<title lang="zh">光學成像模組及其成像系統</title><technical-field><p>本創作係關於一種光學成像模組及其成像系統,特別係一種具有複數個定焦鏡頭組,並且具有一體成形的多鏡頭框架,且將部分之訊號傳導元件埋設於多鏡頭框架之光學成像模組及其成像系統。</p></technical-field><background-art><p>現今之攝錄裝置於組裝之上尚有非常多的問題需要克服,特別是多鏡頭的攝錄裝置,由於具有複數個鏡頭,因此於組裝或是製造時是否能將光軸準直地對準感光元件將會對成像品質造成十分重要的影響。</p><p>另外,若是攝錄裝置具有對焦的功能,例如使鏡頭移動進行對焦之功能時,由於零組件會更加複雜,因此對於所有零件的組裝及封裝品質將會更難以掌控。</p><p>更進一步,若要滿足更高階的攝影要求,攝錄裝置將會具有更多的透鏡,例如四片透鏡以上,因此,如何在兼顧多片透鏡,例如至少兩片以上,甚至四片以上時依舊可具有良好的成像品質,將是十分重要且須解決的問題,因此,需要一種光學成像模組及成像系統以解決上述習知問題</p><p>有鑑於上述習知之問題,本創作係提供一種光學成像模組及成像系統,可以使得各定焦透鏡組及各對焦透鏡組之光軸與感測面之中心法線重疊,使光線可通過容置孔中之各定焦透鏡組及各對焦透鏡組並通過光通道後投射至感測面,確保成像品質,另外可將訊號傳導元件,例如金線,埋設於一體成型的多鏡頭框架中,以避免於封裝過程中使得元件變形,而造成例如短路等諸多問題,並且可減少光學模組整體的尺寸。</p></background-art><disclosure><p>基於上述目的,本創作係提供一種光學成像模組,其包含電路組件以及透鏡組件。電路組件可包含電路基板、複數個影像感測元件、複數個訊號傳導元件及多鏡頭框架。電路基板可包含複數個電路接點。各影像感測元件可包含第一表面及第二表面,第一表面可與電路基板連接,第二表面上可具有感測面以及複數個影像接點。複數個訊號傳導元件可電性連接於電路基板上之複數個電路接點及各影像感測元件之各複數個影像接點之間。多鏡頭框架可以一體成型方式製成,並蓋設於電路基板及影像感測元件上,且訊號傳導元件可部分埋設於多鏡頭框架中,另一部分可由多鏡頭框架所環繞,而對應複數個影像感測元件之感測面之位置可具有複數個光通道。透鏡組件可包含複數個透鏡基座、至少一定焦透鏡組、至少一對焦透鏡組及至少一驅動組件。透鏡基座可以不透光材質製成,並具有容置孔貫穿透鏡基座兩端,而使透鏡基座呈中空,且透鏡基座可設置於多鏡頭框架上而使容置孔及光通道相連通。定焦透鏡組及對焦透鏡組可具有至少二片具有屈光力之透鏡,且設置於透鏡基座上並位於容置孔中,定焦透鏡組及對焦透鏡組之成像面可位於感測面,且定焦透鏡組及對焦透鏡組之光軸與感測面之中心法線重疊,使光線可通過容置孔中之定焦透鏡組及對焦透鏡組並通過光通道後投射至感測面。複數個驅動組件可與電路基板電性連接,並驅動定焦透鏡組及對焦透鏡組於感測面之中心法線方向上移動。定焦透鏡組及對焦透鏡組更滿足下列條件: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm< PhiD≦18mm; 0<PhiA/PhiD≦0.99;及 0.9≦2(ARE/HEP)≦2.0。</p><p>其中,f為定焦透鏡組及對焦透鏡組的焦距;HEP為定焦透鏡組及對焦透鏡組之入射瞳直徑;HAF為定焦透鏡組及對焦透鏡組之最大可視角度的一半;PhiD為透鏡基座之外周緣且垂直於定焦透鏡組及對焦透鏡組之光軸的平面上的最小邊長的最大值;PhiA為定焦透鏡組及對焦透鏡組最接近成像面之透鏡表面的最大有效直徑;ARE係以定焦透鏡組及對焦透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著透鏡表面的輪廓所得之輪廓曲線長度。</p><p>較佳地,透鏡基座可包含鏡筒及透鏡支架,鏡筒可具有一貫穿鏡筒兩端之上通孔,而透鏡支架則具有一貫穿透鏡支架兩端之下通孔,鏡筒可設置於透鏡支架中且位於下通孔內,使上通孔與下通孔連通而共同構成容置孔,透鏡支架可固定於多鏡頭框架上,使影像感測元件位於下通孔中,且鏡筒之上通孔可正對影像感測元件之感測面,定焦透鏡組及對焦透鏡組可設置於鏡筒中而位於上通孔內,且驅動組件可驅動鏡筒相對於透鏡支架於感測面之中心法線方向上移動,且PhiD係指透鏡支架之外周緣且垂直於定焦透鏡組及對焦透鏡組之光軸的平面上的最小邊長的最大值。</p><p>較佳地,本創作之光學成像模組可更包含至少一資料傳輸線路,可與電路基板電性連接,並傳輸各複數個影像感測元件所產生之複數個感測訊號。</p><p>較佳地,複數個影像感測元件可感測複數個彩色影像。</p><p>較佳地,至少一影像感測元件可感測複數個黑白影像,至少一影像感測元件可感測複數個彩色影像。</p><p>較佳地,本創作之光學成像模組可更包含紅外線濾光片,且紅外線濾光片可設置於透鏡基座中並位於容置孔內而處於影像感測元件上方。</p><p>較佳地,本創作之光學成像模組更包含紅外線濾光片,可設置於鏡筒或透鏡支架中且位於影像感測元件上方。</p><p>較佳地,本創作之光學成像模組可更包含紅外線濾光片,且透鏡基座可包含濾光片支架,濾光片支架可具有一貫穿濾光片支架兩端之濾光片通孔,且紅外線濾光片可設置於濾光片支架中並位於濾光片通孔內,且濾光片支架可對應複數個光通道之位置,設置於多鏡頭框架上,而使紅外線濾光片位於影像感測元件上方。</p><p>較佳地,透鏡基座可包含鏡筒及透鏡支架。鏡筒可具有一貫穿鏡筒兩端之上通孔,而透鏡支架則具有一貫穿透鏡支架兩端之下通孔,鏡筒可設置於透鏡支架中且位於下通孔內。透鏡支架可固定於濾光片支架上,且下通孔與上通孔以及濾光片通孔連通而共同構成該容置孔,使影像感測元件位於濾光片通孔中,且鏡筒之上通孔係正對影像感測元件之感測面。另外,定焦透鏡組及對焦透鏡組可設置於鏡筒中而位於上通孔內。</p><p>較佳地,多鏡頭框架之材料可包含材料係熱塑性樹脂、工業用塑膠、絕緣材料、金屬、導電材料或合金中的任一項或其組合。</p><p>較佳地,多鏡頭框架可包含複數個鏡頭支架,且各鏡頭支架可具有光通道,並具有中心軸,且各鏡頭支架之中心軸距離係介於2mm至200mm。</p><p>較佳地,驅動組件可包含音圈馬達。</p><p>較佳地,多鏡頭框架可具有外表面、第一內表面及第二內表面。外表面可自電路基板之邊緣延伸,並具有與感測面之中心法線之傾斜角α,α係介於2°~30°。第一內表面係光通道之內表面,且第一內表面可與感測面之中心法線具有一傾斜角β,β係介於2°~45°。第二內表面係自影像感測元件向光通道方向延伸,並具有與感測面之中心法線之傾斜角γ,γ係介於1°~3°。</p><p>較佳地,多鏡頭框架可具有外表面、第一內表面及第二內表面。外表面可自電路基板之邊緣延伸,並具有與感測面之中心法線之傾斜角α,α係介於2°~30°。第一內表面係光通道之內表面,且第一內表面可與感測面之中心法線具有一傾斜角β,β係介於2°~45°。第二內表面係自電路基板之頂表面向光通道方向延伸,並具有與感測面之中心法線之傾斜角γ,γ係介於1°~3°。</p><p>較佳地,光學成像模組係具有至少二透鏡組,分別係為第一透鏡組及第二透鏡組,且至少一透鏡組為對焦透鏡組,且第二透鏡組之視角FOV係大於第一透鏡組。</p><p>較佳地,光學成像模組係具有至少二透鏡組,分別係為第一透鏡組及第二透鏡組,且至少一透鏡組為對焦透鏡組,且第一透鏡組之焦距係大於第二透鏡組。</p><p>較佳地,光學成像模組係具有至少三透鏡組,分別係為第一透鏡組、第二透鏡組及第三透鏡組,且至少一透鏡組為對焦透鏡組,且第二透鏡組之視角FOV係大於第一透鏡組,且第二透鏡組之視角FOV係大於46°,且對應接收第一透鏡組及第二透鏡組之光線之各影像感測元件係感測複數個彩色影像。</p><p>較佳地,光學成像模組係具有至少三透鏡組,分別係為第一透鏡組、第二透鏡組及第三透鏡組,且至少一透鏡組為對焦透鏡組,且第一透鏡組之焦距係大於第二透鏡組,且對應接收第一透鏡組及第二透鏡組之光線之各影像感測元件係感測複數個彩色影像。</p><p>較佳地,光學成像模組更滿足下列條件:</p><p>0<(TH1+TH2)/HOI≦0.95;其中,TH1為透鏡支架之最大厚度;TH2為鏡筒之最小厚度;HOI為成像面上垂直於光軸的最大成像高度。</p><p>較佳地,光學成像模組更滿足下列條件:</p><p>0mm<TH1+TH2≦1.5mm;其中,TH1為該透鏡支架之最大厚度;TH2為鏡筒之最小厚度。</p><p>較佳地,光學成像模組更滿足下列條件:</p><p>0<(TH1+TH2)/HOI≦0.95;其中,TH1為透鏡支架之最大厚度;TH2為鏡筒之最小厚度;HOI為成像面上垂直於光軸的最大成像高度。</p><p>較佳地,光學成像模組更滿足下列條件:</p><p>0.9≦ARS/EHD≦2.0。ARS係以定焦透鏡組及對焦透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以該透鏡表面之最大有效半徑處為終點,延著該透鏡表面的輪廓所得之輪廓曲線長度。EHD為定焦透鏡組及對焦透鏡組中任一透鏡之任一表面的最大有效半徑。</p><p>較佳地,更滿足下列條件:</p><p>PLTA≦100µm;PSTA≦100µm;NLTA≦100µm;以及NSTA≦100µm。SLTA≦100µm;SSTA≦100µm。首先,係定義HOI為成像面上垂直於光軸之最大成像高度;PLTA為光學成像模組的正向子午面光扇之可見光最長工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差;PSTA為光學成像模組的正向子午面光扇之可見光最短工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差NLTA為光學成像模組的負向子午面光扇之可見光最長工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差;NSTA為光學成像模組的負向子午面光扇之可見光最短工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像;SLTA為光學成像模組的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差;SSTA為光學成像模組的弧矢面光扇之可見光最短工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差。</p><p>較佳地,定焦透鏡組及對焦透鏡組可包含四片具有屈折力之透鏡,由物側至像側依序為第一透鏡、第二透鏡、第三透鏡以及第四透鏡,且定焦透鏡組及對焦透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡之物側面至成像面於光軸上之距離。InTL為第一透鏡之物側面至第四透鏡之像側面於光軸上之距離。</p><p>較佳地,定焦透鏡組及對焦透鏡組可包含五片具有屈折力之透鏡,由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡,且定焦透鏡組及對焦透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡之物側面至成像面於光軸上之距離;InTL為第一透鏡之物側面至第五透鏡之像側面於光軸上之距離。</p><p>較佳地,定焦透鏡組及對焦透鏡組可包含六片具有屈折力之透鏡,由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及第六透鏡,且定焦透鏡組及對焦透鏡組滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡之物側面至成像面於光軸上之距離;InTL為第一透鏡之物側面至第六透鏡之像側面於光軸上之距離。</p><p>較佳地,定焦透鏡組及對焦透鏡組可包含七片具有屈折力之透鏡,由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡以及第七透鏡,且定焦透鏡組及對焦透鏡組可滿足下列條件0.1≦InTL/HOS≦0.95。HOS為第一透鏡之物側面至成像面於光軸上之距離。InTL為第一透鏡之物側面至第七透鏡之像側面於光軸上之距離。</p><p>基於上述目的,本創作再提供一種光學成像系統,其係包含如上所述之光學成像模組,且係應用於電子可攜式裝置、電子穿戴式裝置、電子監視裝置、電子資訊裝置、電子通訊裝置、機器視覺裝置、車用電子裝置以及所構成群組之一。</p><p>基於上述目的,本創作再提供一種光學成像模組之製造方法,其包含下列方法步驟:</p><p>設置電路組件,且電路組件可包含電路基板、複數個影像感測元件及複數個訊號傳導元件。</p><p>將複數個訊號傳導元件電性連接於電路基板上之複數個電路接點及各影像感測元件之第二表面上之複數個影像接點之間。</p><p>一體地形成多鏡頭框架,使多鏡頭框架蓋設於電路基板及影像感測元件,並將部分之訊號傳導元件埋設於多鏡頭框架中,及將另一部分之訊號傳導元件由多鏡頭框架環繞,並形成對應各影像感測元件之第二表面上之感測面之位置形成複數個光通道。</p><p>設置透鏡組件,且透鏡組件可包含複數個透鏡基座、至少一定焦透鏡組、至少一對焦透鏡組及至少一驅動組件。</p><p>以不透光材質製成透鏡基座,並於透鏡基座上形成容置孔,使容置孔貫穿透鏡基座兩端而使透鏡基座呈中空。</p><p>將透鏡基座設置於多鏡頭框架上而使容置孔與光通道相連通。</p><p>置至少二片具有屈光力之透鏡於定焦透鏡組及對焦透鏡組中,並使定焦透鏡組及對焦透鏡組滿足下列條件: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99;及 0≦2(ARE/HEP)≦2.0</p><p>於上述條件中,f為定焦透鏡組及對焦透鏡組的焦距;HEP為定焦透鏡組及對焦透鏡組之入射瞳直徑;HAF為定焦透鏡組及對焦透鏡組之最大可視角度的一半;PhiD為透鏡基座之外周緣且垂直於定焦透鏡組及對焦透鏡組之光軸的平面上的最小邊長的最大值;PhiA為定焦透鏡組及對焦透鏡組最接近成像面之透鏡表面的最大有效直徑;ARE係以定焦透鏡組及對焦透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著透鏡表面的輪廓所得之輪廓曲線長度。</p><p>將定焦透鏡組及對焦透鏡組設置於各透鏡基座上並位於容置孔中。</p><p>調整透鏡組件之定焦透鏡組及對焦透鏡組之成像面,使透鏡組件之定焦透鏡組及對焦透鏡組之成像面位於各影像感測元件之感測面,並使定焦透鏡組及對焦透鏡組之光軸與感測面之中心法線重疊。</p><p>將各驅動組件與電路基板電性連接,並與各對焦透鏡組耦接,以驅動各對焦透鏡組於該感測面之中心法線方向上移動。</p><p>本創作實施例相關之透鏡參數的用語與其代號詳列如下,作為後續描述的參考:</p><p>與長度或高度有關之透鏡參數</p><p>光學成像模組之最大成像高度以HOI表示;光學成像模組之高度(即第一片透鏡之物側面至成像面之於光軸上的距離)以HOS表示;光學成像模組之第一透鏡物側面至最後一片透鏡像側面間的距離以InTL表示;光學成像模組之固定光欄 (光圈)至成像面間的距離以InS表示;光學成像模組之第一透鏡與第二透鏡間的距離以IN12表示(例示);光學成像模組之第一透鏡於光軸上的厚度以TP1表示(例示)。</p><p>與材料有關之透鏡參數</p><p>光學成像模組之第一透鏡的色散係數以NA1表示(例示);第一透鏡的折射律以Nd1表示(例示)。</p><p>與視角有關之透鏡參數</p><p>視角以AF表示;視角的一半以HAF表示;主光線角度以MRA表示。</p><p>與出入瞳有關之透鏡參數</p><p>光學成像鏡片系統之入射瞳直徑以HEP表示;單一透鏡之任一表面的最大有效半徑係指系統最大視角入射光通過入射瞳最邊緣的光線於該透鏡表面交會點(Effective Half Diameter;EHD),該交會點與光軸之間的垂直高度。例如第一透鏡物側面的最大有效半徑以EHD11表示,第一透鏡像側面的最大有效半徑以EHD12表示。第二透鏡物側面的最大有效半徑以EHD21表示,第二透鏡像側面的最大有效半徑以EHD22表示。光學成像模組中其餘透鏡之任一表面的最大有效半徑表示方式以此類推。光學成像模組中最接近成像面之透鏡的像側面之最大有效直徑以PhiA表示,其滿足條件式PhiA=2倍EHD,若該表面為非球面,則最大有效直徑之截止點即為含有非球面之截止點。單一透鏡之任一表面的無效半徑(Ineffective Half Diameter;IHD) 係指朝遠離光軸方向延伸自同一表面之最大有效半徑的截止點(若該表面為非球面,即該表面上具非球面係數之終點)的表面區段。光學成像模組中最接近成像面之透鏡的像側面之最大直徑以PhiB表示,其滿足條件式PhiB=2倍 (最大有效半徑EHD + 最大無效半徑IHD)= PhiA + 2倍 (最大無效半徑IHD)。</p><p>光學成像模組中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑,又可稱之為光學出瞳,其以PhiA表示,若光學出瞳位於第三透鏡像側面則以PhiA3表示,若光學出瞳位於第四透鏡像側面則以PhiA4表示,若光學出瞳位於第五透鏡像側面則以PhiA5表示,若光學出瞳位於第六透鏡像側面則以PhiA6表示,若光學成像模組具有不同具屈折力片數之透鏡,其光學出瞳表示方式以此類推。光學成像模組之瞳放比以PMR表示,其滿足條件式為PMR = PhiA / HEP。</p><p>與透鏡面形弧長及表面輪廓有關之參數</p><p>單一透鏡之任一表面的最大有效半徑之輪廓曲線長度,係指該透鏡之表面與所屬光學成像模組之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至其最大有效半徑之終點為止,前述兩點間的曲線弧長為最大有效半徑之輪廓曲線長度,並以ARS表示。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。光學成像模組中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度表示方式以此類推。</p><p>單一透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度,係指該透鏡之表面與所屬光學成像模組之光軸的交點為起始點,自該起始點沿著該透鏡之表面輪廓直至該表面上距離光軸1/2入射瞳直徑的垂直高度之座標點為止,前述兩點間的曲線弧長為1/2入射瞳直徑(HEP)之輪廓曲線長度,並以ARE表示。例如第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。光學成像模組中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)之輪廓曲線長度表示方式以此類推。</p><p>與透鏡面形深度有關之參數</p><p>第六透鏡物側面於光軸上的交點至第六透鏡物側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS61表示 (最大有效半徑深度);第六透鏡像側面於光軸上的交點至第六透鏡像側面的最大有效半徑之終點為止,前述兩點間水平於光軸的距離以InRS62表示 (最大有效半徑深度)。其他透鏡物側面或像側面之最大有效半徑的深度 (沉陷量) 表示方式比照前述。</p><p>與透鏡面型有關之參數</p><p>臨界點C係指特定透鏡表面上,除與光軸的交點外,一與光軸相垂直之切面相切的點。承上,例如第五透鏡物側面的臨界點C51與光軸的垂直距離為HVT51(例示),第五透鏡像側面的臨界點C52與光軸的垂直距離為HVT52(例示),第六透鏡物側面的臨界點C61與光軸的垂直距離為HVT61(例示),第六透鏡像側面的臨界點C62與光軸的垂直距離為HVT62(例示)。其他透鏡之物側面或像側面上的臨界點及其與光軸的垂直距離的表示方式比照前述。</p><p>第七透鏡物側面上最接近光軸的反曲點為IF711,該點沉陷量SGI711(例示),SGI711亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF711該點與光軸間的垂直距離為HIF711(例示)。第七透鏡像側面上最接近光軸的反曲點為IF721,該點沉陷量SGI721(例示),SGI711亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面最近光軸的反曲點之間與光軸平行的水平位移距離,IF721該點與光軸間的垂直距離為HIF721(例示)。</p><p>第七透鏡物側面上第二接近光軸的反曲點為IF712,該點沉陷量SGI712(例示),SGI712亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF712該點與光軸間的垂直距離為 HIF712(例示)。第七透鏡像側面上第二接近光軸的反曲點為IF722,該點沉陷量SGI722(例示),SGI722亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離,IF722該點與光軸間的垂直距離為HIF722(例示)。</p><p>第七透鏡物側面上第三接近光軸的反曲點為IF713,該點沉陷量SGI713(例示),SGI713亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF713該點與光軸間的垂直距離為 HIF713(例示)。第七透鏡像側面上第三接近光軸的反曲點為IF723,該點沉陷量SGI723(例示),SGI723亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第三接近光軸的反曲點之間與光軸平行的水平位移距離,IF723該點與光軸間的垂直距離為HIF723(例示)。</p><p>第七透鏡物側面上第四接近光軸的反曲點為IF714,該點沉陷量SGI714(例示),SGI714亦即第七透鏡物側面於光軸上的交點至第七透鏡物側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF714該點與光軸間的垂直距離為 HIF714(例示)。第七透鏡像側面上第四接近光軸的反曲點為IF724,該點沉陷量SGI724(例示),SGI724亦即第七透鏡像側面於光軸上的交點至第七透鏡像側面第四接近光軸的反曲點之間與光軸平行的水平位移距離,IF724該點與光軸間的垂直距離為HIF724(例示)。</p><p>其他透鏡物側面或像側面上的反曲點及其與光軸的垂直距離或其沉陷量的表示方式比照前述。</p><p>與像差有關之變數</p><p>光學成像模組之光學畸變 (Optical Distortion) 以ODT表示;其TV畸變 (TV Distortion)以TDT表示,並且可以進一步限定描述在成像50%至100%視野間像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。</p><p>本創作提供一種光學成像模組,其第六透鏡的物側面或像側面可設置有反曲點,可有效調整各視場入射於第六透鏡的角度,並針對光學畸變與TV畸變進行補正。另外,第六透鏡的表面可具備更佳的光路調節能力,以提升成像品質。</p><p>依據本創作提供一種光學成像模組,其包含一電路組件以及一透鏡組件。其中,該電路組件包含有一電路基板及一影像感測元件;該電路基板上具有複數電路接點,該影像感測元件具有第一表面與第二表面,該第一表面與該電路基板連接,而該第二表面上具有一感測面以及複數影像接點,且該些影像接點係透過複數訊號傳導元件分別電性連接該電路基板上之該等電路接點。該透鏡組件包含有一透鏡基座及一透鏡組;該透鏡基座以不透光材質製成,且具有一容置孔貫穿該透鏡基座兩端而使該透鏡基座呈中空;另外,該透鏡基座係設置於該電路基板上而使該影像感測元件位於該容置孔中;該透鏡組包含有至少二片具有屈光力之透鏡,且設置於該透鏡基座上並位於該容置孔中;另外,該透鏡組之成像面位於該感測面,且該透鏡組之光軸與該感測面的中心法線重疊,使光線可通過該容置孔中之該透鏡組並投射至該感測面。此外,該光學成像模組更滿足下列條件:1.0≦f/HEP≦10.0;0 deg<HAF≦150 deg;0 mm< PhiD≦18 mm;0 < PhiA/PhiD≦0.99;及0.9≦2(ARE/HEP)≦2.0。</p><p>單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度影響該表面修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在最大有效半徑範圍內之輪廓曲線長度,特別是控制該表面之最大有效半徑範圍內之輪廓曲線長度(ARS)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARS / TP)。例如第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARS11 / TP1,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示,其與TP1間的比值為ARS12 / TP1。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARS21 / TP2,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示,其與TP2間的比值為ARS22 / TP2。光學成像模組中其餘透鏡之任一表面的最大有效半徑之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。此外,該光學成像模組更滿足下列條件:0.9≦ARS/EHD≦2.0。</p><p>該光學成像模組的正向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PLTA表示;該光學成像模組的正向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以PSTA表示。該光學成像模組的負向子午面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NLTA表示;該光學成像模組的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以NSTA表示;該光學成像模組的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SLTA表示;該光學成像模組的弧矢面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差以SSTA表示。此外,該光學成像模組更滿足下列條件:PLTA≦100 µm;PSTA≦100 µm;NLTA≦100 µm;NSTA≦100 µm;SLTA≦100 µm;SSTA≦100 µm;│TDT│< 250 %;0.1≦InTL/HOS≦0.95;以及0.2≦InS/HOS≦1.1。</p><p>可見光在該成像面上之光軸處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ0表示;可見光在該成像面上之0.3HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ3表示;可見光在該成像面上之0.7HOI處於空間頻率110 cycles/mm時之調制轉換對比轉移率以MTFQ7表示。此外,該光學成像模組更滿足下列條件:MTFQ0≧0.2;MTFQ3≧0.01;以及MTFQ7≧0.01。</p><p>單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度特別影響該表面上在各光線視場共用區域之修正像差以及各視場光線間光程差的能力,輪廓曲線長度越長則修正像差的能力提升,然而同時亦會增加生產製造上的困難度,因此必須控制單一透鏡之任一表面在1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度,特別是控制該表面之1/2入射瞳直徑(HEP)高度範圍內之輪廓曲線長度(ARE)與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係(ARE / TP)。例如第一透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE11表示,第一透鏡於光軸上之厚度為TP1,兩者間的比值為ARE11 / TP1,第一透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE12表示,其與TP1間的比值為ARE12 / TP1。第二透鏡物側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE21表示,第二透鏡於光軸上之厚度為TP2,兩者間的比值為ARE21 / TP2,第二透鏡像側面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度以ARE22表示,其與TP2間的比值為ARE22 / TP2。光學成像模組中其餘透鏡之任一表面的1/2入射瞳直徑(HEP)高度之輪廓曲線長度與該表面所屬之該透鏡於光軸上之厚度(TP)間的比例關係,其表示方式以此類推。</p><p>基於上述目的,本創作再提供一種光學成像模組,其包含電路組件、透鏡組件及多鏡頭外框架。電路組件可包含電路基板、複數個影像感測元件及複數個訊號傳導元件。電路基板可包含複數個電路接點。各影像感測元件可包含第一表面及第二表面,第一表面可與電路基板連接,第二表面上可具有感測面以及複數個影像接點。複數個訊號傳導元件可電性連接於電路基板上之複數個電路接點及各影像感測元件之各複數個影像接點之間。透鏡組件可包含複數個透鏡基座、至少一定焦透鏡組、至少一對焦透鏡組及至少一驅動組件。透鏡基座可以不透光材質製成,並具有容置孔貫穿透鏡基座兩端,而使透鏡基座呈中空,且透鏡基座可設置於電路基板上。定焦透鏡組及對焦透鏡組可具有至少二片具有屈光力之透鏡,且設置於透鏡基座上並位於容置孔中,定焦透鏡組及對焦透鏡組之成像面可位於感測面,且定焦透鏡組及對焦透鏡組之光軸與感測面之中心法線重疊,使光線可通過容置孔中之定焦透鏡組及對焦透鏡組並投射至感測面。複數個驅動組件可與電路基板電性連接,並驅動各對焦透鏡組於感測面之中心法線方向上移動。且各透鏡基座可被分別固定於多鏡頭外框架,以便於構成一整體。</p><p>且定焦透鏡組及對焦透鏡組更滿足下列條件: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm< PhiD≦18mm; 0<PhiA/PhiD≦0.99;及 0.9≦2(ARE/HEP)≦2.0。</p><p>其中,f為定焦透鏡組及對焦透鏡組的焦距;HEP為定焦透鏡組及對焦透鏡組之入射瞳直徑;HAF為定焦透鏡組及對焦透鏡組之最大可視角度的一半;PhiD為透鏡基座之外周緣且垂直於定焦透鏡組及對焦透鏡組之光軸的平面上的最小邊長的最大值;PhiA為定焦透鏡組及對焦透鏡組最接近成像面之透鏡表面的最大有效直徑;ARE係以定焦透鏡組及對焦透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著透鏡表面的輪廓所得之輪廓曲線長度。</p></disclosure><mode-for-invention><p>為利貴審查員瞭解本創作之技術特徵、內容與優點及其所能達成之功效,茲將本創作配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明之用,未必為本創作實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本創作於實際實施上的權利範圍,合先敘明。</p><p>以下將參照相關圖式,說明依本創作之光學成像模組、成像系統及成像模組製造方法之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。</p><p>如第1圖至第4圖、第7圖及第9圖至第12圖所示,本創作之光學成像模組,可包含電路組件100以及透鏡組件200。而電路組件100可包含電路基板120、複數個影像感測元件140、複數個訊號傳導元件160及多鏡頭框架180;透鏡組件200可包含複數個透鏡基座220、至少一定焦透鏡組230、至少一對焦透鏡組240及至少一驅動組件260。</p><p>進一步說明,電路基板120可包含複數個電路接點122,而各影像感測元件140可包含第一表面142及第二表面144,且如第3圖所示,影像感測器140之外周緣且垂直於光軸之平面上的最小邊長的最大值為LS。第一表面142可與電路基板120連接,且第二表面144上可具有感測面1441。複數個訊號傳導元件160可電性連接於電路基板120上之複數個電路接點122及各影像感測元件140之複數個影像接點146之間。且在一實施例中,訊號傳導元件160可選自金線、軟性電路板、彈簧針、錫球、凸塊或其所構成群組所製成。</p><p>另外,多鏡頭框架180可以一體成型方式製成,例如以模塑等方式,並蓋設於電路基板120及影像感測元件140上,且可將部分之訊號傳導元件160埋設於多鏡頭框架180中,及將另一部分之訊號傳導元件160由多鏡頭框架180環繞,且對應複數個影像感測元件140之感測面1441之位置可具有複數個光通道182。因此,由於可將部分之訊號傳導元件160埋設於多鏡頭框架180中,可避免訊號傳導元件160於封裝過程中變形,而造成例如短路等諸多問題,並且可減少光學模組整體的尺寸。</p><p>複數個透鏡基座220可以不透光材質製成,並具有容置孔2201貫穿透鏡基座220兩端而使透鏡基座220呈中空,且透鏡基座220可設置於多鏡頭框架180上而使容置孔2201及光通道182相連通。另外,在一實施例中,多鏡頭框架180在光線波長範圍420-660nm之反射率係小於5%,因此可避免當光線進入光通道182後,由於反射或是其他因素所造成的雜散光對影像感測元件140的影響。</p><p>更進一步,在一實施例中,多鏡頭框架180之材料可包含金屬、導電材料或合金中的任一項或其組合,因此可增加散熱效率,或是減少靜電等,以使得影像感測元件140、定焦透鏡組230及對焦透鏡組240之運作更有效率。</p><p>更進一步,在一實施例中,多鏡頭框架180之材料熱塑性樹脂、工業用塑膠、絕緣材料中的任一項或其組合,因此可具有容易加工、輕量化以使得影像感測元件140、定焦透鏡組230及對焦透鏡組240之運作更有效率。</p><p>另外,在一實施例中,如第2圖所示,多鏡頭框架180可包含複數個鏡頭支架181,且各鏡頭支架181可具有光通道182,並具有一中心軸,且各鏡頭支架181之中心軸距離可介於2mm至200mm,因此可如第2圖所示,各鏡頭支架181之間的距離可於此範圍中調整。</p><p>另外,在一實施例中,如第13圖至第17圖所示,多鏡頭框架180可以模塑方式製成,在此方式中,模具可分為模具固定側503及模具可動側502,當模具可動側502蓋設於模具固定側503時,可將材料由注口501灌入模具中,以形成多鏡頭框架180,且於形成多鏡頭框架180時,可將部分之訊號傳導元件160埋設於多鏡頭框架180中,以此使得複數個訊號傳導元件160於形成多鏡頭框架180時即可固定位置,並且可減少光學模組整體的尺寸。</p><p>在一實施例中,如第15圖所示,對於環繞訊號傳導元件160之多鏡頭框架180之部分,可具有外表面184、第一內表面186及第二內表面188,外表面184自電路基板120之邊緣延伸,並具有與感測面1441之中心法線之傾斜角α,α係介於1°~30°。第一內表面186係光通道182之內表面,且第一內表面186可與感測面1441之中心法線具有一傾斜角β,β可介於1°~45°,第二內表面188可自電路基板120之頂表面向光通道182方向延伸,並具有與感測面1441之中心法線之傾斜角γ,γ係介於1°~3°,而藉由傾斜角α、β及γ的設置,可減少模具可動側502脫離模具固定側503時,造成多鏡頭框架180品質不佳,例如離型特性不佳或”飛邊”等情況發生的機會。</p><p>進一步說明,在一實施例中,如第13圖及第14圖所示,多鏡頭框架180可如第15圖中先行形成部分之多鏡頭框架180,以將部分之訊號傳導元件160埋設於多鏡頭框架180中,最後再形成完整之多鏡頭框架180,以此使得複數個訊號傳導元件160於形成多鏡頭框架180時即可固定位置,並且可減少光學模組整體的尺寸。</p><p>而如第14圖所示,對於埋設有訊號傳導元件160之多鏡頭框架180部分,若是先形成部分之多鏡頭框架180以埋設部分之訊號傳導元件160的情況下,則最終所形成之多鏡頭框架180可具有外表面184、第一內表面186及第二內表面188,外表面184自電路基板120之邊緣延伸,並具有與感測面1441之中心法線之傾斜角α,α係介於1°~30°。第一內表面186係光通道182之內表面,且第一內表面186可與感測面1441之中心法線具有一傾斜角β,β可介於1°~45°,第二內表面188可自影像感測元件140向光通道182方向延伸,並具有與感測面1441之中心法線之傾斜角γ,γ係介於1°~3°,而藉由傾斜角α、β及γ的設置,可減少模具可動側502脫離模具固定側503時,造成多鏡頭框架180品質不佳,例如離型特性不佳或”飛邊”等情況發生的機會。</p><p>另外,如第16圖及第17圖所示,在另一實施例中,若是直接形成完整的多鏡頭框架180以埋設部分之訊號傳導元件160的情況下,則最終所形成之多鏡頭框架180可具有外表面184、第一內表面186及第二內表面188,外表面184自電路基板120之邊緣延伸,並具有與感測面1441之中心法線之傾斜角α,α係介於1°~30°。第一內表面186係光通道182之內表面,且第一內表面186可與感測面1441之中心法線具有一傾斜角β,β可介於1°~45°,而藉由傾斜角α及β的設置,可減少模具可動側502脫離模具固定側503時,造成多鏡頭框架180品質不佳,例如”飛邊”等情況發生的機會。</p><p>除此之外,在另一實施例中,多鏡頭框架180亦可以3D列印方式以一體成型方式製成,並且亦可依據需求形成上述之傾斜角α、β及γ,例如可以傾斜角α、β及γ改善結構強度、減少雜散光的產生等等。</p><p>定焦透鏡組230及對焦透鏡組240可具有至少二片具有屈光力之透鏡2401,且設置於透鏡基座220上並位於容置孔2201中,定焦透鏡組230及對焦透鏡組240之成像面可位於感測面1441,且定焦透鏡組230及對焦透鏡組240之光軸與感測面1441之中心法線重疊,使光線可通過容置孔2201中之定焦透鏡組230及對焦透鏡組240並通過光通道182後投射至感測面1441,確保成像品質。此外,如第3圖所示,定焦透鏡組230及對焦透鏡組240最接近成像面之透鏡的像側面之最大直徑以PhiB表示,而定焦透鏡組230及對焦透鏡組240中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑(又可稱之為光學出瞳)可以PhiA表示。</p><p>各驅動組件260可與電路基板120電性連接,並驅動各對焦透鏡組240於感測面1441之中心法線方向上移動,且在一實施例中驅動組件260可包含音圈馬達,以驅動各對焦透鏡組240於感測面1441之中心法線方向上移動。</p><p>且上述之定焦透鏡組230及對焦透鏡組240更滿足下列條件: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99;及 0≦2(ARE/HEP)≦2.0</p><p>進一步說明,f為對焦透鏡組的焦距;HEP為對焦透鏡組之入射瞳直徑;HAF為對焦透鏡組之最大可視角度的一半;PhiD為透鏡基座之外周緣且垂直於對焦透鏡組之光軸的平面上的最小邊長的最大值;PhiA為對焦透鏡組最接近成像面之透鏡表面的最大有效直徑;ARE係以對焦透鏡組中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著透鏡表面的輪廓所得之輪廓曲線長度。</p><p>在一實施例中,如第3圖、至第7圖所示,透鏡基座220可包含鏡筒222以及透鏡支架224,鏡筒222具有一貫穿鏡筒222兩端之上通孔2221,而透鏡支架224則具有一貫穿透鏡支架224兩端之下通孔2241,且如第3圖所示,具有一預定壁厚TH1,且透鏡支架224之外周緣且垂直於光軸之平面上的最小邊長的最大值以PhiD表示。</p><p>鏡筒222可設置於透鏡支架224中且位於下通孔2241內,且具有預定壁厚TH2,且其外周緣垂直於光軸之平面上的最大直徑為PhiC,使上通孔2221與下通孔2241連通而共同構成容置孔2201,透鏡支架224可固定於多鏡頭框架180上,使影像感測元件140位於下通孔2241中,且鏡筒222之上通孔2221係正對影像感測元件140之感測面1441,定焦透鏡組230及對焦透鏡組240可設置於鏡筒222中而位於上通孔2221內,且驅動組件260可驅動裝設有對焦透鏡組240之鏡筒222相對於透鏡支架224於感測面1441之中心法線方向上移動,且PhiD係指透鏡支架224之外周緣且垂直於定焦透鏡組230及對焦透鏡組240之光軸的平面上的最小邊長的最大值。</p><p>在一實施例中,光學成像模組10可更包含至少一資料傳輸線路400,係與電路基板120電性連接,並傳輸各複數個影像感測元件140所產生之複數個感測訊號。</p><p>進一步說明,如第9圖及第11圖所示,可以單一之資料傳輸線路400以傳輸雙鏡頭、三鏡頭、陣列式或各種多鏡頭之光學成像模組10各複數個影像感測元件140所產生之複數個感測訊號。</p><p>而在另一實施例中,如第10圖及第12圖所示,亦可以複數個資料傳輸線路400,例如以分體方式設置複數個資料傳輸線路400以傳輸雙鏡頭、三鏡頭、陣列式或各種多鏡頭之光學成像模組10各複數個影像感測元件140所產生之複數個感測訊號。</p><p>另外,在一實施例中,複數個影像感測元件140可感測複數個彩色影像,因此,本創作之光學成像模組10係具有可攝錄彩色影像及彩色影片等功效,而在另一實施例中,至少一影像感測元件140可感測複數個黑白影像,至少一影像感測元件140可感測複數個彩色影像,因此,本創作之光學成像模組10可感測複數個黑白影像,並再搭配感測複數個彩色影像之影像感測元件140,以獲得對所需攝錄之目標物更多的影像細節、感光量等,使得所運算產生出之影像或影片擁有更高的品質。</p><p>在一實施例中,如第3圖至第8圖及第19圖至第22圖所示,光學成像模組10可更包含有紅外線濾光片300,且紅外線濾光片300可設置於透鏡基座220中並位於該容置孔2201內而處於該影像感測元件140上方,以濾除紅外線,避免紅外線對影像感測元件140之感測面1441造成成像品質的影響。而在一實施例中,紅外線濾光片300可如第5圖所示,設置於鏡筒222或透鏡支架224中且位於該影像感測元件140上方。</p><p>而在另一實施例中,如第6圖所示,透鏡基座220可包含有濾光片支架226,濾光片支架226可具有一貫穿濾光片支架226兩端之濾光片通孔2261,且紅外線濾光片300可設置於濾光片支架226中並位於濾光片通孔2261內,且濾光片支架226可對應複數個光通道182之位置,設置於多鏡頭框架180上,而使紅外線濾光片300位於影像感測元件140上方,以濾除紅外線,避免紅外線對影像感測元件140之感測面1441造成成像品質的影響。</p><p>因此在透鏡基座220包含有濾光片支架226,且鏡筒222具有一貫穿鏡筒222兩端之上通孔2221,而透鏡支架224則具有一貫穿該透鏡支架224兩端之下通孔2241的情況下,鏡筒222可設置於透鏡支架224中且位於下通孔2241內,而透鏡支架224可固定於濾光片支架226上,且下通孔2241可與上通孔2221以及濾光片通孔2261連通而共同構成該容置孔2201,使影像感測元件140位於濾光片通孔2261中,且鏡筒222之上通孔2221可正對影像感測元件140之感測面1441,而定焦透鏡組230及對焦透鏡組240則可設置於鏡筒222中而位於上通孔2221內,使得紅外線濾光片300位於影像感測元件140上方,以濾除由定焦透鏡組230及對焦透鏡組240所進入的紅外線,避免紅外線對影像感測元件140之感測面1441造成成像品質的影響。</p><p>在一實施例中,光學成像模組10可具有至少二透鏡組,例如可為雙鏡頭之光學成像模組10,二透鏡組可分別係為第一透鏡2411組及第二透鏡2421組,且至少一透鏡組可為對焦透鏡組240,因此第一透鏡組及第二透鏡組可為定焦透鏡組230及對焦透鏡組240之各種組合,且第二透鏡組之視角FOV可大於第一透鏡組2411,且第二透鏡組之視角FOV係大於46°,因此第二透鏡組可為廣角透鏡組。</p><p>進一步說明,第一透鏡組之焦距係大於第二透鏡組,若以傳統35mm照片(視角為46度)為基準,其焦距為50mm,當第一透鏡組之焦距係大於50mm,此第一透鏡組可為長焦透鏡組。本創作較佳者,可以對角線長4.6mm的CMOS感測器 (視角為70度)為基準,其焦距約為3.28mm,當第一透鏡組之焦距係大於3.28mm,第一透鏡組可為長焦透鏡組。</p><p>在一實施例中,如第18圖所示,本創作之可為三鏡頭之光學成像模組10,因此光學成像模組10可具有至少三透鏡組,分別可為第一透鏡組、第二透鏡組及第三透鏡組,且至少一透鏡組為對焦透鏡組240,因此第一透鏡組、第二透鏡組及第三透鏡組可為定焦透鏡組230及對焦透鏡組240之各種組合,且第二透鏡組之視角FOV可大於第一透鏡組,且第二透鏡組之視角FOV係大於46°,且對應接收第一透鏡2411組及第二透鏡2421組之光線之各複數個影像感測元件140係感測複數個彩色影像,而第三透鏡組所對應之影像感測元件140則可依據需求感測複數個彩色影像或複數個黑白影像。</p><p>在一實施例中,如第18圖所示,本創作之可為三鏡頭之光學成像模組10,因此光學成像模組10可具有至少三透鏡組,分別可為第一透鏡組、第二透鏡組及第三透鏡組,且至少一透鏡組為對焦透鏡組240,因此第一透鏡組、第二透鏡組及第三透鏡組可為定焦透鏡組230及對焦透鏡組240之各種組合,且第一透鏡組之焦距可大於第二透鏡組,若以傳統35mm照片(視角為46度)為基準,其焦距為50mm,當第一透鏡組之焦距係大於50mm,此第一透鏡組可為長焦透鏡組。本創作較佳者,可以對角線長4.6mm的CMOS感測器 (視角為70度)為基準,其焦距約為3.28mm,當第一透鏡組之焦距係大於3.28mm,第一透鏡組可為長焦透鏡組。且對應接收第一透鏡組及第二透鏡組之光線之各複數個影像感測元件140係感測複數個彩色影像,而第三透鏡組所對應之影像感測元件140則可依據需求感測複數個彩色影像或複數個黑白影像。</p><p>在一實施例中,光學成像模組10更滿足下列條件:</p><p>0<(TH1+TH2)/HOI≦0.95;進一步說明,TH1為透鏡支架224之最大厚度;TH2為鏡筒222之最小厚度;HOI為成像面上垂直於光軸的最大成像高度。</p><p>在一實施例中,光學成像模組10更滿足下列條件:</p><p>0mm<TH1+TH2≦1.5mm;進一步說明,TH1為透鏡支架224之最大厚度;TH2為鏡筒222之最小厚度。</p><p>在一實施例中,光學成像模組10更滿足下列條件:</p><p>0<(TH1+TH2)/HOI≦0.95;進一步說明,TH1為透鏡支架224之最大厚度;TH2為鏡筒222之最小厚度;HOI為成像面上垂直於光軸的最大成像高度。</p><p>在一實施例中,光學成像模組10更滿足下列條件:</p><p>0.9≦ARS/EHD≦2.0。進一步說明,ARS係以定焦透鏡組230及對焦透鏡組240中任一透鏡2401之任一透鏡2401表面與光軸的交點為起點,並以透鏡2401表面之最大有效半徑處為終點,延著透鏡2401表面的輪廓所得之輪廓曲線長度,EHD為對焦透鏡組240中任一透鏡2401之任一表面的最大有效半徑。</p><p>在一實施例中,光學成像模組10更滿足下列條件:</p><p>PLTA≦100µm;PSTA≦100µm;NLTA≦100µm以及NSTA≦100µm;SLTA≦100µm;SSTA≦100µm。進一步說明,先定義HOI為成像面上垂直於光軸之最大成像高度,PLTA為光學成像模組10的正向子午面光扇之可見光最長工作波長通過一入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差,PSTA為光學成像模組10的正向子午面光扇之可見光最短工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差NLTA為光學成像模組10的負向子午面光扇之可見光最長工作波長通過入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差。NSTA為光學成像模組10的負向子午面光扇之可見光最短工作波長通過該入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差,SLTA為光學成像模組10的弧矢面光扇之可見光最長工作波長通過該入射瞳邊緣並入射在成像面上0.7HOI處之橫向像差,SSTA為光學成像模組10的弧矢面光扇之可見光最短工作波長通過入射瞳邊緣並入射在該成像面上0.7HOI處之橫向像差。</p><p>另外,除上述之各結構實施例外,以下茲就定焦透鏡組230及對焦透鏡組240可行之光學實施例進行說明。於本創作之光學成像模組可使用三個工作波長進行設計,分別為486.1 nm、587.5 nm、656.2 nm,其中587.5 nm為主要參考波長為主要提取技術特徵之參考波長。光學成像模組亦可使用五個工作波長進行設計,分別為470 nm、510 nm、555 nm、610 nm、650 nm,其中555 nm為主要參考波長為主要提取技術特徵之參考波長。</p><p>光學成像模組10的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像模組10的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,所有正屈折力之透鏡的PPR總和為ΣPPR,所有負屈折力之透鏡的NPR總和為ΣNPR,當滿足下列條件時有助於控制光學成像模組10的總屈折力以及總長度:0.5≦ΣPPR/│ΣNPR│≦15,較佳地,可滿足下列條件:1≦ΣPPR/│ΣNPR│≦3.0。</p><p>另外,影像感測元件140有效感測區域對角線長的一半(即為光學成像模組10之成像高度或稱最大像高) 為HOI,第一透鏡2411物側面至成像面於光軸上的距離為HOS,其滿足下列條件:HOS/HOI≦50;以及0.5≦HOS/f≦150。較佳地,可滿足下列條件:1≦HOS/HOI≦40;以及1≦HOS/f≦140。藉此,可維持光學成像模組10的小型化,以搭載於輕薄可攜式的電子產品上。</p><p>另外,在一實施例中,本創作的光學成像模組10中,依需求可設置至少一光圈,以減少雜散光,有助於提昇影像品質。</p><p>進一步說明,本創作的光學成像模組10中,光圈配置可為前置光圈或中置光圈,其中前置光圈意即光圈設置於被攝物與第一透鏡2411間,中置光圈則表示光圈設置於第一透鏡2411與成像面間。若光圈為前置光圈,可使光學成像模組10的出瞳與成像面產生較長的距離而容置更多光學元件,並可增加影像感測元件接收影像的效率;若為中置光圈,係有助於擴大系統的視場角,使光學成像模組具有廣角鏡頭的優勢。前述光圈至成像面間的距離為InS,其滿足下列條件:0.1≦InS/HOS≦1.1。藉此,可同時兼顧維持光學成像模組10的小型化以及具備廣角的特性。</p><p>本創作的光學成像模組10中,第一透鏡2411物側面至第六透鏡2461像側面間的距離為InTL,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:0.1≦ΣTP/InTL≦0.9。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。</p><p>第一透鏡2411物側面的曲率半徑為R1,第一透鏡2411像側面的曲率半徑為R2,其滿足下列條件:0.001≦│R1/R2│≦25。藉此,第一透鏡2411的具備適當正屈折力強度,避免球差增加過速。較佳地,可滿足下列條件:0.01≦│R1/R2│<12。</p><p>第六透鏡物2461側面的曲率半徑為R11,第六透鏡2461像側面的曲率半徑為R12,其滿足下列條件:-7 <(R11-R12)/(R11+R12)<50。藉此,有利於修正光學成像模組10所產生的像散。</p><p>第一透鏡2411與第二透鏡2421於光軸上的間隔距離為IN12,其滿足下列條件:IN12 / f ≦60藉此,有助於改善透鏡的色差以提升其性能。</p><p>第五透鏡2451與第六透鏡2461於光軸上的間隔距離為IN56,其滿足下列條件:IN56 / f ≦3.0,有助於改善透鏡的色差以提升其性能。</p><p>第一透鏡2411與第二透鏡2421於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:0.1≦(TP1+IN12) / TP2≦10。藉此,有助於控制光學成像模組製造的敏感度並提升其性能。</p><p>第五透鏡2451與第六透鏡2461於光軸上的厚度分別為TP5以及TP6,前述兩透鏡於光軸上的間隔距離為IN56,其滿足下列條件:0.1≦(TP6+IN56) / TP5≦15藉此,有助於控制光學成像模組製造的敏感度並降低系統總高度。</p><p>第二透鏡2421、第三透鏡2431與第四透鏡2441於光軸上的厚度分別為TP2、TP3以及TP4,第二透鏡2421與第三透鏡2431於光軸上的間隔距離為IN23,第三透鏡2431與第四透鏡2441於光軸上的間隔距離為IN45,第一透鏡2411物側面至第六透鏡2461像側面間的距離為InTL,其滿足下列條件:0.1≦TP4/ (IN34+TP4+IN45)<1。藉此,有助層層微幅修正入射光行進過程所產生的像差並降低系統總高度。</p><p>本創作的光學成像模組10中,第六透鏡2461物側面的臨界點C61與光軸的垂直距離為 HVT61,第六透鏡2461像側面的臨界點C62與光軸的垂直距離為HVT62,第六透鏡物側面於光軸上的交點至臨界點C61位置於光軸的水平位移距離為SGC61,第六透鏡像側面於光軸上的交點至臨界點C62位置於光軸的水平位移距離為SGC62,可滿足下列條件:0 mm≦HVT61≦3 mm;0 mm < HVT62≦6 mm;0≦HVT61/HVT62;0 mm≦∣SGC61∣≦0.5 mm;0 mm<∣SGC62∣≦2 mm;以及0 <∣SGC62∣/(∣SGC62∣+TP6)≦0.9。藉此,可有效修正離軸視場的像差。</p><p>本創作的光學成像模組10其滿足下列條件:0.2≦HVT62/ HOI≦0.9。較佳地,可滿足下列條件:0.3≦HVT62/ HOI≦0.8。藉此,有助於光學成像模組之週邊視場的像差修正。</p><p>本創作的光學成像模組10其滿足下列條件:0≦HVT62/ HOS≦0.5。較佳地,可滿足下列條件:0.2≦HVT62/ HOS≦0.45。藉此,有助於光學成像模組10之週邊視場的像差修正。</p><p>本創作的光學成像模組10中,第六透鏡2461物側面於光軸上的交點至第六透鏡2461物側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡2461像側面於光軸上的交點至第六透鏡2461像側面最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:0 < SGI611 /( SGI611+TP6)≦0.9;0 < SGI621 /( SGI621+TP6)≦0.9。較佳地,可滿足下列條件:0.1≦SGI611 /( SGI611+TP6)≦0.6;0.1≦SGI621 /( SGI621+TP6)≦0.6。</p><p>第六透鏡2461物側面於光軸上的交點至第六透鏡2461物側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI612表示,第六透鏡2461像側面於光軸上的交點至第六透鏡像側面第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI622表示,其滿足下列條件:0 < SGI612/( SGI612+TP6)≦0.9;0 < SGI622 /( SGI622+TP6)≦0.9。較佳地,可滿足下列條件:0.1≦SGI612 /( SGI612+TP6)≦0.6;0.1≦SGI622 /( SGI622+TP6)≦0.6。</p><p>第六透鏡2461物側面最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡2461像側面於光軸上的交點至第六透鏡像側面最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:0.001 mm≦│HIF611∣≦5 mm;0.001 mm≦│HIF621∣≦5 mm。較佳地,可滿足下列條件: 0.1 mm≦│HIF611∣≦3.5 mm;1.5 mm≦│HIF621∣≦3.5 mm。</p><p>第六透鏡2461物側面第二接近光軸的反曲點與光軸間的垂直距離以HIF612表示,第六透鏡2461像側面於光軸上的交點至第六透鏡像側面第二接近光軸的反曲點與光軸間的垂直距離以HIF622表示,其滿足下列條件:0.001 mm≦│HIF612∣≦5 mm;0.001 mm≦│HIF622∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF622∣≦3.5 mm;0.1 mm≦│HIF612∣≦3.5 mm。</p><p>第六透鏡2461物側面第三接近光軸的反曲點與光軸間的垂直距離以HIF613表示,第六透鏡2461像側面於光軸上的交點至第六透鏡像2461側面第三接近光軸的反曲點與光軸間的垂直距離以HIF623表示,其滿足下列條件:0.001 mm≦│HIF613∣≦5 mm;0.001 mm≦│HIF623∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF623∣≦3.5 mm;0.1 mm≦│HIF613∣≦3.5 mm。</p><p>第六透鏡2461物側面第四接近光軸的反曲點與光軸間的垂直距離以HIF614表示,第六透鏡2461像側面於光軸上的交點至第六透鏡2461像側面第四接近光軸的反曲點與光軸間的垂直距離以HIF624表示,其滿足下列條件:0.001 mm≦│HIF614∣≦5 mm;0.001 mm≦│HIF624∣≦5 mm。較佳地,可滿足下列條件:0.1 mm≦│HIF624∣≦3.5 mm;0.1 mm≦│HIF614∣≦3.5 mm。</p><p>本創作的光學成像模組中,(TH1+TH2) / HOI滿足下列條件:0 < (TH1+TH2) / HOI≦0.95,較佳地可滿足下列條件:0 < (TH1+TH2) / HOI≦0.5;(TH1+TH2) /HOS滿足下列條件:0 < (TH1+TH2) /HOS≦0.95,較佳地可滿足下列條件:0 < (TH1+TH2) /HOS≦0.5;2倍(TH1+TH2) /PhiA滿足下列條件:0 <2倍(TH1+TH2) /PhiA≦0.95,較佳地可滿足下列條件:0<2倍(TH1+TH2) /PhiA≦0.5。</p><p>本創作的光學成像模組10之一種實施方式,可藉由具有高色散係數與低色散係數之透鏡交錯排列,而助於光學成像模組色差的修正。</p><p>上述非球面之方程式係為:</p><p>z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+… (1)</p><p>其中,z為沿光軸方向在高度為h的位置以表面頂點作參考的位置值,k為錐面係數,c為曲率半徑的倒數,且A4、A6、A8、A10、A12、A14、A16、A18以及A20為高階非球面係數。</p><p>本創作提供的光學成像模組10中,透鏡的材質可為塑膠或玻璃。當透鏡材質為塑膠,可以有效降低生產成本與重量。另當透鏡的材質為玻璃,則可以控制熱效應並且增加光學成像模組屈折力配置的設計空間。此外,光學成像模組中第一透鏡2411至第七透鏡2471的物側面及像側面可為非球面,其可獲得較多的控制變數,除用以消減像差外,相較於傳統玻璃透鏡的使用甚至可縮減透鏡使用的數目,因此能有效降低本創作光學成像模組的總高度。</p><p>再者,本創作提供的光學成像模組10中,若透鏡表面係為凸面,原則上表示透鏡表面於近光軸處為凸面;若透鏡表面係為凹面,原則上表示透鏡表面於近光軸處為凹面。</p><p>本創作的光學成像模組10更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,從而擴大應用層面。</p><p>本創作的光學成像模組更可視需求令第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451、第六透鏡2461及第七透鏡2471中至少一透鏡為波長小於500nm之光線濾除元件,其可藉由該特定具濾除功能之透鏡的至少一表面上鍍膜或該透鏡本身即由具可濾除短波長之材質所製作而達成。</p><p>本創作的光學成像模組10之成像面更可視需求選擇為一平面或一曲面。當成像面為一曲面 (例如具有一曲率半徑的球面),有助於降低聚焦光線於成像面所需之入射角,除有助於達成微縮光學成像模組之長度(TTL)外,對於提升相對照度同時有所助益。</p><p>第一光學實施例</p><p>如第21圖所示,定焦透鏡組230及對焦透鏡組240包含六片具有屈折力之透鏡2401,由物側至像側依序為第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451以及第六透鏡2461,且定焦透鏡組230及對焦透鏡組240滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡2411之物側面至成像面於光軸上之距離。InTL為第一透鏡2411之物側面至第六透鏡2461之像側面於光軸上之距離。</p><p>請參照第23圖及第24圖,其中第23圖繪示依照本創作第一光學實施例的一種光學成像模組的透鏡組示意圖,第24圖由左至右依序為第一光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第23圖可知,光學成像模組由物側至像側依序包含第一透鏡2411、光圈250、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451、第六透鏡2461、紅外線濾光片300、成像面600以及影像感測元件140。</p><p>第一透鏡2411具有負屈折力,且為塑膠材質,其物側面24112為凹面,其像側面24114為凹面,並皆為非球面,且其物側面24112具有二反曲點。第一透鏡物側面的最大有效半徑之輪廓曲線長度以ARS11表示,第一透鏡像側面的最大有效半徑之輪廓曲線長度以ARS12表示。第一透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE11表示,第一透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE12表示。第一透鏡於光軸上之厚度為TP1。</p><p>第一透鏡2411物側面24112於光軸上的交點至第一透鏡2411物側面24112最近光軸的反曲點之間與光軸平行的水平位移距離以SGI111表示,第一透鏡2411像側面24114於光軸上的交點至第一透鏡2411像側面24114最近光軸的反曲點之間與光軸平行的水平位移距離以SGI121表示,其滿足下列條件:SGI111= -0.0031 mm;∣SGI111∣/(∣SGI111∣+TP1)= 0.0016。</p><p>第一透鏡2411物側面24112於光軸上的交點至第一透鏡2411物側面24112第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI112表示,第一透鏡2411像側面24114於光軸上的交點至第一透鏡2411像側面24114第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI122表示,其滿足下列條件:SGI112=1.3178 mm;∣SGI112∣/(∣SGI112∣+TP1)= 0.4052。</p><p>第一透鏡2411物側面24112最近光軸的反曲點與光軸間的垂直距離以HIF111表示,第一透鏡2411像側面24114於光軸上的交點至第一透鏡2411像側面24114最近光軸的反曲點與光軸間的垂直距離以HIF121表示,其滿足下列條件:HIF111=0.5557 mm;HIF111/ HOI=0.1111。</p><p>第一透鏡2411物側面24112第二接近光軸的反曲點與光軸間的垂直距離以HIF112表示,第一透鏡2411像側面24114於光軸上的交點至第一透鏡2411像側面24114第二接近光軸的反曲點與光軸間的垂直距離以HIF122表示,其滿足下列條件:HIF112=5.3732 mm;HIF112/ HOI=1.0746。</p><p>第二透鏡2421具有正屈折力,且為塑膠材質,其物側面2441212為凸面,其像側面24214為凸面,並皆為非球面,且其物側面2441212具有一反曲點。第二透鏡物側面的最大有效半徑之輪廓曲線長度以ARS21表示,第二透鏡像側面的最大有效半徑之輪廓曲線長度以ARS22表示。第二透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE21表示,第二透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE22表示。第二透鏡於光軸上之厚度為TP2。</p><p>第二透鏡2421物側面2441212於光軸上的交點至第二透鏡2421物側面24212最近光軸的反曲點之間與光軸平行的水平位移距離以SGI211表示,第二透鏡2421像側面24214於光軸上的交點至第二透鏡2421像側面24214最近光軸的反曲點之間與光軸平行的水平位移距離以SGI221表示,其滿足下列條件:SGI211=0.1069 mm;∣SGI211∣/(∣SGI211∣+TP2)= 0.0412;SGI221=0 mm;∣SGI221∣/(∣SGI221∣+TP2)= 0。</p><p>第二透鏡2421物側面24212最近光軸的反曲點與光軸間的垂直距離以HIF211表示,第二透鏡2421像側面24214於光軸上的交點至第二透鏡2421像側面24214最近光軸的反曲點與光軸間的垂直距離以HIF221表示,其滿足下列條件:HIF211=1.1264 mm;HIF211/ HOI=0.2253;HIF221=0 mm;HIF221/ HOI=0。</p><p>第三透鏡2431具有負屈折力,且為塑膠材質,其物側面24312為凹面,其像側面24314為凸面,並皆為非球面,且其物側面24312以及像側面24314均具有一反曲點。第三透鏡物側面的最大有效半徑之輪廓曲線長度以ARS31表示,第三透鏡像側面的最大有效半徑之輪廓曲線長度以ARS32表示。第三透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE31表示,第三透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE32表示。第三透鏡於光軸上之厚度為TP3。</p><p>第三透鏡2431物側面24312於光軸上的交點至第三透鏡2431物側面24312最近光軸的反曲點之間與光軸平行的水平位移距離以SGI311表示,第三透鏡2431像側面24314於光軸上的交點至第三透鏡2431像側面24314最近光軸的反曲點之間與光軸平行的水平位移距離以SGI321表示,其滿足下列條件:SGI311= -0.3041 mm;∣SGI311∣/(∣SGI311∣+TP3)= 0.4445;SGI321= -0.1172 mm;∣SGI321∣/(∣SGI321∣+TP3)= 0.2357。</p><p>第三透鏡2431物側面24312最近光軸的反曲點與光軸間的垂直距離以HIF311表示,第三透鏡2431像側面24314於光軸上的交點至第三透鏡2431像側面24314最近光軸的反曲點與光軸間的垂直距離以HIF321表示,其滿足下列條件:HIF311=1.5907 mm;HIF311/ HOI=0.3181;HIF321=1.3380 mm;HIF321/ HOI=0.2676。</p><p>第四透鏡2441具有正屈折力,且為塑膠材質,其物側面24412為凸面,其像側面24414為凹面,並皆為非球面,且其物側面24412具有二反曲點以及像側面24414具有一反曲點。第四透鏡物側面的最大有效半徑之輪廓曲線長度以ARS41表示,第四透鏡像側面的最大有效半徑之輪廓曲線長度以ARS42表示。第四透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE41表示,第四透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE42表示。第四透鏡於光軸上之厚度為TP4。</p><p>第四透鏡2441物側面24412於光軸上的交點至第四透鏡2441物側面24412最近光軸的反曲點之間與光軸平行的水平位移距離以SGI411表示,第四透鏡2441像側面24414於光軸上的交點至第四透鏡2441像側面24414最近光軸的反曲點之間與光軸平行的水平位移距離以SGI421表示,其滿足下列條件:SGI411=0.0070 mm;∣SGI411∣/(∣SGI411∣+TP4)= 0.0056;SGI421=0.0006 mm;∣SGI421∣/(∣SGI421∣+TP4)= 0.0005。</p><p>第四透鏡2441物側面24412於光軸上的交點至第四透鏡2441物側面24412第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI412表示,第四透鏡2441像側面24414於光軸上的交點至第四透鏡2441像側面24414第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI422表示,其滿足下列條件:SGI412=-0.2078 mm;∣SGI412∣/(∣SGI412∣+ TP4)= 0.1439。</p><p>第四透鏡2441物側面24412最近光軸的反曲點與光軸間的垂直距離以HIF411表示,第四透鏡2441像側面24414於光軸上的交點至第四透鏡2441像側面24414最近光軸的反曲點與光軸間的垂直距離以HIF421表示,其滿足下列條件:HIF411=0.4706 mm;HIF411/ HOI=0.0941;HIF421=0.1721 mm;HIF421/ HOI=0.0344。</p><p>第四透鏡2441物側面24412第二接近光軸的反曲點與光軸間的垂直距離以HIF412表示,第四透鏡2441像側面24414於光軸上的交點至第四透鏡2441像側面24414第二接近光軸的反曲點與光軸間的垂直距離以HIF422表示,其滿足下列條件:HIF412=2.0421 mm;HIF412/ HOI=0.4084。</p><p>第五透鏡2451具有正屈折力,且為塑膠材質,其物側面24512為凸面,其像側面24514為凸面,並皆為非球面,且其物側面24512具有二反曲點以及像側面24514具有一反曲點。第五透鏡物側面的最大有效半徑之輪廓曲線長度以ARS51表示,第五透鏡像側面的最大有效半徑之輪廓曲線長度以ARS52表示。第五透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE51表示,第五透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE52表示。第五透鏡於光軸上之厚度為TP5。</p><p>第五透鏡2451物側面24512於光軸上的交點至第五透鏡2451物側面24512最近光軸的反曲點之間與光軸平行的水平位移距離以SGI511表示,第五透鏡2451像側面24514於光軸上的交點至第五透鏡2451像側面24514最近光軸的反曲點之間與光軸平行的水平位移距離以SGI521表示,其滿足下列條件:SGI511=0.00364 mm;∣SGI511∣/(∣SGI511∣+TP5)= 0.00338;SGI521=-0.63365 mm;∣SGI521∣/(∣SGI521∣+TP5)= 0.37154。</p><p>第五透鏡2451物側面24512於光軸上的交點至第五透鏡2451物側面24512第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI512表示,第五透鏡2451像側面24514於光軸上的交點至第五透鏡2451像側面24514第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI522表示,其滿足下列條件:SGI512= -0.32032 mm;∣SGI512∣/(∣SGI512∣+ TP5)= 0.23009。</p><p>第五透鏡2451物側面24512於光軸上的交點至第五透鏡2451物側面24512第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI513表示,第五透鏡2451像側面24514於光軸上的交點至第五透鏡2451像側面24514第三接近光軸的反曲點之間與光軸平行的水平位移距離以SGI523表示,其滿足下列條件:SGI513=0 mm;∣SGI513∣/(∣SGI513∣+ TP5)= 0;SGI523=0 mm;∣SGI523∣/(∣SGI523∣+TP5)= 0。</p><p>第五透鏡2451物側面24512於光軸上的交點至第五透鏡2451物側面24512第四接近光軸的反曲點之間與光軸平行的水平位移距離以SGI514表示,第五透鏡2451像側面24514於光軸上的交點至第五透鏡2451像側面24514第四接近光軸的反曲點之間與光軸平行的水平位移距離以SGI524表示,其滿足下列條件:SGI514=0 mm;∣SGI514∣/(∣SGI514∣+ TP5)= 0;SGI524=0 mm;∣SGI524∣/(∣SGI524∣+TP5)= 0。</p><p>第五透鏡2451物側面24512最近光軸的反曲點與光軸間的垂直距離以HIF511表示,第五透鏡2451像側面24514最近光軸的反曲點與光軸間的垂直距離以HIF521表示,其滿足下列條件:HIF511=0.28212 mm;HIF511/ HOI=0.05642;HIF521=2.13850 mm;HIF521/ HOI=0.42770。</p><p>第五透鏡2451物側面24512第二接近光軸的反曲點與光軸間的垂直距離以HIF512表示,第五透鏡2451像側面24514第二接近光軸的反曲點與光軸間的垂直距離以HIF522表示,其滿足下列條件:HIF512=2.51384 mm;HIF512/ HOI=0.50277。</p><p>第五透鏡2451物側面24512第三接近光軸的反曲點與光軸間的垂直距離以HIF513表示,第五透鏡2451像側面24514第三接近光軸的反曲點與光軸間的垂直距離以HIF523表示,其滿足下列條件:HIF513=0 mm;HIF513/ HOI=0;HIF523=0 mm;HIF523/ HOI=0。</p><p>第五透鏡2451物側面24512第四接近光軸的反曲點與光軸間的垂直距離以HIF514表示,第五透鏡2451像側面24514第四接近光軸的反曲點與光軸間的垂直距離以HIF524表示,其滿足下列條件:HIF514=0 mm;HIF514/ HOI=0;HIF524=0 mm;HIF524/ HOI=0。</p><p>第六透鏡2461具有負屈折力,且為塑膠材質,其物側面24612為凹面,其像側面24614為凹面,且其物側面24612具有二反曲點以及像側面24614具有一反曲點。藉此,可有效調整各視場入射於第六透鏡的角度而改善像差。第六透鏡物側面的最大有效半徑之輪廓曲線長度以ARS61表示,第六透鏡像側面的最大有效半徑之輪廓曲線長度以ARS62表示。第六透鏡物側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE61表示,第六透鏡像側面的1/2入射瞳直徑(HEP)之輪廓曲線長度以ARE62表示。第六透鏡於光軸上之厚度為TP6。</p><p>第六透鏡2461物側面24612於光軸上的交點至第六透鏡2461物側面24612最近光軸的反曲點之間與光軸平行的水平位移距離以SGI611表示,第六透鏡2461像側面24614於光軸上的交點至第六透鏡2461像側面24614最近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI611= -0.38558 mm;∣SGI611∣/(∣SGI611∣+TP6)= 0.27212;SGI621= 0.12386 mm;∣SGI621∣/(∣SGI621∣+TP6)= 0.10722。</p><p>第六透鏡2461物側面24612於光軸上的交點至第六透鏡2461物側面24612第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI612表示,第六透鏡2461像側面24614於光軸上的交點至第六透鏡2461像側面24614第二接近光軸的反曲點之間與光軸平行的水平位移距離以SGI621表示,其滿足下列條件:SGI612=-0.47400 mm;∣SGI612∣/(∣SGI612∣+TP6)= 0.31488;SGI622=0 mm;∣SGI622∣/(∣SGI622∣+TP6)= 0。</p><p>第六透鏡2461物側面24612最近光軸的反曲點與光軸間的垂直距離以HIF611表示,第六透鏡2461像側面24614最近光軸的反曲點與光軸間的垂直距離以HIF621表示,其滿足下列條件:HIF611=2.24283 mm;HIF611/ HOI=0.44857;HIF621=1.07376 mm;HIF621/ HOI=0.21475。</p><p>第六透鏡2461物側面24612第二接近光軸的反曲點與光軸間的垂直距離以HIF612表示,第六透鏡2461像側面24614第二接近光軸的反曲點與光軸間的垂直距離以HIF622表示,其滿足下列條件:HIF612=2.48895 mm;HIF612/ HOI=0.49779。</p><p>第六透鏡2461物側面24612第三接近光軸的反曲點與光軸間的垂直距離以HIF613表示,第六透鏡2461像側面24614第三接近光軸的反曲點與光軸間的垂直距離以HIF623表示,其滿足下列條件:HIF613=0 mm;HIF613/ HOI=0;HIF623=0 mm;HIF623/ HOI=0。</p><p>第六透鏡2461物側面24612第四接近光軸的反曲點與光軸間的垂直距離以HIF614表示,第六透鏡2461像側面24614第四接近光軸的反曲點與光軸間的垂直距離以HIF624表示,其滿足下列條件:HIF614=0 mm;HIF614/ HOI=0;HIF624=0 mm;HIF624/ HOI=0。</p><p>紅外線濾光片300為玻璃材質,其設置於第六透鏡2461及成像面600間且不影響光學成像模組的焦距。</p><p>本實施例的光學成像模組中,該透鏡組的焦距為f,入射瞳直徑為HEP,最大視角的一半為HAF,其數值如下:f=4.075 mm;f/HEP=1.4;以及HAF=50.001度與tan(HAF)=1.1918。</p><p>本實施例的該透鏡組中,第一透鏡2411的焦距為f1,第六透鏡2461的焦距為f6,其滿足下列條件:f1= -7.828 mm;∣f/f1│=0.52060;f6= -4.886;以及│f1│>│f6│。</p><p>本實施例的光學成像模組中,第二透鏡2421至第五透鏡2451的焦距分別為f2、f3、f4、f5,其滿足下列條件:│f2│+│f3│+│f4│+│f5│= 95.50815 mm;∣f1│+∣f6│= 12.71352 mm以及│f2│+│f3│+│f4│+│f5│>∣f1│+∣f6│。</p><p>光學成像模組的焦距f與每一片具有正屈折力之透鏡的焦距fp之比值PPR,光學成像模組的焦距f與每一片具有負屈折力之透鏡的焦距fn之比值NPR,本實施例的光學成像模組中,所有正屈折力之透鏡的PPR總和為ΣPPR=f/f2+f/f4+f/f5 =1.63290,所有負屈折力之透鏡的NPR總和為ΣNPR=│f/f1│+│f/f3│+│f/f6│= 1.51305,ΣPPR/│ΣNPR│= 1.07921。同時亦滿足下列條件:∣f/f2│= 0.69101;∣f/f3│=0.15834;∣f/f4│=0.06883;∣f/f5│=0.87305;∣f/f6│=0.83412。</p><p>本實施例的光學成像模組中,第一透鏡2411物側面24112至第六透鏡2461像側面24614間的距離為InTL,第一透鏡2411物側面24112至成像面600間的距離為HOS,光圈250至成像面180間的距離為InS,影像感測元件140有效感測區域對角線長的一半為HOI,第六透鏡像側面24614至成像面600間的距離為BFL,其滿足下列條件:InTL+BFL=HOS;HOS= 19.54120 mm;HOI= 5.0 mm; HOS/HOI= 3.90824;HOS/f= 4.7952;InS=11.685 mm;以及InS/HOS= 0.59794。</p><p>本實施例的光學成像模組中,於光軸上所有具屈折力之透鏡的厚度總和為ΣTP,其滿足下列條件:ΣTP= 8.13899 mm;以及ΣTP/InTL= 0.52477。藉此,當可同時兼顧系統成像的對比度以及透鏡製造的良率並提供適當的後焦距以容置其他元件。</p><p>本實施例的光學成像模組中,第一透鏡2411物側面24112的曲率半徑為R1,第一透鏡2411像側面24114的曲率半徑為R2,其滿足下列條件:│R1/R2│= 8.99987。藉此,第一透鏡2411的具備適當正屈折力強度,避免球差增加過速。</p><p>本實施例的光學成像模組中,第六透鏡2461物側面24612的曲率半徑為R11,第六透鏡2461像側面24614的曲率半徑為R12,其滿足下列條件:(R11-R12)/(R11+R12)= 1.27780。藉此,有利於修正光學成像模組所產生的像散。</p><p>本實施例的光學成像模組中,所有具正屈折力的透鏡之焦距總和為ΣPP,其滿足下列條件:ΣPP= f2+f4+f5 = 69.770 mm;以及f5/ (f2+f4+f5)= 0.067。藉此,有助於適當分配單一透鏡之正屈折力至其他正透鏡,以抑制入射光線行進過程顯著像差的產生。</p><p>本實施例的光學成像模組中,所有具負屈折力的透鏡之焦距總和為ΣNP,其滿足下列條件:ΣNP=f1+f3+f6= -38.451 mm;以及f6/ (f1+f3+f6)= 0.127。藉此,有助於適當分配第六透鏡2461之負屈折力至其他負透鏡,以抑制入射光線行進過程顯著像差的產生。</p><p>本實施例的光學成像模組中,第一透鏡2411與第二透鏡2421於光軸上的間隔距離為IN12,其滿足下列條件:IN12= 6.418 mm;IN12 / f = 1.57491。藉此,有助於改善透鏡的色差以提升其性能。</p><p>本實施例的光學成像模組中,第五透鏡2451與第六透鏡2461於光軸上的間隔距離為IN56,其滿足下列條件:IN56= 0.025 mm;IN56 / f = 0.00613。藉此,有助於改善透鏡的色差以提升其性能。</p><p>本實施例的光學成像模組中,第一透鏡2411與第二透鏡2421於光軸上的厚度分別為TP1以及TP2,其滿足下列條件:TP1= 1.934mm;TP2= 2.486 mm;以及(TP1+IN12) / TP2= 3.36005。藉此,有助於控制光學成像模組製造的敏感度並提升其性能。</p><p>本實施例的光學成像模組中,第五透鏡2451與第六透鏡2461於光軸上的厚度分別為TP5以及TP6,前述兩透鏡於光軸上的間隔距離為IN56,其滿足下列條件:TP5= 1.072 mm;TP6= 1.031 mm;以及(TP6+IN56) / TP5= 0.98555。藉此,有助於控制光學成像模組製造的敏感度並降低系統總高度。</p><p>本實施例的光學成像模組中,第三透鏡2431與第四透鏡2441於光軸上的間隔距離為IN34,第四透鏡2441與第五透鏡2451於光軸上的間隔距離為IN45,其滿足下列條件:IN34= 0.401 mm;IN45= 0.025 mm;以及TP4 / (IN34+TP4+IN45)= 0.74376。藉此,有助於層層微幅修正入射光線行進過程所產生的像差並降低系統總高度。</p><p>本實施例的光學成像模組中,第五透鏡2451物側面24512於光軸上的交點至第五透鏡2451物側面24512的最大有效半徑位置於光軸的水平位移距離為InRS51,第五透鏡2451像側面24514於光軸上的交點至第五透鏡2451像側面24514的最大有效半徑位置於光軸的水平位移距離為InRS52,第五透鏡2451於光軸上的厚度為TP5,其滿足下列條件:InRS51= -0.34789 mm;InRS52= -0.88185 mm;│InRS51∣/ TP5 =0.32458 以及│InRS52∣/ TP5 = 0.82276。藉此,有利於鏡片的製作與成型,並有效維持其小型化。</p><p>本實施例的光學成像模組中,第五透鏡2451物側面24512的臨界點與光軸的垂直距離為 HVT51,第五透鏡2451像側面24514的臨界點與光軸的垂直距離為HVT52,其滿足下列條件:HVT51=0.515349 mm;HVT52=0 mm。</p><p>本實施例的光學成像模組中,第六透鏡2461物側面24612於光軸上的交點至第六透鏡2461物側面24612的最大有效半徑位置於光軸的水平位移距離為InRS61,第六透鏡2461像側面24614於光軸上的交點至第六透鏡2461像側面24614的最大有效半徑位置於光軸的水平位移距離為InRS62,第六透鏡2461於光軸上的厚度為TP6,其滿足下列條件:InRS61= -0.58390 mm;InRS62= 0.41976 mm;│InRS61∣/ TP6=0.56616 以及│InRS62∣/ TP6= 0.40700。藉此,有利於鏡片的製作與成型,並有效維持其小型化。</p><p>本實施例的光學成像模組中,第六透鏡2461物側面24612的臨界點與光軸的垂直距離為 HVT61,第六透鏡2461像側面24614的臨界點與光軸的垂直距離為HVT62,其滿足下列條件:HVT61=0 mm;HVT62= 0 mm。</p><p>本實施例的光學成像模組中,其滿足下列條件:HVT51/ HOI=0.1031。藉此,有助於光學成像模組之週邊視場的像差修正。</p><p>本實施例的光學成像模組中,其滿足下列條件:HVT51/ HOS= 0.02634。藉此,有助於光學成像模組之週邊視場的像差修正。</p><p>本實施例的光學成像模組中,第二透鏡2421、第三透鏡2431以及第六透鏡2461具有負屈折力,第二透鏡2421的色散係數為NA2,第三透鏡2431的色散係數為NA3,第六透鏡2461的色散係數為NA6,其滿足下列條件: NA6/NA2≦1。藉此,有助於光學成像模組色差的修正。</p><p>本實施例的光學成像模組中,光學成像模組於結像時之TV畸變為TDT,結像時之光學畸變為ODT,其滿足下列條件:TDT= 2.124 %;ODT=5.076 %。</p><p>本實施例的光學成像模組中,LS為12 mm,PhiA為2倍EHD62=6.726 mm (EHD62 :第六透鏡2461像側面24614的最大有效半徑),PhiC=PhiA+2倍TH2=7.026 mm,PhiD=PhiC+2倍(TH1+TH2)=7.426 mm,TH1為0.2mm,TH2為0.15 mm,PhiA / PhiD為,TH1+TH2為0.35 mm,(TH1+TH2) / HOI為0.035,(TH1+TH2) /HOS為0.0179,2倍(TH1+TH2) /PhiA為0.1041,(TH1+TH2) / LS為0.0292。</p><p>再配合參照下列表一以及表二。
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表一 第 一 光 學 實 施 例 透 鏡 數 據 </td><td> </td></tr><tr><td> f(焦距)= 4.075 mm ; f/HEP =1.4 ; HAF(半視角)= 50.000 deg </td><td> </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td><td> </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 平面 </td><td> 平面 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> -40.99625704 </td><td> 1.934 </td><td> 塑膠 </td><td> 1.515 </td><td> 56.55 </td><td> -7.828 </td><td> </td></tr><tr><td> 2 </td><td></td><td> 4.555209289 </td><td> 5.923 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 光圈 </td><td> 平面 </td><td> 0.495 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> 第二透鏡 </td><td> 5.333427366 </td><td> 2.486 </td><td> 塑膠 </td><td> 1.544 </td><td> 55.96 </td><td> 5.897 </td><td> </td></tr><tr><td> 5 </td><td></td><td> -6.781659971 </td><td> 0.502 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第三透鏡 </td><td> -5.697794287 </td><td> 0.380 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -25.738 </td><td> </td></tr><tr><td> 7 </td><td></td><td> -8.883957518 </td><td> 0.401 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> 13.19225664 </td><td> 1.236 </td><td> 塑膠 </td><td> 1.544 </td><td> 55.96 </td><td> 59.205 </td><td> </td></tr><tr><td> 9 </td><td></td><td> 21.55681832 </td><td> 0.025 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> 8.987806345 </td><td> 1.072 </td><td> 塑膠 </td><td> 1.515 </td><td> 56.55 </td><td> 4.668 </td><td> </td></tr><tr><td> 11 </td><td></td><td> -3.158875374 </td><td> 0.025 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 第六透鏡 </td><td> -29.46491425 </td><td> 1.031 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -4.886 </td><td> </td></tr><tr><td> 13 </td><td></td><td> 3.593484273 </td><td> 2.412 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 紅外線 濾光片 </td><td> 平面 </td><td> 0.200 </td><td> </td><td> 1.517 </td><td> 64.13 </td><td> </td><td> </td></tr><tr><td> 15 </td><td> </td><td> 平面 </td><td> 1.420 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 16 </td><td> 成像面 </td><td> 平面 </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm;進行擋光位置: 擋第1面其通光有效半徑5.800 mm;擋第3面其通光有效半徑1.570 mm;擋第5面其通光有效半徑1.950 mm </td><td> </td><td> </td></tr></TBODY></TABLE></table></tables></p><p><p>表二、第一光學實施例之非球面係數
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表二 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> k </td><td> 4.310876E+01 </td><td> -4.707622E+00 </td><td> 2.616025E+00 </td><td> 2.445397E+00 </td><td> 5.645686E+00 </td><td> -2.117147E+01 </td><td> -5.287220E+00 </td></tr><tr><td> A4 </td><td> 7.054243E-03 </td><td> 1.714312E-02 </td><td> -8.377541E-03 </td><td> -1.789549E-02 </td><td> -3.379055E-03 </td><td> -1.370959E-02 </td><td> -2.937377E-02 </td></tr><tr><td> A6 </td><td> -5.233264E-04 </td><td> -1.502232E-04 </td><td> -1.838068E-03 </td><td> -3.657520E-03 </td><td> -1.225453E-03 </td><td> 6.250200E-03 </td><td> 2.743532E-03 </td></tr><tr><td> A8 </td><td> 3.077890E-05 </td><td> -1.359611E-04 </td><td> 1.233332E-03 </td><td> -1.131622E-03 </td><td> -5.979572E-03 </td><td> -5.854426E-03 </td><td> -2.457574E-03 </td></tr><tr><td> A10 </td><td> -1.260650E-06 </td><td> 2.680747E-05 </td><td> -2.390895E-03 </td><td> 1.390351E-03 </td><td> 4.556449E-03 </td><td> 4.049451E-03 </td><td> 1.874319E-03 </td></tr><tr><td> A12 </td><td> 3.319093E-08 </td><td> -2.017491E-06 </td><td> 1.998555E-03 </td><td> -4.152857E-04 </td><td> -1.177175E-03 </td><td> -1.314592E-03 </td><td> -6.013661E-04 </td></tr><tr><td> A14 </td><td> -5.051600E-10 </td><td> 6.604615E-08 </td><td> -9.734019E-04 </td><td> 5.487286E-05 </td><td> 1.370522E-04 </td><td> 2.143097E-04 </td><td> 8.792480E-05 </td></tr><tr><td> A16 </td><td> 3.380000E-12 </td><td> -1.301630E-09 </td><td> 2.478373E-04 </td><td> -2.919339E-06 </td><td> -5.974015E-06 </td><td> -1.399894E-05 </td><td> -4.770527E-06 </td></tr></TBODY></TABLE></table></tables><tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表二 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> </td><td> </td></tr><tr><td> k </td><td> 6.200000E+01 </td><td> -2.114008E+01 </td><td> -7.699904E+00 </td><td> -6.155476E+01 </td><td> -3.120467E-01 </td><td> </td><td> </td></tr><tr><td> A4 </td><td> -1.359965E-01 </td><td> -1.263831E-01 </td><td> -1.927804E-02 </td><td> -2.492467E-02 </td><td> -3.521844E-02 </td><td> </td><td> </td></tr><tr><td> A6 </td><td> 6.628518E-02 </td><td> 6.965399E-02 </td><td> 2.478376E-03 </td><td> -1.835360E-03 </td><td> 5.629654E-03 </td><td> </td><td> </td></tr><tr><td> A8 </td><td> -2.129167E-02 </td><td> -2.116027E-02 </td><td> 1.438785E-03 </td><td> 3.201343E-03 </td><td> -5.466925E-04 </td><td> </td><td> </td></tr><tr><td> A10 </td><td> 4.396344E-03 </td><td> 3.819371E-03 </td><td> -7.013749E-04 </td><td> -8.990757E-04 </td><td> 2.231154E-05 </td><td> </td><td> </td></tr><tr><td> A12 </td><td> -5.542899E-04 </td><td> -4.040283E-04 </td><td> 1.253214E-04 </td><td> 1.245343E-04 </td><td> 5.548990E-07 </td><td> </td><td> </td></tr><tr><td> A14 </td><td> 3.768879E-05 </td><td> 2.280473E-05 </td><td> -9.943196E-06 </td><td> -8.788363E-06 </td><td> -9.396920E-08 </td><td> </td><td> </td></tr><tr><td> A16 </td><td> -1.052467E-06 </td><td> -5.165452E-07 </td><td> 2.898397E-07 </td><td> 2.494302E-07 </td><td> 2.728360E-09 </td><td> </td><td> </td></tr></TBODY></TABLE></table></tables></p><p>依據表一及表二可得到下列輪廓曲線長度相關之數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第一光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 1.455 </td><td> 1.455 </td><td> -0.00033 </td><td> 99.98% </td><td> 1.934 </td><td> 75.23% </td></tr><tr><td> 12 </td><td> 1.455 </td><td> 1.495 </td><td> 0.03957 </td><td> 102.72% </td><td> 1.934 </td><td> 77.29% </td></tr><tr><td> 21 </td><td> 1.455 </td><td> 1.465 </td><td> 0.00940 </td><td> 100.65% </td><td> 2.486 </td><td> 58.93% </td></tr><tr><td> 22 </td><td> 1.455 </td><td> 1.495 </td><td> 0.03950 </td><td> 102.71% </td><td> 2.486 </td><td> 60.14% </td></tr><tr><td> 31 </td><td> 1.455 </td><td> 1.486 </td><td> 0.03045 </td><td> 102.09% </td><td> 0.380 </td><td> 391.02% </td></tr><tr><td> 32 </td><td> 1.455 </td><td> 1.464 </td><td> 0.00830 </td><td> 100.57% </td><td> 0.380 </td><td> 385.19% </td></tr><tr><td> 41 </td><td> 1.455 </td><td> 1.458 </td><td> 0.00237 </td><td> 100.16% </td><td> 1.236 </td><td> 117.95% </td></tr><tr><td> 42 </td><td> 1.455 </td><td> 1.484 </td><td> 0.02825 </td><td> 101.94% </td><td> 1.236 </td><td> 120.04% </td></tr><tr><td> 51 </td><td> 1.455 </td><td> 1.462 </td><td> 0.00672 </td><td> 100.46% </td><td> 1.072 </td><td> 136.42% </td></tr><tr><td> 52 </td><td> 1.455 </td><td> 1.499 </td><td> 0.04335 </td><td> 102.98% </td><td> 1.072 </td><td> 139.83% </td></tr><tr><td> 61 </td><td> 1.455 </td><td> 1.465 </td><td> 0.00964 </td><td> 100.66% </td><td> 1.031 </td><td> 142.06% </td></tr><tr><td> 62 </td><td> 1.455 </td><td> 1.469 </td><td> 0.01374 </td><td> 100.94% </td><td> 1.031 </td><td> 142.45% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 5.800 </td><td> 6.141 </td><td> 0.341 </td><td> 105.88% </td><td> 1.934 </td><td> 317.51% </td></tr><tr><td> 12 </td><td> 3.299 </td><td> 4.423 </td><td> 1.125 </td><td> 134.10% </td><td> 1.934 </td><td> 228.70% </td></tr><tr><td> 21 </td><td> 1.664 </td><td> 1.674 </td><td> 0.010 </td><td> 100.61% </td><td> 2.486 </td><td> 67.35% </td></tr><tr><td> 22 </td><td> 1.950 </td><td> 2.119 </td><td> 0.169 </td><td> 108.65% </td><td> 2.486 </td><td> 85.23% </td></tr><tr><td> 31 </td><td> 1.980 </td><td> 2.048 </td><td> 0.069 </td><td> 103.47% </td><td> 0.380 </td><td> 539.05% </td></tr><tr><td> 32 </td><td> 2.084 </td><td> 2.101 </td><td> 0.017 </td><td> 100.83% </td><td> 0.380 </td><td> 552.87% </td></tr><tr><td> 41 </td><td> 2.247 </td><td> 2.287 </td><td> 0.040 </td><td> 101.80% </td><td> 1.236 </td><td> 185.05% </td></tr><tr><td> 42 </td><td> 2.530 </td><td> 2.813 </td><td> 0.284 </td><td> 111.22% </td><td> 1.236 </td><td> 227.63% </td></tr><tr><td> 51 </td><td> 2.655 </td><td> 2.690 </td><td> 0.035 </td><td> 101.32% </td><td> 1.072 </td><td> 250.99% </td></tr><tr><td> 52 </td><td> 2.764 </td><td> 2.930 </td><td> 0.166 </td><td> 106.00% </td><td> 1.072 </td><td> 273.40% </td></tr><tr><td> 61 </td><td> 2.816 </td><td> 2.905 </td><td> 0.089 </td><td> 103.16% </td><td> 1.031 </td><td> 281.64% </td></tr><tr><td> 62 </td><td> 3.363 </td><td> 3.391 </td><td> 0.029 </td><td> 100.86% </td><td> 1.031 </td><td> 328.83% </td></tr></TBODY></TABLE></table></tables></p><p>表一為第一光學實施例詳細的結構數據,其中曲率半徑、厚度、距離及焦距的單位為mm,且表面0-16依序表示由物側至像側的表面。表二為第一光學實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A1-A20則表示各表面第1-20階非球面係數。此外,以下各光學實施例表格乃對應各光學實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一光學實施例的表一及表二的定義相同,在此不加贅述。再者,以下各光學實施例之機構元件參數的定義皆與第一光學實施例相同。</p><p><p>第二光學實施例</p><p><p>如第22圖所示,定焦透鏡組230及對焦透鏡組240可包含七片具有屈折力之透鏡2401,由物側至像側依序為第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451、第六透鏡2461以及第七透鏡2471,且定焦透鏡組230及對焦透鏡組240滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡2411之物側面至成像面於光軸上之距離,InTL為第一透鏡2411之物側面至第七透鏡2471之像側面於光軸上之距離。</p><p>請參照第25圖及第26圖,其中第25圖繪示依照本創作第二光學實施例的一種光學成像模組的透鏡組示意圖,第26圖由左至右依序為第二光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第25圖可知,光學成像模組由物側至像側依序包含光圈250、第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451、第六透鏡2461以及第七透鏡2471、紅外線濾光片300、成像面600以及影像感測元件140。</p><p>第一透鏡2411具有負屈折力,且為塑膠材質,其物側面24112為凸面,其像側面24114為凹面,並皆為非球面,其物側面24112以及像側面24114均具有一反曲點。</p><p>第二透鏡2421具有負屈折力,且為塑膠材質,其物側面24212為凸面,其像側面24214為凹面,並皆為非球面,其物側面24212以及像側面24214均具有一反曲點。</p><p>第三透鏡2431具有正屈折力,且為塑膠材質,其物側面24312為凸面,其像側面24314為凹面,並皆為非球面,其物側面24312具有一反曲點。</p><p>第四透鏡2441具有正屈折力,且為塑膠材質,其物側面24412為凹面,其像側面24414為凸面,並皆為非球面,且其物側面24412具有一反曲點以及像側面24414具有二反曲點。</p><p>第五透鏡2451具有正屈折力,且為塑膠材質,其物側面24512為凸面,其像側面24514為凹面,並皆為非球面,且其物側面24512以及像側面24514均具有一反曲點。</p><p>第六透鏡2461具有負屈折力,且為塑膠材質,其物側面24612為凹面,其像側面24614為凸面,並皆為非球面,且其物側面24612以及像側面24614均具有二反曲點。藉此,可有效調整各視場入射於第六透鏡2461的角度而改善像差。</p><p>第七透鏡2471具有負屈折力,且為塑膠材質,其物側面24712為凸面,其像側面24714為凹面。藉此,有利於縮短其後焦距以維持小型化。另外,第七透鏡物側面24712以及像側面24714均具有一反曲點,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。</p><p>紅外線濾光片300為玻璃材質,其設置於第七透鏡2471及成像面600間且不影響光學成像模組的焦距。</p><p>請配合參照下列表三以及表四。
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表三 第 二 光 學 實 施 例 透 鏡 數 據 </td></tr><tr><td> f(焦距)= 4.7601 mm ; f/HEP =2.2 ; HAF(半視角)= 95.98 deg </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度(mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 1E+18 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 47.71478323 </td><td> 4.977 </td><td> 玻璃 </td><td> 2.001 </td><td> 29.13 </td><td> -12.647 </td></tr><tr><td> 2 </td><td> </td><td> 9.527614761 </td><td> 13.737 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第二透鏡 </td><td> -14.88061107 </td><td> 5.000 </td><td> 玻璃 </td><td> 2.001 </td><td> 29.13 </td><td> -99.541 </td></tr><tr><td> 4 </td><td> </td><td> -20.42046946 </td><td> 10.837 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第三透鏡 </td><td> 182.4762997 </td><td> 5.000 </td><td> 玻璃 </td><td> 1.847 </td><td> 23.78 </td><td> 44.046 </td></tr><tr><td> 6 </td><td> </td><td> -46.71963608 </td><td> 13.902 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 光圈 </td><td> 1E+18 </td><td> 0.850 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> 28.60018103 </td><td> 4.095 </td><td> 玻璃 </td><td> 1.834 </td><td> 37.35 </td><td> 19.369 </td></tr><tr><td> 9 </td><td></td><td> -35.08507586 </td><td> 0.323 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> 18.25991342 </td><td> 1.539 </td><td> 玻璃 </td><td> 1.609 </td><td> 46.44 </td><td> 20.223 </td></tr><tr><td> 11 </td><td></td><td> -36.99028878 </td><td> 0.546 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 第六透鏡 </td><td> -18.24574524 </td><td> 5.000 </td><td> 玻璃 </td><td> 2.002 </td><td> 19.32 </td><td> -7.668 </td></tr><tr><td> 13 </td><td> </td><td> 15.33897192 </td><td> 0.215 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 第七透鏡 </td><td> 16.13218937 </td><td> 4.933 </td><td> 玻璃 </td><td> 1.517 </td><td> 64.20 </td><td> 13.620 </td></tr><tr><td> 15 </td><td></td><td> -11.24007 </td><td> 8.664 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 16 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 1.000 </td><td> BK_7 </td><td> 1.517 </td><td> 64.2 </td><td> </td></tr><tr><td> 17 </td><td></td><td> 1E+18 </td><td> 1.007 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 18 </td><td> 成像面 </td><td> 1E+18 </td><td> -0.007 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長 (d-line) 為555 nm </td></tr></TBODY></TABLE></table></tables></p><p>表四、第二光學實施例之非球面係數
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表四 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A4 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A6 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A8 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A10 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A12 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr></TBODY></TABLE></table></tables><tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表四 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td></tr><tr><td> k </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A4 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A6 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A8 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A10 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A12 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr></TBODY></TABLE></table></tables></p><p>第二光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。</p><p>依據表三及表四可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f/f6│ </td></tr><tr><td> 0.3764 </td><td> 0.0478 </td><td> 0.1081 </td><td> 0.2458 </td><td> 0.2354 </td><td> 0.6208 </td></tr><tr><td> ∣f/f7│ </td><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN67 / f </td></tr><tr><td> 0.3495 </td><td> 1.3510 </td><td> 0.6327 </td><td> 2.1352 </td><td> 2.8858 </td><td> 0.0451 </td></tr><tr><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> (TP1+IN12)/ TP2 </td><td> (TP7+IN67)/ TP6 </td></tr><tr><td> 0.1271 </td><td> 2.2599 </td><td> 3.7428 </td><td> 1.0296 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT % </td><td> TDT % </td></tr><tr><td> 81.6178 </td><td> 70.9539 </td><td> 13.6030 </td><td> 0.3451 </td><td> -113.2790 </td><td> 84.4806 </td></tr><tr><td> HVT11 </td><td> HVT12 </td><td> HVT21 </td><td> HVT22 </td><td> HVT31 </td><td> HVT32 </td></tr><tr><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td></tr><tr><td> HVT61 </td><td> HVT62 </td><td> HVT71 </td><td> HVT72 </td><td> HVT72/ HOI </td><td> HVT72/ HOS </td></tr><tr><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 11.962 mm </td><td> 12.362 mm </td><td> 12.862 mm </td><td> 0.25 mm </td><td> 0.2 mm </td><td> 6 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.9676 </td><td> 0.45 mm </td><td> 0.075 </td><td> 0.0055 </td><td> 0.0752 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> 0.060 mm </td><td> -0.005 mm </td><td> 0.016 mm </td><td> 0.006 mm </td><td> 0.020 mm </td><td> -0.008 mm </td></tr></TBODY></TABLE></table></tables></p><p>依據表三及表四可得到下列條件式數値:依據表一及表二可得到下列輪廓曲線長度相關之數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00075 </td><td> 99.93% </td><td> 4.977 </td><td> 21.72% </td></tr><tr><td> 12 </td><td> 1.082 </td><td> 1.083 </td><td> 0.00149 </td><td> 100.14% </td><td> 4.977 </td><td> 21.77% </td></tr><tr><td> 21 </td><td> 1.082 </td><td> 1.082 </td><td> 0.00011 </td><td> 100.01% </td><td> 5.000 </td><td> 21.64% </td></tr><tr><td> 22 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00034 </td><td> 99.97% </td><td> 5.000 </td><td> 21.63% </td></tr><tr><td> 31 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00084 </td><td> 99.92% </td><td> 5.000 </td><td> 21.62% </td></tr><tr><td> 32 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00075 </td><td> 99.93% </td><td> 5.000 </td><td> 21.62% </td></tr><tr><td> 41 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00059 </td><td> 99.95% </td><td> 4.095 </td><td> 26.41% </td></tr><tr><td> 42 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00067 </td><td> 99.94% </td><td> 4.095 </td><td> 26.40% </td></tr><tr><td> 51 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00021 </td><td> 99.98% </td><td> 1.539 </td><td> 70.28% </td></tr><tr><td> 52 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00069 </td><td> 99.94% </td><td> 1.539 </td><td> 70.25% </td></tr><tr><td> 61 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00021 </td><td> 99.98% </td><td> 5.000 </td><td> 21.63% </td></tr><tr><td> 62 </td><td> 1.082 </td><td> 1.082 </td><td> 0.00005 </td><td> 100.00% </td><td> 5.000 </td><td> 21.64% </td></tr><tr><td> 71 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00003 </td><td> 100.00% </td><td> 4.933 </td><td> 21.93% </td></tr><tr><td> 72 </td><td> 1.082 </td><td> 1.083 </td><td> 0.00083 </td><td> 100.08% </td><td> 4.933 </td><td> 21.95% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 20.767 </td><td> 21.486 </td><td> 0.719 </td><td> 103.46% </td><td> 4.977 </td><td> 431.68% </td></tr><tr><td> 12 </td><td> 9.412 </td><td> 13.474 </td><td> 4.062 </td><td> 143.16% </td><td> 4.977 </td><td> 270.71% </td></tr><tr><td> 21 </td><td> 8.636 </td><td> 9.212 </td><td> 0.577 </td><td> 106.68% </td><td> 5.000 </td><td> 184.25% </td></tr><tr><td> 22 </td><td> 9.838 </td><td> 10.264 </td><td> 0.426 </td><td> 104.33% </td><td> 5.000 </td><td> 205.27% </td></tr><tr><td> 31 </td><td> 8.770 </td><td> 8.772 </td><td> 0.003 </td><td> 100.03% </td><td> 5.000 </td><td> 175.45% </td></tr><tr><td> 32 </td><td> 8.511 </td><td> 8.558 </td><td> 0.047 </td><td> 100.55% </td><td> 5.000 </td><td> 171.16% </td></tr><tr><td> 41 </td><td> 4.600 </td><td> 4.619 </td><td> 0.019 </td><td> 100.42% </td><td> 4.095 </td><td> 112.80% </td></tr><tr><td> 42 </td><td> 4.965 </td><td> 4.981 </td><td> 0.016 </td><td> 100.32% </td><td> 4.095 </td><td> 121.64% </td></tr><tr><td> 51 </td><td> 5.075 </td><td> 5.143 </td><td> 0.067 </td><td> 101.33% </td><td> 1.539 </td><td> 334.15% </td></tr><tr><td> 52 </td><td> 5.047 </td><td> 5.062 </td><td> 0.015 </td><td> 100.30% </td><td> 1.539 </td><td> 328.89% </td></tr><tr><td> 61 </td><td> 5.011 </td><td> 5.075 </td><td> 0.064 </td><td> 101.28% </td><td> 5.000 </td><td> 101.50% </td></tr><tr><td> 62 </td><td> 5.373 </td><td> 5.489 </td><td> 0.116 </td><td> 102.16% </td><td> 5.000 </td><td> 109.79% </td></tr><tr><td> 71 </td><td> 5.513 </td><td> 5.625 </td><td> 0.112 </td><td> 102.04% </td><td> 4.933 </td><td> 114.03% </td></tr><tr><td> 72 </td><td> 5.981 </td><td> 6.307 </td><td> 0.326 </td><td> 105.44% </td><td> 4.933 </td><td> 127.84% </td></tr></TBODY></TABLE></table></tables></p><p>依據表三及表四可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF111 </td><td> 0 </td><td> HIF111/HOI </td><td> 0 </td><td> SGI111 </td><td> 0 </td><td> │SGI111∣/(│SGI111∣+TP1) </td><td> 0 </td></tr></TBODY></TABLE></table></tables></p><p>第三光學實施例</p><p>如第21圖所示,定焦透鏡組230及對焦透鏡組240可包含六片具有屈折力之透鏡2401,由物側至像側依序為第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451以及第六透鏡2461,且定焦透鏡組230及對焦透鏡組240滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡2411之物側面至成像面於光軸上之距離。InTL為第一透鏡2411之物側面至第六透鏡2461之像側面於光軸上之距離。</p><p>請參照第27圖及第28圖,其中第27圖繪示依照本創作第三光學實施例的一種光學成像模組的透鏡組示意圖,第28圖由左至右依序為第三光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第27圖可知,光學成像模組由物側至像側依序包含第一透鏡2411、光圈250、第二透鏡2421、第三透鏡2431、第四透鏡2441、第五透鏡2451、第六透鏡2461、紅外線濾光片300、成像面600以及影像感測元件140。</p><p>第一透鏡2411具有負屈折力,且為玻璃材質,其物側面24112為凸面,其像側面24114為凹面,並皆為球面。</p><p>第二透鏡2421具有負屈折力,且為玻璃材質,其物側面24212為凹面,其像側面24214為凸面,並皆為球面。</p><p>第三透鏡2431具有正屈折力,且為塑膠材質,其物側面24312為凸面,其像側面24314為凸面,並皆為非球面,且其像側面334具有一反曲點。</p><p>第四透鏡2441具有負屈折力,且為塑膠材質,其物側面24412為凹面,其像側面24414為凹面,並皆為非球面,且其像側面24414具有一反曲點。</p><p>第五透鏡2451具有正屈折力,且為塑膠材質,其物側面24512為凸面,其像側面24514為凸面,並皆為非球面。</p><p>第六透鏡2461具有負屈折力,且為塑膠材質,其物側面24612為凸面,其像側面24614為凹面,並皆為非球面,且其物側面24612以及像側面24614均具有一反曲點。藉此,有利於縮短其後焦距以維持小型化。另外,可有效地壓制離軸視場光線入射的角度,進一步可修正離軸視場的像差。</p><p>紅外線濾光片300為玻璃材質,其設置於第六透鏡2461及成像面600間且不影響光學成像模組的焦距。</p><p>請配合參照下列表五以及表六。
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表五 第 三 光 學 實 施 例 透 鏡 數 據 </td></tr><tr><td> f(焦距)= 2.808 mm ; f/HEP =1.6 ; HAF(半視角)= 100 deg </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 1E+18 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 71.398124 </td><td> 7.214 </td><td> 玻璃 </td><td> 1.702 </td><td> 41.15 </td><td> -11.765 </td></tr><tr><td> 2 </td><td> </td><td> 7.117272355 </td><td> 5.788 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第二透鏡 </td><td> -13.29213699 </td><td> 10.000 </td><td> 玻璃 </td><td> 2.003 </td><td> 19.32 </td><td> -4537.460 </td></tr><tr><td> 4 </td><td> </td><td> -18.37509887 </td><td> 7.005 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第三透鏡 </td><td> 5.039114804 </td><td> 1.398 </td><td> 塑膠 </td><td> 1.514 </td><td> 56.80 </td><td> 7.553 </td></tr><tr><td> 6 </td><td> </td><td> -15.53136631 </td><td> -0.140 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 光圈 </td><td> 1E+18 </td><td> 2.378 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> -18.68613609 </td><td> 0.577 </td><td> 塑膠 </td><td> 1.661 </td><td> 20.40 </td><td> -4.978 </td></tr><tr><td> 9 </td><td> </td><td> 4.086545927 </td><td> 0.141 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> 4.927609282 </td><td> 2.974 </td><td> 塑膠 </td><td> 1.565 </td><td> 58.00 </td><td> 4.709 </td></tr><tr><td> 11 </td><td> </td><td> -4.551946605 </td><td> 1.389 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 第六透鏡 </td><td> 9.184876531 </td><td> 1.916 </td><td> 塑膠 </td><td> 1.514 </td><td> 56.80 </td><td> -23.405 </td></tr><tr><td> 13 </td><td> </td><td> 4.845500046 </td><td> 0.800 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.500 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td> </td></tr><tr><td> 15 </td><td> </td><td> 1E+18 </td><td> 0.371 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 16 </td><td> 成像面 </td><td> 1E+18 </td><td> 0.005 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm;無 </td></tr></TBODY></TABLE></table></tables></p><p>表六、第三光學實施例之非球面係數
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表六 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 1.318519E-01 </td><td> 3.120384E+00 </td><td> -1.494442E+01 </td></tr><tr><td> A4 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 6.405246E-05 </td><td> 2.103942E-03 </td><td> -1.598286E-03 </td></tr><tr><td> A6 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 2.278341E-05 </td><td> -1.050629E-04 </td><td> -9.177115E-04 </td></tr><tr><td> A8 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -3.672908E-06 </td><td> 6.168906E-06 </td><td> 1.011405E-04 </td></tr><tr><td> A10 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.748457E-07 </td><td> -1.224682E-07 </td><td> -4.919835E-06 </td></tr></TBODY></TABLE></table></tables><tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表六 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> </td><td> </td></tr><tr><td> k </td><td> 2.744228E-02 </td><td> -7.864013E+00 </td><td> -2.263702E+00 </td><td> -4.206923E+01 </td><td> -7.030803E+00 </td><td> </td><td> </td></tr><tr><td> A4 </td><td> -7.291825E-03 </td><td> 1.405243E-04 </td><td> -3.919567E-03 </td><td> -1.679499E-03 </td><td> -2.640099E-03 </td><td> </td><td> </td></tr><tr><td> A6 </td><td> 9.730714E-05 </td><td> 1.837602E-04 </td><td> 2.683449E-04 </td><td> -3.518520E-04 </td><td> -4.507651E-05 </td><td> </td><td> </td></tr><tr><td> A8 </td><td> 1.101816E-06 </td><td> -2.173368E-05 </td><td> -1.229452E-05 </td><td> 5.047353E-05 </td><td> -2.600391E-05 </td><td> </td><td> </td></tr><tr><td> A10 </td><td> -6.849076E-07 </td><td> 7.328496E-07 </td><td> 4.222621E-07 </td><td> -3.851055E-06 </td><td> 1.161811E-06 </td><td> </td><td> </td></tr></TBODY></TABLE></table></tables></p><p>第三光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。</p><p>依據表五及表六可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f/f6│ </td></tr><tr><td> 0.23865 </td><td> 0.00062 </td><td> 0.37172 </td><td> 0.56396 </td><td> 0.59621 </td><td> 0.11996 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN56 / f </td><td> TP4/ (IN34+TP4+IN45) </td></tr><tr><td> 1.77054 </td><td> 0.12058 </td><td> 14.68400 </td><td> 2.06169 </td><td> 0.49464 </td><td> 0.19512 </td></tr><tr><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> (TP1+IN12)/ TP2 </td><td> (TP6+IN56)/ TP5 </td></tr><tr><td> 0.00259 </td><td> 600.74778 </td><td> 1.30023 </td><td> 1.11131 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT% </td><td> TDT% </td></tr><tr><td> 42.31580 </td><td> 40.63970 </td><td> 10.57895 </td><td> 0.26115 </td><td> -122.32700 </td><td> 93.33510 </td></tr><tr><td> HVT51 </td><td> HVT52 </td><td> HVT61 </td><td> HVT62 </td><td> HVT62/ HOI </td><td> HVT62/ HOS </td></tr><tr><td> 0 </td><td> 0 </td><td> 2.22299 </td><td> 2.60561 </td><td> 0.65140 </td><td> 0.06158 </td></tr><tr><td> TP2 / TP3 </td><td> TP3 / TP4 </td><td> InRS61 </td><td> InRS62 </td><td> │InRS61│/TP6 </td><td> │InRS62│/TP6 </td></tr><tr><td> 7.15374 </td><td> 2.42321 </td><td> -0.20807 </td><td> -0.24978 </td><td> 0.10861 </td><td> 0.13038 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 6.150 mm </td><td> 6.41 mm </td><td> 6.71 mm </td><td> 0.15 mm </td><td> 0.13 mm </td><td> 4 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.9165 </td><td> 0.28 mm </td><td> 0.07 </td><td> 0.0066 </td><td> 0.0911 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> 0.014 mm </td><td> 0.002 mm </td><td> -0.003 mm </td><td> -0.002 mm </td><td> 0.011 mm </td><td> -0.001 mm </td></tr></TBODY></TABLE></table></tables></p><p>依據表五及表六可得到下列輪廓曲線長度相關之數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00036 </td><td> 99.96% </td><td> 7.214 </td><td> 12.16% </td></tr><tr><td> 12 </td><td> 0.877 </td><td> 0.879 </td><td> 0.00186 </td><td> 100.21% </td><td> 7.214 </td><td> 12.19% </td></tr><tr><td> 21 </td><td> 0.877 </td><td> 0.878 </td><td> 0.00026 </td><td> 100.03% </td><td> 10.000 </td><td> 8.78% </td></tr><tr><td> 22 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00004 </td><td> 100.00% </td><td> 10.000 </td><td> 8.77% </td></tr><tr><td> 31 </td><td> 0.877 </td><td> 0.882 </td><td> 0.00413 </td><td> 100.47% </td><td> 1.398 </td><td> 63.06% </td></tr><tr><td> 32 </td><td> 0.877 </td><td> 0.877 </td><td> 0.00004 </td><td> 100.00% </td><td> 1.398 </td><td> 62.77% </td></tr><tr><td> 41 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00001 </td><td> 100.00% </td><td> 0.577 </td><td> 152.09% </td></tr><tr><td> 42 </td><td> 0.877 </td><td> 0.883 </td><td> 0.00579 </td><td> 100.66% </td><td> 0.577 </td><td> 153.10% </td></tr><tr><td> 51 </td><td> 0.877 </td><td> 0.881 </td><td> 0.00373 </td><td> 100.43% </td><td> 2.974 </td><td> 29.63% </td></tr><tr><td> 52 </td><td> 0.877 </td><td> 0.883 </td><td> 0.00521 </td><td> 100.59% </td><td> 2.974 </td><td> 29.68% </td></tr><tr><td> 61 </td><td> 0.877 </td><td> 0.878 </td><td> 0.00064 </td><td> 100.07% </td><td> 1.916 </td><td> 45.83% </td></tr><tr><td> 62 </td><td> 0.877 </td><td> 0.881 </td><td> 0.00368 </td><td> 100.42% </td><td> 1.916 </td><td> 45.99% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 17.443 </td><td> 17.620 </td><td> 0.178 </td><td> 101.02% </td><td> 7.214 </td><td> 244.25% </td></tr><tr><td> 12 </td><td> 6.428 </td><td> 8.019 </td><td> 1.592 </td><td> 124.76% </td><td> 7.214 </td><td> 111.16% </td></tr><tr><td> 21 </td><td> 6.318 </td><td> 6.584 </td><td> 0.266 </td><td> 104.20% </td><td> 10.000 </td><td> 65.84% </td></tr><tr><td> 22 </td><td> 6.340 </td><td> 6.472 </td><td> 0.132 </td><td> 102.08% </td><td> 10.000 </td><td> 64.72% </td></tr><tr><td> 31 </td><td> 2.699 </td><td> 2.857 </td><td> 0.158 </td><td> 105.84% </td><td> 1.398 </td><td> 204.38% </td></tr><tr><td> 32 </td><td> 2.476 </td><td> 2.481 </td><td> 0.005 </td><td> 100.18% </td><td> 1.398 </td><td> 177.46% </td></tr><tr><td> 41 </td><td> 2.601 </td><td> 2.652 </td><td> 0.051 </td><td> 101.96% </td><td> 0.577 </td><td> 459.78% </td></tr><tr><td> 42 </td><td> 3.006 </td><td> 3.119 </td><td> 0.113 </td><td> 103.75% </td><td> 0.577 </td><td> 540.61% </td></tr><tr><td> 51 </td><td> 3.075 </td><td> 3.171 </td><td> 0.096 </td><td> 103.13% </td><td> 2.974 </td><td> 106.65% </td></tr><tr><td> 52 </td><td> 3.317 </td><td> 3.624 </td><td> 0.307 </td><td> 109.24% </td><td> 2.974 </td><td> 121.88% </td></tr><tr><td> 61 </td><td> 3.331 </td><td> 3.427 </td><td> 0.095 </td><td> 102.86% </td><td> 1.916 </td><td> 178.88% </td></tr><tr><td> 62 </td><td> 3.944 </td><td> 4.160 </td><td> 0.215 </td><td> 105.46% </td><td> 1.916 </td><td> 217.14% </td></tr></TBODY></TABLE></table></tables></p><p>依據表五及表六可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF321 </td><td> 2.0367 </td><td> HIF321/HOI </td><td> 0.5092 </td><td> SGI321 </td><td> -0.1056 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.0702 </td></tr><tr><td> HIF421 </td><td> 2.4635 </td><td> HIF421/HOI </td><td> 0.6159 </td><td> SGI421 </td><td> 0.5780 </td><td> ∣SGI421│/(∣SGI421│+TP4) </td><td> 0.5005 </td></tr><tr><td> HIF611 </td><td> 1.2364 </td><td> HIF611/HOI </td><td> 0.3091 </td><td> SGI611 </td><td> 0.0668 </td><td> │SGI611∣/(│SGI611∣+TP6) </td><td> 0.0337 </td></tr><tr><td> HIF621 </td><td> 1.5488 </td><td> HIF621/HOI </td><td> 0.3872 </td><td> SGI621 </td><td> 0.2014 </td><td> ∣SGI621│/(∣SGI621│+TP6) </td><td> 0.0951 </td></tr></TBODY></TABLE></table></tables></p><p>第四光學實施例</p><p>如第20圖所示,在一實施例中,定焦透鏡組230及對焦透鏡組240可包含五片具有屈折力之透鏡2401,由物側至像側依序為第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441以及第五透鏡2451,且定焦透鏡組230及對焦透鏡組240滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡2411之物側面至成像面於光軸上之距離,InTL為第一透鏡2411之物側面至第五透鏡2451之像側面於光軸上之距離。</p><p>請參照第29圖及第30圖,其中第29圖繪示依照本創作第四光學實施例的一種光學成像模組的透鏡組示意圖,第30圖由左至右依序為第四光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第29圖可知,光學成像模組由物側至像側依序包含第一透鏡2411、第二透鏡2421、光圈250、第三透鏡2431、第四透鏡2441、第五透鏡2451、第六透鏡2461、紅外線濾光片300、成像面600以及影像感測元件140。</p><p>第一透鏡2411具有負屈折力,且為玻璃材質,其物側面24112為凸面,其像側面24114為凹面,並皆為球面。</p><p>第二透鏡2421具有負屈折力,且為塑膠材質,其物側面24212為凹面,其像側面24214為凹面,並皆為非球面,且其物側面24212具有一反曲點。</p><p>第三透鏡2431具有正屈折力,且為塑膠材質,其物側面24312為凸面,其像側面24314為凸面,並皆為非球面,且其物側面24312具有一反曲點。</p><p>第四透鏡2441具有正屈折力,且為塑膠材質,其物側面24412為凸面,其像側面24414為凸面,並皆為非球面,且其物側面24412具有一反曲點。</p><p>第五透鏡2451具有負屈折力,且為塑膠材質,其物側面24512為凹面,其像側面24514為凹面,並皆為非球面,且其物側面24512具有二反曲點。藉此,有利於縮短其後焦距以維持小型化。</p><p>紅外線濾光片300為玻璃材質,其設置於第五透鏡2451及成像面600間且不影響光學成像模組的焦距。</p><p>請配合參照下列表七以及表八。
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表七 第 四 光 學 實 施 例 透 鏡 數 據 </td></tr><tr><td> f(焦距)= 2.7883 mm ; f/HEP =1.8 ; HAF(半視角)= 101 deg </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度(mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 1E+18 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 76.84219 </td><td> 6.117399 </td><td> 玻璃 </td><td> 1.497 </td><td> 81.61 </td><td> -31.322 </td></tr><tr><td> 2 </td><td> </td><td> 12.62555 </td><td> 5.924382 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第二透鏡 </td><td> -37.0327 </td><td> 3.429817 </td><td> 塑膠 </td><td> 1.565 </td><td> 54.5 </td><td> -8.70843 </td></tr><tr><td> 4 </td><td> </td><td> 5.88556 </td><td> 5.305191 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第三透鏡 </td><td> 17.99395 </td><td> 14.79391 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> </td><td> -5.76903 </td><td> -0.4855 </td><td> 塑膠 </td><td> 1.565 </td><td> 58 </td><td> 9.94787 </td></tr><tr><td> 7 </td><td> 光圈 </td><td> 1E+18 </td><td> 0.535498 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第四透鏡 </td><td> 8.19404 </td><td> 4.011739 </td><td> 塑膠 </td><td> 1.565 </td><td> 58 </td><td> 5.24898 </td></tr><tr><td> 9 </td><td></td><td> -3.84363 </td><td> 0.050366 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 第五透鏡 </td><td> -4.34991 </td><td> 2.088275 </td><td> 塑膠 </td><td> 1.661 </td><td> 20.4 </td><td> -4.97515 </td></tr><tr><td> 11 </td><td> </td><td> 16.6609 </td><td> 0.6 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.5 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td> </td></tr><tr><td> 13 </td><td> </td><td> 1E+18 </td><td> 3.254927 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 14 </td><td> 成像面 </td><td> 1E+18 </td><td> -0.00013 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm </td></tr></TBODY></TABLE></table></tables></p><p>表八、第四光學實施例之非球面係數
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表八 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.131249 </td><td> -0.069541 </td><td> -0.324555 </td><td> 0.009216 </td><td> -0.292346 </td></tr><tr><td> A4 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.99823E-05 </td><td> -8.55712E-04 </td><td> -9.07093E-04 </td><td> 8.80963E-04 </td><td> -1.02138E-03 </td></tr><tr><td> A6 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 9.03636E-08 </td><td> -1.96175E-06 </td><td> -1.02465E-05 </td><td> 3.14497E-05 </td><td> -1.18559E-04 </td></tr><tr><td> A8 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 1.91025E-09 </td><td> -1.39344E-08 </td><td> -8.18157E-08 </td><td> -3.15863E-06 </td><td> 1.34404E-05 </td></tr><tr><td> A10 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -1.18567E-11 </td><td> -4.17090E-09 </td><td> -2.42621E-09 </td><td> 1.44613E-07 </td><td> -2.80681E-06 </td></tr><tr><td> A12 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td></tr></TBODY></TABLE></table></tables><tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表八 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> 11 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> k </td><td> -0.18604 </td><td> -6.17195 </td><td> 27.541383 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A4 </td><td> 4.33629E-03 </td><td> 1.58379E-03 </td><td> 7.56932E-03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A6 </td><td> -2.91588E-04 </td><td> -1.81549E-04 </td><td> -7.83858E-04 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A8 </td><td> 9.11419E-06 </td><td> -1.18213E-05 </td><td> 4.79120E-05 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A10 </td><td> 1.28365E-07 </td><td> 1.92716E-06 </td><td> -1.73591E-06 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A12 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE></table></tables></p><p>第四光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。</p><p>依據表七及表八可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f1/f2│ </td></tr><tr><td> 0.08902 </td><td> 0.32019 </td><td> 0.28029 </td><td> 0.53121 </td><td> 0.56045 </td><td> 3.59674 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN45 / f </td><td> ∣f2/f3│ </td></tr><tr><td> 1.4118 </td><td> 0.3693 </td><td> 3.8229 </td><td> 2.1247 </td><td> 0.0181 </td><td> 0.8754 </td></tr><tr><td> TP3 / (IN23+TP3+IN34) </td><td> (TP1+IN12)/ TP2 </td><td> (TP5+IN45)/ TP4 </td></tr><tr><td> 0.73422 </td><td> 3.51091 </td><td> 0.53309 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT% </td><td> TDT% </td></tr><tr><td> 46.12590 </td><td> 41.77110 </td><td> 11.53148 </td><td> 0.23936 </td><td> -125.266 </td><td> 99.1671 </td></tr><tr><td> HVT41 </td><td> HVT42 </td><td> HVT51 </td><td> HVT52 </td><td> HVT52/ HOI </td><td> HVT52/ HOS </td></tr><tr><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td></tr><tr><td> TP2 / TP3 </td><td> TP3 / TP4 </td><td> InRS51 </td><td> InRS52 </td><td> │InRS51│/TP5 </td><td> │InRS52│/TP5 </td></tr><tr><td> 0.23184 </td><td> 3.68765 </td><td> -0.679265 </td><td> 0.5369 </td><td> 0.32528 </td><td> 0.25710 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 5.598 mm </td><td> 5.858 mm </td><td> 6.118 mm </td><td> 0.13 mm </td><td> 0.13 mm </td><td> 4 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.9150 </td><td> 0.26 mm </td><td> 0.065 </td><td> 0.0056 </td><td> 0.0929 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> -0.011 mm </td><td> 0.005 mm </td><td> -0.010 mm </td><td> -0.003 mm </td><td> 0.005 mm </td><td> -0.00026 mm </td></tr></TBODY></TABLE></table></tables></p><p>依據表七及表八可得到下列輪廓曲線長度相關之數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00052 </td><td> 99.93% </td><td> 6.117 </td><td> 12.65% </td></tr><tr><td> 12 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00005 </td><td> 99.99% </td><td> 6.117 </td><td> 12.66% </td></tr><tr><td> 21 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00048 </td><td> 99.94% </td><td> 3.430 </td><td> 22.57% </td></tr><tr><td> 22 </td><td> 0.775 </td><td> 0.776 </td><td> 0.00168 </td><td> 100.22% </td><td> 3.430 </td><td> 22.63% </td></tr><tr><td> 31 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00031 </td><td> 99.96% </td><td> 14.794 </td><td> 5.23% </td></tr><tr><td> 32 </td><td> 0.775 </td><td> 0.776 </td><td> 0.00177 </td><td> 100.23% </td><td> 14.794 </td><td> 5.25% </td></tr><tr><td> 41 </td><td> 0.775 </td><td> 0.775 </td><td> 0.00059 </td><td> 100.08% </td><td> 4.012 </td><td> 19.32% </td></tr><tr><td> 42 </td><td> 0.775 </td><td> 0.779 </td><td> 0.00453 </td><td> 100.59% </td><td> 4.012 </td><td> 19.42% </td></tr><tr><td> 51 </td><td> 0.775 </td><td> 0.778 </td><td> 0.00311 </td><td> 100.40% </td><td> 2.088 </td><td> 37.24% </td></tr><tr><td> 52 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00014 </td><td> 99.98% </td><td> 2.088 </td><td> 37.08% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 23.038 </td><td> 23.397 </td><td> 0.359 </td><td> 101.56% </td><td> 6.117 </td><td> 382.46% </td></tr><tr><td> 12 </td><td> 10.140 </td><td> 11.772 </td><td> 1.632 </td><td> 116.10% </td><td> 6.117 </td><td> 192.44% </td></tr><tr><td> 21 </td><td> 10.138 </td><td> 10.178 </td><td> 0.039 </td><td> 100.39% </td><td> 3.430 </td><td> 296.74% </td></tr><tr><td> 22 </td><td> 5.537 </td><td> 6.337 </td><td> 0.800 </td><td> 114.44% </td><td> 3.430 </td><td> 184.76% </td></tr><tr><td> 31 </td><td> 4.490 </td><td> 4.502 </td><td> 0.012 </td><td> 100.27% </td><td> 14.794 </td><td> 30.43% </td></tr><tr><td> 32 </td><td> 2.544 </td><td> 2.620 </td><td> 0.076 </td><td> 102.97% </td><td> 14.794 </td><td> 17.71% </td></tr><tr><td> 41 </td><td> 2.735 </td><td> 2.759 </td><td> 0.024 </td><td> 100.89% </td><td> 4.012 </td><td> 68.77% </td></tr><tr><td> 42 </td><td> 3.123 </td><td> 3.449 </td><td> 0.326 </td><td> 110.43% </td><td> 4.012 </td><td> 85.97% </td></tr><tr><td> 51 </td><td> 2.934 </td><td> 3.023 </td><td> 0.089 </td><td> 103.04% </td><td> 2.088 </td><td> 144.74% </td></tr><tr><td> 52 </td><td> 2.799 </td><td> 2.883 </td><td> 0.084 </td><td> 103.00% </td><td> 2.088 </td><td> 138.08% </td></tr></TBODY></TABLE></table></tables></p><p>依據表七及表八可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF211 </td><td> 6.3902 </td><td> HIF211/HOI </td><td> 1.5976 </td><td> SGI211 </td><td> -0.4793 </td><td> │SGI211∣/(│SGI211∣+TP2) </td><td> 0.1226 </td></tr><tr><td> HIF311 </td><td> 2.1324 </td><td> HIF311/HOI </td><td> 0.5331 </td><td> SGI311 </td><td> 0.1069 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.0072 </td></tr><tr><td> HIF411 </td><td> 2.0278 </td><td> HIF411/HOI </td><td> 0.5070 </td><td> SGI411 </td><td> 0.2287 </td><td> │SGI411∣/(│SGI411∣+TP4) </td><td> 0.0539 </td></tr><tr><td> HIF511 </td><td> 2.6253 </td><td> HIF511/HOI </td><td> 0.6563 </td><td> SGI511 </td><td> -0.5681 </td><td> │SGI511∣/(│SGI511∣+TP5) </td><td> 0.2139 </td></tr><tr><td> HIF512 </td><td> 2.1521 </td><td> HIF512/HOI </td><td> 0.5380 </td><td> SGI512 </td><td> -0.8314 </td><td> │SGI512∣/(│SGI512∣+TP5) </td><td> 0.2848 </td></tr></TBODY></TABLE></table></tables></p><p>第五光學實施例</p><p>如第19圖所示,在一實施例中,定焦透鏡組230及對焦透鏡組240可包含四片具有屈折力之透鏡2401,由物側至像側依序為第一透鏡2411、第二透鏡2421、第三透鏡2431以及第四透鏡2441,且定焦透鏡組230及對焦透鏡組240係滿足下列條件:0.1≦InTL/HOS≦0.95。進一步說明,HOS為第一透鏡2411之物側面至成像面於光軸上之距離,InTL為第一透鏡2411之物側面至第四透鏡2441之像側面於光軸上之距離。</p><p>請參照第31圖及第32圖,其中第31圖繪示依照本創作第五光學實施例的一種光學成像模組的透鏡組示意圖,第32圖由左至右依序為第五光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第31圖可知,光學成像模組由物側至像側依序包含光圈250、第一透鏡2411、第二透鏡2421、第三透鏡2431、第四透鏡2441、紅外線濾光片300、成像面600以及影像感測元件140。</p><p>第一透鏡2411具有正屈折力,且為塑膠材質,其物側面、第一透鏡24112為凸面,其像側面、第一透鏡24114為凸面,並皆為非球面,且其物側面、第一透鏡24112具有一反曲點。</p><p>第二透鏡2421具有負屈折力,且為塑膠材質,其物側面24212為凸面,其像側面24214為凹面,並皆為非球面,且其物側面24212具有二反曲點以及像側面24214具有一反曲點。</p><p>第三透鏡2431具有正屈折力,且為塑膠材質,其物側面24312為凹面,其像側面24314為凸面,並皆為非球面,且其物側面24312具有三反曲點以及像側面24314具有一反曲點。</p><p>第四透鏡2441具有負屈折力,且為塑膠材質,其物側面24412為凹面,其像側面24414為凹面,並皆為非球面,且其物側面24412具有二反曲點以及像側面24414具有一反曲點。</p><p>紅外線濾光片300為玻璃材質,其設置於第四透鏡2441及成像面600間且不影響光學成像模組的焦距。</p><p>請配合參照下列表九以及表十。
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表九 第 五 光 學 實 施 例 透 鏡 數 據 </td><td> </td></tr><tr><td> f(焦距)= 1.04102 mm ; f/HEP =1.4 ; HAF(半視角)= 44.0346 deg </td><td> </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td><td> </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 600 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 光圈 </td><td> 1E+18 </td><td> -0.020 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 第一透鏡 </td><td> 0.890166851 </td><td> 0.210 </td><td> 塑膠 </td><td> 1.545 </td><td> 55.96 </td><td> 1.587 </td><td> </td></tr><tr><td> 3 </td><td> </td><td> -29.11040115 </td><td> -0.010 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> </td><td> 1E+18 </td><td> 0.116 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> 10.67765398 </td><td> 0.170 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -14.569 </td><td> </td></tr><tr><td> 6 </td><td> </td><td> 4.977771922 </td><td> 0.049 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -1.191436932 </td><td> 0.349 </td><td> 塑膠 </td><td> 1.545 </td><td> 55.96 </td><td> 0.510 </td><td> </td></tr><tr><td> 8 </td><td> </td><td> -0.248990674 </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 第四透鏡 </td><td> -38.08537212 </td><td> 0.176 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -0.569 </td><td> </td></tr><tr><td> 10 </td><td> </td><td> 0.372574476 </td><td> 0.152 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.210 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td> </td><td> </td></tr><tr><td> 12 </td><td> </td><td> 1E+18 </td><td> 0.185 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 13 </td><td> 成像面 </td><td> 1E+18 </td><td> 0.005 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm; 擋光位置:第4面其通光孔半徑0.360 mm </td><td> </td></tr></TBODY></TABLE></table></tables></p><p>表十、第五光學實施例之非球面係數
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十 非球面係數 </td></tr><tr><td> 表面 </td><td> 2 </td><td> 3 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> k = </td><td> -1.106629E+00 </td><td> 2.994179E-07 </td><td> -7.788754E+01 </td><td> -3.440335E+01 </td><td> -8.522097E-01 </td><td> -4.735945E+00 </td></tr><tr><td> A4 = </td><td> 8.291155E-01 </td><td> -6.401113E-01 </td><td> -4.958114E+00 </td><td> -1.875957E+00 </td><td> -4.878227E-01 </td><td> -2.490377E+00 </td></tr><tr><td> A6= </td><td> -2.398799E+01 </td><td> -1.265726E+01 </td><td> 1.299769E+02 </td><td> 8.568480E+01 </td><td> 1.291242E+02 </td><td> 1.524149E+02 </td></tr><tr><td> A8 = </td><td> 1.825378E+02 </td><td> 8.457286E+01 </td><td> -2.736977E+03 </td><td> -1.279044E+03 </td><td> -1.979689E+03 </td><td> -4.841033E+03 </td></tr><tr><td> A10= </td><td> -6.211133E+02 </td><td> -2.157875E+02 </td><td> 2.908537E+04 </td><td> 8.661312E+03 </td><td> 1.456076E+04 </td><td> 8.053747E+04 </td></tr><tr><td> A12 = </td><td> -4.719066E+02 </td><td> -6.203600E+02 </td><td> -1.499597E+05 </td><td> -2.875274E+04 </td><td> -5.975920E+04 </td><td> -7.936887E+05 </td></tr><tr><td> A14 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 2.992026E+05 </td><td> 3.764871E+04 </td><td> 1.351676E+05 </td><td> 4.811528E+06 </td></tr><tr><td> A16 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -1.329001E+05 </td><td> -1.762293E+07 </td></tr><tr><td> A18 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.579891E+07 </td></tr><tr><td> A20 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -3.094006E+07 </td></tr></TBODY></TABLE></table></tables><tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十 非球面係數 </td></tr><tr><td> 表面 </td><td> 9 </td><td> 10 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> k = </td><td> -2.277155E+01 </td><td> -8.039778E-01 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A4 = </td><td> 1.672704E+01 </td><td> -7.613206E+00 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A6= </td><td> -3.260722E+02 </td><td> 3.374046E+01 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A8 = </td><td> 3.373231E+03 </td><td> -1.368453E+02 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A10= </td><td> -2.177676E+04 </td><td> 4.049486E+02 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A12 = </td><td> 8.951687E+04 </td><td> -9.711797E+02 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A14 = </td><td> -2.363737E+05 </td><td> 1.942574E+03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A16 = </td><td> 3.983151E+05 </td><td> -2.876356E+03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A18 = </td><td> -4.090689E+05 </td><td> 2.562386E+03 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> A20 = </td><td> 2.056724E+05 </td><td> -9.943657E+02 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE></table></tables></p><p>第五光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。</p><p>依據表九及表十可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> InRS41 </td><td> InRS42 </td><td> HVT41 </td><td> HVT42 </td><td> ODT% </td><td> TDT% </td></tr><tr><td> -0.07431 </td><td> 0.00475 </td><td> 0.00000 </td><td> 0.53450 </td><td> 2.09403 </td><td> 0.84704 </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td></tr><tr><td> 0.65616 </td><td> 0.07145 </td><td> 2.04129 </td><td> 1.83056 </td><td> 0.10890 </td><td> 28.56826 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> ΣPP </td><td> ΣNP </td><td> f1/ΣPP </td></tr><tr><td> 2.11274 </td><td> 2.48672 </td><td> 0.84961 </td><td> -14.05932 </td><td> 1.01785 </td><td> 1.03627 </td></tr><tr><td> f4/ΣNP </td><td> IN12 / f </td><td> IN23 / f </td><td> IN34 / f </td><td> TP3 / f </td><td> TP4 / f </td></tr><tr><td> 1.55872 </td><td> 0.10215 </td><td> 0.04697 </td><td> 0.02882 </td><td> 0.33567 </td><td> 0.16952 </td></tr><tr><td> InTL </td><td> HOS </td><td> HOS / HOI </td><td> InS/ HOS </td><td> InTL / HOS </td><td> ΣTP / InTL </td></tr><tr><td> 1.09131 </td><td> 1.64329 </td><td> 1.59853 </td><td> 0.98783 </td><td> 0.66410 </td><td> 0.83025 </td></tr><tr><td> (TP1+IN12) / TP2 </td><td> (TP4+IN34) / TP3 </td><td> TP1 / TP2 </td><td> TP3 / TP4 </td><td> IN23/(TP2+IN23+TP3) </td></tr><tr><td> 1.86168 </td><td> 0.59088 </td><td> 1.23615 </td><td> 1.98009 </td><td> 0.08604 </td></tr><tr><td> │InRS41│/TP4 </td><td> │InRS42│/TP4 </td><td> HVT42/ HOI </td><td> HVT42/ HOS </td><td> </td><td> </td></tr><tr><td> 0.4211 </td><td> 0.0269 </td><td> 0.5199 </td><td> 0.3253 </td><td> </td><td> </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 1.596 mm </td><td> 1.996 mm </td><td> 2.396 mm </td><td> 0.2 mm </td><td> 0.2 mm </td><td> 1.028 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.7996 </td><td> 0.4 mm </td><td> 0.3891 </td><td> 0.2434 </td><td> 0.5013 </td><td> </td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> -0.029 mm </td><td> -0.023 mm </td><td> -0.011 mm </td><td> -0.024 mm </td><td> 0.010 mm </td><td> 0.011 mm </td></tr></TBODY></TABLE></table></tables></p><p>依據表九及表十可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF111 </td><td> 0.28454 </td><td> HIF111/HOI </td><td> 0.27679 </td><td> SGI111 </td><td> 0.04361 </td><td> │SGI111∣/(│SGI111∣+TP1) </td><td> 0.17184 </td></tr><tr><td> HIF211 </td><td> 0.04198 </td><td> HIF211/HOI </td><td> 0.04083 </td><td> SGI211 </td><td> 0.00007 </td><td> │SGI211∣/(│SGI211∣+TP2) </td><td> 0.00040 </td></tr><tr><td> HIF212 </td><td> 0.37903 </td><td> HIF212/HOI </td><td> 0.36871 </td><td> SGI212 </td><td> -0.03682 </td><td> │SGI212∣/(│SGI212∣+TP2) </td><td> 0.17801 </td></tr><tr><td> HIF221 </td><td> 0.25058 </td><td> HIF221/HOI </td><td> 0.24376 </td><td> SGI221 </td><td> 0.00695 </td><td> ∣SGI221│/(∣SGI221│+TP2) </td><td> 0.03927 </td></tr><tr><td> HIF311 </td><td> 0.14881 </td><td> HIF311/HOI </td><td> 0.14476 </td><td> SGI311 </td><td> -0.00854 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.02386 </td></tr><tr><td> HIF312 </td><td> 0.31992 </td><td> HIF312/HOI </td><td> 0.31120 </td><td> SGI312 </td><td> -0.01783 </td><td> │SGI312∣/(│SGI312∣+TP3) </td><td> 0.04855 </td></tr><tr><td> HIF313 </td><td> 0.32956 </td><td> HIF313/HOI </td><td> 0.32058 </td><td> SGI313 </td><td> -0.01801 </td><td> │SGI313∣/(│SGI313∣+TP3) </td><td> 0.04902 </td></tr><tr><td> HIF321 </td><td> 0.36943 </td><td> HIF321/HOI </td><td> 0.35937 </td><td> SGI321 </td><td> -0.14878 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.29862 </td></tr><tr><td> HIF411 </td><td> 0.01147 </td><td> HIF411/HOI </td><td> 0.01116 </td><td> SGI411 </td><td> -0.00000 </td><td> │SGI411∣/(│SGI411∣+TP4) </td><td> 0.00001 </td></tr><tr><td> HIF412 </td><td> 0.22405 </td><td> HIF412/HOI </td><td> 0.21795 </td><td> SGI412 </td><td> 0.01598 </td><td> │SGI412∣/(│SGI412∣+TP4) </td><td> 0.08304 </td></tr><tr><td> HIF421 </td><td> 0.24105 </td><td> HIF421/HOI </td><td> 0.23448 </td><td> SGI421 </td><td> 0.05924 </td><td> ∣SGI421│/(∣SGI421│+TP4) </td><td> 0.25131 </td></tr></TBODY></TABLE></table></tables></p><p>依據表九及表十可得到輪廓曲線長度相關之數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.368 </td><td> 0.374 </td><td> 0.00578 </td><td> 101.57% </td><td> 0.210 </td><td> 178.10% </td></tr><tr><td> 12 </td><td> 0.366 </td><td> 0.368 </td><td> 0.00240 </td><td> 100.66% </td><td> 0.210 </td><td> 175.11% </td></tr><tr><td> 21 </td><td> 0.372 </td><td> 0.375 </td><td> 0.00267 </td><td> 100.72% </td><td> 0.170 </td><td> 220.31% </td></tr><tr><td> 22 </td><td> 0.372 </td><td> 0.371 </td><td> -0.00060 </td><td> 99.84% </td><td> 0.170 </td><td> 218.39% </td></tr><tr><td> 31 </td><td> 0.372 </td><td> 0.372 </td><td> -0.00023 </td><td> 99.94% </td><td> 0.349 </td><td> 106.35% </td></tr><tr><td> 32 </td><td> 0.372 </td><td> 0.404 </td><td> 0.03219 </td><td> 108.66% </td><td> 0.349 </td><td> 115.63% </td></tr><tr><td> 41 </td><td> 0.372 </td><td> 0.373 </td><td> 0.00112 </td><td> 100.30% </td><td> 0.176 </td><td> 211.35% </td></tr><tr><td> 42 </td><td> 0.372 </td><td> 0.387 </td><td> 0.01533 </td><td> 104.12% </td><td> 0.176 </td><td> 219.40% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 0.368 </td><td> 0.374 </td><td> 0.00578 </td><td> 101.57% </td><td> 0.210 </td><td> 178.10% </td></tr><tr><td> 12 </td><td> 0.366 </td><td> 0.368 </td><td> 0.00240 </td><td> 100.66% </td><td> 0.210 </td><td> 175.11% </td></tr><tr><td> 21 </td><td> 0.387 </td><td> 0.391 </td><td> 0.00383 </td><td> 100.99% </td><td> 0.170 </td><td> 229.73% </td></tr><tr><td> 22 </td><td> 0.458 </td><td> 0.460 </td><td> 0.00202 </td><td> 100.44% </td><td> 0.170 </td><td> 270.73% </td></tr><tr><td> 31 </td><td> 0.476 </td><td> 0.478 </td><td> 0.00161 </td><td> 100.34% </td><td> 0.349 </td><td> 136.76% </td></tr><tr><td> 32 </td><td> 0.494 </td><td> 0.538 </td><td> 0.04435 </td><td> 108.98% </td><td> 0.349 </td><td> 154.02% </td></tr><tr><td> 41 </td><td> 0.585 </td><td> 0.624 </td><td> 0.03890 </td><td> 106.65% </td><td> 0.176 </td><td> 353.34% </td></tr><tr><td> 42 </td><td> 0.798 </td><td> 0.866 </td><td> 0.06775 </td><td> 108.49% </td><td> 0.176 </td><td> 490.68% </td></tr></TBODY></TABLE></table></tables></p><p>第六光學實施例</p><p>請參照第33圖及第34圖,其中第33圖繪示依照本創作第六光學實施例的一種光學成像模組的透鏡組示意圖,第34圖由左至右依序為第六光學實施例的光學成像模組的球差、像散及光學畸變曲線圖。由第33圖可知,光學成像模組由物側至像側依序包含第一透鏡2411、光圈250、第二透鏡2421、第三透鏡2431、紅外線濾光片300、成像面600以及影像感測元件140。</p><p>第一透鏡2411具有正屈折力,且為塑膠材質,其物側面24112為凸面,其像側面24114為凹面,並皆為非球面。</p><p>第二透鏡2421具有負屈折力,且為塑膠材質,其物側面24212為凹面,其像側面24214為凸面,並皆為非球面,其像側面24214具有一反曲點。</p><p>第三透鏡2431具有正屈折力,且為塑膠材質,其物側面24312為凸面,其像側面24314為凸面,並皆為非球面,且其物側面24312具有二反曲點以及像側面24314具有一反曲點。</p><p>紅外線濾光片300為玻璃材質,其設置於第三透鏡2431及成像面2431間且不影響光學成像模組的焦距。</p><p>請配合參照下列表十一以及表十二。
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十一 第 六 光 學 實 施 例 透 鏡 數 據 </td><td> </td></tr><tr><td> f(焦距)= 2.41135 mm ; f/HEP =2.22 ; HAF(半視角)= 36 deg </td><td> </td></tr><tr><td> 表面 </td><td> 曲率半徑 </td><td> 厚度 (mm) </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td><td> </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 1E+18 </td><td> 600 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 第一透鏡 </td><td> 0.840352226 </td><td> 0.468 </td><td> 塑膠 </td><td> 1.535 </td><td> 56.27 </td><td> 2.232 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 2.271975602 </td><td> 0.148 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 光圈 </td><td> 1E+18 </td><td> 0.277 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> 第二透鏡 </td><td> -1.157324239 </td><td> 0.349 </td><td> 塑膠 </td><td> 1.642 </td><td> 22.46 </td><td> -5.221 </td><td> </td></tr><tr><td> 5 </td><td> </td><td> -1.968404008 </td><td> 0.221 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第三透鏡 </td><td> 1.151874235 </td><td> 0.559 </td><td> 塑膠 </td><td> 1.544 </td><td> 56.09 </td><td> 7.360 </td><td> </td></tr><tr><td> 7 </td><td> </td><td> 1.338105159 </td><td> 0.123 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 紅外線 濾光片 </td><td> 1E+18 </td><td> 0.210 </td><td> BK7 </td><td> 1.517 </td><td> 64.13 </td><td> </td><td> </td></tr><tr><td> 9 </td><td> </td><td> 1E+18 </td><td> 0.547 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 成像面 </td><td> 1E+18 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 參考波長為555 nm; 擋光位置: 第1面其通光半徑0.640 mm </td><td> </td><td> 0.025423 </td></tr></TBODY></TABLE></table></tables></p><p>表十二、第六光學實施例之非球面係數
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表十二 非球面係數 </td></tr><tr><td> 表面 </td><td> 1 </td><td> 2 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td></tr><tr><td> k = </td><td> -2.019203E-01 </td><td> 1.528275E+01 </td><td> 3.743939E+00 </td><td> -1.207814E+01 </td><td> -1.276860E+01 </td><td> -3.034004E+00 </td></tr><tr><td> A4 = </td><td> 3.944883E-02 </td><td> -1.670490E-01 </td><td> -4.266331E-01 </td><td> -1.696843E+00 </td><td> -7.396546E-01 </td><td> -5.308488E-01 </td></tr><tr><td> A6= </td><td> 4.774062E-01 </td><td> 3.857435E+00 </td><td> -1.423859E+00 </td><td> 5.164775E+00 </td><td> 4.449101E-01 </td><td> 4.374142E-01 </td></tr><tr><td> A8 = </td><td> -1.528780E+00 </td><td> -7.091408E+01 </td><td> 4.119587E+01 </td><td> -1.445541E+01 </td><td> 2.622372E-01 </td><td> -3.111192E-01 </td></tr><tr><td> A10= </td><td> 5.133947E+00 </td><td> 6.365801E+02 </td><td> -3.456462E+02 </td><td> 2.876958E+01 </td><td> -2.510946E-01 </td><td> 1.354257E-01 </td></tr><tr><td> A12 = </td><td> -6.250496E+00 </td><td> -3.141002E+03 </td><td> 1.495452E+03 </td><td> -2.662400E+01 </td><td> -1.048030E-01 </td><td> -2.652902E-02 </td></tr><tr><td> A14= </td><td> 1.068803E+00 </td><td> 7.962834E+03 </td><td> -2.747802E+03 </td><td> 1.661634E+01 </td><td> 1.462137E-01 </td><td> -1.203306E-03 </td></tr><tr><td> A16 = </td><td> 7.995491E+00 </td><td> -8.268637E+03 </td><td> 1.443133E+03 </td><td> -1.327827E+01 </td><td> -3.676651E-02 </td><td> 7.805611E-04 </td></tr></TBODY></TABLE></table></tables></p><p>第六光學實施例中,非球面的曲線方程式表示如第一光學實施例的形式。此外,下表參數的定義皆與第一光學實施例相同,在此不加以贅述。</p><p>依據表十一及表十二可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第六光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> TP1 / TP2 </td></tr><tr><td> 1.08042 </td><td> 0.46186 </td><td> 0.32763 </td><td> 2.33928 </td><td> 1.40968 </td><td> 1.33921 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN23 / f </td><td> TP2 / TP3 </td></tr><tr><td> 1.40805 </td><td> 0.46186 </td><td> 3.04866 </td><td> 0.17636 </td><td> 0.09155 </td><td> 0.62498 </td></tr><tr><td> TP2 / (IN12+TP2+IN23) </td><td> (TP1+IN12)/ TP2 </td><td> (TP3+IN23)/ TP2 </td></tr><tr><td> 0.35102 </td><td> 2.23183 </td><td> 2.23183 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> │ODT│% </td><td> │TDT│% </td></tr><tr><td> 2.90175 </td><td> 2.02243 </td><td> 1.61928 </td><td> 0.78770 </td><td> 1.50000 </td><td> 0.71008 </td></tr><tr><td> HVT21 </td><td> HVT22 </td><td> HVT31 </td><td> HVT32 </td><td> HVT32/ HOI </td><td> HVT32/ HOS </td></tr><tr><td> 0.00000 </td><td> 0.00000 </td><td> 0.46887 </td><td> 0.67544 </td><td> 0.37692 </td><td> 0.23277 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 2.716 mm </td><td> 3.116 mm </td><td> 3.616 mm </td><td> 0.25 mm </td><td> 0.2 mm </td><td> 1.792 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td> </td></tr><tr><td> 0.7511 </td><td> 0.45 mm </td><td> 0.2511 </td><td> 0.1551 </td><td> 0.3314 </td><td> </td></tr><tr><td> PLTA </td><td> PSTA </td><td> NLTA </td><td> NSTA </td><td> SLTA </td><td> SSTA </td></tr><tr><td> -0.002 mm </td><td> 0.008 mm </td><td> 0.006 mm </td><td> -0.008 mm </td><td> -0.007 mm </td><td> 0.006 mm </td></tr></TBODY></TABLE></table></tables></p><p>依據表十一及表十二可得到下列條件式數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第六光學實施例反曲點相關數值 (使用主要參考波長 555 nm) </td></tr><tr><td> HIF221 </td><td> 0.5599 </td><td> HIF221/HOI </td><td> 0.3125 </td><td> SGI221 </td><td> -0.1487 </td><td> ∣SGI221│/(∣SGI221│+TP2) </td><td> 0.2412 </td></tr><tr><td> HIF311 </td><td> 0.2405 </td><td> HIF311/HOI </td><td> 0.1342 </td><td> SGI311 </td><td> 0.0201 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.0413 </td></tr><tr><td> HIF312 </td><td> 0.8255 </td><td> HIF312/HOI </td><td> 0.4607 </td><td> SGI312 </td><td> -0.0234 </td><td> │SGI312∣/(│SGI312∣+TP3) </td><td> 0.0476 </td></tr><tr><td> HIF321 </td><td> 0.3505 </td><td> HIF321/HOI </td><td> 0.1956 </td><td> SGI321 </td><td> 0.0371 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.0735 </td></tr></TBODY></TABLE></table></tables></p><p>依據表十一及表十二可得到輪廓曲線長度相關之數値:
<tables><table><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第六光學實施例 (使用主要參考波長 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.546 </td><td> 0.598 </td><td> 0.052 </td><td> 109.49% </td><td> 0.468 </td><td> 127.80% </td></tr><tr><td> 12 </td><td> 0.500 </td><td> 0.506 </td><td> 0.005 </td><td> 101.06% </td><td> 0.468 </td><td> 108.03% </td></tr><tr><td> 21 </td><td> 0.492 </td><td> 0.528 </td><td> 0.036 </td><td> 107.37% </td><td> 0.349 </td><td> 151.10% </td></tr><tr><td> 22 </td><td> 0.546 </td><td> 0.572 </td><td> 0.026 </td><td> 104.78% </td><td> 0.349 </td><td> 163.78% </td></tr><tr><td> 31 </td><td> 0.546 </td><td> 0.548 </td><td> 0.002 </td><td> 100.36% </td><td> 0.559 </td><td> 98.04% </td></tr><tr><td> 32 </td><td> 0.546 </td><td> 0.550 </td><td> 0.004 </td><td> 100.80% </td><td> 0.559 </td><td> 98.47% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 0.640 </td><td> 0.739 </td><td> 0.099 </td><td> 115.54% </td><td> 0.468 </td><td> 158.03% </td></tr><tr><td> 12 </td><td> 0.500 </td><td> 0.506 </td><td> 0.005 </td><td> 101.06% </td><td> 0.468 </td><td> 108.03% </td></tr><tr><td> 21 </td><td> 0.492 </td><td> 0.528 </td><td> 0.036 </td><td> 107.37% </td><td> 0.349 </td><td> 151.10% </td></tr><tr><td> 22 </td><td> 0.706 </td><td> 0.750 </td><td> 0.044 </td><td> 106.28% </td><td> 0.349 </td><td> 214.72% </td></tr><tr><td> 31 </td><td> 1.118 </td><td> 1.135 </td><td> 0.017 </td><td> 101.49% </td><td> 0.559 </td><td> 203.04% </td></tr><tr><td> 32 </td><td> 1.358 </td><td> 1.489 </td><td> 0.131 </td><td> 109.69% </td><td> 0.559 </td><td> 266.34% </td></tr></TBODY></TABLE></table></tables></p><p>另外,本創作再提供一種光學成像系統,係包含上述各實施例之光學成像模組10,且可應用於電子可攜式裝置、電子穿戴式裝置、電子監視裝置、電子資訊裝置、電子通訊裝置、機器視覺裝置、車用電子裝置以及所構成群組之一。</p><p>進一步說明,本創作之光學成像模組可為電子可攜式裝置、電子穿戴式裝置、電子監視裝置、電子資訊裝置、電子通訊裝置、機器視覺裝置以及車用電子裝置所構成群組之一,並且視需求可藉由不同片數之透鏡組達到降低所需機構空間以及提高螢幕可視區域。</p><p>另外,本創作再提供一種光學成像模組之製造方法,如第43圖所示,可包含下列方法步驟:</p><p>S101:設置電路組件100,且電路組件100可包含電路基板120、複數個影像感測元件140及複數個訊號傳導元件160。</p><p>S102:將複數個訊號傳導元件160電性連接於電路基板120上之複數個電路接點122及各影像感測元件140之第二表面144上之複數個影像接點146之間。</p><p>S103:一體地形成多鏡頭框架180,並蓋設於電路基板120及影像感測元件140上,且將部分之訊號傳導元件160埋設於多鏡頭框架180,及將另一部分之訊號傳導元件160由多鏡頭框架180環繞,並形成對應各影像感測元件140之第二表面144上之感測面1441之位置形成複數個光通道182。</p><p>S104:設置透鏡組件200,且透鏡組件200可包含透鏡基座220、至少一定焦透鏡組230、至少一對焦透鏡組240及複數個驅動組件260。</p><p>S105:以不透光材質製成透鏡基座220,並於透鏡基座220上形成容置孔2201,使容置孔2201貫穿透鏡基座220兩端而使透鏡基座220呈中空。</p><p>S106:將透鏡基座220設置於多鏡頭框架180上而使容置孔2201與光通道182相連通。</p><p>S107:S107:設置至少二片具有屈光力之透鏡2401於定焦透鏡組230及對焦透鏡組240中,並使定焦透鏡組230及對焦透鏡組240滿足下列條件: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99;及 0≦2(ARE/HEP)≦2.0。</p><p>於上述條件中,f為定焦透鏡組230及對焦透鏡組240的焦距;HEP為定焦透鏡組230及對焦透鏡組240之入射瞳直徑;HAF為定焦透鏡組230及對焦透鏡組240之最大可視角度的一半;PhiD為透鏡基座220之外周緣且垂直於定焦透鏡組230及對焦透鏡組240之光軸的平面上的最小邊長的最大值;PhiA為定焦透鏡組230及對焦透鏡組240最接近成像面之透鏡2401表面的最大有效直徑;ARE係以定焦透鏡組230及對焦透鏡組240中任一透鏡2401之任一透鏡2401表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著透鏡2401表面的輪廓所得之輪廓曲線長度。</p><p>S108:將定焦透鏡組230及對焦透鏡組240設置於透鏡基座220上並位於容置孔2201中。</p><p>S109:調整透鏡組件200之焦透鏡組230及對焦透鏡組240之成像面,使透鏡組件200之焦透鏡組230及對焦透鏡組240之成像面係位於各該影像感測元件140之感測面1441,並使焦透鏡組230及對焦透鏡組240之光軸與感測面1441之中心法線重疊。</p><p>S110:將各驅動組件260與電路基板120電性連接,並與各對焦透鏡組240耦接,以驅動各對焦透鏡組240於感測面1441之中心法線方向上移動。</p><p>進一步說明,藉由S101至S110的方法,可藉由多鏡頭框架180一體成形的特性,確保其平整性,並且可藉由AA(Active Alignment)製程,於S101至S110任一者中,調整調整電路基板120、影像感測元件140、透鏡基座220、定焦透鏡組230、對焦透鏡組240、驅動組件260及光學成像模組10所包含之各構件之間的相對位置,以使光線可通過容置孔2201中之定焦透鏡組230及對焦透鏡組240並通過光通道182後投射至感測面1441,並使定焦透鏡組230及對焦透鏡組240之成像面可位於感測面1441,且定焦透鏡組230及對焦透鏡組240之光軸與感測面1441之中心法線重疊,以確保成像品質。</p><p>除此之外,藉由S103中將部分之訊號傳導元件160埋設於多鏡頭框架180中的方法,以此使得複數個訊號傳導元件160於形成多鏡頭框架180時即可固定位置,可防止組裝時造成的誤差,並且避免於封裝過程中使得元件變形,而造成例如短路等諸多問題,並且可減少光學模組整體的尺寸。</p><p>現請參閱第2圖至第8圖,及第44圖至46圖,本創作再提供一種光學成像模組10,可包含電路組件100、透鏡組件200以及多鏡頭外框架190。而電路組件100可包含電路基板120、複數個影像感測元件140及複數個訊號傳導元件160;透鏡組件200可包含複數個透鏡基座220、至少一定焦透鏡組230、至少一對焦透鏡組240及至少一驅動組件260。</p><p>電路基板120可包含複數個電路接點122,而各影像感測元件140可包含第一表面142及第二表面144,且影像感測器140之外周緣且垂直於光軸之平面上的最小邊長的最大值為LS。第一表面142可與電路基板120連接,且第二表面144上可具有感測面1441。複數個訊號傳導元件160可電性連接於電路基板120上之複數個電路接點122及各影像感測元件140之複數個影像接點146之間。</p><p>複數個透鏡基座220可以不透光材質製成,並具有容置孔2201貫穿透鏡基座220兩端而使透鏡基座220呈中空,且透鏡基座220可設置於電路基板120上,且在一實施例中,亦可先將多鏡頭框架180先設置於電路基板120上,再將透鏡基座220設置於多鏡頭框架180及電路基板120上。</p><p>各定焦透鏡組230及各對焦透鏡組240可具有至少二片具有屈光力之透鏡2401,且設置於透鏡基座220上並位於容置孔2201中,且各定焦透鏡組230及各對焦透鏡組240之成像面可位於感測面1441,且各定焦透鏡組230及各對焦透鏡組240之光軸與感測面1441之中心法線重疊,使光線可通過容置孔2201中之各定焦透鏡組230及各對焦透鏡組240並投射至感測面1441,確保成像品質。此外,各定焦透鏡組230及各對焦透鏡組240最接近成像面之透鏡的像側面之最大直徑以PhiB表示,而各定焦透鏡組230及各對焦透鏡組240中最接近成像面 (即像空間)之透鏡像側面的最大有效直徑(又可稱之為光學出瞳)可以PhiA表示。</p><p>各驅動組件260可與電路基板120電性連接,並驅動各對焦透鏡組240於感測面1441之中心法線方向上移動,且在一實施例中驅動組件260可包含音圈馬達,以驅動各對焦透鏡組240於感測面1441之中心法線方向上移動。</p><p>另外,各透鏡基座220可被分別固定於多鏡頭外框架190中,以便於構成一整體之光學成像模組10,並且可使整體光學成像模組10之結構更加穩固,且可保護電路組件100及透鏡組件200,以避免撞擊、灰塵汙染等。</p><p>且上述之各定焦透鏡組230及各對焦透鏡組240更滿足下列條件: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99;及 0≦2(ARE/HEP)≦2.0</p><p>進一步說明,f為定焦透鏡組230及對焦透鏡組240的焦距;HEP為定焦透鏡組230及對焦透鏡組240之入射瞳直徑;HAF為定焦透鏡組230及對焦透鏡組240之最大可視角度的一半;PhiD為透鏡基座之外周緣且垂直於定焦透鏡組230及對焦透鏡組240之光軸的平面上的最小邊長的最大值;PhiA為定焦透鏡組230及對焦透鏡組240最接近成像面之透鏡表面的最大有效直徑;ARE係以定焦透鏡組230及對焦透鏡組240中任一透鏡之任一透鏡表面與光軸的交點為起點,並以距離光軸1/2入射瞳直徑之垂直高度處的位置為終點,延著透鏡表面的輪廓所得之輪廓曲線長度。</p><p>並且,上述各實施例中及製造方法中,本創作所提供之光學成像模組所包含之各單一鏡頭組皆是獨立封裝而存在的,例如對焦透鏡組及定焦透鏡組皆是獨立封裝而存在的,以實現各自的功能,並且具有良好的成像品質。</p><p>以上所述僅為舉例性,而非為限制性者。任何未脫離本創作之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。</p></mode-for-invention><description-of-drawings><description-of-element><p>10、712、722、732、742、752、762‧‧‧光學成像模組</p><p>
100‧‧‧電路組件</p><p>
120‧‧‧電路基板</p><p>
122‧‧‧電路接點</p><p>
140‧‧‧影像感測元件</p><p>
142‧‧‧第一表面</p><p>
144‧‧‧第二表面</p><p>
1441‧‧‧感測面</p><p>
146‧‧‧影像接點</p><p>
160‧‧‧訊號傳導元件</p><p>
180‧‧‧多鏡頭框架</p><p>
181‧‧‧鏡頭支架</p><p>
182‧‧‧光通道</p><p>
184‧‧‧外表面</p><p>
186‧‧‧第一內表面</p><p>
188‧‧‧第二內表面</p><p>
190‧‧‧多鏡頭外框架</p><p>
200‧‧‧透鏡組件</p><p>
220‧‧‧透鏡基座</p><p>
2201‧‧‧容置孔</p><p>
222‧‧‧鏡筒</p><p>
2221‧‧‧上通孔</p><p>
224‧‧‧透鏡支架</p><p>
2241‧‧‧下通孔</p><p>
226‧‧‧濾光片支架</p><p>
2261‧‧‧濾光片通孔</p><p>
230‧‧‧定焦透鏡組</p><p>
240‧‧‧對焦透鏡組</p><p>
2401‧‧‧透鏡</p><p>
2411‧‧‧第一透鏡</p><p>
2421‧‧‧第二透鏡</p><p>
2431‧‧‧第三透鏡</p><p>
2441‧‧‧第四透鏡</p><p>
2451‧‧‧第五透鏡</p><p>
2461‧‧‧第六透鏡</p><p>
2471‧‧‧第七透鏡</p><p>
24112、24212、24312、24112、24412、24512、24612‧‧‧物側面</p><p>
24114、24214、24314、24414、24514、24614、24714‧‧‧像側面</p><p>
260‧‧‧驅動組件</p><p>
300‧‧‧紅外線濾光片</p><p>
400‧‧‧資料傳輸線路</p><p>
501‧‧‧注口</p><p>
502‧‧‧模具可動側</p><p>
503‧‧‧模具固定側</p><p>
S101~S110‧‧‧方法</p><p>
71‧‧‧行動通訊裝置</p><p>
72‧‧‧行動資訊裝置</p><p>
73‧‧‧智慧型手錶</p><p>
74‧‧‧智慧型頭戴裝置</p><p>
75‧‧‧安全監控裝置</p><p>
76‧‧‧車用影像裝置</p><p>
77‧‧‧無人飛機裝置</p><p>
78‧‧‧極限運動影像裝置</p></description-of-element><p>第1圖係根據本創作之實施例之配置示意圖。</p><p>第2圖係根據本創作之實施例之多鏡頭框架示意圖。</p><p>第3圖係根據本創作之實施例之鏡頭參數說明示意圖。</p><p>第4圖係根據本創作之實施例之第一實施示意圖。</p><p>第5圖係根據本創作之實施例之第二實施示意圖。</p><p>第6圖係根據本創作之實施例之第三實施示意圖。</p><p>第7圖係根據本創作之實施例之第四實施示意圖。</p><p>第8圖係根據本創作之實施例之第五實施示意圖。</p><p>第9圖係根據本創作之實施例之第六實施示意圖。</p><p>第10圖係根據本創作之實施例之第七實施示意圖。</p><p>第11圖係根據本創作之實施例之第八實施示意圖。</p><p>第12圖係根據本創作之實施例之第九實施示意圖。</p><p>第13圖係根據本創作之實施例之第十實施示意圖。</p><p>第14圖係根據本創作之實施例之第十一實施示意圖。</p><p>第15圖係根據本創作之實施例之第十二實施示意圖。</p><p>第16圖係根據本創作之實施例之第十三實施示意圖。</p><p>第17圖係根據本創作之實施例之第十四實施示意圖。</p><p>第18圖係根據本創作之實施例之第十五實施示意圖。</p><p>第19圖係根據本創作之實施例之第十六實施示意圖。</p><p>第20圖係根據本創作之實施例之第十七實施示意圖。</p><p>第21圖係根據本創作之實施例之第十八實施示意圖。</p><p>第22圖係根據本創作之實施例之第十九實施示意圖。</p><p>第23圖係根據本創作之實施例之第一光學實施例的示意圖。</p><p>第24圖係根據本創作之實施例之由左至右依序繪示本創作第一光學實施例的球差、像散以及光學畸變之曲線圖。</p><p>第25圖係根據本創作之實施例之第二光學實施例的示意圖。</p><p>第26圖係根據本創作之實施例之由左至右依序繪示本創作第二光學實施例的球差、像散以及光學畸變之曲線圖。</p><p>第27圖係根據本創作之實施例之第三光學實施例的示意圖。</p><p>第28圖係根據本創作之實施例之由左至右依序繪示本創作第三光學實施例的球差、像散以及光學畸變之曲線圖。</p><p>第29圖係根據本創作之實施例之第四光學實施例的示意圖。</p><p>第30圖係根據本創作之實施例之由左至右依序繪示本創作第四光學實施例的球差、像散以及光學畸變之曲線圖。</p><p>第31圖係根據本創作之實施例之第五光學實施例的示意圖。</p><p>第32圖係根據本創作之實施例之由左至右依序繪示本創作第五光學實施例的球差、像散以及光學畸變之曲線圖。</p><p>第33圖係根據本創作之實施例之第六光學實施例的示意圖。</p><p>第34圖係根據本創作之實施例之由左至右依序繪示本創作第六光學實施例的球差、像散以及光學畸變之曲線圖。</p><p>第35圖係根據本創作之實施例之光學成像模組使用於行動通訊裝置的示意圖。</p><p>第36圖係根據本創作之實施例之光學成像模組使用於行動資訊裝置的示意圖。</p><p>第37圖係根據本創作之實施例之光學成像模組使用於智慧型手錶的示意圖。</p><p>第38圖係根據本創作之實施例之光學成像模組使用於智慧型頭戴裝置的示意圖。</p><p>第39圖係根據本創作之實施例之光學成像模組使用於安全監控裝置的示意圖。</p><p>第40圖係根據本創作之實施例之光學成像模組使用於車用影像裝置的示意圖。</p><p>第41圖係根據本創作之實施例之光學成像模組使用於無人飛機裝置的示意圖。</p><p>第42圖係根據本創作之實施例之光學成像模組使用於極限運動影像裝置的示意圖。</p><p>第43圖係根據本創作之實施例之流程示意圖。</p><p>第44圖係根據本創作之實施例之第二十實施示意圖。</p><p>第45圖係根據本創作之實施例之第二十一實施示意圖。</p><p>第46圖係根據本創作之實施例之第二十二實施示意圖。</p></description-of-drawings><title lang="zh">Optical imaging module and its imaging system </title> <technical-field> <p>This creation is about an optical imaging module and its imaging system, in particular, a multi-lens frame having a plurality of fixed-focus lens groups and having an integral shape, and embedding part of the signal conducting elements in the multi-lens frame. Optical imaging module and its imaging system. </p> </technical-field> <background-art> <p>There are still many problems to be solved in the assembly of today's video recording devices, especially for multi-lens video recording devices. Since there are multiple lenses, it is possible to collimate the optical axis during assembly or manufacturing. Alignment of the photosensitive element will have a significant impact on image quality. </p> <p>In addition, if the camcorder has a function of focusing, for example, the function of moving the lens to focus, the assembly and packaging quality of all the parts will be more difficult to control because the components are more complicated. </p> <p>Further, if you want to meet higher-level photography requirements, the camcorder will have more lenses, such as four lenses, so how to balance multiple lenses, such as at least two or even four The above can still have good imaging quality, which will be an important and problem to be solved. Therefore, an optical imaging module and an imaging system are needed to solve the above-mentioned conventional problems. </p> <p>In view of the above-mentioned problems, the present invention provides an optical imaging module and an imaging system, which can overlap the optical axes of the fixed focus lens groups and the focus lens groups with the center line of the sensing surface to make the light The imaging quality can be ensured by accommodating each fixed focus lens group and each focus lens group in the hole and passing through the optical channel to the sensing surface, and the signal conducting component, such as gold wire, can be embedded in the integrally formed multi-lens. In the frame, in order to avoid deformation of the components during the packaging process, problems such as short circuit are caused, and the overall size of the optical module can be reduced. </p> </background-art> <disclosure> <p>For the above purposes, the present invention provides an optical imaging module that includes a circuit assembly and a lens assembly. The circuit component can include a circuit substrate, a plurality of image sensing components, a plurality of signal conducting components, and a multi-lens frame. The circuit substrate can include a plurality of circuit contacts. Each image sensing component can include a first surface and a second surface, the first surface can be coupled to the circuit substrate, and the second surface can have a sensing surface and a plurality of image contacts. The plurality of signal conducting components are electrically connected between the plurality of circuit contacts on the circuit substrate and each of the plurality of image contacts of each of the image sensing components. The multi-lens frame can be integrally formed and covered on the circuit substrate and the image sensing component, and the signal conducting component can be partially embedded in the multi-lens frame, and the other part can be surrounded by the multi-lens frame, and corresponding to the plurality of images. The position of the sensing surface of the sensing element can have a plurality of optical channels. The lens assembly can include a plurality of lens pedestals, at least a fixed focus lens group, at least one focus lens group, and at least one drive assembly. The lens base can be made of a light-tight material, and has a receiving hole penetrating through the two ends of the lens base, so that the lens base is hollow, and the lens base can be disposed on the multi-lens frame to connect the receiving hole and the optical channel. . The fixed focus lens group and the focus lens group may have at least two lenses having refractive power, and are disposed on the lens base and located in the receiving holes, and the imaging surfaces of the fixed focus lens group and the focus lens group may be located on the sensing surface, and The optical axes of the fixed focus lens group and the focus lens group overlap with the center line of the sensing surface, so that the light can pass through the fixed focus lens group and the focus lens group in the accommodating hole and pass through the optical channel to be projected to the sensing surface. A plurality of driving components are electrically connected to the circuit substrate, and drive the fixed focus lens group and the focus lens group to move in a direction normal to a center of the sensing surface. The fixed focus lens group and the focus lens group satisfy the following conditions: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm< PhiD≦18mm; 0<PhiA/PhiD≦0.99; and 0.9≦2(ARE/HEP) ≦ 2.0. </p> <p> where f is the focal length of the fixed focus lens group and the focus lens group; HEP is the incident pupil diameter of the fixed focus lens group and the focus lens group; HAF is half of the maximum viewing angle of the fixed focus lens group and the focus lens group; PhiD is the maximum value of the minimum side length on the outer circumference of the lens base and perpendicular to the planes of the fixed focus lens group and the optical axis of the focus lens group; PhiA is the lens surface of the fixed focus lens group and the focus lens group closest to the imaging surface The maximum effective diameter; the ARE is the position at which the intersection of any lens surface of any one of the fixed focus lens group and the focus lens group and the optical axis starts from the vertical height of the pupil diameter from the optical axis 1/2. The end point, the length of the contour curve obtained by extending the contour of the lens surface. </p> Preferably, the lens base may include a lens barrel and a lens holder, the lens barrel may have a through hole extending through the two ends of the lens barrel, and the lens holder has a through hole passing through the lower end of the lens holder. The lens barrel can be disposed in the lens holder and located in the lower through hole, so that the upper through hole and the lower through hole communicate to form a receiving hole, and the lens holder can be fixed on the multi-lens frame, so that the image sensing element is located in the lower through hole. The through hole on the lens barrel can face the sensing surface of the image sensing component, the fixed focus lens group and the focus lens group can be disposed in the lens barrel and located in the upper through hole, and the driving component can drive the lens barrel relative to the lens barrel The lens holder moves in the normal direction of the center of the sensing surface, and PhiD refers to the maximum value of the minimum side length on the outer circumference of the lens holder and perpendicular to the planes of the optical axes of the fixed focus lens group and the focus lens group. </p> Preferably, the optical imaging module of the present invention further includes at least one data transmission line electrically connected to the circuit substrate and transmitting a plurality of sensing signals generated by each of the plurality of image sensing elements. </p> <p> Preferably, the plurality of image sensing elements sense a plurality of color images. </p> <p> Preferably, at least one image sensing component can sense a plurality of black and white images, and at least one image sensing component can sense a plurality of color images. </p> <p> Preferably, the optical imaging module of the present invention further comprises an infrared filter, and the infrared filter can be disposed in the lens base and located in the receiving hole above the image sensing element. </p> <p> Preferably, the optical imaging module of the present invention further comprises an infrared filter, which can be disposed in the lens barrel or the lens holder and located above the image sensing element. </p> <p> Preferably, the optical imaging module of the present invention further comprises an infrared filter, and the lens base may comprise a filter holder, and the filter holder may have a filter penetrating through the two ends of the filter holder a through hole, and the infrared filter can be disposed in the filter holder and located in the filter through hole, and the filter holder can correspond to the position of the plurality of optical channels, and is disposed on the multi-lens frame to make the infrared The filter is located above the image sensing element. </p> <p> Preferably, the lens base may include a lens barrel and a lens holder. The lens barrel may have a through hole extending through the two ends of the lens barrel, and the lens holder has a through hole below the lens holder, and the lens barrel may be disposed in the lens holder and located in the lower through hole. The lens holder can be fixed on the filter holder, and the lower through hole communicates with the upper through hole and the filter through hole to form the receiving hole, so that the image sensing element is located in the filter through hole, and the lens barrel The upper via is facing the sensing surface of the image sensing element. In addition, the fixed focus lens group and the focus lens group may be disposed in the lens barrel and located in the upper through hole. </p> <p> Preferably, the material of the multi-lens frame may comprise any one or a combination of materials of thermoplastic resin, industrial plastic, insulating material, metal, conductive material or alloy. </p> <p> Preferably, the multi-lens frame may include a plurality of lens holders, and each lens holder may have an optical channel and have a central axis, and the central axis distance of each lens holder is between 2 mm and 200 mm. </p> <p> Preferably, the drive assembly can include a voice coil motor. </p> <p> Preferably, the multi-lens frame may have an outer surface, a first inner surface, and a second inner surface. The outer surface may extend from the edge of the circuit substrate and have an inclination angle α with respect to the center normal of the sensing surface, and the α system is between 2° and 30°. The first inner surface is an inner surface of the optical channel, and the first inner surface has an inclination angle β with respect to a central normal of the sensing surface, and the β system is between 2° and 45°. The second inner surface extends from the image sensing element toward the optical channel and has an inclination angle γ with respect to a center normal of the sensing surface, and the γ system is between 1° and 3°. </p> <p> Preferably, the multi-lens frame may have an outer surface, a first inner surface, and a second inner surface. The outer surface may extend from the edge of the circuit substrate and have an inclination angle α with respect to the center normal of the sensing surface, and the α system is between 2° and 30°. The first inner surface is an inner surface of the optical channel, and the first inner surface has an inclination angle β with respect to a central normal of the sensing surface, and the β system is between 2° and 45°. The second inner surface extends from the top surface of the circuit substrate toward the optical channel and has an inclination angle γ from the center of the sensing surface, and the γ system is between 1° and 3°. </p> <p> Preferably, the optical imaging module has at least two lens groups, which are respectively a first lens group and a second lens group, and at least one lens group is a focus lens group, and a viewing angle FOV of the second lens group Greater than the first lens group. </p> <p> Preferably, the optical imaging module has at least two lens groups, which are respectively a first lens group and a second lens group, and at least one lens group is a focus lens group, and a focal length of the first lens group is greater than The second lens group. </p> <p> Preferably, the optical imaging module has at least three lens groups, which are a first lens group, a second lens group, and a third lens group, respectively, and at least one lens group is a focus lens group, and the second lens The viewing angle FOV of the group is larger than the first lens group, and the viewing angle FOV of the second lens group is greater than 46°, and each of the image sensing elements corresponding to the light receiving the first lens group and the second lens group senses a plurality of colors image. </p> <p> Preferably, the optical imaging module has at least three lens groups, which are a first lens group, a second lens group, and a third lens group, respectively, and at least one lens group is a focus lens group, and the first lens The focal length of the group is greater than the second lens group, and each of the image sensing elements corresponding to the light receiving the first lens group and the second lens group senses a plurality of color images. </p> <p> Preferably, the optical imaging module more satisfies the following conditions: </p> <p>0<(TH1+TH2)/HOI≦0.95; wherein TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel; HOI is the maximum imaging height perpendicular to the optical axis on the imaging surface. </p> <p> Preferably, the optical imaging module more satisfies the following conditions: </p> <p>0mm<TH1+TH2≦1.5mm; where TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel. </p> <p> Preferably, the optical imaging module more satisfies the following conditions: </p> <p>0<(TH1+TH2)/HOI≦0.95; wherein TH1 is the maximum thickness of the lens holder; TH2 is the minimum thickness of the lens barrel; HOI is the maximum imaging height perpendicular to the optical axis on the imaging surface. </p> <p> Preferably, the optical imaging module more satisfies the following conditions: </p> <p>0.9≦ARS/EHD≦2.0. The ARS is based on the intersection of any lens surface of any one of the fixed focus lens group and the focus lens group and the optical axis, and ends at the maximum effective radius of the lens surface, and extends the contour of the lens surface. The length of the contour curve. The EHD is the maximum effective radius of any of the lenses of the fixed focus lens group and the focus lens group. </p> <p> Preferably, the following conditions are more satisfied: </p> <p>PLTA≦100 μm; PSTA≦100 μm; NLTA≦100 μm; and NSTA≦100 μm. SLTA ≦ 100 μm; SSTA ≦ 100 μm. Firstly, the HOI is defined as the maximum imaging height perpendicular to the optical axis on the imaging plane; the PLTA is the longest working wavelength of the visible light of the positive meridional plane of the optical imaging module. It passes through the entrance pupil edge and is incident on the imaging surface at 0.7HOI. Lateral aberration; PSTA is the shortest visible wavelength of the visible light of the forward meridional plane of the optical imaging module. The transverse aberration NLTA at the entrance angle of 0.7HOI on the imaging plane is the negative meridional plane of the optical imaging module. The longest working wavelength of the visible light of the light fan passes through the edge of the entrance pupil and is incident on the imaging surface at a lateral aberration of 0.7HOI; the NSTA is the shortest visible wavelength of the visible light of the negative meridional plane of the optical imaging module through the entrance edge and incident on the edge The transverse image at 0.7HOI on the imaging surface; SLTA is the lateral longest visible wavelength of the visible light of the sagittal plane of the optical imaging module passing through the entrance pupil edge and incident on the imaging surface at 0.7HOI; SSTA is the optical imaging mode The shortest working wavelength of the visible light of the set of sagittal plane fans passes through the entrance pupil edge and is incident on the imaging surface at a lateral aberration of 0.7 HOI. </p> <p> Preferably, the fixed focus lens group and the focus lens group may include four lenses having a refractive power, and the first lens, the second lens, the third lens, and the fourth lens are sequentially from the object side to the image side. And the fixed focus lens group and the focus lens group satisfy the following conditions: 0.1 ≦ InTL/HOS ≦ 0.95. Further, the HOS is the distance from the side of the object of the first lens to the optical axis of the imaging surface. InTL is the distance from the object side of the first lens to the image side of the fourth lens on the optical axis. </p> <p> Preferably, the fixed focus lens group and the focus lens group may include five lenses having refractive power, and the first lens, the second lens, the third lens, and the fourth lens are sequentially from the object side to the image side. The fifth lens, and the fixed focus lens group and the focus lens group satisfy the following conditions: 0.1 ≦ InTL/HOS ≦ 0.95. Further, HOS is the distance from the object side surface of the first lens to the imaging surface on the optical axis; InTL is the distance from the object side surface of the first lens to the image side surface of the fifth lens on the optical axis. </p> <p> Preferably, the fixed focus lens group and the focus lens group may include six lenses having a refractive power, and the first lens, the second lens, the third lens, and the fourth lens are sequentially from the object side to the image side. The fifth lens and the sixth lens, and the fixed focus lens group and the focus lens group satisfy the following condition: 0.1 ≦ InTL/HOS ≦ 0.95. Further, HOS is the distance from the object side surface of the first lens to the imaging surface on the optical axis; InTL is the distance from the object side surface of the first lens to the image side surface of the sixth lens on the optical axis. </p> <p> Preferably, the fixed focus lens group and the focus lens group may include seven lenses having a refractive power, and the first lens, the second lens, the third lens, and the fourth lens are sequentially from the object side to the image side. The fifth lens, the sixth lens, and the seventh lens, and the fixed focus lens group and the focus lens group can satisfy the following condition of 0.1≦InTL/HOS≦0.95. The HOS is the distance from the side of the object of the first lens to the plane of the image on the optical axis. InTL is the distance from the object side of the first lens to the image side of the seventh lens on the optical axis. </p> <p>Based on the above object, the present invention further provides an optical imaging system comprising the optical imaging module as described above, and is applied to an electronic portable device, an electronic wearable device, an electronic monitoring device, and an electronic information device. , an electronic communication device, a machine vision device, a vehicle electronic device, and one of the group formed. </p> <p>Based on the above object, the present invention further provides a method of manufacturing an optical imaging module, comprising the following method steps: </p> <p> A circuit component is provided, and the circuit component can include a circuit substrate, a plurality of image sensing components, and a plurality of signal conducting components. </p> <p> The plurality of signal conducting components are electrically connected between the plurality of circuit contacts on the circuit substrate and the plurality of image contacts on the second surface of each of the image sensing components. </p> <p> integrally forming a multi-lens frame, so that the multi-lens frame is placed on the circuit substrate and the image sensing component, and part of the signal conducting component is embedded in the multi-lens frame, and the other part of the signal conducting component is multi-lens The frame surrounds and forms a position corresponding to the sensing surface on the second surface of each image sensing element to form a plurality of optical channels. </p> <p> A lens assembly is provided, and the lens assembly may include a plurality of lens bases, at least a fixed focus lens group, at least one focus lens group, and at least one drive assembly. </p> <p> The lens base is made of an opaque material, and a receiving hole is formed in the lens base so that the receiving hole penetrates the two ends of the lens base to make the lens base hollow. </p> <p>The lens base is placed on the multi-lens frame to allow the receiving hole to communicate with the optical path. </p> <p> placing at least two lenses having refractive power in the fixed focus lens group and the focus lens group, and satisfying the following conditions: the fixed focus lens group and the focus lens group satisfy the following conditions: 1.0 ≦ f / HEP ≦ 10.0; 0 deg < HAF ≦ 150 deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99; and 0≦2(ARE/HEP)≦2.0 </p> <p> In the above conditions, f is the focal length of the fixed focus lens group and the focus lens group; HEP is the incident pupil diameter of the fixed focus lens group and the focus lens group; HAF is the maximum viewing angle of the fixed focus lens group and the focus lens group One half; PhiD is the maximum value of the minimum side length on the outer periphery of the lens base and perpendicular to the planes of the fixed focus lens group and the optical axis of the focus lens group; PhiA is the fixed focus lens group and the focus lens group closest to the imaging surface The maximum effective diameter of the lens surface; the ARE is based on the intersection of any lens surface of any one of the fixed focus lens group and the focus lens group with the optical axis, and the vertical height of the pupil diameter is 1/2 from the optical axis. The position at the end is the length of the contour curve obtained by extending the contour of the lens surface. </p> <p> A fixed focus lens group and a focus lens group are disposed on the respective lens bases and located in the accommodation holes. </p> <p>Adjusting the imaging surface of the fixed focus lens group and the focus lens group of the lens assembly such that the imaging lens of the lens assembly and the imaging surface of the focus lens group are located on the sensing surfaces of the respective image sensing elements, and the focus lens is The optical axes of the group and the focus lens group overlap with the center normal of the sensing surface. </p> <p> The driving components are electrically connected to the circuit substrate and coupled to the respective focus lens groups to drive the respective focus lens groups to move in the normal direction of the center of the sensing surface. </p> <p> The terms of the lens parameters associated with the present embodiment and their code numbers are listed below as a reference for subsequent descriptions: </p> <p>Lens parameters related to length or height </p> <p>The maximum imaging height of the optical imaging module is represented by HOI; the height of the optical imaging module (ie, the distance from the object side of the first lens to the imaging surface on the optical axis) is represented by HOS; the optical imaging module The distance from the side of the first lens to the side of the last lens image is represented by InTL; the distance between the fixed diaphragm (aperture) of the optical imaging module to the imaging surface is represented by InS; the first lens and the second of the optical imaging module The distance between the lenses is indicated by IN12 (exemplary); the thickness of the first lens of the optical imaging module on the optical axis is represented by TP1 (exemplary). </p> <p>Lens parameters related to materials </p> <p> The dispersion coefficient of the first lens of the optical imaging module is represented by NA1 (exemplary); the refractive law of the first lens is represented by Nd1 (exemplary). </p> <p>Lens parameters related to viewing angle </p> <p>The angle of view is represented by AF; half of the angle of view is represented by HAF; the angle of the chief ray is expressed by MRA. </p> <p>Lens parameters related to access </p> <p>The entrance pupil diameter of the optical imaging lens system is expressed as HEP; the maximum effective radius of any surface of a single lens refers to the maximum viewing angle of the system through which the incident light passes through the edge of the entrance pupil at the intersection of the lens surface (Effective Half Diameter; EHD), the vertical height between the intersection and the optical axis. For example, the maximum effective radius of the side of the first lens is represented by EHD11, and the maximum effective radius of the side of the first lens image is represented by EHD12. The maximum effective radius of the side of the second lens is represented by EHD 21, and the maximum effective radius of the side of the second lens image is represented by EHD 22. The maximum effective radius representation of any of the remaining lenses in the optical imaging module is analogous. The maximum effective diameter of the image side of the lens closest to the imaging surface in the optical imaging module is represented by PhiA, which satisfies the conditional PhiA=2 times EHD. If the surface is aspherical, the cutoff point of the largest effective diameter is non-spherical. The cut-off point of the sphere. Ineffective Half Diameter (IHD) of any surface of a single lens refers to a cutoff point extending from the same effective surface of the same surface away from the optical axis (if the surface is aspherical, that is, the surface has an aspherical coefficient The surface section of the end point. The maximum diameter of the image side of the lens closest to the imaging surface in the optical imaging module is represented by PhiB, which satisfies the conditional PhiB=2 times (maximum effective radius EHD + maximum effective radius IHD) = PhiA + 2 times (maximum invalid radius IHD) ). </p> <p>The largest effective diameter of the side of the lens image closest to the imaging surface (ie, image space) in the optical imaging module, which can also be called optical exit pupil, is represented by PhiA, if the optical exit pupil is located on the side of the third lens image It is represented by PhiA3. If the optical exit pupil is located on the side of the fourth lens image, it is represented by PhiA4. If the optical exit pupil is located on the side of the fifth lens image, it is represented by PhiA5. If the optical exit pupil is located on the side of the sixth lens image, it is represented by PhiA6. If the optical imaging module has different lenses with a number of refractive powers, the optical output representation is the same. The scaling ratio of the optical imaging module is expressed in PMR, which satisfies the conditional expression PMR = PhiA / HEP. </p> <p>Parameters related to the face length and surface profile of the lens </p> <p>The length of the contour curve of the maximum effective radius of any surface of a single lens refers to the intersection of the surface of the lens and the optical axis of the associated optical imaging module, starting from the starting point along the lens The surface contour is up to the end of its maximum effective radius, and the arc length between the above two points is the length of the contour curve of the maximum effective radius and is represented by ARS. For example, the profile curve length of the maximum effective radius of the side of the first lens object is represented by ARS11, and the profile curve length of the maximum effective radius of the side of the first lens image is represented by ARS12. The profile curve length of the maximum effective radius of the side of the second lens object is represented by ARS21, and the profile curve length of the maximum effective radius of the side of the second lens image is represented by ARS22. The maximum effective radius profile curve length representation of any of the remaining lenses in the optical imaging module is analogous. </p> <p>The length of the profile curve of the 1/2 incident pupil diameter (HEP) of any surface of a single lens means that the intersection of the surface of the lens and the optical axis of the associated optical imaging module is the starting point. The point along the surface contour of the lens until the coordinate point of the vertical height of the pupil diameter from the optical axis 1/2 incident on the surface, the curve arc length between the two points is 1/2 the entrance pupil diameter (HEP) contour curve Length, and expressed in ARE. For example, the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the first lens object is represented by ARE11, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side of the first lens image is represented by ARE12. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens object is represented by ARE21, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens image is represented by ARE22. The length of the profile curve of the 1/2 incident pupil diameter (HEP) of any of the remaining lenses in the optical imaging module is analogous. </p> <p>Parameters related to the depth of the lens profile </p> <p> the intersection of the side of the sixth lens object on the optical axis to the end point of the maximum effective radius of the side surface of the sixth lens object, and the distance between the two points horizontally on the optical axis is represented by InRS61 (maximum effective radius depth); The distance between the intersection of the lens image side on the optical axis and the maximum effective radius of the side surface of the sixth lens image is shown by InRS 62 (maximum effective radius depth) between the two points. The depth (sinking amount) of the maximum effective radius of the other lens side or image side is expressed in the same manner as described above. </p> <p>Parameters related to the lens surface </p> <p>Critical point C refers to a point on a specific lens surface that is tangent to a plane perpendicular to the optical axis except for the intersection with the optical axis. For example, the vertical distance C51 of the side surface of the fifth lens object is perpendicular to the optical axis of HVT 51 (exemplary), and the vertical distance C52 of the side surface of the fifth lens image is perpendicular to the optical axis of HVT 52 (exemplary), the sixth lens The vertical distance of the side critical point C61 from the optical axis is HVT61 (exemplary), and the vertical distance C62 of the side of the sixth lens image from the optical axis is HVT62 (exemplary). The critical point on the side or image side of the other lens and its vertical distance from the optical axis are expressed in the same manner as described above. </p> <p>The inflection point closest to the optical axis on the side of the seventh lens is IF711, the sinking amount SGI711 (exemplary), that is, the intersection of the side of the seventh lens object on the optical axis to the side of the seventh lens object The horizontal displacement distance between the inflection point of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of IF711 is HIF711 (exemplary). The inflection point closest to the optical axis on the side of the seventh lens image is IF721, the sinking amount SGI721 (exemplary), that is, the intersection of the side of the seventh lens image on the optical axis to the optical axis of the side of the seventh lens image. The horizontal displacement distance between the inflection points parallel to the optical axis, and the vertical distance between the point and the optical axis of the IF721 is HIF721 (exemplary). </p> <p> The inflection point of the second near-optical axis on the side of the seventh lens object is IF 712, the sinking amount SGI712 (exemplary), that is, the intersection of the side of the seventh lens object on the optical axis to the side of the seventh lens object The horizontal displacement distance between the inflection point of the second near optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 712 is HIF 712 (exemplary). The inflection point of the second near-optical axis on the side of the seventh lens image is IF722, the point sinking amount SGI722 (exemplary), and the SGI 722, that is, the intersection of the side of the seventh lens image on the optical axis and the side of the seventh lens image is second. The horizontal displacement distance between the inflection point of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF722 is HIF722 (exemplary). </p> <p> The inflection point of the third near-optical axis on the side of the seventh lens object is IF713, and the point sinking amount SGI713 (exemplary), that is, the intersection of the side surface of the seventh lens object on the optical axis to the side of the seventh lens object The horizontal displacement distance between the inflection point of the third near optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 713 is HIF713 (exemplary). The inflection point of the third near-optical axis on the side of the seventh lens image is IF723, the point sinking amount SGI723 (exemplary), and the SGI 723, that is, the intersection of the side of the seventh lens image on the optical axis and the side of the seventh lens image is the third closest. The horizontal displacement distance between the inflection points of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF723 is HIF723 (exemplary). </p> <p> The inflection point of the fourth near-optical axis on the side of the seventh lens object is IF714, and the point sinking amount SGI714 (exemplary), that is, the intersection of the side surface of the seventh lens object on the optical axis to the side of the seventh lens object The horizontal displacement distance between the inflection point of the fourth near optical axis and the optical axis, and the vertical distance between the point and the optical axis of IF714 is HIF714 (exemplary). The inflection point of the fourth near-optical axis on the side of the seventh lens image is IF724, the point sinking amount SGI724 (exemplary), that is, the SGI 724, that is, the intersection of the side of the seventh lens image on the optical axis and the side of the seventh lens image is fourth. The horizontal displacement distance between the inflection point of the optical axis and the optical axis, and the vertical distance between the point and the optical axis of the IF 724 is HIF724 (exemplary). </p> <p> The inflection point on the side or image side of the other lens and its vertical distance from the optical axis or the amount of its sinking are expressed in the same manner as described above. </p> <p>variables related to aberrations </p> <p>Optical Distortion of the optical imaging module is represented by ODT; its TV Distortion is represented by TDT, and the degree of aberration shift described between 50% and 100% of the field of view can be further defined; The spherical aberration offset is represented by DFS; the comet aberration offset is represented by DFC. </p> <p>The present invention provides an optical imaging module in which the object side or image side of the sixth lens can be provided with an inflection point, which can effectively adjust the angle of incidence of each field of view to the sixth lens, and for optical distortion and TV distortion. Make corrections. In addition, the surface of the sixth lens can have better optical path adjustment capability to improve image quality. </p> <p>In accordance with the present invention, an optical imaging module is provided that includes a circuit assembly and a lens assembly. The circuit component includes a circuit substrate and an image sensing component. The circuit substrate has a plurality of circuit contacts. The image sensing component has a first surface and a second surface, and the first surface is connected to the circuit substrate. The second surface has a sensing surface and a plurality of image contacts, and the image contacts are electrically connected to the circuit contacts on the circuit substrate through the plurality of signal conducting components. The lens assembly includes a lens base and a lens group; the lens base is made of an opaque material, and has a receiving hole extending through the lens base to make the lens base hollow; The lens base is disposed on the circuit substrate such that the image sensing component is located in the receiving hole; the lens group includes at least two lenses having refractive power, and is disposed on the lens base and located in the receiving In addition, the imaging surface of the lens group is located on the sensing surface, and the optical axis of the lens group overlaps with the central normal of the sensing surface, so that light can pass through the lens group in the receiving hole and project To the sensing surface. In addition, the optical imaging module further satisfies the following conditions: 1.0≦f/HEP≦10.0; 0 deg<HAF≦150 deg; 0 mm< PhiD≦18 mm; 0 < PhiA/PhiD≦0.99; and 0.9≦2 (ARE /HEP)≦2.0. </p> <p>The length of the contour curve of any surface of a single lens in the range of the maximum effective radius affects the ability of the surface to correct aberrations and the optical path difference between the fields of view. The longer the length of the contour curve, the better the ability to correct aberrations. However, it also increases the difficulty in manufacturing. Therefore, it is necessary to control the length of the profile curve of any surface of a single lens within the maximum effective radius, in particular to control the profile curve length (ARS) within the maximum effective radius of the surface. The proportional relationship (ARS / TP) to the thickness (TP) of the lens on the optical axis to which the surface belongs. For example, the length of the contour curve of the maximum effective radius of the side surface of the first lens object is represented by ARS11, and the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARS11 / TP1, and the maximum effective radius of the side of the first lens image side. The length of the contour curve is represented by ARS12, and the ratio between it and TP1 is ARS12 / TP1. The length of the contour curve of the maximum effective radius of the side of the second lens object is represented by ARS21, the thickness of the second lens on the optical axis is TP2, the ratio between the two is ARS21 / TP2, and the contour of the maximum effective radius of the side of the second lens image The length of the curve is represented by ARS22, and the ratio between it and TP2 is ARS22 / TP2. The proportional relationship between the length of the contour curve of the maximum effective radius of any surface of the remaining lenses in the optical imaging module and the thickness (TP) of the lens on the optical axis to which the surface belongs, and so on. In addition, the optical imaging module more satisfies the following conditions: 0.9 ≦ ARS / EHD ≦ 2.0. </p> <p> The longest visible wavelength of the visible light of the forward meridional fan of the optical imaging module passes through the entrance pupil edge and is incident on the imaging surface at a lateral angle of 0.7HOI, represented by PLTA; the optical imaging module is positive The lateral aberration of the visible light minimum working wavelength to the meridional fan through the entrance pupil edge and incident on the imaging plane at 0.7 HOI is represented by PSTA. The longest working wavelength of the visible light of the negative meridional fan of the optical imaging module passes through the entrance pupil edge and is incident on the imaging surface at a lateral angle of 0.7HOI, represented by NLTA; the negative meridian plane of the optical imaging module The shortest working wavelength of the visible light of the light fan passes through the entrance pupil edge and is incident on the imaging surface at 0.7HOI, and the lateral aberration is represented by NSTA; the longest working wavelength of the visible light of the sagittal plane of the optical imaging module passes through the incident edge And the lateral aberration incident at 0.7HOI on the imaging surface is represented by SLTA; the shortest working wavelength of the visible light of the sagittal plane of the optical imaging module passes through the entrance pupil edge and is incident on the imaging plane at a position of 0.7HOI The aberration is represented by SSTA. In addition, the optical imaging module more satisfies the following conditions: PLTA ≦ 100 μm; PSTA ≦ 100 μm; NLTA ≦ 100 μm; NSTA ≦ 100 μm; SLTA ≦ 100 μm; SSTA ≦ 100 μm; │ TDT │ < 250%; ≦InTL/HOS≦0.95; and 0.2≦InS/HOS≦1.1. </p> <p>The modulation conversion contrast transfer rate of visible light on the imaging plane at a spatial frequency of 110 cycles/mm is represented by MTFQ0; the modulation conversion of visible light on the imaging plane at 0.3HOI at a spatial frequency of 110 cycles/mm The contrast transfer rate is represented by MTFQ3; the modulation conversion contrast transfer rate of visible light on the imaging plane at 0.7HOI at a spatial frequency of 110 cycles/mm is represented by MTFQ7. In addition, the optical imaging module further satisfies the following conditions: MTFQ0≧0.2; MTFQ3≧0.01; and MTFQ7≧0.01. </p> <p>The length of the profile curve of any surface of a single lens in the height range of 1/2 incident pupil diameter (HEP) particularly affects the corrected aberrations on the surface of the common field of view of each ray and the optical path between the fields of view. Poor ability, the longer the length of the contour curve, the better the ability to correct aberrations, but at the same time it will increase the difficulty of manufacturing. Therefore, it is necessary to control any surface of a single lens at a range of 1/2 incident helium diameter (HEP). The length of the contour curve inside, in particular the ratio of the length of the contour curve (ARE) in the height range of 1/2 of the entrance pupil diameter (HEP) of the surface to the thickness (TP) of the lens on the optical axis to which the surface belongs. Relationship (ARE / TP). For example, the length of the contour curve of the 1/2 incident pupil diameter (HEP) height of the side surface of the first lens object is represented by ARE11, and the thickness of the first lens on the optical axis is TP1, and the ratio between the two is ARE11 / TP1. The length of the profile curve of the 1/2 incident pupil diameter (HEP) height of the mirror side is represented by ARE12, and the ratio between it and TP1 is ARE12 / TP1. The length of the profile curve of the 1/2 incident pupil diameter (HEP) height of the side surface of the second lens object is represented by ARE21. The thickness of the second lens on the optical axis is TP2, and the ratio between the two is ARE21 / TP2, and the second lens image The profile curve length of the 1/2 incident pupil diameter (HEP) height of the side is represented by ARE22, and the ratio between it and TP2 is ARE22 / TP2. The proportional relationship between the length of the contour curve of the 1/2 incident pupil diameter (HEP) height of any surface of the remaining lenses in the optical imaging module and the thickness (TP) of the lens on the optical axis to which the surface belongs, And so on. </p> <p>Based on the above object, the present invention further provides an optical imaging module including a circuit assembly, a lens assembly, and a multi-lens outer frame. The circuit component can include a circuit substrate, a plurality of image sensing components, and a plurality of signal conducting components. The circuit substrate can include a plurality of circuit contacts. Each image sensing component can include a first surface and a second surface, the first surface can be coupled to the circuit substrate, and the second surface can have a sensing surface and a plurality of image contacts. The plurality of signal conducting components are electrically connected between the plurality of circuit contacts on the circuit substrate and each of the plurality of image contacts of each of the image sensing components. The lens assembly can include a plurality of lens pedestals, at least a fixed focus lens group, at least one focus lens group, and at least one drive assembly. The lens base can be made of a light-tight material and has a receiving hole penetrating through the lens base, so that the lens base is hollow, and the lens base can be disposed on the circuit substrate. The fixed focus lens group and the focus lens group may have at least two lenses having refractive power, and are disposed on the lens base and located in the receiving holes, and the imaging surfaces of the fixed focus lens group and the focus lens group may be located on the sensing surface, and The optical axes of the fixed focus lens group and the focus lens group overlap with the center line of the sensing surface, so that the light can pass through the fixed focus lens group and the focus lens group in the receiving hole and are projected to the sensing surface. A plurality of driving components are electrically connected to the circuit substrate, and drive each focusing lens group to move in a direction normal to a center of the sensing surface. And each lens base can be respectively fixed to the multi-lens outer frame to facilitate forming a whole. </p> <p> And the fixed focus lens group and the focus lens group satisfy the following conditions: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm< PhiD≦18mm; 0<PhiA/PhiD≦0.99; and 0.9≦2( ARE/HEP) ≦ 2.0. </p> <p> where f is the focal length of the fixed focus lens group and the focus lens group; HEP is the incident pupil diameter of the fixed focus lens group and the focus lens group; HAF is half of the maximum viewing angle of the fixed focus lens group and the focus lens group; PhiD is the maximum value of the minimum side length on the outer circumference of the lens base and perpendicular to the planes of the fixed focus lens group and the optical axis of the focus lens group; PhiA is the lens surface of the fixed focus lens group and the focus lens group closest to the imaging surface The maximum effective diameter; the ARE is the position at which the intersection of any lens surface of any one of the fixed focus lens group and the focus lens group and the optical axis starts from the vertical height of the pupil diameter from the optical axis 1/2. The end point, the length of the contour curve obtained by extending the contour of the lens surface. </p> </disclosure> <mode-for-invention> <p>For the valuable examiners to understand the technical characteristics, content and advantages of the creation and the effects that can be achieved, the author will use the drawings in detail and explain the following in the form of the examples, and the drawings used therein The purpose of the formula is only for the purpose of illustration and auxiliary explanation. It is not necessarily the true proportion and precise configuration after the implementation of the creation. Therefore, the proportion and configuration relationship of the attached drawings should not be interpreted or limited. The scope of rights is described first. </p> <p> Hereinafter, embodiments of the optical imaging module, the imaging system, and the imaging module manufacturing method according to the present invention will be described with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same symbols. Mark to illustrate. </p> <p> As shown in FIGS. 1 to 4, 7 and 9 to 12, the optical imaging module of the present invention may include the circuit assembly 100 and the lens assembly 200. The circuit component 100 can include a circuit substrate 120, a plurality of image sensing components 140, a plurality of signal conducting components 160, and a multi-lens frame 180. The lens assembly 200 can include a plurality of lens pedestals 220, at least a certain focal lens group 230, and at least A focusing lens group 240 and at least one driving assembly 260. </p> <p> further, the circuit substrate 120 can include a plurality of circuit contacts 122, and each image sensing component 140 can include a first surface 142 and a second surface 144, and as shown in FIG. 3, the image sensor 140 The maximum value of the minimum side length on the outer circumference and on the plane perpendicular to the optical axis is LS. The first surface 142 can be coupled to the circuit substrate 120 and the second surface 144 can have a sensing surface 1441 thereon. The plurality of signal conducting components 160 are electrically connected between the plurality of circuit contacts 122 on the circuit substrate 120 and the plurality of image contacts 146 of the image sensing components 140. And in an embodiment, the signal conducting component 160 can be selected from the group consisting of a gold wire, a flexible circuit board, a pogo pin, a solder ball, a bump, or a group thereof. </p> In addition, the multi-lens frame 180 can be integrally formed, for example, by molding or the like, and is disposed on the circuit substrate 120 and the image sensing element 140, and a part of the signal conducting component 160 can be buried in the multi-lens. In the lens frame 180, another portion of the signal conducting component 160 is surrounded by the multi-lens frame 180, and the position of the sensing surface 1441 corresponding to the plurality of image sensing components 140 may have a plurality of optical channels 182. Therefore, since a part of the signal conducting component 160 can be embedded in the multi-lens frame 180, the signal conducting component 160 can be prevented from being deformed during the packaging process, causing problems such as short circuit, and the overall size of the optical module can be reduced. </p> <p> The plurality of lens pedestals 220 may be made of a light-tight material, and have a receiving hole 2201 penetrating through the two ends of the lens base 220 to make the lens base 220 hollow, and the lens base 220 may be disposed on the multi-lens frame. 180, the receiving hole 2201 and the light channel 182 are connected. In addition, in an embodiment, the multi-lens frame 180 has a reflectance of less than 5% in the light wavelength range of 420-660 nm, thereby avoiding stray light pairs caused by reflection or other factors when the light enters the light tunnel 182. The effect of image sensing component 140. </p> <p> Further, in an embodiment, the material of the multi-lens frame 180 may comprise any one or a combination of metal, conductive material or alloy, thereby increasing heat dissipation efficiency or reducing static electricity, etc., so that the image The sensing element 140, the fixed focus lens group 230, and the focus lens group 240 operate more efficiently. </p> <p> Further, in one embodiment, the multi-lens frame 180 is made of any one of a material thermoplastic resin, an industrial plastic, and an insulating material, or a combination thereof, and thus can be easily processed and lightened to make an image sensing element. 140. The fixed focus lens group 230 and the focus lens group 240 operate more efficiently. </p> In addition, in an embodiment, as shown in FIG. 2, the multi-lens frame 180 may include a plurality of lens holders 181, and each lens holder 181 may have a light channel 182 and have a central axis, and each lens The central axis distance of the bracket 181 can be between 2 mm and 200 mm, so that as shown in Fig. 2, the distance between the lens holders 181 can be adjusted in this range. </p> <p> In addition, in an embodiment, as shown in Figs. 13 to 17, the multi-lens frame 180 can be formed by molding, in which the mold can be divided into a mold fixing side 503 and a mold movable side. 502, when the mold movable side 502 is covered on the mold fixing side 503, the material can be poured into the mold from the nozzle 501 to form the multi-lens frame 180, and when the multi-lens frame 180 is formed, part of the signal can be transmitted. The component 160 is embedded in the multi-lens frame 180 such that the plurality of signal conducting components 160 can be fixed in position when the multi-lens frame 180 is formed, and the overall size of the optical module can be reduced. </p> <p> In one embodiment, as shown in FIG. 15, for a portion of the multi-lens frame 180 surrounding the signal conducting element 160, there may be an outer surface 184, a first inner surface 186, and a second inner surface 188, the outer surface The 184 extends from the edge of the circuit substrate 120 and has an inclination angle α with respect to the center normal of the sensing surface 1441, and the α is between 1° and 30°. The first inner surface 186 is the inner surface of the light tunnel 182, and the first inner surface 186 can have an inclination angle β with respect to the central normal of the sensing surface 1441, β can be between 1° and 45°, and the second inner surface 188 It may extend from the top surface of the circuit substrate 120 toward the optical channel 182 and have an inclination angle γ with respect to the center normal of the sensing surface 1441, and the γ system is between 1° and 3°, and the tilt angles α, β and The setting of γ can reduce the quality of the multi-lens frame 180 when the movable side 502 of the mold is separated from the fixed side 503 of the mold, for example, the chance of occurrence of poor release characteristics or "flash". </p> <p> Further, in an embodiment, as shown in FIGS. 13 and 14, the multi-lens frame 180 may form a partial multi-lens frame 180 as shown in FIG. 15 to partially transmit the signal conducting component 160. Embedded in the multi-lens frame 180, a complete multi-lens frame 180 is finally formed, so that the plurality of signal conducting elements 160 can be fixed in position when the multi-lens frame 180 is formed, and the overall size of the optical module can be reduced. </p> <p> As shown in FIG. 14, in the case of the multi-lens frame 180 in which the signal conducting element 160 is embedded, if a part of the multi-lens frame 180 is formed first to embed a part of the signal conducting element 160, the final result is formed. The plurality of lens frames 180 can have an outer surface 184, a first inner surface 186, and a second inner surface 188 extending from an edge of the circuit substrate 120 and having an angle α with the center normal of the sensing surface 1441. The α system is between 1° and 30°. The first inner surface 186 is the inner surface of the light tunnel 182, and the first inner surface 186 can have an inclination angle β with respect to the central normal of the sensing surface 1441, β can be between 1° and 45°, and the second inner surface 188 The image sensing element 140 can extend in the direction of the light channel 182 and has an inclination angle γ with respect to the center normal of the sensing surface 1441. The γ system is between 1° and 3°, and the tilt angles α, β, and γ are used. The arrangement can reduce the quality of the multi-lens frame 180 when the movable side 502 of the mold is separated from the fixed side 503 of the mold, for example, the chance of occurrence of poor release characteristics or "flash". </p> <p> In addition, as shown in FIGS. 16 and 17, in another embodiment, if a complete multi-lens frame 180 is directly formed to embed a portion of the signal conducting element 160, the final result is much The lens frame 180 can have an outer surface 184, a first inner surface 186, and a second inner surface 188. The outer surface 184 extends from the edge of the circuit substrate 120 and has an inclination angle α, α with the center normal of the sensing surface 1441. Between 1 ° ~ 30 °. The first inner surface 186 is an inner surface of the light tunnel 182, and the first inner surface 186 has an inclination angle β with respect to a central normal of the sensing surface 1441, and β can be between 1° and 45°, and the tilt angle is The arrangement of α and β can reduce the chance that the multi-lens frame 180 is of poor quality, such as "flash", when the movable side 502 of the mold is separated from the fixed side 503 of the mold. </p> <p> In addition, in another embodiment, the multi-lens frame 180 can also be formed in a 3D printing manner in an integrally formed manner, and the above-described inclination angles α, β, and γ can also be formed according to requirements, for example, The tilt angles α, β, and γ improve structural strength, reduce generation of stray light, and the like. </p> <p> The fixed focus lens group 230 and the focus lens group 240 may have at least two lenses 2401 having refractive power, and are disposed on the lens base 220 and located in the receiving holes 2201, and the fixed focus lens group 230 and the focus lens group 240 The imaging surface can be located on the sensing surface 1441, and the optical axes of the fixed focus lens group 230 and the focus lens group 240 overlap with the center normal of the sensing surface 1441, so that the light can pass through the fixed focus lens group 230 in the receiving hole 2201. And the focus lens group 240 is projected through the light tunnel 182 to the sensing surface 1441 to ensure image quality. Further, as shown in FIG. 3, the maximum diameter of the image side of the lens closest to the imaging plane of the fixed focus lens group 230 and the focus lens group 240 is represented by PhiB, and the closest of the fixed focus lens group 230 and the focus lens group 240 is imaged. The maximum effective diameter (also referred to as optical exit pupil) of the side of the lens image of the face (ie, image space) can be represented by PhiA. </p> <p> Each of the driving components 260 can be electrically connected to the circuit substrate 120 and drive each focusing lens group 240 to move in the center normal direction of the sensing surface 1441. In an embodiment, the driving component 260 can include a voice coil motor. To drive each of the focus lens groups 240 to move in the center normal direction of the sensing surface 1441. </p> <p> and the above-described fixed focus lens group 230 and focus lens group 240 satisfy the following conditions: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99; 0≦2(ARE/HEP)≦2.0 </p> <p> Further explanation, f is the focal length of the focus lens group; HEP is the incident pupil diameter of the focus lens group; HAF is half of the maximum viewing angle of the focus lens group; PhiD is the outer circumference of the lens base and perpendicular to the focus lens group The maximum value of the minimum side length on the plane of the optical axis; PhiA is the maximum effective diameter of the lens surface closest to the imaging surface of the focusing lens group; ARE is the lens surface and the optical axis of any of the lenses in the focusing lens group The intersection point is the starting point, and the length of the contour curve obtained by extending the contour of the surface of the lens with the position at the vertical height of the diameter of the entrance pupil 1/2 from the optical axis as the end point. </p> In an embodiment, as shown in FIGS. 3 and 7 , the lens base 220 may include a lens barrel 222 and a lens holder 224 having a through hole extending through the ends of the lens barrel 222 . 2221, and the lens holder 224 has a through hole 2241 penetrating through the lower ends of the lens holder 224, and as shown in FIG. 3, has a predetermined wall thickness TH1, and the outer periphery of the lens holder 224 is perpendicular to the optical axis. The maximum value of the minimum side length on the plane is expressed in PhiD. </p> <p> The lens barrel 222 may be disposed in the lens holder 224 and located in the lower through hole 2241, and has a predetermined wall thickness TH2, and the maximum diameter of the outer circumference of the outer circumference perpendicular to the optical axis is PhiC, so that the upper through hole 2221 The lens hole 224 is fixed to the multi-lens frame 180 so that the image sensing element 140 is located in the lower through hole 2241, and the through hole 2221 is fixed on the lens barrel 222. The sensing surface 1441 of the image sensing component 140, the fixed focus lens group 230 and the focusing lens group 240 may be disposed in the lens barrel 222 and located in the upper through hole 2221, and the driving component 260 may drive the focusing lens group 240. The lens barrel 222 moves relative to the lens holder 224 in the center normal direction of the sensing surface 1441, and PhiD refers to the outer circumference of the lens holder 224 and is perpendicular to the plane of the optical axes of the fixed focus lens group 230 and the focus lens group 240. The maximum value of the minimum side length. </p> In an embodiment, the optical imaging module 10 further includes at least one data transmission line 400 electrically connected to the circuit substrate 120 and transmitting a plurality of sensing signals generated by each of the plurality of image sensing elements 140. Signal. </p> <p> Further, as shown in FIG. 9 and FIG. 11, a single data transmission line 400 can be used to transmit multiple image sensing of the dual-lens, three-lens, array or various multi-lens optical imaging modules 10. The plurality of sensing signals generated by component 140. </p> <p> In another embodiment, as shown in FIG. 10 and FIG. 12, a plurality of data transmission lines 400 may be further provided, for example, a plurality of data transmission lines 400 are disposed in a split manner to transmit dual lenses and three lenses. The plurality of sensing signals generated by the plurality of image sensing elements 140 of the optical imaging module 10 of the array or various multi-lenses. </p> In addition, in one embodiment, the plurality of image sensing elements 140 can sense a plurality of color images. Therefore, the optical imaging module 10 of the present invention has the functions of recording color images and color films, and In another embodiment, at least one image sensing component 140 can sense a plurality of black and white images, and at least one image sensing component 140 can sense a plurality of color images. Therefore, the optical imaging module 10 of the present invention can sense The plurality of black and white images are combined with the image sensing component 140 for sensing a plurality of color images to obtain more image details, sensitivities, and the like for the desired target object, so that the image or film produced by the operation is generated. Have a higher quality. </p> In an embodiment, as shown in FIGS. 3 to 8 and 19 to 22, the optical imaging module 10 may further include an infrared filter 300, and the infrared filter 300 may be It is disposed in the lens base 220 and located in the receiving hole 2201 to be above the image sensing element 140 to filter out infrared rays to prevent the infrared light from affecting the imaging quality of the sensing surface 1441 of the image sensing element 140. In an embodiment, the infrared filter 300 can be disposed in the lens barrel 222 or the lens holder 224 and located above the image sensing element 140 as shown in FIG. 5 . </p> <p> In another embodiment, as shown in FIG. 6, the lens base 220 may include a filter holder 226, and the filter holder 226 may have a filter passing through both ends of the filter holder 226. The through hole 2261, and the infrared filter 300 can be disposed in the filter holder 226 and located in the filter through hole 2261, and the filter holder 226 can correspond to the position of the plurality of optical channels 182, and is disposed on the multi-lens On the frame 180, the infrared filter 300 is positioned above the image sensing element 140 to filter out the infrared rays, thereby preventing the infrared rays from affecting the imaging quality of the sensing surface 1441 of the image sensing element 140. </p> <p> Therefore, the lens holder 220 includes a filter holder 226, and the lens barrel 222 has a through hole 2221 extending through the both ends of the lens barrel 222, and the lens holder 224 has a through end of the lens holder 224. In the case of the lower through hole 2241, the lens barrel 222 can be disposed in the lens holder 224 and located in the lower through hole 2241, and the lens holder 224 can be fixed on the filter holder 226, and the lower through hole 2241 can be connected to the upper through hole. 2221 and the filter through hole 2261 are connected to form the receiving hole 2201, so that the image sensing element 140 is located in the filter through hole 2261, and the through hole 2221 of the lens barrel 222 can face the image sensing element 140. The sensing surface 1441, and the fixed focus lens group 230 and the focusing lens group 240 can be disposed in the lens barrel 222 and located in the upper through hole 2221, so that the infrared filter 300 is located above the image sensing element 140 to filter out The infrared rays entering by the fixed focus lens group 230 and the focus lens group 240 prevent infrared rays from affecting the imaging quality of the sensing surface 1441 of the image sensing element 140. </p> In an embodiment, the optical imaging module 10 can have at least two lens groups, such as a two-lens optical imaging module 10, and the two lens groups can be a first lens 2411 group and a second lens 2421, respectively. The at least one lens group may be the focus lens group 240, and thus the first lens group and the second lens group may be various combinations of the fixed focus lens group 230 and the focus lens group 240, and the viewing angle FOV of the second lens group may be greater than The first lens group 2411 and the viewing angle FOV of the second lens group are greater than 46°, and thus the second lens group may be a wide-angle lens group. </p> <p> Further, the focal length of the first lens group is larger than that of the second lens group. If the conventional 35 mm photo (viewing angle is 46 degrees) is used as the reference, the focal length is 50 mm, and when the focal length of the first lens group is greater than 50 mm, The first lens group may be a telephoto lens group. The present invention is preferably a CMOS sensor with a diagonal length of 4.6 mm (the viewing angle is 70 degrees) as a reference, and the focal length is about 3.28 mm. When the focal length of the first lens group is greater than 3.28 mm, the first lens group It can be a telephoto lens group. </p> <p> In an embodiment, as shown in FIG. 18, the present invention can be a three-lens optical imaging module 10, so the optical imaging module 10 can have at least three lens groups, which can be the first lens group. The second lens group and the third lens group, and the at least one lens group is the focus lens group 240. Therefore, the first lens group, the second lens group, and the third lens group may be the fixed focus lens group 230 and the focus lens group 240. Various combinations, and the viewing angle FOV of the second lens group may be greater than the first lens group, and the viewing angle FOV of the second lens group is greater than 46°, and corresponding to each of the plurality of rays receiving the first lens 2411 group and the second lens 2421 group The image sensing component 140 senses a plurality of color images, and the image sensing component 140 corresponding to the third lens group can sense a plurality of color images or a plurality of black and white images according to requirements. </p> <p> In an embodiment, as shown in FIG. 18, the present invention can be a three-lens optical imaging module 10, so the optical imaging module 10 can have at least three lens groups, which can be the first lens group. The second lens group and the third lens group, and the at least one lens group is the focus lens group 240. Therefore, the first lens group, the second lens group, and the third lens group may be the fixed focus lens group 230 and the focus lens group 240. Various combinations, and the focal length of the first lens group may be larger than the second lens group, if the focal length is 50 mm based on a conventional 35 mm photo (viewing angle of 46 degrees), and the first lens group has a focal length greater than 50 mm, the first The lens group may be a telephoto lens group. The present invention is preferably a CMOS sensor with a diagonal length of 4.6 mm (the viewing angle is 70 degrees) as a reference, and the focal length is about 3.28 mm. When the focal length of the first lens group is greater than 3.28 mm, the first lens group It can be a telephoto lens group. And the plurality of image sensing elements 140 corresponding to the light receiving the first lens group and the second lens group sense a plurality of color images, and the image sensing component 140 corresponding to the third lens group can be sensed according to requirements. Multiple color images or multiple black and white images. </p> <p> In one embodiment, the optical imaging module 10 more satisfies the following conditions: </p> <p>0<(TH1+TH2)/HOI≦0.95; further, TH1 is the maximum thickness of the lens holder 224; TH2 is the minimum thickness of the lens barrel 222; HOI is the maximum imaging height perpendicular to the optical axis on the imaging surface. </p> <p> In one embodiment, the optical imaging module 10 more satisfies the following conditions: </p> <p>0 mm<TH1+TH2≦1.5 mm; further, TH1 is the maximum thickness of the lens holder 224; TH2 is the minimum thickness of the lens barrel 222. </p> <p> In one embodiment, the optical imaging module 10 more satisfies the following conditions: </p> <p>0<(TH1+TH2)/HOI≦0.95; further, TH1 is the maximum thickness of the lens holder 224; TH2 is the minimum thickness of the lens barrel 222; HOI is the maximum imaging height perpendicular to the optical axis on the imaging surface. </p> <p> In one embodiment, the optical imaging module 10 more satisfies the following conditions: </p> <p>0.9≦ARS/EHD≦2.0. Further, the ARS is based on the intersection of the surface of the lens 2401 of any one of the fixed lens group 230 and the focus lens group 240 with the optical axis, and ends at the maximum effective radius of the surface of the lens 2401. The profile curve length obtained from the contour of the surface of the lens 2401, EHD is the maximum effective radius of any of the surfaces of any of the lenses 2401 in the focus lens group 240. </p> <p> In one embodiment, the optical imaging module 10 more satisfies the following conditions: </p> <p>PLTA≦100 μm; PSTA≦100 μm; NLTA≦100 μm and NSTA≦100 μm; SLTA≦100 μm; SSTA≦100 μm. Further, the HOI is defined as the maximum imaging height perpendicular to the optical axis on the imaging plane, and the PLTA is the longest visible wavelength of the visible light of the forward meridional plane of the optical imaging module 10 through an incident edge and incident on the imaging surface 0.7 The lateral aberration of the HOI, the shortest working wavelength of the visible light of the positive meridional plane of the optical imaging module 10 passes through the entrance pupil edge and is incident on the imaging surface at 0.7HOI lateral aberration NLTA for the optical imaging module 10 The longest working wavelength of the visible light of the negative meridional fan passes through the entrance pupil edge and is incident on the imaging surface at a lateral aberration of 0.7HOI. The NSTA is the shortest working wavelength of the visible light of the negative meridional fan of the optical imaging module 10 passing through the entrance pupil edge and incident on the imaging surface at a lateral aberration of 0.7HOI, and the SLTA is the sagittal plane of the optical imaging module 10. The longest working wavelength of the visible light passes through the entrance pupil edge and is incident on the imaging surface at a lateral aberration of 0.7HOI. The SSTA is the shortest working wavelength of the visible light of the sagittal plane of the optical imaging module 10 through the entrance pupil edge and incident on the imaging. The lateral aberration at 0.7HOI on the surface. </p> <p> In addition, in addition to the above-described respective configuration, an optical embodiment in which the fixed focus lens group 230 and the focus lens group 240 are feasible will be described below. The optical imaging module of this creation can be designed using three working wavelengths, namely 486.1 nm, 587.5 nm, and 656.2 nm, of which 587.5 nm is the reference wavelength at which the main reference wavelength is the main extraction technique. The optical imaging module can also be designed using five operating wavelengths: 470 nm, 510 nm, 555 nm, 610 nm, 650 nm, with 555 nm being the reference wavelength at which the primary reference wavelength is the dominant extraction technique. </p> <p>The ratio of the focal length f of the optical imaging module 10 to the focal length fp of each lens having a positive refractive power, the ratio of the focal length f of the optical imaging module 10 to the focal length fn of each lens having a negative refractive power NPR The sum of the PPRs of all positive refractive power lenses is ΣPPR, and the NPR sum of all negative refractive power lenses is ΣNPR, which helps to control the total refractive power and total length of the optical imaging module 10 when the following conditions are met: 0.5≦ΣPPR /│ΣNPR│≦15, preferably, the following conditions can be satisfied: 1≦ΣPPR/│ΣNPR│≦3.0. </p> <p> In addition, the image sensing component 140 effectively detects half of the diagonal length of the region (ie, the imaging height or the maximum image height of the optical imaging module 10) is HOI, and the first lens 2411 is laterally to the imaging surface. The distance on the optical axis is HOS, which satisfies the following conditions: HOS/HOI ≦ 50; and 0.5 ≦ HOS/f ≦ 150. Preferably, the following conditions are satisfied: 1 ≦ HOS / HOI ≦ 40; and 1 ≦ HOS / f ≦ 140. Thereby, the optical imaging module 10 can be miniaturized for mounting on a thin and portable electronic product. </p> In addition, in an embodiment, in the optical imaging module 10 of the present invention, at least one aperture can be set as needed to reduce stray light, which helps to improve image quality. </p> <p> Further, in the optical imaging module 10 of the present invention, the aperture configuration may be a front aperture or a center aperture, wherein the front aperture means that the aperture is disposed between the subject and the first lens 2411, and the center aperture It means that the aperture is disposed between the first lens 2411 and the imaging surface. If the aperture is a front aperture, the optical imaging module 10 can be placed at a longer distance from the imaging surface to accommodate more optical components, and the image sensing component can increase the efficiency of receiving images; if it is a center aperture It helps to expand the field of view of the system and gives the optical imaging module the advantage of a wide-angle lens. The distance from the aforementioned aperture to the imaging surface is InS, which satisfies the following condition: 0.1 ≦ InS/HOS ≦ 1.1. Thereby, it is possible to maintain both the miniaturization of the optical imaging module 10 and the wide-angle characteristics. </p> <p> In the optical imaging module 10 of the present invention, the distance between the side surface of the first lens 2411 and the image side of the sixth lens 2461 is InTL, and the total thickness of all the lenses having refractive power on the optical axis is ΣTP, which satisfies The following conditions are: 0.1 ≦Σ TP / InTL ≦ 0.9. Thereby, the contrast of the system imaging and the yield of the lens manufacturing can be simultaneously taken into consideration and an appropriate back focus can be provided to accommodate other components. </p> <p> The radius of curvature of the side surface of the first lens 2411 is R1, and the radius of curvature of the image side surface of the first lens 2411 is R2, which satisfies the following condition: 0.001 ≦ │ R1/R2 │ 25. Thereby, the first lens 2411 is provided with an appropriate positive refractive power to prevent the spherical aberration from increasing excessively. Preferably, the following conditions are satisfied: 0.01 ≦ │ R 1 / R 2 │ < 12. </p> <p> The radius of curvature of the side surface of the sixth lens 2461 is R11, and the radius of curvature of the image side of the sixth lens 2461 is R12, which satisfies the following condition: -7 <(R11-R12)/(R11+R12)<50. Thereby, it is advantageous to correct the astigmatism generated by the optical imaging module 10. </p> <p> The distance between the first lens 2411 and the second lens 2421 on the optical axis is IN12, which satisfies the following condition: IN12 / f ≦ 60 thereby helps to improve the chromatic aberration of the lens to improve its performance. </p> <p> The distance between the fifth lens 2451 and the sixth lens 2461 on the optical axis is IN56, which satisfies the following condition: IN56 / f ≦ 3.0, which contributes to improving the chromatic aberration of the lens to improve its performance. </p> <p> The thicknesses of the first lens 2411 and the second lens 2421 on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: 0.1 ≦ (TP1 + IN12) / TP2 ≦ 10. This helps to control the sensitivity of the optical imaging module manufacturing and improve its performance. </p> <p> The thicknesses of the fifth lens 2451 and the sixth lens 2461 on the optical axis are TP5 and TP6, respectively, and the distance between the two lenses on the optical axis is IN56, which satisfies the following condition: 0.1 ≦ (TP6 + IN56) / The TP5≦15 thus helps to control the sensitivity of the optical imaging module manufacturing and reduce the overall height of the system. </p> <p> The thickness of the second lens 2421, the third lens 2431, and the fourth lens 2441 on the optical axis are TP2, TP3, and TP4, respectively, and the distance between the second lens 2421 and the third lens 2431 on the optical axis is IN23, The distance between the third lens 2431 and the fourth lens 2441 on the optical axis is IN45, and the distance between the object side surface of the first lens 2411 and the image side surface of the sixth lens 2461 is InTL, which satisfies the following condition: 0.1 ≦ TP4 / (IN34+ TP4+IN45)<1. Thereby, the layer is slightly modified to correct the aberration generated by the incident light and reduce the total height of the system. </p> <p> In the optical imaging module 10 of the present invention, the vertical distance C61 between the object side of the sixth lens 2461 and the optical axis is HVT61, and the vertical distance C62 of the image side of the sixth lens 2461 is perpendicular to the optical axis. The horizontal displacement distance of the side of the sixth lens object on the optical axis to the critical point C61 at the optical axis is SGC61, and the horizontal displacement distance of the sixth lens image side from the intersection on the optical axis to the critical point C62 at the optical axis For SGC62, the following conditions can be met: 0 mm≦HVT61≦3 mm; 0 mm < HVT62≦6 mm; 0≦HVT61/HVT62; 0 mm≦∣SGC61∣≦0.5 mm; 0 mm<∣SGC62∣≦2 mm; And 0 <∣SGC62∣/(∣SGC62∣+TP6)≦0.9. Thereby, the aberration of the off-axis field of view can be effectively corrected. </p> <p> The optical imaging module 10 of the present invention satisfies the following conditions: 0.2 ≦ HVT62 / HOI ≦ 0.9. Preferably, the following conditions are satisfied: 0.3 ≦ HVT62 / HOI ≦ 0.8. Thereby, the aberration correction of the peripheral field of view of the optical imaging module is facilitated. </p> <p> The optical imaging module 10 of the present invention satisfies the following conditions: 0 ≦ HVT62 / HOS ≦ 0.5. Preferably, the following conditions are satisfied: 0.2 ≦ HVT62 / HOS ≦ 0.45. Thereby, the aberration correction of the peripheral field of view of the optical imaging module 10 is facilitated. </p> <p> In the optical imaging module 10 of the present invention, the horizontal displacement distance parallel to the optical axis between the intersection of the side surface of the sixth lens 2461 on the optical axis and the inflection point of the optical axis of the object surface of the sixth lens 2461 is SGI 611 indicates that the horizontal displacement distance of the sixth lens 2461 from the intersection of the side surface on the optical axis to the inflection point of the optical axis closest to the side surface of the sixth lens 2461 is represented by SGI621, which satisfies the following condition: 0 < SGI611 /( SGI611+TP6)≦0.9;0 < SGI621 /( SGI621+TP6)≦0.9. Preferably, the following conditions are satisfied: 0.1≦SGI611 /(SGI611+TP6)≦0.6; 0.1≦SGI621 /(SGI621+TP6)≦0.6. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the side surface of the sixth lens 2461 on the optical axis to the inflection point of the second lens 2461 opposite to the optical axis is represented by SGI612, and the sixth lens 2461 The horizontal displacement distance parallel to the optical axis between the intersection of the side on the optical axis and the inflection point of the second near-optical axis of the sixth lens image side is represented by SGI 622, which satisfies the following condition: 0 < SGI612/( SGI612+TP6) ≦0.9;0 < SGI622 /( SGI622+TP6)≦0.9. Preferably, the following conditions are satisfied: 0.1 ≦ SGI612 / (SGI612 + TP6) ≦ 0.6; 0.1 ≦ SGI622 / (SGI622 + TP6) ≦ 0.6. </p> <p> The vertical distance between the inflection point of the optical axis and the optical axis of the sixth lens 2461 is represented by HIF 611, and the sixth lens 2461 has the opposite side of the optical axis from the intersection on the optical axis to the optical axis of the sixth lens image. The vertical distance between the curved point and the optical axis is represented by HIF621, which satisfies the following conditions: 0.001 mm ≦ │ HIF 611 ∣≦ 5 mm; 0.001 mm ≦ │ HIF 621 ∣≦ 5 mm. Preferably, the following conditions are satisfied: 0.1 mm ≦ │ HIF 611 ∣≦ 3.5 mm; 1.5 mm ≦ │ HIF 621 ∣≦ 3.5 mm. </p> <p> The vertical distance between the inflection point of the second lens 2461 and the optical axis of the sixth lens 2461 is represented by HIF 612, and the sixth lens 2461 is second closest to the intersection of the image side on the optical axis to the side of the sixth lens image. The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF 622, which satisfies the following conditions: 0.001 mm ≦ │ HIF 612 ∣≦ 5 mm; 0.001 mm ≦ │ HIF 622 ∣≦ 5 mm. Preferably, the following conditions are satisfied: 0.1 mm ≦ │ HIF 622 ∣≦ 3.5 mm; 0.1 mm ≦ │ HIF 612 ∣≦ 3.5 mm. </p> <p> The vertical distance between the inflection point of the third lens 2461 on the side of the optical axis and the optical axis is represented by HIF 613, and the sixth lens 2461 is on the side of the image on the optical axis to the side of the sixth lens image 2461. The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF623, which satisfies the following conditions: 0.001 mm ≦ │ HIF 613 ∣≦ 5 mm; 0.001 mm ≦ │ HIF 623 ∣≦ 5 mm. Preferably, the following conditions are satisfied: 0.1 mm ≦ │ HIF 623 ∣≦ 3.5 mm; 0.1 mm ≦ │ HIF 613 ∣≦ 3.5 mm. </p> <p> The vertical distance between the inflection point of the fourth lens 2461 on the side of the optical axis and the optical axis is represented by HIF 614, and the intersection of the sixth lens 2461 on the optical axis to the sixth lens 2461 is the fourth side. The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF624, which satisfies the following conditions: 0.001 mm ≦ │ HIF 614 ∣≦ 5 mm; 0.001 mm ≦ │ HIF 624 ∣≦ 5 mm. Preferably, the following conditions are satisfied: 0.1 mm ≦ │ HIF 624 ∣≦ 3.5 mm; 0.1 mm ≦ │ HIF 614 ∣≦ 3.5 mm. </p> <p>In the optical imaging module of this creation, (TH1+TH2) / HOI satisfies the following conditions: 0 < (TH1+TH2) / HOI≦0.95, preferably the following conditions are satisfied: 0 < (TH1+TH2) /HOI≦0.5;(TH1+TH2) /HOS satisfies the following condition: 0 < (TH1+TH2) /HOS≦0.95, preferably the following conditions are satisfied: 0 < (TH1+TH2) /HOS≦0.5; 2 times (TH1+TH2) /PhiA satisfies the following condition: 0 < 2 times (TH1 + TH2) / PhiA ≦ 0.95, preferably the following conditions are satisfied: 0 < 2 times (TH1 + TH2) / PhiA ≦ 0.5. </p> <p> An embodiment of the optical imaging module 10 of the present invention can assist in the correction of the chromatic aberration of the optical imaging module by staggering the lenses having a high dispersion coefficient and a low dispersion coefficient. </p> <p>The above aspheric equation is: </p> <p>z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+... (1) </p> <p> where z is the position value with reference to the surface apex at the height h position along the optical axis direction, k is the cone coefficient, c is the reciprocal of the radius of curvature, and A4, A6, A8, A10, A12, A14, A16, A18, and A20 are high-order aspheric coefficients. </p> <p>In the optical imaging module 10 provided by the present invention, the lens may be made of plastic or glass. When the lens is made of plastic, it can effectively reduce production cost and weight. In addition, when the lens is made of glass, it can control the thermal effect and increase the design space of the optical imaging module's refractive power configuration. In addition, the object side surface and the image side surface of the first lens 2411 to the second lens 2471 in the optical imaging module may be aspherical surfaces, which can obtain more control variables, in addition to reducing aberrations, compared with the conventional glass lens. The use can even reduce the number of lenses used, thus effectively reducing the overall height of the optical imaging module of the present invention. </p> <p> Furthermore, in the optical imaging module 10 provided by the present invention, if the surface of the lens is convex, in principle, the surface of the lens is convex at the near optical axis; if the surface of the lens is concave, the surface of the lens is in principle The near optical axis is concave. </p> <p>The optical imaging module 10 of the present invention is more suitable for the optical system of moving focus, and has the characteristics of excellent aberration correction and good imaging quality, thereby expanding the application level. </p> <p> The optical imaging module of the present invention further requires at least the first lens 2411, the second lens 2421, the third lens 2431, the fourth lens 2441, the fifth lens 2451, the sixth lens 2461, and the seventh lens 2471. A lens is a light filtering component having a wavelength of less than 500 nm, which can be achieved by coating a surface of at least one surface of the lens having the specific filtering function or the lens itself is made of a material having a short wavelength. </p> <p> The imaging surface of the optical imaging module 10 of the present invention is selected as a plane or a curved surface for more visual requirements. When the imaging surface is a curved surface (for example, a spherical surface having a radius of curvature), it helps to reduce the incident angle required for focusing light on the imaging surface, in addition to helping to achieve the length (TTL) of the miniature optical imaging module, The contrast is also helpful. </p> <p>First optical embodiment </p> <p> As shown in FIG. 21, the fixed focus lens group 230 and the focus lens group 240 include six lenses 2401 having a refractive power, and the first lens 2411 and the second lens 2421 are sequentially arranged from the object side to the image side. The three lenses 2431, the fourth lens 2441, the fifth lens 2451, and the sixth lens 2461, and the fixed focus lens group 230 and the focus lens group 240 satisfy the following condition: 0.1 ≦ InTL/HOS ≦ 0.95. Further, the HOS is the distance from the object side of the first lens 2411 to the imaging plane on the optical axis. InTL is the distance from the object side of the first lens 2411 to the image side of the sixth lens 2461 on the optical axis. </p> <p>Please refer to FIG. 23 and FIG. 24, wherein FIG. 23 is a schematic diagram of a lens group of an optical imaging module according to the first optical embodiment of the present invention, and FIG. 24 is sequentially from left to right. The spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the optical embodiment. As can be seen from FIG. 23, the optical imaging module sequentially includes a first lens 2411, a diaphragm 250, a second lens 2421, a third lens 2431, a fourth lens 2441, a fifth lens 2451, and a sixth lens from the object side to the image side. 2461, infrared filter 300, imaging surface 600, and image sensing element 140. </p> <p> The first lens 2411 has a negative refractive power and is made of a plastic material. The object side surface 24112 is a concave surface, and the image side surface 24114 is a concave surface, and both are aspherical surfaces, and the object side surface 24112 has two inflection points. The profile curve length of the maximum effective radius of the side of the first lens object is represented by ARS11, and the profile curve length of the maximum effective radius of the side of the first lens image is represented by ARS12. The length of the profile curve of the 1/2 incident pupil diameter (HEP) of the side of the first lens object is represented by ARE11, and the length of the profile curve of the 1/2 incident pupil diameter (HEP) of the side of the first lens image is represented by ARE12. The thickness of the first lens on the optical axis is TP1. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the first lens 2411 object side surface 24112 on the optical axis and the inversion point of the optical axis of the first lens 2411 object side surface 24112 is represented by SGI 111, and the first lens 2411 image The horizontal displacement distance parallel to the optical axis between the intersection of the side surface 24114 on the optical axis and the inflection point of the optical axis of the first lens 2411 on the image side surface 24114 is represented by SGI121, which satisfies the following condition: SGI111=-0.0031 mm; ∣SGI111 ∣/(∣SGI111∣+TP1)= 0.0016. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the first lens 2411 object side surface 24112 on the optical axis to the first lens 2411 object side surface 24112 and the second invisible point of the optical axis is represented by SGI 112, the first lens The horizontal displacement distance of the 2411 image side surface 24114 on the optical axis to the first lens 2411 image side surface 24114 and the second invisible point of the optical axis parallel to the optical axis is represented by SGI122, which satisfies the following condition: SGI112=1.3178 mm ;∣SGI112∣/(∣SGI112∣+TP1)= 0.4052. </p> <p> The vertical distance between the inflection point of the optical axis of the first lens 2411 and the optical axis of the first lens 2411 is represented by HIF 111, and the intersection of the first lens 2411 on the optical axis of the image side surface 24114 is closest to the image side surface 24114 of the first lens 2411. The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF121, which satisfies the following conditions: HIF111 = 0.5557 mm; HIF111 / HOI = 0.1111. </p> <p> The vertical distance between the inflection point of the second lens 2411 on the object side surface 24112 and the optical axis is represented by HIF 112, and the intersection of the first lens 2411 on the optical axis of the image side surface 24114 to the image side of the first lens 2411 The vertical distance between the inflection point of the second approaching optical axis and the optical axis of 24114 is represented by HIF 122, which satisfies the following conditions: HIF 112 = 5.3732 mm; HIF 112 / HOI = 1.0746. </p> <p> The second lens 2421 has a positive refractive power and is made of a plastic material. The object side surface 2441212 is a convex surface, the image side surface 24214 is a convex surface, and both are aspherical surfaces, and the object side surface 2441212 has an inflection point. The profile curve length of the maximum effective radius of the side of the second lens object is represented by ARS21, and the profile curve length of the maximum effective radius of the side of the second lens image is represented by ARS22. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens object is represented by ARE21, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the second lens image is represented by ARE22. The thickness of the second lens on the optical axis is TP2. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the second lens 2421 object side surface 2441212 on the optical axis and the inversion point of the closest optical axis of the second lens 2421 object side surface 24212 is represented by SGI211, and the second lens 2421 image The horizontal displacement distance parallel to the optical axis between the intersection of the side surface 24214 on the optical axis and the inflection point of the optical axis of the second lens 2421 image side surface 24214 is represented by SGI221, which satisfies the following condition: SGI211=0.1069 mm; ∣SGI211∣ /(∣SGI211∣+TP2)= 0.0412; SGI221=0 mm; ∣SGI221∣/(∣SGI221∣+TP2)= 0. </p> <p> The vertical distance between the inflection point of the optical axis of the second lens 2421 and the optical axis of the second lens 2421 is represented by HIF211, and the intersection of the second lens 2421 on the optical axis of the image side 24214 to the image side 24214 of the second lens 2421. The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF221, which satisfies the following conditions: HIF211=1.1264 mm; HIF211/HOI=0.2253; HIF221=0 mm; HIF221/HOI=0. </p> <p>The third lens 2431 has a negative refractive power and is made of a plastic material. The object side surface 24312 is a concave surface, and the image side surface 24314 is a convex surface, and both are aspherical surfaces, and the object side surface 24312 and the image side surface 24314 have an inverse surface. Curved point. The contour curve length of the maximum effective radius of the side surface of the third lens object is represented by ARS31, and the contour curve length of the maximum effective radius of the side surface of the third lens image is represented by ARS32. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the third lens object is represented by ARE31, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the third lens image is represented by ARE32. The thickness of the third lens on the optical axis is TP3. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the third lens 2431 object side surface 24312 on the optical axis and the inversion point of the optical axis of the third lens 2431 object side surface 24312 is represented by SGI311, and the third lens 2431 image The horizontal displacement distance between the intersection of the side surface 24314 on the optical axis and the inversion point of the closest optical axis of the third lens 2431 image side surface 24314 is parallel to the optical axis, which is represented by SGI 321, which satisfies the following condition: SGI311 = -0.3041 mm; ∣SGI311 ∣/(∣SGI311∣+TP3)= 0.4445; SGI321= -0.1172 mm; ∣SGI321∣/(∣SGI321∣+TP3)= 0.2357. </p> <p> The vertical distance between the inflection point of the optical axis of the third lens 2431 and the optical axis of the third lens 2431 is represented by HIF311, and the intersection of the third lens 2431 on the optical axis of the image side 24314 to the image side 24314 of the third lens 2431 The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF321, which satisfies the following conditions: HIF311=1.5907 mm; HIF311/HOI=0.3181; HIF321=1.3380 mm; HIF321/HOI=0.2676. </p> <p>The fourth lens 2441 has a positive refractive power and is made of a plastic material. The object side surface 24412 is a convex surface, and the image side surface 24414 is a concave surface, and both are aspherical surfaces, and the object side surface 24412 has two inflection points and an image side surface. 24414 has an inflection point. The contour curve length of the maximum effective radius of the side surface of the fourth lens object is represented by ARS41, and the contour curve length of the maximum effective radius of the side surface of the fourth lens image is represented by ARS42. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the fourth lens object is represented by ARE41, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the fourth lens image is represented by ARE42. The thickness of the fourth lens on the optical axis is TP4. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the fourth lens 2441 object side surface 24412 on the optical axis and the inversion point of the closest optical axis of the fourth lens 2441 object side surface 24412 is represented by SGI411, and the fourth lens 2441 image The horizontal displacement distance between the intersection of the side surface 24414 on the optical axis and the inversion point of the optical axis of the fourth lens 2441 near the optical axis of the fourth lens 2441 is represented by SGI421, which satisfies the following condition: SGI411=0.0070 mm; ∣SGI411∣ /(∣SGI411∣+TP4)= 0.0056; SGI421=0.0006 mm; ∣SGI421∣/(∣SGI421∣+TP4)= 0.0005. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the fourth lens 2441 object side surface 24412 on the optical axis to the fourth lens 2441 object side surface 24412 and the second invisible point of the optical axis is represented by SGI 412, the fourth lens The horizontal displacement distance of the 2441 image side surface 24414 on the optical axis to the fourth lens 2441 image side surface 24414 and the second invisible point of the optical axis parallel to the optical axis is represented by SGI422, which satisfies the following condition: SGI412=-0.2078 Mm; ∣SGI412∣/(∣SGI412∣+ TP4)= 0.1439. </p> <p> The vertical distance between the inflection point of the closest optical axis of the fourth lens 2441 and the optical axis is represented by HIF411, and the intersection of the fourth lens 2441 on the optical axis of the image side 24414 to the image side 24414 of the fourth lens 2441 The vertical distance between the inflection point of the optical axis and the optical axis is represented by HIF421, which satisfies the following conditions: HIF411=0.4706 mm; HIF411/HOI=0.0941; HIF421=0.1721 mm; HIF421/HOI=0.0344. </p> <p> The vertical distance between the inflection point of the second lens 2441 object side surface 24412 near the optical axis and the optical axis is represented by HIF 412, and the intersection of the fourth lens 2441 image side surface 24414 on the optical axis to the image side of the fourth lens 2441 The vertical distance between the inflection point of the second close optical axis and the optical axis of 24414 is represented by HIF422, which satisfies the following conditions: HIF412=2.0421 mm; HIF412/HOI=0.4084. </p> <p>The fifth lens 2451 has a positive refractive power and is made of a plastic material. The object side surface 24512 is a convex surface, and the image side surface 24514 is a convex surface, and both are aspherical surfaces, and the object side surface 24512 has two inflection points and an image side surface. 24514 has an inflection point. The contour curve length of the maximum effective radius of the side surface of the fifth lens object is represented by ARS51, and the contour curve length of the maximum effective radius of the side surface of the fifth lens image is represented by ARS52. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the fifth lens object is represented by ARE 51, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the fifth lens image is represented by ARE 52. The thickness of the fifth lens on the optical axis is TP5. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the fifth lens 2451 object side surface 24512 on the optical axis to the inversion point of the closest optical axis of the fifth lens 2451 object side surface 24512 is represented by SGI 511, and the fifth lens 2451 image The horizontal displacement distance between the intersection of the side surface 24514 on the optical axis and the inversion point of the optical axis near the fifth lens 2451 image side 24514 is represented by SGI521, which satisfies the following condition: SGI511=0.00364 mm; ∣SGI511∣ /(∣SGI511∣+TP5)= 0.00338; SGI521=-0.63365 mm; ∣SGI521∣/(∣SGI521∣+TP5)= 0.37154. </p> <p>the horizontal displacement distance of the fifth lens 2451 object side surface 24512 on the optical axis to the fifth lens 2451 object side surface 24512 and the second invisible point of the optical axis parallel to the optical axis is represented by SGI512, the fifth lens The horizontal displacement distance of the 2451 image side intersection 24514 on the optical axis to the fifth lens 2451 image side surface 24514 and the second invisible point of the optical axis parallel to the optical axis is represented by SGI 522, which satisfies the following condition: SGI512 = -0.32032 Mm; ∣SGI512∣/(∣SGI512∣+ TP5)= 0.23009. </p> <p>the horizontal displacement distance of the fifth lens 2451 object side surface 24512 on the optical axis to the fifth lens 2451 object side surface 24512 and the third inversion axis of the optical axis parallel to the optical axis is represented by SGI513, the fifth lens The horizontal displacement distance of the 2451 image side surface 24514 on the optical axis to the fifth lens 2451 image side surface 24514 and the third invisible point of the optical axis parallel to the optical axis is represented by SGI523, which satisfies the following condition: SGI513=0 mm ;∣SGI513∣/(∣SGI513∣+ TP5)= 0; SGI523=0 mm; ∣SGI523∣/(∣SGI523∣+TP5)= 0. </p> <p>the horizontal displacement distance of the fifth lens 2451 object side surface 24512 on the optical axis to the fifth lens 2451 object side surface 24512 and the fourth invisible point of the optical axis parallel to the optical axis is represented by SGI514, the fifth lens The horizontal displacement distance of the 2451 image side intersection 24514 on the optical axis to the fifth lens 2451 image side surface 24514 and the fourth invisible point of the optical axis parallel to the optical axis is represented by SGI 524, which satisfies the following condition: SGI514=0 mm ;∣SGI514∣/(∣SGI514∣+ TP5)= 0; SGI524=0 mm; ∣SGI524∣/(∣SGI524∣+TP5)= 0. </p> <p> The vertical distance between the inflection point of the optical axis of the fifth lens 2451 and the optical axis of the fifth lens 2451 is represented by HIF 511, and the vertical distance between the inflection point of the optical axis of the fifth lens 2451 and the optical axis is HIF521 indicates that it satisfies the following conditions: HIF511=0.28212 mm; HIF511/HOI=0.05642; HIF521=2.13850 mm; HIF521/HOI=0.42770. </p> <p> The vertical distance between the inflection point of the second lens 2451 object side surface 24512 and the optical axis is represented by HIF 512, and the fifth lens 2451 is like the side surface 24514. The second is close to the optical axis and the optical axis The vertical distance is expressed as HIF522, which satisfies the following conditions: HIF512 = 2.51384 mm; HIF512 / HOI = 0.50277. </p> <p> The vertical distance between the inflection point of the third lens 2451 object side surface 24512 and the optical axis is represented by HIF 513, and the fifth lens 2451 image side surface 24514 is between the inflection point and the optical axis of the third optical axis. The vertical distance is expressed as HIF523, which satisfies the following conditions: HIF513=0 mm; HIF513/HOI=0; HIF523=0 mm; HIF523/HOI=0. </p> <p> The vertical distance between the inflection point of the fifth lens 2451 object side surface 24512 and the optical axis is represented by HIF 514, and the fifth lens 2451 image side surface 24514 is close to the optical axis and the optical axis. The vertical distance is expressed as HIF524, which satisfies the following conditions: HIF514=0 mm; HIF514/HOI=0; HIF524=0 mm; HIF524/HOI=0. </p> <p>The sixth lens 2461 has a negative refractive power and is made of a plastic material. The object side surface 24612 is a concave surface, and the image side surface 24614 is a concave surface, and the object side surface 24612 has two inflection points and the image side surface 24614 has an inflection point. . Thereby, the angle at which each field of view is incident on the sixth lens can be effectively adjusted to improve the aberration. The contour curve length of the maximum effective radius of the side surface of the sixth lens object is represented by ARS61, and the contour curve length of the maximum effective radius of the side surface of the sixth lens image is represented by ARS62. The length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the sixth lens object is represented by ARE61, and the length of the contour curve of the 1/2 incident pupil diameter (HEP) of the side surface of the sixth lens image is represented by ARE62. The thickness of the sixth lens on the optical axis is TP6. </p> <p> The horizontal displacement distance parallel to the optical axis between the intersection of the sixth lens 2461 object side surface 24612 on the optical axis and the inversion point of the closest optical axis of the sixth lens 2461 object side surface 24612 is represented by SGI 611, and the sixth lens 2461 image The horizontal displacement distance between the intersection of the side surface 24614 on the optical axis and the inflection point of the optical axis near the sixth lens 2461 image side surface 24614 is represented by SGI621, which satisfies the following condition: SGI611 = -0.38558 mm; ∣SGI611 ∣/(∣SGI611∣+TP6)= 0.27212; SGI621= 0.12386 mm; ∣SGI621∣/(∣SGI621∣+TP6)= 0.10722. </p> <p>the horizontal displacement distance of the sixth lens 2461 object side surface 24612 on the optical axis to the sixth lens 2461 object side surface 24612 and the second invisible point of the optical axis parallel to the optical axis is represented by SGI612, the sixth lens The horizontal displacement distance of the 2461 image side intersection 24614 on the optical axis to the sixth lens 2461 image side surface 24614 and the second invisible point of the optical axis parallel to the optical axis is represented by SGI621, which satisfies the following condition: SGI612=-0.47400 Mm; ∣SGI612∣/(∣SGI612∣+TP6)= 0.31488; SGI622=0 mm; ∣SGI622∣/(∣SGI622∣+TP6)= 0. </p> <p> The vertical distance between the inflection point of the optical axis of the sixth lens 2461 and the optical axis is represented by HIF 611, and the vertical distance between the inflection point of the optical axis of the sixth lens 2461 and the optical axis of the sixth lens 2461 is HIF621 indicates that it satisfies the following conditions: HIF611=2.24283 mm; HIF611/HOI=0.44857; HIF621=1.07376 mm; HIF621/ HOI=0.21475. </p> <p> The vertical distance between the inflection point of the second lens 2461 object side surface 24612 and the optical axis is represented by HIF 612, and the sixth lens 2461 image side surface 24614 is adjacent to the optical axis between the inflection point and the optical axis of the second optical axis. The vertical distance is expressed as HIF622, which satisfies the following conditions: HIF612=2.48895 mm; HIF612/HOI=0.49779. </p> <p> The vertical distance between the inflection point of the third lens 2461 object side surface 24612 and the optical axis is represented by HIF 613, and the sixth lens 2461 is like the side surface 24614. The third is close to the optical axis and the optical axis is between the inflection point and the optical axis. The vertical distance is expressed as HIF623, which satisfies the following conditions: HIF613=0 mm; HIF613/HOI=0; HIF623=0 mm; HIF623/HOI=0. </p> <p>The vertical distance between the inflection point of the fourth lens 2461 object side surface 24612 and the optical axis is represented by HIF 614, and the sixth lens 2461 is like the side surface 24614. The fourth is close to the optical axis and the optical axis is between the inflection point and the optical axis. The vertical distance is expressed as HIF624, which satisfies the following conditions: HIF614=0 mm; HIF614/HOI=0; HIF624=0 mm; HIF624/HOI=0. </p> <p> The infrared filter 300 is made of glass and is disposed between the sixth lens 2461 and the imaging surface 600 without affecting the focal length of the optical imaging module. </p> <p> In the optical imaging module of the embodiment, the focal length of the lens group is f, the incident pupil diameter is HEP, and the half of the maximum viewing angle is HAF, and the values are as follows: f=4.075 mm; f/HEP=1.4; HAF = 50.001 degrees and tan (HAF) = 1.1918. </p> <p> In the lens group of the embodiment, the focal length of the first lens 2411 is f1, and the focal length of the sixth lens 2461 is f6, which satisfies the following condition: f1 = -7.828 mm; ∣f/f1│=0.52060; f6 = -4.886; and │f1│>│f6│. </p> <p> In the optical imaging module of the embodiment, the focal lengths of the second lens 2421 to the second lens 2451 are f2, f3, f4, and f5, respectively, which satisfy the following conditions: │f2│+│f3│+│f4│ +│f5│= 95.50815 mm;∣f1│+∣f6│= 12.71352 mm and │f2│+│f3│+│f4│+│f5│>∣f1│+∣f6│. </p> <p>The ratio of the focal length f of the optical imaging module to the focal length fp of each lens having a positive refractive power, the ratio of the focal length f of the optical imaging module to the focal length fn of each lens having a negative refractive power, NPR, In the optical imaging module of the embodiment, the sum of PPRs of all positive refractive power lenses is ΣPPR=f/f2+f/f4+f/f5=1.63290, and the total NPR of all negative refractive power lenses is ΣNPR=│f/ F1│+│f/f3│+│f/f6│= 1.51305, ΣPPR/│ΣNPR│= 1.07921. At the same time, the following conditions are also satisfied: ∣f/f2│= 0.69101; ∣f/f3│=0.15834; ∣f/f4│=0.06883; ∣f/f5│=0.87305; ∣f/f6│=0.83412. </p> <p> In the optical imaging module of the embodiment, the distance between the object side surface 24112 of the first lens 2411 to the image side surface 24614 of the sixth lens 2461 is InTL, and the distance between the object side surface 24112 of the first lens 2411 and the imaging surface 600 is HOS. The distance between the aperture 250 and the imaging surface 180 is InS, the half of the diagonal length of the effective sensing area of the image sensing element 140 is HOI, and the distance between the sixth lens image side surface 24614 and the imaging surface 600 is BFL, which satisfies the following Conditions: InTL+BFL=HOS; HOS= 19.54120 mm; HOI=5.0 mm; HOS/HOI= 3.90824; HOS/f=4.7952; InS=11.685 mm; and InS/HOS=0.59794. </p> <p> In the optical imaging module of the present embodiment, the total thickness of all the refractive power lenses on the optical axis is ΣTP, which satisfies the following conditions: Σ TP = 8.13899 mm; and Σ TP / InTL = 0.52477. Thereby, the contrast of the system imaging and the yield of the lens manufacturing can be simultaneously taken into consideration and an appropriate back focus can be provided to accommodate other components. </p> <p> In the optical imaging module of the embodiment, the radius of curvature of the object side surface 24112 of the first lens 2411 is R1, and the radius of curvature of the image side surface 24114 of the first lens 2411 is R2, which satisfies the following condition: │R1/R2│= 8.99987. Thereby, the first lens 2411 is provided with an appropriate positive refractive power to prevent the spherical aberration from increasing excessively. </p> <p> In the optical imaging module of the embodiment, the radius of curvature of the object side surface 24612 of the sixth lens 2461 is R11, and the radius of curvature of the image side surface 24614 of the sixth lens 2461 is R12, which satisfies the following condition: (R11-R12)/ (R11+R12) = 1.27780. Thereby, it is advantageous to correct the astigmatism generated by the optical imaging module. </p> <p> In the optical imaging module of the embodiment, the sum of the focal lengths of all the lenses having positive refractive power is ΣPP, which satisfies the following conditions: ΣPP=f2+f4+f5=69.770 mm; and f5/(f2+f4+ F5) = 0.067. Thereby, it is helpful to properly distribute the positive refractive power of the single lens to other positive lenses to suppress the occurrence of significant aberrations during the traveling of the incident light. </p> <p> In the optical imaging module of this embodiment, the sum of the focal lengths of all lenses having negative refractive power is ΣNP, which satisfies the following conditions: ΣNP=f1+f3+f6=-38.451 mm; and f6/(f1+f3 +f6) = 0.127. Thereby, it is helpful to appropriately distribute the negative refractive power of the sixth lens 2461 to the other negative lenses to suppress the generation of significant aberrations during the traveling of the incident light. </p> <p> In the optical imaging module of the present embodiment, the distance between the first lens 2411 and the second lens 2421 on the optical axis is IN12, which satisfies the following conditions: IN12 = 6.418 mm; IN12 / f = 1.57491. Thereby, it helps to improve the chromatic aberration of the lens to improve its performance. </p> <p> In the optical imaging module of the present embodiment, the distance between the fifth lens 2451 and the sixth lens 2461 on the optical axis is IN56, which satisfies the following conditions: IN56 = 0.025 mm; IN56 / f = 0.00613. Thereby, it helps to improve the chromatic aberration of the lens to improve its performance. </p> <p> In the optical imaging module of the embodiment, the thicknesses of the first lens 2411 and the second lens 2421 on the optical axis are TP1 and TP2, respectively, which satisfy the following conditions: TP1 = 1.934 mm; TP2 = 2.486 mm; (TP1+IN12) / TP2= 3.36005. This helps to control the sensitivity of the optical imaging module manufacturing and improve its performance. </p> <p> In the optical imaging module of the embodiment, the thicknesses of the fifth lens 2451 and the sixth lens 2461 on the optical axis are TP5 and TP6, respectively, and the distance between the two lenses on the optical axis is IN56, which satisfies the following Conditions: TP5 = 1.072 mm; TP6 = 1.031 mm; and (TP6 + IN56) / TP5 = 0.98555. This helps to control the sensitivity of the optical imaging module manufacturing and reduce the overall height of the system. </p> <p> In the optical imaging module of the embodiment, the distance between the third lens 2431 and the fourth lens 2441 on the optical axis is IN34, and the distance between the fourth lens 2441 and the fifth lens 2451 on the optical axis is IN45. , which satisfies the following conditions: IN34 = 0.401 mm; IN45 = 0.025 mm; and TP4 / (IN34 + TP4 + IN45) = 0.74376. Thereby, it helps the layer to slightly correct the aberration generated by the incident light ray and reduce the total height of the system. </p> <p> In the optical imaging module of the embodiment, the horizontal displacement distance of the fifth lens 2451 from the intersection of the object side surface 24512 on the optical axis to the maximum effective radius position of the fifth lens 2451 object side 24512 on the optical axis is InRS51, The horizontal displacement distance of the fifth lens 2451 from the intersection of the side surface 24514 on the optical axis to the maximum effective radius position of the fifth lens 2451 image side surface 24514 on the optical axis is InRS52, and the thickness of the fifth lens 2451 on the optical axis is TP5, which satisfies The following conditions are: InRS51 = -0.34789 mm; InRS52 = -0.88185 mm; │InRS51∣/ TP5 =0.32458 and │InRS52∣/ TP5 = 0.82276. Thereby, it is advantageous for the production and molding of the lens, and the miniaturization thereof is effectively maintained. </p> <p> In the optical imaging module of the embodiment, the vertical distance between the critical point of the fifth lens 2451 object side 24512 and the optical axis is HVT51, and the vertical distance between the critical point of the fifth lens 2451 image side surface 24514 and the optical axis is HVT52. It satisfies the following conditions: HVT51 = 0.515349 mm; HVT52 = 0 mm. </p> <p> In the optical imaging module of the embodiment, the horizontal displacement distance of the sixth lens 2461 from the intersection of the object side surface 24612 on the optical axis to the maximum effective radius position of the sixth lens 2461 object side surface 24612 is the InRS61, The horizontal displacement distance of the sixth lens 2461 from the intersection of the side surface 24614 on the optical axis to the maximum effective radius position of the sixth lens 2461 image side surface 24614 on the optical axis is InRS62, and the thickness of the sixth lens 2461 on the optical axis is TP6, which satisfies The following conditions were: InRS61 = -0.58390 mm; InRS62 = 0.41976 mm; │InRS61∣/ TP6=0.56616 and │InRS62∣/ TP6= 0.40700. Thereby, it is advantageous for the production and molding of the lens, and the miniaturization thereof is effectively maintained. </p> <p> In the optical imaging module of the embodiment, the vertical distance between the critical point of the sixth lens 2461 object side surface 24612 and the optical axis is HVT61, and the vertical distance between the critical point of the sixth lens 2461 image side surface 24614 and the optical axis is HVT62. It satisfies the following conditions: HVT61 = 0 mm; HVT62 = 0 mm. </p> <p> In the optical imaging module of this embodiment, the following conditions are satisfied: HVT51 / HOI = 0.1031. Thereby, the aberration correction of the peripheral field of view of the optical imaging module is facilitated. </p> <p> In the optical imaging module of this embodiment, the following conditions are satisfied: HVT51 / HOS = 0.02634. Thereby, the aberration correction of the peripheral field of view of the optical imaging module is facilitated. </p> <p> In the optical imaging module of the embodiment, the second lens 2421, the third lens 2431, and the sixth lens 2461 have a negative refractive power, the second lens 2421 has a dispersion coefficient of NA2, and the third lens 2431 has a dispersion coefficient of NA3, the sixth lens 2461 has a dispersion coefficient of NA6, which satisfies the following condition: NA6/NA2≦1. Thereby, it contributes to the correction of the chromatic aberration of the optical imaging module. </p> <p> In the optical imaging module of the embodiment, the TV distortion of the optical imaging module at the time of image formation is TDT, and the optical distortion at the time of image formation is ODT, which satisfies the following conditions: TDT = 2.124%; ODT = 5.076% . </p> <p>In the optical imaging module of the embodiment, LS is 12 mm, PhiA is 2 times EHD62=6.726 mm (EHD62: maximum effective radius of the sixth lens 2461 image side 24614), PhiC=PhiA+2 times TH2= 7.026 mm, PhiD=PhiC+2 times (TH1+TH2)=7.426 mm, TH1 is 0.2mm, TH2 is 0.15 mm, PhiA / PhiD is, TH1+TH2 is 0.35 mm, (TH1+TH2) / HOI is 0.035, (TH1+TH2) /HOS is 0.0179, 2 times (TH1+TH2) /PhiA is 0.1041, and (TH1+TH2) / LS is 0.0292. </p> <p>Refer to refer to Table 1 and Table 2 below.
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 1 First optical example Transiler data </td><td></td></tr><tr><td> f (focal length) = 4.075 mm ; f/HEP = 1.4 ; HAF (half angle of view) = 50.000 deg </td><td></td></tr><tr><td> surface </td><td> radius of curvature </td><td> Thickness (mm) </td><td> material </td><td> refractive index </td><td> dispersion coefficient </td><td> focal length </td><td></td></tr><tr><td> 0 </td><td> Subject </td><td> plane </td><td> plane </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 1 </td><td> first lens </td><td> -40.99625704 </td><td> 1.934 </td><td> plastic </td><td> 1.515 </td><td> 56.55 </td><td> -7.828 </td><td></td></tr><tr><td> 2 </td><td></td><td> 4.555209289 </td><td> 5.923 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 3 </td><td> aperture </td><td> plane </td><td> 0.495 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 4 </td><td> second lens </td><td> 5.333427366 </td><td> 2.486 </td><td> plastic </td><td> 1.544 </td><td> 55.96 </td><td> 5.897 </td><td></td></tr><tr><td> 5 </td><td></td><td> -6.781659971 </td><td> 0.502 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 6 </td><td> third lens </td><td> -5.697794287 </td><td> 0.380 </td><td> plastic </td><td> 1.642 </td><td> 22.46 </td><td> -25.738 </td><td></td></tr><tr><td> 7 </td><td></td><td> -8.883957518 </td><td> 0.401 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 8 </td><td> fourth lens </td><td> 13.19225664 </td><td> 1.236 </td><td> plastic </td><td> 1.544 </td><td> 55.96 </td><td> 59.205 </td><td></td></tr><tr><td> 9 </td><td></td><td> 21.55681832 </td><td> 0.025 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 10 </td><td> fifth lens </td><td> 8.987806345 </td><td> 1.072 </td><td> plastic </td><td> 1.515 </td><td> 56.55 </td><td> 4.668 </td><td></td></tr><tr><td> 11 </td><td></td><td> -3.158875374 </td><td> 0.025 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 12 </td><td> sixth lens </td><td> -29.46491425 </td><td> 1.031 </td><td> plastic </td><td> 1.642 </td><td> 22.46 </td><td> -4.886 </td><td></td></tr><tr><td> 13 </td><td></td><td> 3.593484273 </td><td> 2.412 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 14 </td><td> Infrared filter </td><td> plane </td><td> 0.200 </td><td></td><td> 1.517 </td><td> 64.13 </td><td></td><td></td></tr><tr><td> 15 </td><td></td><td> plane </td><td> 1.420 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 16 </td><td> imaging surface </td><td> plane </td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> The reference wavelength is 555 nm; the light blocking position is: the effective radius of the first surface is 5.800 mm; the effective radius of the third surface is 1.570 mm; the effective radius of the fifth surface is 1.950 mm. </td><td></td><td></td></tr></TBODY></TABLE> </table> </tables> </p> <p> <p>Table 2, aspherical coefficients of the first optical embodiment
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 2 Aspherical coefficients </td></tr><tr><td> surface </td><td> 1 </td><td> 2 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> k </td><td> 4.310876E+01 </td><td> -4.707622E+00 </td><td> 2.616025E+00 </td><td> 2.445397E+00 </td><td> 5.645686E+00 </td><td> -2.117147E+01 </td><td> -5.287220E+00 </td></tr><tr><td> A4 </td><td> 7.054243E-03 </td><td> 1.714312E-02 </td><td> -8.377541E-03 </td><td> -1.789549E-02 </td><td> -3.379055E-03 </td><td> -1.370959E-02 </td><td> -2.937377E-02 </td></tr><tr><td> A6 </td><td> -5.233264E-04 </td><td> -1.502232E-04 </td><td> -1.838068E-03 </td><td> -3.657520E-03 </td><td> -1.225453E-03 </td><td> 6.250200E-03 </td><td> 2.743532E-03 </td></tr><tr><td> A8 </td><td> 3.077890E-05 </td><td> -1.359611E-04 </td><td> 1.233332E-03 </td><td> -1.131622E-03 </td><td> -5.979572E-03 </td><td> -5.854426E-03 </td><td> -2.457574E-03 </td></tr><tr><td> A10 </td><td> -1.260650E-06 </td><td> 2.680747E-05 </td><td> -2.390895E-03 </td><td> 1.390351E-03 </td><td> 4.556449E-03 </td><td> 4.049451E-03 </td><td> 1.874319E-03 </td></tr><tr><td> A12 </td><td> 3.319093E-08 </td><td> -2.017491E-06 </td><td> 1.998555E-03 </td><td> -4.152857E-04 </td><td> -1.177175E-03 </td><td> -1.314592E-03 </td><td> -6.013661E-04 </td></tr><tr><td> A14 </td><td> -5.051600E-10 </td><td> 6.604615E-08 </td><td> -9.734019E-04 </td><td> 5.487286E-05 </td><td> 1.370522E-04 </td><td> 2.143097E-04 </td><td> 8.792480E-05 </td></tr><tr><td> A16 </td><td> 3.380000E-12 </td><td> -1.301630E-09 </td><td> 2.478373E-04 </td><td> -2.919339E-06 </td><td> -5.974015E-06 </td><td> -1.399894E-05 </td><td> -4.770527E-06 </td></tr></TBODY></TABLE> </table> </tables> <tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 2 Aspherical coefficients </td></tr><tr><td> surface </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td></td><td></td></tr><tr><td> k </td><td> 6.200000E+01 </td><td> -2.114008E+01 </td><td> -7.699904E+00 </td><td> -6.155476E+01 </td><td> -3.120467E-01 </td><td></td><td></td></tr><tr><td> A4 </td><td> -1.359965E-01 </td><td> -1.263831E-01 </td><td> -1.927804E-02 </td><td> -2.492467E-02 </td><td> -3.521844E-02 </td><td></td><td></td></tr><tr><td> A6 </td><td> 6.628518E-02 </td><td> 6.965399E-02 </td><td> 2.478376E-03 </td><td> -1.835360E-03 </td><td> 5.629654E-03 </td><td></td><td></td></tr><tr><td> A8 </td><td> -2.129167E-02 </td><td> -2.116027E-02 </td><td> 1.438785E-03 </td><td> 3.201343E-03 </td><td> -5.466925E-04 </td><td></td><td></td></tr><tr><td> A10 </td><td> 4.396344E-03 </td><td> 3.819371E-03 </td><td> -7.013749E-04 </td><td> -8.990757E-04 </td><td> 2.231154E-05 </td><td></td><td></td></tr><tr><td> A12 </td><td> -5.542899E-04 </td><td> -4.040283E-04 </td><td> 1.253214E-04 </td><td> 1.245343E-04 </td><td> 5.548990E-07 </td><td></td><td></td></tr><tr><td> A14 </td><td> 3.768879E-05 </td><td> 2.280473E-05 </td><td> -9.943196E-06 </td><td> -8.788363E-06 </td><td> -9.396920E-08 </td><td></td><td></td></tr><tr><td> A16 </td><td> -1.052467E-06 </td><td> -5.165452E-07 </td><td> 2.898397E-07 </td><td> 2.494302E-07 </td><td> 2.728360E-09 </td><td></td><td></td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 1 and Table 2, the following correlations can be obtained for the length of the contour curve:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> First optical embodiment (using primary reference wavelength 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 1.455 </td><td> 1.455 </td><td> -0.00033 </td><td> 99.98% </td><td> 1.934 </td><td> 75.23% </td></tr><tr><td> 12 </td><td> 1.455 </td><td> 1.495 </td><td> 0.03957 </td><td> 102.72% </td><td> 1.934 </td><td> 77.29% </td></tr><tr><td> 21 </td><td> 1.455 </td><td> 1.465 </td><td> 0.00940 </td><td> 100.65% </td><td> 2.486 </td><td> 58.93% </td></tr><tr><td> 22 </td><td> 1.455 </td><td> 1.495 </td><td> 0.03950 </td><td> 102.71% </td><td> 2.486 </td><td> 60.14% </td></tr><tr><td> 31 </td><td> 1.455 </td><td> 1.486 </td><td> 0.03045 </td><td> 102.09% </td><td> 0.380 </td><td> 391.02% </td></tr><tr><td> 32 </td><td> 1.455 </td><td> 1.464 </td><td> 0.00830 </td><td> 100.57% </td><td> 0.380 </td><td> 385.19% </td></tr><tr><td> 41 </td><td> 1.455 </td><td> 1.458 </td><td> 0.00237 </td><td> 100.16% </td><td> 1.236 </td><td> 117.95% </td></tr><tr><td> 42 </td><td> 1.455 </td><td> 1.484 </td><td> 0.02825 </td><td> 101.94% </td><td> 1.236 </td><td> 120.04% </td></tr><tr><td> 51 </td><td> 1.455 </td><td> 1.462 </td><td> 0.00672 </td><td> 100.46% </td><td> 1.072 </td><td> 136.42% </td></tr><tr><td> 52 </td><td> 1.455 </td><td> 1.499 </td><td> 0.04335 </td><td> 102.98% </td><td> 1.072 </td><td> 139.83% </td></tr><tr><td> 61 </td><td> 1.455 </td><td> 1.465 </td><td> 0.00964 </td><td> 100.66% </td><td> 1.031 </td><td> 142.06% </td></tr><tr><td> 62 </td><td> 1.455 </td><td> 1.469 </td><td> 0.01374 </td><td> 100.94% </td><td> 1.031 </td><td> 142.45% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 5.800 </td><td> 6.141 </td><td> 0.341 </td><td> 105.88% </td><td> 1.934 </td><td> 317.51% </td></tr><tr><td> 12 </td><td> 3.299 </td><td> 4.423 </td><td> 1.125 </td><td> 134.10% </td><td> 1.934 </td><td> 228.70% </td></tr><tr><td> 21 </td><td> 1.664 </td><td> 1.674 </td><td> 0.010 </td><td> 100.61% </td><td> 2.486 </td><td> 67.35% </td></tr><tr><td> 22 </td><td> 1.950 </td><td> 2.119 </td><td> 0.169 </td><td> 108.65% </td><td> 2.486 </td><td> 85.23% </td></tr><tr><td> 31 </td><td> 1.980 </td><td> 2.048 </td><td> 0.069 </td><td> 103.47% </td><td> 0.380 </td><td> 539.05% </td></tr><tr><td> 32 </td><td> 2.084 </td><td> 2.101 </td><td> 0.017 </td><td> 100.83% </td><td> 0.380 </td><td> 552.87% </td></tr><tr><td> 41 </td><td> 2.247 </td><td> 2.287 </td><td> 0.040 </td><td> 101.80% </td><td> 1.236 </td><td> 185.05% </td></tr><tr><td> 42 </td><td> 2.530 </td><td> 2.813 </td><td> 0.284 </td><td> 111.22% </td><td> 1.236 </td><td> 227.63% </td></tr><tr><td> 51 </td><td> 2.655 </td><td> 2.690 </td><td> 0.035 </td><td> 101.32% </td><td> 1.072 </td><td> 250.99% </td></tr><tr><td> 52 </td><td> 2.764 </td><td> 2.930 </td><td> 0.166 </td><td> 106.00% </td><td> 1.072 </td><td> 273.40% </td></tr><tr><td> 61 </td><td> 2.816 </td><td> 2.905 </td><td> 0.089 </td><td> 103.16% </td><td> 1.031 </td><td> 281.64% </td></tr><tr><td> 62 </td><td> 3.363 </td><td> 3.391 </td><td> 0.029 </td><td> 100.86% </td><td> 1.031 </td><td> 328.83% </td></tr></TBODY></TABLE> </table> </tables> </p> <p> Table 1 is the detailed structural data of the first optical embodiment, in which the unit of curvature radius, thickness, distance, and focal length is mm, and the surfaces 0-16 sequentially represent the surface from the object side to the image side. Table 2 is the aspherical data in the first optical embodiment, wherein the cone surface coefficients in the a-spherical curve equation of k, and A1-A20 represent the first--20th aspheric coefficients of each surface. In addition, the following optical embodiment tables correspond to the schematic diagrams and aberration diagrams of the optical embodiments, and the definitions of the data in the table are the same as those of Tables 1 and 2 of the first optical embodiment, and are not described herein. Furthermore, the definitions of the mechanism element parameters of the following optical embodiments are the same as those of the first optical embodiment. </p> <p> <p>Second optical embodiment </p> <p> <p> As shown in FIG. 22, the fixed focus lens group 230 and the focus lens group 240 may include seven lenses 2401 having a refractive power, and the first lens 2411 and the second lens 2421 are sequentially from the object side to the image side. The third lens 2431, the fourth lens 2441, the fifth lens 2451, the sixth lens 2461, and the seventh lens 2471, and the fixed focus lens group 230 and the focus lens group 240 satisfy the following condition: 0.1 ≦ InTL/HOS ≦ 0.95. Further, HOS is the distance from the object side surface of the first lens 2411 to the imaging plane on the optical axis, and InTL is the distance from the object side surface of the first lens 2411 to the image side surface of the seventh lens 2471 on the optical axis. </p> <p>Please refer to FIG. 25 and FIG. 26, wherein FIG. 25 is a schematic diagram of a lens group of an optical imaging module according to a second optical embodiment of the present invention, and FIG. 26 is sequentially from left to right. The spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the optical embodiment. As can be seen from FIG. 25, the optical imaging module includes the aperture 250, the first lens 2411, the second lens 2421, the third lens 2431, the fourth lens 2441, the fifth lens 2451, and the sixth lens from the object side to the image side. 2461 and a seventh lens 2471, an infrared filter 300, an imaging surface 600, and an image sensing element 140. </p> <p>The first lens 2411 has a negative refractive power and is made of a plastic material. The object side surface 24112 is a convex surface, and the image side surface 24114 is a concave surface, and both are aspherical surfaces. The object side surface 24112 and the image side surface 24114 each have a recurve. point. </p> <p>The second lens 2421 has a negative refractive power and is made of a plastic material. The object side surface 24212 is a convex surface, and the image side surface 24214 is a concave surface, and both are aspherical surfaces. The object side surface 24212 and the image side surface 24214 each have a recurve. point. </p> <p> The third lens 2431 has a positive refractive power and is made of a plastic material. The object side surface 24312 is a convex surface, and the image side surface 24314 is a concave surface, and both are aspherical surfaces, and the object side surface 24312 has an inflection point. </p> <p>The fourth lens 2441 has a positive refractive power and is made of a plastic material. The object side surface 24412 is a concave surface, and the image side surface 24414 is a convex surface, and both are aspherical surfaces, and the object side surface 24412 has an inflection point and an image side surface. 24414 has two inflection points. </p> <p>The fifth lens 2451 has a positive refractive power and is made of a plastic material. The object side surface 24512 is a convex surface, and the image side surface 24514 is a concave surface, and both are aspherical surfaces, and the object side surface 24512 and the image side surface 24514 have an inverse surface. Curved point. </p> <p>The sixth lens 2461 has a negative refractive power and is made of a plastic material. The object side surface 24612 is a concave surface, and the image side surface 24614 is a convex surface, and both are aspherical surfaces, and the object side surface 24612 and the image side surface 24614 have two opposite sides. Curved point. Thereby, the angle at which each field of view is incident on the sixth lens 2461 can be effectively adjusted to improve the aberration. </p> <p> The seventh lens 2471 has a negative refractive power and is made of a plastic material, and its object side surface 24712 is a convex surface, and its image side surface 24714 is a concave surface. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, the seventh lens object side surface 24712 and the image side surface 24714 have an inflection point, which can effectively suppress the angle of incidence of the off-axis field of view light, and further correct the aberration of the off-axis field of view. </p> <p> The infrared filter 300 is made of glass and is disposed between the seventh lens 2471 and the imaging surface 600 without affecting the focal length of the optical imaging module. </p> <p>Please refer to Table 3 and Table 4 below.
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 3 Second optical example Transparency data </td></tr><tr><td> f (focal length) = 4.7601 mm ; f/HEP = 2.2 ; HAF (half angle of view) = 95.98 deg </td></tr><tr><td> surface </td><td> radius of curvature </td><td> Thickness (mm) </td><td> material </td><td> refractive index </td><td> dispersion coefficient </td><td> focal length </td></tr><tr><td> 0 </td><td> Subject </td><td> 1E+18 </td><td> 1E+18 </td><td></td><td></td><td></td><td></td></tr><tr><td> 1 </td><td> first lens </td><td> 47.71478323 </td><td> 4.977 </td><td> glass </td><td> 2.001 </td><td> 29.13 </td><td> -12.647 </td></tr><tr><td> 2 </td><td></td><td> 9.527614761 </td><td> 13.737 </td><td></td><td></td><td></td><td></td></tr><tr><td> 3 </td><td> second lens </td><td> -14.88061107 </td><td> 5.000 </td><td> glass </td><td> 2.001 </td><td> 29.13 </td><td> -99.541 </td></tr><tr><td> 4 </td><td></td><td> -20.42046946 </td><td> 10.837 </td><td></td><td></td><td></td><td></td></tr><tr><td> 5 </td><td> third lens </td><td> 182.4762997 </td><td> 5.000 </td><td> glass </td><td> 1.847 </td><td> 23.78 </td><td> 44.046 </td></tr><tr><td> 6 </td><td></td><td> -46.71963608 </td><td> 13.902 </td><td></td><td></td><td></td><td></td></tr><tr><td> 7 </td><td> aperture </td><td> 1E+18 </td><td> 0.850 </td><td></td><td></td><td></td><td></td></tr><tr><td> 8 </td><td> fourth lens </td><td> 28.60018103 </td><td> 4.095 </td><td> glass </td><td> 1.834 </td><td> 37.35 </td><td> 19.369 </td></tr><tr><td> 9 </td><td></td><td> -35.08507586 </td><td> 0.323 </td><td></td><td></td><td></td><td></td></tr><tr><td> 10 </td><td> fifth lens </td><td> 18.25991342 </td><td> 1.539 </td><td> glass </td><td> 1.609 </td><td> 46.44 </td><td> 20.223 </td></tr><tr><td> 11 </td><td></td><td> -36.99028878 </td><td> 0.546 </td><td></td><td></td><td></td><td></td></tr><tr><td> 12 </td><td> sixth lens </td><td> -18.24574524 </td><td> 5.000 </td><td> glass </td><td> 2.002 </td><td> 19.32 </td><td> -7.668 </td></tr><tr><td> 13 </td><td></td><td> 15.33897192 </td><td> 0.215 </td><td></td><td></td><td></td><td></td></tr><tr><td> 14 </td><td> seventh lens </td><td> 16.13218937 </td><td> 4.933 </td><td> glass </td><td> 1.517 </td><td> 64.20 </td><td> 13.620 </td></tr><tr><td> 15 </td><td></td><td> -11.24007 </td><td> 8.664 </td><td></td><td></td><td></td><td></td></tr><tr><td> 16 </td><td> Infrared filter </td><td> 1E+18 </td><td> 1.000 </td><td> BK_7 </td><td> 1.517 </td><td> 64.2 </td><td></td></tr><tr><td> 17 </td><td></td><td> 1E+18 </td><td> 1.007 </td><td></td><td></td><td></td><td></td></tr><tr><td> 18 </td><td> imaging surface </td><td> 1E+18 </td><td> -0.007 </td><td></td><td></td><td></td><td></td></tr><tr><td> Reference wavelength (d-line) is 555 nm </td></tr></TBODY></TABLE> </table> </tables> </p> <p> Table 4, aspherical coefficients of the second optical embodiment
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 4 Aspherical coefficients </td></tr><tr><td> surface </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A4 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A6 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A8 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A10 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A12 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr></TBODY></TABLE> </table> </tables> <tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 4 Aspherical coefficients </td></tr><tr><td> surface </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td></tr><tr><td> k </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A4 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A6 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A8 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A10 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr><tr><td> A12 </td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td><td><sub>0.000000E+00</sub></td></tr></TBODY></TABLE> </table> </tables> </p> <p> In the second optical embodiment, the aspherical curve equation represents a form as in the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first optical embodiment, and are not described herein. </p> <p>According to Table 3 and Table 4, the following conditional numbers can be obtained:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Second optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f/f6│ </td></tr><tr><td> 0.3764 </td><td> 0.0478 </td><td> 0.1081 </td><td> 0.2458 </td><td> 0.2354 </td><td> 0.6208 </td></tr><tr><td> ∣f/f7│ </td><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN67 / f </td></tr><tr><td> 0.3495 </td><td> 1.3510 </td><td> 0.6327 </td><td> 2.1352 </td><td> 2.8858 </td><td> 0.0451 </td></tr><tr><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> (TP1+IN12)/ TP2 </td><td> (TP7+IN67)/ TP6 </td></tr><tr><td> 0.1271 </td><td> 2.2599 </td><td> 3.7428 </td><td> 1.0296 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT % </td><td> TDT % </td></tr><tr><td> 81.6178 </td><td> 70.9539 </td><td> 13.6030 </td><td> 0.3451 </td><td> -113.2790 </td><td> 84.4806 </td></tr><tr><td> HVT11 </td><td> HVT12 </td><td> HVT21 </td><td> HVT22 </td><td> HVT31 </td><td> HVT32 </td></tr><tr><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td></tr><tr><td> HVT61 </td><td> HVT62 </td><td> HVT71 </td><td> HVT72 </td><td> HVT72/ HOI </td><td> HVT72/ HOS </td></tr><tr><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td><td> 0.0000 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 11.962 mm </td><td> 12.362 mm </td><td> 12.862 mm </td><td> 0.25 mm </td><td> 0.2 mm </td><td> 6 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td></td></tr><tr><td> 0.9676 </td><td> 0.45 mm </td><td> 0.075 </td><td> 0.0055 </td><td> 0.0752 </td><td></td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> 0.060 mm </td><td> -0.005 mm </td><td> 0.016 mm </td><td> 0.006 mm </td><td> 0.020 mm </td><td> -0.008 mm </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Tables 3 and 4, the following conditional formulas can be obtained: According to Tables 1 and 2, the following correlations can be obtained for the length of the contour curve:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Second optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00075 </td><td> 99.93% </td><td> 4.977 </td><td> 21.72% </td></tr><tr><td> 12 </td><td> 1.082 </td><td> 1.083 </td><td> 0.00149 </td><td> 100.14% </td><td> 4.977 </td><td> 21.77% </td></tr><tr><td> 21 </td><td> 1.082 </td><td> 1.082 </td><td> 0.00011 </td><td> 100.01% </td><td> 5.000 </td><td> 21.64% </td></tr><tr><td> 22 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00034 </td><td> 99.97% </td><td> 5.000 </td><td> 21.63% </td></tr><tr><td> 31 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00084 </td><td> 99.92% </td><td> 5.000 </td><td> 21.62% </td></tr><tr><td> 32 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00075 </td><td> 99.93% </td><td> 5.000 </td><td> 21.62% </td></tr><tr><td> 41 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00059 </td><td> 99.95% </td><td> 4.095 </td><td> 26.41% </td></tr><tr><td> 42 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00067 </td><td> 99.94% </td><td> 4.095 </td><td> 26.40% </td></tr><tr><td> 51 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00021 </td><td> 99.98% </td><td> 1.539 </td><td> 70.28% </td></tr><tr><td> 52 </td><td> 1.082 </td><td> 1.081 </td><td> -0.00069 </td><td> 99.94% </td><td> 1.539 </td><td> 70.25% </td></tr><tr><td> 61 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00021 </td><td> 99.98% </td><td> 5.000 </td><td> 21.63% </td></tr><tr><td> 62 </td><td> 1.082 </td><td> 1.082 </td><td> 0.00005 </td><td> 100.00% </td><td> 5.000 </td><td> 21.64% </td></tr><tr><td> 71 </td><td> 1.082 </td><td> 1.082 </td><td> -0.00003 </td><td> 100.00% </td><td> 4.933 </td><td> 21.93% </td></tr><tr><td> 72 </td><td> 1.082 </td><td> 1.083 </td><td> 0.00083 </td><td> 100.08% </td><td> 4.933 </td><td> 21.95% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 20.767 </td><td> 21.486 </td><td> 0.719 </td><td> 103.46% </td><td> 4.977 </td><td> 431.68% </td></tr><tr><td> 12 </td><td> 9.412 </td><td> 13.474 </td><td> 4.062 </td><td> 143.16% </td><td> 4.977 </td><td> 270.71% </td></tr><tr><td> 21 </td><td> 8.636 </td><td> 9.212 </td><td> 0.577 </td><td> 106.68% </td><td> 5.000 </td><td> 184.25% </td></tr><tr><td> 22 </td><td> 9.838 </td><td> 10.264 </td><td> 0.426 </td><td> 104.33% </td><td> 5.000 </td><td> 205.27% </td></tr><tr><td> 31 </td><td> 8.770 </td><td> 8.772 </td><td> 0.003 </td><td> 100.03% </td><td> 5.000 </td><td> 175.45% </td></tr><tr><td> 32 </td><td> 8.511 </td><td> 8.558 </td><td> 0.047 </td><td> 100.55% </td><td> 5.000 </td><td> 171.16% </td></tr><tr><td> 41 </td><td> 4.600 </td><td> 4.619 </td><td> 0.019 </td><td> 100.42% </td><td> 4.095 </td><td> 112.80% </td></tr><tr><td> 42 </td><td> 4.965 </td><td> 4.981 </td><td> 0.016 </td><td> 100.32% </td><td> 4.095 </td><td> 121.64% </td></tr><tr><td> 51 </td><td> 5.075 </td><td> 5.143 </td><td> 0.067 </td><td> 101.33% </td><td> 1.539 </td><td> 334.15% </td></tr><tr><td> 52 </td><td> 5.047 </td><td> 5.062 </td><td> 0.015 </td><td> 100.30% </td><td> 1.539 </td><td> 328.89% </td></tr><tr><td> 61 </td><td> 5.011 </td><td> 5.075 </td><td> 0.064 </td><td> 101.28% </td><td> 5.000 </td><td> 101.50% </td></tr><tr><td> 62 </td><td> 5.373 </td><td> 5.489 </td><td> 0.116 </td><td> 102.16% </td><td> 5.000 </td><td> 109.79% </td></tr><tr><td> 71 </td><td> 5.513 </td><td> 5.625 </td><td> 0.112 </td><td> 102.04% </td><td> 4.933 </td><td> 114.03% </td></tr><tr><td> 72 </td><td> 5.981 </td><td> 6.307 </td><td> 0.326 </td><td> 105.44% </td><td> 4.933 </td><td> 127.84% </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 3 and Table 4, the following conditional numbers can be obtained:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Second optical embodiment inflection point correlation value (using the main reference wavelength 555 nm) </td></tr><tr><td> HIF111 </td><td> 0 </td><td> HIF111/HOI </td><td> 0 </td><td> SGI111 </td><td> 0 </td><td> │SGI111∣/(│SGI111∣+TP1) </td><td> 0 </td></tr></TBODY></TABLE> </table> </tables> </p> <p>Third optical embodiment </p> <p> As shown in FIG. 21, the fixed focus lens group 230 and the focus lens group 240 may include six lenses 2401 having a refractive power, and the first lens 2411 and the second lens 2421 are sequentially from the object side to the image side. The third lens 2431, the fourth lens 2441, the fifth lens 2451, and the sixth lens 2461, and the fixed focus lens group 230 and the focus lens group 240 satisfy the following condition: 0.1 ≦ InTL/HOS ≦ 0.95. Further, the HOS is the distance from the object side of the first lens 2411 to the imaging plane on the optical axis. InTL is the distance from the object side of the first lens 2411 to the image side of the sixth lens 2461 on the optical axis. </p> <p>Please refer to FIG. 27 and FIG. 28, wherein FIG. 27 is a schematic diagram of a lens group of an optical imaging module according to the third optical embodiment of the present invention, and FIG. 28 is sequentially from left to right. The spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the optical embodiment. As can be seen from FIG. 27, the optical imaging module sequentially includes a first lens 2411, a diaphragm 250, a second lens 2421, a third lens 2431, a fourth lens 2441, a fifth lens 2451, and a sixth lens from the object side to the image side. 2461, infrared filter 300, imaging surface 600, and image sensing element 140. </p> <p> The first lens 2411 has a negative refractive power and is made of glass. The object side surface 24112 is a convex surface, and the image side surface 24114 is a concave surface, and both are spherical surfaces. </p> <p> The second lens 2421 has a negative refractive power and is made of glass. The object side surface 24212 is a concave surface, and the image side surface 24214 is a convex surface, and both are spherical surfaces. </p> <p> The third lens 2431 has a positive refractive power and is made of a plastic material. The object side surface 24312 is a convex surface, and the image side surface 24314 is a convex surface, and both are aspherical surfaces, and the image side surface 334 has an inflection point. </p> <p> The fourth lens 2441 has a negative refractive power and is made of a plastic material. The object side surface 24412 is a concave surface, and the image side surface 24414 is a concave surface, and both are aspherical surfaces, and the image side surface 24414 has an inflection point. </p> <p> The fifth lens 2451 has a positive refractive power and is made of a plastic material. The object side surface 24512 is a convex surface, and the image side surface 24514 is a convex surface, and both are aspherical surfaces. </p> <p>The sixth lens 2461 has a negative refractive power and is made of a plastic material. The object side surface 24612 is a convex surface, and the image side surface 24614 is a concave surface, and both are aspherical surfaces, and the object side surface 24612 and the image side surface 24614 have an inverse surface. Curved point. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. In addition, the angle of incidence of the off-axis field of view light can be effectively suppressed, and the aberration of the off-axis field of view can be further corrected. </p> <p> The infrared filter 300 is made of glass and is disposed between the sixth lens 2461 and the imaging surface 600 without affecting the focal length of the optical imaging module. </p> <p>Please refer to Table 5 and Table 6 below.
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 5 Third optical implementation examples Transparency data </td></tr><tr><td> f (focal length) = 2.808 mm ; f/HEP = 1.6 ; HAF (half angle of view) = 100 deg </td></tr><tr><td> surface </td><td> radius of curvature </td><td> Thickness (mm) </td><td> material </td><td> refractive index </td><td> dispersion coefficient </td><td> focal length </td></tr><tr><td> 0 </td><td> Subject </td><td> 1E+18 </td><td> 1E+18 </td><td></td><td></td><td></td><td></td></tr><tr><td> 1 </td><td> first lens </td><td> 71.398124 </td><td> 7.214 </td><td> glass </td><td> 1.702 </td><td> 41.15 </td><td> -11.765 </td></tr><tr><td> 2 </td><td></td><td> 7.117272355 </td><td> 5.788 </td><td></td><td></td><td></td><td></td></tr><tr><td> 3 </td><td> second lens </td><td> -13.29213699 </td><td> 10.000 </td><td> glass </td><td> 2.003 </td><td> 19.32 </td><td> -4537.460 </td></tr><tr><td> 4 </td><td></td><td> -18.37509887 </td><td> 7.005 </td><td></td><td></td><td></td><td></td></tr><tr><td> 5 </td><td> third lens </td><td> 5.039114804 </td><td> 1.398 </td><td> plastic </td><td> 1.514 </td><td> 56.80 </td><td> 7.553 </td></tr><tr><td> 6 </td><td></td><td> -15.53136631 </td><td> -0.140 </td><td></td><td></td><td></td><td></td></tr><tr><td> 7 </td><td> aperture </td><td> 1E+18 </td><td> 2.378 </td><td></td><td></td><td></td><td></td></tr><tr><td> 8 </td><td> fourth lens </td><td> -18.68613609 </td><td> 0.577 </td><td> plastic </td><td> 1.661 </td><td> 20.40 </td><td> -4.978 </td></tr><tr><td> 9 </td><td></td><td> 4.086545927 </td><td> 0.141 </td><td></td><td></td><td></td><td></td></tr><tr><td> 10 </td><td> fifth lens </td><td> 4.927609282 </td><td> 2.974 </td><td> plastic </td><td> 1.565 </td><td> 58.00 </td><td> 4.709 </td></tr><tr><td> 11 </td><td></td><td> -4.551946605 </td><td> 1.389 </td><td></td><td></td><td></td><td></td></tr><tr><td> 12 </td><td> sixth lens </td><td> 9.184876531 </td><td> 1.916 </td><td> plastic </td><td> 1.514 </td><td> 56.80 </td><td> -23.405 </td></tr><tr><td> 13 </td><td></td><td> 4.845500046 </td><td> 0.800 </td><td></td><td></td><td></td><td></td></tr><tr><td> 14 </td><td> Infrared filter </td><td> 1E+18 </td><td> 0.500 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td></td></tr><tr><td> 15 </td><td></td><td> 1E+18 </td><td> 0.371 </td><td></td><td></td><td></td><td></td></tr><tr><td> 16 </td><td> imaging surface </td><td> 1E+18 </td><td> 0.005 </td><td></td><td></td><td></td><td></td></tr><tr><td> reference wavelength is 555 nm; none </td></tr></TBODY></TABLE> </table> </tables> </p> <p>Table 6 and aspheric coefficients of the third optical embodiment
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 6 Aspherical coefficients </td></tr><tr><td> surface </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 1.318519E-01 </td><td> 3.120384E+00 </td><td> -1.494442E+01 </td></tr><tr><td> A4 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 6.405246E-05 </td><td> 2.103942E-03 </td><td> -1.598286E-03 </td></tr><tr><td> A6 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 2.278341E-05 </td><td> -1.050629E-04 </td><td> -9.177115E-04 </td></tr><tr><td> A8 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -3.672908E-06 </td><td> 6.168906E-06 </td><td> 1.011405E-04 </td></tr><tr><td> A10 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.748457E-07 </td><td> -1.224682E-07 </td><td> -4.919835E-06 </td></tr></TBODY></TABLE> </table> </tables> <tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 6 Aspherical coefficients </td></tr><tr><td> surface </td><td> 9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td></td><td></td></tr><tr><td> k </td><td> 2.744228E-02 </td><td> -7.864013E+00 </td><td> -2.263702E+00 </td><td> -4.206923E+01 </td><td> -7.030803E+00 </td><td></td><td></td></tr><tr><td> A4 </td><td> -7.291825E-03 </td><td> 1.405243E-04 </td><td> -3.919567E-03 </td><td> -1.679499E-03 </td><td> -2.640099E-03 </td><td></td><td></td></tr><tr><td> A6 </td><td> 9.730714E-05 </td><td> 1.837602E-04 </td><td> 2.683449E-04 </td><td> -3.518520E-04 </td><td> -4.507651E-05 </td><td></td><td></td></tr><tr><td> A8 </td><td> 1.101816E-06 </td><td> -2.173368E-05 </td><td> -1.229452E-05 </td><td> 5.047353E-05 </td><td> -2.600391E-05 </td><td></td><td></td></tr><tr><td> A10 </td><td> -6.849076E-07 </td><td> 7.328496E-07 </td><td> 4.222621E-07 </td><td> -3.851055E-06 </td><td> 1.161811E-06 </td><td></td><td></td></tr></TBODY></TABLE> </table> </tables> </p> <p> In the third optical embodiment, the aspherical curve equation represents a form as in the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first optical embodiment, and are not described herein. </p> <p>According to Tables 5 and 6, the following conditional numbers can be obtained:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Third optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f/f6│ </td></tr><tr><td> 0.23865 </td><td> 0.00062 </td><td> 0.37172 </td><td> 0.56396 </td><td> 0.59621 </td><td> 0.11996 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN56 / f </td><td> TP4/ (IN34+TP4+IN45) </td></tr><tr><td> 1.77054 </td><td> 0.12058 </td><td> 14.68400 </td><td> 2.06169 </td><td> 0.49464 </td><td> 0.19512 </td></tr><tr><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> (TP1+IN12)/ TP2 </td><td> (TP6+IN56)/ TP5 </td></tr><tr><td> 0.00259 </td><td> 600.74778 </td><td> 1.30023 </td><td> 1.11131 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT% </td><td> TDT% </td></tr><tr><td> 42.31580 </td><td> 40.63970 </td><td> 10.57895 </td><td> 0.26115 </td><td> -122.32700 </td><td> 93.33510 </td></tr><tr><td> HVT51 </td><td> HVT52 </td><td> HVT61 </td><td> HVT62 </td><td> HVT62/ HOI </td><td> HVT62/ HOS </td></tr><tr><td> 0 </td><td> 0 </td><td> 2.22299 </td><td> 2.60561 </td><td> 0.65140 </td><td> 0.06158 </td></tr><tr><td> TP2 / TP3 </td><td> TP3 / TP4 </td><td> InRS61 </td><td> InRS62 </td><td> │InRS61│/TP6 </td><td> │InRS62│/TP6 </td></tr><tr><td> 7.15374 </td><td> 2.42321 </td><td> -0.20807 </td><td> -0.24978 </td><td> 0.10861 </td><td> 0.13038 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 6.150 mm </td><td> 6.41 mm </td><td> 6.71 mm </td><td> 0.15 mm </td><td> 0.13 mm </td><td> 4 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td></td></tr><tr><td> 0.9165 </td><td> 0.28 mm </td><td> 0.07 </td><td> 0.0066 </td><td> 0.0911 </td><td></td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> 0.014 mm </td><td> 0.002 mm </td><td> -0.003 mm </td><td> -0.002 mm </td><td> 0.011 mm </td><td> -0.001 mm </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Tables 5 and 6, the following correlations can be obtained for the length of the contour curve:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Third optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00036 </td><td> 99.96% </td><td> 7.214 </td><td> 12.16% </td></tr><tr><td> 12 </td><td> 0.877 </td><td> 0.879 </td><td> 0.00186 </td><td> 100.21% </td><td> 7.214 </td><td> 12.19% </td></tr><tr><td> 21 </td><td> 0.877 </td><td> 0.878 </td><td> 0.00026 </td><td> 100.03% </td><td> 10.000 </td><td> 8.78% </td></tr><tr><td> 22 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00004 </td><td> 100.00% </td><td> 10.000 </td><td> 8.77% </td></tr><tr><td> 31 </td><td> 0.877 </td><td> 0.882 </td><td> 0.00413 </td><td> 100.47% </td><td> 1.398 </td><td> 63.06% </td></tr><tr><td> 32 </td><td> 0.877 </td><td> 0.877 </td><td> 0.00004 </td><td> 100.00% </td><td> 1.398 </td><td> 62.77% </td></tr><tr><td> 41 </td><td> 0.877 </td><td> 0.877 </td><td> -0.00001 </td><td> 100.00% </td><td> 0.577 </td><td> 152.09% </td></tr><tr><td> 42 </td><td> 0.877 </td><td> 0.883 </td><td> 0.00579 </td><td> 100.66% </td><td> 0.577 </td><td> 153.10% </td></tr><tr><td> 51 </td><td> 0.877 </td><td> 0.881 </td><td> 0.00373 </td><td> 100.43% </td><td> 2.974 </td><td> 29.63% </td></tr><tr><td> 52 </td><td> 0.877 </td><td> 0.883 </td><td> 0.00521 </td><td> 100.59% </td><td> 2.974 </td><td> 29.68% </td></tr><tr><td> 61 </td><td> 0.877 </td><td> 0.878 </td><td> 0.00064 </td><td> 100.07% </td><td> 1.916 </td><td> 45.83% </td></tr><tr><td> 62 </td><td> 0.877 </td><td> 0.881 </td><td> 0.00368 </td><td> 100.42% </td><td> 1.916 </td><td> 45.99% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 17.443 </td><td> 17.620 </td><td> 0.178 </td><td> 101.02% </td><td> 7.214 </td><td> 244.25% </td></tr><tr><td> 12 </td><td> 6.428 </td><td> 8.019 </td><td> 1.592 </td><td> 124.76% </td><td> 7.214 </td><td> 111.16% </td></tr><tr><td> 21 </td><td> 6.318 </td><td> 6.584 </td><td> 0.266 </td><td> 104.20% </td><td> 10.000 </td><td> 65.84% </td></tr><tr><td> 22 </td><td> 6.340 </td><td> 6.472 </td><td> 0.132 </td><td> 102.08% </td><td> 10.000 </td><td> 64.72% </td></tr><tr><td> 31 </td><td> 2.699 </td><td> 2.857 </td><td> 0.158 </td><td> 105.84% </td><td> 1.398 </td><td> 204.38% </td></tr><tr><td> 32 </td><td> 2.476 </td><td> 2.481 </td><td> 0.005 </td><td> 100.18% </td><td> 1.398 </td><td> 177.46% </td></tr><tr><td> 41 </td><td> 2.601 </td><td> 2.652 </td><td> 0.051 </td><td> 101.96% </td><td> 0.577 </td><td> 459.78% </td></tr><tr><td> 42 </td><td> 3.006 </td><td> 3.119 </td><td> 0.113 </td><td> 103.75% </td><td> 0.577 </td><td> 540.61% </td></tr><tr><td> 51 </td><td> 3.075 </td><td> 3.171 </td><td> 0.096 </td><td> 103.13% </td><td> 2.974 </td><td> 106.65% </td></tr><tr><td> 52 </td><td> 3.317 </td><td> 3.624 </td><td> 0.307 </td><td> 109.24% </td><td> 2.974 </td><td> 121.88% </td></tr><tr><td> 61 </td><td> 3.331 </td><td> 3.427 </td><td> 0.095 </td><td> 102.86% </td><td> 1.916 </td><td> 178.88% </td></tr><tr><td> 62 </td><td> 3.944 </td><td> 4.160 </td><td> 0.215 </td><td> 105.46% </td><td> 1.916 </td><td> 217.14% </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Tables 5 and 6, the following conditional numbers can be obtained:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Third optical embodiment inflection point correlation value (using the main reference wavelength 555 nm) </td></tr><tr><td> HIF321 </td><td> 2.0367 </td><td> HIF321/HOI </td><td> 0.5092 </td><td> SGI321 </td><td> -0.1056 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.0702 </td></tr><tr><td> HIF421 </td><td> 2.4635 </td><td> HIF421/HOI </td><td> 0.6159 </td><td> SGI421 </td><td> 0.5780 </td><td> ∣SGI421│/(∣SGI421│+TP4) </td><td> 0.5005 </td></tr><tr><td> HIF611 </td><td> 1.2364 </td><td> HIF611/HOI </td><td> 0.3091 </td><td> SGI611 </td><td> 0.0668 </td><td> │SGI611∣/(│SGI611∣+TP6) </td><td> 0.0337 </td></tr><tr><td> HIF621 </td><td> 1.5488 </td><td> HIF621/HOI </td><td> 0.3872 </td><td> SGI621 </td><td> 0.2014 </td><td> ∣SGI621│/(∣SGI621│+TP6) </td><td> 0.0951 </td></tr></TBODY></TABLE> </table> </tables> </p> <p>Fourth optical embodiment </p> <p> As shown in FIG. 20, in an embodiment, the fixed focus lens group 230 and the focus lens group 240 may include five lenses 2401 having a refractive power, and the first lens 2411 is sequentially from the object side to the image side. The second lens 2421, the third lens 2431, the fourth lens 2441, and the fifth lens 2451, and the fixed focus lens group 230 and the focus lens group 240 satisfy the following condition: 0.1 ≦ InTL/HOS ≦ 0.95. Further, HOS is the distance from the object side surface of the first lens 2411 to the imaging plane on the optical axis, and InTL is the distance from the object side surface of the first lens 2411 to the image side surface of the fifth lens 2451 on the optical axis. </p> <p>Please refer to FIG. 29 and FIG. 30, wherein FIG. 29 is a schematic diagram of a lens group of an optical imaging module according to a fourth optical embodiment of the present invention, and FIG. 30 is sequentially from left to right. The spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the optical embodiment. As can be seen from FIG. 29, the optical imaging module sequentially includes a first lens 2411, a second lens 2421, a diaphragm 250, a third lens 2431, a fourth lens 2441, a fifth lens 2451, and a sixth lens from the object side to the image side. 2461, infrared filter 300, imaging surface 600, and image sensing element 140. </p> <p> The first lens 2411 has a negative refractive power and is made of glass. The object side surface 24112 is a convex surface, and the image side surface 24114 is a concave surface, and both are spherical surfaces. </p> <p> The second lens 2421 has a negative refractive power and is made of a plastic material. The object side surface 24212 is a concave surface, and the image side surface 24214 is a concave surface, and both are aspherical surfaces, and the object side surface 24212 has an inflection point. </p> <p> The third lens 2431 has a positive refractive power and is made of a plastic material. The object side surface 24312 is a convex surface, the image side surface 24314 is a convex surface, and both are aspherical surfaces, and the object side surface 24312 has an inflection point. </p> <p> The fourth lens 2441 has a positive refractive power and is made of a plastic material. The object side surface 24412 is a convex surface, and the image side surface 24414 is a convex surface, and both are aspherical surfaces, and the object side surface 24412 has an inflection point. </p> <p> The fifth lens 2451 has a negative refractive power and is made of a plastic material. The object side surface 24512 is a concave surface, and the image side surface 24514 is a concave surface, and both are aspherical surfaces, and the object side surface 24512 has two inflection points. Thereby, it is advantageous to shorten the back focal length to maintain miniaturization. </p> <p> The infrared filter 300 is made of glass and is disposed between the fifth lens 2451 and the imaging surface 600 without affecting the focal length of the optical imaging module. </p> <p>Please refer to the following list 7 and Table 8.
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 7 Fourth optical implementation example Transilal data </td></tr><tr><td> f (focal length) = 2.7883 mm ; f/HEP = 1.8 ; HAF (half angle of view) = 101 deg </td></tr><tr><td> surface </td><td> radius of curvature </td><td> Thickness (mm) </td><td> material </td><td> refractive index </td><td> dispersion coefficient </td><td> focal length </td></tr><tr><td> 0 </td><td> Subject </td><td> 1E+18 </td><td> 1E+18 </td><td></td><td></td><td></td><td></td></tr><tr><td> 1 </td><td> first lens </td><td> 76.84219 </td><td> 6.117399 </td><td> glass </td><td> 1.497 </td><td> 81.61 </td><td> -31.322 </td></tr><tr><td> 2 </td><td></td><td> 12.62555 </td><td> 5.924382 </td><td></td><td></td><td></td><td></td></tr><tr><td> 3 </td><td> second lens </td><td> -37.0327 </td><td> 3.429817 </td><td> plastic </td><td> 1.565 </td><td> 54.5 </td><td> -8.70843 </td></tr><tr><td> 4 </td><td></td><td> 5.88556 </td><td> 5.305191 </td><td></td><td></td><td></td><td></td></tr><tr><td> 5 </td><td> third lens </td><td> 17.99395 </td><td> 14.79391 </td><td></td><td></td><td></td><td></td></tr><tr><td> 6 </td><td></td><td> -5.76903 </td><td> -0.4855 </td><td> plastic </td><td> 1.565 </td><td> 58 </td><td> 9.94787 </td></tr><tr><td> 7 </td><td> aperture </td><td> 1E+18 </td><td> 0.535498 </td><td></td><td></td><td></td><td></td></tr><tr><td> 8 </td><td> fourth lens </td><td> 8.19404 </td><td> 4.011739 </td><td> plastic </td><td> 1.565 </td><td> 58 </td><td> 5.24898 </td></tr><tr><td> 9 </td><td></td><td> -3.84363 </td><td> 0.050366 </td><td></td><td></td><td></td><td></td></tr><tr><td> 10 </td><td> fifth lens </td><td> -4.34991 </td><td> 2.088275 </td><td> plastic </td><td> 1.661 </td><td> 20.4 </td><td> -4.97515 </td></tr><tr><td> 11 </td><td></td><td> 16.6609 </td><td> 0.6 </td><td></td><td></td><td></td><td></td></tr><tr><td> 12 </td><td> Infrared filter </td><td> 1E+18 </td><td> 0.5 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td></td></tr><tr><td> 13 </td><td></td><td> 1E+18 </td><td> 3.254927 </td><td></td><td></td><td></td><td></td></tr><tr><td> 14 </td><td> imaging surface </td><td> 1E+18 </td><td> -0.00013 </td><td></td><td></td><td></td><td></td></tr><tr><td> Reference wavelength is 555 nm </td></tr></TBODY></TABLE> </table> </tables> </p> <p>Table 8, the aspheric coefficient of the fourth optical embodiment
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 8 Aspherical coefficients </td></tr><tr><td> surface </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 8 </td></tr><tr><td> k </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.131249 </td><td> -0.069541 </td><td> -0.324555 </td><td> 0.009216 </td><td> -0.292346 </td></tr><tr><td> A4 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.99823E-05 </td><td> -8.55712E-04 </td><td> -9.07093E-04 </td><td> 8.80963E-04 </td><td> -1.02138E-03 </td></tr><tr><td> A6 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 9.03636E-08 </td><td> -1.96175E-06 </td><td> -1.02465E-05 </td><td> 3.14497E-05 </td><td> -1.18559E-04 </td></tr><tr><td> A8 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 1.91025E-09 </td><td> -1.39344E-08 </td><td> -8.18157E-08 </td><td> -3.15863E-06 </td><td> 1.34404E-05 </td></tr><tr><td> A10 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -1.18567E-11 </td><td> -4.17090E-09 </td><td> -2.42621E-09 </td><td> 1.44613E-07 </td><td> -2.80681E-06 </td></tr><tr><td> A12 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td></tr></TBODY></TABLE> </table> </tables> <tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 8 Aspherical coefficients </td></tr><tr><td> surface </td><td> 9 </td><td> 10 </td><td> 11 </td><td></td><td></td><td></td><td></td></tr><tr><td> k </td><td> -0.18604 </td><td> -6.17195 </td><td> 27.541383 </td><td></td><td></td><td></td><td></td></tr><tr><td> A4 </td><td> 4.33629E-03 </td><td> 1.58379E-03 </td><td> 7.56932E-03 </td><td></td><td></td><td></td><td></td></tr><tr><td> A6 </td><td> -2.91588E-04 </td><td> -1.81549E-04 </td><td> -7.83858E-04 </td><td></td><td></td><td></td><td></td></tr><tr><td> A8 </td><td> 9.11419E-06 </td><td> -1.18213E-05 </td><td> 4.79120E-05 </td><td></td><td></td><td></td><td></td></tr><tr><td> A10 </td><td> 1.28365E-07 </td><td> 1.92716E-06 </td><td> -1.73591E-06 </td><td></td><td></td><td></td><td></td></tr><tr><td> A12 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td></td><td></td><td></td><td></td></tr></TBODY></TABLE> </table> </tables> </p> <p> In the fourth optical embodiment, the aspherical curve equation represents a form as in the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first optical embodiment, and are not described herein. </p> <p>According to Tables 7 and 8, you can get the following conditional numbers:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fourth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f/f5│ </td><td> ∣f1/f2│ </td></tr><tr><td> 0.08902 </td><td> 0.32019 </td><td> 0.28029 </td><td> 0.53121 </td><td> 0.56045 </td><td> 3.59674 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN45 / f </td><td> ∣f2/f3│ </td></tr><tr><td> 1.4118 </td><td> 0.3693 </td><td> 3.8229 </td><td> 2.1247 </td><td> 0.0181 </td><td> 0.8754 </td></tr><tr><td> TP3 / (IN23+TP3+IN34) </td><td> (TP1+IN12)/ TP2 </td><td> (TP5+IN45)/ TP4 </td></tr><tr><td> 0.73422 </td><td> 3.51091 </td><td> 0.53309 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> ODT% </td><td> TDT% </td></tr><tr><td> 46.12590 </td><td> 41.77110 </td><td> 11.53148 </td><td> 0.23936 </td><td> -125.266 </td><td> 99.1671 </td></tr><tr><td> HVT41 </td><td> HVT42 </td><td> HVT51 </td><td> HVT52 </td><td> HVT52/ HOI </td><td> HVT52/ HOS </td></tr><tr><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td><td> 0.00000 </td></tr><tr><td> TP2 / TP3 </td><td> TP3 / TP4 </td><td> InRS51 </td><td> InRS52 </td><td> │InRS51│/TP5 </td><td> │InRS52│/TP5 </td></tr><tr><td> 0.23184 </td><td> 3.68765 </td><td> -0.679265 </td><td> 0.5369 </td><td> 0.32528 </td><td> 0.25710 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 5.598 mm </td><td> 5.858 mm </td><td> 6.118 mm </td><td> 0.13 mm </td><td> 0.13 mm </td><td> 4 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td></td></tr><tr><td> 0.9150 </td><td> 0.26 mm </td><td> 0.065 </td><td> 0.0056 </td><td> 0.0929 </td><td></td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> -0.011 mm </td><td> 0.005 mm </td><td> -0.010 mm </td><td> -0.003 mm </td><td> 0.005 mm </td><td> -0.00026 mm </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 7 and Table 8, the following correlations can be obtained for the length of the contour curve:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fourth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00052 </td><td> 99.93% </td><td> 6.117 </td><td> 12.65% </td></tr><tr><td> 12 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00005 </td><td> 99.99% </td><td> 6.117 </td><td> 12.66% </td></tr><tr><td> 21 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00048 </td><td> 99.94% </td><td> 3.430 </td><td> 22.57% </td></tr><tr><td> 22 </td><td> 0.775 </td><td> 0.776 </td><td> 0.00168 </td><td> 100.22% </td><td> 3.430 </td><td> 22.63% </td></tr><tr><td> 31 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00031 </td><td> 99.96% </td><td> 14.794 </td><td> 5.23% </td></tr><tr><td> 32 </td><td> 0.775 </td><td> 0.776 </td><td> 0.00177 </td><td> 100.23% </td><td> 14.794 </td><td> 5.25% </td></tr><tr><td> 41 </td><td> 0.775 </td><td> 0.775 </td><td> 0.00059 </td><td> 100.08% </td><td> 4.012 </td><td> 19.32% </td></tr><tr><td> 42 </td><td> 0.775 </td><td> 0.779 </td><td> 0.00453 </td><td> 100.59% </td><td> 4.012 </td><td> 19.42% </td></tr><tr><td> 51 </td><td> 0.775 </td><td> 0.778 </td><td> 0.00311 </td><td> 100.40% </td><td> 2.088 </td><td> 37.24% </td></tr><tr><td> 52 </td><td> 0.775 </td><td> 0.774 </td><td> -0.00014 </td><td> 99.98% </td><td> 2.088 </td><td> 37.08% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 23.038 </td><td> 23.397 </td><td> 0.359 </td><td> 101.56% </td><td> 6.117 </td><td> 382.46% </td></tr><tr><td> 12 </td><td> 10.140 </td><td> 11.772 </td><td> 1.632 </td><td> 116.10% </td><td> 6.117 </td><td> 192.44% </td></tr><tr><td> 21 </td><td> 10.138 </td><td> 10.178 </td><td> 0.039 </td><td> 100.39% </td><td> 3.430 </td><td> 296.74% </td></tr><tr><td> 22 </td><td> 5.537 </td><td> 6.337 </td><td> 0.800 </td><td> 114.44% </td><td> 3.430 </td><td> 184.76% </td></tr><tr><td> 31 </td><td> 4.490 </td><td> 4.502 </td><td> 0.012 </td><td> 100.27% </td><td> 14.794 </td><td> 30.43% </td></tr><tr><td> 32 </td><td> 2.544 </td><td> 2.620 </td><td> 0.076 </td><td> 102.97% </td><td> 14.794 </td><td> 17.71% </td></tr><tr><td> 41 </td><td> 2.735 </td><td> 2.759 </td><td> 0.024 </td><td> 100.89% </td><td> 4.012 </td><td> 68.77% </td></tr><tr><td> 42 </td><td> 3.123 </td><td> 3.449 </td><td> 0.326 </td><td> 110.43% </td><td> 4.012 </td><td> 85.97% </td></tr><tr><td> 51 </td><td> 2.934 </td><td> 3.023 </td><td> 0.089 </td><td> 103.04% </td><td> 2.088 </td><td> 144.74% </td></tr><tr><td> 52 </td><td> 2.799 </td><td> 2.883 </td><td> 0.084 </td><td> 103.00% </td><td> 2.088 </td><td> 138.08% </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Tables 7 and 8, you can get the following conditional numbers:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> The value of the inflection point of the fourth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> HIF211 </td><td> 6.3902 </td><td> HIF211/HOI </td><td> 1.5976 </td><td> SGI211 </td><td> -0.4793 </td><td> │SGI211∣/(│SGI211∣+TP2) </td><td> 0.1226 </td></tr><tr><td> HIF311 </td><td> 2.1324 </td><td> HIF311/HOI </td><td> 0.5331 </td><td> SGI311 </td><td> 0.1069 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.0072 </td></tr><tr><td> HIF411 </td><td> 2.0278 </td><td> HIF411/HOI </td><td> 0.5070 </td><td> SGI411 </td><td> 0.2287 </td><td> │SGI411∣/(│SGI411∣+TP4) </td><td> 0.0539 </td></tr><tr><td> HIF511 </td><td> 2.6253 </td><td> HIF511/HOI </td><td> 0.6563 </td><td> SGI511 </td><td> -0.5681 </td><td> │SGI511∣/(│SGI511∣+TP5) </td><td> 0.2139 </td></tr><tr><td> HIF512 </td><td> 2.1521 </td><td> HIF512/HOI </td><td> 0.5380 </td><td> SGI512 </td><td> -0.8314 </td><td> │SGI512∣/(│SGI512∣+TP5) </td><td> 0.2848 </td></tr></TBODY></TABLE> </table> </tables> </p> <p>Fifth optical embodiment </p> <p> As shown in FIG. 19, in an embodiment, the fixed focus lens group 230 and the focus lens group 240 may include four lenses 2401 having refractive power, and the first lens 2411 is sequentially from the object side to the image side. The second lens 2421, the third lens 2431, and the fourth lens 2441, and the fixed focus lens group 230 and the focus lens group 240 satisfy the following condition: 0.1 ≦ InTL/HOS ≦ 0.95. Further, HOS is the distance from the object side surface of the first lens 2411 to the imaging plane on the optical axis, and InTL is the distance from the object side surface of the first lens 2411 to the image side surface of the fourth lens 2441 on the optical axis. </p> <p>Please refer to FIG. 31 and FIG. 32, wherein FIG. 31 is a schematic diagram of a lens group of an optical imaging module according to the fifth optical embodiment of the present invention, and FIG. 32 is sequentially from left to right. The spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the optical embodiment. As can be seen from FIG. 31, the optical imaging module includes the aperture 250, the first lens 2411, the second lens 2421, the third lens 2431, the fourth lens 2441, the infrared filter 300, and the imaging surface from the object side to the image side. 600 and image sensing component 140. </p> <p> The first lens 2411 has a positive refractive power and is made of a plastic material. The object side surface, the first lens 24112 is a convex surface, the image side surface thereof, the first lens 24114 is a convex surface, and both are aspherical surfaces, and the object side surface thereof is The first lens 24112 has an inflection point. </p> <p>The second lens 2421 has a negative refractive power and is made of a plastic material. The object side surface 24212 is a convex surface, the image side surface 24214 is a concave surface, and both are aspherical surfaces, and the object side surface 24212 has two inflection points and an image side surface. 24214 has an inflection point. </p> <p>The third lens 2431 has a positive refractive power and is made of a plastic material. The object side surface 24312 is a concave surface, and the image side surface 24314 is a convex surface, and both are aspherical surfaces, and the object side surface 24312 has three recurve points and an image side surface. 24314 has an inflection point. </p> <p>The fourth lens 2441 has a negative refractive power and is made of a plastic material. The object side surface 24412 is a concave surface, and the image side surface 24414 is a concave surface, and both are aspherical surfaces, and the object side surface 24412 has two inflection points and an image side surface. 24414 has an inflection point. </p> <p> The infrared filter 300 is made of glass and is disposed between the fourth lens 2441 and the imaging surface 600 without affecting the focal length of the optical imaging module. </p> <p>Please refer to the following list IX and Table 10.
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table IX Fifth Optical Practice Example Transparency Data </td><td></td></tr><tr><td> f (focal length) = 1.04102 mm ; f/HEP = 1.4 ; HAF (half angle of view) = 44.0346 deg </td><td></td></tr><tr><td> surface </td><td> radius of curvature </td><td> Thickness (mm) </td><td> material </td><td> refractive index </td><td> dispersion coefficient </td><td> focal length </td><td></td></tr><tr><td> 0 </td><td> Subject </td><td> 1E+18 </td><td> 600 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 1 </td><td> aperture </td><td> 1E+18 </td><td> -0.020 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 2 </td><td> first lens </td><td> 0.890166851 </td><td> 0.210 </td><td> plastic </td><td> 1.545 </td><td> 55.96 </td><td> 1.587 </td><td></td></tr><tr><td> 3 </td><td></td><td> -29.11040115 </td><td> -0.010 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 4 </td><td></td><td> 1E+18 </td><td> 0.116 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 5 </td><td> second lens </td><td> 10.67765398 </td><td> 0.170 </td><td> plastic </td><td> 1.642 </td><td> 22.46 </td><td> -14.569 </td><td></td></tr><tr><td> 6 </td><td></td><td> 4.977771922 </td><td> 0.049 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 7 </td><td> third lens </td><td> -1.191436932 </td><td> 0.349 </td><td> plastic </td><td> 1.545 </td><td> 55.96 </td><td> 0.510 </td><td></td></tr><tr><td> 8 </td><td></td><td> -0.248990674 </td><td> 0.030 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 9 </td><td> fourth lens </td><td> -38.08537212 </td><td> 0.176 </td><td> plastic </td><td> 1.642 </td><td> 22.46 </td><td> -0.569 </td><td></td></tr><tr><td> 10 </td><td></td><td> 0.372574476 </td><td> 0.152 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 11 </td><td> Infrared filter </td><td> 1E+18 </td><td> 0.210 </td><td> BK_7 </td><td> 1.517 </td><td> 64.13 </td><td></td><td></td></tr><tr><td> 12 </td><td></td><td> 1E+18 </td><td> 0.185 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 13 </td><td> imaging surface </td><td> 1E+18 </td><td> 0.005 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> reference wavelength is 555 nm; light blocking position: the fourth side has a clear aperture radius of 0.360 mm </td><td></td></tr></TBODY></TABLE> </table> </tables> </p> <p>Aspherical coefficients of Table 10 and Fifth Optical Embodiments
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 10 Aspherical coefficients </td></tr><tr><td> surface </td><td> 2 </td><td> 3 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> k = </td><td> -1.106629E+00 </td><td> 2.994179E-07 </td><td> -7.788754E+01 </td><td> -3.440335E+01 </td><td> -8.522097E-01 </td><td> -4.735945E+00 </td></tr><tr><td> A4 = </td><td> 8.291155E-01 </td><td> -6.401113E-01 </td><td> -4.958114E+00 </td><td> -1.875957E+00 </td><td> -4.878227E-01 </td><td> -2.490377E+00 </td></tr><tr><td> A6= </td><td> -2.398799E+01 </td><td> -1.265726E+01 </td><td> 1.299769E+02 </td><td> 8.568480E+01 </td><td> 1.291242E+02 </td><td> 1.524149E+02 </td></tr><tr><td> A8 = </td><td> 1.825378E+02 </td><td> 8.457286E+01 </td><td> -2.736977E+03 </td><td> -1.279044E+03 </td><td> -1.979689E+03 </td><td> -4.841033E+03 </td></tr><tr><td> A10= </td><td> -6.211133E+02 </td><td> -2.157875E+02 </td><td> 2.908537E+04 </td><td> 8.661312E+03 </td><td> 1.456076E+04 </td><td> 8.053747E+04 </td></tr><tr><td> A12 = </td><td> -4.719066E+02 </td><td> -6.203600E+02 </td><td> -1.499597E+05 </td><td> -2.875274E+04 </td><td> -5.975920E+04 </td><td> -7.936887E+05 </td></tr><tr><td> A14 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 2.992026E+05 </td><td> 3.764871E+04 </td><td> 1.351676E+05 </td><td> 4.811528E+06 </td></tr><tr><td> A16 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -1.329001E+05 </td><td> -1.762293E+07 </td></tr><tr><td> A18 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 3.579891E+07 </td></tr><tr><td> A20 = </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> 0.000000E+00 </td><td> -3.094006E+07 </td></tr></TBODY></TABLE> </table> </tables> <tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 10 Aspherical coefficients </td></tr><tr><td> surface </td><td> 9 </td><td> 10 </td><td></td><td></td><td></td><td></td></tr><tr><td> k = </td><td> -2.277155E+01 </td><td> -8.039778E-01 </td><td></td><td></td><td></td><td></td></tr><tr><td> A4 = </td><td> 1.672704E+01 </td><td> -7.613206E+00 </td><td></td><td></td><td></td><td></td></tr><tr><td> A6= </td><td> -3.260722E+02 </td><td> 3.374046E+01 </td><td></td><td></td><td></td><td></td></tr><tr><td> A8 = </td><td> 3.373231E+03 </td><td> -1.368453E+02 </td><td></td><td></td><td></td><td></td></tr><tr><td> A10= </td><td> -2.177676E+04 </td><td> 4.049486E+02 </td><td></td><td></td><td></td><td></td></tr><tr><td> A12 = </td><td> 8.951687E+04 </td><td> -9.711797E+02 </td><td></td><td></td><td></td><td></td></tr><tr><td> A14 = </td><td> -2.363737E+05 </td><td> 1.942574E+03 </td><td></td><td></td><td></td><td></td></tr><tr><td> A16 = </td><td> 3.983151E+05 </td><td> -2.876356E+03 </td><td></td><td></td><td></td><td></td></tr><tr><td> A18 = </td><td> -4.090689E+05 </td><td> 2.562386E+03 </td><td></td><td></td><td></td><td></td></tr><tr><td> A20 = </td><td> 2.056724E+05 </td><td> -9.943657E+02 </td><td></td><td></td><td></td><td></td></tr></TBODY></TABLE> </table> </tables> </p> <p> In the fifth optical embodiment, the aspherical curve equation represents a form as in the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first optical embodiment, and are not described herein. </p> <p>According to Table 9 and Table 10, the following conditional numbers are available:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fifth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> InRS41 </td><td> InRS42 </td><td> HVT41 </td><td> HVT42 </td><td> ODT% </td><td> TDT% </td></tr><tr><td> -0.07431 </td><td> 0.00475 </td><td> 0.00000 </td><td> 0.53450 </td><td> 2.09403 </td><td> 0.84704 </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f/f4│ </td><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td></tr><tr><td> 0.65616 </td><td> 0.07145 </td><td> 2.04129 </td><td> 1.83056 </td><td> 0.10890 </td><td> 28.56826 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> ΣPP </td><td> ΣNP </td><td> f1/ΣPP </td></tr><tr><td> 2.11274 </td><td> 2.48672 </td><td> 0.84961 </td><td> -14.05932 </td><td> 1.01785 </td><td> 1.03627 </td></tr><tr><td> f4/ΣNP </td><td> IN12 / f </td><td> IN23 / f </td><td> IN34 / f </td><td> TP3 / f </td><td> TP4 / f </td></tr><tr><td> 1.55872 </td><td> 0.10215 </td><td> 0.04697 </td><td> 0.02882 </td><td> 0.33567 </td><td> 0.16952 </td></tr><tr><td> InTL </td><td> HOS </td><td> HOS / HOI </td><td> InS/ HOS </td><td> InTL / HOS </td><td> ΣTP / InTL </td></tr><tr><td> 1.09131 </td><td> 1.64329 </td><td> 1.59853 </td><td> 0.98783 </td><td> 0.66410 </td><td> 0.83025 </td></tr><tr><td> (TP1+IN12) / TP2 </td><td> (TP4+IN34) / TP3 </td><td> TP1 / TP2 </td><td> TP3 / TP4 </td><td> IN23/(TP2+IN23+TP3) </td></tr><tr><td> 1.86168 </td><td> 0.59088 </td><td> 1.23615 </td><td> 1.98009 </td><td> 0.08604 </td></tr><tr><td> │InRS41│/TP4 </td><td> │InRS42│/TP4 </td><td> HVT42/ HOI </td><td> HVT42/ HOS </td><td></td><td></td></tr><tr><td> 0.4211 </td><td> 0.0269 </td><td> 0.5199 </td><td> 0.3253 </td><td></td><td></td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 1.596 mm </td><td> 1.996 mm </td><td> 2.396 mm </td><td> 0.2 mm </td><td> 0.2 mm </td><td> 1.028 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td></td></tr><tr><td> 0.7996 </td><td> 0.4 mm </td><td> 0.3891 </td><td> 0.2434 </td><td> 0.5013 </td><td></td></tr><tr><td> PSTA </td><td> PLTA </td><td> NSTA </td><td> NLTA </td><td> SSTA </td><td> SLTA </td></tr><tr><td> -0.029 mm </td><td> -0.023 mm </td><td> -0.011 mm </td><td> -0.024 mm </td><td> 0.010 mm </td><td> 0.011 mm </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 9 and Table 10, the following conditional numbers are available:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fifth optical embodiment inflection point correlation value (using the main reference wavelength 555 nm) </td></tr><tr><td> HIF111 </td><td> 0.28454 </td><td> HIF111/HOI </td><td> 0.27679 </td><td> SGI111 </td><td> 0.04361 </td><td> │SGI111∣/(│SGI111∣+TP1) </td><td> 0.17184 </td></tr><tr><td> HIF211 </td><td> 0.04198 </td><td> HIF211/HOI </td><td> 0.04083 </td><td> SGI211 </td><td> 0.00007 </td><td> │SGI211∣/(│SGI211∣+TP2) </td><td> 0.00040 </td></tr><tr><td> HIF212 </td><td> 0.37903 </td><td> HIF212/HOI </td><td> 0.36871 </td><td> SGI212 </td><td> -0.03682 </td><td> │SGI212∣/(│SGI212∣+TP2) </td><td> 0.17801 </td></tr><tr><td> HIF221 </td><td> 0.25058 </td><td> HIF221/HOI </td><td> 0.24376 </td><td> SGI221 </td><td> 0.00695 </td><td> ∣SGI221│/(∣SGI221│+TP2) </td><td> 0.03927 </td></tr><tr><td> HIF311 </td><td> 0.14881 </td><td> HIF311/HOI </td><td> 0.14476 </td><td> SGI311 </td><td> -0.00854 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.02386 </td></tr><tr><td> HIF312 </td><td> 0.31992 </td><td> HIF312/HOI </td><td> 0.31120 </td><td> SGI312 </td><td> -0.01783 </td><td> │SGI312∣/(│SGI312∣+TP3) </td><td> 0.04855 </td></tr><tr><td> HIF313 </td><td> 0.32956 </td><td> HIF313/HOI </td><td> 0.32058 </td><td> SGI313 </td><td> -0.01801 </td><td> │SGI313∣/(│SGI313∣+TP3) </td><td> 0.04902 </td></tr><tr><td> HIF321 </td><td> 0.36943 </td><td> HIF321/HOI </td><td> 0.35937 </td><td> SGI321 </td><td> -0.14878 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.29862 </td></tr><tr><td> HIF411 </td><td> 0.01147 </td><td> HIF411/HOI </td><td> 0.01116 </td><td> SGI411 </td><td> -0.00000 </td><td> │SGI411∣/(│SGI411∣+TP4) </td><td> 0.00001 </td></tr><tr><td> HIF412 </td><td> 0.22405 </td><td> HIF412/HOI </td><td> 0.21795 </td><td> SGI412 </td><td> 0.01598 </td><td> │SGI412∣/(│SGI412∣+TP4) </td><td> 0.08304 </td></tr><tr><td> HIF421 </td><td> 0.24105 </td><td> HIF421/HOI </td><td> 0.23448 </td><td> SGI421 </td><td> 0.05924 </td><td> ∣SGI421│/(∣SGI421│+TP4) </td><td> 0.25131 </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 9 and Table 10, the number of contour curves can be obtained:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fifth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.368 </td><td> 0.374 </td><td> 0.00578 </td><td> 101.57% </td><td> 0.210 </td><td> 178.10% </td></tr><tr><td> 12 </td><td> 0.366 </td><td> 0.368 </td><td> 0.00240 </td><td> 100.66% </td><td> 0.210 </td><td> 175.11% </td></tr><tr><td> 21 </td><td> 0.372 </td><td> 0.375 </td><td> 0.00267 </td><td> 100.72% </td><td> 0.170 </td><td> 220.31% </td></tr><tr><td> 22 </td><td> 0.372 </td><td> 0.371 </td><td> -0.00060 </td><td> 99.84% </td><td> 0.170 </td><td> 218.39% </td></tr><tr><td> 31 </td><td> 0.372 </td><td> 0.372 </td><td> -0.00023 </td><td> 99.94% </td><td> 0.349 </td><td> 106.35% </td></tr><tr><td> 32 </td><td> 0.372 </td><td> 0.404 </td><td> 0.03219 </td><td> 108.66% </td><td> 0.349 </td><td> 115.63% </td></tr><tr><td> 41 </td><td> 0.372 </td><td> 0.373 </td><td> 0.00112 </td><td> 100.30% </td><td> 0.176 </td><td> 211.35% </td></tr><tr><td> 42 </td><td> 0.372 </td><td> 0.387 </td><td> 0.01533 </td><td> 104.12% </td><td> 0.176 </td><td> 219.40% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 0.368 </td><td> 0.374 </td><td> 0.00578 </td><td> 101.57% </td><td> 0.210 </td><td> 178.10% </td></tr><tr><td> 12 </td><td> 0.366 </td><td> 0.368 </td><td> 0.00240 </td><td> 100.66% </td><td> 0.210 </td><td> 175.11% </td></tr><tr><td> 21 </td><td> 0.387 </td><td> 0.391 </td><td> 0.00383 </td><td> 100.99% </td><td> 0.170 </td><td> 229.73% </td></tr><tr><td> 22 </td><td> 0.458 </td><td> 0.460 </td><td> 0.00202 </td><td> 100.44% </td><td> 0.170 </td><td> 270.73% </td></tr><tr><td> 31 </td><td> 0.476 </td><td> 0.478 </td><td> 0.00161 </td><td> 100.34% </td><td> 0.349 </td><td> 136.76% </td></tr><tr><td> 32 </td><td> 0.494 </td><td> 0.538 </td><td> 0.04435 </td><td> 108.98% </td><td> 0.349 </td><td> 154.02% </td></tr><tr><td> 41 </td><td> 0.585 </td><td> 0.624 </td><td> 0.03890 </td><td> 106.65% </td><td> 0.176 </td><td> 353.34% </td></tr><tr><td> 42 </td><td> 0.798 </td><td> 0.866 </td><td> 0.06775 </td><td> 108.49% </td><td> 0.176 </td><td> 490.68% </td></tr></TBODY></TABLE> </table> </tables> </p> <p>Sixth optical embodiment </p> <p>Please refer to FIG. 33 and FIG. 34, wherein FIG. 33 is a schematic diagram of a lens group of an optical imaging module according to the sixth optical embodiment of the present invention, and FIG. 34 is sequentially from left to right. The spherical aberration, astigmatism and optical distortion curves of the optical imaging module of the optical embodiment. As can be seen from FIG. 33, the optical imaging module sequentially includes the first lens 2411, the aperture 250, the second lens 2421, the third lens 2431, the infrared filter 300, the imaging surface 600, and the image sensing from the object side to the image side. Element 140. </p> <p> The first lens 2411 has a positive refractive power and is made of a plastic material. The object side surface 24112 is a convex surface, and the image side surface 24114 is a concave surface, and both are aspherical surfaces. </p> <p> The second lens 2421 has a negative refractive power and is made of a plastic material. The object side surface 24212 is a concave surface, and the image side surface 24214 is a convex surface, and both are aspherical surfaces, and the image side surface 24214 has an inflection point. </p> <p>The third lens 2431 has a positive refractive power and is made of a plastic material. The object side surface 24312 is a convex surface, the image side surface 24314 is a convex surface, and both are aspherical surfaces, and the object side surface 24312 has two inflection points and an image side surface. 24314 has an inflection point. </p> <p> The infrared filter 300 is made of glass and is disposed between the third lens 2431 and the imaging surface 2431 without affecting the focal length of the optical imaging module. </p> <p>Please refer to the following list 11 and Table 12.
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table XI Sixth Optical Implementation Example Transparency Data </td><td></td></tr><tr><td> f (focal length) = 2.41135 mm ; f/HEP = 2.22 ; HAF (half angle of view) = 36 deg </td><td></td></tr><tr><td> surface </td><td> radius of curvature </td><td> Thickness (mm) </td><td> material </td><td> refractive index </td><td> dispersion coefficient </td><td> focal length </td><td></td></tr><tr><td> 0 </td><td> Subject </td><td> 1E+18 </td><td> 600 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 1 </td><td> first lens </td><td> 0.840352226 </td><td> 0.468 </td><td> plastic </td><td> 1.535 </td><td> 56.27 </td><td> 2.232 </td><td></td></tr><tr><td> 2 </td><td></td><td> 2.271975602 </td><td> 0.148 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 3 </td><td> aperture </td><td> 1E+18 </td><td> 0.277 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 4 </td><td> second lens </td><td> -1.157324239 </td><td> 0.349 </td><td> plastic </td><td> 1.642 </td><td> 22.46 </td><td> -5.221 </td><td></td></tr><tr><td> 5 </td><td></td><td> -1.968404008 </td><td> 0.221 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 6 </td><td> third lens </td><td> 1.151874235 </td><td> 0.559 </td><td> plastic </td><td> 1.544 </td><td> 56.09 </td><td> 7.360 </td><td></td></tr><tr><td> 7 </td><td></td><td> 1.338105159 </td><td> 0.123 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 8 </td><td> Infrared filter </td><td> 1E+18 </td><td> 0.210 </td><td> BK7 </td><td> 1.517 </td><td> 64.13 </td><td></td><td></td></tr><tr><td> 9 </td><td></td><td> 1E+18 </td><td> 0.547 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 10 </td><td> imaging surface </td><td> 1E+18 </td><td> 0.000 </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Reference wavelength is 555 nm; Light blocking position: The first surface has a light-passing radius of 0.640 mm </td><td></td><td> 0.025423 </td></tr></TBODY></TABLE> </table> </tables> </p> <p> Table 12, aspherical coefficients of the sixth optical embodiment
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 12 Aspherical coefficients </td></tr><tr><td> surface </td><td> 1 </td><td> 2 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td></tr><tr><td> k = </td><td> -2.019203E-01 </td><td> 1.528275E+01 </td><td> 3.743939E+00 </td><td> -1.207814E+01 </td><td> -1.276860E+01 </td><td> -3.034004E+00 </td></tr><tr><td> A4 = </td><td> 3.944883E-02 </td><td> -1.670490E-01 </td><td> -4.266331E-01 </td><td> -1.696843E+00 </td><td> -7.396546E-01 </td><td> -5.308488E-01 </td></tr><tr><td> A6= </td><td> 4.774062E-01 </td><td> 3.857435E+00 </td><td> -1.423859E+00 </td><td> 5.164775E+00 </td><td> 4.449101E-01 </td><td> 4.374142E-01 </td></tr><tr><td> A8 = </td><td> -1.528780E+00 </td><td> -7.091408E+01 </td><td> 4.119587E+01 </td><td> -1.445541E+01 </td><td> 2.622372E-01 </td><td> -3.111192E-01 </td></tr><tr><td> A10= </td><td> 5.133947E+00 </td><td> 6.365801E+02 </td><td> -3.456462E+02 </td><td> 2.876958E+01 </td><td> -2.510946E-01 </td><td> 1.354257E-01 </td></tr><tr><td> A12 = </td><td> -6.250496E+00 </td><td> -3.141002E+03 </td><td> 1.495452E+03 </td><td> -2.662400E+01 </td><td> -1.048030E-01 </td><td> -2.652902E-02 </td></tr><tr><td> A14= </td><td> 1.068803E+00 </td><td> 7.962834E+03 </td><td> -2.747802E+03 </td><td> 1.661634E+01 </td><td> 1.462137E-01 </td><td> -1.203306E-03 </td></tr><tr><td> A16 = </td><td> 7.995491E+00 </td><td> -8.268637E+03 </td><td> 1.443133E+03 </td><td> -1.327827E+01 </td><td> -3.676651E-02 </td><td> 7.805611E-04 </td></tr></TBODY></TABLE> </table> </tables> </p> <p> In the sixth optical embodiment, the aspherical curve equation represents a form as in the first optical embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first optical embodiment, and are not described herein. </p> <p>According to Table 11 and Table 12, the following conditional numbers are available:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Sixth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ∣f/f1│ </td><td> ∣f/f2│ </td><td> ∣f/f3│ </td><td> ∣f1/f2│ </td><td> ∣f2/f3│ </td><td> TP1 / TP2 </td></tr><tr><td> 1.08042 </td><td> 0.46186 </td><td> 0.32763 </td><td> 2.33928 </td><td> 1.40968 </td><td> 1.33921 </td></tr><tr><td> ΣPPR </td><td> ΣNPR </td><td> ΣPPR /│ΣNPR∣ </td><td> IN12 / f </td><td> IN23 / f </td><td> TP2 / TP3 </td></tr><tr><td> 1.40805 </td><td> 0.46186 </td><td> 3.04866 </td><td> 0.17636 </td><td> 0.09155 </td><td> 0.62498 </td></tr><tr><td> TP2 / (IN12+TP2+IN23) </td><td> (TP1+IN12)/ TP2 </td><td> (TP3+IN23)/ TP2 </td></tr><tr><td> 0.35102 </td><td> 2.23183 </td><td> 2.23183 </td></tr><tr><td> HOS </td><td> InTL </td><td> HOS / HOI </td><td> InS/ HOS </td><td> │ODT│% </td><td> │TDT│% </td></tr><tr><td> 2.90175 </td><td> 2.02243 </td><td> 1.61928 </td><td> 0.78770 </td><td> 1.50000 </td><td> 0.71008 </td></tr><tr><td> HVT21 </td><td> HVT22 </td><td> HVT31 </td><td> HVT32 </td><td> HVT32/ HOI </td><td> HVT32/ HOS </td></tr><tr><td> 0.00000 </td><td> 0.00000 </td><td> 0.46887 </td><td> 0.67544 </td><td> 0.37692 </td><td> 0.23277 </td></tr><tr><td> PhiA </td><td> PhiC </td><td> PhiD </td><td> TH1 </td><td> TH2 </td><td> HOI </td></tr><tr><td> 2.716 mm </td><td> 3.116 mm </td><td> 3.616 mm </td><td> 0.25 mm </td><td> 0.2 mm </td><td> 1.792 mm </td></tr><tr><td> PhiA / PhiD </td><td> TH1+TH2 </td><td> (TH1+TH2) / HOI </td><td> (TH1+TH2) /HOS </td><td> 2(TH1+TH2) / PhiA </td><td></td></tr><tr><td> 0.7511 </td><td> 0.45 mm </td><td> 0.2511 </td><td> 0.1551 </td><td> 0.3314 </td><td></td></tr><tr><td> PLTA </td><td> PSTA </td><td> NLTA </td><td> NSTA </td><td> SLTA </td><td> SSTA </td></tr><tr><td> -0.002 mm </td><td> 0.008 mm </td><td> 0.006 mm </td><td> -0.008 mm </td><td> -0.007 mm </td><td> 0.006 mm </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 11 and Table 12, the following conditional numbers are available:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Sixth optical embodiment inflection point correlation value (using the main reference wavelength 555 nm) </td></tr><tr><td> HIF221 </td><td> 0.5599 </td><td> HIF221/HOI </td><td> 0.3125 </td><td> SGI221 </td><td> -0.1487 </td><td> ∣SGI221│/(∣SGI221│+TP2) </td><td> 0.2412 </td></tr><tr><td> HIF311 </td><td> 0.2405 </td><td> HIF311/HOI </td><td> 0.1342 </td><td> SGI311 </td><td> 0.0201 </td><td> │SGI311∣/(│SGI311∣+TP3) </td><td> 0.0413 </td></tr><tr><td> HIF312 </td><td> 0.8255 </td><td> HIF312/HOI </td><td> 0.4607 </td><td> SGI312 </td><td> -0.0234 </td><td> │SGI312∣/(│SGI312∣+TP3) </td><td> 0.0476 </td></tr><tr><td> HIF321 </td><td> 0.3505 </td><td> HIF321/HOI </td><td> 0.1956 </td><td> SGI321 </td><td> 0.0371 </td><td> ∣SGI321│/(∣SGI321│+TP3) </td><td> 0.0735 </td></tr></TBODY></TABLE> </table> </tables> </p> <p>According to Table 11 and Table 12, the number of contour curves can be obtained:
<tables> <table> <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Sixth optical embodiment (using the main reference wavelength 555 nm) </td></tr><tr><td> ARE </td><td> 1/2(HEP) </td><td> ARE value </td><td> ARE-1/2(HEP) </td><td> 2(ARE/HEP) % </td><td> TP </td><td> ARE /TP (%) </td></tr><tr><td> 11 </td><td> 0.546 </td><td> 0.598 </td><td> 0.052 </td><td> 109.49% </td><td> 0.468 </td><td> 127.80% </td></tr><tr><td> 12 </td><td> 0.500 </td><td> 0.506 </td><td> 0.005 </td><td> 101.06% </td><td> 0.468 </td><td> 108.03% </td></tr><tr><td> 21 </td><td> 0.492 </td><td> 0.528 </td><td> 0.036 </td><td> 107.37% </td><td> 0.349 </td><td> 151.10% </td></tr><tr><td> 22 </td><td> 0.546 </td><td> 0.572 </td><td> 0.026 </td><td> 104.78% </td><td> 0.349 </td><td> 163.78% </td></tr><tr><td> 31 </td><td> 0.546 </td><td> 0.548 </td><td> 0.002 </td><td> 100.36% </td><td> 0.559 </td><td> 98.04% </td></tr><tr><td> 32 </td><td> 0.546 </td><td> 0.550 </td><td> 0.004 </td><td> 100.80% </td><td> 0.559 </td><td> 98.47% </td></tr><tr><td> ARS </td><td> EHD </td><td> ARS value </td><td> ARS-EHD </td><td> (ARS/EHD)% </td><td> TP </td><td> ARS / TP (%) </td></tr><tr><td> 11 </td><td> 0.640 </td><td> 0.739 </td><td> 0.099 </td><td> 115.54% </td><td> 0.468 </td><td> 158.03% </td></tr><tr><td> 12 </td><td> 0.500 </td><td> 0.506 </td><td> 0.005 </td><td> 101.06% </td><td> 0.468 </td><td> 108.03% </td></tr><tr><td> 21 </td><td> 0.492 </td><td> 0.528 </td><td> 0.036 </td><td> 107.37% </td><td> 0.349 </td><td> 151.10% </td></tr><tr><td> 22 </td><td> 0.706 </td><td> 0.750 </td><td> 0.044 </td><td> 106.28% </td><td> 0.349 </td><td> 214.72% </td></tr><tr><td> 31 </td><td> 1.118 </td><td> 1.135 </td><td> 0.017 </td><td> 101.49% </td><td> 0.559 </td><td> 203.04% </td></tr><tr><td> 32 </td><td> 1.358 </td><td> 1.489 </td><td> 0.131 </td><td> 109.69% </td><td> 0.559 </td><td> 266.34% </td></tr></TBODY></TABLE> </table> </tables> </p> <p> In addition, the present invention further provides an optical imaging system including the optical imaging module 10 of the above embodiments, and can be applied to an electronic portable device, an electronic wearable device, an electronic monitoring device, an electronic information device, One of a group of electronic communication devices, machine vision devices, vehicle electronics, and the like. </p> <p> Further, the optical imaging module of the present invention can be a group of an electronic portable device, an electronic wearable device, an electronic monitoring device, an electronic information device, an electronic communication device, a machine vision device, and a vehicle electronic device. One, and depending on the requirements, the lens space of different numbers can be used to reduce the required mechanism space and improve the visible area of the screen. </p> <p> In addition, the present invention further provides a method of manufacturing an optical imaging module, as shown in Fig. 43, which may include the following method steps: </p> <p>S101: The circuit component 100 is provided, and the circuit component 100 can include a circuit substrate 120, a plurality of image sensing components 140, and a plurality of signal conducting components 160. </p> <p> S102: The plurality of signal conducting elements 160 are electrically connected between the plurality of circuit contacts 122 on the circuit substrate 120 and the plurality of image contacts 146 on the second surface 144 of each of the image sensing elements 140. </p> <p>S103: integrally forming the multi-lens frame 180, and covering the circuit substrate 120 and the image sensing element 140, and embedding part of the signal conducting component 160 in the multi-lens frame 180, and conducting the signal of the other part The component 160 is surrounded by the multi-lens frame 180 and forms a plurality of optical channels 182 at positions corresponding to the sensing faces 1441 on the second surface 144 of each of the image sensing elements 140. </p> <p>S104: The lens assembly 200 is disposed, and the lens assembly 200 can include a lens base 220, at least a fixed focus lens group 230, at least one focus lens group 240, and a plurality of drive assemblies 260. </p> <p>S105: The lens base 220 is made of an opaque material, and a receiving hole 2201 is formed in the lens base 220, so that the receiving hole 2201 penetrates the two ends of the lens base 220 to make the lens base 220 hollow. . </p> <p>S106: The lens base 220 is disposed on the multi-lens frame 180 to connect the accommodation hole 2201 with the optical passage 182. </p> <p>S107: S107: At least two lenses 2241 having refractive power are disposed in the fixed focus lens group 230 and the focus lens group 240, and the fixed focus lens group 230 and the focus lens group 240 satisfy the following conditions: 1.0 ≦ f / HEP ≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99; and 0≦2(ARE/HEP)≦2.0. </p> <p> In the above conditions, f is the focal length of the fixed focus lens group 230 and the focus lens group 240; HEP is the incident pupil diameter of the fixed focus lens group 230 and the focus lens group 240; HAF is the fixed focus lens group 230 and the focus lens Half of the maximum viewing angle of the group 240; PhiD is the maximum value of the minimum side length on the outer circumference of the lens base 220 and perpendicular to the optical axes of the fixed focus lens group 230 and the focus lens group 240; PhiA is a fixed focus lens The set 230 and the focus lens group 240 are closest to the largest effective diameter of the surface of the lens 2401 of the imaging surface; the ARE is the intersection of the surface of the lens 2401 of any one of the fixed lens group 230 and the focus lens group 240 with the optical axis. The starting point is the length of the contour curve obtained by extending the contour of the surface of the lens 2401 with a position at a vertical height from the optical axis 1/2 incident 瞳 diameter. </p> <p>S108: The fixed focus lens group 230 and the focus lens group 240 are disposed on the lens base 220 and located in the receiving hole 2201. </p> <p>S109: Adjusting the imaging planes of the focal lens group 230 and the focus lens group 240 of the lens assembly 200 such that the imaging planes of the focal lens group 230 and the focus lens group 240 of the lens assembly 200 are located in each of the image sensing elements 140 The sensing surface 1441 overlaps the optical axes of the focal lens group 230 and the focus lens group 240 with the center normal of the sensing surface 1441. </p> <p>S110: Each driving component 260 is electrically connected to the circuit substrate 120 and coupled to each focusing lens group 240 to drive each focusing lens group 240 to move in the center normal direction of the sensing surface 1441. </p> <p> Further, with the method of S101 to S110, the flatness of the multi-lens frame 180 can be integrally formed, and the flatness can be ensured by the AA (Active Alignment) process, in any of S101 to S110. Adjusting the relative positions between the adjustment circuit board 120, the image sensing element 140, the lens base 220, the fixed focus lens group 230, the focus lens group 240, the driving assembly 260, and the components included in the optical imaging module 10, The light can pass through the fixed focus lens group 230 and the focus lens group 240 in the receiving hole 2201 and pass through the light channel 182 to be projected onto the sensing surface 1441, and the imaging surfaces of the fixed focus lens group 230 and the focus lens group 240 can be located. The sensing surface 1441, and the optical axes of the fixed focus lens group 230 and the focus lens group 240 overlap with the center normal of the sensing surface 1441 to ensure image quality. </p> <p> In addition, a method of embedding a part of the signal conducting element 160 in the multi-lens frame 180 in S103, so that the plurality of signal conducting elements 160 can be fixed when forming the multi-lens frame 180, The error caused by assembly can be prevented, and the deformation of the component during the packaging process can be avoided, causing problems such as short circuit, and the overall size of the optical module can be reduced. </p> <p> Referring now to Figures 2 through 8, and Figures 44 through 46, the present disclosure further provides an optical imaging module 10 that can include a circuit assembly 100, a lens assembly 200, and a multi-lens outer frame 190. The circuit component 100 can include a circuit substrate 120, a plurality of image sensing components 140, and a plurality of signal conducting components 160. The lens component 200 can include a plurality of lens pedestals 220, at least a certain focal lens group 230, and at least one focusing lens group 240. And at least one drive assembly 260. </p> <p> The circuit substrate 120 can include a plurality of circuit contacts 122, and each of the image sensing elements 140 can include a first surface 142 and a second surface 144, and the outer periphery of the image sensor 140 and perpendicular to the plane of the optical axis The maximum value of the minimum side length is LS. The first surface 142 can be coupled to the circuit substrate 120 and the second surface 144 can have a sensing surface 1441 thereon. The plurality of signal conducting components 160 are electrically connected between the plurality of circuit contacts 122 on the circuit substrate 120 and the plurality of image contacts 146 of the image sensing components 140. </p> <p> The plurality of lens pedestals 220 may be made of a light-tight material, and have a receiving hole 2201 penetrating through the two ends of the lens base 220 to make the lens base 220 hollow, and the lens base 220 may be disposed on the circuit substrate 120. In one embodiment, the multi-lens frame 180 may be first disposed on the circuit substrate 120, and then the lens base 220 may be disposed on the multi-lens frame 180 and the circuit substrate 120. </p> Each of the fixed focus lens group 230 and each of the focus lens groups 240 may have at least two lenses 2401 having refractive power, and are disposed on the lens base 220 and located in the receiving holes 2201, and each of the fixed focus lens groups 230 and The imaging surface of each of the focus lens groups 240 can be located on the sensing surface 1441, and the optical axes of the fixed focus lens groups 230 and the respective focus lens groups 240 overlap with the center normal of the sensing surface 1441, so that the light can pass through the receiving hole 2201. Each of the fixed focus lens groups 230 and each of the focus lens groups 240 is projected onto the sensing surface 1441 to ensure image quality. In addition, the maximum diameter of the image side of each lens of the fixed focus lens group 230 and each of the focus lens groups 240 closest to the imaging surface is represented by PhiB, and the closest imaging plane of each of the fixed focus lens group 230 and each of the focus lens groups 240 (ie, The maximum effective diameter (also referred to as optical exit pupil) of the lens image side of the image space can be represented by PhiA. </p> <p> Each of the driving components 260 can be electrically connected to the circuit substrate 120 and drive each focusing lens group 240 to move in the center normal direction of the sensing surface 1441. In an embodiment, the driving component 260 can include a voice coil motor. To drive each of the focus lens groups 240 to move in the center normal direction of the sensing surface 1441. </p> In addition, each lens base 220 can be respectively fixed in the multi-lens outer frame 190 to form an integral optical imaging module 10, and the structure of the whole optical imaging module 10 can be more stable and can be The circuit assembly 100 and the lens assembly 200 are protected from impact, dust contamination, and the like. </p> <p> and each of the above-described fixed focus lens group 230 and each focus lens group 240 satisfies the following conditions: 1.0≦f/HEP≦10.0; 0deg<HAF≦150deg; 0mm<PhiD≦18mm; 0<PhiA/PhiD≦0.99 ; and 0≦2(ARE/HEP)≦2.0 </p> <p> Further, f is the focal length of the fixed focus lens group 230 and the focus lens group 240; HEP is the incident pupil diameter of the fixed focus lens group 230 and the focus lens group 240; HAF is the fixed focus lens group 230 and the focus lens group 240 One half of the maximum viewing angle; PhiD is the maximum value of the minimum side length on the outer periphery of the lens base and perpendicular to the optical axes of the fixed focus lens group 230 and the focus lens group 240; PhiA is the fixed focus lens group 230 and The focal lens group 240 is closest to the largest effective diameter of the lens surface of the imaging surface; the ARE is based on the intersection of any lens surface of any one of the fixed focus lens group 230 and the focus lens group 240 and the optical axis, and is a distance light The position at the vertical height of the axis 1/2 incident 瞳 diameter is the end point, and the length of the contour curve obtained by extending the contour of the lens surface. </p> <p> Moreover, in the above embodiments and the manufacturing method, each of the single lens groups included in the optical imaging module provided by the present invention is independently packaged, for example, the focus lens group and the fixed focus lens group are Independently packaged to achieve their respective functions and with good image quality. </p> <p>The above is merely illustrative and not limiting. Any equivalent modifications or alterations to the spirit and scope of this creation shall be included in the scope of the appended patent application. </p> </mode-for-invention> <description-of-drawings> <description-of-element> <p>10, 712, 722, 732, 742, 752, 762‧‧‧ optical imaging modules </p> <p>
100‧‧‧ circuit components </p> <p>
120‧‧‧ circuit board </p> <p>
122‧‧‧Circuit contacts </p> <p>
140‧‧‧Image sensing components </p> <p>
142‧‧‧ first surface </p> <p>
144‧‧‧ second surface </p> <p>
1441‧‧‧Sense surface </p> <p>
146‧‧‧Image contacts </p> <p>
160‧‧‧Signal Conducting Element </p> <p>
180‧‧‧Multi-lens frame </p> <p>
181‧‧‧Lens mount </p> <p>
182‧‧‧Light channel </p> <p>
184‧‧‧ outer surface </p> <p>
186‧‧‧ first inner surface </p> <p>
188‧‧‧Second inner surface </p> <p>
190‧‧‧Multi-lens outer frame </p> <p>
200‧‧‧ lens assembly </p> <p>
220‧‧‧ lens base </p> <p>
2201‧‧‧ accommodating holes </p> <p>
222‧‧‧Mirror tube </p> <p>
2221‧‧‧Upper through hole </p> <p>
224‧‧‧ lens holder </p> <p>
2241‧‧‧Under hole </p> <p>
226‧‧‧Filter holder </p> <p>
2261‧‧‧Filter through hole </p> <p>
230‧‧‧Center lens group </p> <p>
240‧‧‧focus lens group </p> <p>
2401‧‧‧ lens </p> <p>
2411‧‧‧first lens </p> <p>
2421‧‧‧second lens </p> <p>
2431‧‧‧ third lens </p> <p>
2441‧‧‧4th lens </p> <p>
2451‧‧‧ fifth lens </p> <p>
2461‧‧‧6th lens </p> <p>
2471‧‧‧ seventh lens </p> <p>
Sides of 24112, 24212, 24312, 24112, 24412, 24512, 24612‧‧ </p> <p>
24114, 24214, 24314, 24414, 24514, 24614, 24714‧‧‧ </p> <p>
260‧‧‧ drive components </p> <p>
300‧‧‧Infrared filter </p> <p>
400‧‧‧data transmission line </p> <p>
501‧‧‧ mouthpiece </p> <p>
502‧‧‧Move movable side </p> <p>
503‧‧‧Mold fixed side </p> <p>
S101~S110‧‧‧ method </p> <p>
71‧‧‧Mobile communication devices </p> <p>
72‧‧‧Mobile information device </p> <p>
73‧‧‧Smart Watch </p> <p>
74‧‧‧Smart headset </p> <p>
75‧‧‧Safety monitoring device </p> <p>
76‧‧‧Car image device </p> <p>
77‧‧‧Unmanned aircraft installation </p> <p>
78‧‧‧ extreme motion imaging device </p> </description-of-element> <p> Figure 1 is a schematic diagram of the configuration according to an embodiment of the present creation. </p> <p> Figure 2 is a schematic diagram of a multi-lens frame according to an embodiment of the present invention. </p> <p> Fig. 3 is a schematic diagram showing lens parameters according to an embodiment of the present creation. </p> <p> Figure 4 is a schematic view of a first embodiment of an embodiment of the present invention. </p> <p> Figure 5 is a schematic view of a second embodiment of an embodiment of the present invention. </p> <p> Figure 6 is a schematic view of a third embodiment of an embodiment of the present invention. </p> <p> Figure 7 is a schematic view of a fourth embodiment of an embodiment of the present invention. </p> <p> Figure 8 is a schematic view of a fifth embodiment of an embodiment of the present invention. </p> <p> Figure 9 is a schematic view of a sixth embodiment of an embodiment of the present invention. </p> <p> Figure 10 is a schematic view of a seventh embodiment of an embodiment of the present invention. </p> <p> Figure 11 is a schematic view of an eighth embodiment of an embodiment of the present invention. </p> <p> Figure 12 is a schematic view of a ninth implementation of an embodiment of the present invention. </p> <p> Figure 13 is a schematic view of a tenth embodiment of an embodiment of the present invention. </p> <p> Figure 14 is a schematic view of an eleventh implementation of an embodiment of the present invention. </p> <p> Figure 15 is a schematic view of a twelfth implementation of an embodiment of the present invention. </p> <p> Figure 16 is a schematic diagram of a thirteenth embodiment of an embodiment of the present invention. </p> <p> Figure 17 is a schematic view of the fourteenth embodiment of the present embodiment. </p> <p> Figure 18 is a schematic view of a fifteenth implementation of an embodiment of the present invention. </p> <p> Figure 19 is a schematic diagram of a sixteenth embodiment of an embodiment of the present invention. </p> <p> Figure 20 is a schematic diagram of a seventeenth embodiment of an embodiment of the present invention. </p> <p> Figure 21 is a schematic diagram of an eighteenth embodiment of an embodiment of the present invention. </p> <p> Figure 22 is a schematic view of the nineteenth embodiment of the embodiment of the present invention. </p> <p> Figure 23 is a schematic diagram of a first optical embodiment in accordance with an embodiment of the present invention. </p> <p> Figure 24 is a graph showing spherical aberration, astigmatism, and optical distortion of the first optical embodiment of the present invention in order from left to right according to an embodiment of the present invention. </p> <p> Figure 25 is a schematic illustration of a second optical embodiment of an embodiment of the present invention. </p> <p> Figure 26 is a graph showing spherical aberration, astigmatism, and optical distortion of the second optical embodiment of the present invention in order from left to right according to an embodiment of the present invention. </p> <p> Figure 27 is a schematic illustration of a third optical embodiment of an embodiment of the present invention. </p> <p> Figure 28 is a graph showing spherical aberration, astigmatism, and optical distortion of the third optical embodiment of the present invention, from left to right, in accordance with an embodiment of the present invention. </p> <p> Figure 29 is a schematic illustration of a fourth optical embodiment of an embodiment of the present invention. </p> <p> Figure 30 is a graph showing spherical aberration, astigmatism, and optical distortion of the fourth optical embodiment of the present invention in order from left to right according to an embodiment of the present invention. </p> <p> Figure 31 is a schematic illustration of a fifth optical embodiment of an embodiment of the present invention. </p> <p> Figure 32 is a graph showing spherical aberration, astigmatism, and optical distortion of the fifth optical embodiment of the present invention in order from left to right according to an embodiment of the present invention. </p> <p> Figure 33 is a schematic view of a sixth optical embodiment according to an embodiment of the present invention. </p> <p> Figure 34 is a graph showing spherical aberration, astigmatism, and optical distortion of the sixth optical embodiment of the present invention in order from left to right according to an embodiment of the present invention. </p> <p> Figure 35 is a schematic diagram of an optical imaging module used in a mobile communication device according to an embodiment of the present invention. </p> <p> Figure 36 is a schematic diagram of an optical imaging module used in accordance with an embodiment of the present invention for use in a mobile information device. </p> <p> Figure 37 is a schematic view of an optical imaging module used in accordance with an embodiment of the present invention for use in a smart watch. </p> <p> Figure 38 is a schematic illustration of an optical imaging module used in accordance with an embodiment of the present invention for use in a smart headset. </p> <p> Figure 39 is a schematic diagram of an optical imaging module used in accordance with an embodiment of the present invention for use in a security monitoring device. </p> <p> Figure 40 is a schematic view of an optical imaging module used in a vehicle image device according to an embodiment of the present invention. </p> <p> Figure 41 is a schematic illustration of an optical imaging module for use in a drone aircraft apparatus in accordance with an embodiment of the present invention. </p> <p> Figure 42 is a schematic illustration of an optical imaging module used in an extreme motion imaging device in accordance with an embodiment of the present invention. </p> <p> Figure 43 is a schematic flow diagram of an embodiment according to the present creation. </p> <p> Figure 44 is a schematic diagram of a twentieth implementation of an embodiment of the present invention. </p> <p> Figure 45 is a schematic illustration of a twenty-first implementation of an embodiment of the present invention. </p> <p> Figure 46 is a schematic illustration of a twenty-second implementation of an embodiment of the present invention. </p> </description-of-drawings>