously expressed trait.
- Other novel characteristics include the qualitative change of an expressed trait, for example, to palliate or alleviate, or otherwise prevent expression of an inheritable disorder with a multigenic basis.
- the method of the invention is suitable for application to a variety of vertebrate animals, all of which are capable of producing gametes, i.e. sperm or ova.
- novel genetic modification(s) and/or characteristic(s) may be imparted to animals, including mammals, such as humans, non-human primates, for example simians, marmosets, domestic agricultural animals such as sheep, cows, pigs, horses, particularly race horses, marine mammals, feral animals, rodents such as mice and rats, and the like.
- Other animals include fowl such as chickens, turkeys, ducks, ostriches, geese, rare and ornamental birds, and the like.
- endangered species of wild animal such rhinoceros, tigers, cheetahs, certain species of condor, and the like.
- transgenic animal is one that has had foreign DNA permanently introduced into its cells.
- the foreign gene(s) which (have) been introduced into the animal's cells is (are) called a “transgene(s)”.
- the present invention is applicable to the production of transgenic animals containing xenogeneic, i.e., exogenous, transgenic genetic material, or material from a different species, including biologically functional genetic material, in its native, undisturbed form in which it is present in the animal's germ cells.
- the genetic material is “allogeneic” genetic material, obtained from different strains of the same species, for example, from animals having a “normal” form of a gene, or a desirable allele thereof.
- the gene may be a hybrid construct consisting of promoter DNA sequences and DNA coding sequences linked together. These sequences may be obtained from different species or DNA sequences from the same species that are not normally juxtaposed.
- the DNA construct may also contain DNA sequences from prokaryotic organisms, such as bacteria, or viruses.
- the transfected germ cells of the transgenic animal have the non-endogenous (exogenous) genetic material integrated into their chromosomes. This is what is referred to as a “stable transfection”. This is applicable to all vertebrate animals, including humans. Those skilled in the art will readily appreciate that any desired traits generated as a result of changes to the genetic material of any transgenic animal produced by this invention are inheritable. Although the genetic material was originally inserted solely into the germ cells of a parent animal, it will ultimately be present in the germ cells of future progeny and subsequent generations thereof. The genetic material is also present in the differentiated cells, i.e. somatic cells, of the progeny.
- This invention also encompasses progeny resulting from breeding of the present transgenic animals.
- the transgenic animals bred with other transgenic or non-transgenic animals of the same species will produce some transgenic progeny, which should be fertile.
- This invention thus, provides animal line(s) which result from breeding of the transgenic animal(s) provided herein, as well as from breeding their fertile progeny.
- “Breeding”, in the context of this patent, means the union of male and female gametes so that fertilization occurs. Such a union may be brought about by natural mating, i.e. copulation, or by in vitro or in vivo artificial means. Artificial means include, but are not limited to, artificial insemination, in vitro fertilization, cloning and embryo transfer, intracytoplasmic spermatozoal microinjection, cloning and embryo splitting, and the like. However, others may also be employed.
- the transfection of mature male germ cells may be also attained utilizing the present technology upon isolation of the cells from a vertebrate, as is known in the art, and exemplified in Example 10.
- the thus isolated cells may then be transfected ex vivo (in vitro), or cryopreserved as is known in the art and exemplified in Example 11.
- the actual transsection of the isolated testicular cells may be accomplished, for example, by isolation of a vertebrate's testes, decapsulation and teasing apart and mincing of the seminiferous tubules.
- the separated cells may then be incubated in an enzyme mixture comprising enzymes known for gently breaking up the tissue matrix and releasing undamaged cells such as, for example, pancreatic trypsin, collagenase type I, pancreatic DNAse type I, as well as bovine serum albumin and a modified DMEM medium.
- the cells may be incubated in the enzyme mixture for a period of about 5 min to about 30 min, more preferably about 15 to about 20 min, at a temperature of about 33° C. to about 37° C., more preferably about 36 to 37° C. After washing the cells free of the enzyme mixture, they may be placed in an incubation medium such as DMEM, and the like, and plated on a culture dish.
- an enzyme mixture comprising enzymes known for gently breaking up the tissue matrix and releasing undamaged cells such as, for example, pancreatic trypsin, collagenase type I, pancreatic DNAse type I, as well as bovine serum albumin and a modified DMEM medium.
- transfection mixtures may be admixed with the polynucleotide encoding a desire trait or product for transfection of the cells.
- the transfection mixture may then be admixed with the cells and allowed to interact for a period of about 2 hrs to about 16 hrs, preferably about 3 to 4 hrs, at a temperature of about 33° C. to about 37° C., preferably about 36° C. to 37° C., and more preferably in a constant and/or controlled atmosphere.
- the cells are preferably placed at a lower temperature of about 33° C. to about 34° C., preferably about 30-35° C. for a period of about 4 hrs to about 20 hrs, preferably about 16 to 18 hrs.
- Other conditions which do not deviate radically from the ones described may also be utilized as an artisan would know.
- the present method is applicable to the field of gene therapy, since it permits the introduction of genetic material encoding and regulating specific genetic traits.
- the human for example, by treating parents it is possible to correct many single gene disorders which otherwise might affect their children. It is similarly possible to alter the expression of fully inheritable disorders or those disorders having at least a partially inherited basis, which are caused by interaction of more than one gene, or those which are more prevalent because of the contribution of multiple genes.
- This technology may also be applied in a similar way to correct disorders in animals other than human primates. In some instances, it may be necessary to introduce one or more “gene(s)” into the germ cells of the animal to attain a desired therapeutic effect, as in the case where multiple genes are involved in the expression or suppression of a defined trait.
- multigenic disorders include diabetes mellitus caused by deficient production of, or response to, insulin, inflammatory bowel disease, certain forms of atheromatus cardiovascular disease and hypertension, schizophrenia and some forms of chronic depressive disorders, among others.
- one gene may encode an expressible product, whereas another gene encodes a regulatory function, as is known in the art.
- homologous recombinant methods are applied to repair point mutations or deletions in the genome, inactivation of a gene causing pathogenesis or disease, or insertion of a gene that is expressed in a dominant negative manner, or alterations of regulating elements such as gene promoters, enhancers, the untranslated tail region of a gene, or regulation of expansion of repeated sequences of DNA which cause such diseases as Huntingdon's chorea, Fragile-X syndrome and the like.
- a specific reproductive application of the present method is to the treatment of animals, particularly humans, with disorders of spermatogenesis.
- Defective spermatogenesis or spermiogenesis frequently has a genetic basis, that is, one or mutations in the genome may result in failure of production of normal sperm cells. This may happen at various stages of the development of germ cells, and may result in male infertility or sterility.
- the present invention is applicable, for example, to the insertion or incorporation of nucleic acid sequences into a recipient's genome and, thereby, establish spermatogenesis in the correction of oligozoospermia or azoospermia in the treatment of infertility.
- the present methods are also applicable to males whose subfertility or sterility is due to a motility disorder with a genetic basis.
- the present method is additionally applicable to the generation of transgenic animals expressing agents which are of therapeutic benefit for use in human and veterinary medicine or well being.
- agents which are of therapeutic benefit for use in human and veterinary medicine or well being. Examples include the production of pharmaceuticals in domestic cows' milk, such as factors which enhance blood clotting for patients with types of haemophilia, or hormonal agents such as insulin and other peptide hormones.
- the present method is further applicable to the generation of transgenic animals of a suitable anatomical and physiological phenotype for human xenograft transplantation.
- Transgenic technology permits the generation of animals which are immune-compatible with a human recipient. Appropriate organs, for example, may be removed from such animals to allow the transplantation of, for example, the heart, lung and kidney.
- germ cells transfected in accordance with this invention may be extracted from the transgenic animal, and stored under conditions effective for later use, as is known in the art.
- Storage conditions include the use of cryopreservation using programmed freezing methods and/or the use of cryoprotectants, and the use of storage in substances such as liquid nitrogen.
- the germ cells may be obtained in the form of a male animal's semen, or separated spermatozoa, or immature spermatocytes, or whole biopsies of testicular tissue containing the primitive germ cells.
- Such storage techniques are particularly beneficial to young adult humans or children, undergoing oncological treatments for such diseases such as leukemia or Hodgkin's lymphoma.
- the present techniques are valuable for transport of gametes as frozen germ cells. Such transport will facilitate the establishment of various valued livestock or fowl, at a remote distance from the donor animal. This approach is also applicable to the preservation of endangered species across the globe.
- the adenovirus enhanced transfernin-polylysine-mediated gene delivery system has been described and patented by Curiel al. (Curiel D. T., et al. Adenovirus enhancement of transferrin-polylysine-mediated gene delivery, PNAS USA 88: 8850-8854 (1991).
- the delivery of DNA depends upon endocytosis mediated by the transferrin receptor (Wagner et al., Transferrin-polycation conjugates as carriers for DNA uptake into cells, PNAS (USA) 87: 3410-3414 (1990).
- this method relies on the capacity of adenoviruses to disrupt cell vesicles, such as endosomes and release the contents entrapped therein.
- This system can enhance the gene delivery to mammalian cells by as much as 2,000 fold over other methods.
- Human transferrin was conjugated to poly (L-lysine) using EDC (1-ethyl-3-(3-dimethyl aminopropyl carbodiimide hydrochloride) (Pierce), according to the method of Gabarek and Gergely (Gabarek & Gergely, Zero-length cross-linking procedure with the use of active esters, Analyt. Biochem 185 : 131 (1990)).
- EDC 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide hydrochloride)
- Gabarek and Gergely Gabarek and Gergely, Zero-length cross-linking procedure with the use of active esters, Analyt. Biochem 185 : 131 (1990)
- EDC reacts with a carboxyl group of human transferrin to form an amine-reactive intermediate.
- the activated protein was allowed to react with the poly (L-lysine) moiety for 2 hrs at room temperature, and the reaction was quenched by adding hydroxylamine to a final concentration of 10 mM.
- the conjugate was purified by gel filtration, and stored at ⁇ 20° C.
- the Green Lantern-1 vector (Life Technologies, Gibco BRL, Gaithersberg, Md.) is a reporter construct used for monitoring gene transfection in mammalian cells. It consists of the gene encoding the Green Fluorescent Protein (GFP) driven by the cytomegalovirus (CMV) immediate early promoter. Downstream of the gene is a SV40 polyadenylation signal. Cells transfected with Green Lantern-1 fluoresce with a bright green light when illuminated with blue light. The excitation peak is 490 nm.
- GFP Green Fluorescent Protein
- CMV cytomegalovirus
- Adenovirus dI312 a replication-incompetent strain deleted in the E1a region, was propagated in the E1a trans-complementing cell line 293 as described by Jones and Shenk (Jones and Shenk, PNAS USA (1979) 79: 3665-3669).
- a large scale preparation of the virus was made using the method of Mittereder and Trapnell (Mittereder et al., “Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy”, J. Urology, 70: 7498-7509 (1996)).
- the virion concentration was determined by UV spectroscopy, 1 absorbance unit being equivalent to 10 viral particles /ml.
- the purified virus was stored at ⁇ 70° C.
- the conjugated adenovirus particle complexed with DNA were tested on CHO cells in vitro prior to in vivo testing.
- a luciferase reporter gene was used due to the ease of quantifying luciferase activity.
- the expression construct consists of a reporter gene encoding luciferase, is driven by the CMV promoter (Invitrogen, Carlsbad, Calif. 92008).
- CHO cells were grown in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal calf serum.
- DMEM Dulbecco's modified Eagle's medium
- CHO cells were seeded into 6 cm tissue culture plates and grown to about 50% confluency (5 ⁇ 10 5 cells). Prior to transfection the medium was aspirated and replaced with serum free DMEM.
- Cells were either transfected with transferrin-polylysine-DNA complexes or with lipofectin DNA aggregates.
- transferrin-polylysine mediated DNA transfer the DNA-adenovirus complexes were added to the cells at a concentration of 0.05-3.2 ⁇ 10 4 adenovirus particles per cell. Plates were returned to the 5% CO 2 incubator for 1 hour at 37° C. After 1 hour 3 ml of complete media was added to the wells and the cells were allowed to incubate for 48 hours before harvesting. The cells were removed from the plate, counted and then lysed for measurement of luciferase activity.
- mice were anesthetized with 2% Avertin (100% Avertin comprises 10 g 2,2,2-tribromoethanol (Aldrich) and 10 ml t-amyl alcohol (Sigma), and a small incision made in their skin and body wall, on the ventral side of the body at the level of the hind leg.
- Avertin comprises 10 g 2,2,2-tribromoethanol (Aldrich) and 10 ml t-amyl alcohol (Sigma)
- the animal's testis was pulled out through the opening by grasping at the testis fat pad with forceps, and the vas efferens tubules exposed and supported by a glass syringe.
- the GFP DNA-transferrin-polylysine viral complexes were injected into a single vasa efferentia using a glass micropipette attached to a hand held glass syringe or a pressurized automatic pipettor (Eppendorf), and Trypan blue added to visualize the entry of the mixture into the seminiferous tubules. The testes were then placed back in the body cavity, the body wall was sutured, the slin closed with wound clips, and the animal allowed to recover on a warm pad.
- GFP DNA was present in the testes of the animals that had received the DNA complexes, but was absent from sham operated animals.
- RTPCR reverse transcriptase PCR
- the GFP message was present in the injected testes, but not in the control testes.
- the DNA detected above by PCR analysis is, in fact, episomal GFP DNA, or GFP DNA which has integrated into the chromosomes of the animal. The transfected gene was being expressed.
- GFP transfected males were mated with normal females. The females were allowed to complete gestation, and the pups to be born. The pups (F1 offspring or progeny) were screened for the presence of the novel genetic material(s).
- the cells were washed twice by centrifugation at 500 ⁇ g with HTF medium and resuspended in 250 ⁇ l HTF medium. The cells were counted, and 0.5 ⁇ 10 6 cells were plated in a 60 mm culture dish in a total volume of 5 ml DMEM (Gibco-BRL, Life Technologies, Gaithesburg, Md. 20884).
- a transfection mixture was prepared by mixing 5 ⁇ g Green Lantern DNA (Gibco-BRL, Life Technologies, Gaithesburg, Md. 20884) with 201 Superfect (Quagen, Santa Clarita, Calif. 91355) and 150 ⁇ l DMEM. The transfection mix was added to the cells and they were allowed to incubate for 3 hours at 37° C., 5% CO 2 The cells were transferred to a 33° C. incubator and incubated overnight.
- the cells were injected into the testis via the vasa efferentia using a micropipette. 3 ⁇ 10 5 cells in a total volume of 50 ⁇ l were used for the injection. The cells were mixed with Trypan blue prior to the injection. Three adult mice were injected with transfected cells. The Balb/cByJ recipient mice had been irradiated 6 weeks prior to the injection with 800 Rads of gamma irradiation. One mouse became sick and was sacrificed 48 hours after the injection. The testes from this mouse were dissected, fixed and processed for histology.
- a cell suspension was prepared from mice of different ages as described below. Group I: 7-10 day olds Group II: 15-17 day olds Group III: 24-26 day olds
- mice's testes were dissected, placed in phosphate buffered saline (PBS) decapsulated, and the seminiferous tubules were teased apart. Seminiferous tubules from groups I and II were transferred to HEPES buffered culture medium (D-MEM) (Gibco-BRL, Life Technologies, Gaithesburg, Md. 20884) containing 1 mg/ml Bovine serum albumin (BSA) (Sigma, St. Louis, Mo. 63178) and Collagenase Type I (Sigma) for the removal of interstitial cells. After a 10 minute incubation at 33° C., the tubules were lifted into fresh culture medium. This enzymatic digestion was not carried out on the testes from group I because of their fragility.
- D-MEM HEPES buffered culture medium
- BSA Bovine serum albumin
- Collagenase Type I Sigma
- tubules from group II and m mice or the whole tissue from group I mice were transferred to a Petri dish with culture medium and were cut into 0.1-1 mm pieces using a sterile scalpel and needle. The minced tissue was centrifuged at 500 ⁇ g for 5 minutes and the pellet was resuspended in 1 ml of enzyme mix.
- the enzyme mix was made up in D-DMEM with HEPES (GibcoBRL) and consisted of 1 mg/ml bovine serum albumin (BSA) (Sigma, embryo tested), 1 mg/ml collagenase I (Sigma) and 5 mg/ml bovine pancreatic trypsin (Sigma) and 0.1 mg/ml deoxyribonuclease I (DN-EP, Sigma).
- BSA bovine serum albumin
- DN-EP bovine pancreatic trypsin
- the tubules were incubated in enzyme mix for 30 minutes at 33° C. After the incubation, 1 ml of medium was added to the mix and the cells were centrifuged at 500 ⁇ g for 5 min. The cells were washed twice in medium by centrifugafion and resuspension. After the final wash the cell pellet was resuspended in 250 ⁇ l of culture medium and counted.
- Testicular cells from a total of 31 mice (age 8-12 weeks) were cryopreserved using 6 different freezing and thawing protocols. In addition to freezing cell supsensions, pieces of testicular tissue were frozen (see freezing method above). The cell suspension was prepared as described above.
- the cell suspension was incubated in a buffer stock solution consisting of 80% phosphate buffered saline (PBS) and 20% human serum (SPR, Helsinki, Finland) for 5 minutes. The cells were then incubated in 1.5M PROH for 10 minutes, pelleted by centrifugation and resuspended in 1.5M PROH with 0.1M sucrose. The cell suspension was loaded into straws (0.25 ⁇ m, Paillette, L'Aigle, France) or 1 ml cryogenic vials (Nunc cryotube). Samples were frozen in a controlled temperature freezing machine (Planer Kryo, Series III, Planer Biomed, Sunbury on Thames, UK).
- the samples were cooled at a rate of 2° C./min to ⁇ 8° C., and seeded manually using forceps cooled in liquid nitrogen. After 10 min the samples were cooled at 0.3° C./min to ⁇ 30° C. after which they were cooled at a rate of ⁇ 50° C./min to ⁇ 150° C. Samples were then stored in liquid nitrogen at ⁇ 196° C.
- the samples were removed from liquid nitrogen and kept at room temperature for 2 min. The samples were incubated in 1M PROH+0.1M sucrose for 5 min, followed by an incubation in 0.5M PROH+0.1M sucrose for 5 min and then in 0.1M sucrose for 10 min. The cell suspension was placed in buffer stock.
- the cell suspension was pipetted into a vial and the yolk buffer freezing medium (Irvine Scientific, Santa Ana, Calif.) was added drop by drop to make up approximately 50% of the total volume.
- the samples were cooled in a controlled freezer at an initial cooling rate of 0.5° C./min to a temperature of 1.5° C.
- the samples were then cooled at 10° C./min until they reached a temperature of ⁇ 80° C. On reaching this temperature the samples were placed in liquid nitrogen for storage.
- the cells were pipetted into a cryogenic vial and a freezing solution containing 70% DMEM, 20% fetal calf serum and 10% filtered glycerol was added to the cells to make up 90% of the total volume.
- the resuspension was incubated at 37° C. for 10 min.
- the samples were placed in a ⁇ 70° C. freezer for 24 hours after which they were stored in liquid nitrogen.
- the method used for freezing whole testicular tissue was the same as the method we described previously for freezing ovarian tissue (Hovatta, et al., Human Reprod. 11:1268-1272 (1996).
- the testicles of 6 mice were decapsulated in culture medium (D-MEM) and cut into 0.3-1.0 mm pieces.
- the tissue pieces were placed in medium containing 1.5M PROH in PBS with 20% serum for 10 min. at room temperature. They were transferred to cyrogenic vials and cooled at 2° C./min to ⁇ 8° C.
- the vials were seeded manually with forceps dipped in liquid nitrogen. After 10 min the cooling was continued at a rate of 0.3° C./min to ⁇ 30° C. and then at a rate of 50° C./min to ⁇ 150° C. When the samples reached this temperature they were transferred to liquid nitrogen.
- the vials were removed from the liquid nitrogen and allowed to come to room temperature for 2 min. They were then placed in a water bath at 30° C. until they had thawed. The tissue pieces were transferred to a Petri dish containing 1.0M PROH, 0.1M sucrose and 20% serum in PBS for 5 min. They were then transferred to a solution containing 0.5M PROH, 0.1M sucrose and 20% serum in PBS for 5 min and then to a solution containing 0.1M sucrose with 20% serum in PBS for 10 min. The cells were kept in culture medium.
- testicular cells that had been frozen using the propanediol-sucrose method had the highest percentage of viable cells upon thawing than cells frozen using the other methods.
- the propanediol-sucrose freezing method was significantly less damaging to testicular cells than the DMSO method used by Avarbock et al., 1996 for freezing testicular cells prior to transfer.
- the propanediol-sucrose method was also shown to be good for freezing human ovarian tissue as described by Hovatta et al. (Hovatta et al., Human Reprod. 11: 1268-1272 (1996a), the relevant part of which is incorporated herein by reference, and pieces of testicular tissue.
- testicular spermatozoa from a human biopsy were frozen-thawed using the glycerol-yolk buffer method, and then used for intracytoplasmic injection of eggs (ICSI).
- ICSI intracytoplasmic injection of eggs
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Environmental Sciences (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Public Health (AREA)
- Reproductive Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Husbandry (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Pregnancy & Childbirth (AREA)
- Endocrinology (AREA)
- Gynecology & Obstetrics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
A composition for in vivo transfection of vertebrate male germ cells comprises a nucleic acid or transgene, and a gene delivery system, and optionally a protective internalizing agent, such as an endosomal lytic agent, a virus or a viral component, which is internalized by cells along with the transgene and which enhances gene transfer through the cytoplasm to the nucleus of the male germ cell. A pharmaceutical preparation and a transfer kit utilize the composition. A method for introducing a polynucleotide into vertebrate male germ cells comprises the administration of the composition to a vertebrate. A method for isolating or selecting transfected cells utilizes a reporter gene, and a method for administering transfected male germ cells utilizes male germ cells which have been transfected in vitro.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/065,825, filed on Nov. 14, 1997.
- 1. Field of the Invention
- The present invention relates to the field of transgenics and gene therapy. More specifically, this invention relates to in vitro and in vivo methods for transfecting germ cells and, in some instances, incorporating a nucleic acid segment encoding a specific trait into the male germ cells of an animal. When the nucleic acid becomes incorporated into the germ cell genome, upon mating, or in vitro fertilization and the like, the trait may be transmitted to the progeny. The present technology is suitable for breeding progeny with or without a desired trait by modifying their genome. This technology is also suitable for use in introducing a therapeutic gene into the germ or support cells (e.g., Leydig and Sertoli cells) of the testis and is, therefore, suitable for use in gene therapy for males with fertility problems associated with genetic defects.
- 2. Description of the Background
- The field of transgenics was initially developed to understand the action of a single gene in the context of the whole animal and phenomena of gene activation, expression, and interaction. This technology has been used to produce models for various diseases in humans and other animals. Transgenic technology is amongst the most powerful tools available for the study of genetics, and the understanding of genetic mechanisms and function. It is also used to study the relationship between genes and diseases. About 5,000 diseases are caused by a single genetic defect. More commonly, other diseases are the result of complex interactions between one or more genes and environmental agents, such as viruses or carcinogens. The understanding of such interactions is of prime importance for the development of therapies, such gene therapy and drug therapies, and also treatments such as organ transplantation. Such treatments compensate for functional deficiencies and/or may eliminate undesirable functions expressed in an organism. Transgenesis has also been used for the improvement of livestock, and for the large scale production of biologically active pharmaceuticals.
- Historically, transgenic animals have been produced almost exclusively by micro injection of the fertilized egg. The pronuclei of fertilized eggs are micro injected in vitro with foreign, i.e. xenogeneic or allogeneic DNA or hybrid DNA molecules. The micro injected fertilized eggs are then transferred to the genital tract of a pseudopregnant female. The generation of transgenic animals by this technique is generally reproducible, and for this reason little has been done to improve on it. This technique, however, requires large numbers of fertilized eggs. This is partly because there is a high rate of egg loss due to lysis during micro injection. Moreover manipulated embryos are less likely to implant and survive in utero. These factors contribute to the technique's extremely low efficiency. For example, 300-500 fertilized eggs may need to be micro injected to produce perhaps three transgenic animals. Partly because of the need to micro inject large numbers of embryos, transgenic technology has largely been exploited in mice because of their high fecundity. Whilst small animals such as mice have proved to be suitable models for certain diseases, their value in this respect is limited. Larger animals would be much more suitable to study the effects and treatment of most human diseases because of their greater similarity to humans in many aspects, and also the size of their organs. Now that transgenic animals with the potential for human xenotransplantation are being developed, larger animals, of a size comparable to man will be required. Transgenic technology will allow that such donor animals will be immunocompatible with the human recipient. Historical transgenic techniques, however, require that there be an ample supply of fertilized female germ cells or eggs. Most large mammals, such as primates, cows, horses and pigs produce only 10-20 or less eggs per animal per cycle even after hormonal stimulation. Consequently, generating large animals with these techniques is prohibitively expensive.
- This invention relies on the fact that vast numbers of male germ cells are more readily available. Most male mammals generally produce at least 108 spermatozoa (male germ cells) in each ejaculate. This is in contrast to only 10-20 eggs in a mouse even after treatment with superovulatory drugs. A similar situation is true for ovulation in nearly all larger animals. For this reason alone, male germ cells will be a better target for introducing foreign DNA into the germ line, leading to the generation of transgenic animals with increased efficiency and after simple, natural mating.
- Initially, attempts were made to produce transgenic animals by adding DNA to spermatozoa which were then used to fertilize mouse eggs in vitro. The fertilized eggs were then transferred to pseudopregnant foster females, and of the pups born, 30% were reported to be transgenic and express the transgene. Despite repeated efforts by others, however, this experiment could not be reproduced and no transgenic pups were obtained. Indeed, there remains little doubt that the transgenic animals reputed to have been obtained by this method were not transgenic at all and the DNA incorporation reported was mere experimental artifact. Data collected from laboratories around the world engaged in testing this method showed that no transgenics were obtained from a total of 890 pups generated.
- In summary, it is currently possible to produce live transgenic progeny but the available methods are costly and extremely inefficient. Spermatogenic transfection in accordance with this invention, either in vitro or in vivo, provides a simple, less costly and less invasive method of producing transgenic animals and one that is potentially highly effective in transferring allogeneic as well as xenogeneic genes into the animal's germ cells. The present technology is also of great value in producing transgenic animals in large species as well as for repairing genetic defects which lead to male infertility. The present technology is also suitable for germ line gene therapy in humans and other animal species. Male germ cells that have stably integrated the DNA could be selected.
- The present invention relates to the in vivo and ex vivo (in vitro) transfection of eukaryotic animal germ cells with a desired genetic material. Briefly, the in vivo method involves injection of genetic material together with a suitable vector directly into the testicle of the animal. In this method, all or some of the male germ cells within the testicle are transfected in situ, under effective conditions. The ex vivo method involves extracting germ cells from the gonad of a suitable donor or from the animal's own gonad, using a novel isolation method, transfecting them in vitro, and then returning them to the testis under suitable conditions where they will spontaneously repopulate it. The ex vivo method has the advantage that the transfected germ cells may be screened by various means before being returned to the testis to ensure that the transgene is incorporated into the genome in a stable state. Moreover, after screening and cell sorting only enriched populations of germ cells may be returned. This approach provides a greater chance of transgenic progeny after mating.
- This invention also relates to a novel method for the isolation of spermatogonia, comprising obtaining spermatogonia from a mixed population of testicular cells by extruding the cells from the seminiferous tubules and gentle enzymatic disaggregation. The spermatogonia or stem cells which are to be genetically modified, may be isolated from a mixed cell population by a novel method including the utilization of a promoter sequence, which is only active in cycling spermatogonia stem cell populations, for example, b-Myb or a spermotogonia specific promoter, such as the c-kit promoter region, c-raf-1 promoter, ATM (axataia-telangiectasia) promoter, RBM (ribosome binding motif) promoter, DAZ (deleted in azoospermia) promoter, XRCC-1 promoter, HSP 90 (heat shock gene) promoter, or FRMI (from fragile X site) promoter, optionally linked to a reporter construct, for example, the Green Fluorescent Protein Gene (EGFP). These unique promoter sequences drive the expression of the reporter construct only in the cycling spermatogonia. The spermatogonia, thus, are the only cells in the mixed population which will express the reporter construct and they, thus, may be isolated on this basis. In the case of the green fluorescent reporter construct, the cells may be sorted with the aid of, for example, a FACs scanner set at the appropriate wavelength or they may be selected by chemical methods.
- This invention also relates to the repopulation of a testis with germ cells that have been isolated from a fresh or frozen testicular biopsy. These germ cells may or may not be genetically manipulated prior to reimplantation.
- For transfection, the method of the invention comprises administering to the animal or to germ cells in vitro, a composition comprising amounts of nucleic acid comprising polynucleotides encoding a desired trait. In addition, the composition comprises, for example, a relevant controlling promoter region made up of nucleotide sequences. This is combined with, for example, a gene delivery system comprising a cell transfection promotion agent such as retro viral vectors, adenoviral and adenoviral related vectors, or liposomal reagents or other agents used for gene therapy. These introduced under conditions effective to deliver the nucleic acid segments to the animal's germ cells optionally with the polynucleotide inserted into the genome of the germ cells. Following incorporation of the DNA, the treated animal is either allowed to breed naturally, or reproduced with the aid of assisted reproductive technologies, and the progeny selected for the desired trait.
- This technology is applicable to the production of transgenic animals for use as animal models, and to the modification of the genome of an animal, including a human, by addition, modification, or subtraction of genetic material, often resulting in phenotypic changes. The present methods are also applicable to altering the carrier status of an animal, including a human, where that individual is carrying a gene for a recessive or dominant gene disorder, or where the individual is prone to pass a multigenic disorder to his offspring.
- A preparation suitable for use with the present methods comprises a polynucleotide segment encoding a desired trait and a transfection promotion agent, and optionally an uptake promotion agent which is sometime equipped with agents protective against DNA breakdown. The different components of the transfection composition are also provided in the form of a kit, with the components described above in measured form in two or more separate containers. The kit generally contains the different components in separate containers. Other components may also be provided in the kit as well as a carrier.
- The present invention arose from a desire by the present inventors to improve on existing methods for the genetic modification of an animal's germ cells and for producing transgenic animals. The pre-existing art methods rely on direct injection of DNA into zygotes produced in vitro or in vivo, or by the production of chimeric embryos using embryonal stem cells incorporated into a recipient blastocyst. Following this, such treated embryos are transferred to the primed uterus or oviduct. The available methods are extremely slow and costly, rely on several invasive steps, and only produce transgenic progeny sporadically and unpredictably.
- In their search for a less costly, faster, and more efficient approach for producing transgenics, the present inventors devised the present method which relies on the in vivo or ex vivo (in vitro) transfection of male animal germ cells with a nucleic acid segment encoding a desired trait. The present method relies on at least one of the following strategies. A first method delivers the nucleic acid segment using known gene delivery systems in situ to the gonad of the animal (in vivo transfection), allows the transfected germ cells to differentiate in their own milieu, and then selects for animals exhibiting the nucleic acid's integration into its germ cells (transgenic animals). The thus selected animals may be mated, or their sperm utilized for insemination or in vitro fertilization to produce transgenic progeny. The selection may take place after biopsy of one or both gonads, or after examination of the animal's ejaculate amplified by the polymerase chain reaction to confirm the incorporation of the desired nucleic acid sequence. In order to simplify the confirmation of the actual incorporation of the desired nucleic acid, the initial transfection may include a co-transfected reporter gene, such as a gene encoding for Green Fluorescent Protein, which fluoresces under suitable wave-lengths of ultra-violet light.
- Alternatively, male germ cells may be isolated from a donor animal and transfected, or genetically altered in vitro to impart the desired trait. Following this genetic manipulation, germ cells which exhibit any evidence that the DNA has been modified in the desired manner are selected, and transferred to the testis of a suitable recipient animal. Further selection may be attempted after biopsy of one or both gonads, or after examination of the animal's ejaculate amplified by the polymerase chain reaction to confirm whether the desired nucleic acid sequence was actually incorporated. As described above, the initial transfection may have included a co-transfected reporter gene, such as a gene encoding the Green Fluorescent Protein. Before transfer of the germ cells, the recipient testis are generally treated in one, or a combination, of a number of ways to inactivate or destroy endogenous germ cells, including by gamma irradiation, by chemical treatment, by means of infectious agents such as viruses, or by autoimmune depletion or by combinations thereof. This treatment facilitates the colonization of the recipient testis by the altered donor cells.
- Animals that were shown to carry suitably modified sperm cells then may be either allowed to mate naturally, or alternatively their spermatozoa are used for insemination or in vitro fertilization. The thus obtained transgenic progeny may be bred, whether by natural mating or artificial insemination, to obtain further transgenic progeny. The method of this invention has a lesser number of invasive procedures than other available methods, and a high rate of success in producing incorporation into the progeny's genome of the nucleic acid sequence encoding a desired trait.
- Primordial germ cells are thought to arise from the embryonic ectoderm, and are first seen in the epithelium of the endodermal yolk sac at the E8 stage. From there they migrate through the hindgut endoderm to the genital ridges. The primitive spermatogonial stem cells, known as AO/As, differentiate into type B spermatogonia. The latter further differentiate to form primary spermatocytes, and enter a prolonged meiotic prophase during which homologous chromosomes pair and recombine. Several morphological stages of meiosis are distinguishable: preleptotene, leptotene, zygotene, pachytene, secondary spermatocytes, and the haploid spermatids. The latter undergo further morphological changes during spermatogenesis, including the reshaping of their nucleus, the formation of acrosome, and assembly of the tail. The final changes in the spermatozoon take place in the genital tract of the female, prior to fertilization. The uptake of the nucleic acid segment administered by the present in vivo method to the gonads will reach germ cells that are at one or more of these stages, and be taken up by those that are at a more receptive stage. In the ex vivo (in vitro) method of genetic modification, generally only diploid spermatogonia are used for nucleic acid modification. The cells may be modified in vivo using gene therapy techniques, or in vitro using a number of different transfection strategies.
- The inventors are, thus, providing in this patent a novel and unobvious method for; isolation of male germ cells, and for the in vivo and ex vivo (in vitro) transfection of allogeneic as well as xenogeneic DNA into an animal's germ cells. This comprises the administration to an animal of a composition comprising a gene delivery system and at least one nucleic acid segment, in amounts and under conditions effective to modify the animal's germ cells, and allowing the nucleic acid segment to enter, and be released into, the germ cells, and to integrate into their genome.
- The in vivo introduction of the gene delivery mixture to the germ cells may be accomplished by direct delivery into the animal's testis (es), where it is distributed to male germ cells at various stages of development. The in vivo method utilizes novel technology, such as injecting the gene delivery mixture either into the vasa efferentia, directly into the seminiferous tubules, or into the rete testis using, for example, a micropipette. To ensure a steady infusion of the gene delivery mixture, under pressures which will not damage the delicate tubule system in the testis, the injection may be made through the micropipette with the aid of a picopump delivering a precise measured volume under controlled amounts of pressure. The micropipette may be made of a suitable material, such as metal or glass, and is usually made from glass tubing which has been drawn to a fine bore at its working tip, e.g. using a pipette puller. The tip may be angulated in a convenient manner to facilitate its entry into the testicular tubule system. The micropipette may be also provided with a beveled working end to allow a better and less damaging penetration of the fine tubules at the injection site. This bevel may be produced by means of a specially manufactured grinding apparatus. The diameter of the tip of the pipette for the in vivo method of injection may be about 15 to 45 microns, although other sizes may be utilized as needed, depending on the animal's size. The tip of the pipette may be introduced into the rete testis or the tubule system of the testicle, with the aid of a binocular microscope with coaxial illumination, with care taken not to damage the wall of the tubule opposite the injection point, and keeping trauma to a minimum. On average, a magnification of about x25 to x80 is suitable, and bench mounted micromanipulators are not severally required as the procedure may be carried out by a skilled artisan without additional aids. A small amount of a suitable, non-toxic dye, may be added to the gene delivery fluid to confirm delivery and dissemination to the tubules of the testis. It may include a dilute solution of a suitable, non-toxic dye, which may be visualized and tracked under the microscope.
- In this manner, the gene delivery mixture is brought into intimate contact with the germ cells. The gene delivery mixture typically comprises the modified nucleic acid encoding the desired trait, together with a suitable promoter sequence, and optionally agents which increase the uptake of the nucleic acid sequence, such as liposomes, retroviral vectors, adenoviral vectors, adenovirus enhanced gene delivery systems, or combinations thereof. A reporter construct such as the gene encoding for Green Fluorescent Protein may further be added to the gene delivery mixture. Targeting molecules such as c-kit ligand may be added to the gene delivery mixture to enhance the transfer of the male germ cell.
- For the ex vivo (in vitro) method of genetic alteration, the introduction of the modified germ cells into the recipient testis may be accomplished by direct injection using a suitable micropipette. Support cells, such as Leydig or Sertoli cells that provide hormonal stimulus to spermatogonial differentiation, may be transferred to a recipient testis along with the modified germ cells. These transferred support cells may be unmodified, or, alternatively, may themselves have been transfected, together with or separately from the germ cells. These transferred support cells may be autologous or heterologous to either the donor or recipient testis. A preferred concentration of cells in the transfer fluid may easily be established by simple experimentation, but will likely be within the range of about 1×105-10×105 cells per 10 μl of fluid. This micropipette may be introduced into the vasa efferentia, the rete testis or the seminiferous tubules, optionally with the aid of a picopump to control pressure and/or volume, or this delivery may be done manually. The micropipette employed is in most respects similar to that used for the in vivo injection, except that its tip diameter generally will be about 70 microns. The microsurgical method of introduction is similar in all respects to that used for the in vivo method described above. A suitable dyestuff may also be incorporated into the carrier fluid for easy identification of satisfactory delivery of the transfected germ cells.
- Once in contact with germ cells, whether they are in situ in the animal or vitro, the gene delivery mixture facilitates the uptake and transport of the xenogeneic genetic material into the appropriate cell location for integration into the genome and expression. A number of known gene delivery methods may be used for the uptake of nucleic acid sequences into the cell.
- “Gene delivery (or transfection) mixture”, in the context of this patent, means selected genetic material together with an appropriate vector mixed, for example, with an effective amount of lipid transfection agent. The amount of each component of the mixture is chosen so that the transfection of a specific species of germ cell is optimized. Such optimization requires no more than routine experimentation. The ratio of DNA to lipid is broad, preferably about 1:1, although other proportions may also be utilized depending on the type of lipid agent and the DNA utilized. This proportion is not crucial.
- “Transfecting agent”, as utilized herein, means a composition of matter added to the genetic material for enhancing the uptake of exogenous DNA segment(s) into a eukaryotic cell, preferably a mammalian cell, and more preferably a mammalian germ cell. The enhancement is measured relative to the uptake in the absence of the transfecting agent. Examples of transfecting agents include adenovirus-transferrin-polylysine-DNA complexes. These complexes generally augment the uptake of DNA into the cell and reduce its breakdown during its passage through the cytoplasm to the nucleus of the cell. These complexes may be targeted to the male germ cells using specific ligands which are recognized by receptors on the cell surface of the germ cell, such as the c-kit ligand or modifications thereof.
- “Virus”, as used herein, means any virus, or transfecting fragment thereof, which may facilitate the delivery of the genetic material into male germ cells. Examples of viruses which are suitable for use herein are adenoviruses, adeno-associated viruses, retroviruses such as human immune-deficiency virus, lentiviruses, such as Moloney murine leukemia virus and the retrovirus vector derived from Moloney virus called vesicular-stomatitis-virus-glycoprotein (VSV-G)-Moloney murine leukemia virus, mumps virus, and transfecting fragments of any of these viruses, and other viral DNA segments that facilitate the uptake of the desired DNA segment by, and release into, the cytoplasm of germ cells and mixtures thereof. The mumps virus is particularly suited because of its affinity for immature sperm cells including spermatogonia. All of the above viruses may require modification to render them non-pathogenic or less antigenic. Other known vector systems, however, may also be utilized within the confines of the invention.
- “Genetic material”, as used herein, means DNA sequences capable of imparting novel genetic modification(s), or biologically functional characteristic(s) to the recipient animal. The novel genetic modification(s) or characteristic(s) may be encoded by one or more genes or gene segments, or may be caused by removal or mutation of one or more genes, and may additionally contain regulatory sequences. The transfected genetic material is preferably functional, that is it expresses a desired trait by means of a product or by suppressing the production of another. Examples of other mechanisms by which a gene's function may be expressed are genomic imprinting, i.e. inactivation of one of a pair of genes (alleles) during very early embryonic development, or inactivation of genetic material by mutation or deletion of gene sequences, or by expression of a dominant negative gene product, among others.
- In addition, novel genetic modification(s) may be artificially induced mutations or variations, or natural allelic mutations or variations of a gene(s). Mutations or variations may be induced artificially by a number of techniques, all of which are well known in the art, including chemical treatment, gamma irradiation treatment, ultraviolet radiation treatment, ultraviolet radiation, and the like. Chemicals useful for the induction of mutations or variations include carcinogens such as ethidium bromide and others known in the art.
- DNA segments of specific sequences may also be constructed to thereby incorporate any desired mutation or variation or to disrupt a gene or to alter genomic DNA. Those skilled in the art will readily appreciate that the genetic material is inheritable and is, therefore, present in almost every cell of future generations of the progeny, including the germ cells.
- Among novel characteristics are the expression of a previously unexpressed trait augmentation or reduction of an expressed trait, over expression or under expression of a trait, ectopic expression, that is expression of a trait in tissues where it normally would not be expressed, or the attenuation or elimination of a previously expressed trait. Other novel characteristics include the qualitative change of an expressed trait, for example, to palliate or alleviate, or otherwise prevent expression of an inheritable disorder with a multigenic basis.
- The method of the invention is suitable for application to a variety of vertebrate animals, all of which are capable of producing gametes, i.e. sperm or ova. Thus, in accordance with the invention novel genetic modification(s) and/or characteristic(s) may be imparted to animals, including mammals, such as humans, non-human primates, for example simians, marmosets, domestic agricultural animals such as sheep, cows, pigs, horses, particularly race horses, marine mammals, feral animals, rodents such as mice and rats, and the like. Other animals include fowl such as chickens, turkeys, ducks, ostriches, geese, rare and ornamental birds, and the like. Of particular interest are endangered species of wild animal, such rhinoceros, tigers, cheetahs, certain species of condor, and the like.
- Broadly speaking, a “transgenic” animal is one that has had foreign DNA permanently introduced into its cells. The foreign gene(s) which (have) been introduced into the animal's cells is (are) called a “transgene(s)”. The present invention is applicable to the production of transgenic animals containing xenogeneic, i.e., exogenous, transgenic genetic material, or material from a different species, including biologically functional genetic material, in its native, undisturbed form in which it is present in the animal's germ cells. In other instances, the genetic material is “allogeneic” genetic material, obtained from different strains of the same species, for example, from animals having a “normal” form of a gene, or a desirable allele thereof. Also the gene may be a hybrid construct consisting of promoter DNA sequences and DNA coding sequences linked together. These sequences may be obtained from different species or DNA sequences from the same species that are not normally juxtaposed. The DNA construct may also contain DNA sequences from prokaryotic organisms, such as bacteria, or viruses.
- In one preferred embodiment, the transfected germ cells of the transgenic animal have the non-endogenous (exogenous) genetic material integrated into their chromosomes. This is what is referred to as a “stable transfection”. This is applicable to all vertebrate animals, including humans. Those skilled in the art will readily appreciate that any desired traits generated as a result of changes to the genetic material of any transgenic animal produced by this invention are inheritable. Although the genetic material was originally inserted solely into the germ cells of a parent animal, it will ultimately be present in the germ cells of future progeny and subsequent generations thereof. The genetic material is also present in the differentiated cells, i.e. somatic cells, of the progeny. This invention also encompasses progeny resulting from breeding of the present transgenic animals. The transgenic animals bred with other transgenic or non-transgenic animals of the same species will produce some transgenic progeny, which should be fertile. This invention, thus, provides animal line(s) which result from breeding of the transgenic animal(s) provided herein, as well as from breeding their fertile progeny.
- “Breeding”, in the context of this patent, means the union of male and female gametes so that fertilization occurs. Such a union may be brought about by natural mating, i.e. copulation, or by in vitro or in vivo artificial means. Artificial means include, but are not limited to, artificial insemination, in vitro fertilization, cloning and embryo transfer, intracytoplasmic spermatozoal microinjection, cloning and embryo splitting, and the like. However, others may also be employed.
- The transfection of mature male germ cells may be also attained utilizing the present technology upon isolation of the cells from a vertebrate, as is known in the art, and exemplified in Example 10. The thus isolated cells may then be transfected ex vivo (in vitro), or cryopreserved as is known in the art and exemplified in Example 11. The actual transsection of the isolated testicular cells may be accomplished, for example, by isolation of a vertebrate's testes, decapsulation and teasing apart and mincing of the seminiferous tubules. The separated cells may then be incubated in an enzyme mixture comprising enzymes known for gently breaking up the tissue matrix and releasing undamaged cells such as, for example, pancreatic trypsin, collagenase type I, pancreatic DNAse type I, as well as bovine serum albumin and a modified DMEM medium. The cells may be incubated in the enzyme mixture for a period of about 5 min to about 30 min, more preferably about 15 to about 20 min, at a temperature of about 33° C. to about 37° C., more preferably about 36 to 37° C. After washing the cells free of the enzyme mixture, they may be placed in an incubation medium such as DMEM, and the like, and plated on a culture dish. Any of a number of commercially available transfection mixtures may be admixed with the polynucleotide encoding a desire trait or product for transfection of the cells. The transfection mixture may then be admixed with the cells and allowed to interact for a period of about 2 hrs to about 16 hrs, preferably about 3 to 4 hrs, at a temperature of about 33° C. to about 37° C., preferably about 36° C. to 37° C., and more preferably in a constant and/or controlled atmosphere. After this period, the cells are preferably placed at a lower temperature of about 33° C. to about 34° C., preferably about 30-35° C. for a period of about 4 hrs to about 20 hrs, preferably about 16 to 18 hrs. Other conditions which do not deviate radically from the ones described may also be utilized as an artisan would know.
- The present method is applicable to the field of gene therapy, since it permits the introduction of genetic material encoding and regulating specific genetic traits. Thus, in the human, for example, by treating parents it is possible to correct many single gene disorders which otherwise might affect their children. It is similarly possible to alter the expression of fully inheritable disorders or those disorders having at least a partially inherited basis, which are caused by interaction of more than one gene, or those which are more prevalent because of the contribution of multiple genes. This technology may also be applied in a similar way to correct disorders in animals other than human primates. In some instances, it may be necessary to introduce one or more “gene(s)” into the germ cells of the animal to attain a desired therapeutic effect, as in the case where multiple genes are involved in the expression or suppression of a defined trait. In the human, examples of multigenic disorders include diabetes mellitus caused by deficient production of, or response to, insulin, inflammatory bowel disease, certain forms of atheromatus cardiovascular disease and hypertension, schizophrenia and some forms of chronic depressive disorders, among others. In some cases, one gene may encode an expressible product, whereas another gene encodes a regulatory function, as is known in the art. Other examples are those where homologous recombinant methods are applied to repair point mutations or deletions in the genome, inactivation of a gene causing pathogenesis or disease, or insertion of a gene that is expressed in a dominant negative manner, or alterations of regulating elements such as gene promoters, enhancers, the untranslated tail region of a gene, or regulation of expansion of repeated sequences of DNA which cause such diseases as Huntingdon's chorea, Fragile-X syndrome and the like.
- A specific reproductive application of the present method is to the treatment of animals, particularly humans, with disorders of spermatogenesis. Defective spermatogenesis or spermiogenesis frequently has a genetic basis, that is, one or mutations in the genome may result in failure of production of normal sperm cells. This may happen at various stages of the development of germ cells, and may result in male infertility or sterility. The present invention is applicable, for example, to the insertion or incorporation of nucleic acid sequences into a recipient's genome and, thereby, establish spermatogenesis in the correction of oligozoospermia or azoospermia in the treatment of infertility. Similarly, the present methods are also applicable to males whose subfertility or sterility is due to a motility disorder with a genetic basis.
- The present method is additionally applicable to the generation of transgenic animals expressing agents which are of therapeutic benefit for use in human and veterinary medicine or well being. Examples include the production of pharmaceuticals in domestic cows' milk, such as factors which enhance blood clotting for patients with types of haemophilia, or hormonal agents such as insulin and other peptide hormones.
- The present method is further applicable to the generation of transgenic animals of a suitable anatomical and physiological phenotype for human xenograft transplantation. Transgenic technology permits the generation of animals which are immune-compatible with a human recipient. Appropriate organs, for example, may be removed from such animals to allow the transplantation of, for example, the heart, lung and kidney.
- In addition, germ cells transfected in accordance with this invention may be extracted from the transgenic animal, and stored under conditions effective for later use, as is known in the art. Storage conditions include the use of cryopreservation using programmed freezing methods and/or the use of cryoprotectants, and the use of storage in substances such as liquid nitrogen. The germ cells may be obtained in the form of a male animal's semen, or separated spermatozoa, or immature spermatocytes, or whole biopsies of testicular tissue containing the primitive germ cells. Such storage techniques are particularly beneficial to young adult humans or children, undergoing oncological treatments for such diseases such as leukemia or Hodgkin's lymphoma. These treatments frequently irreversibly damage the testicle and, thus, render it unable to recommence spermatogenesis after therapy by, for example, irradiation or chemotherapy. The storage of germ cells and subsequent testicular transfer allows the restoration of fertility. In such circumstances, the transfer and manipulation of germ cells as taught in this invention are accomplished, but transfection is generally not relevant or needed.
- In species other than humans, the present techniques are valuable for transport of gametes as frozen germ cells. Such transport will facilitate the establishment of various valued livestock or fowl, at a remote distance from the donor animal. This approach is also applicable to the preservation of endangered species across the globe.
- The invention will now be described in greater detail by reference to the following non-limiting examples. The pertinent portions of the contents of all references, and published patent applications cited throughout this patent necessary for enablement purposes are hereby incorporated by reference.
- Transfection of Male Germ Cells In Vivo
- In Vivo Adenovirus-Enhanced Transferrin-Polylysine-Mediated Delivery of Green Lantern Reporter Gene Delivery System to Testicular Cells
- The adenovirus enhanced transfernin-polylysine-mediated gene delivery system has been described and patented by Curiel al. (Curiel D. T., et al. Adenovirus enhancement of transferrin-polylysine-mediated gene delivery, PNAS USA 88: 8850-8854 (1991). The delivery of DNA depends upon endocytosis mediated by the transferrin receptor (Wagner et al., Transferrin-polycation conjugates as carriers for DNA uptake into cells, PNAS (USA) 87: 3410-3414 (1990). In addition this method relies on the capacity of adenoviruses to disrupt cell vesicles, such as endosomes and release the contents entrapped therein. This system can enhance the gene delivery to mammalian cells by as much as 2,000 fold over other methods.
- The gene delivery system employed for the in vivo experiments was prepared as shown in examples below.
- Human transferrin was conjugated to poly (L-lysine) using EDC (1-ethyl-3-(3-dimethyl aminopropyl carbodiimide hydrochloride) (Pierce), according to the method of Gabarek and Gergely (Gabarek & Gergely, Zero-length cross-linking procedure with the use of active esters, Analyt. Biochem 185 : 131 (1990)). In this reaction, EDC reacts with a carboxyl group of human transferrin to form an amine-reactive intermediate. The activated protein was allowed to react with the poly (L-lysine) moiety for 2 hrs at room temperature, and the reaction was quenched by adding hydroxylamine to a final concentration of 10 mM. The conjugate was purified by gel filtration, and stored at −20° C.
- The Green Lantern-1 vector (Life Technologies, Gibco BRL, Gaithersberg, Md.) is a reporter construct used for monitoring gene transfection in mammalian cells. It consists of the gene encoding the Green Fluorescent Protein (GFP) driven by the cytomegalovirus (CMV) immediate early promoter. Downstream of the gene is a SV40 polyadenylation signal. Cells transfected with Green Lantern-1 fluoresce with a bright green light when illuminated with blue light. The excitation peak is 490 nm.
- Adenovirus dI312, a replication-incompetent strain deleted in the E1a region, was propagated in the E1a trans-complementing cell line 293 as described by Jones and Shenk (Jones and Shenk, PNAS USA (1979) 79: 3665-3669). A large scale preparation of the virus was made using the method of Mittereder and Trapnell (Mittereder et al., “Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy”, J. Urology, 70: 7498-7509 (1996)). The virion concentration was determined by UV spectroscopy, 1 absorbance unit being equivalent to 10 viral particles /ml. The purified virus was stored at −70° C.
- 6 μg transferrin-polylysine complex from Example 1 were mixed in 7.3×107 adenovirus d1312 particles prepared as in Example 3, and then mixed with 5 μg of the Green Lantern DNA construct of Example 2, and allowed to stand at room temperature for 1 hour. About 100 μl of the mixture were drawn up into a micropipette, drawn on a pipette puller, and slightly bent on a microforge. The filled micropipette was then attached to a picopump (Eppendorf), and the DNA complexes were delivered under continuous pressure, in vivo to mice as described in Example 6.
- Controls were run following the same procedure, but omitting the transferrin-poly-lysine-DNA-viral complexes from the administered mixture.
- The conjugated adenovirus particle complexed with DNA were tested on CHO cells in vitro prior to in vivo testing. For these experiments a luciferase reporter gene was used due to the ease of quantifying luciferase activity. The expression construct consists of a reporter gene encoding luciferase, is driven by the CMV promoter (Invitrogen, Carlsbad, Calif. 92008). CHO cells were grown in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal calf serum. For gene transfer experiments CHO cells were seeded into 6 cm tissue culture plates and grown to about 50% confluency (5×105 cells). Prior to transfection the medium was aspirated and replaced with serum free DMEM. Cells were either transfected with transferrin-polylysine-DNA complexes or with lipofectin DNA aggregates. For the transferrin-polylysine mediated DNA transfer, the DNA-adenovirus complexes were added to the cells at a concentration of 0.05-3.2×104 adenovirus particles per cell. Plates were returned to the 5% CO2 incubator for 1 hour at 37° C. After 1 hour 3 ml of complete media was added to the wells and the cells were allowed to incubate for 48 hours before harvesting. The cells were removed from the plate, counted and then lysed for measurement of luciferase activity.
- For cells transfected by lipofectin, 1 μg of CMV-luciferase DNA was incubated with 17 μl of Lipofectin (Life Technologies). The DNA-lipofectin aggregates were added to the CHO cells and allowed to incubate at 37° C. at 5% CO2 for 4 hours. Three mls of complete medium was added then to the cells and they were allowed to incubate for 48 hours. The cells were harvested, counted and lysed for luciferase activity. The luciferase activity was measured by a luminometer. The results obtained are shown in Table 1.
- The data included in Table 1 below show that the adenovirus-enhanced transferrin-polylysine gene delivery system is 1,808 fold more efficient than lipofection for transfection of CHO cells.
TABLE 1 Comparison of Lipofection & Adenovirus Enhanced Transferrin-polylysine Transfection of CHO Cells Luciferase Sample Treatment Activity (RLU) 1 1 × 107 particles + 6 ug CMV-Luc 486 2 2.5 × 107 particles + 6 ug CMV-Luc 1,201 3 5.0 × 107 particles + 6 ug CMV-luc 11,119 4 1 × 109 particles + 6 ug CMV-Luc 2,003,503 5 Lipofection 1,108 6 Unmanipulated cells 155 - The GFP DNA-transferrin-polylysine viral complexes, prepared as described in Example 4 above, were delivered into the seminiferous tubules of three (3)-week-old B6D2F1 male mice. The DNA delivery by transferrin receptor-mediated endocytosis is described by Schmit et al. and Wagner et al. (Schmit et al., Cell 4: 41-51 (1986); Wagner, E., et al. PNAS (1990), (USA) 81: 3410-3414 (1990)). In addition, this delivery system relies on the capacity of adenoviruses to disrupt cell vesicles, such as endosomes and release the contents entrapped therein. The transfection efficiency of this system is almost 2,000 fold higher than lipofection.
- The male mice were anesthetized with 2% Avertin (100% Avertin comprises 10 g 2,2,2-tribromoethanol (Aldrich) and 10 ml t-amyl alcohol (Sigma), and a small incision made in their skin and body wall, on the ventral side of the body at the level of the hind leg. The animal's testis was pulled out through the opening by grasping at the testis fat pad with forceps, and the vas efferens tubules exposed and supported by a glass syringe. The GFP DNA-transferrin-polylysine viral complexes were injected into a single vasa efferentia using a glass micropipette attached to a hand held glass syringe or a pressurized automatic pipettor (Eppendorf), and Trypan blue added to visualize the entry of the mixture into the seminiferous tubules. The testes were then placed back in the body cavity, the body wall was sutured, the slin closed with wound clips, and the animal allowed to recover on a warm pad.
- Nine (9) days after delivery of the genetic material to the animals' testis, two of the animals were sacrificed, their testes removed, cut in half, and frozen in liquid nitrogen. The DNA from one half of the tissues, and the RNA from the other half of the tissues were extracted and analyzed.
- (a) Detection of DNA
- The presence of GFP DNA in the extracts was tested 9 days after administration of the transfection mixture using the polymerase chain reaction, and GFP specific oligonucleotides. GFP DNA was present in the testes of the animals that had received the DNA complexes, but was absent from sham operated animals.
- (b) Detection of RNA
- The presence of GFP mRNA was assayed in the testes of experimental animals as follows. RNA was extracted from injected, and non-injected testes, and the presence of the GFP messages was detected using reverse transcriptase PCR (RTPCR) with GFP specific primers. The GFP message was present in the injected testes, but not in the control testes. Thus, the DNA detected above by PCR analysis is, in fact, episomal GFP DNA, or GFP DNA which has integrated into the chromosomes of the animal. The transfected gene was being expressed.
- Two males, one having received an injection with the GFP transfection mixture and a control to whom only surgery was administered, were sacrificed 4 days after injection, and their testes excised, and fixed in 4% paraformaldehyde for 18 hours at 4° C. The fixed testis was then placed in 30% sucrose in PBS with 2 mM MgCl2 for 18 hours at 4° C., embedded in OCT frozen on dry ice, and sectioned. When the testes of both animals were examined with a confocal microscope with fluorescent light at a wavelength of 488 nM, bright fluorescence was detected in the tubules of the GFP-injected mice, but not in the testes of the controls. Many cells within the seminferous tubules of the GFP-injected mouse showed bright fluorescence, which evidences that they were expressing Fluorescent Green Protein.
- GFP transfected males were mated with normal females. The females were allowed to complete gestation, and the pups to be born. The pups (F1 offspring or progeny) were screened for the presence of the novel genetic material(s).
- Cells were isolated from the testes of three 10-day-old mice. The testes were decapsulated and the seminiferous tubules were teased apart and minced with sterile needles. The cells were incubated in enzyme mixture for 20 minutes at 37° C. The enzyme mixture was made up of 10 mg bovine serum albumin (embryo tested), 50 mg bovine pancreatic trypsin type III, Clostridium collagenase type I, 1 mg bovine pancreatic DNAse type I in 10 mls of modified HTF medium (Irvine Scientific, Irvine, Calif.). The enzymes were obtained from Sigma Company (St. Louis, Mo. 63178). After digestion, the cells were washed twice by centrifugation at 500× g with HTF medium and resuspended in 250 μl HTF medium. The cells were counted, and 0.5×106 cells were plated in a 60 mm culture dish in a total volume of 5 ml DMEM (Gibco-BRL, Life Technologies, Gaithesburg, Md. 20884). A transfection mixture was prepared by mixing 5 μg Green Lantern DNA (Gibco-BRL, Life Technologies, Gaithesburg, Md. 20884) with 201 Superfect (Quagen, Santa Clarita, Calif. 91355) and 150 μl DMEM. The transfection mix was added to the cells and they were allowed to incubate for 3 hours at 37° C., 5% CO2 The cells were transferred to a 33° C. incubator and incubated overnight.
- The following morning the cells were assessed for transfection efficiency by counting the number of fluorescent cells. In this experiment the transfection efficiency was 90% (Figure not shown). The testicular cells transfected with Green Lantern viewed with Nomaski optics x20 show the same cells viewed with FITC. Nearly all the cells were fluorescent, which is confirmation of their successful transfection.
- The cells were injected into the testis via the vasa efferentia using a micropipette. 3×105 cells in a total volume of 50 μl were used for the injection. The cells were mixed with Trypan blue prior to the injection. Three adult mice were injected with transfected cells. The Balb/cByJ recipient mice had been irradiated 6 weeks prior to the injection with 800 Rads of gamma irradiation. One mouse became sick and was sacrificed 48 hours after the injection. The testes from this mouse were dissected, fixed and processed for histology.
- The two remaining males were bred with normal females as shown. After 4 months pups were born. Litters are currently being screened for the integration of the transgene.
- A cell suspension was prepared from mice of different ages as described below.
Group I: 7-10 day olds Group II: 15-17 day olds Group III: 24-26 day olds - The mice's testes were dissected, placed in phosphate buffered saline (PBS) decapsulated, and the seminiferous tubules were teased apart. Seminiferous tubules from groups I and II were transferred to HEPES buffered culture medium (D-MEM) (Gibco-BRL, Life Technologies, Gaithesburg, Md. 20884) containing 1 mg/ml Bovine serum albumin (BSA) (Sigma, St. Louis, Mo. 63178) and Collagenase Type I (Sigma) for the removal of interstitial cells. After a 10 minute incubation at 33° C., the tubules were lifted into fresh culture medium. This enzymatic digestion was not carried out on the testes from group I because of their fragility.
- The tubules from group II and m mice or the whole tissue from group I mice were transferred to a Petri dish with culture medium and were cut into 0.1-1 mm pieces using a sterile scalpel and needle. The minced tissue was centrifuged at 500× g for 5 minutes and the pellet was resuspended in 1 ml of enzyme mix. The enzyme mix was made up in D-DMEM with HEPES (GibcoBRL) and consisted of 1 mg/ml bovine serum albumin (BSA) (Sigma, embryo tested), 1 mg/ml collagenase I (Sigma) and 5 mg/ml bovine pancreatic trypsin (Sigma) and 0.1 mg/ml deoxyribonuclease I (DN-EP, Sigma). The tubules were incubated in enzyme mix for 30 minutes at 33° C. After the incubation, 1 ml of medium was added to the mix and the cells were centrifuged at 500× g for 5 min. The cells were washed twice in medium by centrifugafion and resuspension. After the final wash the cell pellet was resuspended in 250 μl of culture medium and counted.
- (a) Propanediol (PROH)-Sucrose Method
- Testicular cells from a total of 31 mice (age 8-12 weeks) were cryopreserved using 6 different freezing and thawing protocols. In addition to freezing cell supsensions, pieces of testicular tissue were frozen (see freezing method above). The cell suspension was prepared as described above.
- The cell suspension was incubated in a buffer stock solution consisting of 80% phosphate buffered saline (PBS) and 20% human serum (SPR, Helsinki, Finland) for 5 minutes. The cells were then incubated in 1.5M PROH for 10 minutes, pelleted by centrifugation and resuspended in 1.5M PROH with 0.1M sucrose. The cell suspension was loaded into straws (0.25 μm, Paillette, L'Aigle, France) or 1 ml cryogenic vials (Nunc cryotube). Samples were frozen in a controlled temperature freezing machine (Planer Kryo, Series III, Planer Biomed, Sunbury on Thames, UK). The samples were cooled at a rate of 2° C./min to −8° C., and seeded manually using forceps cooled in liquid nitrogen. After 10 min the samples were cooled at 0.3° C./min to −30° C. after which they were cooled at a rate of −50° C./min to −150° C. Samples were then stored in liquid nitrogen at −196° C.
- The samples were removed from liquid nitrogen and kept at room temperature for 2 min. The samples were incubated in 1M PROH+0.1M sucrose for 5 min, followed by an incubation in 0.5M PROH+0.1M sucrose for 5 min and then in 0.1M sucrose for 10 min. The cell suspension was placed in buffer stock.
- (b) Glycerol Yolk Buffer Method
- The cell suspension was pipetted into a vial and the yolk buffer freezing medium (Irvine Scientific, Santa Ana, Calif.) was added drop by drop to make up approximately 50% of the total volume. The samples were cooled in a controlled freezer at an initial cooling rate of 0.5° C./min to a temperature of 1.5° C. The samples were then cooled at 10° C./min until they reached a temperature of −80° C. On reaching this temperature the samples were placed in liquid nitrogen for storage.
- Samples were removed from liquid nitrogen and thawed at room temperature. The suspension was centrifuged and the pelleted cells were resuspended in PBS.
- (c) DMSO Method
- Cells were pipetted into a cryogenic vial containing 60% medium 199 with Earle's salts (Gibco, Gaithesburg, Md.), 20% human AB serum. 20% DMSO was added to the cells drop by drop to make up 50% of the total volume. The cells were cooled at a rate of 4° C./min to 0° C. and then at 1° C./min to −80° C., then at 10° C./min to −100° C. and finally at 20° C./min to −160° C. The samples were then stored in liquid nitrogen.
- Samples were removed from liquid nitrogen and thawed at room temperature. The suspension was centrifiuged and the pelleted cells were resuspended in PBS.
- (d) DMSO-Heparin Method
- Cells were pipetted into a cryogenic vial. A solution containing 45% 5000U/ml heparin (Tovens medicinske fabrik, Ballerup, Denmark), 15% DMSO and 40% albumin (SPR) in PBS was added drop by drop to make up 50% of the total volume. The freezing and thawing programme was the same as that used for the glycerol yolk buffer method.
- (e) Quick DMSO method
- Cells were pipetted into a cryogenic vial and a freezing solution containing 90% fetal calf serum and 10% DMSO was added at room temperature to make up 90% of the total volume. The samples were placed in a −70° C. freezer (Revco Scientific Corp., Asheville, N.C.) for 24 hours. The samples were then stored in liquid nitrogen. The thawing procedure was that same as that used for the Glycerol yolk method.
- (f) Quick Glycerol Method
- The cells were pipetted into a cryogenic vial and a freezing solution containing 70% DMEM, 20% fetal calf serum and 10% filtered glycerol was added to the cells to make up 90% of the total volume. The resuspension was incubated at 37° C. for 10 min. The samples were placed in a −70° C. freezer for 24 hours after which they were stored in liquid nitrogen.
- The thawing procedure was the same as that described for the Glycerol yolk method.
- (g) Freezing Testicular Tissue
- The method used for freezing whole testicular tissue was the same as the method we described previously for freezing ovarian tissue (Hovatta, et al., Human Reprod. 11:1268-1272 (1996). The testicles of 6 mice were decapsulated in culture medium (D-MEM) and cut into 0.3-1.0 mm pieces. The tissue pieces were placed in medium containing 1.5M PROH in PBS with 20% serum for 10 min. at room temperature. They were transferred to cyrogenic vials and cooled at 2° C./min to −8° C. The vials were seeded manually with forceps dipped in liquid nitrogen. After 10 min the cooling was continued at a rate of 0.3° C./min to −30° C. and then at a rate of 50° C./min to −150° C. When the samples reached this temperature they were transferred to liquid nitrogen.
- The vials were removed from the liquid nitrogen and allowed to come to room temperature for 2 min. They were then placed in a water bath at 30° C. until they had thawed. The tissue pieces were transferred to a Petri dish containing 1.0M PROH, 0.1M sucrose and 20% serum in PBS for 5 min. They were then transferred to a solution containing 0.5M PROH, 0.1M sucrose and 20% serum in PBS for 5 min and then to a solution containing 0.1M sucrose with 20% serum in PBS for 10 min. The cells were kept in culture medium.
- The results obtained from the above experimental procedures are summarized in Table 2 below.
TABLE 2 Comparison of Results by Different Methods Method Cell Viability after Freeze/Thaw Propanediol-Sucrose 63% Glyerol-Yolk Buffer 56% DMSO 50% Quick DMSO 33% DMSO-Heparin 23% Quick-Glycerol 13% - From Table 2 above, it may be seen that the testicular cells that had been frozen using the propanediol-sucrose method had the highest percentage of viable cells upon thawing than cells frozen using the other methods. The propanediol-sucrose freezing method was significantly less damaging to testicular cells than the DMSO method used by Avarbock et al., 1996 for freezing testicular cells prior to transfer. The propanediol-sucrose method was also shown to be good for freezing human ovarian tissue as described by Hovatta et al. (Hovatta et al., Human Reprod. 11: 1268-1272 (1996a), the relevant part of which is incorporated herein by reference, and pieces of testicular tissue.
- The testicular spermatozoa from a human biopsy were frozen-thawed using the glycerol-yolk buffer method, and then used for intracytoplasmic injection of eggs (ICSI). A successful pregnancy resulted (Hovatta, O. et al., Pregnancy resulting from intracytoplasmic injection of spermatozoa from a frozen thawed testicular biopsy, Human Reprod. 11: 2472-2473 (1996b).
Claims (134)
1. An in vivo method of incorporating a polynucleotide into a male vertebrate's germ cells, comprising
administering to a male vertebrate's gonads a transfection mixture comprising at least one polynucleotide encoding a desired trait or product, and at least one transfecting agent, and optionally a genetic selection marker, and under conditions effective to reach the vertebrate's germ cells or precursors thereof; and
allowing the polynucleotide encoding a desired trait or product to be taken up by, and released into, the germ cells or precursors thereof.
2. The method of claim 1 , further comprising allowing the incorporation of the released polynucleotide into the genome of the germ cells.
3. The method of claim 1 wherein the transfecting agent is selected from the group consisting of liposomes, viral vectors, transferrin-polylysine enhanced viral vectors, retroviral vectors, lentiviral vectors, and uptake enhancing DNA segments, or comprises a mixture of any members of said group.
4. The method of claim 3 , wherein the transfecting agent comprises a viral vector selected from the group consisting of retroviral vectors, adenoviral vectors, transferrin-polylysine enhanced adenoviral vectors, human immunodeficiency virus vectors, lentiviral vectors, Moloney murine leukemia virus-derived vectors, mumps vectors, and virus-derived DNAs that facilitate polynucleotide uptake by and release into the cytoplasm of germ cells, or comprises an operative fragment of- or mixture of any members of said group.
5. The method of claim 1 , wherein the transfecting agent comprises an adenovirus vector having endosomal lytic activity, and the polynucleotide is operatively linked to the vector.
6. The method of claim 1 , wherein the transfecting agent comprises a lipid transfecting agent.
7. The method of claim 1 , wherein the transfecting agent further comprises a male-germ-cell-targeting molecule.
8. The method of claim 7 , wherein the male-germ-cell-targeting molecule is specific for targeting spermatogonia, and is a c-kit ligand.
9. The method of claim 1 , where the transfection mixture further comprises an immunosuppressing agent.
10. The method of claim 9 , wherein the immunosuppressing agent is selected from the group consisting of cyclosporin and corticosteroids, and the agent is administered systemically.
11. The method of claim 1 , wherein the transfection mixture is administered by injection.
12. The method of claim 11 , where injection comprises percutaneous injection into the vertebrate's testis.
13. The method of claim 1 , wherein the transfection mixture is administered into the vertebrate's testis.
14. The method of claim 13 , wherein the transfection mixture is directly administered into the vertebrate's vas efferens.
15. The method of claim 13 , wherein the transfection mixture is directly administered into a seminiferous tubule of the vertebrate's testis.
16. The method of claim 1 , wherein the transfection mixture is directly administered into the rete of the vertebrate's testis.
17. The method of claim 1 , wherein the vertebrate is a mammal.
18. The method of claim 17 , wherein the mammal is a human.
19. The method of claim 17 , wherein the mammal is selected from the group consisting of human and non-human primates, farm mammals, and marine mammals.
20. The method of claim 19 , wherein the farm mammal is selected from the group consisting of swine, equines, ovines and bovines.
21. The method of claim 1 , wherein the vertebrate is a bird selected from the group consisting of ducks, geese, turkeys and chickens.
22. The method of claim 1 , wherein the vertebrate is selected from the group consisting of wild and domesticated vertebrates.
23. A gene therapy method, comprising the method of claim 1 , wherein the polynucleotide encoding a desired trait or product is derived from the same species as the male vertebrate.
24. A non-human transgenic vertebrate produced by the method of claim 1 , or progeny thereof, wherein the polynucleotide encoding a desired trait or product is derived from any genome.
25. The non-human transgenic vertebrate of claim 24 , comprising native germ cells carrying in their genome at least one xenogeneic polynucleotide.
26. The non-human transgenic vertebrate of claim 25 , wherein the polynucleotide comprises at least one biologically functional gene.
27. The non-human transgenic vertebrate of claim 24 , being a male.
28. The progeny resulting from breeding the non-human transgenic vertebrate of claim 27 , with a female of the same species.
29. A non-human vertebrate, carrying in its germ cells at least one xenogeneic polynucleotide sequence, said non-human vertebrate being obtained by breeding the vertebrate of claim 24 , or progeny thereof, with a member of the opposite sex of the same species, and selecting the bred progeny for the presence of the transfected xenogeneic polynucleotide.
30. The non-human vertebrate of claim 29 , which is selected from the group consisting of mammals and birds.
31. The non-human vertebrate of claim 30 , which is a mammal selected from the group consisting of humans and non-human primates, canines, felines, swine, farm and marine mammals, pachyderms, equines, murine, ovines and bovine, or a bird selected from the group consisting of ducks, geese, turkeys and chickens.
32. The vertebrate of claim 31 , wherein the mammal is selected from the group consisting of wild and domesticated mammals.
33. The vertebrate of claim 31 , wherein the mammal is a farm or marine animal.
34. The vertebrate of claim 30 , wherein the mammal is selected from the group consisting of a bull and a pig, and the bird is a chicken.
35. A germ cell, obtained from the vertebrate of claim 25 .
36. Vertebrate male germ cells, obtained by a method comprising the method of claim 1; raising the transfected male vertebrate; and collecting male germ cells produced by the male vertebrate.
37. The vertebrate male germ cells of claim 36 , wherein the method for obtaining them further comprises breeding the transfected vertebrate to produce progeny, and then collecting the germ cells produced by a male progeny.
38. Vertebrate semen, comprising the germ cell of claim 35 .
39. Vertebrate semen, comprising the germ cells obtained from the vertebrate of claim 25 .
40. A method of producing a non-human vertebrate animal line comprising native germ cells carrying in their genome at least one xenogeneic polynucleotide, comprising
breeding of the vertebrate of claim 25 , with a member of the opposite sex of the same species; and selecting progeny for the presence of said polynucleotide.
41. A method of isolating or selecting a male germ cell transfected with at least one polynucleotide encoding a desired trait or product and at least one genetic selection marker, comprising
the method of claim 1 , wherein the transfection mixture comprises at least one genetic selection marker; and
isolating or selecting a transfected male germ cell with the aid of the genetic selection marker.
42. A method of transferring maturing male germ cells transfected with at least one polynucleotide encoding a desired trait or product to the testis of a recipient male vertebrate, comprising
isolating or selecting maturing male germ cells carrying at least one polynucleotide encoding a desired trait or product and at least one polynucleotide encoding a genetic selection marker, from a donor male vertebrate by the method of claim 41;
administering the germ cells, thus isolated or selected, to a testis of a recipient male vertebrate; and
allowing the administered germ cells to lodge in a seminiferous tubule of the recipient male vertebrate.
43. A method of transferring autologous germ and support cells to the testis of a vertebrate, comprising the method of claim 42 , wherein the donor vertebrate is the same as the recipient vertebrate.
44. The method of claim 41 , further comprising the step of incorporating into the genome of the germ cell the polynucleotide encoding a desired trait or product.
45. The method of claim 41 , wherein the transfected male germ cell comprises an undifferentiated male germ cell.
46. The method of claim 41 , wherein transfection is conducted under conditions of temperature of about 25° C. to about 38° C.
47. The method of claim 41 , wherein the transfecting agent is selected from the group consisting of liposomes, viral vectors, transferrin-polylysine enhanced viral vectors, retroviral vectors, lentiviral vectors, and other uptake enhancing DNA segments, or comprises a mixture of any members of said group.
48. The method of claim 47 , wherein the transfecting agent comprises a viral vector selected from the group consisting of retroviral vectors, adenoviral vectors, transfernin-polylysine enhanced adenoviral vectors, human immunodeficiency virus vectors, lentiviral vectors, Moloney murine leukemia virus-derived vectors, mumps vectors, and virus-derived DNAs that facilitate polynucleotide uptake by and release into the cytoplasm of germ cells, or said transfecting agent comprises an operative fragment of- or mixture of any members of said group.
49. The method of claim 47 , wherein the transfecting agent comprises an adenovirus vector having endosomal lytic activity, and the polynucleotide is operatively linked to the vector.
50. The method of claim 41 , wherein the polynucleotide encoding a desired trait or product is in the form of a complex with a viral vector.
51. The method of claim 41 , wherein the transfecting agent comprises a lipid transfecting agent.
52. The method of claim 42 , wherein the transfecting agent further comprises an agent selected from the group consisting of a male-germ-cell-targeting molecule and at least one genetic selection marker.
53. The method of claim 52 , wherein the male-germ-cell-targeting molecule is specifically targeted to spermatogonia and comprises a c-kit ligand; and
the genetic selection marker comprises a gene encoding a detectable product. expression of said gene being driven by a spermatogonia-specific promoter, said promoter being selected from the group consisting of c-kit promoter, b-Myb promoter, c-raf-1 promoter, ATM (axataia-telangiectasia) promoter, RBM (ribosome binding motif) promoter, DAZ (deleted in azoospermia) promoter, XRCC-1 promoter, HSP 90 (heat shock gene) promoter, and FRMI (from fragile X site) promoter.
54. The method of claim 41 , wherein the vertebrate is a mammal.
55. The method of claim 54 , wherein the mammal is a human.
56. The method of claim 54 , wherein the mammal is selected from the group consisting of human and non-human primates and farm and marine mammals.
57. The method of claim 42 , wherein the polynucleotide encoding a desired trait or product is derived from the same species of vertebrate as the recipient vertebrate.
58. The method of claim 42 , wherein the vertebrate is selected from the group consisting of wild and domesticated vertebrates.
59. The method of claim 41 , wherein the polynucleotide encoding a desired trait or product is derived from a mammal selected from the group consisting of human and non-human primates, canines, felines, swines, farm mammals, pachyderms, marine mammals, equines, murine, ovine and bovine, or from a bird selected from the group consisting of ducks, geese, turkeys and chickens.
60. The method of claim 59 , wherein the polynucleotide is derived from a human.
61. A non-human transgenic vertebrate, comprising native germ cells carrying in their genomes at least one xenogeneic polynucleotide, said transgenic vertebrate being the recipient male vertebrate of the method of claim 42 , or progeny thereof.
62. The non-human transgenic vertebrate of claim 61 , wherein the polynucleotide comprises at least one biologically functional gene.
63. The non-human transgenic vertebrate of claim 62 , being a male.
64. The non-human transgenic vertebrate of claim 63 , harboring native male germ cells transfected with a xenogeneic polynucleotide.
65. The progeny resulting from breeding the non-human transgenic vertebrate of claim 63 or progeny thereof, with a female of the same species.
66. A non-human vertebrate, carrying in its germ cells at least one xenogeneic polynucleotide sequence, obtained by breeding the vertebrate of claim 61 or progeny thereof, with a member of the opposite sex of the same species, and selecting the bred progeny for the presence of the transfected xenogeneic polynucleotide.
67. The non-human vertebrate of claim 66 , which is selected from the group consisting of mammals and birds.
68. The non-human vertebrate of claim 67 , which is a mammal selected from the group consisting of humans and non-human primates, canines, felines, swine, farm and marine mammals, pachyderms, equines, murine, ovines and bovine, and a bird selected from the group consisting of ducks, geese, turkeys and chickens.
69. The non-human vertebrate of claim 67 , which is a bird selected from the group consisting of ducks, geese, turkeys and chickens.
70. The non-human vertebrate of claim 67 , wherein the mammal is a farm or marine mammal.
71. The non-human vertebrate of claim 68 , wherein the mammal is a bull.
72. The non-human vertebrate of claim 68 , wherein the mammal is a pig.
73. The non-human vertebrate of claim 66 , which is selected from the group consisting of wild and domesticated animals.
74. A germ cell obtained from a vertebrate of claims 24 or 61 comprising a native germ cell carrying in its genome at least one xenogeneic polynucleotide.
75. Vertebrate semen comprising the germ cell of claim 74 .
76. A gene therapy method, comprising the method of claim 42 , wherein the polynucleotide encoding a desired trait or product is derived from the same species of vertebrate as the recipient vertebrate.
77. A non-human transgenic vertebrate produced by the method of claim 42 , wherein the polynucleotide encoding a desired trait or product is derived from any genome.
78. An in vitro method of incorporating at least one polynucleotide encoding a desired trait into a maturing male germ cell, comprising
obtaining a maturing male germ cell from a vertebrate;
transfecting the germ cell in vitro with at least one polynucleotide encoding a desired trait in the presence of a gene delivery mixture comprising at least one transfecting agent, and optionally a polynucleotide encoding a genetic selection marker, at about or below the vertebrate's body temperature and for a transfection-effective period of time; and
allowing the polynucleotide encoding a desired trait to be taken up by, and released into the germ cell.
79. The method of claim 78 , further comprising allowing the incorporation of the released polynucleotide into the genome of the germ cell.
80. The method of claim 78 , wherein the encoding a desired trait is incorporated into the vertebrate germ cell's genome.
81. The method of claim 78 , wherein the maturing male germ cell comprises a spermatogonia or other undifferentiated male germ cell.
82. The method of claim 78 , wherein the transfection is conducted under conditions of temperature of about 25° C. to about 38° C.
83. The method of claim 78 , wherein the transfecting agent is selected from the group consisting of liposomes, viral vectors, transferrin-polylysine enhanced viral vectors, retroviral vectors, lentiviral vectors, and other uptake enhancing DNA segments, or comprises a mixture of any members of said group.
84. The method of claim 83 , wherein the transfecting agent comprises a viral vector selected from the group consisting of retroviral vectors, adenoviral vectors, transferrin-polylysine enhanced adenoviral vectors, human immunodeficiency virus vectors, lentiviral vectors, Moloney murine leukemia virus-derived vectors, mumps vectors, and virus-derived DNAs that enhance polynucleotide uptake by and release into the cytoplasm of germ cells, or said transfecting agent comprises an operative fragment of- or mixture of any members of said group.
85. The method of claim 84 , wherein the transfecting agent comprises an adenovirus vector having endosomal lytic activity, and the polynucleotide encoding a desired trait is operatively linked to the vector.
86. The method of claim 78 , wherein the polynucleotide encoding a desired trait is in the form of a complex with a viral vector.
87. The method of claim 78 , wherein the transfecting agent comprises a lipid transfecting agent.
88. The method of claim 78 , wherein
the transfecting agent further comprises an agent selected from the group consisting of a male-germ-cell-targeting molecule and at least one genetic selection marker; and
the method further comprises isolating or selecting a maturing male germ cell carrying at least one polynucleotide encoding a desired trait or product and at least one polynucleotide encoding a genetic selection marker, from a donor male vertebrate with the aid of the genetic selection marker.
89. The method of claim 88 , wherein
the male-germ-cell-targeting molecule is specifically targeted to spermatogonia and comprises a c-kit ligand, and
the genetic selection marker comprises a gene expressing a detectable product, driven by a spermatogonia-specific promoter selected from the group consisting of c-kit promoter, b-Myb promoter, c-raf-1 promoter, ATM (axataia-telangiectasia) promoter, RBM (ribosome binding motif) promoter, DAZ (deleted in azoospermia) promoter, XRCC-1 promoter, HSP 90 (heat shock gene) promoter, and FRMI (from fragile X site) promoter.
90. The method of claim 78 , wherein the vertebrate is a mammal.
91. The method of claim 90 , wherein the mammal is a human.
92. The method of claim 90 , wherein the mammal is selected from the group consisting of human and non-human primates and farm and marine mammals.
93. The method of claim 78 , wherein the polynucleotide encoding a desired trait is derived from the same vertebrate species as the maturing germ cell.
94. The method of claim 78 , wherein the vertebrate is selected from the group consisting of wild and domesticated vertebrates.
95. The method of claim 78 , wherein the polynucleotide encoding a desired trait is derived from a mammal selected from the group consisting of human and non-human primates, canines, felines, swines, farm mammals, pachyderms, marine mammals, equines, murine, ovine and bovine, or from a bird selected from the group consisting of ducks, geese, turkeys and chickens.
96. The method of claim 95 , wherein the polynucleotide is derived from a human.
97. An non-human transgenic vertebrate, or its progeny, comprising a native germ cell carrying in its genome at least one xenogeneic polynucleotide, said polynucleotide having been incorporated into the genome of said germ cell through the method of claim 78 .
98. The non-human transgenic vertebrate of claim 97 , wherein the polynucleotide comprises at least one biologically functional gene.
99. The non-human transgenic vertebrate of claim 98 , being a male.
100. The non-human transgenic vertebrate of claim 99 , harboring native male germ cells transfected with a xenogeneic polynucleotide.
101. The progeny resulting from breeding the non-human transgenic vertebrate of claim 99 or progeny thereof, with a female of the same species.
102. A non-human vertebrate, carrying in its germ cells at least one xenogeneic polynucleotide sequence, said vertebrate obtained by breeding the vertebrate of claim 98 or progeny thereof, with a member of the opposite sex of the same species, and selecting the bred progeny for the presence of the transfected xenogeneic polynucleotide.
103. The non-human vertebrate of claim 102 , which is selected from the group consisting of mammals and birds.
104. The non-human vertebrate of claim 103 , which is a mammal selected from the group consisting of humans and non-human primates, canines, felines, swine, farm and marine mammals, pachyderms, equines, murine, ovines and bovine, or a bird selected from the group consisting of ducks, geese, turkeys and chickens.
105. The non-human vertebrate of claim 104 , which is a bird selected from the group consisting of ducks, geese, turkeys and chickens.
106. The non-human vertebrate of claim 104 , wherein the mammal is a farm or marine mammal.
107. The non-human vertebrate of claim 104 , wherein the mammal is a bull.
108. The non-human vertebrate of claim 104 , wherein the mammal is a pig.
109. The non-human vertebrate of claim 102 , which is selected from the group consisting of wild and domesticated animals.
110. A germ cell obtained from the vertebrate of claim 97 , or its progeny.
111. Vertebrate semen comprising a plurality of the germ cells obtained from the vertebrate of claim 98 .
112. A gene therapy method, comprising the method of claim 78; further comprising the step of introducing said transfected male germ cell into the testis of a recipient vertebrate, wherein the polynucleotide encoding a desired trait is derived from the same vertebrate species as the recipient vertebrate.
113. A non-human transgenic vertebrate produced by the method of claim 78 , wherein the polynucleotide encoding a desired trait is derived from any genome.
114. A kit for the transfection and storage of a male vertebrate's germ cells, comprising a transfection mixture, said tranfection mixture comprising at least one transfecting agent, and optionally a genetic selection marker, whereby said kit may be used to transfect and store said germ cells in a viable condition.
115. The kit of claim 114 , wherein the transfecting agent is selected from the group consisting of liposomes, viral vectors, transferrin-polylysine enhanced viral vectors, retroviral vectors, lentiviral vectors, and uptake enhancing DNA segments, or comprises a mixture of any members of said group.
116. The kit of claim 114 , wherein the transfecting agent comprises a viral vector selected from the group consisting of retroviral vectors, adenoviral vectors, transferrin-polylysine enhanced adenoviral vectors, human immunodeficiency virus vectors, lentiviral vectors, Moloney murine leukemia virus-derived vectors, mumps vectors, DNAs that facilitate polynucleotide uptake by and release into the cytoplasm of germ cells, or comprises an operative fragment of- or mixture of any members of said group.
117. The kit of claim 114 , wherein the transfecting agent comprises an adenovirus vector having endosomal lytic activity, and the polynucleotide is operatively linked to the vector.
118. The kit of claim 114 , wherein the transfecting agent comprises a lipid transfecting agent.
119. The kit of claim 114 , wherein the transfecting agent further comprises a male-germ-cell-targeting molecule.
120. The kit of claim 119 , wherein the male-germ-cell-targeting molecule is specific for targeting spermatogonia and comprises a c-kit ligand.
121. The kit of claim 114 , where the transfection mixture further comprises an immunosuppressing agent.
122. The kit of claim 121 , wherein the immunosuppressing agent is selected from the group consisting of cyclosporin and corticosteroids.
123. The kit of claim 119 , wherein the male-germ-cell-targeting molecule is specifically targeted to spermatogonia and comprises a c-kit ligand; and
the genetic selection marker comprises a gene expressing a detectable product driven by a spermatogonia-specific promoter.
124. The kit of claim 119 , wherein the male-germ-cell-targeting molecule is specifically targeted to spermatogonia and comprises a c-kit ligand; and
the genetic selection marker comprises a gene expressing a detectable product, driven by a spermatogonia-specific promoter, said promoter selected from the group consisting of c-kit promoter, b-Myb promoter, c-raf-1 promoter, ATM (axataia-telangiectasia) promoter, RBM (ribosome binding motif) promoter, DAZ (deleted in azoospermia) promoter, XRCC-1 promoter, HSP 90 (heat shock gene) promoter, and FRMI (from fragile X site) promoter.
125. The kit of claim 114 , wherein at least one polynucleotide comprises at least one polynucleotide sequence encoding a genetic selection marker.
126. The kit of claim 114 , further comprising a cryoprotectant.
127. The germ cell as in any of claims 35, 36, 37, 74, or 110, wherein said germ cell has been cryopreserved in a viable and functional condition.
128. A transgenic male germ cell produced by the method of any of claims 17, 18, 19, 20, 21, or 22, wherein the transgenic male germ cell has been cryopreserved in a viable and functional condition.
129. A transgenic male germ cell produced by the method of any of claims 54, 55, 56, or 58, wherein the transgenic male germ cell has been cryopreserved in a viable and functional condition.
130. A transgenic male germ cell produced by the method of any of claims 90, 91, 92, or 94, wherein the transgenic male germ cell has been cryopreserved in a viable and functional condition.
131. The method of any of claims 1 or 78, wherein the polynucleotide encoding a desired trait or product is operatively linked to a germ cell-specific promoter.
132. The method of any of claims 41, 78, or 88, wherein the polynucleotide encoding a genetic selection marker is operatively linked to a germ cell-specific promoter.
133. The method of claim 42 , wherein support cells are co-administered to a testis along with isolated or selected germ cells.
134. The method of claim 42 , wherein transfected support cells are isolated or selected, and co-administered to a testis of a recipient male vertebrate along with said isolated or selected germ cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/054,143 US20020133835A1 (en) | 1997-11-14 | 2001-11-12 | Kit for transfection, storage and transfer of male germ cells for generation of transgenic species |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6582597P | 1997-11-14 | 1997-11-14 | |
US09/191,920 US6316692B1 (en) | 1997-11-14 | 1998-11-13 | Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies |
US10/054,143 US20020133835A1 (en) | 1997-11-14 | 2001-11-12 | Kit for transfection, storage and transfer of male germ cells for generation of transgenic species |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/191,920 Division US6316692B1 (en) | 1997-11-14 | 1998-11-13 | Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020133835A1 true US20020133835A1 (en) | 2002-09-19 |
Family
ID=22065360
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/191,920 Expired - Fee Related US6316692B1 (en) | 1997-11-14 | 1998-11-13 | Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies |
US10/008,385 Abandoned US20020083479A1 (en) | 1997-11-14 | 2001-11-12 | In vitro transfection, storage and transfer of male germ cells for generation of transgenic species |
US10/074,945 Abandoned US20020138865A1 (en) | 1997-11-14 | 2001-11-12 | In vitro transfection, storage and transfer of male germ cells for generation of transgenic species & genetic therapies |
US10/054,365 Abandoned US20020129398A1 (en) | 1997-11-14 | 2001-11-12 | Transfection, storage and transfer of male germ cells for generation of trangenic species |
US10/054,143 Abandoned US20020133835A1 (en) | 1997-11-14 | 2001-11-12 | Kit for transfection, storage and transfer of male germ cells for generation of transgenic species |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/191,920 Expired - Fee Related US6316692B1 (en) | 1997-11-14 | 1998-11-13 | Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies |
US10/008,385 Abandoned US20020083479A1 (en) | 1997-11-14 | 2001-11-12 | In vitro transfection, storage and transfer of male germ cells for generation of transgenic species |
US10/074,945 Abandoned US20020138865A1 (en) | 1997-11-14 | 2001-11-12 | In vitro transfection, storage and transfer of male germ cells for generation of transgenic species & genetic therapies |
US10/054,365 Abandoned US20020129398A1 (en) | 1997-11-14 | 2001-11-12 | Transfection, storage and transfer of male germ cells for generation of trangenic species |
Country Status (8)
Country | Link |
---|---|
US (5) | US6316692B1 (en) |
EP (1) | EP1030929B1 (en) |
JP (1) | JP2001523468A (en) |
AT (1) | ATE426036T1 (en) |
AU (1) | AU761758B2 (en) |
CA (1) | CA2309904A1 (en) |
DE (1) | DE69840671D1 (en) |
WO (1) | WO1999025863A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040172667A1 (en) * | 2002-06-26 | 2004-09-02 | Cooper Richard K. | Administration of transposon-based vectors to reproductive organs |
US20040197910A1 (en) * | 2002-06-26 | 2004-10-07 | Cooper Richard K. | Gene regulation in transgenic animals using a transposon-based vector |
US20060121012A1 (en) * | 2000-03-15 | 2006-06-08 | Orbus Medical Technologies, Inc. | Medical device with coating for capturing genetically-altered cells and methods of using same |
US20060135476A1 (en) * | 2000-03-15 | 2006-06-22 | Orbus Medical Technologies, Inc. | Medical device with coating that promotes endothelial cell adherence and differentiation |
US20070042017A1 (en) * | 2000-03-15 | 2007-02-22 | Orbus Medical Technologies, Inc. | Medical device with coating that promotes endothelial cell adherence and differentiation |
US20070128723A1 (en) * | 2000-03-15 | 2007-06-07 | Orbusneich Medical, Inc. | Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device |
US7803183B2 (en) | 2000-03-15 | 2010-09-28 | Orbusneich Medical, Inc. | Medical device with coating that promotes endothelial cell adherence |
US20110162096A1 (en) * | 2003-12-24 | 2011-06-30 | The Board of Supervisors of Louisiana State University and Agricultural and Mechanical | Gene Therapy Using Transposon-Based Vectors |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US9150880B2 (en) | 2008-09-25 | 2015-10-06 | Proteovec Holding, L.L.C. | Vectors for production of antibodies |
US9150881B2 (en) | 2009-04-09 | 2015-10-06 | Proteovec Holding, L.L.C. | Production of proteins using transposon-based vectors |
US9157097B2 (en) | 2008-09-25 | 2015-10-13 | Proteovec Holding, L.L.C. | Vectors for production of growth hormone |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7294755B1 (en) | 1997-11-14 | 2007-11-13 | Cedars-Sinai Medical Center | Genetic modification of male germ cells for generation of transgenic species and genetic therapies |
NZ506341A (en) * | 1998-02-09 | 2003-02-28 | Tranxenogen Inc | Genetic manipulation of spermatogonia |
US7399751B2 (en) * | 1999-11-04 | 2008-07-15 | Sertoli Technologies, Inc. | Production of a biological factor and creation of an immunologically privileged environment using genetically altered Sertoli cells |
AU781014B2 (en) * | 1999-05-13 | 2005-04-28 | Cedars-Sinai Medical Center | Genetic modification of male germ cells for generation of transgenic species and genetic therapies |
AU5043900A (en) * | 1999-05-24 | 2000-12-12 | Mayo Foundation For Medical Education And Research | Adenovirus vectors encoding brain natriuretic peptide |
US6179840B1 (en) | 1999-07-23 | 2001-01-30 | Ethicon, Inc. | Graft fixation device and method |
US20020095157A1 (en) | 1999-07-23 | 2002-07-18 | Bowman Steven M. | Graft fixation device combination |
EP1241935A2 (en) * | 1999-12-17 | 2002-09-25 | Gerald Schatten | Methods for producing transgenic animals |
JP3694734B2 (en) * | 2000-02-24 | 2005-09-14 | 国立大学法人京都大学 | Method for producing transgenic animal, transgenic animal |
US20070141107A1 (en) * | 2000-03-15 | 2007-06-21 | Orbusneich Medical, Inc. | Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device |
JP2002176880A (en) * | 2000-12-12 | 2002-06-25 | Kanegafuchi Chem Ind Co Ltd | Method for efficiently creating transgenic birds, and transgenic birds obtained thereby |
CA2365376C (en) | 2000-12-21 | 2006-03-28 | Ethicon, Inc. | Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration |
CN1633495A (en) * | 2001-12-21 | 2005-06-29 | 奥兹基因控股有限公司 | Methods and compositions for generating a genetically modified animal using lentiviral vectors |
WO2003068357A2 (en) * | 2002-02-12 | 2003-08-21 | Cornell Research Foundation, Inc. | Identification and high-yield isolation of human pancreatic islet progenitor and stem cells |
US7998704B2 (en) * | 2002-03-07 | 2011-08-16 | Carnegie Mellon University | Methods for magnetic resonance imaging |
US8084017B2 (en) * | 2002-03-07 | 2011-12-27 | Carnegie Mellon University | Contrast agents for magnetic resonance imaging and methods related thereto |
US20040235011A1 (en) * | 2002-06-26 | 2004-11-25 | Cooper Richard K. | Production of multimeric proteins |
AU2003299540A1 (en) * | 2002-10-04 | 2004-05-25 | Neutekbio Limited | Cells for determining the presence of a molecule that activates signal transduction activity of a cell surface protein |
US20040078090A1 (en) | 2002-10-18 | 2004-04-22 | Francois Binette | Biocompatible scaffolds with tissue fragments |
US7824701B2 (en) | 2002-10-18 | 2010-11-02 | Ethicon, Inc. | Biocompatible scaffold for ligament or tendon repair |
ES2310279T3 (en) | 2003-01-16 | 2009-01-01 | North Carolina State University | DECREASE OF PRIMARY GERMINAL CELLS IN AVIAN SPECIES. |
US8197837B2 (en) | 2003-03-07 | 2012-06-12 | Depuy Mitek, Inc. | Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof |
US8226715B2 (en) | 2003-06-30 | 2012-07-24 | Depuy Mitek, Inc. | Scaffold for connective tissue repair |
CA2848954A1 (en) * | 2003-07-03 | 2005-03-03 | Sertoli Technologies, Llc | Compositions containing sertoli cells and myoid cells and use thereof in cellular transplants |
KR100569168B1 (en) * | 2003-08-08 | 2006-04-07 | (주)아비코아생명공학연구소 | Method for Culturing Avian Spermatogonial Stem Cells and Avian Spermatogonial Stem Cells Prepared thereby |
US10583220B2 (en) | 2003-08-11 | 2020-03-10 | DePuy Synthes Products, Inc. | Method and apparatus for resurfacing an articular surface |
KR100569163B1 (en) * | 2003-08-11 | 2006-04-07 | (주)아비코아생명공학연구소 | Method for Producing Avian Chimera Using Spermatogonial Cells and Avian Chimera |
US7316822B2 (en) | 2003-11-26 | 2008-01-08 | Ethicon, Inc. | Conformable tissue repair implant capable of injection delivery |
US7901461B2 (en) | 2003-12-05 | 2011-03-08 | Ethicon, Inc. | Viable tissue repair implants and methods of use |
US11395865B2 (en) | 2004-02-09 | 2022-07-26 | DePuy Synthes Products, Inc. | Scaffolds with viable tissue |
WO2005105984A2 (en) * | 2004-04-12 | 2005-11-10 | The Trustees Of The University Of Pennsylvania | Culture conditions and growth factors affecting fate determination, self-renewal and expansion of mouse spermatogonial stem cells |
US20080044395A1 (en) * | 2004-04-13 | 2008-02-21 | Sungkwang Educational Foundation | In Vitro Method for Isolating, Proliferating and Differentiating Germ-Line Stem Cells |
US8137686B2 (en) | 2004-04-20 | 2012-03-20 | Depuy Mitek, Inc. | Nonwoven tissue scaffold |
US8221780B2 (en) | 2004-04-20 | 2012-07-17 | Depuy Mitek, Inc. | Nonwoven tissue scaffold |
US7718847B2 (en) * | 2004-05-27 | 2010-05-18 | Kyoto University | Method of gene introduction in in-vivo spermatogenic cell |
US20070021325A1 (en) * | 2005-07-21 | 2007-01-25 | Mediplex Corporation | Drug formulation containing a solubilizer for enhancing solubility, absorption, and permeability |
JP2007275004A (en) * | 2006-04-10 | 2007-10-25 | Kaneka Corp | Method for producing gene recombinant birds by infection of lentivirus vector into spermary |
EP3270158B1 (en) * | 2006-10-30 | 2019-05-01 | Centre National de la Recherche Scientifique (CNRS) | Gene reporter assay, kit and cells with improved sensitivity and/or specificity for determining the level of tnf-gamma |
US20090111764A1 (en) * | 2007-10-25 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Mitochondrial selection |
US20090111185A1 (en) * | 2007-10-26 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Female genome selection |
WO2009058884A1 (en) * | 2007-10-30 | 2009-05-07 | Le Centre Nationale De La Recherche Scientifique | Method for conducting an assay for neutralizing antibodies |
US20100021538A1 (en) * | 2008-02-29 | 2010-01-28 | Youngro Byun | Pharmaceutical compositions containing heparin derivatives |
CA2749142A1 (en) * | 2008-03-04 | 2009-09-11 | Biomonitor Limited | Cell, method and kit for conducting an assay for neutralizing antibodies |
US20100081789A1 (en) * | 2008-09-25 | 2010-04-01 | Cooper Richard K | Novel Vectors for Production of Interferon |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162215A (en) * | 1988-09-22 | 1992-11-10 | Amgen Inc. | Method of gene transfer into chickens and other avian species |
US6426042B1 (en) * | 1995-11-13 | 2002-07-30 | Takara Shuzo Co., Ltd. | Methods and kits for improving retroviral-mediated gene transfer utilizing molecules, or mixture thereof, containing retroviral binding domains and target cell binding domains |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US566557A (en) * | 1896-08-25 | Fireman s respirator | ||
US4870009A (en) | 1982-11-22 | 1989-09-26 | The Salk Institute For Biological Studies | Method of obtaining gene product through the generation of transgenic animals |
US4663281A (en) * | 1984-03-22 | 1987-05-05 | Mass Institute Of Technology | Enhanced production of proteinaceous materials in eucaryotic cells |
US4736866A (en) * | 1984-06-22 | 1988-04-12 | President And Fellows Of Harvard College | Transgenic non-human mammals |
US5422266A (en) * | 1984-12-31 | 1995-06-06 | University Of Georgia Research Foundation, Inc. | Recombinant DNA vectors capable of expressing apoaequorin |
US5206143A (en) * | 1985-11-01 | 1993-04-27 | Smithkline Beecham Corporation | Method and reagents for performing subset analysis using quantitative differences in fluorescence intensity |
US4762701A (en) * | 1986-10-31 | 1988-08-09 | Smithkline Beckman Corporation | In vivo cellular tracking |
US4959313A (en) * | 1987-06-22 | 1990-09-25 | The Jackson Laboratory | Cellular enhancer for expressing genes in undifferentiated stem cells |
US5532143A (en) * | 1987-08-07 | 1996-07-02 | The Medical Research Council | Isolated DNA molecules for intergration site independent gene expression in mammalian host cells |
US4978332A (en) * | 1987-09-28 | 1990-12-18 | Matrix Pharmaceutical, Inc. | Treatments employing vasoconstrictive substances in combination with cytotoxic agents for introduction into cellular lesion areas |
US5358711A (en) * | 1987-11-23 | 1994-10-25 | Johns Hopkins University | Stimulation of stem cell growth by the bryostatins |
US5175384A (en) | 1988-12-05 | 1992-12-29 | Genpharm International | Transgenic mice depleted in mature t-cells and methods for making transgenic mice |
IT1228210B (en) * | 1989-01-10 | 1991-06-05 | Consiglio Nazionale Ricerche | PROCEDURE FOR THE INTRODUCTION OF EXOGENOUS DNA INTO SOMATIC AND GERMINAL CELLS OF ANIMALS. |
US5633076A (en) * | 1989-12-01 | 1997-05-27 | Pharming Bv | Method of producing a transgenic bovine or transgenic bovine embryo |
US5375606A (en) * | 1990-02-28 | 1994-12-27 | Zynaxis, Inc. | Bio-analytical separation method |
US5061620A (en) * | 1990-03-30 | 1991-10-29 | Systemix, Inc. | Human hematopoietic stem cell |
US20030125519A1 (en) * | 1990-08-27 | 2003-07-03 | Peter Besmer | Ligand for the c-kit receptor and methods of use thereof |
WO1992020790A1 (en) * | 1991-05-15 | 1992-11-26 | L'institut De Recherches Cliniques De Montreal | Transgenic non-human animal carrying a non-infectious hiv genome |
US5750376A (en) * | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
NZ244306A (en) | 1991-09-30 | 1995-07-26 | Boehringer Ingelheim Int | Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation |
US5521291A (en) | 1991-09-30 | 1996-05-28 | Boehringer Ingelheim International, Gmbh | Conjugates for introducing nucleic acid into higher eucaryotic cells |
US5858354A (en) * | 1991-12-06 | 1999-01-12 | The Trustees Of The University Of Pennsylvania | Repopulation of testicular Seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny |
CA2125161A1 (en) | 1991-12-06 | 1993-06-10 | Ralph L. Brinster | Repopulation of testicular seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny |
US5556954A (en) * | 1992-02-13 | 1996-09-17 | Beth Israel Hospital Boston Association | Hematopoietic stem cell specific gene expression |
WO1994000598A1 (en) * | 1992-06-19 | 1994-01-06 | Northwestern University | Method of detecting amplified nucleic acid sequences in cells by flow cytometry |
US5821234A (en) * | 1992-09-10 | 1998-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Inhibition of proliferation of vascular smooth muscle cell |
US5453357A (en) * | 1992-10-08 | 1995-09-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US5543291A (en) * | 1993-01-29 | 1996-08-06 | Dana Farber Cancer Institute | Method of detecting carcinoma |
US5610053A (en) * | 1993-04-07 | 1997-03-11 | The United States Of America As Represented By The Department Of Health And Human Services | DNA sequence which acts as a chromatin insulator element to protect expressed genes from cis-acting regulatory sequences in mammalian cells |
EP0804553A4 (en) | 1993-07-09 | 1999-07-07 | Jolla Cancer Res Found | Conditionally immortalized germ cell lines |
US5491084A (en) * | 1993-09-10 | 1996-02-13 | The Trustees Of Columbia University In The City Of New York | Uses of green-fluorescent protein |
US5430057A (en) * | 1993-09-30 | 1995-07-04 | Board Of Regents, The University Of Texas System | Parenteral busulfan for treatment of malignant disease |
US5591625A (en) * | 1993-11-24 | 1997-01-07 | Case Western Reserve University | Transduced mesenchymal stem cells |
US5639618A (en) * | 1994-05-13 | 1997-06-17 | Plurion, Inc. | Method of isolating a lineage specific stem cell in vitro |
US5650135A (en) * | 1994-07-01 | 1997-07-22 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive localization of a light-emitting conjugate in a mammal |
US5625048A (en) * | 1994-11-10 | 1997-04-29 | The Regents Of The University Of California | Modified green fluorescent proteins |
US5777079A (en) * | 1994-11-10 | 1998-07-07 | The Regents Of The University Of California | Modified green fluorescent proteins |
US5665557A (en) * | 1994-11-14 | 1997-09-09 | Systemix, Inc. | Method of purifying a population of cells enriched for hematopoietic stem cells populations of cells obtained thereby and methods of use thereof |
US5767258A (en) * | 1995-05-12 | 1998-06-16 | The Johns Hopkins University School Of Medicine | Cell cycle regulatory gene |
JPH10304790A (en) | 1995-09-29 | 1998-11-17 | Hoechst Japan Ltd | Formation of transgenic animal |
JPH09220039A (en) * | 1996-02-14 | 1997-08-26 | Chihiro Koike | Method for introducing external gene into sperm or ovum and producing method for transgenic animal |
US6156952A (en) * | 1998-04-09 | 2000-12-05 | Constituent Institution Of The University Of Maryland System | HIV transgenic animals and uses therefor |
-
1998
- 1998-11-13 US US09/191,920 patent/US6316692B1/en not_active Expired - Fee Related
- 1998-11-13 DE DE69840671T patent/DE69840671D1/en not_active Expired - Fee Related
- 1998-11-13 CA CA002309904A patent/CA2309904A1/en not_active Abandoned
- 1998-11-13 AU AU14061/99A patent/AU761758B2/en not_active Ceased
- 1998-11-13 AT AT98957919T patent/ATE426036T1/en not_active IP Right Cessation
- 1998-11-13 JP JP2000521226A patent/JP2001523468A/en active Pending
- 1998-11-13 WO PCT/US1998/024238 patent/WO1999025863A1/en active IP Right Grant
- 1998-11-13 EP EP98957919A patent/EP1030929B1/en not_active Expired - Lifetime
-
2001
- 2001-11-12 US US10/008,385 patent/US20020083479A1/en not_active Abandoned
- 2001-11-12 US US10/074,945 patent/US20020138865A1/en not_active Abandoned
- 2001-11-12 US US10/054,365 patent/US20020129398A1/en not_active Abandoned
- 2001-11-12 US US10/054,143 patent/US20020133835A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162215A (en) * | 1988-09-22 | 1992-11-10 | Amgen Inc. | Method of gene transfer into chickens and other avian species |
US6426042B1 (en) * | 1995-11-13 | 2002-07-30 | Takara Shuzo Co., Ltd. | Methods and kits for improving retroviral-mediated gene transfer utilizing molecules, or mixture thereof, containing retroviral binding domains and target cell binding domains |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US7803183B2 (en) | 2000-03-15 | 2010-09-28 | Orbusneich Medical, Inc. | Medical device with coating that promotes endothelial cell adherence |
US20060121012A1 (en) * | 2000-03-15 | 2006-06-08 | Orbus Medical Technologies, Inc. | Medical device with coating for capturing genetically-altered cells and methods of using same |
US20060135476A1 (en) * | 2000-03-15 | 2006-06-22 | Orbus Medical Technologies, Inc. | Medical device with coating that promotes endothelial cell adherence and differentiation |
US20070042017A1 (en) * | 2000-03-15 | 2007-02-22 | Orbus Medical Technologies, Inc. | Medical device with coating that promotes endothelial cell adherence and differentiation |
US20070128723A1 (en) * | 2000-03-15 | 2007-06-07 | Orbusneich Medical, Inc. | Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device |
US9364565B2 (en) | 2000-03-15 | 2016-06-14 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods of using same |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US8460367B2 (en) | 2000-03-15 | 2013-06-11 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US20040172667A1 (en) * | 2002-06-26 | 2004-09-02 | Cooper Richard K. | Administration of transposon-based vectors to reproductive organs |
US7608451B2 (en) | 2002-06-26 | 2009-10-27 | Transgen Rx, Inc. | Gene regulation in transgenic animals using a transposon-based vector |
US7527966B2 (en) | 2002-06-26 | 2009-05-05 | Transgenrx, Inc. | Gene regulation in transgenic animals using a transposon-based vector |
US20040197910A1 (en) * | 2002-06-26 | 2004-10-07 | Cooper Richard K. | Gene regulation in transgenic animals using a transposon-based vector |
US8283518B2 (en) | 2002-06-26 | 2012-10-09 | Transgenrx, Inc. | Administration of transposon-based vectors to reproductive organs |
US8071364B2 (en) | 2003-12-24 | 2011-12-06 | Transgenrx, Inc. | Gene therapy using transposon-based vectors |
US8236294B2 (en) | 2003-12-24 | 2012-08-07 | The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Gene therapy using transposon-based vectors |
US20110162096A1 (en) * | 2003-12-24 | 2011-06-30 | The Board of Supervisors of Louisiana State University and Agricultural and Mechanical | Gene Therapy Using Transposon-Based Vectors |
US9150880B2 (en) | 2008-09-25 | 2015-10-06 | Proteovec Holding, L.L.C. | Vectors for production of antibodies |
US9157097B2 (en) | 2008-09-25 | 2015-10-13 | Proteovec Holding, L.L.C. | Vectors for production of growth hormone |
US9150881B2 (en) | 2009-04-09 | 2015-10-06 | Proteovec Holding, L.L.C. | Production of proteins using transposon-based vectors |
Also Published As
Publication number | Publication date |
---|---|
EP1030929A1 (en) | 2000-08-30 |
DE69840671D1 (en) | 2009-04-30 |
AU761758B2 (en) | 2003-06-12 |
US6316692B1 (en) | 2001-11-13 |
EP1030929B1 (en) | 2009-03-18 |
US20020129398A1 (en) | 2002-09-12 |
ATE426036T1 (en) | 2009-04-15 |
WO1999025863A1 (en) | 1999-05-27 |
AU1406199A (en) | 1999-06-07 |
JP2001523468A (en) | 2001-11-27 |
US20020083479A1 (en) | 2002-06-27 |
US20020138865A1 (en) | 2002-09-26 |
CA2309904A1 (en) | 1999-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6316692B1 (en) | Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies | |
RU2267270C2 (en) | Transgenesis due to intracytoplasmatic spermatic injection in mammalians | |
KR20180091821A (en) | How to manipulate humanized CAR T-cells and platelets by genetic complementarity | |
US20020053092A1 (en) | Nucleic acid constructs containing a cyclin A1 promoter, and kit | |
US20080178311A1 (en) | Transfection, storage and transfer of male germ cells for generation of transgenic species & genetic therapies | |
Arias et al. | Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer | |
AU781014B2 (en) | Genetic modification of male germ cells for generation of transgenic species and genetic therapies | |
CA2350829A1 (en) | Transfection of male germ cells for generation of selectable transgenic stem cells | |
WO2000029601A1 (en) | A method for depopulating of vertebrate testis and for generation of transgenic species | |
McLaren | Germ cells and germ cell transplantation | |
US8633348B2 (en) | Genetic vasectomy by overexpression of PRML-EGFP fusion protein in spermatids | |
US6734338B1 (en) | Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies | |
Kojima et al. | Gene transfer to sperm and testis: future prospects of gene therapy for male infertility | |
US20050034177A1 (en) | Genetic modification of male germ cells for generation of transgenic species & genetic therapies | |
US20070204357A1 (en) | Process for producing normal parenchymal cells, tissues or organs by bioincubator | |
MARUYAMA et al. | Transfection of blastodermal cells with reporter genes and expression in early chick embryos | |
Ciccarelli | Surrogate Sires: Donor-Derived Spermatogenesis in NANOS2 Knockout Mice and Livestock via Spermatogonial Stem Cell Transplantation | |
Vishal et al. | Transgenesis: Embryo modification to sperm mediated gene transfer | |
Lavitrano et al. | Sperm-Mediated Genetic Modifications | |
Wu et al. | Prospect of creating transgenic animals by using spermatogonial transplantation | |
US20140351966A1 (en) | Shortcut procedure of transgene integration by hypotonic shock into male germinal cells for gene expression and transgenesis | |
Class et al. | Patent application title: Isolated populations of female germline stem cells and cell preparations and compositions thereof Inventors: Jonathan Lee Tilly (Windham, NH, US) Joshua Johnson (New Haven, CT, US) | |
Sato | Testis-and sperm-mediated Transgenesis: a review | |
Sun et al. | Murine SMGT: An Overview of Research | |
Lee et al. | Study on germline transmission by transplantation of spermatogonial stem cells in chicken |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |