US20020024972A1 - Method for inserting length indicator in protocol data unit of radio link control - Google Patents
Method for inserting length indicator in protocol data unit of radio link control Download PDFInfo
- Publication number
- US20020024972A1 US20020024972A1 US09/863,400 US86340001A US2002024972A1 US 20020024972 A1 US20020024972 A1 US 20020024972A1 US 86340001 A US86340001 A US 86340001A US 2002024972 A1 US2002024972 A1 US 2002024972A1
- Authority
- US
- United States
- Prior art keywords
- pdu
- size
- sdu
- previous
- length indicator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/36—Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/43—Assembling or disassembling of packets, e.g. segmentation and reassembly [SAR]
- H04L47/431—Assembling or disassembling of packets, e.g. segmentation and reassembly [SAR] using padding or de-padding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/03—Protocol definition or specification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
- H04W8/04—Registration at HLR or HSS [Home Subscriber Server]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
Definitions
- the present invention relates to a radio link protocol, and more particularly to a method for inserting Length Indicator (LI) in an RLC which selectively controls LI value insertion so that any LI to be inserted in the next PDU may be prevented from being unnecessarily included.
- LI Length Indicator
- IMT-2000 International Mobile Telecommunication-2000
- the PDU is sourced from ITU-T X.200/ISO-IEC7498-1, and the SDU is sourced from ITU-T X.140.
- a format of the AMD PDU includes a header, a LI group, and data.
- a piggyback type status PDU is inserted instead of the padding to enable the transmission.
- the header of the AMD PDU additionally has a 1 bit D/C field to indicate if the pertinent PDU is loaded with data information or control information, a P field as a 1 bit polling field for requesting a status report to the receiving side, and a 2 bit Header Extension (HE) field for notifying if the next data is data or LI and E bit.
- HE Header Extension
- the LI group is composed of the LI and E bit, in which each of the LIs is a field for indicating the boundary of each SDU when the PDU includes several SDUs.
- Each LI indicates the number of octects from the first octect in the data group to the last octet of each SUD.
- the LI group means the LIs for the SDUs included in one PDU.
- the LI size is 7 bits or 15 bits.
- the 7 bit LI is used if the PDU size is at most 126 octets, and alternatively, the 15 bit LI is used.
- the 7 bit LI is used if the PDU size is at most 125 octets, and alternatively, the 15 bit LI is used.
- the first LI of the very next PDU has the value of ‘111 1111 1111 1011’ to so indicate.
- FIG. 3 illustrates the ends of the SDUs in one PDU by using the 7 bit LI in the AMD PDU.
- the PDU size is 35 octets and the data size included in the PDU is 24 octets.
- the AMD PDU has three SDUs, for example SDU 1 , SDU 2 , and SDU 3 .
- Each of the SDUs has the size of 11 octets, 9 octets and 4 octets, respectively.
- An object of the invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages described hereinafter.
- SDU Service Data Unit
- PDU Protocol Data Unit
- RLC Radio Link Control
- a method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt comprising a eliminating from a next PDU an information component indicating that a current PDU size corresponds to the total size of components of the PDU, if the current PDU size corresponds to the total size of components of the PDU and the current PDU has information indicating that the current PDU size corresponds to the total size of components of the PDU.
- a method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt comprising setting a size of a PDU to be used in a protocol structure and a total size of components of the PDU; determining if an information LI value for an end of a last SDU of the PDU can be indicated by using the set PDU size and inputting the LI value into the PDU if it is determined to be possible; and comparing the set PDU size with the total size of the PDU components.
- PDU Protocol Data Unit
- LI Length Indicator
- RLC Radio Link Control
- a method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt comprising forming a plurality of PDUs from a plurality of SDUs, each PDU having a header containing at least one length indicator representing a length of a corresponding SDU contained in the PDU or representing a sum of lengths of corresponding SDUs contained in the PDU, wherein a) a PDU contains a length indicator having a prescribed sequence of bit pattern when the previous PDU header did not contain complete length of the SDUs in the previous PDU; and b) a PDU does not contain a length indicator that indicates the end of the SDU in the previous PDU if the previous PDU ends exactly with a last segment of the SDU.
- PDU Protocol Data Unit
- LI Radio Link Control
- a method for omitting a PDU Length Indicator indicating that previous PDU ends at the end of a last SDU of the previous PDU in an RLC of a radio communication system where a PDU mode is used in a protocol structured RLC layer for data transmission comprising checking whether a length indicator of a previous PDU indicates that the previous PDU ends at an end of a last SDU of the previous PDU; and omitting the PDU Length Indicator if the length indicator of the previous PDU indicates that the previous PDU ends at the end of last SDU of the previous PDU.
- FIG. 1 shows a format of an UMD PDU
- FIG. 2 shows a format of an AMD PDU
- FIG. 3 shows the ends of SDUs in one PDU by using a 7 bit LI in the AMD PDU
- FIG. 6 illustrates another example in which an unnecessary LI is inserted according to a method for inserting LI of the related art
- FIG. 7 is a flow chart for showing a method for inserting LI of a PDU in an RLC of the preferred embodiment of the present invention.
- FIG. 7 is a flow chart showing a method for inserting an LI of a PDU in an RLC, according to a preferred embodiment.
- the size of the PDU to be used in the PDU mode in the protocol structured RLC layer for data transmission/receipt and components of the PDU and the size thereof are first set, as shown in step 70 .
- the size such as sequence number of the components of the PDU, is a fixed value and the SDU has a variable size.
- step 70 it is determined if the end of SDU i can be included in the current PDU (A), as shown in step 71 . If it is determined not to be possible in step 71 , a segment of SDU i is inserted according to the PDU size, as shown in step 72 .
- the LI value of the last position of SDU i is indicated in the current PDU (A) in step 75 .
- step 76 it is determined if the current PDU (A) size matches the sum of the component size of the PDU (A) in step 76 .
- the process proceeds to step 75 to insert the LI value for the last position of SDU i and to determine if the PDU size is the same as the sum of the data up to the present and the LI group and header size.
- step 78 it is determined whether there is any more SDU to be transmitted in step 78 . If there is more SDU to be transmitted, the process proceeds to step 80 , where the i value is increased as much as + 1 to repeat from step 71 for the SDU in the next sequence.
- the present invention as described with reference to the preferred embodiment has many advantages. For example, if a current PDU size corresponds to the total size of components of the PDU and the current PDU has information indicating that the current PDU size corresponds to the total size of components of the PDU, a component of the next PDU does not include information indicating that the current PDU size corresponds to the total size of components of the PDU. Therefore, the next PDU is free from unnecessary insertion of the LI value so that waste of network resources can be prevented and overhead required for processing unnecessary LI values also can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Databases & Information Systems (AREA)
- Communication Control (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
A method for inserting a PDU LI in an RLC is disclosed. According to the preferred embodiment, if a current PDU size corresponds to the total size of components of the PDU and the current PDU has information indicating that the current PDU size corresponds to the total size of components of the PDU, a component of the next PDU does not include information indicating that the current PDU size corresponds to the total size of components of the PDU. Therefore, the next PDU is free from unnecessary insertion of the LI value so that waste of network resources can be prevented and overhead required for processing unnecessary LI values also can be reduced.
Description
- 1. Field of the Invention
- The present invention relates to a radio link protocol, and more particularly to a method for inserting Length Indicator (LI) in an RLC which selectively controls LI value insertion so that any LI to be inserted in the next PDU may be prevented from being unnecessarily included.
- 2. Background of the Related Art
- The current trend in communications technology is concentrating research into allowing access of multimedia applications without restrictions on time/space and endeavors for visible achievement thereof. The development of digital data processing and transmission technology is consequently on the verge of realizing a real time global data communication system via satellites in which wire and radio communications are unified.
- Also, the development of digital data processing and transmission technology allows still and dynamic images to be transmitted in real time via a network, as well as allowing the previous voice communication and information to be accessed freely without discriminating between wire and radio communication at any time and place. International Mobile Telecommunication-2000 (IMT-2000) will be an example thereof.
- The Radio Link Control (RLC) layer presented in the invention is the second layer of 3GPP, which has two kinds of PDUs. They are an Unacknowledged Mode Packet Data Unit (UMD PDU), used when the acknowledgment signal transmission to a sending side is not necessary after receiving the PDU in a receiving side, and an Acknowledged Mode PDU(AMD PDU). Each PDU format is as shown in FIG. 1 and FIG. 2.
- As shown in FIG. 1, a format of the UMD PDU is composed of a header, a LI group, data, and a PAD (Padding). The header is composed of a 7 bit Sequence Number as a field for indicating the sequence number of each PDU, and a 1 bit Extension (E) field to indicate if the next field is data or LI and E bit. The data group is a field corresponding to the Service Data Units (SDUs) descended from an upper layer including at least one SDU. Since such a data group is variable in magnitude, a padding is carried out for octet aligning the overall PDU size.
- Here, the PDU is sourced from ITU-T X.200/ISO-IEC7498-1, and the SDU is sourced from ITU-T X.140.
- As shown in FIG. 2, a format of the AMD PDU includes a header, a LI group, and data. In the AMD PDU, a piggyback type status PDU is inserted instead of the padding to enable the transmission.
- The header of the AMD PDU additionally has a 1 bit D/C field to indicate if the pertinent PDU is loaded with data information or control information, a P field as a 1 bit polling field for requesting a status report to the receiving side, and a 2 bit Header Extension (HE) field for notifying if the next data is data or LI and E bit.
- In the above UMD PDU and the AMD PDU, the LI group is composed of the LI and E bit, in which each of the LIs is a field for indicating the boundary of each SDU when the PDU includes several SDUs. Each LI indicates the number of octects from the first octect in the data group to the last octet of each SUD. The LI group means the LIs for the SDUs included in one PDU. The LI size is 7 bits or 15 bits.
- In the case of the AMD PDU, the 7 bit LI is used if the PDU size is at most 126 octets, and alternatively, the 15 bit LI is used. In the case of the UMD PDU, the 7 bit LI is used if the PDU size is at most 125 octets, and alternatively, the 15 bit LI is used.
- Some values of these LIs are predefined for use in specific purposes.
- Table 1 illustrates LI values for a specific purpose (in the case of the 7 bit LI), and Table 2 illustrates LI values for a specific purpose in the case of the 15 bit LI.
- As can be seen from FIG. 1 and FIG. 2, if the end of one SDU (referred to as A) correctly matches the end of the PDU, the first LI value of the very next PDU (referred to as B) is inserted as ‘LI=0’ to so indicate.
- In the case of the 15 bit long LI, if the last segment of the RLC SDU is one octet insufficient to the end of the PDU, the first LI of the very next PDU has the value of ‘111 1111 1111 1011’ to so indicate. Also, the PDU uses ‘LI=1’ as a value to indicate that the rest part of the RLC PDU is a padding, where the padding is necessarily positioned at the last of the RLC PDU.
- # Table 1
- # Table 2
- FIG. 3 illustrates the ends of the SDUs in one PDU by using the 7 bit LI in the AMD PDU. Here, the PDU size is 35 octets and the data size included in the PDU is 24 octets.
- As can bee seen in FIG. 3, the AMD PDU has three SDUs, for example SDU1, SDU2, and SDU3. Each of the SDUs has the size of 11 octets, 9 octets and 4 octets, respectively. The LI values for accumulatively indicating the octet numbers from the first octet to the last octet of each data part of SDU1, SDU2, and SDU3 are inserted as 11 (octet), 20 (octet) and 24 (octet), and more inserted with ‘LI=111 1111’ to express the rest part of the PDU is a padding (5 octet).
- In the related art, LI=‘0’ is inserted into the very next PDU (B) in all the cases where the end of one SDU (A) exactly matches the end of the PDU in the RLC PDU.
- FIG. 4, FIG. 5, and FIG. 6 illustrate three cases where LI=‘0’ is inserted according to a method for inserting LI of the related art, in which FIG. 4 shows a proper process, while FIG. 5 and FIG. 6 show problems of unnecessary LI value insertions.
- Referring first to FIG. 4, LI=‘0’ is attached to the next PDU. If the LI for the SDU2 in FIG. 4 is included in the current PDU, one octet data of the SDU2 is necessarily shifted to the next PDU due to size of the LI. In other words, if a cumulative sum of LI=22 is recorded in the octect under LI=12 to indicate the end of SDU2, since the currently set PDU size is 25 octets and the sum octet of components of the PDU is 25, the sum octet of the PDU components becomes 26 and the end of the SDU2 does not match the end of the pertinent PDU. Then, it is meaningless to attach the second LI (LI=22).
- Therefore in this case, LI=‘0’ is inserted into the first LI of the next PDU (B) instead of inserting the second LI in the first PDU (A) to indicate the end of the SDU2.
- However, in the cases as illustrated in FIG. 5 and FIG. 6, the pertinent PDU (A) itself shows that the last SDU of the PDU (A) fits exactly into the PDU (A), including the various LIs, so that LI=‘0’ need not be attached to the next PDU(B). Accordingly, the related art has various problems.
- For example, the LI=‘0’ value indicating that the last segment of the very previous SDU exactly matches the end of the previous PDU is unnecessarily inserted to the very next PDU (B) even though the LI indicates the end of the SDU2 of the PDU(A) as shown in FIG. 5.
- Also, the LI value or the LI=‘0’ value is inserted to notify that the end of the pertinent PDU (A) (the middle PDU in FIG. 6) is the padding since the end has one excessive octet (causing ‘0’ padding as the position of the padding disappears due to the insertion of the final LI) as shown in FIG. 6. Thus, inserting the LI=‘0’ value in the very next PDU (B) is unnecessary since the LI=‘1’ value means that the end of the pertinent PDU (A) correctly matches the last segment of the SDU2.
- In the dotted part under the
SDU 2 of the pertinent PDU(A) of FIG. 6, the PDU(A) size is 27 while the sum of the components of the PDU is 26 leaving 1 octet. Therefore, the remaining one octet is padded as LI=1111111. - The aforementioned problems are observed also in the UMD PDU as same as in the AMD PDU. Therefore, according to the method for inserting LI of the related art, the LI value or LI=‘0’ value is unnecessarily inserted into the LI group of the PDU, which includes unnecessarily overlapped information thereby wasting network sources.
- The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background.
- An object of the invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages described hereinafter.
- It is an object of the present invention to provide a method of inserting a length indicator in a PDU that substantially obviates.
- It is another object of the present invention to selectively apply the LI value insertion for indicating pertinent contents in generating PDUs in an RLC.
- It is another object of the present invention to indicate an end of the SDU when the very previous PDU (A) correctly matches the end of the previous PDU while preventing unnecessary insertion of an LI value.
- It is another object of the present invention to provide a length indicator that is selectively used when the boundary of a Service Data Unit (SDU) is within a Protocol Data Unit (PDU) where a PDU mode is used in a protocol structured Radio Link Control (RLC) layer for data transmission/receipt.
- It is another object of the present invention to provide a method for inserting a PDU LI in an RLC which is adapted to prevent unnecessarily inserting an LI value or LI=‘0’ indicating that the last segment of the very previous SDU correctly matches the end of the very previous PDU even though there is an LI indicating the end of the SDU of the previous PDU or if an LI value or LI=‘1’ is inputted for notifying a padding in which the end of the PDU has one excessive octet (in using a 7 bit LI) or two excessive octet (in using 15 bit LI).
- In order to achieve at least the above objects in whole or in parts, there is provided a method for inserting PDU LI in an RLC where an PDU is generated from the RLC, in which an LI value can be prevented from being unnecessarily inserted, by which when the end of the SDU in the very previous PDU(A) correctly matches the end of the very previous PDU, the LI value is inputted to the head of an LI group of the next PDU if the LI indicating the end of the very previous SDU cannot be inputted into the very previous PDU, an LI value (LI=‘0’) is not inputted into an LI group of the very next PDU(B) if the previous PDU(A) has the LI indicating the end of the very previous SDU, and an LI value (LI=‘1’) is not inputted into the LI group of the very next PDU(B) if the end of the pertinent PDU(A) has one excessive octet in which the LI value(LI=‘1’) is inputted to notify it as a padding. Consequently, the next PDU is free from unnecessary insertion of the LI value so that waste of network resources can be prevented and overhead required for processing unnecessary LI values also can be reduced.
- To further achieve at least these objects in whole or in parts, there is provided a method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt, the improvement comprising a eliminating from a next PDU an information component indicating that a current PDU size corresponds to the total size of components of the PDU, if the current PDU size corresponds to the total size of components of the PDU and the current PDU has information indicating that the current PDU size corresponds to the total size of components of the PDU.
- To further achieve at least these objects in whole or in parts, there is provided a method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt, comprising setting a size of a PDU to be used in a protocol structure and a total size of components of the PDU; determining if an information LI value for an end of a last SDU of the PDU can be indicated by using the set PDU size and inputting the LI value into the PDU if it is determined to be possible; and comparing the set PDU size with the total size of the PDU components.
- To further achieve at least these objects in whole or in parts, there is provided a method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt, comprising forming a plurality of PDUs from a plurality of SDUs, each PDU having a header containing at least one length indicator representing a length of a corresponding SDU contained in the PDU or representing a sum of lengths of corresponding SDUs contained in the PDU, wherein a) a PDU contains a length indicator having a prescribed sequence of bit pattern when the previous PDU header did not contain complete length of the SDUs in the previous PDU; and b) a PDU does not contain a length indicator that indicates the end of the SDU in the previous PDU if the previous PDU ends exactly with a last segment of the SDU.
- To further achieve at least these objects in whole or in parts, there is provided a method of forming a header of a PDU, comprising forming a first PDU from a plurality of SDUs; forming a header of the first PDU including a plurality of length indicators (LI), the length indicators representing lengths of corresponding SDUs of the PDU, wherein a final length indicator is provided to indicate that the PDU includes a final segment of padding, and wherein the final segment of padding can have a length of zero such that a subsequent second PDU header does not include information regarding the size of the first PDU.
- To further achieve at least these objects in whole or in parts, there is provided a method for inserting a PDU Length Indicator indicating that a previous PDU ends at the end of a last SDU of the PDU in an RLC of a radio communication system where a PDU mode is used in a protocol structured RLC layer for data transmission, comprising detecting whether a previous PDU ends at the end of a last SDU of the PDU; checking whether a length indicator of the previous PDU indicates that the previous PDU ends at the end of the last SDU of the PDU; and inserting a PDU Length Indicator if the length indicator of previous PDU fails to indicate that the previous PDU ends at the end of last SDU of the PDU.
- To further achieve at least these objects in whole or in parts, there is provided a method for omitting a PDU Length Indicator indicating that previous PDU ends at the end of a last SDU of the previous PDU in an RLC of a radio communication system where a PDU mode is used in a protocol structured RLC layer for data transmission, comprising checking whether a length indicator of a previous PDU indicates that the previous PDU ends at an end of a last SDU of the previous PDU; and omitting the PDU Length Indicator if the length indicator of the previous PDU indicates that the previous PDU ends at the end of last SDU of the previous PDU.
- Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.
- The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
- FIG. 1 shows a format of an UMD PDU;
- FIG. 2 shows a format of an AMD PDU;
- FIG. 3 shows the ends of SDUs in one PDU by using a 7 bit LI in the AMD PDU;
- FIG. 4 illustrates an example in which an LI=‘0’ value is necessary in the next PDU in the AMD PDU;
- FIG. 5 illustrates an example in which an unnecessary LI is inserted according to a method for inserting LI of the related art;
- FIG. 6 illustrates another example in which an unnecessary LI is inserted according to a method for inserting LI of the related art; and
- FIG. 7 is a flow chart for showing a method for inserting LI of a PDU in an RLC of the preferred embodiment of the present invention.
- FIG. 7 is a flow chart showing a method for inserting an LI of a PDU in an RLC, according to a preferred embodiment.
- Referring to FIG. 7, the size of the PDU to be used in the PDU mode in the protocol structured RLC layer for data transmission/receipt and components of the PDU and the size thereof are first set, as shown in
step 70. The size, such as sequence number of the components of the PDU, is a fixed value and the SDU has a variable size. - After
step 70, it is determined if the end of SDU i can be included in the current PDU (A), as shown instep 71. If it is determined not to be possible instep 71, a segment of SDU i is inserted according to the PDU size, as shown instep 72. - If, however, it is determined to be possible in
step 71, it is determined whether the LI value for the last position of a random number of SDU i can be indicated with the current PDU (A) size instep 73. - If the last SDU size cannot be indicated with the current PDU (A) size as a result of the determination in
step 73, LI=000 0000 for indicating that the last segment of the very previous SDU correctly matches the end of the very previous PDU (A) is recorded as the LI value first sequence of the next PDU (B), and the next PDU (B) is transmitted as in FIG. 4, as shown instep 74. - If the last SDU size can be indicated with the current PDU (A) size as a result of judging in
step 73, the LI value of the last position of SDU i is indicated in the current PDU (A) instep 75. - Then, it is determined if the current PDU (A) size matches the sum of the component size of the PDU (A) in
step 76. In other words, if SDU i can be included in the pertinent PDU even after the LI value about the last position of SDU i is inserted as a result of judging instep 73, the process proceeds to step 75 to insert the LI value for the last position of SDU i and to determine if the PDU size is the same as the sum of the data up to the present and the LI group and header size. - As a result of the determination in
step 76, if the current PDU (A) size is the same as the sum of the data up to the present and the LI group and header size, inserting LI=‘0’ to the next PDU (B) is not necessary. Consequently, the next PDU(B) is transmitted without including LI=O, which indicates that the current PDU(A) size matches the end of SDU i instep 77. - If, however, the current PDU (A) size is the same as the sum of the data up to the present and the LI group and header size as a result of judging in
step 76, the next PDU (B) is transmitted including LI=0, which indicates that the current PDU (A) size matches the end of SDU i, even though inserting LI=‘0’ into the next PDU (B) is not necessary in the related art. - In other words, referring FIG. 5, LI=000 0000 for indicating that the last segment of the very previous SDU correctly matches the end of the very previous PDU(A) is unnecessarily transmitted as part of the next PDU(B), even though the previous PDU(A) has the LI for indicating the last of
SDU 2. - Meanwhile, if the current PDU (A) size is not the same as the sum of the data up to the present and the LI group and header size as a result of the determination in
step 76, it is determined whether there is any more SDU to be transmitted instep 78. If there is more SDU to be transmitted, the process proceeds to step 80, where the i value is increased as much as +1 to repeat fromstep 71 for the SDU in the next sequence. - However, if there is no SDU to be transmitted, the process proceeds to step79 where the LI=‘1’ value (which means that the rest part of the PDU is a padding) is inputted and a padding is inputted in the rest part of the pertinent PDU. In other words, the next PDU (B) is transmitted without having the LI=‘0’ value or information indicating that the last segment of the very previous SDU correctly matches the end of the very previous PDU (A), which is additionally inputted to the head of the LI group of the next PDU (B).
- In the related as shown in FIG. 6, LI=000 0000, which indicates that the last segment of the very previous SDU correctly matches the end of the very previous PDU (A), is unnecessarily transmitted as inputted into the next PDU(B) even though the PDU size becomes the same as the total size of the components of the PDU as LI=111 1111 for indicating the padding when the end of the pertinent PDU (A) is excessive with one octet is inputted into the LI group and thus the padding position becomes zero.
- The present invention as described with reference to the preferred embodiment has many advantages. For example, if a current PDU size corresponds to the total size of components of the PDU and the current PDU has information indicating that the current PDU size corresponds to the total size of components of the PDU, a component of the next PDU does not include information indicating that the current PDU size corresponds to the total size of components of the PDU. Therefore, the next PDU is free from unnecessary insertion of the LI value so that waste of network resources can be prevented and overhead required for processing unnecessary LI values also can be reduced.
- The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.
Claims (12)
1. A method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt, the improvement comprising a eliminating from a next PDU an information component indicating that a current PDU size corresponds to the total size of components of the PDU, if the current PDU size corresponds to the total size of components of the PDU and the current PDU has information indicating that the current PDU size corresponds to the total size of components of the PDU.
2. The method of claim 1 , wherein the current PDU comprises at least one Service Data Unit (SDU), wherein it is determined whether the PDU size corresponds to the sum of the components of the PDU according to a size of the at least one SDU, and the end of each of the at least one SDU is indicated with an LI value.
3. The method of claim 2 , wherein if the current PDU includes at least one SDU and the end of a last SDU is indicated with the LI value inserted in the current PDU, the next PDU does not include a LI value indicating that the current PDU size corresponds to the size of the components of the PDU.
4. The method of claim 3 , wherein if the PDU size is larger than the size of the components of the PDU including the at least one SDU, and the end of the last SDU is indicated with the LI value, and a LI value indicating that the difference in the size of the PDU and the size of the components is padded is added to the components of the PDU to match the size, the next PDU does not have the LI value indicating that the current PDU size corresponds to the size of the components of the PDU.
5. A method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt, comprising:
setting a size of a PDU to be used in a protocol structure and a total size of components of the PDU;
determining if an information LI value for an end of a last SDU of the PDU can be indicated by using the set PDU size and inputting the LI value into the PDU if it is determined to be possible; and
comparing the set PDU size with the total size of the PDU components.
6. The method of claim 5 , wherein if the PDU includes an LI for each SDU in the PDU, then a subsequent PDU contains no LI associated with the PDU.
7. The method of claim 5 , wherein if the PDU includes an LI for each SDU in the PDU and a padding LI to indicate that the end of the PDU is padding, then a subsequent PDU contains no LI associated with the PDU.
8. The method of claim 7 , wherein the size of the padding is ‘0’ and the padding LI indicates that the padding is present.
9. A method for inserting a Protocol Data Unit (PDU) Length Indicator (LI) in a Radio Link Control (RLC) where a PDU mode is used in a protocol structured RLC layer for data transmission/receipt, comprising:
forming a plurality of PDUs from a plurality of SDUs, each PDU having a header containing at least one length indicator representing a length of a corresponding SDU contained in the PDU or representing a sum of lengths of corresponding SDUs contained in the PDU, wherein
a) a PDU contains a length indicator having a prescribed sequence of bit pattern when the previous PDU header did not contain complete length of the SDUs in the previous PDU; and
b) a PDU does not contain a length indicator that indicates the end of the SDU in the previous PDU if the previous PDU ends exactly with a last segment of the SDU.
10. A method of forming a header of a PDU, comprising:
forming a first PDU from a plurality of SDUs;
forming a header of the first PDU including a plurality of length indicators (LI), the length indicators representing lengths of corresponding SDUs of the PDU, wherein a final length indicator is provided to indicate that the PDU includes a final segment of padding, and wherein the final segment of padding can have a length of zero such that a subsequent second PDU header does not include information regarding the size of the first PDU.
11. A method for inserting a PDU Length Indicator indicating that a previous PDU ends at the end of a last SDU of the PDU in an RLC of a radio communication system where a PDU mode is used in a protocol structured RLC layer for data transmission, comprising:
detecting whether a previous PDU ends at the end of a last SDU of the PDU;
checking whether a length indicator of the previous PDU indicates that the previous PDU ends at the end of the last SDU of the PDU; and
inserting a PDU Length Indicator if the length indicator of previous PDU fails to indicate that the previous PDU ends at the end of last SDU of the PDU.
12. A method for omitting a PDU Length Indicator indicating that previous PDU ends at the end of a last SDU of the previous PDU in an RLC of a radio communication system where a PDU mode is used in a protocol structured RLC layer for data transmission, comprising:
checking whether a length indicator of a previous PDU indicates that the previous PDU ends at an end of a last SDU of the previous PDU; and
omitting the PDU Length Indicator if the length indicator of the previous PDU indicates that the previous PDU ends at the end of last SDU of the previous PDU.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/932,459 US7295573B2 (en) | 2000-08-19 | 2001-08-20 | Method for inserting length indicator in protocol data unit of radio link control |
US11/926,876 US7668198B2 (en) | 2000-08-19 | 2007-10-29 | Method for inserting length indicator in protocol data unit of radio link control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR48144/2000 | 2000-08-19 | ||
KR10-2000-0048144A KR100447162B1 (en) | 2000-08-19 | 2000-08-19 | Method for length indicator inserting in protocol data unit of radio link control |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/932,459 Continuation-In-Part US7295573B2 (en) | 2000-08-19 | 2001-08-20 | Method for inserting length indicator in protocol data unit of radio link control |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020024972A1 true US20020024972A1 (en) | 2002-02-28 |
Family
ID=36676704
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/863,400 Abandoned US20020024972A1 (en) | 2000-08-19 | 2001-05-24 | Method for inserting length indicator in protocol data unit of radio link control |
US09/932,459 Expired - Fee Related US7295573B2 (en) | 2000-08-19 | 2001-08-20 | Method for inserting length indicator in protocol data unit of radio link control |
US11/926,876 Expired - Lifetime US7668198B2 (en) | 2000-08-19 | 2007-10-29 | Method for inserting length indicator in protocol data unit of radio link control |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/932,459 Expired - Fee Related US7295573B2 (en) | 2000-08-19 | 2001-08-20 | Method for inserting length indicator in protocol data unit of radio link control |
US11/926,876 Expired - Lifetime US7668198B2 (en) | 2000-08-19 | 2007-10-29 | Method for inserting length indicator in protocol data unit of radio link control |
Country Status (9)
Country | Link |
---|---|
US (3) | US20020024972A1 (en) |
EP (2) | EP1583298B1 (en) |
JP (1) | JP3625198B2 (en) |
KR (1) | KR100447162B1 (en) |
CN (2) | CN1145328C (en) |
AT (2) | ATE315862T1 (en) |
DE (2) | DE60116553T2 (en) |
ES (1) | ES2256129T3 (en) |
HK (1) | HK1070211A1 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030002532A1 (en) * | 2001-06-27 | 2003-01-02 | Lucent Technologies Inc. | Telecommunications system having layered protocol with delimiter of payload |
US20050265390A1 (en) * | 2004-06-01 | 2005-12-01 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting data in broadband wireless communication system and apparatus and method for receiving data in the same |
US20060092911A1 (en) * | 1998-10-01 | 2006-05-04 | Lg Electronics Inc. | Method for formatting signal in mobile communication system |
US20060126541A1 (en) * | 2004-11-30 | 2006-06-15 | Lg-Nortel Co., Ltd. | Method for detecting error of system information in mobile communication system |
US20070047582A1 (en) * | 2005-08-23 | 2007-03-01 | Nokia Corporation | Radio link control unacknowledged mode header optimization |
US20070060139A1 (en) * | 2005-05-04 | 2007-03-15 | Soeng-Hun Kim | Method and apparatus for transmitting/receiving packet data using pre-defined length indicator in a mobile communication system |
US20080101408A1 (en) * | 2006-10-30 | 2008-05-01 | Innovative Sonic Limited | Method and apparatus for header setting in a wireless communication system |
US20080273537A1 (en) * | 2007-05-01 | 2008-11-06 | Qualcomm Incorporated | Ciphering sequence number for an adjacent layer protocol in data packet communications |
WO2008133478A3 (en) * | 2007-04-30 | 2008-12-18 | Lg Electronics Inc | Method of transmitting data in a wireless communication system |
US20080318566A1 (en) * | 2007-06-20 | 2008-12-25 | Lg Electronics Inc. | Effective system information reception method |
US20090003283A1 (en) * | 2007-05-07 | 2009-01-01 | Qualcomm Incorporated | Re-using sequence number by multiple protocols for wireless communication |
US20090059853A1 (en) * | 2007-04-25 | 2009-03-05 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving packets in a mobile communication system |
US20090080380A1 (en) * | 2007-09-20 | 2009-03-26 | Lg Electronics Inc. | Method of effectively transmitting radio resource allocation request in mobile communication system |
US20090103512A1 (en) * | 2007-09-18 | 2009-04-23 | Lg Electronics Inc. | Method of performing polling procedure in a wireless communication system |
US20100014477A1 (en) * | 2007-02-09 | 2010-01-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and Apparatus for Discriminating Between Control Messages and Speech Payload |
US20100067498A1 (en) * | 2006-10-30 | 2010-03-18 | Young Dae Lee | Method for re-direction of uplink access |
US20100091720A1 (en) * | 2006-10-02 | 2010-04-15 | Sung Duck Chun | Method for transmitting and receiving paging message in wireless communication system |
US20100118890A1 (en) * | 2007-05-03 | 2010-05-13 | Lg Electronics ,Inc. | Method of data processing in a wireless communication system |
US20100118857A1 (en) * | 2007-09-13 | 2010-05-13 | Sung Duck Chun | Method of performing polling procedure in a wireless communication system |
US20100124237A1 (en) * | 2007-04-30 | 2010-05-20 | Sung Duck Chun | Methods of generating data block in mobile communication system |
US20100128647A1 (en) * | 2007-08-10 | 2010-05-27 | Lg Electronics Inc. | Effective reception method in wireless communication system providing mbms service |
US20100128669A1 (en) * | 2007-08-14 | 2010-05-27 | Sung Duck Chun | Method of transmitting and processing data block of specific protocol layer in wireless communication system |
US20100135202A1 (en) * | 2007-09-18 | 2010-06-03 | Sung Duck Chun | Method for qos guarantees in a multilayer structure |
US20100142470A1 (en) * | 2007-08-10 | 2010-06-10 | Sung-Jun Park | Method for re-attempting a random access effectively |
US20100165919A1 (en) * | 2007-06-20 | 2010-07-01 | Lg Electronics Inc. | Method of transmitting data in mobile communication system |
US20100174809A1 (en) * | 2007-06-18 | 2010-07-08 | Sung Duck Chun | Method of updating repeatedly-transmitted information in a wireless communication system |
US20100182992A1 (en) * | 2007-06-18 | 2010-07-22 | Sung Duck Chun | Method of controlling uplink synchronization state at a user equipment in a mobile communication system |
US20100190504A1 (en) * | 2007-06-18 | 2010-07-29 | Lee Young-Dae | Method for enhancing of controlling radio resources and transmitting status report in mobile telecommunications system and receiver of mobile telecommunications system |
US20100195617A1 (en) * | 2007-09-20 | 2010-08-05 | Sung Jun Park | method for handling correctly received but header compression failed packets |
US20100208749A1 (en) * | 2007-09-18 | 2010-08-19 | Sung-Duck Chun | Effective Data Block Transmission Method Using Header Indicator |
US20100215013A1 (en) * | 2007-10-23 | 2010-08-26 | Sung-Duck Chun | Method of effectively transmitting identification information of terminal during the generation of data block |
US20100226325A1 (en) * | 2007-10-23 | 2010-09-09 | Sung-Duck Chun | Method for transmitting data of common control channel |
US20100246382A1 (en) * | 2007-10-29 | 2010-09-30 | Lg Electronics Inc. | Method for reparing an error depending on a radio bearer type |
US20100254480A1 (en) * | 2007-09-18 | 2010-10-07 | Sung Jun Park | Method of transmitting a data block in a wireless communication system |
US20100265896A1 (en) * | 2007-09-13 | 2010-10-21 | Sung-Jun Park | method of allocating radio resouces in a wireless communication system |
US20100278143A1 (en) * | 2006-08-22 | 2010-11-04 | Sung Duck Chun | method of performing handover and controlling thereof in a mobile communication system |
US20110019604A1 (en) * | 2007-08-16 | 2011-01-27 | Sung Duck Chun | Communication method for multimedia broadcast multicast service(mbms) counting |
US20110019756A1 (en) * | 2008-03-17 | 2011-01-27 | Sung-Duck Chun | Method of transmitting rlc data |
US20110081868A1 (en) * | 2007-08-10 | 2011-04-07 | Yung Mi Kim | Method of reporting measurement result in wireless communication system |
US7965740B2 (en) | 2007-05-02 | 2011-06-21 | Lg Electronics Inc. | Method of transmitting data in a wireless communication system |
US20110182247A1 (en) * | 2007-08-10 | 2011-07-28 | Sung-Duck Chun | Method for controlling harq operation in dynamic radio resource allocation |
US20110211516A1 (en) * | 2007-08-10 | 2011-09-01 | Lg Electronics Inc. | Method of transmitting and receiving control information in a wireless communication system |
US20110228746A1 (en) * | 2008-03-17 | 2011-09-22 | Sung-Duck Chun | Method for transmitting pdcp status report |
US8081662B2 (en) | 2007-04-30 | 2011-12-20 | Lg Electronics Inc. | Methods of transmitting data blocks in wireless communication system |
US8160012B2 (en) | 2007-08-10 | 2012-04-17 | Lg Electronics Inc. | Methods of setting up channel in wireless communication system |
US20160249252A1 (en) * | 2007-01-10 | 2016-08-25 | Lg Electronics Inc. | Method of generating data block in wireless communication system |
US9609548B2 (en) | 2007-09-28 | 2017-03-28 | Interdigital Patent Holdings, Inc. | Method and apparatus for selecting a radio link control protocol data unit size |
US9655090B2 (en) | 2009-04-24 | 2017-05-16 | Interdigital Patent Holdings, Inc. | Method and apparatus for generating a radio link control protocol data unit for multi-carrier operation |
US10104579B1 (en) | 2017-04-13 | 2018-10-16 | Mediatek Inc. | User equipment and flexible protocol data unit packaging method thereof |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6307487B1 (en) | 1998-09-23 | 2001-10-23 | Digital Fountain, Inc. | Information additive code generator and decoder for communication systems |
US7068729B2 (en) | 2001-12-21 | 2006-06-27 | Digital Fountain, Inc. | Multi-stage code generator and decoder for communication systems |
DE69926514T2 (en) * | 1999-11-23 | 2006-06-08 | Lucent Technologies Inc. | A method, apparatus and data packet for displaying the length of the payload transmitted in a data packet in a cellular network |
KR100447162B1 (en) * | 2000-08-19 | 2004-09-04 | 엘지전자 주식회사 | Method for length indicator inserting in protocol data unit of radio link control |
KR100896484B1 (en) * | 2002-04-08 | 2009-05-08 | 엘지전자 주식회사 | Data transmission mobile communication method and apparatus in mobile communication system |
US7388883B2 (en) * | 2002-05-06 | 2008-06-17 | Innovative Sonic Limited | Abnormal case handling for acknowledged mode transmission and unacknowledged mode transmission |
US9240810B2 (en) | 2002-06-11 | 2016-01-19 | Digital Fountain, Inc. | Systems and processes for decoding chain reaction codes through inactivation |
CN100539439C (en) | 2002-10-05 | 2009-09-09 | 数字方敦股份有限公司 | The system coding of chain reaction sign indicating number and decode system and method |
US20040252719A1 (en) * | 2003-06-10 | 2004-12-16 | Iqbal Jami | Radio telecommunications network, a station, and a method of sending packets of data |
CN1275401C (en) * | 2003-06-12 | 2006-09-13 | 中兴通讯股份有限公司 | Method for controlling transmission window of wireless link layer |
TWI247510B (en) * | 2003-08-18 | 2006-01-11 | Asustek Comp Inc | Method to avoid potential deadlocks in a SDU discard function |
WO2005053170A2 (en) * | 2003-11-24 | 2005-06-09 | Interdigital Technology Corporation | Method and apparatus for compiling a protocol data unit |
KR100595645B1 (en) * | 2004-01-09 | 2006-07-03 | 엘지전자 주식회사 | Method for transmitting control signal in mobile communication system |
KR20050095419A (en) * | 2004-03-26 | 2005-09-29 | 삼성전자주식회사 | Method for efficiently utilizing radio resources of voice over internet protocol in a mobile telecommunication system |
WO2005112250A2 (en) | 2004-05-07 | 2005-11-24 | Digital Fountain, Inc. | File download and streaming system |
KR100617818B1 (en) * | 2004-05-25 | 2006-08-28 | 삼성전자주식회사 | Method and device for transmitting data and method and device for receiving data in Broadband wireless communication system |
JP4474217B2 (en) * | 2004-07-09 | 2010-06-02 | 富士通株式会社 | Packet communication device |
US20060050679A1 (en) * | 2004-09-09 | 2006-03-09 | Sam Shiaw-Shiang Jiang | Method for On-Line Recovery of Parameter Synchronization for Ciphering Applications |
KR100881508B1 (en) | 2004-09-21 | 2009-02-05 | 히다찌 커뮤니케이션 테크놀로지 | Packet control device, radio communication device, and transmission control method |
US7411979B2 (en) * | 2004-09-24 | 2008-08-12 | Innovative Sonic Limited | Enhanced SDU discard procedure for a special data segmentation in a wireless communications system |
US8189615B2 (en) * | 2004-12-23 | 2012-05-29 | Nokia Corporation | Method and apparatus for communicating scheduling information from a UE to a radio access network |
US7864719B2 (en) * | 2005-03-29 | 2011-01-04 | Lg Electronics Inc. | Method of generating lower layer data block in wireless mobile communication system |
TWI307589B (en) * | 2005-05-18 | 2009-03-11 | Innovative Sonic Ltd | Method and apparatus of data segmentation in a mobile communications system |
ATE410874T1 (en) * | 2005-09-20 | 2008-10-15 | Matsushita Electric Ind Co Ltd | METHOD AND DEVICE FOR PACKET SEGMENTATION AND LINK SIGNALING IN A COMMUNICATIONS SYSTEM |
CN100571107C (en) * | 2005-10-10 | 2009-12-16 | 华为技术有限公司 | A kind of detection method of data-bag lost and checkout gear |
KR101292851B1 (en) | 2006-02-13 | 2013-08-02 | 디지털 파운튼, 인크. | Streaming and buffering using variable fec overhead and protection periods |
US9270414B2 (en) | 2006-02-21 | 2016-02-23 | Digital Fountain, Inc. | Multiple-field based code generator and decoder for communications systems |
JP2007300630A (en) * | 2006-04-27 | 2007-11-15 | Asustek Computer Inc | Method device for dividing and numbering sdu in radio communication system |
US7971129B2 (en) | 2006-05-10 | 2011-06-28 | Digital Fountain, Inc. | Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient users of the communications systems |
US9178535B2 (en) | 2006-06-09 | 2015-11-03 | Digital Fountain, Inc. | Dynamic stream interleaving and sub-stream based delivery |
US9432433B2 (en) | 2006-06-09 | 2016-08-30 | Qualcomm Incorporated | Enhanced block-request streaming system using signaling or block creation |
US9209934B2 (en) | 2006-06-09 | 2015-12-08 | Qualcomm Incorporated | Enhanced block-request streaming using cooperative parallel HTTP and forward error correction |
US9386064B2 (en) | 2006-06-09 | 2016-07-05 | Qualcomm Incorporated | Enhanced block-request streaming using URL templates and construction rules |
US9419749B2 (en) | 2009-08-19 | 2016-08-16 | Qualcomm Incorporated | Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes |
US9380096B2 (en) | 2006-06-09 | 2016-06-28 | Qualcomm Incorporated | Enhanced block-request streaming system for handling low-latency streaming |
WO2008049472A1 (en) * | 2006-10-27 | 2008-05-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Length indicator optimization |
JP5113186B2 (en) | 2006-12-07 | 2013-01-09 | エルジー エレクトロニクス インコーポレイティド | Data transmission method in wireless communication system |
KR101342365B1 (en) * | 2006-12-07 | 2013-12-16 | 엘지전자 주식회사 | Method of transferring data in wireless communication system |
US8797879B2 (en) * | 2006-12-07 | 2014-08-05 | Lg Electronics Inc. | Method of transmitting and receiving status report in a mobile communication system |
EP2124467B1 (en) * | 2006-12-28 | 2017-05-17 | NTT DoCoMo, Inc. | Transmitter, receiver, mobile station and wireless base station |
JP2008172296A (en) * | 2007-01-05 | 2008-07-24 | Ntt Docomo Inc | Transmitter |
WO2008084957A1 (en) * | 2007-01-08 | 2008-07-17 | Lg Electronics Inc. | Method for receiving common channel in wireless communication and terminal thereof |
US8347174B2 (en) | 2007-01-09 | 2013-01-01 | Lg Electronics Inc. | Method of transmitting and receiving data in a wireless communication system including error detection code decoded using equipment identifiers and group identifiers |
WO2008084986A2 (en) * | 2007-01-09 | 2008-07-17 | Lg Electronics Inc. | Method of transmitting and receiving scheduling information in a wireless communication system |
US8194559B2 (en) * | 2007-01-09 | 2012-06-05 | Lg Electronics Inc. | Method of controlling data retransmission in a wireless communication system |
CN101578783A (en) * | 2007-01-10 | 2009-11-11 | Lg电子株式会社 | Method for constructing data format in mobile communication and terminal thereof |
EP2103006B1 (en) | 2007-01-10 | 2018-03-28 | LG Electronics Inc. | Method for constructing data format in mobile communication and terminal thereof |
KR100987228B1 (en) | 2007-01-24 | 2010-10-12 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving data via media access control protocol in mobile telecommunication system |
KR101461938B1 (en) | 2007-01-31 | 2014-11-14 | 엘지전자 주식회사 | Method for transmitting and receiving system information |
CN101601208B (en) * | 2007-01-31 | 2014-04-16 | Lg电子株式会社 | Method for transmitting and receiving system information |
WO2008094662A2 (en) | 2007-02-01 | 2008-08-07 | Interdigital Technology Corporation | Method and apparatus for supporting rlc re-segmentation |
KR101326474B1 (en) * | 2007-02-06 | 2013-11-07 | 엘지전자 주식회사 | Method for transmitting data block in wireless communication system |
CN101272519B (en) * | 2007-03-21 | 2012-09-19 | 上海贝尔股份有限公司 | Method, device and base station for generating protocol data unit |
JP2008259038A (en) * | 2007-04-06 | 2008-10-23 | Ntt Docomo Inc | Packet communication system, mobile station, and radio base station |
JP2008259027A (en) * | 2007-04-06 | 2008-10-23 | Ntt Docomo Inc | Retransmission control method and transmission-side device |
KR101023388B1 (en) * | 2007-04-11 | 2011-03-18 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving packet data unitin mobile communication system |
KR101386812B1 (en) * | 2007-04-30 | 2014-04-29 | 엘지전자 주식회사 | Methods for transmitting or receiving data unit(s) using a header field existence indicator |
US8031689B2 (en) | 2007-05-18 | 2011-10-04 | Innovative Sonic Limited | Method and related apparatus for handling re-establishment of radio link control entity in a wireless communications system |
EP2015478B1 (en) | 2007-06-18 | 2013-07-31 | LG Electronics Inc. | Method of performing uplink synchronization in wireless communication system |
KR101470638B1 (en) | 2007-06-18 | 2014-12-08 | 엘지전자 주식회사 | Method for enhancing radio resource and informing status report in mobile telecommunications system and receiver of mobile telecommunications |
CN101364990B (en) * | 2007-08-08 | 2012-06-27 | 华为技术有限公司 | Method for reducing data header expense |
KR101467789B1 (en) | 2007-08-10 | 2014-12-03 | 엘지전자 주식회사 | A control method for uplink connection of idle terminal |
KR101495913B1 (en) * | 2007-08-10 | 2015-02-25 | 엘지전자 주식회사 | Method for transmitting and receiving control data in mobile telecommunications system and transmitter and receiver of mobile telecommunications |
KR101392697B1 (en) | 2007-08-10 | 2014-05-19 | 엘지전자 주식회사 | Method for detecting security error in mobile telecommunications system and device of mobile telecommunications |
WO2009022836A2 (en) | 2007-08-10 | 2009-02-19 | Lg Electronics Inc. | A random access method for multimedia broadcast multicast service(mbms) |
KR20090016431A (en) * | 2007-08-10 | 2009-02-13 | 엘지전자 주식회사 | A method of performing channel quality report in a wireless communication system |
JP4521430B2 (en) * | 2007-08-10 | 2010-08-11 | 富士通株式会社 | Wireless transmission device, wireless reception device, wireless transmission method, and wireless reception method |
MX2010002829A (en) | 2007-09-12 | 2010-04-01 | Digital Fountain Inc | Generating and communicating source identification information to enable reliable communications. |
ES2419804T3 (en) * | 2007-09-13 | 2013-08-21 | Lg Electronics Inc. | Procedure for assigning radio resources in a wireless communication system |
US7949013B2 (en) * | 2007-09-28 | 2011-05-24 | Industrial Technology Research Institute | Wireless communication systems and methods using flexible length indicators |
US8873471B2 (en) * | 2007-10-01 | 2014-10-28 | Qualcomm Incorporated | Method and apparatus for implementing LTE RLC header formats |
JP4975868B2 (en) * | 2007-10-09 | 2012-07-11 | サムスン エレクトロニクス カンパニー リミテッド | Apparatus and method for generating and analyzing MACPDU in mobile communication system |
WO2009055971A1 (en) * | 2007-11-01 | 2009-05-07 | Alcatel Shanghai Bell Co., Ltd. | Data processing method and device |
US20100278111A1 (en) * | 2008-01-04 | 2010-11-04 | Nokia Corporation | Dummy padding sub-header in mac protocol data units |
WO2009096731A2 (en) * | 2008-01-31 | 2009-08-06 | Lg Electronics Inc. | Method for signaling back-off information in random access |
EP3410623B1 (en) | 2008-01-31 | 2021-07-28 | LG Electronics Inc. | Method for sending status information in mobile telecommunications system and receiver of mobile telecommunications |
KR101594359B1 (en) | 2008-01-31 | 2016-02-16 | 엘지전자 주식회사 | Method of signaling back-off information in random access |
US9281847B2 (en) | 2009-02-27 | 2016-03-08 | Qualcomm Incorporated | Mobile reception of digital video broadcasting—terrestrial services |
US9288010B2 (en) | 2009-08-19 | 2016-03-15 | Qualcomm Incorporated | Universal file delivery methods for providing unequal error protection and bundled file delivery services |
US9917874B2 (en) | 2009-09-22 | 2018-03-13 | Qualcomm Incorporated | Enhanced block-request streaming using block partitioning or request controls for improved client-side handling |
US9485546B2 (en) | 2010-06-29 | 2016-11-01 | Qualcomm Incorporated | Signaling video samples for trick mode video representations |
US9185439B2 (en) | 2010-07-15 | 2015-11-10 | Qualcomm Incorporated | Signaling data for multiplexing video components |
US9596447B2 (en) | 2010-07-21 | 2017-03-14 | Qualcomm Incorporated | Providing frame packing type information for video coding |
US9319448B2 (en) | 2010-08-10 | 2016-04-19 | Qualcomm Incorporated | Trick modes for network streaming of coded multimedia data |
US9270299B2 (en) | 2011-02-11 | 2016-02-23 | Qualcomm Incorporated | Encoding and decoding using elastic codes with flexible source block mapping |
US8958375B2 (en) * | 2011-02-11 | 2015-02-17 | Qualcomm Incorporated | Framing for an improved radio link protocol including FEC |
US9253233B2 (en) | 2011-08-31 | 2016-02-02 | Qualcomm Incorporated | Switch signaling methods providing improved switching between representations for adaptive HTTP streaming |
US9843844B2 (en) | 2011-10-05 | 2017-12-12 | Qualcomm Incorporated | Network streaming of media data |
US9294226B2 (en) | 2012-03-26 | 2016-03-22 | Qualcomm Incorporated | Universal object delivery and template-based file delivery |
US9398490B2 (en) * | 2013-03-15 | 2016-07-19 | Trane International Inc. | Method of fragmenting a message in a network |
EP3395029B1 (en) * | 2015-12-23 | 2021-03-17 | Nokia Solutions and Networks Oy | Methods, apparatuses and computer program product for pdu formatting according to sdu segmentation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020048281A1 (en) * | 2000-08-19 | 2002-04-25 | Yi Seung June | Method for inserting length indicator in protocol data unit of radio link control |
US6507582B1 (en) * | 1999-05-27 | 2003-01-14 | Qualcomm Incorporated | Radio link protocol enhancements for dynamic capacity wireless data channels |
US6542490B1 (en) * | 1999-01-29 | 2003-04-01 | Nortel Networks Limited | Data link control proctocol for 3G wireless system |
US6665313B1 (en) * | 1999-05-10 | 2003-12-16 | Samsung Electronics Co., Ltd. | Apparatus and method for exchanging variable-length data according to radio link protocol in mobile communication system |
US20040114565A1 (en) * | 2001-03-14 | 2004-06-17 | Jussi Sipola | Method and apparatus for providing radio bearer multiplexing within segmentation protocol |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970006078B1 (en) | 1994-03-18 | 1997-04-23 | 엘지전자 주식회사 | Auto cooking control method of microwave oven |
EP0786919A1 (en) * | 1996-01-23 | 1997-07-30 | International Business Machines Corporation | A data processing method for efficiently transporting multimedia packets over a conventional digital packet switching network |
JP3000545B2 (en) * | 1996-11-29 | 2000-01-17 | 株式会社超高速ネットワーク・コンピュータ技術研究所 | Congestion control method |
CA2262774A1 (en) | 1998-03-06 | 1999-09-06 | Lucent Technologies Inc. | Simple data link (sdl) protocol |
JP3622527B2 (en) * | 1998-08-24 | 2005-02-23 | 株式会社日立製作所 | Video feature scene detection method and apparatus |
FI106504B (en) * | 1998-10-06 | 2001-02-15 | Nokia Networks Oy | Data segmentation method in a communication system |
KR20000059636A (en) * | 1999-03-05 | 2000-10-05 | 정규석 | The composition of service data units into protocol data units in datalink layer |
DE69926514T2 (en) | 1999-11-23 | 2006-06-08 | Lucent Technologies Inc. | A method, apparatus and data packet for displaying the length of the payload transmitted in a data packet in a cellular network |
KR100640921B1 (en) * | 2000-06-29 | 2006-11-02 | 엘지전자 주식회사 | Method for Generating and Transmitting Protocol Data Unit |
US7411979B2 (en) * | 2004-09-24 | 2008-08-12 | Innovative Sonic Limited | Enhanced SDU discard procedure for a special data segmentation in a wireless communications system |
KR20060090191A (en) * | 2005-02-07 | 2006-08-10 | 삼성전자주식회사 | Method for requesting and transmitting status report of a mobile communication system and therefor apparatus |
TWI307589B (en) * | 2005-05-18 | 2009-03-11 | Innovative Sonic Ltd | Method and apparatus of data segmentation in a mobile communications system |
-
2000
- 2000-08-19 KR KR10-2000-0048144A patent/KR100447162B1/en active IP Right Grant
-
2001
- 2001-05-24 US US09/863,400 patent/US20020024972A1/en not_active Abandoned
- 2001-08-17 EP EP20050014182 patent/EP1583298B1/en not_active Expired - Lifetime
- 2001-08-17 DE DE2001616553 patent/DE60116553T2/en not_active Expired - Lifetime
- 2001-08-17 EP EP20010119927 patent/EP1180878B1/en not_active Expired - Lifetime
- 2001-08-17 DE DE60135882T patent/DE60135882D1/en not_active Expired - Lifetime
- 2001-08-17 AT AT01119927T patent/ATE315862T1/en active
- 2001-08-17 AT AT05014182T patent/ATE408947T1/en not_active IP Right Cessation
- 2001-08-17 CN CNB011242450A patent/CN1145328C/en not_active Expired - Lifetime
- 2001-08-17 CN CNB2004100068585A patent/CN100544309C/en not_active Expired - Lifetime
- 2001-08-17 ES ES01119927T patent/ES2256129T3/en not_active Expired - Lifetime
- 2001-08-17 JP JP2001248429A patent/JP3625198B2/en not_active Expired - Fee Related
- 2001-08-20 US US09/932,459 patent/US7295573B2/en not_active Expired - Fee Related
-
2005
- 2005-04-04 HK HK05102788A patent/HK1070211A1/en not_active IP Right Cessation
-
2007
- 2007-10-29 US US11/926,876 patent/US7668198B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6542490B1 (en) * | 1999-01-29 | 2003-04-01 | Nortel Networks Limited | Data link control proctocol for 3G wireless system |
US6665313B1 (en) * | 1999-05-10 | 2003-12-16 | Samsung Electronics Co., Ltd. | Apparatus and method for exchanging variable-length data according to radio link protocol in mobile communication system |
US6507582B1 (en) * | 1999-05-27 | 2003-01-14 | Qualcomm Incorporated | Radio link protocol enhancements for dynamic capacity wireless data channels |
US20020048281A1 (en) * | 2000-08-19 | 2002-04-25 | Yi Seung June | Method for inserting length indicator in protocol data unit of radio link control |
US20040114565A1 (en) * | 2001-03-14 | 2004-06-17 | Jussi Sipola | Method and apparatus for providing radio bearer multiplexing within segmentation protocol |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070091931A1 (en) * | 1998-10-01 | 2007-04-26 | In Tae Hwang | Method for formatting signal in mobile communication system |
US8401011B2 (en) | 1998-10-01 | 2013-03-19 | Lg Electronics Inc. | Method for formatting signal in mobile communication system |
US20100290423A1 (en) * | 1998-10-01 | 2010-11-18 | In Tae Hwang | Method for formatting signal in mobile communication system |
US20060092911A1 (en) * | 1998-10-01 | 2006-05-04 | Lg Electronics Inc. | Method for formatting signal in mobile communication system |
US9019966B2 (en) | 1998-10-01 | 2015-04-28 | Lg Electronics Inc. | Method for formatting signal in mobile communication system |
US7792149B2 (en) * | 1998-10-01 | 2010-09-07 | Lg Electronics Inc. | Method for formatting signal in mobile communication system |
US8179893B2 (en) | 1998-10-01 | 2012-05-15 | Lg Electronics Inc. | Method of formatting signal in mobile communication system |
US8204059B2 (en) | 1998-10-01 | 2012-06-19 | Lg Electronics Inc. | Method for formatting signal in mobile communication system |
US20070086342A1 (en) * | 1998-10-01 | 2007-04-19 | In Tae Hwang | Method of formatting signal in mobile communication system |
US20030002532A1 (en) * | 2001-06-27 | 2003-01-02 | Lucent Technologies Inc. | Telecommunications system having layered protocol with delimiter of payload |
US7197024B2 (en) * | 2001-06-27 | 2007-03-27 | Lucent Technologies Inc. | Telecommunications system having layered protocol with delimiter of payload |
US20050265390A1 (en) * | 2004-06-01 | 2005-12-01 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting data in broadband wireless communication system and apparatus and method for receiving data in the same |
KR20050114567A (en) * | 2004-06-01 | 2005-12-06 | 삼성전자주식회사 | Method and device for transmitting data and method and device for receiving data in broadband wireless communication system |
US20060126541A1 (en) * | 2004-11-30 | 2006-06-15 | Lg-Nortel Co., Ltd. | Method for detecting error of system information in mobile communication system |
US20070060139A1 (en) * | 2005-05-04 | 2007-03-15 | Soeng-Hun Kim | Method and apparatus for transmitting/receiving packet data using pre-defined length indicator in a mobile communication system |
US7675941B2 (en) | 2005-05-04 | 2010-03-09 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting/receiving packet data using pre-defined length indicator in a mobile communication system |
KR100913900B1 (en) | 2005-05-04 | 2009-08-26 | 삼성전자주식회사 | A method and apparatus for transmitting/receiving packet data using predefined length indicator in mobile communication system |
US20070047582A1 (en) * | 2005-08-23 | 2007-03-01 | Nokia Corporation | Radio link control unacknowledged mode header optimization |
US7894443B2 (en) * | 2005-08-23 | 2011-02-22 | Nokia Corporation | Radio link control unacknowledged mode header optimization |
US20100278143A1 (en) * | 2006-08-22 | 2010-11-04 | Sung Duck Chun | method of performing handover and controlling thereof in a mobile communication system |
US8811336B2 (en) | 2006-08-22 | 2014-08-19 | Lg Electronics Inc. | Method of performing handover and controlling thereof in a mobile communication system |
US8619685B2 (en) | 2006-10-02 | 2013-12-31 | Lg Electronics Inc. | Method for transmitting and receiving paging message in wireless communication system |
US20100091720A1 (en) * | 2006-10-02 | 2010-04-15 | Sung Duck Chun | Method for transmitting and receiving paging message in wireless communication system |
US9001766B2 (en) | 2006-10-30 | 2015-04-07 | Lg Electronics Inc. | Method for re-direction of uplink access |
US20100067498A1 (en) * | 2006-10-30 | 2010-03-18 | Young Dae Lee | Method for re-direction of uplink access |
US20080101408A1 (en) * | 2006-10-30 | 2008-05-01 | Innovative Sonic Limited | Method and apparatus for header setting in a wireless communication system |
US9210610B2 (en) * | 2006-10-30 | 2015-12-08 | Innovative Sonic Limited | Method and apparatus for header setting in a wireless communications system |
US8520644B2 (en) | 2006-10-30 | 2013-08-27 | Lg Electronics Inc. | Method for re-direction of uplink access |
US20160249252A1 (en) * | 2007-01-10 | 2016-08-25 | Lg Electronics Inc. | Method of generating data block in wireless communication system |
US20100014477A1 (en) * | 2007-02-09 | 2010-01-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and Apparatus for Discriminating Between Control Messages and Speech Payload |
US8369273B2 (en) * | 2007-02-09 | 2013-02-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for discriminating between control messages and speech payload |
US8208492B2 (en) * | 2007-04-25 | 2012-06-26 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving packets in a mobile communication system |
KR101430756B1 (en) | 2007-04-25 | 2014-08-14 | 삼성전자주식회사 | Method and Apparatus for Transmitting/Receiving Packet in Mobile Communication System |
US20090059853A1 (en) * | 2007-04-25 | 2009-03-05 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving packets in a mobile communication system |
US8081662B2 (en) | 2007-04-30 | 2011-12-20 | Lg Electronics Inc. | Methods of transmitting data blocks in wireless communication system |
US8040806B2 (en) | 2007-04-30 | 2011-10-18 | Lg Electronics Inc. | Methods of generating data block in mobile communication system |
US20100118889A1 (en) * | 2007-04-30 | 2010-05-13 | Sung Duck Chun | Method of transmitting data in a wireless communication system |
WO2008133478A3 (en) * | 2007-04-30 | 2008-12-18 | Lg Electronics Inc | Method of transmitting data in a wireless communication system |
US8027363B2 (en) | 2007-04-30 | 2011-09-27 | Lg Electronics Inc. | Method of transmitting data in a wireless communication system |
US20100124237A1 (en) * | 2007-04-30 | 2010-05-20 | Sung Duck Chun | Methods of generating data block in mobile communication system |
USRE45347E1 (en) | 2007-04-30 | 2015-01-20 | Lg Electronics Inc. | Methods of transmitting data blocks in wireless communication system |
US20080273537A1 (en) * | 2007-05-01 | 2008-11-06 | Qualcomm Incorporated | Ciphering sequence number for an adjacent layer protocol in data packet communications |
US8358669B2 (en) | 2007-05-01 | 2013-01-22 | Qualcomm Incorporated | Ciphering sequence number for an adjacent layer protocol in data packet communications |
US8798070B2 (en) | 2007-05-02 | 2014-08-05 | Lg Electronics Inc. | Method of transmitting data in a wireless communication system |
US20110228799A1 (en) * | 2007-05-02 | 2011-09-22 | Sung Duck Chun | Method of transmitting data in a wireless communication system |
US7965740B2 (en) | 2007-05-02 | 2011-06-21 | Lg Electronics Inc. | Method of transmitting data in a wireless communication system |
US9131003B2 (en) | 2007-05-02 | 2015-09-08 | Lg Electronics Inc. | Method of transmitting data in a wireless communication system |
US20100118890A1 (en) * | 2007-05-03 | 2010-05-13 | Lg Electronics ,Inc. | Method of data processing in a wireless communication system |
US8005115B2 (en) | 2007-05-03 | 2011-08-23 | Lg Electronics Inc. | Method of transferring a data block in a wireless communication system |
US20090003283A1 (en) * | 2007-05-07 | 2009-01-01 | Qualcomm Incorporated | Re-using sequence number by multiple protocols for wireless communication |
US8331399B2 (en) * | 2007-05-07 | 2012-12-11 | Qualcomm Incorporated | Re-using sequence number by multiple protocols for wireless communication |
US8812009B2 (en) | 2007-06-18 | 2014-08-19 | Lg Electronics Inc. | Method of controlling uplink synchronization state at a user equipment in a mobile communication system |
US9668282B2 (en) | 2007-06-18 | 2017-05-30 | Lg Electronics Inc. | Method of controlling uplink synchronization state at a user equipment in a mobile communication system |
US20100190504A1 (en) * | 2007-06-18 | 2010-07-29 | Lee Young-Dae | Method for enhancing of controlling radio resources and transmitting status report in mobile telecommunications system and receiver of mobile telecommunications system |
US20100182992A1 (en) * | 2007-06-18 | 2010-07-22 | Sung Duck Chun | Method of controlling uplink synchronization state at a user equipment in a mobile communication system |
US9100896B2 (en) | 2007-06-18 | 2015-08-04 | Lg Electronics Inc. | Method of updating repeatedly-transmitted information in a wireless communication system |
US20100174809A1 (en) * | 2007-06-18 | 2010-07-08 | Sung Duck Chun | Method of updating repeatedly-transmitted information in a wireless communication system |
US8681608B2 (en) | 2007-06-18 | 2014-03-25 | Lg Electronics Inc. | Method for enhancing of controlling radio resources and transmitting status report in mobile telecommunications system and receiver of mobile telecommunications system |
US8315641B2 (en) | 2007-06-18 | 2012-11-20 | Lg Electronics Inc. | Method of controlling uplink synchronization state at a user equipment in a mobile communication system |
US8149768B2 (en) | 2007-06-20 | 2012-04-03 | Lg Electronics Inc. | Method of transmitting data in mobile communication system |
US20100165919A1 (en) * | 2007-06-20 | 2010-07-01 | Lg Electronics Inc. | Method of transmitting data in mobile communication system |
US8190144B2 (en) | 2007-06-20 | 2012-05-29 | Lg Electronics Inc. | Effective system information reception method |
US20080318566A1 (en) * | 2007-06-20 | 2008-12-25 | Lg Electronics Inc. | Effective system information reception method |
US9699778B2 (en) | 2007-08-10 | 2017-07-04 | Lg Electronics Inc. | Method of transmitting and receiving control information in a wireless communication system |
US20100128647A1 (en) * | 2007-08-10 | 2010-05-27 | Lg Electronics Inc. | Effective reception method in wireless communication system providing mbms service |
US20110211516A1 (en) * | 2007-08-10 | 2011-09-01 | Lg Electronics Inc. | Method of transmitting and receiving control information in a wireless communication system |
US20100142470A1 (en) * | 2007-08-10 | 2010-06-10 | Sung-Jun Park | Method for re-attempting a random access effectively |
US8160012B2 (en) | 2007-08-10 | 2012-04-17 | Lg Electronics Inc. | Methods of setting up channel in wireless communication system |
US8767606B2 (en) | 2007-08-10 | 2014-07-01 | Lg Electronics Inc. | Method of transmitting and receiving control information in a wireless communication system |
US8509164B2 (en) | 2007-08-10 | 2013-08-13 | Lg Electronics Inc. | Method for re-attempting a random access effectively |
US9264160B2 (en) | 2007-08-10 | 2016-02-16 | Lg Electronics Inc. | Method of transmitting and receiving control information in a wireless communication system |
US9497014B2 (en) | 2007-08-10 | 2016-11-15 | Lg Electronics Inc. | Method of transmitting and receiving control information in a wireless communication system |
US8203988B2 (en) | 2007-08-10 | 2012-06-19 | Lg Electronics Inc. | Effective reception method in wireless communication system providing MBMS service |
US20110081868A1 (en) * | 2007-08-10 | 2011-04-07 | Yung Mi Kim | Method of reporting measurement result in wireless communication system |
US8594030B2 (en) | 2007-08-10 | 2013-11-26 | Lg Electronics Inc. | Method for controlling HARQ operation in dynamic radio resource allocation |
US20110182247A1 (en) * | 2007-08-10 | 2011-07-28 | Sung-Duck Chun | Method for controlling harq operation in dynamic radio resource allocation |
US20100128669A1 (en) * | 2007-08-14 | 2010-05-27 | Sung Duck Chun | Method of transmitting and processing data block of specific protocol layer in wireless communication system |
US8488523B2 (en) | 2007-08-14 | 2013-07-16 | Lg Electronics Inc. | Method of transmitting and processing data block of specific protocol layer in wireless communication system |
US20110019604A1 (en) * | 2007-08-16 | 2011-01-27 | Sung Duck Chun | Communication method for multimedia broadcast multicast service(mbms) counting |
US8743797B2 (en) | 2007-09-13 | 2014-06-03 | Lg Electronics Inc. | Method of allocating radio resouces in a wireless communication system |
US20100118857A1 (en) * | 2007-09-13 | 2010-05-13 | Sung Duck Chun | Method of performing polling procedure in a wireless communication system |
US8526416B2 (en) | 2007-09-13 | 2013-09-03 | Lg Electronics Inc. | Method of performing polling procedure in a wireless communication system |
US20100265896A1 (en) * | 2007-09-13 | 2010-10-21 | Sung-Jun Park | method of allocating radio resouces in a wireless communication system |
US8665815B2 (en) | 2007-09-18 | 2014-03-04 | Lg Electronics Inc. | Method for QoS guarantees in a multilayer structure |
US9565699B2 (en) | 2007-09-18 | 2017-02-07 | Lg Electronics Inc. | Method of performing polling procedure in a wireless communication system |
US8634312B2 (en) * | 2007-09-18 | 2014-01-21 | Lg Electronics Inc. | Effective data block transmission method using header indicator |
US20090103512A1 (en) * | 2007-09-18 | 2009-04-23 | Lg Electronics Inc. | Method of performing polling procedure in a wireless communication system |
US9661524B2 (en) | 2007-09-18 | 2017-05-23 | Lg Electronics Inc. | Method for QoS guarantees in a multilayer structure |
US8625503B2 (en) | 2007-09-18 | 2014-01-07 | Lg Electronics Inc. | Method for QoS guarantees in a multilayer structure |
US20100135202A1 (en) * | 2007-09-18 | 2010-06-03 | Sung Duck Chun | Method for qos guarantees in a multilayer structure |
US9386477B2 (en) | 2007-09-18 | 2016-07-05 | Lg Electronics Inc. | Method for QoS guarantees in a multilayer structure |
US8345611B2 (en) | 2007-09-18 | 2013-01-01 | Lg Electronics Inc. | Method of transmitting a data block in a wireless communication system |
US20100208749A1 (en) * | 2007-09-18 | 2010-08-19 | Sung-Duck Chun | Effective Data Block Transmission Method Using Header Indicator |
US9084125B2 (en) | 2007-09-18 | 2015-07-14 | Lg Electronics Inc. | Method of performing polling procedure in a wireless communication system |
US8411583B2 (en) | 2007-09-18 | 2013-04-02 | Lg Electronics Inc. | Method of performing polling procedure in a wireless communication system |
US8588167B2 (en) | 2007-09-18 | 2013-11-19 | Lg Electronics Inc. | Method for QoS guarantees in a multilayer structure |
US9060238B2 (en) | 2007-09-18 | 2015-06-16 | Lg Electronics Inc. | Method for QoS guarantees in a multilayer structure |
US20100254480A1 (en) * | 2007-09-18 | 2010-10-07 | Sung Jun Park | Method of transmitting a data block in a wireless communication system |
US20100195617A1 (en) * | 2007-09-20 | 2010-08-05 | Sung Jun Park | method for handling correctly received but header compression failed packets |
US20090080380A1 (en) * | 2007-09-20 | 2009-03-26 | Lg Electronics Inc. | Method of effectively transmitting radio resource allocation request in mobile communication system |
US8687565B2 (en) | 2007-09-20 | 2014-04-01 | Lg Electronics Inc. | Method of effectively transmitting radio resource allocation request in mobile communication system |
US8400982B2 (en) | 2007-09-20 | 2013-03-19 | Lg Electronics Inc. | Method for handling correctly received but header compression failed packets |
US9609548B2 (en) | 2007-09-28 | 2017-03-28 | Interdigital Patent Holdings, Inc. | Method and apparatus for selecting a radio link control protocol data unit size |
US20100215013A1 (en) * | 2007-10-23 | 2010-08-26 | Sung-Duck Chun | Method of effectively transmitting identification information of terminal during the generation of data block |
US8351388B2 (en) | 2007-10-23 | 2013-01-08 | Lg Electronics Inc. | Method for transmitting data of common control channel |
US20100226325A1 (en) * | 2007-10-23 | 2010-09-09 | Sung-Duck Chun | Method for transmitting data of common control channel |
US8509167B2 (en) | 2007-10-23 | 2013-08-13 | Lg Electronics Inc. | Method of effectively transmitting identification information of terminal during the generation of data block |
US20100246382A1 (en) * | 2007-10-29 | 2010-09-30 | Lg Electronics Inc. | Method for reparing an error depending on a radio bearer type |
US8416678B2 (en) | 2007-10-29 | 2013-04-09 | Lg Electronics Inc. | Method for repairing an error depending on a radio bearer type |
US20110228746A1 (en) * | 2008-03-17 | 2011-09-22 | Sung-Duck Chun | Method for transmitting pdcp status report |
US20110019756A1 (en) * | 2008-03-17 | 2011-01-27 | Sung-Duck Chun | Method of transmitting rlc data |
US8355331B2 (en) | 2008-03-17 | 2013-01-15 | Lg Electronics Inc. | Method for transmitting PDCP status report |
US8958411B2 (en) | 2008-03-17 | 2015-02-17 | Lg Electronics Inc. | Method of transmitting RLC data |
US9655090B2 (en) | 2009-04-24 | 2017-05-16 | Interdigital Patent Holdings, Inc. | Method and apparatus for generating a radio link control protocol data unit for multi-carrier operation |
US10104579B1 (en) | 2017-04-13 | 2018-10-16 | Mediatek Inc. | User equipment and flexible protocol data unit packaging method thereof |
TWI653866B (en) | 2017-04-13 | 2019-03-11 | 聯發科技股份有限公司 | Flexible protocol data unit packaging method and user equipment thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1583298A3 (en) | 2005-10-12 |
US7295573B2 (en) | 2007-11-13 |
DE60116553T2 (en) | 2006-11-09 |
JP3625198B2 (en) | 2005-03-02 |
HK1070211A1 (en) | 2005-06-10 |
JP2002125004A (en) | 2002-04-26 |
ATE315862T1 (en) | 2006-02-15 |
EP1583298B1 (en) | 2008-09-17 |
CN1339903A (en) | 2002-03-13 |
EP1583298A2 (en) | 2005-10-05 |
EP1180878A2 (en) | 2002-02-20 |
EP1180878B1 (en) | 2006-01-11 |
KR100447162B1 (en) | 2004-09-04 |
CN1534943A (en) | 2004-10-06 |
ATE408947T1 (en) | 2008-10-15 |
US20080069108A1 (en) | 2008-03-20 |
DE60135882D1 (en) | 2008-10-30 |
US7668198B2 (en) | 2010-02-23 |
DE60116553D1 (en) | 2006-04-06 |
CN1145328C (en) | 2004-04-07 |
CN100544309C (en) | 2009-09-23 |
EP1180878A3 (en) | 2003-07-02 |
ES2256129T3 (en) | 2006-07-16 |
KR20020014939A (en) | 2002-02-27 |
US20020048281A1 (en) | 2002-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020024972A1 (en) | Method for inserting length indicator in protocol data unit of radio link control | |
US8325692B2 (en) | Radio communication system and method having a radio link control layer | |
US7768962B2 (en) | HSUPA HARQ process flushing | |
US8352820B2 (en) | ARQ and HARQ protocol data units and method of formation | |
US7400649B2 (en) | Method of generating protocol data units in split mode | |
EP1724977B1 (en) | Method and apparatus of data segmentation in a mobile communications system | |
US6788944B2 (en) | Length indicator for a protocol data unit in a wireless communications protocol | |
CN104093211B (en) | Buffer state reports system and method | |
US20060062323A1 (en) | System and method for polling a protocol data unit of a transmission buffer | |
KR970055840A (en) | Displayable message transmission and reconstruction system and wireless telecommunication system | |
EP1484862A3 (en) | Method for providing contention free quality of service to time constrained data | |
KR19980063450A (en) | Data communication device | |
CN111356178B (en) | Transmission method, transmitting side PDCP entity and receiving side PDCP entity | |
JP2001526870A (en) | Method and apparatus for continuously transmitting a data stream in packetized form | |
KR100404188B1 (en) | Genernating method for protocol data unit in radio link control | |
EP0849682A1 (en) | Data communications adapter | |
KR20020014971A (en) | Apparatus and method for determining paging alert mode in a mobile communication system | |
US20030227921A1 (en) | System and method for controlling data call traffic frame in mobile communication system | |
CN111130705A (en) | Method and equipment for sending data packet | |
CN115426684B (en) | Pre-hospital data receiving method | |
US6519661B1 (en) | Method for recording data in a telecommunications switching center | |
JPS61173553A (en) | Packet communication system | |
KR20040076171A (en) | Cross system handoff method and system between high rate packet data communicating mobile network and voice communicating mobile network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YI, SEUNG JUNE;PARK, JIN YOUNG;REEL/FRAME:011847/0747 Effective date: 20010516 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |