US20020127133A1 - Copper alloy material for parts of electronic and electric machinery and tools - Google Patents
Copper alloy material for parts of electronic and electric machinery and tools Download PDFInfo
- Publication number
- US20020127133A1 US20020127133A1 US10/005,880 US588001A US2002127133A1 US 20020127133 A1 US20020127133 A1 US 20020127133A1 US 588001 A US588001 A US 588001A US 2002127133 A1 US2002127133 A1 US 2002127133A1
- Authority
- US
- United States
- Prior art keywords
- mass
- absence
- copper alloy
- electronic
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 108
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 102
- 239000013078 crystal Substances 0.000 claims abstract description 66
- 239000010949 copper Substances 0.000 claims abstract description 28
- 230000003746 surface roughness Effects 0.000 claims abstract description 25
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 15
- 229910001020 Au alloy Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 5
- 238000007747 plating Methods 0.000 description 68
- 238000005452 bending Methods 0.000 description 44
- 230000035882 stress Effects 0.000 description 43
- 239000000523 sample Substances 0.000 description 36
- 229910045601 alloy Inorganic materials 0.000 description 28
- 239000000463 material Substances 0.000 description 20
- 238000005096 rolling process Methods 0.000 description 18
- 238000005097 cold rolling Methods 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 229910052718 tin Inorganic materials 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 235000019592 roughness Nutrition 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910017518 Cu Zn Inorganic materials 0.000 description 3
- 229910017755 Cu-Sn Inorganic materials 0.000 description 3
- 229910017752 Cu-Zn Inorganic materials 0.000 description 3
- 229910017927 Cu—Sn Inorganic materials 0.000 description 3
- 229910017943 Cu—Zn Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003405 preventing effect Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 235000019587 texture Nutrition 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 2
- 229910005487 Ni2Si Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002431 foraging effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910002708 Au–Cu Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910020711 Co—Si Inorganic materials 0.000 description 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- -1 Cu—Sn compound Chemical class 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910018098 Ni-Si Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910018529 Ni—Si Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910017847 Sb—Cu Inorganic materials 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12708—Sn-base component
- Y10T428/12715—Next to Group IB metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12889—Au-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12993—Surface feature [e.g., rough, mirror]
Definitions
- the present invention relates to a copper alloy material for parts of electronic and electric machinery and tools, in particular to the copper alloy material for parts of electronic and electric machinery and tools, which is excellent in bending property and stress relaxation property, and which can sufficiently cope with miniaturization of parts of electronic and electric machinery and tools, such as terminals, connectors, switches and relays.
- Cu—Zn alloys such as Cu—Zn alloys, Cu—Fe-alloys that are excellent in heat resistance, and Cu—Sn alloys
- Cu—Zn alloys While inexpensive Cu—Zn alloys have been used frequently, for example, in automobiles, the Cu—Zn alloys as well as Cu—Fe alloys and Cu—Sn alloys have been unable to currently cope with the requirements for the automobile, since recent trends urgently require the terminals and connectors to be small size, and they are mostly used under severe conditions (high temperature and corrosive environment) in an engine room and the like.
- the structure of the terminals have been variously devised for ensuring connection strength at the spring parts in relation to miniaturization of the parts.
- the materials are more strictly required to be excellent in bending property, since cracks have been often observed at the bent portion in conventional Cu—Ni—Si alloys.
- the materials are also required to be excellent in stress relaxation property, and the conventional Cu—Ni—Si alloys cannot be used for a long period of time, due to increased stress load on the material and high temperatures in the working environments.
- plating characteristics have been also addressed, with respect to improvement in compatibility to plating for plating the copper alloy material for parts of electronic and electric machinery and tools, and in resistance to deterioration of plate after plating (which are collectively called as plating characteristics).
- Cu plating is generally applied on the material as an underlayer followed by Sn plating on the surface thereof, for improving reliability when copper-based materials are used for the above automobile connector such as a box-type connector.
- unevenness (roughness) of the material surface is larger than the thickness of the plating layer, the plating is repelled from convex portions without being plated to make it impossible to uniformly plate.
- the interface area between the material and plating layer is increased to readily cause mutual diffusion between Cu and Sn, thereby the plating layer is readily peeled off due to formation of voids and a Cu—Sn compound. Accordingly, the surface of the material should be as smooth as possible.
- FIG. 1 is an explanatory view on the method for determining the crystal grain diameter and the crystal grain shape, each of which is defined in the present invention.
- a copper alloy material for parts of electronic and electric machinery and tools comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; and the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less.
- a copper alloy material for parts of electronic and electric machinery and tools comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; and the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less.
- a copper alloy material for parts of electronic and electric machinery and tools comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- a surface roughness Ra after final plastic working is more than 0 ⁇ m and less than 0.1 ⁇ m, or a surface roughness Rmax is more than 0 ⁇ m and less than 2.0 ⁇ m.
- a copper alloy material for parts of electronic and electric machinery and tools comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- a surface roughness Ra after final plastic working is more than 0 ⁇ m and less than 0.1 ⁇ m, or a surface roughness Rmax is more than 0 ⁇ m and less than 2.0 ⁇ m.
- the present invention means to include both the first and second embodiments, unless otherwise specified.
- examples of the preferable copper alloy materials for parts of electronic and electric machinery and tools in the present invention include the followings:
- a copper alloy material for parts of electronic and electric machinery and tools comprising 1.0 to 3.0% by mass (having the same meaning as % by wt) of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less; and a surface roughness Ra after the final plastic working is more than 0 ⁇ m and less than 0.1 ⁇ m, or a surface roughness Rmax is more than 0 ⁇ m and less than 2.0 ⁇ m.
- a copper alloy material for parts of electronic and electric machinery and tools comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less; and a surface roughness Ra after the final plastic working is more than 0 ⁇ m and less than 0.1 ⁇ m, or a surface roughness Rmax is more than 0 ⁇ m and less than 2.0 ⁇ m.
- Ni and Si as alloy forming elements in the present invention precipitate as a Ni—Si compound in the Cu matrix to maintain required mechanical properties without compromising heat and electric conductivity.
- Ni and Si are defined in the ranges of 1.0 to 3.0% by mass and 0.2 to 0.7% by mass, respectively, because the effect of adding these elements cannot be sufficiently attained when the content of either Ni or Si is less than its lower limit; while when the content of either Ni or Si exceeds its upper limit, giant compounds that do not contribute to the improvement in mechanical strength are recrystallized (precipitated) during casting or hot-working, not only to fail in obtaining a mechanical strength rewarding their contents, but also to cause problems of adversely affecting hot-working property and bending property.
- the preferable content of Ni is in the range of 1.7 to 3.0% by mass, more preferably 2.0 to 2.8% by mass
- the preferable content of Si is in the range of 0.4 to 0.7% by mass, more preferably 0.45 to 0.6% by mass. It is best to adjust the blending ratio between Si and Ni to the proportion of them in a Ni 2 Si compound, since the compound between Ni and Si mainly comprises the Ni 2 Si phase. The optimum amount of Si to be added is determined by determining the amount of Ni to be added.
- Mg, Sn and Zn are important alloy elements in the alloy that constitute the copper alloy material of the present invention. These elements in the alloy are correlated with each other to improve the balance among various characteristics.
- Mg largely improves stress relaxation property, but it adversely affects bending property.
- the content is restricted in the range of 0.01 to 0.2 by mass, because stress relaxation improving effect cannot be sufficiently obtained when the content is less than 0.01 by mass, while, when the content is more than 0.2 by mass, bending property decreases.
- Sn is able to more improve stress relaxation property, mutually correlated with Mg. While Sn has a stress relaxation improving effect as seen in phosphor bronze, its effect is not so large as Mg.
- the content of Sn is restricted in the range of 0.05 to 1.5% by mass, because sufficient effects for adding Sn cannot be sufficiently manifested when the Sn content is less than 0.05% by mass, while, when the Sn content exceeds 1.5% by mass, electric conductivity decreases.
- Zn does not contribute to the stress relaxation property, it can improve bending property. Therefore, decrease of bending property may be ameliorated by allowing Mg to be contained.
- Zn When Zn is added in the range of 0.2 to 1.5% by mass, bending property in the practically non-problematic level may be achieved even by adding Mg in maximum 0.2% by mass.
- Zn can improve resistance to peeling under heat of a tin plating layer or solder plating layer, as well as anti-migration characteristics.
- the content of Zn is restricted in the range of 0.2 to 1.5% by mass, because the effect of adding Zn cannot be sufficiently manifested when the Zn content is less than 0.2% by mass, while, when the Zn content exceeds 1.5% by mass, electric conductivity decreases.
- the content of Mg is preferably in the range of 0.03 to 0.2% by mass, more preferably 0.05 to 0.15% by mass;
- the content of Sn is preferably in the range of 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass;
- the content of Zn is preferably in the range of 0.2 to 1.0% by mass, more preferably 0.4 to 0.6% by mass.
- the content of S as an impurity element is restricted to be less than 0.005% by mass, since hot-working property is worsened by the presence of S.
- the content of S is particularly preferably less than 0.002% by mass.
- At least one element selected from the group consisting of Ag, Co and Cr is further allowed to contain in the copper alloy material according to the item (1), (3) or (10).
- These elements in the alloy described above can contribute to further improvement of the mechanical strength.
- the total content of these elements in the alloy is in the range of 0.005 to 2.0% by mass, preferably in the range of 0.005 to 0.5% by mass.
- the total content of the elements in the alloy is defined in the range of 0.005 to 2.0% by mass, because the effect of adding these elements cannot be sufficiently manifested when the content is less than 0.005% by mass.
- the content of Ag of exceeding 2.0% by mass results in a high manufacturing cost of the alloy, while adding Co and Cr of exceeding 2.0% by mass result in recrystallization (precipitation) of giant compounds during casting or hot-working, not only to fail in obtaining a mechanical strength rewarding their contents, but also to cause problems of adversely affecting hot-working property and bending property.
- the content of Ag is preferably 0.3% by mass, since it is an expensive element.
- Ag also has an effect for improving heat resistance and for improving bending property by preventing the crystal grains from becoming giant.
- Co is also expensive, it has the same as or larger function than Ni. Stress relaxation property is also improved since the Co—Si compound is high in hardening ability by precipitation. Accordingly, it is effective to replace a part of Ni with Co in the members in which heat and electric conductivity is emphasized.
- the content of Co is preferably less than 2.0% by mass since it is expensive.
- Cr forms fine precipitates in Cu, to contribute to the increased mechanical strength.
- the content of Cr should be 0.2% by mass or less, preferably 0.1% by mass, because bending property decreases by adding Cr.
- the present invention it is possible to add elements, such as Fe, Zr, P, Mn, Ti, V, Pb, Bi and Al, in a total content, for example, of 0.01 to 0.5% by mass for improving various characteristics in an extent not decreasing essential characteristics.
- elements such as Fe, Zr, P, Mn, Ti, V, Pb, Bi and Al
- hot-working property may be improved by adding Mn in the range that does not decrease electric conductivity (0.01 to 0.5% by mass).
- the copper alloy material to be used in the present invention can be manufactured by a usual manner, which is not particularly restrictive, the method comprises, for example, hot-rolling of an ingot, cold-rolling, heat treatment for forming a solid solution, heat treatment for aging, final cold-rolling, and low-temperature annealing.
- the copper alloy material may be also produced by after cold-rolling, applying a heat treatment for recrystallization and for forming a solid solution, followed by immediate quenching. An aging treatment may be applied, if necessary.
- bending property and stress relaxation property are particularly improved, without compromising essential characteristics such as mechanical property, heat and electric conductivity, and plating property, by allowing the alloy elements in the above copper alloy material such as Ni, Si, Mg, Sn and Zn to contain in appropriate quantities while suppressing the content of S in a trace amount, and by defining the crystal grain diameter and the shape of the crystal grain.
- the crystal grain diameter is defined to be from more than 0.001 mm to 0.025 mm. This is because the recrystallized texture tends to be a mixed grain texture to decrease bending property and stress relaxation property when the crystal grain diameter is 0.001 mm or less, while, when the crystal grain diameter exceeds 0.025 mm, bending property decreases.
- the crystal grain diameter may be determined by usual methods for measuring the grain diameter, which is not in particular restrictive.
- the shape of the crystal grain is expressed with the ratio (a/b), between the longer diameter a of the crystal grain on the cross section parallel to the direction of final plastic working, and the longer diameter b of the crystal grain on the cross section perpendicular to the direction of final plastic working.
- the ratio (a/b) is defined to be 1.5 or less, because the stress relaxation decreases when the ratio (a/b) exceeds 1.5.
- the stress relaxation tends to be decreased when the ratio (a/b) is less than 0.8. Therefore, the ratio (a/b) is preferably 0.8 or more.
- the longer diameter a and the longer diameter b each are determined by an average value obtained from 20 or more crystal grains.
- the crystal grain diameter and the shape of the crystal grain can be controlled by adjusting heat-treatment conditions, rolling reduction, direction of rolling, back-tension in rolling, lubrication conditions in rolling, the number of paths in rolling, and the like, in the manufacturing process of the copper alloy.
- the crystal grain diameter and the shape of crystal grain can be controlled as intended, for example, by changing heat-treatment conditions (such as the temperature and period of time in the heat-treatment for forming a solid solution and heat treatment for aging) or by a low reduction in the final cold-rolling.
- the direction of final plastic working as used in the present invention refers to the direction of rolling when the rolling is the finally carried out plastic working, or to the direction of drawing when the drawing (linear drawing) is the plastic working finally carried out.
- the plastic working refers to workings such as rolling and drawing, but working for the purpose of leveling (vertical leveling) using, for example, a tension leveler, is not included in this plastic working.
- the second embodiment of the present invention is the copper alloy material for parts of electronic and electric machinery and tools that can be used in the preset invention as described in the above, in which the surface roughness of the alloy is defined so that the surface becomes smooth, particularly property of plating of Sn and the like is improved.
- the inventors of the present invention have been able to realize practically excellent materials for the parts of electronic and electric machinery and tools by precisely defining the contents of the components of the alloy material and the surface roughness of the alloy material.
- the surface roughness is used as an index representing the surface state of the material.
- Ra defined in the second embodiment of the present invention means an arithmetic average of the surface roughness, and is described in JIS B 0601.
- Rmax denotes the maximum height of roughness, and is described as Ry in JIS B 0601.
- the copper alloy material for parts of electronic and electric machinery and tools in the second embodiment of the present invention is manufactured so that the surface of the copper alloy material having the foregoing composition after the final plastic working has the given surface roughness Ra or Rmax as described above.
- the Ra or Rmax for example, may be adjusted by rolling, grinding, or the like.
- the surface roughness of the copper alloy material may be practically adjusted, by (1) rolling with a roll having a controlled surface roughness, (2) grinding after intermediate working and final working, with a buff having a controlled roughness, (3) cutting after intermediate working and final working, by changing cutting conditions, (4) surface dissolution treatment after intermediate working and final working, and a combination thereof.
- Examples of practical embodiments include cold-rolling as final plastic working with a roll having different roughness (coarse/fine), grinding with a buff having different counts, surface dissolution with a solution having different solubility, and a combination of cold-rolling as a final plastic working with a roll having different roughness and dissolution treatment with a solution having a different dissolution time. Desired surface roughness may be attained by using any one of the methods described above.
- the copper alloy material for parts of electronic and electric machinery and tools according to the present invention It is preferable to plate the copper alloy material for parts of electronic and electric machinery and tools according to the present invention.
- the plating method is not particularly restricted, and any usual methods may be used. Although not restrictive in the present invention, it is more preferable to plate the copper alloy material for parts of electronic and electric machinery and tools according to the second embodiment, and it is particularly preferable to plate the copper alloy material for parts of electronic and electric machinery and tools described in the item (10) or (11).
- Repulsion may occur when Ra or Rmax is too large in plating with Sn of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention. Too large Ra or Rmax also arise large interface areas between the material and the Sn plating layer, where Cu atoms in the material and Sn atoms in the plating layer are readily diffused with each other. Consequently, Cu—Sn compounds and voids tend to occur to readily result in peeling of the plating layer after maintaining at a high temperature.
- pin-holes may occur to deteriorate corrosion resistance after plating with Au of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention, when Ra or Rmax is too large. Accordingly, plating property can be improved by adjusting Ra to be larger than 0 ⁇ m and smaller than 0.1 ⁇ m, or by adjusting Rmax to be larger than 0 ⁇ m and smaller than 2.0 ⁇ m. Preferably, Ra is smaller than 0.09 ⁇ m or Rmax is smaller than 0.8 ⁇ m.
- the thickness of the Sn or Sn alloy plating layer is preferably more than 0.1 ⁇ m and 10 ⁇ m or less. A sufficient plating effect cannot be obtained at a thickness of the plating layer of less than 0.1 ⁇ m, while the plating effect is saturated at a thickness of more than 10 ⁇ m with increasing the plating cost.
- Providing a Cu or Cu alloy plating layer under the Sn plating layer is more preferable for preventing repulsion of the plating layer.
- the preferable thickness of the Cu or Cu alloy plating layer is 1.0 ⁇ m or less.
- the Sn alloy usable includes, for example, Sn—Pb alloys and Sn—Sb—Cu alloys
- the Cu alloy usable includes, for example, Cu—Ag alloys and Cu—Cd alloys.
- the reflow treatment refers to a heat-melting treatment, by which the plating material is heat-melted followed by solidification of the plate layer after cooling.
- the surface of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention is plated with Au or an Au alloy for improving reliability of electric connection such as a connector. More preferably, the copper alloy material is plated with Au or Au alloy at a thickness of larger than 0.01 ⁇ m and smaller than 2.0 ⁇ m.
- a Ni or Ni alloy plating layer may be provided under the Au plating layer for improving the plug-in and plug-out service life. The thickness of the Ni or Ni ally plating layer is preferably 2.0 ⁇ m or less.
- the Au alloy usable includes, for example, Au—Cu alloys, Au—Cu—Au alloys, and the Ni alloy usable includes, for example, Ni—Cu alloys and Ni—Fe alloys.
- Examples of the preferable embodiments in the present invention further include the foregoing item (10) or (11).
- the surface roughness defined in the second embodiment is satisfied, while maintaining the crystal grain diameter and crystal grain shape defined in the first embodiment.
- Specific embodiments of these include those in which the first embodiment and the second embodiment are combined.
- the copper alloy material for parts of electronic and electric machinery and tools according to the present invention is excellent in mechanical properties (tensile strength and elongation), electric conductivity, stress relaxation property, and bending property.
- bending property and stress relaxation property are particularly improved while being excellent in essential characteristics such as mechanical properties, electric conductivity and adhesion property of tin plating.
- the copper alloy material is also excellent in compatibility to plating (repulsion preventive property of plating), and additional effects such as excellent deterioration preventing property of the plating layer (peeling resistance and corrosion resistance of the plating layer) may also be exhibited when plating.
- the present invention can favorably cope with the recent requirements for miniaturization and high performance of the electronic and electric machinery and tools.
- the present invention is preferably applied to materials for terminals, connectors, as well as switches, relays, and other general-purpose conductive materials for electronic and electric machinery and tools.
- Copper alloys each having the composition as defined in the present invention, shown in Table 1 (Nos. A to F), were melted in a microwave melting furnace, to cast into ingots with a thickness of 30 mm, a width of 100 mm and a length of 150 mm, by a DC method, respectively. Then, these ingots were heated at 900° C. After holding the ingots at this temperature for 1 hour, they were hot-rolled to a sheet with a thickness of 12 mm, followed by rapid cooling. Then, both end faces of the hot-rolled sheet each were cut (chamfered) by 1.5 mm, to remove oxidation films. The resultant sheets were worked to a thickness of 0.25 to 0.50 mm by cold rolling.
- the cold-rolled sheets were then heat-treated at a temperature of 750 to 850° C. for 30 seconds, after that, immediately followed by cooling at a cooling rate of 15° C./sec or more. Some samples were subjected to rolling with a reduction of 50% or less. Then, aging treatment was carried out at 515° C. for 2 hours in an inert gas atmosphere, and cold rolling as a final plastic working was carried out thereafter, to adjust to the final sheet thickness of 0.25 mm. After the final plastic working, the samples were subjected to low-temperature annealing at 350° C. for 2 hours, to carry out evaluation on the following characteristics.
- Copper alloy sheets were manufactured in the same manner as in Example A-1, except that copper alloys (Nos. G to O) out of the composition defined in the present invention, as shown in Table 1, were used.
- Example A-1 and Comparative example A-1 were investigated with respect to (1) crystal grain diameter, (2) crystal grain shape, (3) tensile strength and elongation, (4) electric conductivity, (5) bending property, (6) stress relaxation property, and (7) plate adhesion property.
- the crystal grain diameter (1) and crystal grain shape (2) were calculated based on the measurement of the crystal grain diameter by a cutting method defined by JIS (JIS H 0501).
- the cross section A parallel to the direction of the final cold-rolling of the sheet (the direction of the final plastic working), and the cross section B perpendicular to the direction of the final cold-rolling, were used as the cross sections for measuring the crystal grain diameter.
- the crystal grain diameters were measured in two directions that were the direction parallel to or the direction perpendicular to the final cold-rolling direction on the cross section A, and among the measured values, a larger one was referred to as the longer diameter a, and a smaller one was referred to as a shorter diameter, respectively.
- the crystal grain diameters were measured in two directions, one of which was the direction parallel to the direction of the normal line of the sheet surface, and the other of which was the direction perpendicular to the direction of the normal line of the sheet surface, and among the measured values, a larger one was referred to as the longer diameter b, and a smaller one was referred to as a shorter diameter, respectively.
- the crystal grain diameter is shown by rounding the average value of the four values among the two longer diameters and the two shorter diameters each obtained on the cross sections A and B, to the nearest number that is a product of an integer and 0.005 mm.
- the shape of the crystal grain is shown as a value (a/b) that is obtained by dividing the longer diameter a on the cross section A by the longer diameter b on the cross section B.
- the adhesion property of the plating layer was evaluated in the following manner. A test piece of each of the sample sheets was subjected to glossy tin plating with a thickness of 1 ⁇ m, and the resultant test piece was heated at 150° C. for 1,000 hours in the atmospheric air, followed by 180-degree contact bending and bending back. After that, the adhesion state of the tin plating layer at the bent portion was observed with the naked eye. The sample in which no peeling off of the plating layer was recognized is judged to be good in the adhesion property ( ⁇ ), while the sample in which the plate was peeled off is judged to be poor in the adhesion property ( ⁇ ). The results are shown in Table 2.
- the prescribed mechanical strength could not be attained in the samples in the comparative example No. 7 since the contents of Ni and Si were too small.
- the samples of Nos. 8 and 9 were poor in the stress relaxation property due to too small content of Mg.
- the sample of No. 10 showed poor bending property due to too large content of Mg.
- the sample of No. 11 was poor in the stress relaxation property due to too small content of Sn.
- Electric conductivity was poor in the sample of No. 12 due to too large content of Sn.
- the sample of No. 13 showed poorly low plate adhesion property due to too small amount of Zn content, while the sample of No. 14 was poor in bending property due to too large content of Cr. Production of the sample of No. 15 was stopped since cracks occurred during hot-rolling due to too large content of S.
- Copper alloys each having the composition as defined in the present invention, shown in Table 1 (Nos. A to D), were melted in a microwave melting furnace, to cast into ingots with a thickness of 30 mm, a width of 100 mm and a length of 150 mm, by a DC method, respectively. Then, these ingots were heated at 900° C. After holding the ingots at this temperature for 1 hour, they were hot-rolled to a sheet with a thickness of 12 mm, followed by rapid cooling. Then, both end faces of the hot-rolled sheet each were cut (chamfered) by 1.5 mm, to remove oxidation films. The resultant sheets were worked to a thickness of 0.25 to 0.50 mm by cold rolling.
- the cold-rolled sheets were then heat-treated at a temperature of 750 to 850° C. for 30 seconds, after that, immediately followed by cooling at a cooling rate of 15° C./sec or more. Some samples were subjected to rolling of 50% or less. Then, aging treatment was carried out at 515° C. for 2 hours in an inert gas atmosphere, and cold rolling as a final plastic working was carried out thereafter, to adjust to the final sheet thickness of 0.25 mm. After the final plastic working, the samples were subjected to low-temperature annealing at 350° C. for 2 hours, thereby manufacturing copper alloy sheets, respectively.
- the crystal grain diameter and the shape of the crystal grain of the copper alloy sheets were variously changed within the defined range (the examples according to the present invention) and outside of the defined range (comparative examples), by adjusting heat-treatment conditions, rolling reduction, direction of rolling, back-tension in rolling, the number of paths in rolling, and lubrication conditions in rolling, in the manufacturing process of the copper alloy.
- the alloys having the compositions listed in Table 4 were melted in a microwave melting furnace, to cast into ingots with a dimension of 30 mm ⁇ 100 mm ⁇ 150 mm. Then, these ingots were heated at 900° C. After holding the ingots at this temperature for 1 hour, they were hot-rolled from 30 mm to a sheet with a thickness of 12 mm, followed by rapid cooling. Then, both end faces of the hot-rolled sheet each were cut (chamfered) to a thickness of 9 mm, to remove surface oxide films. The resultant sheets were worked to a thickness of 0.27 mm by cold rolling. The cold-rolled sheets were then heat-treated at a temperature of 750 to 850° C.
- the surface roughnesses Ra and Rmax were measured for each 4 mm interval-length at arbitrary sites of the sample in the direction perpendicular to the direction of rolling, and an average of five times measurements was used as Ra and Rmax.
- Various characteristics were evaluated with respect to the copper alloy material for parts of electronic and electric machinery and tools obtained as described above.
- the sample above was plated with Sn with a Sn-plating thickness of 1.0 ⁇ m on the Cu underlayer plating with a thickness of 0.2 ⁇ m.
- the sample above was plated with Au with a Au-plating thickness of 0.2 ⁇ m on the Ni underlayer plating with a thickness of 1.0 ⁇ m.
- Plate adhesion property of the Sn plating layer was poor in the sample of No. 157 due to a too small content of Zn, while bending property was poor in the sample of No. 158 due to a too large content of Cr.
- Production of the sample of No. 159 was stopped since cracks occurred during hot-rolling due to a too large content of S.
- Electric conductivity was poor in the sample of No. 160 due to a too large content of Zn.
- Bending property was poor in the sample No. 161 due to a too large content of Ni.
- Electric conductivity was poor and bending property was poor in the sample of No. 162 due to a too large content of Si.
- Production of the sample of No. 163 was stopped since cracks occurred during hot-rolling due to too large contents of Ni and Si.
- the copper alloy material for parts of electronic and electric machinery and tools of the present invention is particularly improved in bending property and stress relaxation property while being excellent in essential characteristics such as mechanical property, electric conductivity, and adhesion property of the tin plating layer. Consequently, the copper alloy material of the present invention is able to sufficiently cope with the requirements of miniaturization of parts of electronic and electric machinery and tools such as terminals, connectors, switches and relays. In addition, some embodiments of the copper alloy material for parts of electronic and electric machinery and tools of the present invention can sufficiently match the required plating characteristics. Accordingly, the present invention can preferably cope with recent requirements in miniaturization, high performance, and high reliability, of any types of electronic and electric machinery and tools.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Contacts (AREA)
- Non-Insulated Conductors (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
A copper alloy material for parts of electronic and electric machinery and tools contains 1.0 to 3.0 mass % of Ni, 0.2 to 0.7 mass % of Si, 0.01 to 0.2 mass % of Mg, 0.05 to 1.5 mass % of Sn, 0.2 to 1.5 mass % of Zn, and less than 0.005 mass % (including 0 mass %) of S, with the balance being Cu and inevitable impurities, wherein the copper alloy material has:
(1) a specific crystal grain diameter, and a specific ratio between the longer diameters of a crystal grain on a cross section parallel or perpendicular to a direction of final plastic working; and/or
(2) a specific surface roughness after the final plastic working.
Description
- This is a continuation of PCT Application PCT/JP01/04351, filed May 24, 2001. The prior PCT application was not published in English under PCT Article 21(2).
- The present invention relates to a copper alloy material for parts of electronic and electric machinery and tools, in particular to the copper alloy material for parts of electronic and electric machinery and tools, which is excellent in bending property and stress relaxation property, and which can sufficiently cope with miniaturization of parts of electronic and electric machinery and tools, such as terminals, connectors, switches and relays.
- Hitherto, copper alloys, such as Cu—Zn alloys, Cu—Fe-alloys that are excellent in heat resistance, and Cu—Sn alloys, have been frequently used for parts of electronic and electric machinery and tools. While inexpensive Cu—Zn alloys have been used frequently, for example, in automobiles, the Cu—Zn alloys as well as Cu—Fe alloys and Cu—Sn alloys have been unable to currently cope with the requirements for the automobile, since recent trends urgently require the terminals and connectors to be small size, and they are mostly used under severe conditions (high temperature and corrosive environment) in an engine room and the like.
- In accordance with the changes of working conditions, severe characteristics are required for the terminal and connector materials. While copper alloys that are used in these application fields are required to have various characteristics, such as stress relaxation property, mechanical strength, heat conductivity, bending property, heat resistance, reliable connection to Sn plating, and anti-migration property, particularly important characteristics include mechanical strength, stress relaxation property, heat and electric conductance, and bending property.
- The structure of the terminals have been variously devised for ensuring connection strength at the spring parts in relation to miniaturization of the parts. As a result, the materials are more strictly required to be excellent in bending property, since cracks have been often observed at the bent portion in conventional Cu—Ni—Si alloys. The materials are also required to be excellent in stress relaxation property, and the conventional Cu—Ni—Si alloys cannot be used for a long period of time, due to increased stress load on the material and high temperatures in the working environments.
- It is inevitable to improve bending property when the alloy materials are used for the automobile connectors. Although improvements of bending property have been investigated in ways, it has been difficult to improve the bending property while maintaining the mechanical strength and elasticity.
- Conductivity and stress relaxation property should be balanced since stress relaxation is accelerated due to auto-heating when the materials are poor in heat and electric conductivity.
- On the other hand, the following requirements have been also addressed, with respect to improvement in compatibility to plating for plating the copper alloy material for parts of electronic and electric machinery and tools, and in resistance to deterioration of plate after plating (which are collectively called as plating characteristics).
- Cu plating is generally applied on the material as an underlayer followed by Sn plating on the surface thereof, for improving reliability when copper-based materials are used for the above automobile connector such as a box-type connector. When unevenness (roughness) of the material surface is larger than the thickness of the plating layer, the plating is repelled from convex portions without being plated to make it impossible to uniformly plate. In addition, the interface area between the material and plating layer is increased to readily cause mutual diffusion between Cu and Sn, thereby the plating layer is readily peeled off due to formation of voids and a Cu—Sn compound. Accordingly, the surface of the material should be as smooth as possible.
- While Au is generally plated on the Ni underlayer plating in the terminals or connectors for the electronic and electric appliances such as mobile terminal devices and personal computers, deterioration of the plating layer such as peeling of the plating layer as described above is also caused due to roughness of the surface of the material even when the surface is composed of the Au plating layer and the underlayer is composed of the Ni plating layer.
- Accordingly, a copper alloy that satisfies the above plating characteristics as well as various characteristics described above, has been desired.
- Other and further features and advantages of the invention will appear more fully from the following description, take in connection with the accompanying drawing.
- FIG. 1 is an explanatory view on the method for determining the crystal grain diameter and the crystal grain shape, each of which is defined in the present invention.
- According to the present invention there are provided the following means:
- (1) A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- wherein a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; and the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less.
- (2) A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- wherein a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; and the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less.
- (Hereinafter, the copper alloy materials for parts of electronic and electric machinery and tools described in the above item (1) or (2) are collectively referred to as the first embodiment of the present invention.)
- (3) A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- wherein a surface roughness Ra after final plastic working is more than 0 μm and less than 0.1 μm, or a surface roughness Rmax is more than 0 μm and less than 2.0 μm.
- (4) A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- wherein a surface roughness Ra after final plastic working is more than 0 μm and less than 0.1 μm, or a surface roughness Rmax is more than 0 μm and less than 2.0 μm.
- (Hereinafter, the copper alloy materials for parts of electronic and electric machinery and tools described in the above item (3) or (4) are collectively referred to as the second embodiment of the present invention. More preferable embodiments with respect to the item (3) or (4) above include the followings.)
- (5) The copper alloy material for parts of electronic and electric machinery and tools according to the item (3) or (4), wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Sn or a Sn alloy.
- (6) The copper alloy material for parts of electronic and electric machinery and tools according to the item (3) or (4), wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Sn or a Sn alloy, and is being subjected to a reflow treatment.
- (7) The copper alloy material for parts of electronic and electric machinery and tools according to the item (3) or (4), wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Cu or a Cu alloy as an underlayer, and is being plated with Sn or a Sn alloy thereon.
- (8) The copper alloy material for parts of electronic and electric machinery and tools according to the item (3) or (4), wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Cu or a Cu alloy as an underlayer, and is being plated with Sn or a Sn alloy thereon, and is being subjected to a reflow treatment.
- (9) The copper alloy material for parts of electronic and electric machinery and tools according to the item (3) or (4), wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Ni or a Ni alloy as an underlayer, and is being plated with Au or a Au alloy thereon.
- Herein, the present invention means to include both the first and second embodiments, unless otherwise specified.
- Further, examples of the preferable copper alloy materials for parts of electronic and electric machinery and tools in the present invention include the followings:
- (10) A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass (having the same meaning as % by wt) of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- wherein a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less; and a surface roughness Ra after the final plastic working is more than 0 μm and less than 0.1 μm, or a surface roughness Rmax is more than 0 μm and less than 2.0 μm.
- (11) A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
- wherein a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less; and a surface roughness Ra after the final plastic working is more than 0 μm and less than 0.1 μm, or a surface roughness Rmax is more than 0 μm and less than 2.0 μm.
- The present invention will be described in detail hereinafter.
- Each component included in the copper alloy material that can be used in the present invention will be described at first.
- Ni and Si as alloy forming elements in the present invention precipitate as a Ni—Si compound in the Cu matrix to maintain required mechanical properties without compromising heat and electric conductivity.
- The contents of Ni and Si are defined in the ranges of 1.0 to 3.0% by mass and 0.2 to 0.7% by mass, respectively, because the effect of adding these elements cannot be sufficiently attained when the content of either Ni or Si is less than its lower limit; while when the content of either Ni or Si exceeds its upper limit, giant compounds that do not contribute to the improvement in mechanical strength are recrystallized (precipitated) during casting or hot-working, not only to fail in obtaining a mechanical strength rewarding their contents, but also to cause problems of adversely affecting hot-working property and bending property.
- Accordingly, the preferable content of Ni is in the range of 1.7 to 3.0% by mass, more preferably 2.0 to 2.8% by mass, and the preferable content of Si is in the range of 0.4 to 0.7% by mass, more preferably 0.45 to 0.6% by mass. It is best to adjust the blending ratio between Si and Ni to the proportion of them in a Ni2Si compound, since the compound between Ni and Si mainly comprises the Ni2Si phase. The optimum amount of Si to be added is determined by determining the amount of Ni to be added.
- Mg, Sn and Zn are important alloy elements in the alloy that constitute the copper alloy material of the present invention. These elements in the alloy are correlated with each other to improve the balance among various characteristics.
- Mg largely improves stress relaxation property, but it adversely affects bending property. The more the content of Mg is, the more the stress relaxation property is improved, provided that the content is 0.01% by mass or more. However, the content is restricted in the range of 0.01 to 0.2 by mass, because stress relaxation improving effect cannot be sufficiently obtained when the content is less than 0.01 by mass, while, when the content is more than 0.2 by mass, bending property decreases.
- Sn is able to more improve stress relaxation property, mutually correlated with Mg. While Sn has a stress relaxation improving effect as seen in phosphor bronze, its effect is not so large as Mg. The content of Sn is restricted in the range of 0.05 to 1.5% by mass, because sufficient effects for adding Sn cannot be sufficiently manifested when the Sn content is less than 0.05% by mass, while, when the Sn content exceeds 1.5% by mass, electric conductivity decreases.
- Although Zn does not contribute to the stress relaxation property, it can improve bending property. Therefore, decrease of bending property may be ameliorated by allowing Mg to be contained. When Zn is added in the range of 0.2 to 1.5% by mass, bending property in the practically non-problematic level may be achieved even by adding Mg in maximum 0.2% by mass. In addition, Zn can improve resistance to peeling under heat of a tin plating layer or solder plating layer, as well as anti-migration characteristics. The content of Zn is restricted in the range of 0.2 to 1.5% by mass, because the effect of adding Zn cannot be sufficiently manifested when the Zn content is less than 0.2% by mass, while, when the Zn content exceeds 1.5% by mass, electric conductivity decreases.
- In the present invention, the content of Mg is preferably in the range of 0.03 to 0.2% by mass, more preferably 0.05 to 0.15% by mass; the content of Sn is preferably in the range of 0.05 to 1.0% by mass, more preferably 0.1 to 0.5% by mass; and the content of Zn is preferably in the range of 0.2 to 1.0% by mass, more preferably 0.4 to 0.6% by mass.
- The content of S as an impurity element is restricted to be less than 0.005% by mass, since hot-working property is worsened by the presence of S. The content of S is particularly preferably less than 0.002% by mass.
- In the copper alloy material according to the item (2), (4) or (11), at least one element selected from the group consisting of Ag, Co and Cr is further allowed to contain in the copper alloy material according to the item (1), (3) or (10).
- These elements in the alloy described above can contribute to further improvement of the mechanical strength. The total content of these elements in the alloy is in the range of 0.005 to 2.0% by mass, preferably in the range of 0.005 to 0.5% by mass. The total content of the elements in the alloy is defined in the range of 0.005 to 2.0% by mass, because the effect of adding these elements cannot be sufficiently manifested when the content is less than 0.005% by mass. When the content of Ag of exceeding 2.0% by mass, on the other hand, results in a high manufacturing cost of the alloy, while adding Co and Cr of exceeding 2.0% by mass result in recrystallization (precipitation) of giant compounds during casting or hot-working, not only to fail in obtaining a mechanical strength rewarding their contents, but also to cause problems of adversely affecting hot-working property and bending property. The content of Ag is preferably 0.3% by mass, since it is an expensive element.
- Ag also has an effect for improving heat resistance and for improving bending property by preventing the crystal grains from becoming giant.
- Although Co is also expensive, it has the same as or larger function than Ni. Stress relaxation property is also improved since the Co—Si compound is high in hardening ability by precipitation. Accordingly, it is effective to replace a part of Ni with Co in the members in which heat and electric conductivity is emphasized. However, the content of Co is preferably less than 2.0% by mass since it is expensive.
- Cr forms fine precipitates in Cu, to contribute to the increased mechanical strength. However, the content of Cr should be 0.2% by mass or less, preferably 0.1% by mass, because bending property decreases by adding Cr.
- In the present invention, it is possible to add elements, such as Fe, Zr, P, Mn, Ti, V, Pb, Bi and Al, in a total content, for example, of 0.01 to 0.5% by mass for improving various characteristics in an extent not decreasing essential characteristics. For example, hot-working property may be improved by adding Mn in the range that does not decrease electric conductivity (0.01 to 0.5% by mass).
- The balance other than the components as described above is Cu and inevitable impurities in the copper alloy material to be used in the present invention.
- Although the copper alloy material to be used in the present invention can be manufactured by a usual manner, which is not particularly restrictive, the method comprises, for example, hot-rolling of an ingot, cold-rolling, heat treatment for forming a solid solution, heat treatment for aging, final cold-rolling, and low-temperature annealing. The copper alloy material may be also produced by after cold-rolling, applying a heat treatment for recrystallization and for forming a solid solution, followed by immediate quenching. An aging treatment may be applied, if necessary.
- The first embodiment of the present invention will be described hereinafter.
- In the first embodiment of the present invention, bending property and stress relaxation property are particularly improved, without compromising essential characteristics such as mechanical property, heat and electric conductivity, and plating property, by allowing the alloy elements in the above copper alloy material such as Ni, Si, Mg, Sn and Zn to contain in appropriate quantities while suppressing the content of S in a trace amount, and by defining the crystal grain diameter and the shape of the crystal grain.
- In the first embodiment of the present invention, the crystal grain diameter is defined to be from more than 0.001 mm to 0.025 mm. This is because the recrystallized texture tends to be a mixed grain texture to decrease bending property and stress relaxation property when the crystal grain diameter is 0.001 mm or less, while, when the crystal grain diameter exceeds 0.025 mm, bending property decreases. Herein, the crystal grain diameter may be determined by usual methods for measuring the grain diameter, which is not in particular restrictive.
- The shape of the crystal grain is expressed with the ratio (a/b), between the longer diameter a of the crystal grain on the cross section parallel to the direction of final plastic working, and the longer diameter b of the crystal grain on the cross section perpendicular to the direction of final plastic working. The ratio (a/b) is defined to be 1.5 or less, because the stress relaxation decreases when the ratio (a/b) exceeds 1.5. The stress relaxation tends to be decreased when the ratio (a/b) is less than 0.8. Therefore, the ratio (a/b) is preferably 0.8 or more. The longer diameter a and the longer diameter b each are determined by an average value obtained from 20 or more crystal grains.
- In the first embodiment of the present invention, the crystal grain diameter and the shape of the crystal grain can be controlled by adjusting heat-treatment conditions, rolling reduction, direction of rolling, back-tension in rolling, lubrication conditions in rolling, the number of paths in rolling, and the like, in the manufacturing process of the copper alloy.
- In a concrete embodiment, the crystal grain diameter and the shape of crystal grain can be controlled as intended, for example, by changing heat-treatment conditions (such as the temperature and period of time in the heat-treatment for forming a solid solution and heat treatment for aging) or by a low reduction in the final cold-rolling.
- The direction of final plastic working as used in the present invention refers to the direction of rolling when the rolling is the finally carried out plastic working, or to the direction of drawing when the drawing (linear drawing) is the plastic working finally carried out. The plastic working refers to workings such as rolling and drawing, but working for the purpose of leveling (vertical leveling) using, for example, a tension leveler, is not included in this plastic working.
- The second embodiment of the present invention will be then described.
- The second embodiment of the present invention is the copper alloy material for parts of electronic and electric machinery and tools that can be used in the preset invention as described in the above, in which the surface roughness of the alloy is defined so that the surface becomes smooth, particularly property of plating of Sn and the like is improved. The inventors of the present invention have been able to realize practically excellent materials for the parts of electronic and electric machinery and tools by precisely defining the contents of the components of the alloy material and the surface roughness of the alloy material.
- Since the components in the copper alloy material are the same as those in the first embodiment, the reason of restricting the surface roughness will be described hereinafter.
- The surface roughness is used as an index representing the surface state of the material.
- Ra defined in the second embodiment of the present invention means an arithmetic average of the surface roughness, and is described in JIS B 0601. Rmax denotes the maximum height of roughness, and is described as Ry in JIS B 0601.
- The copper alloy material for parts of electronic and electric machinery and tools in the second embodiment of the present invention is manufactured so that the surface of the copper alloy material having the foregoing composition after the final plastic working has the given surface roughness Ra or Rmax as described above. The Ra or Rmax, for example, may be adjusted by rolling, grinding, or the like.
- The surface roughness of the copper alloy material may be practically adjusted, by (1) rolling with a roll having a controlled surface roughness, (2) grinding after intermediate working and final working, with a buff having a controlled roughness, (3) cutting after intermediate working and final working, by changing cutting conditions, (4) surface dissolution treatment after intermediate working and final working, and a combination thereof. Examples of practical embodiments include cold-rolling as final plastic working with a roll having different roughness (coarse/fine), grinding with a buff having different counts, surface dissolution with a solution having different solubility, and a combination of cold-rolling as a final plastic working with a roll having different roughness and dissolution treatment with a solution having a different dissolution time. Desired surface roughness may be attained by using any one of the methods described above.
- It is preferable to plate the copper alloy material for parts of electronic and electric machinery and tools according to the present invention. The plating method is not particularly restricted, and any usual methods may be used. Although not restrictive in the present invention, it is more preferable to plate the copper alloy material for parts of electronic and electric machinery and tools according to the second embodiment, and it is particularly preferable to plate the copper alloy material for parts of electronic and electric machinery and tools described in the item (10) or (11).
- Repulsion (cissing, non-uniform plating) may occur when Ra or Rmax is too large in plating with Sn of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention. Too large Ra or Rmax also arise large interface areas between the material and the Sn plating layer, where Cu atoms in the material and Sn atoms in the plating layer are readily diffused with each other. Consequently, Cu—Sn compounds and voids tend to occur to readily result in peeling of the plating layer after maintaining at a high temperature.
- Alternatively, pin-holes may occur to deteriorate corrosion resistance after plating with Au of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention, when Ra or Rmax is too large. Accordingly, plating property can be improved by adjusting Ra to be larger than 0 μm and smaller than 0.1 μm, or by adjusting Rmax to be larger than 0 μm and smaller than 2.0 μm. Preferably, Ra is smaller than 0.09 μm or Rmax is smaller than 0.8 μm.
- It is preferable to plate the surface of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention with Sn or a Sn alloy, in order to prevent color changes in the air. The thickness of the Sn or Sn alloy plating layer is preferably more than 0.1 μm and 10 μm or less. A sufficient plating effect cannot be obtained at a thickness of the plating layer of less than 0.1 μm, while the plating effect is saturated at a thickness of more than 10 μm with increasing the plating cost. Providing a Cu or Cu alloy plating layer under the Sn plating layer is more preferable for preventing repulsion of the plating layer. The preferable thickness of the Cu or Cu alloy plating layer is 1.0 μm or less. The Sn alloy usable includes, for example, Sn—Pb alloys and Sn—Sb—Cu alloys, and the Cu alloy usable includes, for example, Cu—Ag alloys and Cu—Cd alloys.
- It is also preferable to apply a reflow treatment, which prevents whiskers as well as short circuits from occuring. The reflow treatment as used herein refers to a heat-melting treatment, by which the plating material is heat-melted followed by solidification of the plate layer after cooling.
- It is preferable to plate the surface of the copper alloy material for parts of electronic and electric machinery and tools according to the present invention with Au or an Au alloy for improving reliability of electric connection such as a connector. More preferably, the copper alloy material is plated with Au or Au alloy at a thickness of larger than 0.01 μm and smaller than 2.0 μm. A Ni or Ni alloy plating layer may be provided under the Au plating layer for improving the plug-in and plug-out service life. The thickness of the Ni or Ni ally plating layer is preferably 2.0 μm or less. The Au alloy usable includes, for example, Au—Cu alloys, Au—Cu—Au alloys, and the Ni alloy usable includes, for example, Ni—Cu alloys and Ni—Fe alloys.
- Examples of the preferable embodiments in the present invention further include the foregoing item (10) or (11). In these embodiments, the surface roughness defined in the second embodiment is satisfied, while maintaining the crystal grain diameter and crystal grain shape defined in the first embodiment. Specific embodiments of these include those in which the first embodiment and the second embodiment are combined.
- The copper alloy material for parts of electronic and electric machinery and tools according to the present invention is excellent in mechanical properties (tensile strength and elongation), electric conductivity, stress relaxation property, and bending property.
- According to the first embodiment of the present invention as described above, bending property and stress relaxation property are particularly improved while being excellent in essential characteristics such as mechanical properties, electric conductivity and adhesion property of tin plating.
- According to the second embodiment of the present invention as described above, further the copper alloy material is also excellent in compatibility to plating (repulsion preventive property of plating), and additional effects such as excellent deterioration preventing property of the plating layer (peeling resistance and corrosion resistance of the plating layer) may also be exhibited when plating.
- Accordingly, the present invention can favorably cope with the recent requirements for miniaturization and high performance of the electronic and electric machinery and tools. The present invention is preferably applied to materials for terminals, connectors, as well as switches, relays, and other general-purpose conductive materials for electronic and electric machinery and tools.
- The present invention is described in more detail with reference to the following examples, but the present invention is by no means restricted to these examples.
- Copper alloys each having the composition as defined in the present invention, shown in Table 1 (Nos. A to F), were melted in a microwave melting furnace, to cast into ingots with a thickness of 30 mm, a width of 100 mm and a length of 150 mm, by a DC method, respectively. Then, these ingots were heated at 900° C. After holding the ingots at this temperature for 1 hour, they were hot-rolled to a sheet with a thickness of 12 mm, followed by rapid cooling. Then, both end faces of the hot-rolled sheet each were cut (chamfered) by 1.5 mm, to remove oxidation films. The resultant sheets were worked to a thickness of 0.25 to 0.50 mm by cold rolling. The cold-rolled sheets were then heat-treated at a temperature of 750 to 850° C. for 30 seconds, after that, immediately followed by cooling at a cooling rate of 15° C./sec or more. Some samples were subjected to rolling with a reduction of 50% or less. Then, aging treatment was carried out at 515° C. for 2 hours in an inert gas atmosphere, and cold rolling as a final plastic working was carried out thereafter, to adjust to the final sheet thickness of 0.25 mm. After the final plastic working, the samples were subjected to low-temperature annealing at 350° C. for 2 hours, to carry out evaluation on the following characteristics.
- Copper alloy sheets were manufactured in the same manner as in Example A-1, except that copper alloys (Nos. G to O) out of the composition defined in the present invention, as shown in Table 1, were used.
- Each copper alloy sheet manufactured in Example A-1 and Comparative example A-1 was investigated with respect to (1) crystal grain diameter, (2) crystal grain shape, (3) tensile strength and elongation, (4) electric conductivity, (5) bending property, (6) stress relaxation property, and (7) plate adhesion property.
- The crystal grain diameter (1) and crystal grain shape (2) were calculated based on the measurement of the crystal grain diameter by a cutting method defined by JIS (JIS H 0501).
- As shown in FIG. 1, the cross section A parallel to the direction of the final cold-rolling of the sheet (the direction of the final plastic working), and the cross section B perpendicular to the direction of the final cold-rolling, were used as the cross sections for measuring the crystal grain diameter.
- With respect to the cross section A, the crystal grain diameters were measured in two directions that were the direction parallel to or the direction perpendicular to the final cold-rolling direction on the cross section A, and among the measured values, a larger one was referred to as the longer diameter a, and a smaller one was referred to as a shorter diameter, respectively. With respect to the cross section B, the crystal grain diameters were measured in two directions, one of which was the direction parallel to the direction of the normal line of the sheet surface, and the other of which was the direction perpendicular to the direction of the normal line of the sheet surface, and among the measured values, a larger one was referred to as the longer diameter b, and a smaller one was referred to as a shorter diameter, respectively.
- The crystalline texture of the copper alloy sheet was photographed with a scanning electron microscope with a 1000-fold magnification, and line segments with a length of 200 mm were drawn on the resultant photograph, and the number n of crystal grains cut with (shorter than) the line segment was counted, to determine the crystal grain diameter, from the following equation: (the crystal grain diameter)={200 mm/(n×1000)}. When the number of crystal grains shorter than the line segment was less than 20, the crystal grains were photographed with a 500-fold magnification, and the number n of crystal grains shorter than the line segment with a length of 200 mm was counted, to determine the crystal grain diameter from the following equation: (the crystal grain diameter)={200 mm/(n×500)}.
- The crystal grain diameter is shown by rounding the average value of the four values among the two longer diameters and the two shorter diameters each obtained on the cross sections A and B, to the nearest number that is a product of an integer and 0.005 mm. The shape of the crystal grain is shown as a value (a/b) that is obtained by dividing the longer diameter a on the cross section A by the longer diameter b on the cross section B.
- (3) The tensile strength and the elongation were determined in accordance with JIS Z 2241 using #5 test pieces described in JIS Z 2201.
- (4) The electric conductivity was determined in accordance with JIS H 0505.
- (5) Bending property was evaluated by subjecting each of the sample sheets to a 180° bending test in which the inner bending radius was 0 millimeter, and the sample in which no crack was occurred at the bent portion is judged to be good (∘), and the sample in which cracks were occurred is judged to be poor (×).
- (6) As an index of the stress relaxation property, was determined the stress relaxation ratio (S.R.R.), by applying a one-side holding block method of Electronics Materials Manufacturers Association of Japan Standard (EMAS-3003), wherein the stress load was set so that the maximum surface stress would be 450 N/mm2, and the resultant test piece was maintained in a constant temperature chamber at 150° C. for 1,000 hours. The stress relaxation property is judged to be good (∘) when the stress relaxation ratio (S.R.R.) was less than 21%, and it is judged to be poor (×) when the S.R.R. was 21% or more.
- (7) The adhesion property of the plating layer was evaluated in the following manner. A test piece of each of the sample sheets was subjected to glossy tin plating with a thickness of 1 μm, and the resultant test piece was heated at 150° C. for 1,000 hours in the atmospheric air, followed by 180-degree contact bending and bending back. After that, the adhesion state of the tin plating layer at the bent portion was observed with the naked eye. The sample in which no peeling off of the plating layer was recognized is judged to be good in the adhesion property (∘), while the sample in which the plate was peeled off is judged to be poor in the adhesion property (×). The results are shown in Table 2.
TABLE 1 Other Classifi- Alloy Ni Si Mg Sn Zn S elements cation No. wt % wt % wt % wt % wt % wt % wt % Example A 2.0 0.49 0.09 0.19 0.49 0.002 of this B 2.5 0.60 0.08 0.20 0.49 0.002 invention C 2.0 0.48 0.04 0.20 0.50 0.002 D 2.0 0.49 0.04 0.82 0.49 0.002 E 2.0 0.48 0.08 0.21 0.49 0.002 Ag 0.03 F 2.0 0.47 0.09 0.20 0.50 0.002 Cr 0.007 Compar- G 0.8 0.19 0.09 0.20 0.50 0.002 ative H 2.0 0.47 0.003 0.22 0.49 0.002 example I 2.0 0.48 0.003 0.94 0.50 0.002 J 1.9 0.47 0.25 0.30 1.25 0.002 K 2.0 0.49 0.09 0.002 0.50 0.002 L 2.0 0.48 0.08 2.04 0.50 0.002 M 2.1 0.49 0.09 0.21 0.08 0.002 N 2.0 0.48 0.08 0.20 0.51 0.002 Cr 0.4 O 1.9 0.46 0.09 0.33 0.49 0.011 -
TABLE 2 Crystal Stress grain Shape of Tensile Electric relaxation Plate Sample size crystal strength Elongation conductivity Bending property adhesion Classification No. Alloy No. mm grain N/mm2 % % IACS property % property Example of 1 A 0.005 1.1 690 16 40 ◯ ◯15 ◯ this invention 2 B 0.005 0.9 710 15 39 ◯ ◯14 ◯ 3 C 0.005 1.0 685 16 42 ◯ ◯20 ◯ 4 D 0.005 1.1 695 13 32 ◯ ◯17 ◯ 5 E 0.005 1.1 700 16 40 ◯ ◯15 ◯ 6 F 0.005 1.1 700 15 39 ◯ ◯15 ◯ Comparative 7 G 0.005 1.1 520 18 47 ◯ ◯ example 8 H 0.005 1.0 690 16 41 ◯ X29 ◯ 9 I 0.005 1.0 700 16 30 ◯ X26 ◯ 10 J 0.005 1.1 695 15 35 X ◯14 ◯ 11 K 0.005 1.1 690 16 44 ◯ X21 ◯ 12 L 0.005 1.0 685 16 24 ◯ ◯15 ◯ 13 M 0.005 1.1 690 16 42 ◯ ◯15 X 14 N 0.005 1.0 680 16 38 X ◯15 ◯ 15 O The production was stopped and not completed due to occurrence of cracks during hot-rolling. - As is apparent from the results shown in Table 2, the sample Nos. 1 to 6, which were the examples according to the present invention, each exhibited excellent properties in all the tested items.
- Contrary to the above, the prescribed mechanical strength could not be attained in the samples in the comparative example No. 7 since the contents of Ni and Si were too small. The samples of Nos. 8 and 9 were poor in the stress relaxation property due to too small content of Mg. The sample of No. 10 showed poor bending property due to too large content of Mg. The sample of No. 11 was poor in the stress relaxation property due to too small content of Sn. Electric conductivity was poor in the sample of No. 12 due to too large content of Sn. The sample of No. 13 showed poorly low plate adhesion property due to too small amount of Zn content, while the sample of No. 14 was poor in bending property due to too large content of Cr. Production of the sample of No. 15 was stopped since cracks occurred during hot-rolling due to too large content of S.
- Copper alloys each having the composition as defined in the present invention, shown in Table 1 (Nos. A to D), were melted in a microwave melting furnace, to cast into ingots with a thickness of 30 mm, a width of 100 mm and a length of 150 mm, by a DC method, respectively. Then, these ingots were heated at 900° C. After holding the ingots at this temperature for 1 hour, they were hot-rolled to a sheet with a thickness of 12 mm, followed by rapid cooling. Then, both end faces of the hot-rolled sheet each were cut (chamfered) by 1.5 mm, to remove oxidation films. The resultant sheets were worked to a thickness of 0.25 to 0.50 mm by cold rolling. The cold-rolled sheets were then heat-treated at a temperature of 750 to 850° C. for 30 seconds, after that, immediately followed by cooling at a cooling rate of 15° C./sec or more. Some samples were subjected to rolling of 50% or less. Then, aging treatment was carried out at 515° C. for 2 hours in an inert gas atmosphere, and cold rolling as a final plastic working was carried out thereafter, to adjust to the final sheet thickness of 0.25 mm. After the final plastic working, the samples were subjected to low-temperature annealing at 350° C. for 2 hours, thereby manufacturing copper alloy sheets, respectively.
- The crystal grain diameter and the shape of the crystal grain of the copper alloy sheets were variously changed within the defined range (the examples according to the present invention) and outside of the defined range (comparative examples), by adjusting heat-treatment conditions, rolling reduction, direction of rolling, back-tension in rolling, the number of paths in rolling, and lubrication conditions in rolling, in the manufacturing process of the copper alloy.
- The same items were measured by the same method as in Example A-1 with respect to the copper alloy sheet manufactured as described above. The results are shown in Table 3.
TABLE 3 Crystal Stress grain Shape of Tensile Electric relaxation Plate Sample size crystal strength Elongation conductivity Bending property adhesion Classification No. Alloy No. mm grain N/mm2 % % IACS property % property Example of 21 A 0.005 0.9 685 15 40 ◯ ◯15 ◯ this 22 A 0.005 1.1 690 16 40 ◯ ◯15 ◯ invention 23 A 0.005 1.3 705 14 40 ◯ ◯18 ◯ 24 A 0.005 0.7 705 13 40 ◯ ◯20 ◯ 25 A 0.015 1.1 675 16 41 ◯ ◯13 ◯ 26 B 0.005 0.9 710 15 39 ◯ ◯14 ◯ 27 B 0.005 1.2 715 13 39 ◯ ◯17 ◯ 28 B 0.005 1.1 700 14 40 ◯ ◯13 ◯ 29 C 0.005 1.0 685 16 42 ◯ ◯20 ◯ 30 D 0.005 1.1 695 13 32 ◯ ◯17 ◯ Comparative 31 A 0.005 1.7 715 12 40 ◯ X28 ◯ example 32 A 0.005 2.0 735 10 42 X X37 ◯ 33 A 0.030 1.1 670 9 42 X ◯13 ◯ 34 A 0.001> 1.0 690 17 40 X X21 ◯ 35 B 0.005 1.9 745 10 41 X X35 ◯ 36 B 0.030 1.1 700 8 43 X ◯13 ◯ 37 C 0.005 1.7 715 12 41 ◯ X34 ◯ 38 D 0.030 2.0 745 6 32 X X39 ◯ - As is apparent from Table 3, the samples of Nos. 21 to 30 of the example according to the present invention each exhibited excellent characteristics.
- In contrast, bending property was poor in the samples of Nos. 33 and 36, and in the samples of No. 34, because the crystal grain diameters were too large in the former case and too small in the latter case. Not only bending property but also stress relaxation property were poor in the sample of No. 38 since the crystal grain diameter as well as the index (a/b) representing the crystal grain shape were too large. Stress relaxation property was also poor in the samples of Nos. 31, 32, 35 and 37 in the comparative example since the index (a/b) was too large. Bending property was particularly poor in the samples of Nos. 32 and 35 since the index (a/b) was quite too large.
- The alloys having the compositions listed in Table 4, were melted in a microwave melting furnace, to cast into ingots with a dimension of 30 mm×100 mm×150 mm. Then, these ingots were heated at 900° C. After holding the ingots at this temperature for 1 hour, they were hot-rolled from 30 mm to a sheet with a thickness of 12 mm, followed by rapid cooling. Then, both end faces of the hot-rolled sheet each were cut (chamfered) to a thickness of 9 mm, to remove surface oxide films. The resultant sheets were worked to a thickness of 0.27 mm by cold rolling. The cold-rolled sheets were then heat-treated at a temperature of 750 to 850° C. for 30 seconds for recrystallization and for forming solid solutions, after that, immediately followed by quenching at a cooling rate of 15° C./sec or more. Then, cold-rolling with a reduction ratio of 5% was carried out, and aging treatment was carried out. Specifically, the aging treatment was carried out at 515° C. for 2 hours in an inert gas atmosphere. Cold rolling as a final plastic working was carried out thereafter, to adjust to the final sheet thickness of 0.25 mm. After the final plastic working, the samples were then subjected to annealing at 350° C. for 2 hours for improving elasticity. The surface of the copper alloy sheet obtained was ground with a water-proof paper, to finish to the surface roughness, as shown in Table 5. The surface roughnesses Ra and Rmax were measured for each 4 mm interval-length at arbitrary sites of the sample in the direction perpendicular to the direction of rolling, and an average of five times measurements was used as Ra and Rmax. Various characteristics were evaluated with respect to the copper alloy material for parts of electronic and electric machinery and tools obtained as described above.
- The tensile strength and elongation, and electric conductivity were measured in accordance with JIS Z 2241 and JIS H 0505, respectively, and the results are listed in Table 5.
- A 180°-bending test with an inner bending radius of 0 mm was carried out for the two-step evaluation of bending property, with respect to occurrence or absence of cracks, as an index of evaluation.
- Stress relaxation property was evaluated in accordance with EMA S-3003 as Electronics Materials Manufacturers Association of Japan Standard. The one-side holding block method described in the paragraph [0038] in JP-A-11-222641 (“JP-A” means unexamined published Japanese patent application) was employed in this evaluation, wherein the stress load was set so that the maximum surface stress would be 450 MPa, and the resultant test piece was maintained in a constant temperature chamber at 150° C. The measured values are represented by the stress relaxation ratio (S.R.R) after 1,000 hours' test in Table 5. The stress relaxation property is judged to be poor when the S.R.R. was more than 23% or more.
- Apart from the samples used in each of the tests, a sample plated with Sn or Au was manufactured in the following manner, and was subjected to plating characteristics.
- The sample above was plated with Sn with a Sn-plating thickness of 1.0 μm on the Cu underlayer plating with a thickness of 0.2 μm. Alternatively, the sample above was plated with Au with a Au-plating thickness of 0.2 μm on the Ni underlayer plating with a thickness of 1.0 μm.
- Repulsion of the plating layer was tested by observing the outer appearance of the Sn plated test sample prepared as described above with the naked eye.
- In plate-peeling test, the sample plated with Sn was bent at an angle 1800, after heating at 150° C. for 1,000 hours under an atmospheric pressure, and peeling of the plating layer (resistance to peeling under heat of the plating layer), if any, was confirmed with the naked eye.
- As a corrosion resistance test, a salt water apraying test was carried out in an atmosphere of a 5% aqueous NaCl solution, onto the Au-plated sample, at a temperature of 35° C., for 96 hours, and occurrence of corrosion product, if any, was judged with the naked eye.
TABLE 4 Content of each component in Copper alloy material* Copper alloy Ni Si Mg Sn Zn S Other elements material No. (mass %) (mass %) (mass %) (mass %) (mass %) (mass %) (mass %) Example of 1 2.3 0.54 0.10 0.15 0.50 0.002 this invention 2 2.8 0.67 0.08 0.70 0.40 0.001 3 2.1 0.51 0.04 0.40 1.3 0.002 4 2.0 0.49 0.04 1.3 0.30 0.003 5 2.3 0.55 0.09 0.21 0.87 0.002 Ag 0.05 6 2.4 0.57 0.13 0.31 0.50 0.002 Cr 0.09 7 1.9 0.49 0.10 0.10 0.25 0.003 Co 0.30, Ag 0.03 8 2.3 0.55 0.15 0.07 0.60 0.004 9 2.5 0.60 0.08 0.60 0.36 0.002 Mn 0.21 10 2.1 0.50 0.11 1.0 0.49 0.002 P 0.007 11 2.3 0.54 0.06 0.16 0.77 0.001 Ti 0.08, Al 0.06 12 2.4 0.57 0.14 0.13 1.1 0.002 Cr 0.03, Zr 0.10 13 2.2 0.52 0.05 0.15 0.98 0.003 Ti 0.12, Al 0.09, Fe 0.15 14 2.3 0.54 0.18 0.19 0.48 0.002 Fe 0.12, P 0.007 15 2.3 0.55 0.11 0.29 0.33 0.001 Bi 0.03, Pb 0.02 16 2.3 0.55 0.12 0.18 0.49 0.002 Pb 0.03 17 2.1 0.50 0.05 0.34 0.67 0.004 Ti 0.11, V 0.05 18 1.2 0.29 0.17 0.85 0.40 0.002 19 1.5 0.40 0.14 0.52 0.73 0.001 20 1.8 0.35 0.11 0.24 0.43 0.002 Comparative 51 0.6 0.14 0.09 0.15 0.50 0.002 example 52 2.3 0.54 0.003 0.19 0.39 0.001 53 2.2 0.52 0.003 0.94 0.60 0.002 54 2.1 0.50 0.45 0.30 1.25 0.003 55 2.4 0.57 0.12 0.002 0.91 0.002 56 2.3 0.54 0.05 3.04 0.44 0.004 57 2.3 0.55 0.09 0.11 0.04 0.002 58 2.2 0.52 0.15 0.40 0.51 0.002 Cr 0.4 59 2.4 0.57 0.12 0.33 0.49 0.015 60 2.3 0.54 0.11 0.16 4.0 0.002 61 4.7 0.49 0.06 0.19 0.56 0.002 62 2.3 1.1 0.09 0.14 0.44 0.001 63 4.6 1.2 0.17 0.20 0.50 0.002 -
TABLE 5 Corrosion Bending Stress Peeling of Repelling resistance Copper Surface Reflow property relaxation plate of plate of plate alloy roughness treatment Tensile Electric (presence property (presence (presence (presence Sample material Ra Rmax of Sn strength Elongation conductivity or absence S.R.R. or or or No. No (μm) (μm) plating (MPa) (%) (% IACS) of cracks) (%) absence) absence) absence) Ex- 101 1 0.08 0.70 absence 700 16 40 absence 15 absence absence absence ample 102 2 0.08 0.72 absence 720 14 38 absence 13 absence absence absence of this 103 3 0.08 0.71 absence 695 16 40 absence 20 absence absence absence in- 104 4 0.07 0.75 absence 690 14 35 absence 17 absence absence absence vention 105 5 0.08 0.71 absence 710 14 39 absence 15 absence absence absence 106 6 0.07 0.69 absence 710 14 39 absence 14 absence absence absence 107 7 0.08 0.70 absence 715 14 41 absence 17 absence absence absence 108 8 0.07 0.69 absence 700 16 41 absence 15 absence absence absence 109 9 0.08 0.70 absence 715 14 39 absence 14 absence absence absence 110 10 0.08 0.71 absence 695 16 39 absence 15 absence absence absence 111 11 0.09 0.73 absence 705 16 38 absence 15 absence absence absence 112 12 0.08 0.70 absence 710 15 37 absence 15 absence absence absence 113 13 0.08 0.70 absence 705 15 37 absence 14 absence absence absence 114 14 0.08 0.71 absence 705 15 38 absence 14 absence absence absence 115 15 0.07 0.68 absence 705 16 39 absence 15 absence absence absence 116 16 0.07 0.69 absence 705 15 39 absence 15 absence absence absence 117 17 0.08 0.70 absence 695 16 38 absence 15 absence absence absence 118 18 0.08 0.70 absence 600 19 45 absence 20 absence absence absence 119 19 0.07 0.67 absence 630 18 40 absence 20 absence absence absence 120 20 0.08 0.70 absence 630 18 41 absence 20 absence absence absence 121 1 0.04 0.51 absence 700 16 40 absence 15 absence absence absence 122 1 0.08 2.20 absence 700 16 40 absence 15 absence absence absence 123 1 0.12 1.78 absence 700 16 40 absence 15 absence absence absence 124 1 0.09 0.75 presence 700 16 40 absence 15 absence absence absence Com- 151 51 0.08 0.70 absence 490 18 47 absence —(*) absence absence absence par- 152 52 0.08 0.73 absence 690 16 41 absence 29 absence absence absence ative 153 53 0.08 0.71 absence 700 16 38 absence 26 absence absence absence example 154 54 0.07 0.69 absence 695 15 35 presence 14 absence absence absence 155 55 0.06 0.70 absence 690 16 44 absence 23 absence absence absence 156 56 0.07 0.72 absence 685 16 24 absence 15 absence absence absence 157 57 0.06 0.71 absence 690 16 42 absence 15 presence absence absence 158 58 0.08 0.70 absence 680 16 38 presence 15 absence absence absence 159 59 — — absence The production was stopped and not completed due to occurrence of cracks during hot-working. 160 60 0.07 0.78 absence 700 16 30 absence 15 absence absence absence 161 61 0.08 0.69 absence 750 11 36 presence 15 absence absence absence 162 62 0.08 0.71 absence 690 14 30 presence 15 absence absence absence 163 63 — — absence The production was stopped and not completed due to occurrence of cracks during hot-working. 164 1 0.15 2.92 absence 700 16 40 absence 15 presence presence presence 165 1 0.14 2.74 presence 700 16 40 absence 15 presence presence presence - As is evident from Tables 4 and 5, at least one of the characteristics in the same samples of the comparative example was poor, contrary to those of each sample in the examples according to the present invention. For example, the sample of comparative example of No. 151 did not exhibit a required mechanical strength due to too small contents of Ni and Si. The samples of No. 152 and No. 153 were poor in stress relaxation property due to a too small content of Mg. The sample of No. 154 showed poor bending property due to a too large content of Mg. The sample of No. 155 showed poor stress relaxation property due to a too small content of Sn. Electric conductivity was poor in the sample of No. 156 due to a too large content of Sn. Plate adhesion property of the Sn plating layer was poor in the sample of No. 157 due to a too small content of Zn, while bending property was poor in the sample of No. 158 due to a too large content of Cr. Production of the sample of No. 159 was stopped since cracks occurred during hot-rolling due to a too large content of S. Electric conductivity was poor in the sample of No. 160 due to a too large content of Zn. Bending property was poor in the sample No. 161 due to a too large content of Ni. Electric conductivity was poor and bending property was poor in the sample of No. 162 due to a too large content of Si. Production of the sample of No. 163 was stopped since cracks occurred during hot-rolling due to too large contents of Ni and Si. Resistance to peeling of the Sn plating layer under heating was poor and the Sn plating layer was repelled in the samples of No. 164 and No. 165 due to too large values of Ra and Rmax. These samples were also poor in corrosion resistance of the Au plating layer.
- In contrast, it can be understood that the samples of the examples according to the present invention (No. 101 to No. 124) each exhibited excellent characteristics in all of tensile strength, elongation, electric conductivity, bending property, stress relaxation property and plating characteristics, as compared with the samples in the comparative examples.
- The copper alloy material for parts of electronic and electric machinery and tools of the present invention is particularly improved in bending property and stress relaxation property while being excellent in essential characteristics such as mechanical property, electric conductivity, and adhesion property of the tin plating layer. Consequently, the copper alloy material of the present invention is able to sufficiently cope with the requirements of miniaturization of parts of electronic and electric machinery and tools such as terminals, connectors, switches and relays. In addition, some embodiments of the copper alloy material for parts of electronic and electric machinery and tools of the present invention can sufficiently match the required plating characteristics. Accordingly, the present invention can preferably cope with recent requirements in miniaturization, high performance, and high reliability, of any types of electronic and electric machinery and tools.
- Having described our invention as related to the present embodiments, it is our intention that the invention not be limited by any of the details of the description, unless otherwise specified, but rather be construed broadly within its spirit and scope as set out in the accompanying claims.
Claims (14)
1. A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
wherein a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; and the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less.
2. A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
wherein a crystal grain diameter is more than 0.001 mm and 0.025 mm or less; and the ratio (a/b), between a longer diameter a of a crystal grain on a cross section parallel to a direction of final plastic working, and a longer diameter b of a crystal grain on a cross section perpendicular to the direction of final plastic working, is 1.5 or less.
3. A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
wherein a surface roughness Ra after final plastic working is more than 0 μm and less than 0.1 μm, or a surface roughness Rmax is more than 0 μm and less than 2.0 μm.
4. The copper alloy material for parts of electronic and electric machinery and tools according to claim 3 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Sn or a Sn alloy.
5. The copper alloy material for parts of electronic and electric machinery and tools according to claim 3 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Sn or a Sn alloy, and is being subjected to a reflow treatment.
6. The copper alloy material for parts of electronic and electric machinery and tools according to claim 3 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Cu or a Cu alloy as an underlayer, and is being plated with Sn or a Sn alloy thereon.
7. The copper alloy material for parts of electronic and electric machinery and tools according to claim 3 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Cu or a Cu alloy as an underlayer, and is being plated with Sn or a Sn alloy thereon, and is being subjected to a reflow treatment.
8. The copper alloy material for parts of electronic and electric machinery and tools according to claim 3 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Ni or a Ni alloy as an underlayer, and is being plated with Au or a Au alloy thereon.
9. A copper alloy material for parts of electronic and electric machinery and tools, comprising 1.0 to 3.0% by mass of Ni, 0.2 to 0.7% by mass of Si, 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, 0.2 to 1.5% by mass of Zn, 0.005 to 2.0% by mass in a total amount of at least one selected from the group consisting of Ag, Co and Cr (with the proviso that the Cr content is 0.2% by mass or less), and less than 0.005% by mass (including 0% by mass) of S, with the balance being Cu and inevitable impurities,
wherein a surface roughness Ra after final plastic working is more than 0 μm and less than 0.1 μm, or a surface roughness Rmax is more than 0 μm and less than 2.0 μm.
10. The copper alloy material for parts of electronic and electric machinery and tools according to claim 9 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Sn or a Sn alloy.
11. The copper alloy material for parts of electronic and electric machinery and tools according to claim 9 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Sn or a Sn alloy, and is being subjected to a reflow treatment.
12. The copper alloy material for parts of electronic and electric machinery and tools according to claim 9 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Cu or a Cu alloy as an underlayer, and is being plated with Sn or a Sn alloy thereon.
13. The copper alloy material for parts of electronic and electric machinery and tools according to claim 9 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Cu or a Cu alloy as an underlayer, and is being plated with Sn or a Sn alloy thereon, and is being subjected to a reflow treatment.
14. The copper alloy material for parts of electronic and electric machinery and tools according to claim 9 , wherein the copper alloy material for parts of electronic and electric machinery and tools is being plated with Ni or a Ni alloy as an underlayer, and is being plated with Au or a Au alloy thereon.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/354,151 US7172662B2 (en) | 2000-07-25 | 2003-01-30 | Copper alloy material for parts of electronic and electric machinery and tools |
US11/130,134 US20050208323A1 (en) | 2000-07-25 | 2005-05-17 | Copper alloy material for parts of electronic and electric machinery and tools |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000224425A JP3520034B2 (en) | 2000-07-25 | 2000-07-25 | Copper alloy materials for electronic and electrical equipment parts |
JP2000-224425 | 2000-07-25 | ||
PCT/JP2001/004351 WO2002008479A1 (en) | 2000-07-25 | 2001-05-24 | Copper alloy material for electronic or electric equipment parts |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/004351 Continuation WO2002008479A1 (en) | 2000-07-25 | 2001-05-24 | Copper alloy material for electronic or electric equipment parts |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/354,151 Continuation-In-Part US7172662B2 (en) | 2000-07-25 | 2003-01-30 | Copper alloy material for parts of electronic and electric machinery and tools |
US11/130,134 Division US20050208323A1 (en) | 2000-07-25 | 2005-05-17 | Copper alloy material for parts of electronic and electric machinery and tools |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020127133A1 true US20020127133A1 (en) | 2002-09-12 |
Family
ID=18718391
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/005,880 Abandoned US20020127133A1 (en) | 2000-07-25 | 2001-11-02 | Copper alloy material for parts of electronic and electric machinery and tools |
US10/354,151 Expired - Fee Related US7172662B2 (en) | 2000-07-25 | 2003-01-30 | Copper alloy material for parts of electronic and electric machinery and tools |
US11/130,134 Abandoned US20050208323A1 (en) | 2000-07-25 | 2005-05-17 | Copper alloy material for parts of electronic and electric machinery and tools |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/354,151 Expired - Fee Related US7172662B2 (en) | 2000-07-25 | 2003-01-30 | Copper alloy material for parts of electronic and electric machinery and tools |
US11/130,134 Abandoned US20050208323A1 (en) | 2000-07-25 | 2005-05-17 | Copper alloy material for parts of electronic and electric machinery and tools |
Country Status (8)
Country | Link |
---|---|
US (3) | US20020127133A1 (en) |
EP (1) | EP1325964B1 (en) |
JP (1) | JP3520034B2 (en) |
KR (1) | KR100519850B1 (en) |
CN (1) | CN1183263C (en) |
DE (1) | DE60131763T2 (en) |
TW (1) | TWI225519B (en) |
WO (1) | WO2002008479A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7090732B2 (en) | 2000-12-15 | 2006-08-15 | The Furukawa Electric, Co., Ltd. | High-mechanical strength copper alloy |
US20060201591A1 (en) * | 2005-03-11 | 2006-09-14 | Mitsubishi Denki Kabushiki Kaisha | Copper alloy and method of manufacturing the same |
WO2006109801A1 (en) * | 2005-04-12 | 2006-10-19 | Sumitomo Metal Industries, Ltd. | Copper alloy and process for producing the same |
US7172662B2 (en) | 2000-07-25 | 2007-02-06 | The Furukawa Electric Co., Ltd. | Copper alloy material for parts of electronic and electric machinery and tools |
US20080069721A1 (en) * | 2005-03-07 | 2008-03-20 | The Furukawa Electric Co. Ltd. | Metal material for a wiring connector |
EP1964937A1 (en) * | 2007-02-13 | 2008-09-03 | Dowa Metaltech Co., Ltd. | Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same |
EP1967596A1 (en) * | 2007-02-13 | 2008-09-10 | Dowa Metaltech Co., Ltd. | Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same |
EP1973120A1 (en) * | 2005-12-07 | 2008-09-24 | The Furukawa Electric Co., Ltd. | Electrical wire conductor for wiring, electrical wire for wiring, and their production methods |
US20090035174A1 (en) * | 2005-03-24 | 2009-02-05 | Nippon Mining & Metals Co., Ltd. | Copper Alloy for Electronic Materials |
US20090301614A1 (en) * | 2007-09-28 | 2009-12-10 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co copper alloy for electronic materials and method for manufacturing same |
EP2256219A1 (en) * | 2008-02-18 | 2010-12-01 | The Furukawa Electric Co., Ltd. | Copper alloy material |
US20100316879A1 (en) * | 2008-02-08 | 2010-12-16 | Kuniteru Mihara | Copper alloy material for electric/electronic components |
US20110017358A1 (en) * | 2008-03-31 | 2011-01-27 | Koji Sato | Copper alloy material for electrical/electronic equipments, and electrical/electronic part |
US9514856B2 (en) | 2011-08-04 | 2016-12-06 | Kobe Steel, Ltd. | Copper alloy |
US10002684B2 (en) * | 2012-07-26 | 2018-06-19 | Ngk Insulators, Ltd. | Copper alloy and method for manufacturing the same |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3520046B2 (en) | 2000-12-15 | 2004-04-19 | 古河電気工業株式会社 | High strength copper alloy |
JP4584692B2 (en) * | 2004-11-30 | 2010-11-24 | 株式会社神戸製鋼所 | High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof |
JP4986499B2 (en) * | 2006-04-26 | 2012-07-25 | Jx日鉱日石金属株式会社 | Method for producing Cu-Ni-Si alloy tin plating strip |
ATE500628T1 (en) * | 2006-06-30 | 2011-03-15 | Air Liquide | CIRCUIT BOARDS FOR FUEL CELL COMPONENTS |
JP5170881B2 (en) * | 2007-03-26 | 2013-03-27 | 古河電気工業株式会社 | Copper alloy material for electrical and electronic equipment and method for producing the same |
WO2009044822A1 (en) * | 2007-10-03 | 2009-04-09 | The Furukawa Electric Co., Ltd. | Copper alloy plate material for electric and electronic components |
WO2009057788A1 (en) * | 2007-11-01 | 2009-05-07 | The Furukawa Electric Co., Ltd. | Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same |
EP2302103A4 (en) * | 2008-06-12 | 2014-05-28 | Furukawa Electric Co Ltd | Electrolytic copper coating and method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coatings |
CN101440444B (en) * | 2008-12-02 | 2010-05-12 | 路达(厦门)工业有限公司 | Leadless free-cutting high-zinc silicon brass alloy and manufacturing method thereof |
JP4708485B2 (en) * | 2009-03-31 | 2011-06-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
JP5476149B2 (en) * | 2010-02-10 | 2014-04-23 | 株式会社神戸製鋼所 | Copper alloy with low strength anisotropy and excellent bending workability |
CN102822364A (en) * | 2010-04-02 | 2012-12-12 | Jx日矿日石金属株式会社 | Cu-Ni-Si alloy for electronic material |
WO2012160684A1 (en) * | 2011-05-25 | 2012-11-29 | 三菱伸銅株式会社 | Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same |
JP5827090B2 (en) * | 2011-09-29 | 2015-12-02 | 三菱伸銅株式会社 | Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same |
JP5610643B2 (en) * | 2012-03-28 | 2014-10-22 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-based copper alloy strip and method for producing the same |
JP5501495B1 (en) * | 2013-03-18 | 2014-05-21 | 三菱マテリアル株式会社 | Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment |
JP6166414B1 (en) * | 2016-03-30 | 2017-07-19 | 株式会社神戸製鋼所 | Copper or copper alloy strip for vapor chamber |
RU2618955C1 (en) * | 2016-07-11 | 2017-05-11 | Юлия Алексеевна Щепочкина | Copper-based alloy |
JP6302009B2 (en) * | 2016-07-12 | 2018-03-28 | 古河電気工業株式会社 | Rolled copper alloy, method for producing the same, and electric / electronic component |
CN106222480A (en) * | 2016-08-29 | 2016-12-14 | 芜湖楚江合金铜材有限公司 | The high abrasion copper cash of a kind of environmental protection and processing technique thereof |
CN106119596A (en) * | 2016-08-30 | 2016-11-16 | 芜湖楚江合金铜材有限公司 | A kind of high performance copper alloy wire of environmental-friendly lead-free and processing technique thereof |
RU2629403C1 (en) * | 2016-12-06 | 2017-08-29 | Юлия Алексеевна Щепочкина | Sintered copper based alloy |
MX2017001955A (en) * | 2017-02-10 | 2018-08-09 | Nac De Cobre S A De C V | Copper alloys with a low lead content. |
JP7296757B2 (en) * | 2019-03-28 | 2023-06-23 | Jx金属株式会社 | Copper alloys, copper products and electronic equipment parts |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425168A (en) * | 1982-09-07 | 1984-01-10 | Cabot Corporation | Copper beryllium alloy and the manufacture thereof |
US20030165708A1 (en) * | 2000-07-25 | 2003-09-04 | Takayuki Usami | Copper alloy material for parts of electronic and electric machinery and tools |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841782B2 (en) * | 1978-11-20 | 1983-09-14 | 玉川機械金属株式会社 | IC lead material |
JPS5853059B2 (en) | 1979-12-25 | 1983-11-26 | 日本鉱業株式会社 | Precipitation hardening copper alloy |
JPS59193233A (en) | 1983-04-15 | 1984-11-01 | Toshiba Corp | Copper alloy |
EP0132415B1 (en) * | 1983-07-26 | 1988-11-02 | Oki Electric Industry Company, Limited | Printing system for a dot printer |
US4612167A (en) * | 1984-03-02 | 1986-09-16 | Hitachi Metals, Ltd. | Copper-base alloys for leadframes |
US4656003A (en) * | 1984-10-20 | 1987-04-07 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy and production of the same |
JPS61127842A (en) | 1984-11-24 | 1986-06-16 | Kobe Steel Ltd | Copper alloy for terminal and connector and its manufacture |
EP0189745B1 (en) * | 1985-02-01 | 1988-06-29 | Kabushiki Kaisha Kobe Seiko Sho | Lead material for ceramic package ic |
US4728372A (en) | 1985-04-26 | 1988-03-01 | Olin Corporation | Multipurpose copper alloys and processing therefor with moderate conductivity and high strength |
US4594221A (en) | 1985-04-26 | 1986-06-10 | Olin Corporation | Multipurpose copper alloys with moderate conductivity and high strength |
JPS63130739A (en) | 1986-11-20 | 1988-06-02 | Nippon Mining Co Ltd | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material |
JPH01180932A (en) * | 1988-01-11 | 1989-07-18 | Kobe Steel Ltd | High tensile and high electric conductivity copper alloy for pin, grid and array ic lead pin |
JPH01272733A (en) | 1988-04-25 | 1989-10-31 | Mitsubishi Shindoh Co Ltd | Lead frame material made of cu alloy for semiconductor device |
JPH02118037A (en) | 1988-10-28 | 1990-05-02 | Nippon Mining Co Ltd | High tensile and high conductivity copper alloy having excellent adhesion of oxidized film |
JP2714560B2 (en) | 1988-12-24 | 1998-02-16 | 日鉱金属株式会社 | Copper alloy with good direct bonding properties |
US5028391A (en) | 1989-04-28 | 1991-07-02 | Amoco Metal Manufacturing Inc. | Copper-nickel-silicon-chromium alloy |
JPH03188247A (en) | 1989-12-14 | 1991-08-16 | Nippon Mining Co Ltd | Production of high strength and high conductivity copper alloy excellent in bendability |
JP2977845B2 (en) * | 1990-01-30 | 1999-11-15 | 株式会社神戸製鋼所 | Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity |
JP2503793B2 (en) * | 1991-03-01 | 1996-06-05 | 三菱伸銅株式会社 | Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies |
JPH0830235B2 (en) * | 1991-04-24 | 1996-03-27 | 日鉱金属株式会社 | Copper alloy for conductive spring |
JPH051367A (en) * | 1991-06-24 | 1993-01-08 | Mitsubishi Electric Corp | Copper alloy material for electric and electronic equipment |
JPH05311278A (en) | 1991-11-28 | 1993-11-22 | Nikko Kinzoku Kk | Copper alloy improved in stress relaxing property |
JP3094045B2 (en) | 1991-12-16 | 2000-10-03 | 富士写真フイルム株式会社 | Digital electronic still camera and control method thereof |
JP2797846B2 (en) | 1992-06-11 | 1998-09-17 | 三菱伸銅株式会社 | Cu alloy lead frame material for resin-encapsulated semiconductor devices |
US5463247A (en) * | 1992-06-11 | 1995-10-31 | Mitsubishi Shindoh Co., Ltd. | Lead frame material formed of copper alloy for resin sealed type semiconductor devices |
JP3275377B2 (en) | 1992-07-28 | 2002-04-15 | 三菱伸銅株式会社 | Cu alloy sheet with fine structure for electric and electronic parts |
JP2501275B2 (en) | 1992-09-07 | 1996-05-29 | 株式会社東芝 | Copper alloy with both conductivity and strength |
JPH06100983A (en) * | 1992-09-22 | 1994-04-12 | Nippon Steel Corp | Metal foil for tab tape having high young's modulus and high yield strength and its production |
KR940010455B1 (en) | 1992-09-24 | 1994-10-22 | 김영길 | Copper alloy and making method thereof |
US5508001A (en) | 1992-11-13 | 1996-04-16 | Mitsubishi Sindoh Co., Ltd. | Copper based alloy for electrical and electronic parts excellent in hot workability and blankability |
JP3511648B2 (en) | 1993-09-27 | 2004-03-29 | 三菱伸銅株式会社 | Method for producing high-strength Cu alloy sheet strip |
DE4415067C2 (en) | 1994-04-29 | 1996-02-22 | Diehl Gmbh & Co | Process for the production of a copper-nickel-silicon alloy and its use |
JP3728776B2 (en) | 1995-08-10 | 2005-12-21 | 三菱伸銅株式会社 | High-strength copper alloy that does not generate smut during plating pretreatment process |
KR0157257B1 (en) * | 1995-12-08 | 1998-11-16 | 정훈보 | Method for manufacturing cu alloy and the same product |
US5833920A (en) | 1996-02-20 | 1998-11-10 | Mitsubishi Denki Kabushiki Kaisha | Copper alloy for electronic parts, lead-frame, semiconductor device and connector |
JP3408929B2 (en) * | 1996-07-11 | 2003-05-19 | 同和鉱業株式会社 | Copper-based alloy and method for producing the same |
JP3344924B2 (en) | 1997-03-31 | 2002-11-18 | 日鉱金属株式会社 | Copper alloy for lead frames with high oxide film adhesion |
JP3800269B2 (en) | 1997-07-23 | 2006-07-26 | 株式会社神戸製鋼所 | High strength copper alloy with excellent stamping workability and silver plating |
JP4308931B2 (en) * | 1997-11-04 | 2009-08-05 | 三菱伸銅株式会社 | Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate |
JP3510469B2 (en) * | 1998-01-30 | 2004-03-29 | 古河電気工業株式会社 | Copper alloy for conductive spring and method for producing the same |
JP3797786B2 (en) * | 1998-03-06 | 2006-07-19 | 株式会社神戸製鋼所 | Copper alloy for electrical and electronic parts |
JP3739214B2 (en) * | 1998-03-26 | 2006-01-25 | 株式会社神戸製鋼所 | Copper alloy sheet for electronic parts |
TW448235B (en) | 1998-12-29 | 2001-08-01 | Ind Tech Res Inst | High-strength and high-conductivity Cu-(Ni, Co)-Si copper alloy for use in leadframes and method of making the same |
US7090732B2 (en) * | 2000-12-15 | 2006-08-15 | The Furukawa Electric, Co., Ltd. | High-mechanical strength copper alloy |
JP3520046B2 (en) | 2000-12-15 | 2004-04-19 | 古河電気工業株式会社 | High strength copper alloy |
JP3824884B2 (en) | 2001-05-17 | 2006-09-20 | 古河電気工業株式会社 | Copper alloy material for terminals or connectors |
-
2000
- 2000-07-25 JP JP2000224425A patent/JP3520034B2/en not_active Expired - Fee Related
-
2001
- 2001-05-24 EP EP01934329A patent/EP1325964B1/en not_active Expired - Lifetime
- 2001-05-24 WO PCT/JP2001/004351 patent/WO2002008479A1/en active IP Right Grant
- 2001-05-24 TW TW090112482A patent/TWI225519B/en not_active IP Right Cessation
- 2001-05-24 CN CNB018009425A patent/CN1183263C/en not_active Expired - Lifetime
- 2001-05-24 DE DE60131763T patent/DE60131763T2/en not_active Expired - Lifetime
- 2001-05-24 KR KR10-2001-7016149A patent/KR100519850B1/en active IP Right Grant
- 2001-11-02 US US10/005,880 patent/US20020127133A1/en not_active Abandoned
-
2003
- 2003-01-30 US US10/354,151 patent/US7172662B2/en not_active Expired - Fee Related
-
2005
- 2005-05-17 US US11/130,134 patent/US20050208323A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425168A (en) * | 1982-09-07 | 1984-01-10 | Cabot Corporation | Copper beryllium alloy and the manufacture thereof |
US20030165708A1 (en) * | 2000-07-25 | 2003-09-04 | Takayuki Usami | Copper alloy material for parts of electronic and electric machinery and tools |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7172662B2 (en) | 2000-07-25 | 2007-02-06 | The Furukawa Electric Co., Ltd. | Copper alloy material for parts of electronic and electric machinery and tools |
US7090732B2 (en) | 2000-12-15 | 2006-08-15 | The Furukawa Electric, Co., Ltd. | High-mechanical strength copper alloy |
US20080069721A1 (en) * | 2005-03-07 | 2008-03-20 | The Furukawa Electric Co. Ltd. | Metal material for a wiring connector |
US20080277033A1 (en) * | 2005-03-11 | 2008-11-13 | Mitsubishi Denki Kabushiki Kaisha | Copper alloy and method of manufacturing the same |
US7413619B2 (en) | 2005-03-11 | 2008-08-19 | Mitsubishi Denki Kabushiki Kaisha | Copper alloy |
US20060201591A1 (en) * | 2005-03-11 | 2006-09-14 | Mitsubishi Denki Kabushiki Kaisha | Copper alloy and method of manufacturing the same |
US7727345B2 (en) | 2005-03-11 | 2010-06-01 | Mitsubishi Denki Kabushiki Kaisha | Copper alloy and method of manufacturing the same |
US8317948B2 (en) * | 2005-03-24 | 2012-11-27 | Jx Nippon Mining & Metals Corporation | Copper alloy for electronic materials |
US20090035174A1 (en) * | 2005-03-24 | 2009-02-05 | Nippon Mining & Metals Co., Ltd. | Copper Alloy for Electronic Materials |
WO2006109801A1 (en) * | 2005-04-12 | 2006-10-19 | Sumitomo Metal Industries, Ltd. | Copper alloy and process for producing the same |
EP1973120A1 (en) * | 2005-12-07 | 2008-09-24 | The Furukawa Electric Co., Ltd. | Electrical wire conductor for wiring, electrical wire for wiring, and their production methods |
EP1973120A4 (en) * | 2005-12-07 | 2009-07-15 | Furukawa Electric Co Ltd | Electrical wire conductor for wiring, electrical wire for wiring, and their production methods |
EP1964937A1 (en) * | 2007-02-13 | 2008-09-03 | Dowa Metaltech Co., Ltd. | Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same |
EP1967596A1 (en) * | 2007-02-13 | 2008-09-10 | Dowa Metaltech Co., Ltd. | Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same |
US20090301614A1 (en) * | 2007-09-28 | 2009-12-10 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co copper alloy for electronic materials and method for manufacturing same |
EP2194151A4 (en) * | 2007-09-28 | 2011-01-26 | Jx Nippon Mining & Metals Corp | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
EP2194151A1 (en) * | 2007-09-28 | 2010-06-09 | Nippon Mining & Metals Co., Ltd. | Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy |
US8444779B2 (en) | 2007-09-28 | 2013-05-21 | JX Nippon Mining & Metals Co., Ltd. | Cu—Ni—Si—Co copper alloy for electronic materials and method for manufacturing same |
US20100316879A1 (en) * | 2008-02-08 | 2010-12-16 | Kuniteru Mihara | Copper alloy material for electric/electronic components |
EP2256219A1 (en) * | 2008-02-18 | 2010-12-01 | The Furukawa Electric Co., Ltd. | Copper alloy material |
US20100310413A1 (en) * | 2008-02-18 | 2010-12-09 | Kiyoshige Hirose | Copper alloy material |
EP2256219A4 (en) * | 2008-02-18 | 2012-06-27 | Furukawa Electric Co Ltd | Copper alloy material |
US20110017358A1 (en) * | 2008-03-31 | 2011-01-27 | Koji Sato | Copper alloy material for electrical/electronic equipments, and electrical/electronic part |
US9514856B2 (en) | 2011-08-04 | 2016-12-06 | Kobe Steel, Ltd. | Copper alloy |
US10002684B2 (en) * | 2012-07-26 | 2018-06-19 | Ngk Insulators, Ltd. | Copper alloy and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
EP1325964A4 (en) | 2003-07-30 |
US20030165708A1 (en) | 2003-09-04 |
CN1183263C (en) | 2005-01-05 |
WO2002008479A1 (en) | 2002-01-31 |
EP1325964A1 (en) | 2003-07-09 |
US20050208323A1 (en) | 2005-09-22 |
CN1366556A (en) | 2002-08-28 |
KR100519850B1 (en) | 2005-10-07 |
KR20020040677A (en) | 2002-05-30 |
TWI225519B (en) | 2004-12-21 |
DE60131763D1 (en) | 2008-01-17 |
JP3520034B2 (en) | 2004-04-19 |
DE60131763T2 (en) | 2008-10-30 |
JP2002038228A (en) | 2002-02-06 |
US7172662B2 (en) | 2007-02-06 |
EP1325964B1 (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7172662B2 (en) | Copper alloy material for parts of electronic and electric machinery and tools | |
CN1323188C (en) | Copper alloy containing cobalt, nickel and silicon | |
US6893514B2 (en) | High-mechanical strength copper alloy | |
US7947133B2 (en) | Copper alloy strip material for electrical/electronic equipment and process for producing the same | |
EP1873266B1 (en) | Copper alloy | |
JP4851596B2 (en) | Method for producing copper alloy material | |
EP1997920B1 (en) | Copper alloy for electric and electronic equipments | |
EP2415887B1 (en) | Cu-co-si copper alloy for use in electronics, and manufacturing method therefor | |
KR102126731B1 (en) | Copper alloy sheet and method for manufacturing copper alloy sheet | |
EP2333128A1 (en) | Copper alloy material for electrical/electronic component | |
EP2221391B1 (en) | Copper alloy sheet | |
JP3717321B2 (en) | Copper alloy for semiconductor lead frames | |
US7090732B2 (en) | High-mechanical strength copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FURUKAWA ELECTRIC CO., LTD., THE, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:USAMI, TAKAYUKI;HIRAI, TAKAO;REEL/FRAME:012645/0413 Effective date: 20011025 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |