US20010023390A1 - Path planning, terrain avoidance and situation awareness system for general aviation - Google Patents
Path planning, terrain avoidance and situation awareness system for general aviation Download PDFInfo
- Publication number
- US20010023390A1 US20010023390A1 US09/859,407 US85940701A US2001023390A1 US 20010023390 A1 US20010023390 A1 US 20010023390A1 US 85940701 A US85940701 A US 85940701A US 2001023390 A1 US2001023390 A1 US 2001023390A1
- Authority
- US
- United States
- Prior art keywords
- terrain
- nodes
- elevation
- node
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/933—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
- G01S13/935—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft for terrain-avoidance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3863—Structures of map data
- G01C21/387—Organisation of map data, e.g. version management or database structures
- G01C21/3881—Tile-based structures
Definitions
- This invention generally relates to a system for reducing controlled flight into terrain accidents and in particular it relates to terrain data processing and algorithms in terrain awareness and warning systems of controlled flight into terrain accidents.
- Controlled Flight into Terrain (CFIT) warning uses the data provided by flight management computer, the Global Positioning System (GPS) receiver and other aircraft substances.
- GPS Global Positioning System
- the prior art of CFIT warning predicts a three-dimensional flight path based upon a curve-fit extrapolation of the most recent position and velocity data received. This predicted flight path is then compared with the internal terrain map of the immediate area and an assessment of the potential threat of aircraft collision with terrain is computed.
- the type of systems described above could look up to 120 seconds in advance. This is so called “time to clear” in contrast to “time before impact” warning, and also “terrain avoidance” in contrast to terrain “awareness”.
- FIG. 1 shows schematic system diagram of GPWS, which is from DASSAULT ELECTRONIQUE GCAS.
- the terrain database is the system's core. Looking-ahead algorithms compare the projected future position of the aircraft with this database and warnings are issued on this basis.
- the using of DTED allows the systems to display terrain in proximity to the aircraft. During the flight, the peaks and terrain below the aircraft in DTED can also be displayed for situation awareness to the pilot. Many of looking-ahead warning such as flight profile or flight path to be in conflict with the terrain can be given in advanced alert. During emergency descents in mountainous area and during en-route avoidance of inclement weather, looking-ahead warning further helps to prevent any situation that could lead to a CFIT.
- terrain database occupies large amounts of memory. If the terrain is mapped at 100-meter intervals over a region 10000 Km by 10000 Km, there are 10 10 grid points. Clearly, the computations inherent in continuously accessing 10 10 grid points are daunting and it is necessary to reduce, or compress this information. Besides, many of navigation functions can be done with knowledge of terrain, such as allowing for optimum flight plan or emergency change of route in real time situation, which could be restrained by the number of data retrieving and the cost of computation when complexities of algorithms increased. Another major drawback of DTED file is that it only provides elevation data. Without further processing or aids from other formats of terrain data, such as features or vector representations, DTED gives no geometrical relationship among data elements.
- DTED Digital Terrain Elevation Data
- a DTED file is based on a variant of quad-tree representation of spatial data structure.
- Each element of a DTED file are encoded in a Morton numbering sequence with respect to its location in the grid file, a scaled elevation data and coverage of homogeneous (equal elevation) area as features.
- a DTED is organized as a set of integer numbers with ascending sequence.
- Each integer represents a node in which planar location, scaled elevation and coverage are interlaced to a set of bits position to form an integer.
- the encoded list is defined as terrain Oct-tree model. Navigation functions not only make reference on terrain Oct-tree for elevation data, but also perform processing and operation on it.
- the navigation space is transferred from DTED array to its encoded integer list.
- a number of navigation functions are performed on terrain Oct-tree based navigation space.
- a preferred embodiment of dynamic dangerous zone defined by flight altitude is demonstrated.
- a set of nodes of terrain height over a minimum flight altitude are located and aggregated.
- Algorithms such as collision check, mountainous area boundary and region growing technique are developed as basic operations for this terrain model.
- Yet another preferred embodiment with visibility graph approach for dynamic route selection has been adopted to reduce the real-time computational requirements. This approach reduces the size of the search space by establishing a partial visibility graph of terrain and avoids details of the terrain, which do not influence the choice of flight path, independent of the size of the navigation space.
- CFIT warning functions of aircraft navigation which become feasible once an aircraft flight path and the topology of a region of terrain can be readily determined. Furthermore, it implies access to a database holding the terrain data in order to initiate the geometric computations.
- a series of CFIT warning functions using terrain data as reference are easily implemented. The functions including Ground Proximity Warning, Obstacle Cueing, Terrain Masking, Perspective Images of Terrain, Passive Ranging, Real-time Route Selection and Route Planning, Weather Display Overlaying, and Waypoint Overlaying.
- Prior art planning approaches use pre-defined obstacle models. Moreover, the number of data retrieving DTED and the cost of computation are in the negative. In present invention, the dangerous zones dynamically vary during the execution of a flight plan. Besides, a layer of Oct-tree terrain is used to facilitate the on-line operation capability.
- FIG. 1 shows a schematic system diagram of a prior art of GPWS.
- FIG. 2 shows bit interleaving of locational code and 2-D, 3-D projection.
- FIGS. 3 ( a )- 3 ( b ) show an example of navigation space with danger nodes.
- FIG. 4 shows possible dangerous zones with respect to heading.
- FIGS. 5 ( a )- 5 ( b ) show an example of using binary search of danger node list to determine the boundary nodes during dangerous zone expansion (dangerous zone refer to FIG. 3).
- FIG. 6 shows a combination of boundary type and waypoint position.
- FIG. 7 shows dangerous zone expansion and waypoints derivation.
- FIGS. 8 ( a )- 8 ( d ) show dangerous zones with respect to different start and goal point.
- FIG. 9 shows a visibility graph and its tree structure.
- FIG. 10 shows an example of embodiment of real time flight path planning.
- FIG. 11 shows an example of embodiment of obstacles avoidance.
- FIG. 12 shows an example of embodiment of perspective image generating.
- a quad-tree can represent a two dimensional region (in a 2n ⁇ 2n binary array format) by recursively sub-dividing the array into quadrants. If the quadrant consists of a mixture of 1s or 0s, it is further sub-divided into quadrants and this process is repeated 10 until a quadrant consists only of 1s or 0s (termed leaf node). In practice large region of 1s (or 0s) are represented by a single quadrant or node of the tree. Similarly, three-dimensional objects can be represented by Oct-trees where a 2 n ⁇ 2 n ⁇ 2 n array is sub-divided into octants. If the elements of an octant are common, the Oct-tree terminates; otherwise eight further sub-octants are generated to represent the octant in more detail.
- a variant of Oct-trees structure is adopted.
- a fourth parameter S is added to represent the size of a leaf node.
- a single 3-D locational code can represent an area of terrain surface by its three-dimensional co-ordinates and size information.
- the method of mapping a peak point (I, J, K) of terrain surface to the locational code of a node is formed by bit interleaving the triplet (I, J, K) and S as a hexadecimal value. Such that the S bit precedes the K bit, the K bit precedes the J bit, and the J bit precedes the I bit at each position.
- the locational code is one of the set of digits ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, C ⁇ .
- the times of digit ‘8’ or ‘C’ appears in the location code gives the size information of a merged node.
- the four components of a node i.e., I, J, K, S
- Both the encoding and decoding process can be performed by the use of bit-wise operations under this bit interleaving scheme.
- the addressing schemes used in terrain Oct-trees are Morton numbering sequence, which are formed by bit interleaving as previously described.
- the 2-D locational code can be obtained by the use of modulo-4 operations to the I, J bits of the 3-D locational code, where the K bits are assigned to 0, and the S bits are left unchanged.
- the projection of a node ⁇ 00001473> 16 on the IJ plane is ⁇ 00001033> 16 ; for the merged node ⁇ 0000148c> 16 the projection code is ⁇ 00001088> 16 .
- a search space is generated consisting of all the possible paths that will avoid the obstacles between a start point and a goal point.
- the second phase is to search for a path in which satisfies specific constraints.
- the flight path planning algorithm described in the present invention is performed on a terrain Oct-tree representation of the navigation space and without the use of any other data formats to represent terrain features (linear or polygonal features). Since the set of obstacles dynamically change with flight altitude, a static polygonal representation of obstacles is not suitable for real-time dynamic flight path planning.
- the terrain Oct-tree is organized as a linear list in which each element represents a leaf node of the tree. Each node is represented as a single integer and represents a homogeneous set of elements of the grid file. The use of an Oct-tree simplifies the extraction of obstacles from a terrain database.
- An Oct-tree terrain model contains both two-dimensional (2-D) and three- dimensional (3-D) information.
- the method of tree encoding allows straightforward one-to-one projections between 2-D quad-tree space and the corresponding node in 3-D Oct-tree space. This allows a 3-D flight path to be computed in quad-tree space, considerably simplifying the computation task.
- the use of 2-D representations also simplifies such tasks as the location of neighboring points, determination of a path segment between two points and transformations between geographic co-ordinates and node addresses.
- the nodes in a terrain Oct-tree with scaled elevation values above a flight altitude are known as “danger nodes”, in the sense that an aircraft cannot safely enter a region of the terrain occupied by these nodes.
- the danger node list is a sub-set of the quad-tree representing the nodes of the navigation space. However, the list of danger nodes does not give any explicit topographic information (for example, connectivity or boundary conditions) in the navigation space.
- a danger area containing 26 nodes is shown, organized as an ordered list where it is not clear if node 1 or node 26 belong to the same connected region.
- the danger nodes related to the current direction are termed obstacle nodes and are organized as a set of locational codes, which represent the coverage of dangerous zones in the aircraft navigation space.
- the organizing of obstacles involves the following steps:
- a list of danger nodes is extracted from the terrain Oct-tree according to an elevation threshold value.
- the terrain is organized as bands or layers with a suitable vertical scale factor K, for example, 20 m bands.
- K vertical scale factor
- Each node of the Oct-tree is examined to see if its K value (embedded in the locational code) exceeds the threshold. Nodes with K value less than the threshold can be ignored.
- the resultant list contains all the potential danger nodes in the navigation space.
- the obstacle nodes list is obtained by collision check (or intersection detection) of the direct path which lies between a given start point (S) and a goal point (G).
- the direct path is a line between points S and G to determine the Oct-tree nodes on a straight line between the points S and G.
- Each point along the line, beginning at point S, is checked against the list of danger leaf nodes. If a point on the line matches any danger node, then the danger leaf node is stored in a list for subsequent expansion of the dangerous zone.
- more than one component of a point along a direct path will intersect with the same obstacle node.
- a connected dangerous zone is grown to locate the vertices of the region as waypoints.
- a dangerous zone expansion process involves finding the obstacle leaf nodes adjacent to the leaf node being expanded. The major purpose of this expansion process is to obtain a set of waypoints corresponding to the dangerous zone in navigation space; these-waypoints are subsequently used as possible flight path deviations to avoid a collision with the terrain.
- a neighbor node If a neighbor node is still not found after this process, it indicates that either some smaller size neighboring nodes exist or the node is a boundary node. If the node is not present in the node list, it may be contained in a merged node in an upper level. The node with the projection code which is used in the last comparison loop of a binary search procedure actually covers or is covered by the query node. This feature can be exploited to determine if any quadrants of the same size-neighboring node exist. If the neighboring node of the node under test covers the locational code, which is used in the last comparison loop, a further search is necessary, otherwise the current expanded node is a boundary. For example, the expansion process of node 21 in FIG. 3 encounters a boundary in the ‘south’ direction, connects obstacle nodes in the north and east directions, and needs further processing to the next level in the ‘west’ direction as shown in FIG. 5.
- the boundary type of an obstacle is encoded using the additive codes 1 , 2 , 4 and 8 correspond to the sides on the northern, eastern, southern and western boundaries, respectively. Zero indicates that a node that does not have any side that is on the boundary.
- FIG. 6 shows a dangerous zone and the potential positions of waypoints.
- a node with a boundary code of 13 is a vertex node. It has two waypoints in the NW and SW diagonal direction. A waypoint is represented by the locational code of the northwest corner of its neighbors in the diagonal direction. It is also necessary to check that a waypoint is not a member of the list of danger nodes and does not already exist in the waypoints list, before it can be appended to the list of waypoints.
- Two further approaches can be applied to reduce the size of expansion node or to use a coarser level node approximation.
- the first approach is implemented when more detailed information is required. It is achieved by subdividing the currently expanded node and expanding each sub-quadrant individually. In this case, the currently expanded node is treated as a boundary node and its boundary type is updated. This process is performed recursively until either a neighboring node is found or the process reaches a boundary node.
- the second method the hierarchical features of a terrain Oct-tree are exploited.
- the locational code of an equal size neighboring node is assigned as a boundary node and the expansion process is terminated. This is an approximation process that ‘truncates’ nodes below the current expanded resolution level.
- the boundary code of a currently expanded node is updated as described above.
- FIG. 7 a shows the expansion of a dangerous zone.
- the boundary type of a boundary node is obtained in order to determine if it is a vertex of a dangerous zone. If it is a vertex node, a waypoint is then created in the ‘diagonal direction’ adjacent to the dangerous zone, as shown in FIG. 7 b.
- FIG. 8 a - d shows a gaming area with danger nodes and corresponding regions of obstacles along the different direct paths between the start and goals nodes.
- the actual topography information of the dangerous zones is extracted from the specific terrain Oct-tree and is transformed into a set of waypoints. These waypoints are then used to construct a visibility graph in the navigation space, to determine the optimal path.
- the construction of a visibility graph is based on a set of waypoints obtained during the acquisition stage. This set of waypoints provides the implicit geographic information of the dangerous zones in navigation space.
- the algorithm consists of considering all pairs of points (W from , W to ), where W from and W to are start, goal, or intermediate waypoints of dangerous zones. To determine whether W from and W to are the endpoints of a valid flight path segment, ‘collisions’ are checked against dangerous zones of a straight line W from and W to . The nodes between W from and W to are connected by a link in the visibility graph if, and only if, no intersection occurs in the segment joining the two points.
- the criteria for collision checking is similar to the one used to check for collisions of direct paths between start and goal points.
- the test of a pair of waypoints is terminated as soon as a collision is detected, otherwise the test proceeds until W to is reached. After all the possible combination of waypoint pairs are tested, the result is a visibility graph where the waypoints are the nodes of a graph and the path segments formed by the waypoints are the arcs of a graph.
- FIG. 9 several paths exist which are composed of straight lines joining the start point to the goal point via a sequence of waypoints.
- the visibility graph approach used is similar to the methods used in most paths planning problems where a visibility graph of the obstacle space is constructed from a list of polygonal obstacles. However, the following considerations are specific to terrain Oct-tree based flight path planning algorithm:
- the dangerous zones are obtained by gathering the obstacle nodes along an ideal direct path between the start and goal points and the possible obstacles are limited to those nearby the direct path (or current direction). This approach implies that the irrelevant danger nodes in the navigation space can be ignored and the number of waypoints is accordingly minimized. Because the waypoints only represent the subset of obstacles of the danger areas, this process provides a partial visibility graph of the total navigation space.
- FIG. 8 a - d shows an example of partial configuration and its visibility graph.
- the visibility graph is represented in a form of a list of flight path segments as described in the previous section.
- the path planning problem has been transformed into the discrete problem of searching a visibility graph between a start node and a goal node.
- FIG. 9 shows a visibility graph representing path segments of a navigation space. There are seven nodes in the graph including the start and goal points. It is reconstructed as a tree structure where the goal node G and other nodes appear more than once in the tree to illustrate its construction.
- Several techniques can be used for searching for path in a graph, including such as depth-first, breadth-first and heuristic search.
- a heuristic search method constrained to minimize the number of connections has been incorporated in the flight path planning algorithm described in preferred embodiment.
- a path segment is chosen that is as distant as possible from the current position, in the expectation that it will be closer to the destination.
- the method of minimizing the length of the flight path entails an opposite approach to the search to minimize the connections. Cost functions are defined to evaluate the effect of adding waypoints to determine which set of waypoints should be expanded in the path planning routine.
- Finding a truly optimal path would require an exhaustive search.
- an optimal path may not be essential to real-time airborne requirements because of the possible degradation in performance to extract the path.
- the computation load of an exhaustive approach is prohibitive, and a more efficient heuristic search methods was adopted, based on a variant of Dijkstra's algorithm, which is also known as the A* method.
- the terrain database is accessed for every flight plan change in order to re-form the visibility graph, based on the current obstacle space.
- This re-planning of a new flight path must be completed within a few seconds for real-time navigation, where this time interval includes the flight path planning computation and also the construction of the path searching space.
- a pyramid of quad-trees is used to represent the navigation space and danger nodes.
- a layer k of a pyramid is obtained by applying a maximum value function on a 2 ⁇ 2 window at layer k+1.
- the path may be obscured as a result of ‘rounding’ the tree nodes and consequently, no path may be found at that layer.
- the determination of the appropriate processing level can be accomplished by first obtaining the waypoints at a pre-defined level, estimating the size of visibility graph and then determining if it is necessary to switch to another layer for path planning.
- FIG. 10 demonstrates a real time simulation by continuously changing the goal point during a flight mission, in which the initial start point is (255,101) and the goal point is (96,251). Airspeed of 400 m/sec is predefined and the flight altitude and operation layer is set interactively by the user. During the flight, a new goal point (241,242) is given for new flight path planning; the algorithm predicts the new start point as (204,148) according to a 5-second constraint. The path is found in the same layer and flight altitude as shown in FIG. 10. Different baselines, scaling factors, time constraints and flight altitude are also applied.
- the DTED source file is 1:50000 Scale Height Data termed Digital Terrain Model Data (DTM) provided by the Center for Space and Remote Sensing Research, National Central University, Taiwan ROC.
- DTM Digital Terrain Model Data
- the DTM file consists of height values at each intersection of a 40 meter horizontal grid, with values mathematically interpolated from the contours on the SPOT Landmass maps containing 256 K height values for a 20.48 km square DTM ‘tile’.
- the source file can be as large as 2 16 ⁇ 2 16 grid points, but has been restricted to 2 9 ⁇ 2 9 grid points to simplify the encoding process.
- the path planning algorithm can be performed at a coarser layer of a pyramid to meet real time constraints.
- the terrain elevation data is continuous varying and the terrain Oct-tree representation is terrain dependent, thus the location and connectivity of the obstacles with respect to a given flight altitude are unpredictable.
- the actual operation layer of the path planning process is determined by the minimum flight altitude, which in turn determines the number of waypoints. A low flight altitude will generate a large number of danger nodes and obstacle nodes, thus a coarser operational layer may be adopted to keep the number of waypoints below a predefined margin for a specific operational environment.
- the real time application depends on the performance of the computing system and the aircraft speed, the real time constraint, the allowable times for the planning and the predefined layer of process are changeable.
- the present invention not only provides warnings in accordance with surrounding terrain, but also gives the information of terrain alone flight path ahead, which is obtained from path planing function.
- the warning function of GPWS and GCAS can be easily coupled.
- Other types of hazards coverage area such as obstacles, peaks, weather conditions (thunderstorms, windshear or any meteorological situations that appear in airspace) can also be represented as a set of locational codes overlaying terrain map and performed in the same way as described above.
- FIG. 11 shows an example of embodiment.
- the generating of terrain map and computing of line-of-sight terrain masking of the dangerous zone, peaks, and obstacles with respect to a selected flight altitude and heading use the same locational code representations.
- An accessing algorithm is used to retrieve parameters of nodes in terrain model.
- the I, J, K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band; S representing the coverage area of said node to form said masking area.
- the subset of nodes representing dangerous zone, peaks, and obstacles is obtained from collision checking and region finding with homogeneous nodes.
- Method of generating perspective images of terrain model including the retrieving and accessing data from terrain model for generating images is provided.
- An accessing algorithm is used to retrieve parameters of nodes in terrain model.
- the I, J, K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band, S representing coverage area of a node to form said perspective images of terrain.
- the terrain model is used directly as input data without accessing the original DTED file.
- FIG. 12 shows an example of embodiment of perspective images.
- Prior art planning approaches use pre-defined obstacle models.
- the dangerous zone obstacle area varies during the execution of a flight plan whenever the flight altitude is changed.
- the number of data retrieving and the cost of computation are in the negative.
- Optimum flight plan or emergency change of route in real time situation could be restrained by the number of data retrieving and the cost of computation when complexities of algorithms increased in standard DTED based system.
- Oct-tree hierarchical decomposition structure avoids excessive detail of terrain in path planning phase.
- the path planning algorithm can operate at any layer of the Oct-tree terrain.
- the path planning approach reduces the size of the search space by establishing a partial visibility graph of the navigation space which do not influence the choice of path and avoids details of the terrain.
- the Oct-tree terrain and visibility graph approach described in present invention has been adapted to meet the real-time computational requirements.
- the real-time flight path planing algorithm can be embedded in Flight Management Computer (FMC) for flight control.
- FMC Flight Management Computer
- the flight path and terrain profile obtained from real-time flight path planning together with encoded terrain database give the aircraft a forward looking capability particularly in general aviation when flight in mountainous area and urban area with buildings and man made obstacles. Accordingly, this capability can be easily extend to Controlled Flight Into Terrain Warning, Ground Proximity Warning, and Obstacles Avoidance.
- terrain awareness and display could be one of the features coupled with CDTI.
- the terrain model can be stand alone or parallel with the prior art of DTED database, even to replace the existing DTED type database.
- DTED digital versatile disks
- the terrain model can be stand alone or parallel with the prior art of DTED database, even to replace the existing DTED type database.
- mission planning terrain avoidance, terrain following, terrain matching, radar and threat line-of-sight masking, intervisibility shading are possible implementations.
- non-aviation usage such as seafloor representation, sonar coverage
- the estimation of GSM base station coverage can also be implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
A number of navigation functions are performed on terrain navigation space. A preferred embodiment of dynamic dangerous zone defined by flight altitude is demonstrated. In a preferred embodiment, a set of nodes of terrain height over a minimum flight altitude are located and aggregated. Algorithms such as collision check, mountainous area boundary and region growing technique are developed as basic operations for this terrain model. Yet another preferred embodiment with visibility graph approach for dynamic route selection has been adapted to reduce the real-time computational requirements. This approach reduces the size of the search space by establishing a partial visibility graph of terrain and avoids details of the terrain, which do not influence the choice of flight path, independent of the size of the navigation space. By exploiting the multiple and variable resolution properties of Oct-tree terrain models, a series of CFIT warning functions using terrain data as reference are implemented efficiently with existence terrain data resource on board.
Description
- 1. Field of the Invention
- This invention generally relates to a system for reducing controlled flight into terrain accidents and in particular it relates to terrain data processing and algorithms in terrain awareness and warning systems of controlled flight into terrain accidents.
- 2. Brief Description of the Prior Art
- Controlled Flight into Terrain (CFIT) warning uses the data provided by flight management computer, the Global Positioning System (GPS) receiver and other aircraft substances. The prior art of CFIT warning predicts a three-dimensional flight path based upon a curve-fit extrapolation of the most recent position and velocity data received. This predicted flight path is then compared with the internal terrain map of the immediate area and an assessment of the potential threat of aircraft collision with terrain is computed. The type of systems described above could look up to 120 seconds in advance. This is so called “time to clear” in contrast to “time before impact” warning, and also “terrain avoidance” in contrast to terrain “awareness”.
- The effort to reduce CFIT accidents by U.S. Airlines can be traced back to 1974. The prior art of standard Ground Proximity Warning System (GPWS) use radio altimeter data to provide an audible warning if an aircraft has insufficient terrain clearance. Flying into precipitous terrain can result in late warnings since the standard GPWS depends upon downward looking radio altimeter to detect rising terrain.
- “Enhanced” version of GPWS-EGPWS, which is available from AlliedSignal, and Ground Collision Avoidance System (GCAS), which is available from Sextant Avionique, graphically depict terrain surrounding the aircraft's flight path on a cockpit display and provide earlier warning. Both systems are built around a three-dimensional terrain database and implement a true predictive look-ahead capability that is based on aircraft climb performance. The technology has three parts: the advent of GPS and other highly accurate navigation system to provide precise positioning with updates in seconds; computer technology with greater speed and memory; and accurate, sophisticated worldwide terrain databases including a Digital Terrain Elevation Database (DTED) of the world. FIG. 1 shows schematic system diagram of GPWS, which is from DASSAULT ELECTRONIQUE GCAS.
- In EGPWS and GCAS, the terrain database is the system's core. Looking-ahead algorithms compare the projected future position of the aircraft with this database and warnings are issued on this basis. The using of DTED allows the systems to display terrain in proximity to the aircraft. During the flight, the peaks and terrain below the aircraft in DTED can also be displayed for situation awareness to the pilot. Many of looking-ahead warning such as flight profile or flight path to be in conflict with the terrain can be given in advanced alert. During emergency descents in mountainous area and during en-route avoidance of inclement weather, looking-ahead warning further helps to prevent any situation that could lead to a CFIT.
- However, terrain database occupies large amounts of memory. If the terrain is mapped at 100-meter intervals over a region 10000 Km by 10000 Km, there are 1010 grid points. Clearly, the computations inherent in continuously accessing 1010 grid points are formidable and it is necessary to reduce, or compress this information. Besides, many of navigation functions can be done with knowledge of terrain, such as allowing for optimum flight plan or emergency change of route in real time situation, which could be restrained by the number of data retrieving and the cost of computation when complexities of algorithms increased. Another major drawback of DTED file is that it only provides elevation data. Without further processing or aids from other formats of terrain data, such as features or vector representations, DTED gives no geometrical relationship among data elements.
- There are many applications, particularly in flight management, where the complete DTED database must be accessed to determine or revise the flight waypoints. The terrain awareness warning and navigation safety related issues described here are performed on an encoded terrain navigation space. The encoding of grid file of Digital Terrain Elevation Data (DTED) is based on a variant of quad-tree representation of spatial data structure. Each element of a DTED file are encoded in a Morton numbering sequence with respect to its location in the grid file, a scaled elevation data and coverage of homogeneous (equal elevation) area as features. Under this data structure, a DTED is organized as a set of integer numbers with ascending sequence. Each integer represents a node in which planar location, scaled elevation and coverage are interlaced to a set of bits position to form an integer. The encoded list is defined as terrain Oct-tree model. Navigation functions not only make reference on terrain Oct-tree for elevation data, but also perform processing and operation on it. The navigation space is transferred from DTED array to its encoded integer list.
- A number of navigation functions are performed on terrain Oct-tree based navigation space. A preferred embodiment of dynamic dangerous zone defined by flight altitude is demonstrated. In a preferred embodiment, a set of nodes of terrain height over a minimum flight altitude are located and aggregated. Algorithms such as collision check, mountainous area boundary and region growing technique are developed as basic operations for this terrain model. Yet another preferred embodiment with visibility graph approach for dynamic route selection has been adopted to reduce the real-time computational requirements. This approach reduces the size of the search space by establishing a partial visibility graph of terrain and avoids details of the terrain, which do not influence the choice of flight path, independent of the size of the navigation space.
- Several forms of CFIT warning functions of aircraft navigation which become feasible once an aircraft flight path and the topology of a region of terrain can be readily determined. Furthermore, it implies access to a database holding the terrain data in order to initiate the geometric computations. By exploiting the multiple and variable resolution properties of Oct-tree terrain models, a series of CFIT warning functions using terrain data as reference are easily implemented. The functions including Ground Proximity Warning, Obstacle Cueing, Terrain Masking, Perspective Images of Terrain, Passive Ranging, Real-time Route Selection and Route Planning, Weather Display Overlaying, and Waypoint Overlaying.
- Prior art planning approaches use pre-defined obstacle models. Moreover, the number of data retrieving DTED and the cost of computation are in the negative. In present invention, the dangerous zones dynamically vary during the execution of a flight plan. Besides, a layer of Oct-tree terrain is used to facilitate the on-line operation capability.
- Other objects and advantages of the present invention will become apparent from the detailed description to follow taken in conjunction with the appended drawings.
- In the drawings:
- FIG. 1 shows a schematic system diagram of a prior art of GPWS.
- FIG. 2 shows bit interleaving of locational code and 2-D, 3-D projection.
- FIGS.3(a)-3(b) show an example of navigation space with danger nodes.
- FIG. 4 shows possible dangerous zones with respect to heading.
- FIGS.5(a)-5(b) show an example of using binary search of danger node list to determine the boundary nodes during dangerous zone expansion (dangerous zone refer to FIG. 3).
- FIG. 6 shows a combination of boundary type and waypoint position.
- FIG. 7 shows dangerous zone expansion and waypoints derivation.
- FIGS.8(a)-8(d) show dangerous zones with respect to different start and goal point.
- FIG. 9 shows a visibility graph and its tree structure.
- FIG. 10 shows an example of embodiment of real time flight path planning.
- FIG. 11 shows an example of embodiment of obstacles avoidance.
- FIG. 12 shows an example of embodiment of perspective image generating.
- 1. Terrain Model
- In the image processing field, a quad-tree can represent a two dimensional region (in a 2n×2n binary array format) by recursively sub-dividing the array into quadrants. If the quadrant consists of a mixture of 1s or 0s, it is further sub-divided into quadrants and this process is repeated10 until a quadrant consists only of 1s or 0s (termed leaf node). In practice large region of 1s (or 0s) are represented by a single quadrant or node of the tree. Similarly, three-dimensional objects can be represented by Oct-trees where a 2n×2n×2n array is sub-divided into octants. If the elements of an octant are common, the Oct-tree terminates; otherwise eight further sub-octants are generated to represent the octant in more detail.
- In the present preferred embodiment, a variant of Oct-trees structure is adopted. A fourth parameter S is added to represent the size of a leaf node. A single 3-D locational code can represent an area of terrain surface by its three-dimensional co-ordinates and size information. The method of mapping a peak point (I, J, K) of terrain surface to the locational code of a node is formed by bit interleaving the triplet (I, J, K) and S as a hexadecimal value. Such that the S bit precedes the K bit, the K bit precedes the J bit, and the J bit precedes the I bit at each position. After interleaving (I, J, K) and S, the locational code is one of the set of digits {0, 1, 2, 3, 4, 5, 6, 7, 8, C}. The times of digit ‘8’ or ‘C’ appears in the location code gives the size information of a merged node.
- In the example of FIG. 2, the combination of the 4n−1th bits (i.e., the combination of the first bit of each digit) of a node is equal to the binary representation of value I. This is repeated for the (4n−1+1)th bits to J, the (4n−1+2)th bits to K and the (4n−1+3)th bits to form the size value S respectively, where n (n=1,2 . . . ) is the resolution parameter. Although the four components of a node (i.e., I, J, K, S) are totally independent, they are represented by a single value. Both the encoding and decoding process can be performed by the use of bit-wise operations under this bit interleaving scheme.
- The addressing schemes used in terrain Oct-trees are Morton numbering sequence, which are formed by bit interleaving as previously described. The 2-D locational code can be obtained by the use of modulo-4 operations to the I, J bits of the 3-D locational code, where the K bits are assigned to 0, and the S bits are left unchanged. In FIG. 2, the projection of a node <00001473>16 on the IJ plane is <00001033>16; for the merged node <0000148c>16 the projection code is <00001088>16.
- 2. Modeling of the Navigation Space
- In general, existing methods of path planning consist of two phases. In the first phase, a search space is generated consisting of all the possible paths that will avoid the obstacles between a start point and a goal point. Once the search space is created, the second phase is to search for a path in which satisfies specific constraints. These approaches are typically based on the assumption that the navigation space (obstacles, terrain, and threat) is static and is fully known a priori.
- Many prior art flight path planning algorithms exploit knowledge of the ‘cost’ of paths in the navigation space to extract an optimal path by minimizing some objective function which defines the ‘cost’ of a path. These algorithms are variants of the ‘shortest path problem’. A common strategy is the pre-processing of the search space to reduce the real-time computation cost. The pre-processing approaches can be classified in two categories, one which organizes the graph of the search space according to the terrain altitude and the other which embeds pre-computed cost values in a graph of the search space. The flight path planning algorithm described in this invention is based on constraints of flight altitude, flight distance and time to goal. Although the aircraft knows the navigation space, the obstacles vary with operational constraints and are therefore explored in real-time, during the mission.
- The flight path planning algorithm described in the present invention is performed on a terrain Oct-tree representation of the navigation space and without the use of any other data formats to represent terrain features (linear or polygonal features). Since the set of obstacles dynamically change with flight altitude, a static polygonal representation of obstacles is not suitable for real-time dynamic flight path planning. The terrain Oct-tree is organized as a linear list in which each element represents a leaf node of the tree. Each node is represented as a single integer and represents a homogeneous set of elements of the grid file. The use of an Oct-tree simplifies the extraction of obstacles from a terrain database.
- An Oct-tree terrain model contains both two-dimensional (2-D) and three- dimensional (3-D) information. However, the method of tree encoding allows straightforward one-to-one projections between 2-D quad-tree space and the corresponding node in 3-D Oct-tree space. This allows a 3-D flight path to be computed in quad-tree space, considerably simplifying the computation task. The use of 2-D representations also simplifies such tasks as the location of neighboring points, determination of a path segment between two points and transformations between geographic co-ordinates and node addresses.
- 3. Core Path Planning Algorithm
- 3.1 The Extraction of Obstacles
- 3.1.1 Exploring the Obstacles
- The nodes in a terrain Oct-tree with scaled elevation values above a flight altitude are known as “danger nodes”, in the sense that an aircraft cannot safely enter a region of the terrain occupied by these nodes. The danger node list is a sub-set of the quad-tree representing the nodes of the navigation space. However, the list of danger nodes does not give any explicit topographic information (for example, connectivity or boundary conditions) in the navigation space. In FIG. 3, a danger area containing 26 nodes is shown, organized as an ordered list where it is not clear if
node 1 or node 26 belong to the same connected region. Moreover, although the danger nodes are ‘scattered’ throughout the navigation space, only a few of the danger nodes will jeopardize a specific flight path. For instance, in FIG. 4, there are five connected danger regions but, for a path togoal 1, the possible obstacles are limited to regions A and C. - The danger nodes related to the current direction are termed obstacle nodes and are organized as a set of locational codes, which represent the coverage of dangerous zones in the aircraft navigation space. The organizing of obstacles involves the following steps:
- (1) A list of danger nodes is extracted from the terrain Oct-tree according to an elevation threshold value. The terrain is organized as bands or layers with a suitable vertical scale factor K, for example, 20 m bands. Each node of the Oct-tree is examined to see if its K value (embedded in the locational code) exceeds the threshold. Nodes with K value less than the threshold can be ignored. The resultant list contains all the potential danger nodes in the navigation space.
- (2) Using a ‘generate and test’ paradigm, the obstacle nodes list is obtained by collision check (or intersection detection) of the direct path which lies between a given start point (S) and a goal point (G). The direct path is a line between points S and G to determine the Oct-tree nodes on a straight line between the points S and G. Each point along the line, beginning at point S, is checked against the list of danger leaf nodes. If a point on the line matches any danger node, then the danger leaf node is stored in a list for subsequent expansion of the dangerous zone. Sometimes, more than one component of a point along a direct path will intersect with the same obstacle node.
- (3) A connected dangerous zone is grown to locate the vertices of the region as waypoints. A dangerous zone expansion process involves finding the obstacle leaf nodes adjacent to the leaf node being expanded. The major purpose of this expansion process is to obtain a set of waypoints corresponding to the dangerous zone in navigation space; these-waypoints are subsequently used as possible flight path deviations to avoid a collision with the terrain.
- 3.1.2 Dangerous Zone Expansion
- Computing the locational codes of its neighbors in four main directions expands the obstacle leaf node. This operation is performed recursively until a boundary node is reached which does not have any neighboring nodes in the list of danger leaf nodes. The size of a neighboring node may be different from the size of a current ‘expanding’ node, where the size of a 2d by 2d node is 2d and the level of the node is defined as d. The danger node list is searched for a neighbor of equal size. If an equal size neighbor is not found in the list, the search is repeated for a neighbor with a larger size and this process repeats until a neighbor is found or the tree level next to the root is reached.
- If a neighbor node is still not found after this process, it indicates that either some smaller size neighboring nodes exist or the node is a boundary node. If the node is not present in the node list, it may be contained in a merged node in an upper level. The node with the projection code which is used in the last comparison loop of a binary search procedure actually covers or is covered by the query node. This feature can be exploited to determine if any quadrants of the same size-neighboring node exist. If the neighboring node of the node under test covers the locational code, which is used in the last comparison loop, a further search is necessary, otherwise the current expanded node is a boundary. For example, the expansion process of
node 21 in FIG. 3 encounters a boundary in the ‘south’ direction, connects obstacle nodes in the north and east directions, and needs further processing to the next level in the ‘west’ direction as shown in FIG. 5. - The boundary type of an obstacle is encoded using the
additive codes - Two further approaches can be applied to reduce the size of expansion node or to use a coarser level node approximation. The first approach is implemented when more detailed information is required. It is achieved by subdividing the currently expanded node and expanding each sub-quadrant individually. In this case, the currently expanded node is treated as a boundary node and its boundary type is updated. This process is performed recursively until either a neighboring node is found or the process reaches a boundary node. In the second method, the hierarchical features of a terrain Oct-tree are exploited. In order to reduce the number of vertices (and hence reduce the size of the visibility graph), rather than the size of the currently expanded node, the locational code of an equal size neighboring node is assigned as a boundary node and the expansion process is terminated. This is an approximation process that ‘truncates’ nodes below the current expanded resolution level. The boundary code of a currently expanded node is updated as described above.
- 3.1.3 Waypoint Location
- Whenever a neighbor is located, it indicates that further expansion is needed in that current direction, otherwise the node has encountered a boundary node. After all the four main directions are examined, the boundary type of an obstacle node is obtained. From the boundary type, it is straightforward to determine if the node is an obstacle node. The expansion process proceeds recursively from the neighboring nodes and an obstacle nodes list is used to refer to nodes which have been expanded, in order to avoid examining the same obstacle nodes repeatedly. FIG. 7a shows the expansion of a dangerous zone. During this expansion process, the boundary type of a boundary node is obtained in order to determine if it is a vertex of a dangerous zone. If it is a vertex node, a waypoint is then created in the ‘diagonal direction’ adjacent to the dangerous zone, as shown in FIG. 7b.
- After the expansion process has been applied to all the members of the SEED list, the dangerous zones are obtained along a direct flight path between the start and goal point, which is dependent on the overall direction of the flight path. FIG. 8a-d shows a gaming area with danger nodes and corresponding regions of obstacles along the different direct paths between the start and goals nodes. The actual topography information of the dangerous zones is extracted from the specific terrain Oct-tree and is transformed into a set of waypoints. These waypoints are then used to construct a visibility graph in the navigation space, to determine the optimal path.
- 3.2 Transformation of Navigation Space
- The construction of a visibility graph is based on a set of waypoints obtained during the acquisition stage. This set of waypoints provides the implicit geographic information of the dangerous zones in navigation space. The algorithm consists of considering all pairs of points (Wfrom, Wto), where Wfrom and Wto are start, goal, or intermediate waypoints of dangerous zones. To determine whether Wfrom and Wto are the endpoints of a valid flight path segment, ‘collisions’ are checked against dangerous zones of a straight line Wfrom and Wto. The nodes between Wfrom and Wto are connected by a link in the visibility graph if, and only if, no intersection occurs in the segment joining the two points.
- The criteria for collision checking is similar to the one used to check for collisions of direct paths between start and goal points. The test of a pair of waypoints is terminated as soon as a collision is detected, otherwise the test proceeds until Wto is reached. After all the possible combination of waypoint pairs are tested, the result is a visibility graph where the waypoints are the nodes of a graph and the path segments formed by the waypoints are the arcs of a graph. In FIG. 9, several paths exist which are composed of straight lines joining the start point to the goal point via a sequence of waypoints.
- The visibility graph approach used is similar to the methods used in most paths planning problems where a visibility graph of the obstacle space is constructed from a list of polygonal obstacles. However, the following considerations are specific to terrain Oct-tree based flight path planning algorithm:
- The dangerous zones are obtained by gathering the obstacle nodes along an ideal direct path between the start and goal points and the possible obstacles are limited to those nearby the direct path (or current direction). This approach implies that the irrelevant danger nodes in the navigation space can be ignored and the number of waypoints is accordingly minimized. Because the waypoints only represent the subset of obstacles of the danger areas, this process provides a partial visibility graph of the total navigation space. FIG. 8a-d shows an example of partial configuration and its visibility graph.
- During the collision check, W*(W−1)/2 waypoint pairs where W is the number of waypoints, including the start point S and goal point G. The time complexity for construction of a visibility graph is proportional to W*(W−1)/2. For any navigation space, it can be readily observed that the number of waypoints W is less than the number of vertices n. Moreover, the size of a visibility graph containing W waypoints is smaller than the size of a visibility graph of n vertices. Clearly, significant improvements in the speed of searching can be obtained possible by reducing the size of a visibility graph.
- 3.3 Flight Path Searching
- The visibility graph is represented in a form of a list of flight path segments as described in the previous section. The path planning problem has been transformed into the discrete problem of searching a visibility graph between a start node and a goal node. For example, FIG. 9 shows a visibility graph representing path segments of a navigation space. There are seven nodes in the graph including the start and goal points. It is reconstructed as a tree structure where the goal node G and other nodes appear more than once in the tree to illustrate its construction.
- Several techniques can be used for searching for path in a graph, including such as depth-first, breadth-first and heuristic search. A heuristic search method, constrained to minimize the number of connections has been incorporated in the flight path planning algorithm described in preferred embodiment. During the search, a path segment is chosen that is as distant as possible from the current position, in the expectation that it will be closer to the destination. On the other hand, the method of minimizing the length of the flight path entails an opposite approach to the search to minimize the connections. Cost functions are defined to evaluate the effect of adding waypoints to determine which set of waypoints should be expanded in the path planning routine.
- Finding a truly optimal path would require an exhaustive search. However, an optimal path may not be essential to real-time airborne requirements because of the possible degradation in performance to extract the path. For a large number of nodes in a visibility graph, the computation load of an exhaustive approach is prohibitive, and a more efficient heuristic search methods was adopted, based on a variant of Dijkstra's algorithm, which is also known as the A* method.
- 4. Real Time Dynamic Environment Application
- As it is anticipated that an aircraft flight path needs to be modified in real-time to match flight conditions and changing obstacles in the environment, the terrain database is accessed for every flight plan change in order to re-form the visibility graph, based on the current obstacle space. This re-planning of a new flight path must be completed within a few seconds for real-time navigation, where this time interval includes the flight path planning computation and also the construction of the path searching space.
- Typically, in a real-time navigation environment, a new flight path is required within few seconds of a request. In practice, extracting waypoints and searching the visibility graph take a relatively small amount of time in comparison with the time taken for the whole path planning process. The strategy of applying the proposed path planning algorithm to the real time dynamic environment is based on observations from applying the algorithm to a specific terrain with randomly generated start and goal points and measuring the time spent on each stage. These measurements include the time to generate the waypoints, the time to construct a visibility graph and the time to find a path at a different resolution level of the terrain Oct-tree. These off-line results of the computation times are subsequently used as references for ‘tuning’ the real time dynamic flight path planning algorithm for a given terrain.
- To vary the resolution of the navigation space, a pyramid of quad-trees is used to represent the navigation space and danger nodes. A layer k of a pyramid is obtained by applying a maximum value function on a 2×2 window at
layer k+ 1. However, at upper layers of a pyramid, the path may be obscured as a result of ‘rounding’ the tree nodes and consequently, no path may be found at that layer. In real time applications, it is preferable to avoid the bottleneck cause by establishing a large visibility graph at a detailed resolution layer. On the other hand, it is also important to avoid a coarser resolution layer, which effectively hides the valid path. The determination of the appropriate processing level can be accomplished by first obtaining the waypoints at a pre-defined level, estimating the size of visibility graph and then determining if it is necessary to switch to another layer for path planning. - For example, FIG. 10 demonstrates a real time simulation by continuously changing the goal point during a flight mission, in which the initial start point is (255,101) and the goal point is (96,251). Airspeed of 400 m/sec is predefined and the flight altitude and operation layer is set interactively by the user. During the flight, a new goal point (241,242) is given for new flight path planning; the algorithm predicts the new start point as (204,148) according to a 5-second constraint. The path is found in the same layer and flight altitude as shown in FIG. 10. Different baselines, scaling factors, time constraints and flight altitude are also applied.
- The DTED source file is 1:50000 Scale Height Data termed Digital Terrain Model Data (DTM) provided by the Center for Space and Remote Sensing Research, National Central University, Taiwan ROC. The DTM file consists of height values at each intersection of a 40 meter horizontal grid, with values mathematically interpolated from the contours on the SPOT Landmass maps containing 256 K height values for a 20.48 km square DTM ‘tile’. The source file can be as large as 216×216 grid points, but has been restricted to 2 9×29 grid points to simplify the encoding process.
- As described above, the path planning algorithm can be performed at a coarser layer of a pyramid to meet real time constraints. However, the terrain elevation data is continuous varying and the terrain Oct-tree representation is terrain dependent, thus the location and connectivity of the obstacles with respect to a given flight altitude are unpredictable. Generally, the actual operation layer of the path planning process is determined by the minimum flight altitude, which in turn determines the number of waypoints. A low flight altitude will generate a large number of danger nodes and obstacle nodes, thus a coarser operational layer may be adopted to keep the number of waypoints below a predefined margin for a specific operational environment. As the real time application depends on the performance of the computing system and the aircraft speed, the real time constraint, the allowable times for the planning and the predefined layer of process are changeable.
- 5. Terrain Avoidance and Situation Awareness
- 5.1 Dynamic Obstacles and Weather Condition Avoidance
- The present invention not only provides warnings in accordance with surrounding terrain, but also gives the information of terrain alone flight path ahead, which is obtained from path planing function. Once a new route has been on-line programmed, the warning function of GPWS and GCAS can be easily coupled. Other types of hazards coverage area such as obstacles, peaks, weather conditions (thunderstorms, windshear or any meteorological situations that appear in airspace) can also be represented as a set of locational codes overlaying terrain map and performed in the same way as described above. FIG. 11 shows an example of embodiment.
- 5.2 Terrain Map and Terrain Masking for Terrain Awareness
- The generating of terrain map and computing of line-of-sight terrain masking of the dangerous zone, peaks, and obstacles with respect to a selected flight altitude and heading use the same locational code representations. An accessing algorithm is used to retrieve parameters of nodes in terrain model. The I, J, K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band; S representing the coverage area of said node to form said masking area. The subset of nodes representing dangerous zone, peaks, and obstacles is obtained from collision checking and region finding with homogeneous nodes.
- 5.3 Perspective Images of Terrain Model
- Method of generating perspective images of terrain model, including the retrieving and accessing data from terrain model for generating images is provided. An accessing algorithm is used to retrieve parameters of nodes in terrain model. The I, J, K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band, S representing coverage area of a node to form said perspective images of terrain. The terrain model is used directly as input data without accessing the original DTED file. FIG. 12 shows an example of embodiment of perspective images.
- 6. Conclusions
- Prior art planning approaches use pre-defined obstacle models. However, the dangerous zone obstacle area varies during the execution of a flight plan whenever the flight altitude is changed. Besides, in prior art DTED approach, the number of data retrieving and the cost of computation are in the negative. Optimum flight plan or emergency change of route in real time situation could be restrained by the number of data retrieving and the cost of computation when complexities of algorithms increased in standard DTED based system.
- In the present invention, algorithms for CFIT warning based on Oct-tree terrain are presented. It is straightforward to represent terrain at various levels of resolution. An Oct-tree structure has the ability to modeling the terrain with sufficient accuracy at a coarser level by truncating or approximating unnecessary data allowing terrain reference tasks to be performed efficiently. In the present preferred embodiment, by using the features of Oct-tree terrain model, the terrain awareness and warning system related functions are implemented more efficiency than prior art DTED based method. Moreover, comparing with prior art of pre-flight planning system, the preferred embodiment shows a real-time flight path planning capability.
- For a long-range global path planning in airborne environment, either in pre-planing or in real-time situation, Oct-tree hierarchical decomposition structure avoids excessive detail of terrain in path planning phase. By exploiting the hierarchical nature of Oct-trees terrain model, the path planning algorithm can operate at any layer of the Oct-tree terrain. Moreover, the path planning approach reduces the size of the search space by establishing a partial visibility graph of the navigation space which do not influence the choice of path and avoids details of the terrain. The Oct-tree terrain and visibility graph approach described in present invention has been adapted to meet the real-time computational requirements.
- For CFIT warning related functions and obstacles avoidance, the same scheme as flight path planing can be used. By replacing the DTED with Oct-tree terrain or adding a layer of Oct-tree terrain, the comparing of predicted flight path with terrain database for detecting possible collision and giving warning or for obtaining a new route for avoidance could be easily implemented. Furthermore, the terrain awareness and display can be performed in more efficient way.
- Although exemplary embodiments of present invention are described above, this description does not limit the scope of the invention, which can be practiced in a variety of embodiments. For example, the real-time flight path planing algorithm can be embedded in Flight Management Computer (FMC) for flight control. On the other hand, the flight path and terrain profile obtained from real-time flight path planning together with encoded terrain database give the aircraft a forward looking capability particularly in general aviation when flight in mountainous area and urban area with buildings and man made obstacles. Accordingly, this capability can be easily extend to Controlled Flight Into Terrain Warning, Ground Proximity Warning, and Obstacles Avoidance. Moreover, terrain awareness and display could be one of the features coupled with CDTI.
- In the point view of terrain database, with limited cost, the terrain model can be stand alone or parallel with the prior art of DTED database, even to replace the existing DTED type database. In the field of military, mission planning, terrain avoidance, terrain following, terrain matching, radar and threat line-of-sight masking, intervisibility shading are possible implementations. For non-aviation usage such as seafloor representation, sonar coverage, the estimation of GSM base station coverage can also be implemented.
- While the present invention has been shown and described with reference to a preferred embodiment thereof, and in terms of the illustrative drawings, it should not be considered limited thereby. One skilled in the art could conceive of various possible modifications, omissions, and alterations and the content of any particular embodiment, without departing from the scope of the present invent.
Claims (23)
1. A method of performing real-time flight path selection and path planing for general aviation, comprising the following steps:
using Digitized Terrain Elevation Data (DTED) to generate a terrain model;
using this terrain model to provide a navigation space;
accessing and retrieving terrain model to generate a terrain map;
giving start and goal points on navigation space to determine a ground track of direct flight path on terrain map;
identifying dangerous zone based on ground track and flight altitude;
using said dangerous zone to allocate a set of way-points for avoidance;
constructing a visibility graph of navigation space, in which is a set of collision free path segments;
linking start point to goal point by flight path searching algorithm; and
obtaining the terrain profile of flight path from terrain model.
2. The method in , wherein said terrain model is an Oct-tree terrain.
claim 1
3. The method in , wherein said terrain model is a variance of quad-tree and Oct-tree structures.
claim 1
4. The method in , wherein said terrain model contains a set of nodes, each represented by an integer.
claim 1
5. The method in , wherein
claim 4
each of said nodes contains four parameters I,J,K,S;
the four parameters I,J,K,S are obtained by mapping each elevation peak point I, J, K of a DTED file into a 3-D locational code of the corresponding Oct-tree;
parameters I, J define the 2-D coordinates of planar location, with elevation K, the parameters I,J,K define the 3-D coordinates of a space location;
scaling factor of the elevation is introduced which divides the terrain elevation into bands;
parameter K represents scaled elevation;
the nodes of said Oct-tree with equal scaled value of elevation occurs in the same quadrant of the corresponding quad-tree are merged;
scaling factor can also be non-linear, or begin with a baseline in stead of the mean sea level;
parameter S is the coverage area of a node, and is added to represent the size of a node;
said four parameters I,J,K,S are interleaving in its bit positions to form an integer representation of node; and
each terrain elevation data has its unique correspondent node.
6. The method in , wherein
claim 1
said navigation space is defined as a region for allocating possible flight path;
said navigation space combines Oct-trees with quad-trees to provide both 3-D and 2-D operations on terrain elevation data; and
the 2-D location code can be obtained by removing the K bits from 3-D locational code.
7. The method in , wherein said terrain map is obtained by the following steps:
claim 5
using an accessing algorithm to access said terrain model;
accessing a node means accessing an coverage area of said node;
using a retrieving algorithm to retrieve parameters of a node of said terrain model, where the I,J,K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band, S representing coverage area of a node to form said terrain map.
8. The method in , wherein
claim 1
the ground track is a straight line segment, formed as a list of nodes;
the dangerous zone is a list of nodes obtained from collision check in which elevation of the nodes conflict with flight altitude;
each collision free path segment is a straight line segment, formed as a list of nodes;
the way-points are represented in 2-D locational codes; and
the visibility graph is constructed by performing collision check on each segment between pairs of way-points to determine a set of collision free path segments.
9. The method in , wherein
claim 1
due to the geometric region features of said dangerous zone in navigation space, path searching algorithms based on visibility graph are used.
10. A method of performing real-time dynamic collision check comprising the following steps:
using Digitized Terrain Elevation Data (DTED) to generate a terrain model;
using this terrain model to provide a navigation space;
accessing and retrieving terrain model to generate a terrain map;
identifying a list of nodes of on navigation space based on flight altitude;
giving a ground track of flight path segment which is a list of nodes on terrain map; and
determining the flight path segment in conflict with dangerous zone by searching each nodes along the path segment against the list of nodes of dangerous zone.
11. The method in wherein the collision check is performed by checking common nodes appearing in both node lists.
claim 10
12. A method of performing real-time dynamic weather condition avoidance comprising:
using Digitized Terrain Elevation Data (DTED) to generate a terrain model;
using this terrain model to provide a navigation space;
accessing and retrieving terrain model to generate a terrain map;
giving start and goal points on navigation space to determine a ground track of direct flight path on terrain map;
identifying dangerous zone based on ground track and flight altitude;
giving a weather condition coverage area which is represented by a list of nodes;
adding the list of nodes of the weather coverage area to the list of nodes of the dangerous zone;
using new dangerous zone to allocate a set of way-points for avoidance;
constructing a visibility graph of new navigation space, in which is a set of collision free path segments;
linking start point to goal point by flight path searching algorithm; and
obtaining the terrain profile of flight path from terrain model.
13. The method in , wherein
claim 12
weather condition coverage area is a set of locational codes overlaying said terrain map; and
the weather condition can be thunderstorms, windshear or any meteorological situations that appear in airspace.
14. A method of performing real-time dynamic obstacles avoidance comprising:
using Digitized Terrain Elevation Data (DTED) to generate a terrain model;
using this terrain model to provide a navigation space;
accessing and retrieving terrain model to generate a terrain map;
giving start and goal points on navigation space to determine a ground track of direct flight path on terrain map;
identifying dangerous zone based on ground track and flight altitude;
giving an obstacles coverage area which is represented by a list of nodes;
adding the list of nodes of the obstacles coverage area to the list of nodes of the dangerous zone;
using said new dangerous zone to allocate a set of way-points for avoidance;
constructing a visibility graph of navigation space, in which is a set of collision free path segments;
linking start point to goal point by flight path searching algorithm; and
obtaining the terrain profile of flight path from terrain model.
15. The method in , wherein
claim 14
obstacles coverage area is a set of locational codes overlaying said terrain map; and
obstacles can be terrain, peak, and any man-made obstacles.
16. A method of performing real-time terrain masking for terrain awareness comprising:
using Digitized Terrain Elevation Data (DTED) to generate a terrain model;
using this terrain model to provide a navigation space;
accessing and retrieving terrain model to generate a terrain map;
identifying dangerous zone, peaks, and obstacles coverage area based on ground track of flight path and flight altitude;
computing line-of-sight terrain masking; and
assigning color code for terrain masking and awareness according to I, J, K, S parameters of highlighting areas.
17. The method in , wherein said terrain model contains a set of nodes, each represented by an integer.
claim 16
18. The method in , wherein
claim 16
said computing line-of-sight terrain masking computes the line-of-sight terrain masking with respect to a selected flight altitude and heading using the same locational code representations;
the dangerous zone, peaks, and obstacles represent a subset of nodes of terrain model and are obtained from collision checking and region finding with homogeneous nodes; and
the I, J, K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band; S representing the coverage area of said node to form said masking area.
19. The method in , wherein
claim 17
each of said nodes contain four parameters I, J, K, S;
the four parameters I,J,K,S are obtained by mapping each elevation peak point I, J, K of a DTED file into a 3-D locational code of the corresponding Oct-tree;
parameters I, J define the 2-D coordinates of planar location, with elevation K, the parameters I, J, K define the 3-D coordinates of a space location;
scaling factor of the elevation is introduced which divides the terrain elevation into bands;
parameter K represents scaled elevation;
the nodes of said Oct-tree with equal scaled value of elevation occurs in the same quadrant of the corresponding quad-tree are merged;
scaling factor can also be non-linear, or begin with a baseline in stead of the mean sea level;
parameter S is the coverage area of a node, and is added to represent the size of a node;
said four parameters I, J, K, S are interleaving in its bit positions to form an integer representation of node; and
each terrain elevation data has its unique correspondent node.
20. A method of generating perspective images of terrain model, comprising:
using Digitized Terrain Elevation Data (DTED) to generate a terrain model;
using this terrain model to provide a navigation space; and accessing and retrieving parameters I, J, K, S from terrain model to generate perspective images.
21. The method in , wherein said terrain model contains a set of nodes, each represented by an integer.
claim 20
22. The method in , wherein
claim 21
each of said nodes contain four parameters I, J, K, S;
the four parameters I, J, K, S are obtained by mapping each elevation peak point I, J, K of a DTED file into a 3-D locational code of the corresponding Oct-tree;
parameters I, J define the 2-D coordinates of planar location, with elevation K , the parameters I,J,K define the 3-D coordinates of a space location;
scaling factor of the elevation is introduced which divides the terrain elevation into bands;
parameter K represents scaled elevation;
the nodes of said Oct-tree with equal scaled value of elevation occurs in the same quadrant of the corresponding quad-tree are merged;
scaling factor can also be non-linear, or begin with a baseline in stead of the mean sea level;
parameter S is the coverage area of a node, and is added to represent the size of a node;
said four parameters I, J, K, S are interleaving in its bit positions to form an integer representation of node; and
each terrain elevation data has its unique correspondent node.
23. The method in , wherein said accessing and retriving parameters I, J, K, S comprising:
claim 20
using terrain model directly as input data without accessing the original DTED file, where the I, J, K parameters give the planar position and elevation of a node, different color codes from a mapping table are assigned to each elevation band, S representing coverage area of a node to form said perspective images of terrain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/859,407 US6401038B2 (en) | 1999-06-28 | 2001-05-18 | Path planning, terrain avoidance and situation awareness system for general aviation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/340,025 US6317690B1 (en) | 1999-06-28 | 1999-06-28 | Path planning, terrain avoidance and situation awareness system for general aviation |
US09/859,407 US6401038B2 (en) | 1999-06-28 | 2001-05-18 | Path planning, terrain avoidance and situation awareness system for general aviation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/340,025 Continuation US6317690B1 (en) | 1999-06-28 | 1999-06-28 | Path planning, terrain avoidance and situation awareness system for general aviation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010023390A1 true US20010023390A1 (en) | 2001-09-20 |
US6401038B2 US6401038B2 (en) | 2002-06-04 |
Family
ID=23331552
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/340,025 Expired - Lifetime US6317690B1 (en) | 1999-06-28 | 1999-06-28 | Path planning, terrain avoidance and situation awareness system for general aviation |
US09/859,407 Expired - Lifetime US6401038B2 (en) | 1999-06-28 | 2001-05-18 | Path planning, terrain avoidance and situation awareness system for general aviation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/340,025 Expired - Lifetime US6317690B1 (en) | 1999-06-28 | 1999-06-28 | Path planning, terrain avoidance and situation awareness system for general aviation |
Country Status (1)
Country | Link |
---|---|
US (2) | US6317690B1 (en) |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1369665A2 (en) * | 2002-06-07 | 2003-12-10 | EADS Deutschland GmbH | Method for avoiding aircraft terrain collisions |
US20040098175A1 (en) * | 2002-11-19 | 2004-05-20 | Amir Said | Methods and apparatus for imaging and displaying a navigable path |
US20040138810A1 (en) * | 2003-01-10 | 2004-07-15 | Yoshihiko Sugawara | Map search system |
US20040218895A1 (en) * | 2003-04-30 | 2004-11-04 | Ramin Samadani | Apparatus and method for recording "path-enhanced" multimedia |
US20040218910A1 (en) * | 2003-04-30 | 2004-11-04 | Chang Nelson L. | Enabling a three-dimensional simulation of a trip through a region |
US20050131630A1 (en) * | 2003-12-10 | 2005-06-16 | Christianson Paul E. | Methods and systems for generating a terrain elevation map in a cartesian format |
US20050234608A1 (en) * | 2002-07-05 | 2005-10-20 | Thales | Method for an aircraft navigational aid and corresponding device |
US20070024616A1 (en) * | 2005-07-28 | 2007-02-01 | Goyne Linda J | Real-time conformal terrain rendering |
US20070250223A1 (en) * | 2006-03-21 | 2007-10-25 | Thales | Method and a device for monitoring the minimum flying altitude of an aircraft |
US20080021646A1 (en) * | 2003-08-08 | 2008-01-24 | Daniel Preston | High altitude parachute navigation flight computer |
US20080021635A1 (en) * | 2006-07-19 | 2008-01-24 | Eads Deutschland Gmbh | Method for establishing optimized paths of movement of vehicles |
FR2910678A1 (en) * | 2006-12-21 | 2008-06-27 | Thales Sa | Aircraft's flight plan structuring method for e.g. search and rescue application, involves subdividing flight plan of aircraft into units compatible with large stages of regular flight plan, where flight plan has arborescent structure |
US20080183343A1 (en) * | 2007-01-31 | 2008-07-31 | Honeywell International, Inc. | Systems and methods for constructing variable offset paths |
US20100030401A1 (en) * | 2008-07-31 | 2010-02-04 | Honeywell International Inc. | Flight deck communication and display system |
US20100250032A1 (en) * | 2006-02-28 | 2010-09-30 | Honeywell International Inc. | Predicted path selection system and method for hazard coding in selectively constrained aircraft control systems |
US20100332123A1 (en) * | 2009-06-26 | 2010-12-30 | Eurocopter | Method of assisting piloting at low altitude |
US20110199257A1 (en) * | 2010-02-18 | 2011-08-18 | David Lundgren | Method and system for updating altitude information for a location by using terrain model information to prime altitude sensors |
US20110225212A1 (en) * | 2010-03-15 | 2011-09-15 | Eurocopter | Method and a device for flying safely at low altitude in an aircraft |
US8049644B1 (en) * | 2007-04-17 | 2011-11-01 | Rcokwell Collins, Inc. | Method for TAWS depiction on SVS perspective displays |
US20110283285A1 (en) * | 2010-05-14 | 2011-11-17 | The Boeing Company | Real Time Mission Planning |
US8145366B1 (en) * | 2008-06-13 | 2012-03-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Real-time, interactive sonic boom display |
US8234068B1 (en) * | 2009-01-15 | 2012-07-31 | Rockwell Collins, Inc. | System, module, and method of constructing a flight path used by an avionics system |
US20130027388A1 (en) * | 2011-07-26 | 2013-01-31 | Electronics And Telecommunications Research Institute | Apparatus and method for downsizing surface elevation data |
US20130090787A1 (en) * | 2011-10-07 | 2013-04-11 | Korea Aerospace Industries, Ltd. | Three-dimensional digital map |
US20140032019A1 (en) * | 2012-07-27 | 2014-01-30 | Thales | Device and Method for Managing the Strategy to Join Waypoints |
US20140108419A1 (en) * | 2011-01-31 | 2014-04-17 | Google Inc. | Method for efficiently querying multiple points in an indexed quadtree |
US8725417B1 (en) * | 2010-08-27 | 2014-05-13 | Rockwell Collins, Inc. | Rapid intervisibility determination in resource-constrained computational environments |
US8730264B1 (en) * | 2011-09-26 | 2014-05-20 | Google Inc. | Determining when image elements intersect |
US20140156114A1 (en) * | 2012-11-30 | 2014-06-05 | Thales | Method for displaying an aeronautical flight plan comprising a step of flight data configuration |
FR2999700A1 (en) * | 2012-12-14 | 2014-06-20 | Thales Sa | METHOD AND DEVICE FOR PROVIDING MACHINE MANUAL INTERFACE DATA RELATING TO A FLIGHT PLAN |
EP1476719B1 (en) * | 2002-02-08 | 2014-07-16 | Saab Ab | Method and system for calculating a flight route |
US8798815B1 (en) * | 2013-03-13 | 2014-08-05 | Honeywell International Inc. | System and method alerting an aircrew of threshold altitudes |
US8843303B1 (en) * | 2012-12-17 | 2014-09-23 | Rockwell Collins, Inc. | Risk-aware contingency flight re-planner system and related method |
US20140358433A1 (en) * | 2013-06-04 | 2014-12-04 | Ronen Padowicz | Self-contained navigation system and method |
US20150198452A1 (en) * | 2013-08-20 | 2015-07-16 | Raghav Gupta | Driving direction based on weather forecasting system and method |
US9354633B1 (en) | 2008-10-31 | 2016-05-31 | Rockwell Collins, Inc. | System and method for ground navigation |
WO2016149039A1 (en) * | 2015-03-17 | 2016-09-22 | Sikorsky Aircraft Corporation | Trajectory control of a vehicle |
US9599994B1 (en) * | 2015-08-03 | 2017-03-21 | The United States Of America As Represented By The Secretary Of The Army | Collisionless flying of unmanned aerial vehicles that maximizes coverage of predetermined region |
CN106600502A (en) * | 2016-08-16 | 2017-04-26 | 南京航空航天大学 | Topological modeling method of multi-airport terminal area course network |
US20180025099A1 (en) * | 2016-07-25 | 2018-01-25 | Xinaps B.V. | Method and an apparatus for calculating a distance in an area |
US9939526B2 (en) | 2007-09-06 | 2018-04-10 | Rockwell Collins, Inc. | Display system and method using weather radar sensing |
CN108225358A (en) * | 2016-12-22 | 2018-06-29 | 格式塔系统有限责任公司 | Vehicle navigation |
CN109445462A (en) * | 2018-11-30 | 2019-03-08 | 电子科技大学 | A kind of unmanned plane robust paths planning method under uncertain condition |
US10228460B1 (en) | 2016-05-26 | 2019-03-12 | Rockwell Collins, Inc. | Weather radar enabled low visibility operation system and method |
CN109916393A (en) * | 2019-03-29 | 2019-06-21 | 电子科技大学 | A kind of multiple grid point value air navigation aid and its application based on robot pose |
US10347141B2 (en) * | 2017-04-26 | 2019-07-09 | Honeywell International Inc. | System and method for transmitting obstacle alerts to aircraft from a ground based database |
US10353068B1 (en) | 2016-07-28 | 2019-07-16 | Rockwell Collins, Inc. | Weather radar enabled offshore operation system and method |
US10378916B2 (en) * | 2014-02-05 | 2019-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Display apparatus for vehicle and display method of display apparatus for vehicle |
WO2019209297A1 (en) * | 2018-04-26 | 2019-10-31 | Sikorsky Aircraft Corporation | Enhanced 2d profile depiction for preview of terrain, power and fuel management in autonomous systems |
US10467914B2 (en) * | 2015-07-14 | 2019-11-05 | The Boeing Company | Methods and systems for autonomous generation of shortest lateral paths for unmanned aerial systems |
CN110544296A (en) * | 2019-07-31 | 2019-12-06 | 中国矿业大学 | intelligent planning method for three-dimensional global flight path of unmanned aerial vehicle in environment with uncertain enemy threat |
EP3647727A1 (en) * | 2018-10-30 | 2020-05-06 | Navico Holding AS | Systems and associated methods for generating navigation charts and navigable routes in an open environment |
US10705201B1 (en) | 2015-08-31 | 2020-07-07 | Rockwell Collins, Inc. | Radar beam sharpening system and method |
US10794704B2 (en) * | 2013-04-01 | 2020-10-06 | Smartsky Networks LLC | Systems and methods for continuous replanning of vehicle trajectories |
CN111814328A (en) * | 2020-07-07 | 2020-10-23 | 浙江工业大学 | Modeling and query method of space-time data cube with flight area |
CN111998858A (en) * | 2020-09-15 | 2020-11-27 | 长春工业大学 | Unmanned aerial vehicle route planning method based on improved A-star algorithm |
US10928510B1 (en) | 2014-09-10 | 2021-02-23 | Rockwell Collins, Inc. | System for and method of image processing for low visibility landing applications |
CN112710311A (en) * | 2020-12-14 | 2021-04-27 | 中国铁路设计集团有限公司 | Automatic planning method for three-dimensional live-action reconstruction aerial camera points of terrain adaptive unmanned aerial vehicle |
US11043131B2 (en) * | 2019-02-26 | 2021-06-22 | Honeywell International Inc. | Systems and methods for generating a recapture path for an aircraft |
CN113252038A (en) * | 2021-05-06 | 2021-08-13 | 西北工业大学 | Course planning terrain auxiliary navigation method based on particle swarm optimization |
CN113375672A (en) * | 2021-02-08 | 2021-09-10 | 北京理工大学 | High real-time track avoiding method and system for unmanned aerial vehicle |
CN113624235A (en) * | 2021-07-31 | 2021-11-09 | 武夷科技信息(北京)有限公司 | Method for dynamically adjusting navigation path in real time by unmanned aerial vehicle |
US11217106B2 (en) * | 2016-03-08 | 2022-01-04 | International Business Machines Corporation | Drone air traffic control and flight plan management |
US11269336B2 (en) * | 2018-09-21 | 2022-03-08 | Tata Consultancy Services Limited | Method and system for free space detection in a cluttered environment |
US11468025B2 (en) * | 2019-08-07 | 2022-10-11 | Gulfstream Aerospace Corporation | Quadtree terrain data compression using distance-based pruning |
WO2022243494A1 (en) * | 2021-05-21 | 2022-11-24 | Thales | Methods for the compression and decompression of a digital terrain model file; associated compressed and decompressed files and computer program product |
CN115952253A (en) * | 2023-03-15 | 2023-04-11 | 中国空气动力研究与发展中心计算空气动力研究所 | Airdrop trajectory prediction method and device for complex terrain space database |
CN116430906A (en) * | 2023-06-13 | 2023-07-14 | 西安羚控电子科技有限公司 | Unmanned aerial vehicle dynamic obstacle avoidance method, system, equipment and medium based on bump translation |
CN116931593A (en) * | 2022-04-07 | 2023-10-24 | 广东汇天航空航天科技有限公司 | Flight control method and device, aircraft and storage medium |
CN117320106A (en) * | 2023-11-30 | 2023-12-29 | 湖南林科达信息科技有限公司 | Forestry unmanned aerial vehicle intelligent communication system and terminal based on big dipper |
CN118297441A (en) * | 2024-06-05 | 2024-07-05 | 中国航空工业集团公司西安飞机设计研究所 | Unmanned aerial vehicle ground target threat assessment method and airborne equipment |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6922703B1 (en) * | 1999-09-14 | 2005-07-26 | Honeywell International Inc. | Methods and apparatus for real-time projection and rendering of geospatially organized data |
US6700482B2 (en) * | 2000-09-29 | 2004-03-02 | Honeywell International Inc. | Alerting and notification system |
US20020120632A1 (en) * | 2001-02-27 | 2002-08-29 | Honeywell International, Inc. | Terrain information server for systems |
US6573841B2 (en) * | 2001-04-02 | 2003-06-03 | Chelton Flight Systems Inc. | Glide range depiction for electronic flight instrument displays |
US6804585B2 (en) * | 2001-06-19 | 2004-10-12 | John Jay Humbard | Flight management system and method for providing navigational reference to emergency landing locations |
US6452511B1 (en) * | 2001-08-08 | 2002-09-17 | Rockwell Collins, Inc. | Method and system for providing ground proximity warnings |
US6525674B1 (en) * | 2001-08-08 | 2003-02-25 | Rockwell Collins, Inc. | Conditional hazard alerting display |
US20030059743A1 (en) * | 2001-08-29 | 2003-03-27 | The Boeing Company | Method and apparatus for automatically generating a terrain model for display during flight simulation |
US6748325B1 (en) | 2001-12-07 | 2004-06-08 | Iwao Fujisaki | Navigation system |
US7548241B2 (en) | 2002-01-04 | 2009-06-16 | Intel Corporation | Determining a node path through a node graph |
US6985903B2 (en) * | 2002-01-25 | 2006-01-10 | Qualcomm, Incorporated | Method and system for storage and fast retrieval of digital terrain model elevations for use in positioning systems |
US6577947B1 (en) * | 2002-03-01 | 2003-06-10 | Rockwell Collins, Inc. | Method and apparatus for identification of hazards along an intended travel route |
US6678588B2 (en) * | 2002-04-12 | 2004-01-13 | Honeywell International Inc. | Terrain augmented 3D flight path display for flight management systems |
US6963800B1 (en) | 2002-05-10 | 2005-11-08 | Solider Vision | Routing soldiers around enemy attacks and battlefield obstructions |
US6868420B2 (en) * | 2002-07-31 | 2005-03-15 | Mitsubishi Electric Research Laboratories, Inc. | Method for traversing quadtrees, octrees, and N-dimensional bi-trees |
US6937165B2 (en) * | 2002-09-23 | 2005-08-30 | Honeywell International, Inc. | Virtual rumble strip |
US7132960B2 (en) * | 2002-10-15 | 2006-11-07 | Honeywell International Inc. | Approach monitoring and advisory system and method |
US6862501B2 (en) * | 2002-10-28 | 2005-03-01 | Honeywell International Inc. | Method for producing 3D perspective view avionics terrain displays |
FR2847700B1 (en) * | 2002-11-22 | 2005-01-14 | Thales Sa | METHOD OF SYNTHESIZING A THREE DIMENSIONAL INTERVISIBILITY IMAGE |
US20040148103A1 (en) * | 2003-01-15 | 2004-07-29 | Chung-Shan Institute Of Science And Technology | Grid terrain data collision detecting method for forward looking terrain avoidance |
US6771207B1 (en) * | 2003-02-11 | 2004-08-03 | Unisys Corporation | Establishing radar coverage, blockage, and clutter region maps for radar product data based on terrain elevation data |
US7756635B2 (en) * | 2003-04-09 | 2010-07-13 | Primordial, Inc. | Method and system for generating and presenting off-road travel routes |
US7098810B2 (en) * | 2003-04-22 | 2006-08-29 | Honeywell International Inc. | Aircraft autorecovery systems and methods |
US6917297B2 (en) * | 2003-06-05 | 2005-07-12 | International Business Machines Corporation | System and method for advance warning of severe weather for general aviation aircraft |
US7580776B1 (en) * | 2003-07-29 | 2009-08-25 | Rockwell Collins, Inc. | Integrated separation assurance method for an aircraft |
US7386392B1 (en) | 2003-09-18 | 2008-06-10 | Garmin Ltd. | Methods, systems, and devices for condition specific alerts |
US7268703B1 (en) | 2003-09-18 | 2007-09-11 | Garmin Ltd. | Methods, systems, and devices for cartographic alerts |
ES2514441T3 (en) * | 2003-10-13 | 2014-10-28 | Saab Ab | Path planning procedure |
US7633410B2 (en) * | 2004-02-19 | 2009-12-15 | Honeywell International Inc. | Wireless assisted recovery systems and methods |
US7589646B2 (en) * | 2004-02-19 | 2009-09-15 | Honeywell International Inc. | Systems and methods for determining best path for avoidance of terrain, obstacles, or protected airspace |
US7895020B2 (en) * | 2004-04-01 | 2011-02-22 | General Dynamics Advanced Information Systems, Inc. | System and method for multi-perspective collaborative modeling |
US7492965B2 (en) * | 2004-05-28 | 2009-02-17 | Lockheed Martin Corporation | Multiple map image projecting and fusing |
US7280897B2 (en) * | 2004-05-28 | 2007-10-09 | Lockheed Martin Corporation | Intervisibility determination |
US7486840B2 (en) * | 2004-05-28 | 2009-02-03 | Lockheed Martin Corporation | Map image object connectivity |
US7242407B2 (en) * | 2004-05-28 | 2007-07-10 | Lockheed Martin Corporation | Reprojecting map images using graphical techniques |
US20060164417A1 (en) * | 2004-07-28 | 2006-07-27 | Lockheed Martin Corporation | Imagery-based synthetic environment for computer generated forces |
US20060022980A1 (en) * | 2004-07-28 | 2006-02-02 | Donovan Kenneth B | Material coded imagery for computer generated forces |
FR2875916B1 (en) * | 2004-09-28 | 2015-06-26 | Eurocopter France | METHOD AND DEVICE FOR AIDING THE STEERING OF A ROTATING SAILBOAT AIRCRAFT IN THE VICINITY OF A POSITION OR TAKE-OFF POINT |
US7262713B1 (en) * | 2004-09-30 | 2007-08-28 | Rockwell Collins, Inc. | System and method for a safe depiction of terrain, airport and other dimensional data on a perspective flight display with limited bandwidth of data presentation |
DE102004061636A1 (en) * | 2004-12-17 | 2006-07-06 | Eads Deutschland Gmbh | Method for determining optimized tracks of a vehicle intended for implementation in a computer system, and system for determining optimized target tracks |
US7248952B2 (en) * | 2005-02-17 | 2007-07-24 | Northrop Grumman Corporation | Mixed integer linear programming trajectory generation for autonomous nap-of-the-earth flight in a threat environment |
US20060224318A1 (en) * | 2005-03-30 | 2006-10-05 | Wilson Robert C Jr | Trajectory prediction |
US20060235610A1 (en) * | 2005-04-14 | 2006-10-19 | Honeywell International Inc. | Map-based trajectory generation |
US7515069B2 (en) * | 2005-04-27 | 2009-04-07 | Honeywell International, Inc. | Multifunctional avionic display |
US20070016372A1 (en) * | 2005-07-14 | 2007-01-18 | Gm Global Technology Operations, Inc. | Remote Perspective Vehicle Environment Observation System |
FR2898425B1 (en) * | 2006-03-08 | 2008-05-23 | Thales Sa | ON-BOARD SYSTEM FOR PREVENTING COLLISIONS OF AN AIRCRAFT WITH THE SOIL WITH END-OF-CONFLICT SIGNALING |
US20070288156A1 (en) * | 2006-05-17 | 2007-12-13 | The Boeing Company | Route search planner |
US7610151B2 (en) | 2006-06-27 | 2009-10-27 | Microsoft Corporation | Collaborative route planning for generating personalized and context-sensitive routing recommendations |
US8793066B2 (en) | 2006-06-27 | 2014-07-29 | Microsoft Corporation | Route monetization |
US7617042B2 (en) * | 2006-06-30 | 2009-11-10 | Microsoft Corporation | Computing and harnessing inferences about the timing, duration, and nature of motion and cessation of motion with applications to mobile computing and communications |
US7706964B2 (en) * | 2006-06-30 | 2010-04-27 | Microsoft Corporation | Inferring road speeds for context-sensitive routing |
US7739040B2 (en) | 2006-06-30 | 2010-06-15 | Microsoft Corporation | Computation of travel routes, durations, and plans over multiple contexts |
US8126641B2 (en) * | 2006-06-30 | 2012-02-28 | Microsoft Corporation | Route planning with contingencies |
FR2906066B1 (en) * | 2006-09-15 | 2008-12-19 | Thales Sa | METHOD OF ESTIMATING THE POINT OF TOUCHING WHEELS OF AN AIRCRAFT ON A LANDING TRAIL AND THE DISTANCE TO BE FOLLOWED FROM THE POINT OF TOUCH TO REACH A CONTROLLED SPEED. |
US7848879B2 (en) * | 2006-12-04 | 2010-12-07 | Lockheed Martin Corporation | Survivability system |
US9733349B1 (en) | 2007-09-06 | 2017-08-15 | Rockwell Collins, Inc. | System for and method of radar data processing for low visibility landing applications |
US20090157498A1 (en) * | 2007-12-14 | 2009-06-18 | Microsoft Corporation | Generational intelligent navigation synchronization or update |
US20090157540A1 (en) * | 2007-12-14 | 2009-06-18 | Microsoft Corporation | Destination auctioned through business of interest |
US8036821B2 (en) * | 2007-12-18 | 2011-10-11 | Honeywell International Inc. | Methods and systems for diminishing the effects of an acoustic signature of vehicles |
US20090210142A1 (en) * | 2008-02-19 | 2009-08-20 | Microsoft Corporation | Safe route configuration |
US20090210302A1 (en) * | 2008-02-19 | 2009-08-20 | Microsoft Corporation | Route reward augmentation |
US20090210242A1 (en) * | 2008-02-19 | 2009-08-20 | Microsoft Corporation | Load balance payment |
US8890951B2 (en) * | 2008-04-24 | 2014-11-18 | GM Global Technology Operations LLC | Clear path detection with patch smoothing approach |
US8421859B2 (en) * | 2008-04-24 | 2013-04-16 | GM Global Technology Operations LLC | Clear path detection using a hierachical approach |
US20090319100A1 (en) * | 2008-06-20 | 2009-12-24 | Honeywell International Inc. | Systems and methods for defining and rendering a trajectory |
CA2718788C (en) | 2008-07-07 | 2016-04-19 | Primordial, Inc. | System and method for generating tactical routes |
US8615337B1 (en) * | 2008-09-25 | 2013-12-24 | Rockwell Collins, Inc. | System supporting flight operations under instrument meteorological conditions using precision course guidance |
US7986249B2 (en) * | 2008-11-24 | 2011-07-26 | Honeywell International Inc. | System and method for displaying graphical departure procedures |
US20100211312A1 (en) * | 2009-02-18 | 2010-08-19 | On Time Systems, Inc. | Routing Optimization System and Method |
US9115996B2 (en) * | 2009-07-29 | 2015-08-25 | Lockheed Martin Corporation | Threat analysis toolkit |
US20110153338A1 (en) * | 2009-12-17 | 2011-06-23 | Noel Wayne Anderson | System and method for deploying portable landmarks |
US8635015B2 (en) * | 2009-12-17 | 2014-01-21 | Deere & Company | Enhanced visual landmark for localization |
US8224516B2 (en) * | 2009-12-17 | 2012-07-17 | Deere & Company | System and method for area coverage using sector decomposition |
FR2962838B1 (en) | 2010-07-16 | 2012-07-13 | Eurocopter France | IMPROVED AIRCRAFT ASSISTING AID METHOD |
FR2968441B1 (en) * | 2010-12-07 | 2012-12-28 | Airbus Operations Sas | METHOD AND DEVICE FOR BUILDING AN OPTIMAL FLIGHT TRACK FOR AIRCRAFT FOLLOWING |
US8818712B2 (en) * | 2011-03-28 | 2014-08-26 | Raytheon Company | Maritime path determination |
US9127948B2 (en) * | 2011-03-29 | 2015-09-08 | Raytheon Company | Path determination using elevation data |
US8742974B1 (en) | 2011-09-27 | 2014-06-03 | Rockwell Collins, Inc. | System and method for enabling display of textual weather information on an aviation display |
US9411044B1 (en) | 2011-09-27 | 2016-08-09 | Rockwell Collins, Inc. | Auto updating of weather cell displays |
US8786486B1 (en) | 2011-09-27 | 2014-07-22 | Rockwell Collins, Inc. | System and method for providing weather radar status |
CN102622653B (en) * | 2012-02-27 | 2014-10-01 | 北京航空航天大学 | Multi-resolution path planning method for micro unmanned aerial vehicle under influence of wind field |
US9262932B1 (en) | 2013-04-05 | 2016-02-16 | Rockwell Collins, Inc. | Extended runway centerline systems and methods |
US10301018B2 (en) * | 2014-10-17 | 2019-05-28 | Tyco Fire & Security Gmbh | Fixed drone visualization in security systems |
WO2016073698A1 (en) | 2014-11-05 | 2016-05-12 | Sierra Nevada Corporation | Systems and methods for generating improved environmental displays for vehicles |
TR201809643T4 (en) * | 2015-01-14 | 2018-07-23 | Stm Savunma Teknolojileri Muehendislik Ve Ticaret Anonim Sirketi | Precise positioning method. |
US10121383B2 (en) | 2016-01-26 | 2018-11-06 | Northrop Grumman Systems Corporation | Terrain profile system |
US10473781B2 (en) | 2016-09-14 | 2019-11-12 | Garmin Switzerland Gmbh | Determining a boundary enclosing a region of interest for a body of water |
FR3056778B1 (en) * | 2016-09-29 | 2018-10-26 | Airbus Operations | METHOD AND DEVICE FOR GENERATING AN OPTIMUM FLIGHT PATH TO BE FOLLOWED BY AN AIRCRAFT |
US11074821B2 (en) | 2016-10-06 | 2021-07-27 | GEOSAT Aerospace & Technology | Route planning methods and apparatuses for unmanned aerial vehicles |
KR20210031271A (en) * | 2019-09-11 | 2021-03-19 | 한화디펜스 주식회사 | Remote control device and Method for reconfiguration of route on Risk Map considering the level of danger |
DE102020105793A1 (en) | 2020-03-04 | 2021-09-09 | Volocopter Gmbh | Path planning method and path planning algorithm for an aircraft |
US11763555B2 (en) | 2021-04-22 | 2023-09-19 | Honeywell International Inc. | System and method for ground obstacle detection and database management |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047916A (en) * | 1988-03-25 | 1991-09-10 | Kabushiki Kaisha Toshiba | Method and apparatus of free space enumeration for collision avoidance |
US5086396A (en) * | 1989-02-02 | 1992-02-04 | Honeywell Inc. | Apparatus and method for an aircraft navigation system having improved mission management and survivability capabilities |
EP0750238B1 (en) * | 1995-06-20 | 2000-03-01 | Honeywell Inc. | Integrated ground collision avoidance system |
US5884223A (en) * | 1996-04-29 | 1999-03-16 | Sun Microsystems, Inc. | Altitude sparse aircraft display |
US6085147A (en) * | 1997-09-26 | 2000-07-04 | University Corporation For Atmospheric Research | System for determination of optimal travel path in a multidimensional space |
US6021374A (en) * | 1997-10-09 | 2000-02-01 | Mcdonnell Douglas Corporation | Stand alone terrain conflict detector and operating methods therefor |
US5978715A (en) * | 1997-10-15 | 1999-11-02 | Dassault Aviation | Apparatus and method for aircraft display and control |
US6043756A (en) * | 1998-02-09 | 2000-03-28 | Alliedsignal Inc. | Aircraft weather information system |
-
1999
- 1999-06-28 US US09/340,025 patent/US6317690B1/en not_active Expired - Lifetime
-
2001
- 2001-05-18 US US09/859,407 patent/US6401038B2/en not_active Expired - Lifetime
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1476719B1 (en) * | 2002-02-08 | 2014-07-16 | Saab Ab | Method and system for calculating a flight route |
EP1369665A3 (en) * | 2002-06-07 | 2007-05-02 | EADS Deutschland GmbH | Method for avoiding aircraft terrain collisions |
EP1369665A2 (en) * | 2002-06-07 | 2003-12-10 | EADS Deutschland GmbH | Method for avoiding aircraft terrain collisions |
US7584027B2 (en) * | 2002-07-05 | 2009-09-01 | Thales | Aircraft navigation aid method and corresponding device |
US20050234608A1 (en) * | 2002-07-05 | 2005-10-20 | Thales | Method for an aircraft navigational aid and corresponding device |
US20040098175A1 (en) * | 2002-11-19 | 2004-05-20 | Amir Said | Methods and apparatus for imaging and displaying a navigable path |
US8797402B2 (en) | 2002-11-19 | 2014-08-05 | Hewlett-Packard Development Company, L.P. | Methods and apparatus for imaging and displaying a navigable path |
US20040138810A1 (en) * | 2003-01-10 | 2004-07-15 | Yoshihiko Sugawara | Map search system |
US7225076B2 (en) * | 2003-01-10 | 2007-05-29 | Denso Corporation | Map search system |
US7526718B2 (en) | 2003-04-30 | 2009-04-28 | Hewlett-Packard Development Company, L.P. | Apparatus and method for recording “path-enhanced” multimedia |
US20040218910A1 (en) * | 2003-04-30 | 2004-11-04 | Chang Nelson L. | Enabling a three-dimensional simulation of a trip through a region |
US20040218895A1 (en) * | 2003-04-30 | 2004-11-04 | Ramin Samadani | Apparatus and method for recording "path-enhanced" multimedia |
US20080021646A1 (en) * | 2003-08-08 | 2008-01-24 | Daniel Preston | High altitude parachute navigation flight computer |
US7107146B2 (en) * | 2003-12-10 | 2006-09-12 | Honeywell International Inc. | Methods and systems for generating a terrain elevation map in a cartesian format |
US20050131630A1 (en) * | 2003-12-10 | 2005-06-16 | Christianson Paul E. | Methods and systems for generating a terrain elevation map in a cartesian format |
US20070024616A1 (en) * | 2005-07-28 | 2007-02-01 | Goyne Linda J | Real-time conformal terrain rendering |
US7612775B2 (en) * | 2005-07-28 | 2009-11-03 | The Boeing Company | Real-time conformal terrain rendering |
US8065043B2 (en) * | 2006-02-28 | 2011-11-22 | Honeywell International Inc. | Predicted path selection system and method for hazard coding in selectively constrained aircraft control systems |
US20100250032A1 (en) * | 2006-02-28 | 2010-09-30 | Honeywell International Inc. | Predicted path selection system and method for hazard coding in selectively constrained aircraft control systems |
US8121746B2 (en) * | 2006-03-21 | 2012-02-21 | Thales | Method and a device for monitoring the minimum flying altitude of an aircraft |
US20070250223A1 (en) * | 2006-03-21 | 2007-10-25 | Thales | Method and a device for monitoring the minimum flying altitude of an aircraft |
DE102006033347A1 (en) * | 2006-07-19 | 2008-01-31 | Eads Deutschland Gmbh | Method for determining optimized trajectories of vehicles |
US20080021635A1 (en) * | 2006-07-19 | 2008-01-24 | Eads Deutschland Gmbh | Method for establishing optimized paths of movement of vehicles |
FR2910678A1 (en) * | 2006-12-21 | 2008-06-27 | Thales Sa | Aircraft's flight plan structuring method for e.g. search and rescue application, involves subdividing flight plan of aircraft into units compatible with large stages of regular flight plan, where flight plan has arborescent structure |
US20080183343A1 (en) * | 2007-01-31 | 2008-07-31 | Honeywell International, Inc. | Systems and methods for constructing variable offset paths |
US7483790B2 (en) * | 2007-01-31 | 2009-01-27 | Honeywell International Inc. | Systems and methods for constructing variable offset paths |
US8049644B1 (en) * | 2007-04-17 | 2011-11-01 | Rcokwell Collins, Inc. | Method for TAWS depiction on SVS perspective displays |
US9939526B2 (en) | 2007-09-06 | 2018-04-10 | Rockwell Collins, Inc. | Display system and method using weather radar sensing |
US8145366B1 (en) * | 2008-06-13 | 2012-03-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Real-time, interactive sonic boom display |
EP2159544A1 (en) * | 2008-07-31 | 2010-03-03 | Honeywell International Inc. | Flight deck communication and display system |
US20100030401A1 (en) * | 2008-07-31 | 2010-02-04 | Honeywell International Inc. | Flight deck communication and display system |
US8285427B2 (en) | 2008-07-31 | 2012-10-09 | Honeywell International Inc. | Flight deck communication and display system |
US9354633B1 (en) | 2008-10-31 | 2016-05-31 | Rockwell Collins, Inc. | System and method for ground navigation |
US8234068B1 (en) * | 2009-01-15 | 2012-07-31 | Rockwell Collins, Inc. | System, module, and method of constructing a flight path used by an avionics system |
US20100332123A1 (en) * | 2009-06-26 | 2010-12-30 | Eurocopter | Method of assisting piloting at low altitude |
US8364330B2 (en) * | 2009-06-26 | 2013-01-29 | Eurocopter | Method of assisting piloting at low altitude |
US20110199257A1 (en) * | 2010-02-18 | 2011-08-18 | David Lundgren | Method and system for updating altitude information for a location by using terrain model information to prime altitude sensors |
US8392475B2 (en) * | 2010-03-15 | 2013-03-05 | Eurocopter | Method and a device for flying safely at low altitude in an aircraft |
US20110225212A1 (en) * | 2010-03-15 | 2011-09-15 | Eurocopter | Method and a device for flying safely at low altitude in an aircraft |
US9064222B2 (en) * | 2010-05-14 | 2015-06-23 | The Boeing Company | Real time mission planning |
US20110283285A1 (en) * | 2010-05-14 | 2011-11-17 | The Boeing Company | Real Time Mission Planning |
US8725417B1 (en) * | 2010-08-27 | 2014-05-13 | Rockwell Collins, Inc. | Rapid intervisibility determination in resource-constrained computational environments |
US20140108419A1 (en) * | 2011-01-31 | 2014-04-17 | Google Inc. | Method for efficiently querying multiple points in an indexed quadtree |
US20130027388A1 (en) * | 2011-07-26 | 2013-01-31 | Electronics And Telecommunications Research Institute | Apparatus and method for downsizing surface elevation data |
US8730264B1 (en) * | 2011-09-26 | 2014-05-20 | Google Inc. | Determining when image elements intersect |
US8798812B2 (en) * | 2011-10-07 | 2014-08-05 | Korea Aerospace Industries, Ltd. | Three-dimensional digital map |
US20130090787A1 (en) * | 2011-10-07 | 2013-04-11 | Korea Aerospace Industries, Ltd. | Three-dimensional digital map |
US20140032019A1 (en) * | 2012-07-27 | 2014-01-30 | Thales | Device and Method for Managing the Strategy to Join Waypoints |
US20140156114A1 (en) * | 2012-11-30 | 2014-06-05 | Thales | Method for displaying an aeronautical flight plan comprising a step of flight data configuration |
US9202381B2 (en) * | 2012-11-30 | 2015-12-01 | Thales | Method for displaying an aeronautical flight plan comprising a step of flight data configuration |
FR2999700A1 (en) * | 2012-12-14 | 2014-06-20 | Thales Sa | METHOD AND DEVICE FOR PROVIDING MACHINE MANUAL INTERFACE DATA RELATING TO A FLIGHT PLAN |
US8843303B1 (en) * | 2012-12-17 | 2014-09-23 | Rockwell Collins, Inc. | Risk-aware contingency flight re-planner system and related method |
US8798815B1 (en) * | 2013-03-13 | 2014-08-05 | Honeywell International Inc. | System and method alerting an aircrew of threshold altitudes |
US10794704B2 (en) * | 2013-04-01 | 2020-10-06 | Smartsky Networks LLC | Systems and methods for continuous replanning of vehicle trajectories |
US20140358433A1 (en) * | 2013-06-04 | 2014-12-04 | Ronen Padowicz | Self-contained navigation system and method |
US9383207B2 (en) * | 2013-06-04 | 2016-07-05 | Ronen Padowicz | Self-contained navigation system and method |
US20150198452A1 (en) * | 2013-08-20 | 2015-07-16 | Raghav Gupta | Driving direction based on weather forecasting system and method |
US10378916B2 (en) * | 2014-02-05 | 2019-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Display apparatus for vehicle and display method of display apparatus for vehicle |
US10928510B1 (en) | 2014-09-10 | 2021-02-23 | Rockwell Collins, Inc. | System for and method of image processing for low visibility landing applications |
WO2016149039A1 (en) * | 2015-03-17 | 2016-09-22 | Sikorsky Aircraft Corporation | Trajectory control of a vehicle |
US10739792B2 (en) | 2015-03-17 | 2020-08-11 | Sikorsky Aircraft Corporation | Trajectory control of a vehicle |
US10467914B2 (en) * | 2015-07-14 | 2019-11-05 | The Boeing Company | Methods and systems for autonomous generation of shortest lateral paths for unmanned aerial systems |
US9599994B1 (en) * | 2015-08-03 | 2017-03-21 | The United States Of America As Represented By The Secretary Of The Army | Collisionless flying of unmanned aerial vehicles that maximizes coverage of predetermined region |
US10705201B1 (en) | 2015-08-31 | 2020-07-07 | Rockwell Collins, Inc. | Radar beam sharpening system and method |
US11217106B2 (en) * | 2016-03-08 | 2022-01-04 | International Business Machines Corporation | Drone air traffic control and flight plan management |
US10228460B1 (en) | 2016-05-26 | 2019-03-12 | Rockwell Collins, Inc. | Weather radar enabled low visibility operation system and method |
US10955548B1 (en) | 2016-05-26 | 2021-03-23 | Rockwell Collins, Inc. | Weather radar enabled low visibility operation system and method |
US20180025099A1 (en) * | 2016-07-25 | 2018-01-25 | Xinaps B.V. | Method and an apparatus for calculating a distance in an area |
US10353068B1 (en) | 2016-07-28 | 2019-07-16 | Rockwell Collins, Inc. | Weather radar enabled offshore operation system and method |
CN106600502A (en) * | 2016-08-16 | 2017-04-26 | 南京航空航天大学 | Topological modeling method of multi-airport terminal area course network |
CN108225358A (en) * | 2016-12-22 | 2018-06-29 | 格式塔系统有限责任公司 | Vehicle navigation |
US10466058B2 (en) * | 2016-12-22 | 2019-11-05 | Gestalt Systems GmbH | Navigation for vehicles |
US10347141B2 (en) * | 2017-04-26 | 2019-07-09 | Honeywell International Inc. | System and method for transmitting obstacle alerts to aircraft from a ground based database |
WO2019209297A1 (en) * | 2018-04-26 | 2019-10-31 | Sikorsky Aircraft Corporation | Enhanced 2d profile depiction for preview of terrain, power and fuel management in autonomous systems |
US11269336B2 (en) * | 2018-09-21 | 2022-03-08 | Tata Consultancy Services Limited | Method and system for free space detection in a cluttered environment |
EP3647727A1 (en) * | 2018-10-30 | 2020-05-06 | Navico Holding AS | Systems and associated methods for generating navigation charts and navigable routes in an open environment |
EP3885705A1 (en) * | 2018-10-30 | 2021-09-29 | Navico Holding AS | Systems and associated methods for generating navigation charts and navigable routes in an open environment |
CN109445462A (en) * | 2018-11-30 | 2019-03-08 | 电子科技大学 | A kind of unmanned plane robust paths planning method under uncertain condition |
US11043131B2 (en) * | 2019-02-26 | 2021-06-22 | Honeywell International Inc. | Systems and methods for generating a recapture path for an aircraft |
CN109916393A (en) * | 2019-03-29 | 2019-06-21 | 电子科技大学 | A kind of multiple grid point value air navigation aid and its application based on robot pose |
CN110544296A (en) * | 2019-07-31 | 2019-12-06 | 中国矿业大学 | intelligent planning method for three-dimensional global flight path of unmanned aerial vehicle in environment with uncertain enemy threat |
US11650969B2 (en) * | 2019-08-07 | 2023-05-16 | Gulfstream Aerospace Corporation | Quadtree terrain data compression using distance-based pruning |
US20220405258A1 (en) * | 2019-08-07 | 2022-12-22 | Gulfstream Aerospace Corporation | Quadtree terrain data compression using distance-based pruning |
US11468025B2 (en) * | 2019-08-07 | 2022-10-11 | Gulfstream Aerospace Corporation | Quadtree terrain data compression using distance-based pruning |
CN111814328A (en) * | 2020-07-07 | 2020-10-23 | 浙江工业大学 | Modeling and query method of space-time data cube with flight area |
CN111998858A (en) * | 2020-09-15 | 2020-11-27 | 长春工业大学 | Unmanned aerial vehicle route planning method based on improved A-star algorithm |
CN112710311A (en) * | 2020-12-14 | 2021-04-27 | 中国铁路设计集团有限公司 | Automatic planning method for three-dimensional live-action reconstruction aerial camera points of terrain adaptive unmanned aerial vehicle |
CN113375672A (en) * | 2021-02-08 | 2021-09-10 | 北京理工大学 | High real-time track avoiding method and system for unmanned aerial vehicle |
CN113252038A (en) * | 2021-05-06 | 2021-08-13 | 西北工业大学 | Course planning terrain auxiliary navigation method based on particle swarm optimization |
FR3123172A1 (en) * | 2021-05-21 | 2022-11-25 | Thales | Methods of compression and decompression of a digital terrain model file; compressed and uncompressed files and associated computer program product. |
WO2022243494A1 (en) * | 2021-05-21 | 2022-11-24 | Thales | Methods for the compression and decompression of a digital terrain model file; associated compressed and decompressed files and computer program product |
CN113624235A (en) * | 2021-07-31 | 2021-11-09 | 武夷科技信息(北京)有限公司 | Method for dynamically adjusting navigation path in real time by unmanned aerial vehicle |
CN116931593A (en) * | 2022-04-07 | 2023-10-24 | 广东汇天航空航天科技有限公司 | Flight control method and device, aircraft and storage medium |
CN115952253A (en) * | 2023-03-15 | 2023-04-11 | 中国空气动力研究与发展中心计算空气动力研究所 | Airdrop trajectory prediction method and device for complex terrain space database |
CN116430906A (en) * | 2023-06-13 | 2023-07-14 | 西安羚控电子科技有限公司 | Unmanned aerial vehicle dynamic obstacle avoidance method, system, equipment and medium based on bump translation |
CN117320106A (en) * | 2023-11-30 | 2023-12-29 | 湖南林科达信息科技有限公司 | Forestry unmanned aerial vehicle intelligent communication system and terminal based on big dipper |
CN118297441A (en) * | 2024-06-05 | 2024-07-05 | 中国航空工业集团公司西安飞机设计研究所 | Unmanned aerial vehicle ground target threat assessment method and airborne equipment |
Also Published As
Publication number | Publication date |
---|---|
US6317690B1 (en) | 2001-11-13 |
US6401038B2 (en) | 2002-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6317690B1 (en) | Path planning, terrain avoidance and situation awareness system for general aviation | |
EP1065470A1 (en) | A path planning, terrain avoidance and situation awareness system for general aviation | |
JP3738415B2 (en) | Flight path planning, terrain avoidance and situation recognition system for general purpose aircraft | |
US9613269B2 (en) | Identifying and tracking convective weather cells | |
CA2508320C (en) | A method and system for processing and analyzing digital terrain data | |
CN112859930B (en) | Optimal path planning method based on three-dimensional low-altitude visual flight | |
US20070188491A1 (en) | System and method for fast efficient contour shading of sampled data | |
US10019835B1 (en) | Digital map rendering method | |
US11650969B2 (en) | Quadtree terrain data compression using distance-based pruning | |
US8725417B1 (en) | Rapid intervisibility determination in resource-constrained computational environments | |
CN1105954C (en) | Route planning, terrain evading and fly environment warming system for general-purpose aviation | |
McKEOWN Jr | Knowledge-based aerial photo interpretation | |
Wu et al. | A non-rigid hierarchical discrete grid structure and its application to UAVs conflict detection and path planning | |
Cronin | Automated reasoning with contour maps | |
Hošková-Mayerová et al. | Spatial database quality and the potential uncertainty sources | |
Huss et al. | Effect of database errors on intervisibility estimation | |
KR20190004983A (en) | Method and apparatus for providing digital moving map service for safe navigation of unmanned aerial vehicle | |
Kumar et al. | Geographic Information Systems in Urban Planning and Management | |
KR20190004976A (en) | Method and apparatus for generating digital moving map for safe navigation of unmanned aerial vehicle | |
EP0655714A1 (en) | Transformation of digital terrain elevation data to reveal areas of low observability | |
Tse et al. | Using the delaunay triangulation/voronoi diagram to extract building information from raw lidar data | |
Gedicke et al. | Selecting Landmarks for Wayfinding Assistance Based on Advance Visibility | |
KR102196076B1 (en) | Method and Apparatus for Generating Trigonal-Hexagonal Map And for Determining Global Position of Mobile Object Using The Same | |
Karimi et al. | GPSLoc: Framework for predicting global positioning system quality of service | |
Allerton et al. | ROUTING ALGORITHMS FOR REAL-TIME MISSION MANAGEIVHENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |