TWI829147B - Low thermal conductivity and low-k dielectric aerogel composites and preparation method therefor - Google Patents
Low thermal conductivity and low-k dielectric aerogel composites and preparation method therefor Download PDFInfo
- Publication number
- TWI829147B TWI829147B TW111115411A TW111115411A TWI829147B TW I829147 B TWI829147 B TW I829147B TW 111115411 A TW111115411 A TW 111115411A TW 111115411 A TW111115411 A TW 111115411A TW I829147 B TWI829147 B TW I829147B
- Authority
- TW
- Taiwan
- Prior art keywords
- airgel
- polymer
- fiber
- aerogel
- solution
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 208
- 239000004964 aerogel Substances 0.000 title claims abstract description 147
- 238000002360 preparation method Methods 0.000 title claims abstract description 56
- 239000000835 fiber Substances 0.000 claims abstract description 161
- 229920000642 polymer Polymers 0.000 claims abstract description 158
- 239000002904 solvent Substances 0.000 claims abstract description 102
- 238000001035 drying Methods 0.000 claims abstract description 77
- 239000000463 material Substances 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 46
- 238000004132 cross linking Methods 0.000 claims abstract description 45
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 31
- 239000006185 dispersion Substances 0.000 claims abstract description 28
- 238000009833 condensation Methods 0.000 claims abstract description 26
- 230000005494 condensation Effects 0.000 claims abstract description 26
- 230000007062 hydrolysis Effects 0.000 claims abstract description 21
- 238000000465 moulding Methods 0.000 claims abstract description 21
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 143
- 238000012546 transfer Methods 0.000 claims description 72
- -1 siloxane compound Chemical class 0.000 claims description 71
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 69
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 57
- 239000000919 ceramic Substances 0.000 claims description 51
- 239000004642 Polyimide Substances 0.000 claims description 49
- 229920001721 polyimide Polymers 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 230000002209 hydrophobic effect Effects 0.000 claims description 41
- 239000000499 gel Substances 0.000 claims description 33
- 239000007864 aqueous solution Substances 0.000 claims description 32
- 238000001723 curing Methods 0.000 claims description 32
- 229920001187 thermosetting polymer Polymers 0.000 claims description 32
- 239000003292 glue Substances 0.000 claims description 30
- 239000004634 thermosetting polymer Substances 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 27
- 239000003377 acid catalyst Substances 0.000 claims description 22
- 239000011259 mixed solution Substances 0.000 claims description 21
- 239000002861 polymer material Substances 0.000 claims description 21
- 229920001169 thermoplastic Polymers 0.000 claims description 19
- 238000009834 vaporization Methods 0.000 claims description 18
- 230000008016 vaporization Effects 0.000 claims description 18
- 239000003513 alkali Substances 0.000 claims description 17
- 239000003054 catalyst Substances 0.000 claims description 15
- 239000002657 fibrous material Substances 0.000 claims description 14
- 239000004952 Polyamide Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 229920002647 polyamide Polymers 0.000 claims description 13
- 239000012046 mixed solvent Substances 0.000 claims description 12
- 239000004743 Polypropylene Substances 0.000 claims description 11
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 11
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 11
- 229920001155 polypropylene Polymers 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 10
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 9
- 229920000728 polyester Polymers 0.000 claims description 9
- 229920000573 polyethylene Polymers 0.000 claims description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000003995 emulsifying agent Substances 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 7
- 229920001643 poly(ether ketone) Polymers 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 239000004593 Epoxy Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229920001955 polyphenylene ether Polymers 0.000 claims description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 5
- 239000011240 wet gel Substances 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 claims description 4
- 239000011490 mineral wool Substances 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- 239000012154 double-distilled water Substances 0.000 claims description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 239000004697 Polyetherimide Substances 0.000 claims 1
- 230000009172 bursting Effects 0.000 claims 1
- 229920001568 phenolic resin Polymers 0.000 claims 1
- 229920001601 polyetherimide Polymers 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 12
- 239000000654 additive Substances 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract description 2
- 238000007654 immersion Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 49
- 238000006482 condensation reaction Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 31
- 239000010408 film Substances 0.000 description 20
- 239000003960 organic solvent Substances 0.000 description 20
- 239000011148 porous material Substances 0.000 description 18
- 230000035484 reaction time Effects 0.000 description 17
- 239000010410 layer Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000005470 impregnation Methods 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 150000001335 aliphatic alkanes Chemical class 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000000352 supercritical drying Methods 0.000 description 8
- 150000001298 alcohols Chemical class 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 229920000106 Liquid crystal polymer Polymers 0.000 description 6
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229920002530 polyetherether ketone Polymers 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical group CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000002210 supercritical carbon dioxide drying Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920006380 polyphenylene oxide Polymers 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000012784 inorganic fiber Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001867 inorganic solvent Inorganic materials 0.000 description 2
- 239000003049 inorganic solvent Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 108010025899 gelatin film Proteins 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
本發明關於一種氣凝膠複合材料,尤其關於一種兼具低熱傳導係數、低介電常數與低介電損耗之氣凝膠/纖維/高分子複合材,及其製備方法。The present invention relates to an airgel composite material, and in particular to an airgel/fiber/polymer composite material having low thermal conductivity coefficient, low dielectric constant and low dielectric loss, and a preparation method thereof.
已知應用材料的介電性質隨著材料內部孔隙率的增加而明顯逐漸下降,因此氣凝膠材料與其相關複合材料將會成為5G快速傳輸及鋰電池模組安全防護所需的低介電應用產品。眾所皆知地,氣凝膠是一種具立體網狀結構的多孔隙材料,孔隙率高於80%(甚至可高於95%),並具有低密度(約0.005至0.2g/cm 3)、高比表面積(500至2000m 2/g)、低熱導率(k=15至40mW/mk)及低介電性質(D K=1.3至2.5)、低介電損耗(D F<0.003以下)等特性,使得氣凝膠或其複合材料成為低介電科技快速傳輸以及電動自駕車訊號傳輸以及鋰電池模組安全防護所需的材料。 It is known that the dielectric properties of applied materials gradually decrease as the internal porosity of the material increases. Therefore, airgel materials and related composite materials will become low dielectric applications required for 5G fast transmission and lithium battery module safety protection. product. As we all know, aerogel is a porous material with a three-dimensional network structure, a porosity higher than 80% (or even higher than 95%), and a low density (about 0.005 to 0.2g/cm 3 ) , high specific surface area (500 to 2000m 2 /g), low thermal conductivity (k=15 to 40mW/mk) and low dielectric properties (D K =1.3 to 2.5), low dielectric loss (D F <0.003 or less) These characteristics make aerogel or its composite materials a material required for fast transmission of low-dielectric technology, signal transmission of electric self-driving cars, and safety protection of lithium battery modules.
由於氣凝膠或其複合材料因具有大量孔隙率與極低密度,因此在高隔熱、高防火、低訊號傳輸阻力、及高耐電衝擊等低介電性質應用方面具有相當高的價值性。在逐步邁向於5G時代及電動車或電動自駕車的過程中,高頻率傳輸的應用方面亟需具低介電常數(D K<2.5)、低訊號損耗(D F<0.003) 及高耐電衝擊等介電材料。在基礎材料理論中,材料內部多孔性會明顯降低電子、電動的傳輸性質,因此不論無機材料或有機材料結構中孔隙率越高,其介電性質就會越低。緣此,5G的高頻應用及電動自駕車需要以多孔性材料作為主要基材。 Since airgel or its composite materials have a large amount of porosity and extremely low density, they are of considerable value in applications with low dielectric properties such as high thermal insulation, high fire resistance, low signal transmission resistance, and high resistance to electrical shock. In the process of gradually moving towards the 5G era and electric vehicles or electric self-driving cars, the application of high-frequency transmission urgently requires low dielectric constant (D K <2.5), low signal loss (D F <0.003) and high electric resistance Impact and other dielectric materials. In basic material theory, the internal porosity of the material will significantly reduce the electronic and electric transmission properties. Therefore, the higher the porosity in the structure of inorganic materials or organic materials, the lower their dielectric properties will be. For this reason, 5G high-frequency applications and electric self-driving cars require porous materials as the main substrate.
按,日本特許專利公開號第8-228105號,其揭露一種製造半導體裝置的方法。於此方法中,將濕膠薄膜形成於基板上,且含浸濕膠薄膜的溶劑由超臨界及次臨界乾燥程序蒸發以形成氣凝膠薄膜。所製備的乾燥氣凝膠薄膜仍維持濕膠薄膜的網狀結構,且為具高孔性及低電介常數的多孔材。據此,氣凝膠可作為電介層與絕緣內層的新材料。然而,利用超臨界或次臨界的乾燥程序於電晶體結構製程中會導致程序複雜化與設備投入昂貴等缺點。According to Japanese Patent Publication No. 8-228105, a method of manufacturing a semiconductor device is disclosed. In this method, a wet glue film is formed on a substrate, and the solvent containing the wet glue film is evaporated through supercritical and subcritical drying procedures to form an airgel film. The prepared dry airgel film still maintains the network structure of the wet airgel film and is a porous material with high porosity and low dielectric constant. Accordingly, aerogel can be used as a new material for dielectric layers and insulating inner layers. However, using supercritical or subcritical drying processes in the transistor structure manufacturing process will lead to disadvantages such as complicated procedures and expensive equipment investment.
「超臨界乾燥」意指水與有機溶劑於高溫及高壓下呈超臨界狀態,使有機溶劑與水同時具備氣-液混合性質,於超臨界狀態下使溶劑直接汽化而乾燥。因此,可以在超臨界條件下移除網狀結構中的剩餘溶劑而不致使濕膠收縮。然而,於電晶體結構製備中,低介電薄膜從溶液備製至塗佈的時間不一,再加上氣凝膠溶液縮合過程中,矽膠分子間會立刻發生聚集凝結,將造成氣凝膠溶液的黏滯性隨時間增加而增加。當以固定速率實施旋轉塗佈時,基底上的覆膜厚度亦會增加。同理下,電晶體薄膜結構塗佈的厚度隨製程時間增加下會有不同厚度,因而無法製備出高品質的電晶體薄膜結構。"Supercritical drying" means that water and organic solvents are in a supercritical state under high temperature and high pressure, so that the organic solvent and water have gas-liquid mixing properties at the same time, and the solvent is directly vaporized and dried in the supercritical state. Therefore, the remaining solvent in the network structure can be removed under supercritical conditions without shrinkage of the wet glue. However, in the preparation of transistor structures, the time from solution preparation to coating of low-dielectric films varies. In addition, during the condensation process of aerogel solutions, silica molecules will immediately aggregate and condense, resulting in aerogel formation. The viscosity of a solution increases with time. When spin coating is performed at a fixed rate, the film thickness on the substrate will also increase. In the same way, the coating thickness of the transistor thin film structure will have different thicknesses as the process time increases, so it is impossible to prepare a high-quality transistor thin film structure.
傳統氣凝膠的製備方法為溶膠凝膠合成法,主要先由烷氧化矽類(alkoxysilane)、正矽酸甲酯或水玻璃等前驅物與大量有機混合溶劑進行混合後,再加入酸觸媒以進行水解反應(hydrolysis)。待水解反應一定時間後,再添加鹼觸媒,以進行縮合反應(condensation),而縮合反應過程中會逐漸形成溶膠,溶膠內的分子繼續進行反應鍵結,逐漸形成半固態的高分子凝膠。接著,再經一段時間熟化(aging),使凝膠形成結構穩定的立體網狀結構。最後,再利用正丁醇、正己醇、正己烷或環己烷等疏水性溶劑進行溶劑置換,再以超臨界乾燥技術將氣凝膠結構中的溶劑萃取乾燥。傳統的製程技術除了需消耗大量且昂貴的有機溶劑及超臨界設備外,另外還須利用疏水性溶劑進行長時間的溶劑置換,因此製備氣凝膠的成本高昂且耗時。The traditional preparation method of aerogel is the sol-gel synthesis method, which mainly mixes precursors such as alkoxysilane, methyl n-silicate or water glass with a large amount of organic mixed solvents, and then adds an acid catalyst. To carry out hydrolysis reaction (hydrolysis). After the hydrolysis reaction takes a certain period of time, an alkali catalyst is added to carry out the condensation reaction. During the condensation reaction, a sol will gradually be formed, and the molecules in the sol will continue to react and bond, gradually forming a semi-solid polymer gel. . Then, after a period of aging, the gel forms a stable three-dimensional network structure. Finally, hydrophobic solvents such as n-butanol, n-hexanol, n-hexane or cyclohexane are used for solvent replacement, and then the solvent in the airgel structure is extracted and dried using supercritical drying technology. Traditional process technology not only consumes a large amount of expensive organic solvents and supercritical equipment, but also requires long-term solvent replacement with hydrophobic solvents. Therefore, the preparation of aerogels is costly and time-consuming.
另一方面,疏水性氣凝膠的製備方法同樣採用溶膠凝膠合成法,主要先由如甲基三甲氧基矽烷(methyltrimethoxysilane,MTMS)或甲基三乙氧基矽烷(methyltriethoxysilane,MTES)等甲基烷氧化矽類前驅物與有機溶劑進行混合後,再加入鹼觸媒,以進行水解反應。待水解反應一定時間後進行縮合反應,而縮合反應過程中會逐漸形成溶膠,溶膠內的分子繼續進行反應鍵結,逐漸形成半固態的高分子凝膠。再經過一段時間熟化後(aging),再利用異丙醇、丙酮、正己烷或環己烷等溶劑進行溶劑置換二到三天,使疏水性凝膠形成結構穩定立體網狀結構。最後,以常壓乾燥技術將氣凝膠結構中的溶劑乾燥,以獲得多孔性乾燥的氣凝膠塊材。疏水性氣凝膠的製程也須耗費大量昂貴的有機溶劑,並須進行長時間以醇類或烷類進行溶劑置換,因此製備費時且成本高昂。On the other hand, the preparation method of hydrophobic aerogels also adopts the sol-gel synthesis method, which mainly consists of methyltrimethoxysilane (MTMS) or methyltriethoxysilane (MTES). After the silicon alkoxide precursor is mixed with an organic solvent, an alkali catalyst is added to perform a hydrolysis reaction. After the hydrolysis reaction for a certain period of time, the condensation reaction will occur. During the condensation reaction, a sol will gradually form. The molecules in the sol will continue to react and bond, gradually forming a semi-solid polymer gel. After aging for a period of time, solvent replacement such as isopropyl alcohol, acetone, n-hexane or cyclohexane is used for two to three days to form a stable three-dimensional network structure of the hydrophobic gel. Finally, the solvent in the airgel structure is dried using normal pressure drying technology to obtain a porous dry airgel block. The production process of hydrophobic aerogels also requires a large amount of expensive organic solvents, and requires a long period of solvent replacement with alcohols or alkanes, so the preparation is time-consuming and costly.
由於上述之氣凝膠製備方法所採用的製程技術均須利用大量疏水性溶劑;如烷類等有機溶劑,進行二至三天的多次溶劑置換,再以超臨界乾燥技術或常壓高溫乾燥技術以避免氣凝膠結構在常壓乾燥過程,受水分子的表面張力影響而收縮或龜裂。然而,多次疏水性溶劑置換技術以及超臨界乾燥技術相當耗時且成本昂貴,不利於氣凝膠量產及未來應用時的競爭能力。Since the process technology used in the above-mentioned aerogel preparation method requires the use of a large amount of hydrophobic solvents; organic solvents such as alkanes, multiple solvent replacements are performed for two to three days, and then drying using supercritical drying technology or normal pressure and high temperature This technology prevents the airgel structure from shrinking or cracking due to the surface tension of water molecules during the normal pressure drying process. However, multiple hydrophobic solvent replacement technologies and supercritical drying technologies are time-consuming and expensive, which is not conducive to the competitiveness of airgel mass production and future applications.
按,美國發明專利公告號US8,945,677B2,其揭露「使用低K介電材料製造電子設備」,主要使用低介電材料(包括聚醯亞胺氣凝膠)製造電子設備與半導體元件的材料及方法。此專利提供一種用於操縱介電材料特性及影響系統整體介電特性的方法。具體而言,以聚醯亞胺酸預溶膠、催化劑與極性溶劑混合成溶膠混合物層,隨後使溶膠成分交聯形成濕凝膠材料,並利用超臨界流體去除溶劑,以形成聚醯亞胺氣凝膠薄膜。利用此技術於無孔、低K模板基材表面上將其與聚醯亞胺氣凝膠膜組合。此專利使用低K介電材料製造電子設備並藉由壓力循環方式來利用超臨界流體技術多梯次進行溶劑去除,整體技術費時且具高成本,製程所需時間過久,不符成本效益。According to U.S. Invention Patent Publication No. US8,945,677B2, it discloses "the use of low-K dielectric materials to manufacture electronic equipment." It mainly uses low-dielectric materials (including polyimide aerogels) to manufacture electronic equipment and semiconductor components. and methods. This patent provides a method for manipulating the properties of dielectric materials and affecting the overall dielectric properties of a system. Specifically, a polyimide acid presol, a catalyst and a polar solvent are mixed to form a sol mixture layer, and then the sol components are cross-linked to form a wet gel material, and a supercritical fluid is used to remove the solvent to form a polyimide gas. Gel film. This technology was used to combine it with a polyimide airgel film on the surface of a nonporous, low-K template substrate. This patent uses low-K dielectric materials to manufacture electronic devices and uses supercritical fluid technology to remove solvents in multiple steps through pressure circulation. The overall technology is time-consuming and costly. The process takes too long and is not cost-effective.
按,大陸發明專利公開號CN102044525A,其揭露「低K介質層結構、半導體器件結構及其形成方法」,主要使用二氧化矽氣凝膠組成低K介質層結構。此專利提供一種半導體器件結構及其形成方法,其中形成方法包括:提供基底,基底上形成有第一介質層與刻蝕阻擋層,第一介質層與刻蝕阻擋層均形成有開口,開口內填充有金屬作為插塞;於刻蝕阻擋層及插塞上形成犧牲氧化層;於犧牲氧化層中形成開口,於其開口內填充金屬形成互連結構,其中此種互連結構電連接至插塞;選擇性地去除犧牲氧化層,使所述互連結構之間形成空隙;於互連結構之間的空隙中形成二氧化矽氣凝膠作為低K介質層。此專利使用低K介質層結構,並利用四乙氧基矽烷(tetraethyl orthosilicate,TEOS)或矽酸四甲酯(tetramethyl orthosilicate,TMOS)作為材料結構。另外,其乾燥利用常溫或超臨界流體技術多梯次進行低介電薄膜製備,整體技術費時且具高成本,製程所需時間過久,不符成本效益。According to the mainland invention patent publication number CN102044525A, which discloses "low-K dielectric layer structure, semiconductor device structure and formation method", it mainly uses silicon dioxide aerogel to form a low-K dielectric layer structure. This patent provides a semiconductor device structure and a formation method thereof. The formation method includes: providing a substrate, a first dielectric layer and an etching barrier layer are formed on the substrate, and the first dielectric layer and the etching barrier layer are both formed with openings. Filled with metal as a plug; a sacrificial oxide layer is formed on the etching barrier layer and the plug; an opening is formed in the sacrificial oxide layer, and metal is filled in the opening to form an interconnection structure, wherein this interconnection structure is electrically connected to the plug plug; selectively remove the sacrificial oxide layer to form gaps between the interconnection structures; and form silicon dioxide aerogel as a low-K dielectric layer in the gaps between the interconnection structures. This patent uses a low-K dielectric layer structure and utilizes tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS) as the material structure. In addition, its drying uses multiple steps of normal temperature or supercritical fluid technology to prepare low-dielectric films. The overall technology is time-consuming and costly. The process takes too long and is not cost-effective.
按,中國發明專利公開號CN105189104A,其揭露「氣凝膠絕緣面板及其製造」,主要使用聚醯亞胺氣凝膠製備成絕緣面板,其可應用於航空航天應用層壓面板。此面板包括一聚醯亞胺氣凝膠表層以及於表層上的反射保護層。此專利中聚醯亞胺氣凝膠的製程包括:(a)二酸酐以及二胺單體的混合物於雙極性鹼性溶劑(DMAc或NMP)中聚合形成聚醯胺酸溶液;(b)將聚醯胺酸溶液膠澆鑄於纖維絮中;(c)利用化學亞胺化反應使用醋酸酐與吡啶凝膠聚醯胺酸溶液;(d)使用CO 2超臨界或亞超臨界乾燥技術移除凝膠中的溶劑,以形成纖維/聚醯亞胺氣凝膠複合材料,整體技術費時且具高成本,製程所需時間過久,不符成本效益及競爭能力。 According to Chinese invention patent publication number CN105189104A, it discloses "airgel insulating panels and their manufacturing", which mainly uses polyimide airgel to prepare insulating panels, which can be used in laminated panels for aerospace applications. The panel includes a polyimide airgel surface layer and a reflective protective layer on the surface layer. The manufacturing process of polyimide aerogel in this patent includes: (a) polymerizing a mixture of dianhydride and diamine monomer in a bipolar alkaline solvent (DMAc or NMP) to form a polyimide solution; (b) Polyamic acid solution glue is cast in fiber wadding; (c) uses chemical imidization reaction to use acetic anhydride and pyridine gel polyamic acid solution; (d) uses CO 2 supercritical or sub-supercritical drying technology to remove The solvent in the gel is used to form fiber/polyimide airgel composite materials. The overall technology is time-consuming and costly. The process takes too long and is not cost-effective and competitive.
按,大陸發明專利公開號CN108203516A,其揭露「製備交聯型聚醯亞胺氣凝膠的方法」,主要採用溶膠凝膠法,其包括:(a)二酸酐及二胺單體的混合物於雙極鹼性溶劑(DMAc或NMP)中聚合形成聚醯胺酸溶液;(b)將聚醯胺酸溶液澆鑄於纖維絮中;(c)利用化學亞胺化反應使用醋酸酐與吡啶凝膠聚醯胺酸溶液;(d)使用超臨界或亞超臨界CO 2乾燥技術移除凝膠中的溶劑,以形成纖維/聚醯亞胺氣凝膠複合材料,整體技術也是費時且具高成本,製程所需時間過久,不符成本效益及競爭能力。 According to the Mainland China Invention Patent Publication No. CN108203516A, it discloses a "method for preparing cross-linked polyimide aerogels", which mainly adopts a sol-gel method, which includes: (a) a mixture of dianhydride and diamine monomer in Polymerize in a bipolar alkaline solvent (DMAc or NMP) to form a polyamide solution; (b) Cast the polyamide solution into fiber wadding; (c) Use chemical imidization reaction using acetic anhydride and pyridine gel Polyamide solution; (d) use supercritical or sub-supercritical CO 2 drying technology to remove the solvent in the gel to form fiber/polyamide aerogel composites. The overall technology is also time-consuming and costly , the manufacturing process takes too long and is not cost-effective and competitive.
於傳統製造多孔性氣凝膠技術中,溶膠-凝膠反應過程均需添加大量有機溶劑、酸鹼離子,以及使用界面活性劑或其他添加劑以期望獲得完整氣凝膠材料,但於隨後製程中需要利用長時間的溶劑置換或利用去離子水進行氣凝膠材料的沖洗,方可在乾燥過程中保持氣凝膠結構的穩定性,以製備出適當低介電性質的產品;另外,利用超臨界或亞超臨界CO 2乾燥技術移除凝膠中的溶劑,均可有效製備出品質優異的氣凝膠材料。 In traditional manufacturing porous aerogel technology, the sol-gel reaction process requires the addition of a large amount of organic solvents, acid and alkali ions, and the use of surfactants or other additives in order to obtain a complete aerogel material. However, in subsequent processes It is necessary to use a long period of solvent replacement or use deionized water to rinse the airgel material to maintain the stability of the airgel structure during the drying process to prepare products with appropriate low dielectric properties; in addition, the use of ultra-high dielectric properties Critical or sub-supercritical CO 2 drying technology can effectively prepare high-quality aerogel materials by removing the solvent from the gel.
此外,利用聚醯胺酸溶液結合超臨界或亞超臨界CO 2乾燥技術移除聚醯亞胺凝膠中的溶劑,以製備擁有大量孔洞結構的純聚醯亞胺氣凝膠或纖維/聚醯亞胺氣凝膠,但相關技術所製備的聚醯亞胺氣凝膠介電常數無法明顯降低至2.8以下,且其介電損耗仍維持在0.003以上,這是由於聚醯亞胺化學結構中含有大量的偶極結構及親水基團,因此在完全交聯固化之下依然無法明顯降低材料的介電常數或介電損耗。 In addition, polyimide solution combined with supercritical or sub-supercritical CO 2 drying technology is used to remove the solvent in the polyimide gel to prepare pure polyimide aerogels or fibers/polymers with a large pore structure. However, the dielectric constant of polyimide aerogels prepared by related technologies cannot be significantly reduced below 2.8, and its dielectric loss is still maintained above 0.003. This is due to the chemical structure of polyimide. It contains a large number of dipolar structures and hydrophilic groups, so the dielectric constant or dielectric loss of the material cannot be significantly reduced even after complete cross-linking and solidification.
依本申請人於台灣發明專利申請號110106194所揭露之「低介電氣凝膠及其製備方法」技術中,利用快速縮合技術使塊狀氣凝膠製備的收縮率降低,且製程中不須將氣凝膠濕膠浸泡於溶劑中進行有機溶劑置換下即可快速進行完整凝膠結構的製備。此項先前技術乃控制快速凝膠技術已控制氣凝膠結構,隨後利用去離子水中進行沖洗,將結構中的帶電離子去除,以降低後續應用過程中的離子累積。因此,此項先前技術於整體製程中去除濕凝膠薄膜的溶劑置換以及超臨界乾燥技術等步驟,並令人驚訝地可於大約數分鐘至數十分鐘内老化取得多孔性低介電薄膜,隨後,在製備過程中利用氣凝膠複合材與高分子溶液(如聚醯亞胺、環氧樹脂或聚苯醚等)進行複合,以製備出高強度且多孔性氣凝膠/高分子複合材料。但此項先前技術需要利用去離子水進行氣凝膠結構的帶電離子沖洗也會浪費大量製程時間及產生大量洗滌廢水。According to the "low dielectric aerogel and its preparation method" technology disclosed by the applicant in Taiwan Invention Patent Application No. 110106194, rapid condensation technology is used to reduce the shrinkage rate of block aerogel preparation, and there is no need to The airgel wet glue can be quickly prepared with a complete gel structure by soaking it in a solvent and replacing it with an organic solvent. This prior technology is controlled rapid gel technology to control the structure of the airgel, and then rinse it with deionized water to remove charged ions in the structure to reduce ion accumulation during subsequent applications. Therefore, this prior technology removes steps such as solvent replacement and supercritical drying technology of wet gel films in the overall process, and surprisingly can obtain a porous low-dielectric film within a few minutes to tens of minutes of aging. Subsequently, during the preparation process, the airgel composite is compounded with a polymer solution (such as polyimide, epoxy resin or polyphenylene ether, etc.) to prepare a high-strength and porous airgel/polymer composite. Material. However, this previous technology requires the use of deionized water to rinse the airgel structure with charged ions, which also wastes a lot of process time and generates a large amount of washing wastewater.
爰此,為改善過去低介電氣凝膠產品製程缺點並可大量製造高純度(低雜質含量)低介電氣凝膠複合材料,本發明提供的改善製備技術,可簡易製備出低介電損耗(D F<0.003)氣凝膠複合材;隨後進行氣凝膠複合材與高分子溶液(如聚醯亞胺、環氧樹脂或聚苯醚等)複合以形成多孔性氣凝膠/高分子複合材料。在此氣凝膠與各類高分子溶液混合比例,即可調控氣凝膠/高分子複合材料的強度、介電常數及介電損耗等性質。相關產品可應用於5G快速傳輸、電動自駕車訊號傳輸以及鋰電池模組安全防護、防火所需的材料。另外,本發明亦可改善前案技術在製備上的缺點,例如:半導體裝置低介電結構不均、氣凝膠低介電常數或低介電損耗降低不明顯、以及超臨界乾燥技術應用於積體電路製備上的困難性等問題。 Therefore, in order to improve the shortcomings of the past low dielectric electrogel product manufacturing process and to mass-produce high-purity (low impurity content) low dielectric electrogel composite materials, the improved preparation technology provided by the present invention can easily prepare low dielectric loss ( D F <0.003) airgel composite; then compound the airgel composite with polymer solution (such as polyimide, epoxy resin or polyphenylene ether, etc.) to form a porous airgel/polymer composite Material. Here, the mixing ratio of airgel and various polymer solutions can control the strength, dielectric constant and dielectric loss of the airgel/polymer composite material. Related products can be used in materials required for 5G fast transmission, electric self-driving signal transmission, and lithium battery module safety protection and fire prevention. In addition, the present invention can also improve the shortcomings in the preparation of the previous technology, such as: low dielectric structure unevenness of semiconductor devices, low dielectric constant or low dielectric loss of airgel is not significantly reduced, and the application of supercritical drying technology Difficulties in the preparation of integrated circuits and other issues.
本發明提供一種兼具低熱傳與低介電氣凝膠材料及其製備方法,其中,本發明之第一實施樣態包含:(1) 混合水解步驟:於一乙醇水溶液中加入一矽氧烷前軀體攪拌混合形成一混合溶液,其中,該矽氧烷前軀體包括一矽氧烷化合物及一疏水改質矽氧烷化合物或其組合,隨後將一酸觸媒加入該混合溶液中以進行水解反應;(2)縮合分散步驟:於該混合溶液中加入一分散水溶液進行快速攪拌,使該縮合溶液分散在水溶液中,該分散溶液包括一鹼觸媒,以進行縮合反應形成一溶膠溶液;(3)成型步驟:將溶膠溶液注入一模型中,促使該溶膠溶液進一步縮合形成一類固態氣凝膠濕膠網狀結構;另外,也可將該溶膠溶液注入一含纖維材料模型中,促使該溶膠溶液在一含纖維材料模型中進一步縮合而形成一含纖維材料之類固態氣凝膠濕膠結構;(4) 乾燥步驟:於常壓下,在一乾燥溫度下使該類固態氣凝膠結構乾燥以獲得結構均一之兼具低熱傳與低介電氣凝膠複合材料,其中,該乾燥溫度介於60至150℃。The present invention provides a low heat transfer and low dielectric electrogel material and a preparation method thereof. The first embodiment of the present invention includes: (1) mixed hydrolysis step: adding a siloxane to an ethanol aqueous solution before The body is stirred and mixed to form a mixed solution, wherein the siloxane precursor includes a siloxane compound and a hydrophobic modified siloxane compound or a combination thereof, and then an acid catalyst is added to the mixed solution to perform a hydrolysis reaction. ; (2) Condensation and dispersion step: add a dispersion aqueous solution to the mixed solution and stir rapidly to disperse the condensation solution in the aqueous solution. The dispersion solution includes an alkali catalyst to perform a condensation reaction to form a sol solution; (3 ) Molding step: Inject the sol solution into a model to promote further condensation of the sol solution to form a solid aerogel wet glue network structure; in addition, the sol solution can also be injected into a fiber-containing material model to promote the sol solution Further condensation in a fiber-containing material model forms a solid aerogel wet glue structure such as fiber-containing material; (4) Drying step: dry the solid aerogel structure at a drying temperature under normal pressure. In order to obtain a structurally uniform electrogel composite material with both low heat transfer and low dielectric, the drying temperature ranges from 60 to 150°C.
進一步,上述製備方法中,該乾燥步驟包含:溶劑汽化步驟:將該類固態氣凝膠結構放置於一含醇類-水混合溶液的共沸溫度環境下,令該類固態氣凝膠結構中大量含醇類-水混合溶液快速共沸汽化而將含醇類-水混合溶液蒸餾乾燥,該汽化溫度為60至110℃;及溶劑突沸步驟:調整該乾燥氣凝膠結構之乾燥溫度至一溶劑突沸溫度,使該乾燥氣凝膠內部所剩餘的醇類-水混合溶劑產生快速突沸而形成一正壓力,利用氣凝膠結構內部之此正壓力的產生抑制氣凝膠於乾燥中產生收縮,以及利用氣凝膠結構內部之此正壓力促使氣凝膠結構中產生大量奈米級至次微米等級的微細孔洞,該突沸溫度為110至150℃。Further, in the above preparation method, the drying step includes: a solvent vaporization step: placing the solid aerogel structure in an azeotropic temperature environment containing an alcohol-water mixed solution, so that the solid aerogel structure is A large amount of alcohol-water mixed solution is quickly azeotropically vaporized to distill and dry the alcohol-water mixed solution. The vaporization temperature is 60 to 110°C; and the solvent bumping step: adjust the drying temperature of the dry aerogel structure to The solvent bumping temperature causes the remaining alcohol-water mixed solvent inside the dry aerogel to rapidly boil to form a positive pressure. The generation of this positive pressure inside the airgel structure is used to inhibit the shrinkage of the aerogel during drying. , and use the positive pressure inside the airgel structure to generate a large number of nanometer to submicron-sized micropores in the airgel structure, and the burst temperature is 110 to 150°C.
本發明所提供的兼具低熱傳與低介電氣凝膠材料之製備方法中不涉及疏水性有機溶劑例如甲苯、己烷等運用,並於製備中以極微量酸鹼離子濃度之溶膠-凝膠合成技術,且無需添加界面活性劑等助劑,尤其免去疏水性有機溶劑的多重置換下,即可製備出高純度、低熱傳及低介電損耗氣凝膠複合材料。The preparation method of the electrogel material with both low heat transfer and low dielectric provided by the present invention does not involve the use of hydrophobic organic solvents such as toluene, hexane, etc., and a sol-gel with a very small acid and alkali ion concentration is used in the preparation. Using synthetic technology, high purity, low heat transfer and low dielectric loss aerogel composite materials can be prepared without adding additives such as surfactants, especially without the need for multiple substitutions of hydrophobic organic solvents.
另外,為了進一步改善兼具低熱傳與低介電氣凝膠複合材料的結構強度以增進產品之後端應用性;在一些實施例中,在該成型步驟中,將該縮合分散氣凝膠溶液注入於一含纖維蓆、纖維紙、纖維毯或纖維板等基材中;在此條件下,縮合分散氣凝膠溶液中氣凝膠分子將首先吸附在纖維表面,並在縮合過程中相互堆疊成三次元氣凝膠網狀結構而形成穩定且含大量纖維之類固態氣凝膠/纖維成形體,並在隨後乾燥步驟中形成低熱傳及低介電的氣凝膠/纖維複合膜或複合板。In addition, in order to further improve the structural strength of the low heat transfer and low dielectric aerogel composite material to enhance the back-end applicability of the product; in some embodiments, in the molding step, the condensation dispersed aerogel solution is injected into One contains fiber mats, fiber paper, fiber blankets or fiber boards and other base materials; under this condition, the airgel molecules in the condensation dispersed airgel solution will first be adsorbed on the fiber surface, and stack with each other into a three-dimensional gas during the condensation process The gel network structure is used to form a solid aerogel/fiber molding body that is stable and contains a large amount of fibers, and in the subsequent drying step, an aerogel/fiber composite membrane or composite plate with low heat transfer and low dielectric is formed.
進一步地,在 (1) 混合水解步驟中,當該酸觸媒於該混合溶液中的含量比越高,水解速率越快,但含大量酸離子在電場作用下將會產生離子導電性質,因此將會明顯提高氣凝膠結構的介電常數以及介電損耗;相對地,酸觸媒的含量比越低,整體水解速率越慢,因此本發明通過降低酸觸媒含量伴隨增加製程溫度來提高微量酸離子的水解速率,因此可明顯降低整體所添加的酸根離子的含量;另一方面,矽氧烷化合物及疏水化矽氧烷化合物在水解過程會產生大量的醇類分子,是以在水解過程中以去離子水取代氨水或烷類等有機溶劑,藉此降低氨水或烷類等有機溶劑添加,除了減少氨水或烷類等有機溶劑對氣凝膠的介電性質影響之外,更可降低製程中有機溶劑處理的危害性,亦降低整體氣凝膠的製備成本。Furthermore, in the mixed hydrolysis step (1), when the content ratio of the acid catalyst in the mixed solution is higher, the hydrolysis rate is faster, but a large amount of acid ions will produce ionic conductivity under the action of an electric field, so The dielectric constant and dielectric loss of the airgel structure will be significantly improved; relatively, the lower the acid catalyst content ratio, the slower the overall hydrolysis rate. Therefore, the present invention improves the efficiency by reducing the acid catalyst content and increasing the process temperature. The hydrolysis rate of trace acid ions can significantly reduce the overall content of added acid ions; on the other hand, siloxane compounds and hydrophobized siloxane compounds will produce a large amount of alcohol molecules during the hydrolysis process, so during the hydrolysis In the process, deionized water is used to replace organic solvents such as ammonia or alkanes, thereby reducing the addition of organic solvents such as ammonia or alkanes. In addition to reducing the impact of organic solvents such as ammonia or alkanes on the dielectric properties of the aerogel, it can also It reduces the hazards of organic solvent treatment in the manufacturing process and also reduces the overall aerogel preparation cost.
進一步地,在 (2)縮合分散過程中,在鹼觸媒水溶液的促使下,水解溶液的矽氧烷分子或疏水性矽氧烷分子在乳化機或均質機快速攪拌下,水解的矽氧烷分子或疏水性矽氧烷分子將會形成奈米級至次微米級的分子滴分散於水溶液中。Further, in (2) the condensation and dispersion process, under the promotion of the alkali catalyst aqueous solution, the siloxane molecules or hydrophobic siloxane molecules of the hydrolysis solution are rapidly stirred by the emulsifier or homogenizer, and the hydrolyzed siloxane Molecules or hydrophobic siloxane molecules will form nanometer to sub-micrometer molecular droplets dispersed in the aqueous solution.
進一步地,在 (3) 成型步驟中,當該且未進行縮合反應的縮合分散溶液,將該形成奈米級至次微米級的水解的矽氧烷分子及疏水性矽氧烷分子混合分散溶液注入一成型膜中成形成特定外觀形態的成型結構,如各種外觀的膜狀、片狀、或板狀;在數分鐘之後,此奈米級至次微米級的分子滴中矽氧烷分子以及疏水性矽氧烷分子在水的排斥作用力催化下加速相互聚集結合而形成三次元的矽氧烷網狀的氣凝膠濕膠結構;在(3) 成型步驟中,該奈米級至次微米級的分子滴中,矽氧烷分子的初始結構尺寸可控制在約5至10奈米,隨後氣凝膠濕膠分子再進一步堆疊形成更大的聚集體,並相互連結成三次元網狀結構,以形成穩定的含大量醇類-水溶液的半凝固氣凝膠濕膠結構。Further, in the forming step (3), when the condensation dispersion solution has not undergone a condensation reaction, the hydrolyzed siloxane molecules and hydrophobic siloxane molecules at the nanometer level to the submicron level are mixed and dispersed. Inject into a molded film to form a molded structure with a specific appearance, such as film, sheet, or plate in various appearances; after a few minutes, the siloxane molecules and hydrophobic molecules in the nanometer to submicron molecular droplets Catalyzed by the repulsive force of water, the flexible siloxane molecules accelerate their aggregation and combination to form a three-dimensional siloxane network aerogel wet glue structure; in (3) the forming step, the nano-scale to sub-micron In the molecular droplets, the initial structural size of the siloxane molecules can be controlled at about 5 to 10 nanometers, and then the airgel wet glue molecules are further stacked to form larger aggregates and interconnected to form a three-dimensional network structure. , to form a stable semi-solidified aerogel wet glue structure containing a large amount of alcohol-aqueous solution.
進一步地,為了增進該兼具低熱傳與低介電氣凝膠複合材的結構強度,於 (3) 成型步驟中,可進一步將該奈米級至次微米級的水解矽氧烷分子及疏水性矽氧烷分子混合分散溶液滴注入一含大量纖維材料模型中,該纖維材料如纖維蓆、纖維紙、纖維毯或纖維板;在此條件下,該奈米級至次微米級的水解矽氧烷分子及疏水性矽氧烷分子混合分散溶液中氣凝膠分子將首先吸附在纖維表面,並在水的排斥作用力催化下加速相互聚集結合而形成三次元的矽氧烷網狀而形成穩定且含大量纖維之類固態氣凝膠/纖維成形體,並在隨後乾燥步驟中形成兼具低熱傳及低介電之氣凝膠/纖維複合膜或複合板;更進一步地,在 (3) 成型步驟中,可利用含浸技術、壓吸技術、噴淋、噴霧、或真空吸附等技術,將該水解矽氧烷分子及疏水性矽氧烷分子混合分散溶液注入含纖維結構中,以進行複合加工。Furthermore, in order to improve the structural strength of the electrogel composite material with both low heat transfer and low dielectric, in the (3) molding step, the hydrolyzable siloxane molecules and hydrophobicity of the nanoscale to submicron scale can be further The mixed dispersion solution of siloxane molecules is dropped into a model containing a large number of fiber materials, such as fiber mats, fiber papers, fiber blankets or fiber boards; under this condition, the nanoscale to submicron scale hydrolyzed silica The airgel molecules in the mixed dispersion solution of alkane molecules and hydrophobic siloxane molecules will first be adsorbed on the surface of the fiber, and catalyzed by the repulsive force of water, they will accelerate their aggregation and combination to form a three-dimensional siloxane network and form a stable And it contains a large amount of solid aerogel/fiber moldings such as fibers, and in the subsequent drying step, an aerogel/fiber composite membrane or composite plate with both low heat transfer and low dielectric is formed; further, in (3) In the molding step, the mixed dispersion solution of hydrolyzed siloxane molecules and hydrophobic siloxane molecules can be injected into the fiber-containing structure using impregnation technology, pressure suction technology, spraying, mist spraying, or vacuum adsorption technology for compounding. processing.
進一步地,於 (4) 乾燥步驟中,當該類固體氣凝膠濕膠結構穩定後,於常壓環境下,於乾燥溫度下蒸發氣凝膠濕膠結構內部的含酒精水溶液;在本發明的一些實施例中,(4) 乾燥步驟還包括了(4-1) 溶劑汽化步驟以及 (4-2) 溶劑突沸步驟;在 (4-1) 溶劑汽化步驟過程,將類固體氣凝膠濕膠結構中所含之酒精-水溶液在共沸溫度下快速汽化而進行乾燥;在 (4-2) 溶劑突沸步驟,調整接近乾燥的氣凝膠溫度至一突沸溫度,使氣凝膠內部所含微量的酒精水溶液產生快速突沸,在此突沸溫度下,氣凝膠結構中所含酒精水溶液在氣凝膠內部產生一正壓力,該正壓力可以抑制氣凝膠結構在乾燥過程中產生收縮或崩潰的行為。Further, in the drying step (4), after the solid airgel wet glue structure is stabilized, the alcohol-containing aqueous solution inside the airgel wet glue structure is evaporated at the drying temperature under normal pressure environment; in the present invention In some embodiments, the (4) drying step also includes (4-1) a solvent vaporization step and (4-2) a solvent bumping step; during the (4-1) solvent vaporization step, the solid-like aerogel is wetted The alcohol-water solution contained in the gel structure vaporizes rapidly at the azeotropic temperature and dries; in (4-2) solvent bumping step, adjust the temperature of the nearly dry airgel to a bumping temperature so that the airgel contained inside A trace amount of alcohol aqueous solution produces rapid boiling. At this bumping temperature, the alcohol aqueous solution contained in the airgel structure generates a positive pressure inside the airgel. This positive pressure can inhibit the shrinkage or collapse of the airgel structure during the drying process. behavior.
進一步,為改善國際公開之聚醯亞胺氣凝膠製程費時、高成本以及使用超臨界或亞超臨界CO 2乾燥技術的缺點,本發明利用簡易技術製作純氣凝膠或氣凝膠/纖維複合材料,再以含浸或噴淋技術將聚醯亞胺等高分子溶液滲入純氣凝膠板或氣凝膠/纖維複合材料,隨後進行溶劑乾燥與交聯或固化等製程,及可製備出氣凝膠複合材料高分子/氣凝膠複合材料或氣凝膠複合材料高分子/纖維/氣凝膠複合材料,整體製程技術簡易、成本低廉且無須利用超臨界或亞超臨界CO 2乾燥技術。 Furthermore, in order to improve the disadvantages of the internationally disclosed polyimide aerogel process being time-consuming, high cost and using supercritical or sub-supercritical CO 2 drying technology, the present invention uses simple technology to produce pure aerogel or aerogel/fiber Composite materials, and then use impregnation or spraying technology to infiltrate polymer solutions such as polyimide into pure airgel sheets or airgel/fiber composite materials, followed by solvent drying and cross-linking or curing processes, and can prepare gas Gel composite polymer/airgel composite material or airgel composite polymer/fiber/airgel composite material, the overall process technology is simple, low cost and does not require the use of supercritical or sub-supercritical CO 2 drying technology.
是以,在本發明之第二實施樣態中,氣凝膠複合材料氣凝膠複合材料該製備方法進一步包括:(5)含浸高分子溶液步驟:準備一高分子溶液,將該高分子溶液注入該兼具低熱傳與低介電氣凝膠材料進行含浸,使高分子溶液均勻滲入該氣凝膠內部孔洞中以形成一含高分子溶液之氣凝膠複合材;其中,該高分子溶液包含高分子材料及混合溶劑,該高分子材料包括熱固性高分子、熱塑性高分子、液晶高分子或其組合;及 (6) 溶劑乾燥步驟:將該含高分子溶液之氣凝膠複合材放置在高分子溶液的溶劑沸點以上溫度下,促使該含高分子溶液之氣凝膠複合材料內部溶劑汽化,並促使高分子披覆在氣凝膠網狀骨架表面或纖維表面,該溶劑乾燥溫度介於60至115℃;其中,該高分子溶液為熱塑性高分子,溶劑汽化乾燥後即可固化成型,以獲得兼具高強度、低熱傳且低介電的熱塑性高分子/氣凝膠複合材料或熱塑性高分子/纖維/氣凝膠複合材料;其中,該高分子溶液為熱固性高分子,溶劑汽化乾燥後,隨即在一高溫交聯固化溫度下成型;由以上製程技術即可獲得兼具高強度、低熱傳且低介電的熱固性高分子/氣凝膠複合材料或熱塑性高分子/纖維/氣凝膠複合材料。Therefore, in the second embodiment of the present invention, the preparation method of the airgel composite material further includes: (5) impregnating the polymer solution step: preparing a polymer solution, and adding the polymer solution to the airgel composite material. Inject the low heat transfer and low dielectric aerogel material for impregnation, so that the polymer solution can evenly penetrate into the internal pores of the airgel to form an airgel composite containing the polymer solution; wherein the polymer solution contains Polymer materials and mixed solvents, the polymer materials include thermosetting polymers, thermoplastic polymers, liquid crystal polymers or combinations thereof; and (6) solvent drying step: place the airgel composite containing the polymer solution on a high At a temperature above the boiling point of the solvent of the molecular solution, the internal solvent of the airgel composite containing the polymer solution is vaporized, and the polymer is coated on the surface of the airgel mesh skeleton or fiber surface. The drying temperature of the solvent is between 60 to 115°C; where the polymer solution is a thermoplastic polymer, which can be solidified and formed after the solvent is vaporized and dried to obtain a thermoplastic polymer/aerogel composite material with high strength, low heat transfer and low dielectric or a thermoplastic polymer with high thermoplasticity. Molecule/fiber/aerogel composite material; wherein, the polymer solution is a thermosetting polymer. After the solvent is vaporized and dried, it is then molded at a high-temperature cross-linking curing temperature; the above process technology can obtain both high strength and low heat Thermoset polymer/aerogel composite materials or thermoplastic polymer/fiber/aerogel composite materials with low dielectric properties.
進一步,該高分子溶液為熱固性高分子包含環氧塑酯、聚醯亞胺、聚苯醚、聚苯硫醇、聚砜、聚酚醛塑酯、聚三聚氰胺-甲醛塑酯或其組合。Furthermore, the polymer solution is a thermosetting polymer including epoxy plastic ester, polyimide, polyphenylene ether, polyphenylene mercaptan, polysulfone, polyphenolic plastic ester, polymelamine-formaldehyde plastic ester or a combination thereof.
進一步,該高分子溶液為熱塑性高分子包含聚乙烯、聚丙烯、聚四氟乙烯、聚碳酸酯、聚醯胺、聚醯胺酯、聚酯或其組合。Further, the polymer solution is a thermoplastic polymer including polyethylene, polypropylene, polytetrafluoroethylene, polycarbonate, polyamide, polyamide ester, polyester or a combination thereof.
在前述 (5)含浸高分子溶液步驟中,當該兼具低熱傳與低介電氣凝膠材料形成具有適當強度的氣凝膠複合材料或氣凝膠/纖維複合材料之後,將該高分子溶液注入於該氣凝膠材料,使高分子鏈隨溶劑均勻地滲入氣凝膠材料內部孔洞中,使其形成含有高分子溶液之氣凝膠複合材料或氣凝膠/纖維複合材料;並在(6) 溶劑乾燥步驟中,該氣凝膠複合材料或氣凝膠/纖維複合材料中高分子溶液會先經過一液-固相分離(liquid-solid phase separation)過程,形成一富含溶劑相以及一富含高分子相,並在相分離期間富含溶劑相之溶劑會逐漸汽化;另一方面富含高分子相內之高分子鏈會優先披覆在氣凝膠骨架或纖維表面,進而在氣凝膠骨架或纖維結構表面形成一高分子膜層。In the aforementioned step (5) of impregnating the polymer solution, after the aerogel material with both low heat transfer and low dielectric strength forms an airgel composite material or an airgel/fiber composite material with appropriate strength, the polymer solution is Inject into the airgel material, so that the polymer chains can evenly penetrate into the internal pores of the airgel material with the solvent, so that it forms an airgel composite material or airgel/fiber composite material containing a polymer solution; and in ( 6) In the solvent drying step, the polymer solution in the airgel composite material or airgel/fiber composite material will first go through a liquid-solid phase separation process to form a solvent-rich phase and a The solvent rich in the polymer phase, and the solvent rich in the solvent phase will gradually vaporize during the phase separation; on the other hand, the polymer chains in the polymer rich phase will be preferentially covered on the airgel skeleton or fiber surface, and then in the air A polymer film is formed on the surface of the gel skeleton or fiber structure.
進一步的,以該高分子溶液整體而言,該高分子材料的濃度介於0.01 至 80.0wt%;其中,高分子材料濃度越低,高分子材料滲入氣凝膠內部孔洞效率越佳,所製備的兼具低熱傳與低介電高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料之孔洞含量越高,因此低熱傳與低介電性質越優越;相對地,高分子材料濃度越高,高分子材料披覆在矽基氣凝膠內部含量越高,所製備的兼具低熱傳與低介電高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料內部之高分子含量越高,因此產品強度越佳;是以,利用所添加之高分子溶液的濃度可以控制兼具低熱傳與低介電高分子/氣凝膠複合材料或氣凝膠複合材料高分子/纖維/氣凝膠複合材料的介電性質以及強度,最佳化的高分子溶液濃度介於5.0至30.0wt%。Furthermore, based on the overall polymer solution, the concentration of the polymer material is between 0.01 and 80.0wt%; among them, the lower the concentration of the polymer material, the better the efficiency of the polymer material penetrating into the internal pores of the airgel. The prepared The higher the pore content of polymer/aerogel composites or polymer/fiber/aerogel composites that have both low heat transfer and low dielectric properties, the more superior their low heat transfer and low dielectric properties are; in contrast, the polymer/fiber/aerogel composite has better properties. The higher the material concentration, the higher the content of polymer material coated inside the silicon-based aerogel. The prepared polymer/airgel composite material or polymer/fiber/airgel composite material has both low heat transfer and low dielectric properties. The higher the polymer content inside the material, the better the product strength; therefore, the concentration of the added polymer solution can be used to control both low heat transfer and low dielectric polymer/airgel composite or airgel composite Materials: Dielectric properties and strength of polymer/fiber/airgel composite materials, the optimized polymer solution concentration is between 5.0 and 30.0wt%.
在上述(6)溶劑乾燥步驟中,該高分子材料為一熱塑性高分子(Thermal plastic polymer)時,例如聚乙烯(polyethylene)、聚酯(polyether)或聚醯胺(polyamide),於溶劑乾燥完畢之後,即可形成高強度、高韌性、輕量化且低介電的熱塑性高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料;具體而言,例如:聚乙烯(Polyethylene, PE)、聚丙烯(Polypropylene, PP)、聚碳酸酯(Polycarbonate, PC)、聚醯胺(Polyamide, PA)、聚醯胺酯(Polyesteramide, PEA)、聚酯(Polyethylene terephthalate, PET)、或聚四氟乙烯(Polytetrafluoroethylene, PTFE)或其組合;相對的,當該高分子材料為熱固性高分子(Thermal setting polymer),例如,環氧樹酯、聚醯亞胺、聚苯醚,於(6) 溶劑乾燥步驟完畢之後,進行(7) 交聯固化步驟,將獲得具高耐熱性、高強度、輕量化且兼具低熱傳與低介電熱固性高分子/氣凝膠複合材料或熱固性高分子/纖維/氣凝膠複合材料。具體而言,例如環氧樹酯(Epoxy)、聚醯亞胺(Polyimide,PI)、聚醚醯亞胺(Polyetherimine, PEI)、聚苯醚(Polyphenylene oxide, PPO)、聚苯硫醚(Polyphenylene sulfide, PPS)、聚醚酮液晶高分子(Polyetherketone, PEK)、聚醚醚酮液晶高分子(Polyetheretherketone, PEEK)或其組合。In the above (6) solvent drying step, when the polymer material is a thermoplastic polymer, such as polyethylene, polyester or polyamide, the solvent drying is completed. After that, a high-strength, high-toughness, lightweight and low-dielectric thermoplastic polymer/aerogel composite material or polymer/fiber/aerogel composite material can be formed; specifically, for example: polyethylene, PE), polypropylene (PP), polycarbonate (PC), polyamide (PA), polyesteramide (PEA), polyester (Polyethylene terephthalate, PET), or polyethylene Polytetrafluoroethylene (PTFE) or a combination thereof; on the contrary, when the polymer material is a thermosetting polymer (Thermal setting polymer), such as epoxy resin, polyimide, polyphenylene ether, in (6) After the solvent drying step is completed, proceed to (7) cross-linking and curing step to obtain a thermosetting polymer/aerogel composite material or thermosetting polymer/ Fiber/aerogel composites. Specifically, for example, epoxy resin (Epoxy), polyimide (PI), polyetherimine (PEI), polyphenylene oxide (PPO), polyphenylene sulfide (Polyphenylene) sulfide (PPS), polyetherketone liquid crystal polymer (Polyetherketone, PEK), polyetheretherketone liquid crystal polymer (Polyetheretherketone, PEEK) or a combination thereof.
在上述 (6) 溶劑乾燥步驟中,兼具低熱傳與低介電之含高分子氣凝膠複合材料內部的有機溶劑伴隨著汽化,使該含高分子溶液氣凝膠複合材料逐漸乾燥,此處溶劑乾燥溫度隨高分子溶液的混合溶劑沸點而定;在一些實施例中,混合溶劑為乙醇,其溶劑乾燥溫度為60至75℃;在另一些實施例中,混合溶劑為丁酮,其溶劑乾燥溫度為80至90℃;是以,乾燥後所得之含高分子溶液之氣凝膠複合材料不會因乾燥溫度過高所產生的大量氣泡導致變形。In the above (6) solvent drying step, the organic solvent inside the polymer-containing airgel composite material with both low heat transfer and low dielectric is vaporized, causing the polymer-containing solution airgel composite material to gradually dry. The solvent drying temperature depends on the boiling point of the mixed solvent of the polymer solution; in some embodiments, the mixed solvent is ethanol, and its solvent drying temperature is 60 to 75°C; in other embodiments, the mixed solvent is butanone, which The solvent drying temperature is 80 to 90°C; therefore, the airgel composite material containing the polymer solution obtained after drying will not be deformed due to a large number of bubbles generated by excessive drying temperature.
進一步,在上述(6)溶劑乾燥步驟中,當該高分子溶液係熱固性高分子溶液,則在該溶劑乾燥後進一步包括(7) 交聯固化步驟:在一特定熱固性高分子之交聯固化溫度下,使熱固性高分子鏈之間以及熱固性高分子鏈與氣凝膠分子之間進行交聯反應並結合固化。如熱固性高分子為環氧樹脂(Epoxy),該交聯固化溫度為175至200℃,最佳地為185至190℃;另一方面,當熱固性高分子為聚醯亞胺(polyimide),該交聯固化溫度為120至325℃,較佳地為120、200、260至325℃一系列交聯固化溫度,在一些實施例中,最高交聯固化溫度為320至325℃;在該(7)交聯固化步驟中,於特定的交聯溫度下,披覆在氣凝膠網絡骨架上的高分子分子鏈相互之間進行交聯反應,使得高分子鏈之間,或高分子與氣凝膠分子之間產生交聯反應而形成三次元網狀結構,因此在此交聯固化後,高分子交聯後將獲得具高耐熱性、高強度、輕量化且低介電性質之高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料。Furthermore, in the above (6) solvent drying step, when the polymer solution is a thermosetting polymer solution, then after the solvent is dried, it further includes (7) cross-linking and curing step: a cross-linking and curing temperature of a specific thermosetting polymer. Under this condition, the thermosetting polymer chains and the thermosetting polymer chains and the airgel molecules undergo cross-linking reactions and are combined and solidified. If the thermosetting polymer is epoxy, the cross-linking curing temperature is 175 to 200°C, preferably 185 to 190°C; on the other hand, when the thermosetting polymer is polyimide, the crosslinking curing temperature is 175 to 200°C, preferably 185 to 190°C. The cross-linking curing temperature is 120 to 325°C, preferably a series of cross-linking curing temperatures of 120, 200, 260 to 325°C. In some embodiments, the highest cross-linking curing temperature is 320 to 325°C; in this (7 ) In the cross-linking and curing step, at a specific cross-linking temperature, the polymer chains covering the airgel network skeleton undergo cross-linking reactions with each other, so that between the polymer chains, or between the polymer and the airgel A cross-linking reaction occurs between the glue molecules to form a three-dimensional network structure. Therefore, after the cross-linking is solidified, the polymer will be cross-linked to obtain a polymer with high heat resistance, high strength, lightweight and low dielectric properties. Airgel composites or polymer/fiber/aerogel composites.
進一步,上述製備方法中,該矽氧烷化合物包含四甲氧基矽烷(Tetramethoxysilane, TMOS)、四乙氧基矽烷(Tetraethoxysilane, TEOS)或其組合;該疏水性改質矽氧烷化合物包含甲基三甲氧基矽烷(Methyltrimethoxysilane,MTMS)、甲基三乙氧基矽烷(Methyltriethoxysilane,MTES)或其組合,其中,在整體混合溶液中,該矽氧烷化合物與該疏水性改質矽氧烷化合物之含量莫爾比介於0:100 mol%至40:60 mol%;添加該疏水改質矽氧烷化合物其目的在於降低氣凝膠結構於乾燥過程產生的龜裂現象,並降低熱傳導性質及其介電常數,以達到減少其介電損耗;另一方面,添加該矽氧烷化合物其目的則在於提供調控氣凝膠結構內部微細結構及增加結構中之孔洞結構及孔隙率。Further, in the above preparation method, the siloxane compound includes tetramethoxysilane (TMOS), tetraethoxysilane (TEOS) or a combination thereof; the hydrophobic modified siloxane compound includes methyl Trimethoxysilane (Methyltrimethoxysilane, MTMS), methyltriethoxysilane (MTES) or a combination thereof, wherein, in the overall mixed solution, the siloxane compound and the hydrophobic modified siloxane compound are The content molar ratio ranges from 0:100 mol% to 40:60 mol%; the purpose of adding this hydrophobic modified siloxane compound is to reduce the cracking phenomenon produced by the airgel structure during the drying process, and to reduce the thermal conductivity and its The dielectric constant is to reduce the dielectric loss; on the other hand, the purpose of adding the siloxane compound is to regulate the internal fine structure of the airgel structure and increase the hole structure and porosity in the structure.
進一步,上述製備方法中,該乙醇水溶液包含乙醇、去離子水、蒸餾水、二次蒸餾水或其組合。Further, in the above preparation method, the ethanol aqueous solution contains ethanol, deionized water, distilled water, double distilled water or a combination thereof.
進一步,上述製備方法中,該纖維材料包括玻璃纖維、陶瓷纖維、岩棉纖維、聚丙烯纖維、尼龍纖維、聚酯纖維等無機與有機纖維等所製備之各類多孔隙蓆狀、紙狀、毯狀、繩狀、板狀或其組合。Furthermore, in the above preparation method, the fiber material includes various types of porous mat-like, paper-like, and other inorganic and organic fibers prepared from glass fiber, ceramic fiber, rock wool fiber, polypropylene fiber, nylon fiber, polyester fiber, etc. Blanket, rope, plate or combination thereof.
進一步,上述製備方法中,該高分子溶液濃度包含0.01wt%至 80wt%之高分子溶質。Further, in the above preparation method, the concentration of the polymer solution contains 0.01wt% to 80wt% of the polymer solute.
進一步,上述製備方法中,該高分子溶液的均勻滲入加工包含壓吸、含浸、噴淋、注射、灌注或其組合。Furthermore, in the above preparation method, the uniform infiltration process of the polymer solution includes pressure suction, impregnation, spraying, injection, perfusion or a combination thereof.
進一步,上述製備方法中,兼具低熱傳與低介電氣凝膠複合材料係一多孔性結構,其孔隙率介於40.0至95.0%,其密度介於0.180至0.600 g/cm 3,其介電常數介於1.20至1.87,其介電損耗介於0.0026至0.0078。 Furthermore, in the above preparation method, the electrogel composite material with both low heat transfer and low dielectric gel has a porous structure, its porosity ranges from 40.0 to 95.0%, and its density ranges from 0.180 to 0.600 g/cm 3 . The electrical constant ranges from 1.20 to 1.87, and its dielectric loss ranges from 0.0026 to 0.0078.
本發明所提供的製備方法可快速生產高強度且低介電損耗之高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料,首先利用改良式凝膠熔膠技術在低有機溶劑、低酸鹼離子濃度下以乳化機或均質機等設備進行快速縮合分散製備低介電氣凝膠材料或氣凝膠/纖維複合材料;更進一步,將該兼具低熱傳與低介電之氣凝膠材料或氣凝膠/纖維複合材與高分子溶液以進行均勻壓吸含浸與複合,隨後進行溶劑乾燥與交聯固化以製備出高強度、高韌性、低熱傳且低介電之高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料,其中包含熱固形以及熱塑性高分子。The preparation method provided by the present invention can quickly produce high-strength and low-dielectric loss polymer/aerogel composite materials or polymer/fiber/aerogel composite materials. Low dielectric aerogel materials or aerogel/fiber composite materials are prepared by rapid condensation and dispersion using equipment such as emulsifiers or homogenizers under solvents and low acid and alkali ion concentrations; further, the materials with both low heat transfer and low dielectric properties are Airgel materials or airgel/fiber composites and polymer solutions are uniformly pressed, impregnated and compounded, followed by solvent drying and cross-linking curing to prepare high strength, high toughness, low heat transfer and low dielectric properties. Molecular/aerogel composites or polymer/fiber/aerogel composites, which contain thermoset and thermoplastic polymers.
本發明所提供之製備方法具有以下功效:The preparation method provided by the invention has the following effects:
1、本發明所提供的製備方法修改了傳統溶膠凝膠反應製程以製備兼具低熱傳與低介電氣凝膠材料,在氣凝膠之溶膠凝膠製程中不添加醇類以外之其它有機溶劑、界面活性劑及接著劑等物質,因此所製備之氣凝膠複合材料內部導電雜質含量明顯降低,且在製程中無須利用長時間溶劑置換或利用去離子水進行導電雜質沖洗,整體製程簡單,安全性高、且更具經濟優勢,批次製程速度可縮小至12至48小時內完成,或以連續生產方式製備數十至數百微米氣凝膠以及高分子/氣凝膠複合薄膜或薄板等,提高生產效率。1. The preparation method provided by the present invention modifies the traditional sol-gel reaction process to prepare aerogel materials with both low heat transfer and low dielectric. No other organic solvents other than alcohols are added in the sol-gel process of aerogels. , surfactants, adhesives and other substances, therefore the content of conductive impurities inside the prepared airgel composite material is significantly reduced, and there is no need to use long-term solvent replacement or use deionized water to flush conductive impurities during the process. The overall process is simple. It is highly safe and has more economical advantages. The batch process speed can be reduced to 12 to 48 hours, or tens to hundreds of micron aerogels and polymer/aerogel composite films or sheets can be prepared in a continuous production manner. etc. to improve production efficiency.
2、本發明所提供的製備方法中,可利用矽氧烷化合物及疏水改質矽氧烷化合物之比例、分散水含量、攪拌速率、酸觸媒及鹼觸媒含量及比例等因素,進而可輕易調控兼具低熱傳與低介電氣凝膠材料的孔隙率、孔徑大小與氣凝膠結構緻密性質。2. In the preparation method provided by the present invention, factors such as the ratio of the siloxane compound and the hydrophobic modified siloxane compound, the dispersion water content, the stirring rate, the content and ratio of the acid catalyst and the alkali catalyst can be used, and then the Easily control the porosity, pore size and dense structure of aerogel materials with low heat transfer and low dielectric properties.
3、本發明所提供的製備方法中,無添加乙醇以外之有機溶劑例如烷類、芳香類或無機溶劑如氨水等,且不添加界面活性劑、有機接著劑或無機接著劑,並將酸觸媒及鹼觸媒控制在極低濃度,可進一步調控所製備之氣凝膠材料的熱傳導性質與低介電性質,以提高氣凝膠複合材料的實用性質。3. In the preparation method provided by the present invention, no organic solvents other than ethanol, such as alkanes, aromatic solvents, or inorganic solvents such as ammonia, are added, and no surfactants, organic adhesives, or inorganic adhesives are added, and acid contact By controlling the solvent and alkali catalyst at very low concentrations, the thermal conductivity and low dielectric properties of the prepared airgel material can be further controlled to improve the practical properties of the airgel composite material.
4、本發明所提製備方法所製備的兼具低熱傳與低介電氣凝膠材料或氣凝膠/纖維複合材料可進一步利用高分子溶液壓吸含浸製備高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料,其利用各種高分子溶液含浸、噴淋以製備出高強度、高孔隙度、低熱傳及低介電的氣凝膠複合材料。4. The aerogel material or aerogel/fiber composite material with both low heat transfer and low dielectric prepared by the preparation method of the present invention can further be prepared by pressure impregnation with a polymer solution to prepare a polymer/aerogel composite material or high-polymer composite material. Molecular/fiber/airgel composite materials use various polymer solutions to impregnate and spray to prepare airgel composite materials with high strength, high porosity, low heat transfer and low dielectric.
5、本發明所提供的製備方法中,在含浸高分子溶液步驟中高分子鏈隨溶劑均勻地滲入矽基氣凝膠材料內部孔洞,進而形成氣凝膠結構與高分子複合形成兼具低熱傳與低介電高分子/氣凝膠複合材料或高分子/纖維/氣凝膠複合材料;其中可通過高分子的化學結構及其濃度之調節以達到控制兼具低熱傳與低介電氣凝膠複合材料之強度、耐用溫度、與其他材料之間結合性、熱傳導係數以及低介電性質;其中,透過本發明所提供的製備方法所生產之產品,其孔隙率介於40.0至95.0%,其密度介於0.180至0.600 g/cm 3,其介電常數介於1.20至1.87,其介電損耗介於0.0025至0.0085。 5. In the preparation method provided by the present invention, in the step of impregnating the polymer solution, the polymer chain uniformly penetrates into the internal pores of the silicon-based airgel material with the solvent, thereby forming an airgel structure and polymer composite to form an aerosol with both low heat transfer and Low dielectric polymer/aerogel composite materials or polymer/fiber/aerogel composite materials; the chemical structure of the polymer and its concentration can be adjusted to achieve control of both low heat transfer and low dielectric aerogel composites The material's strength, durable temperature, bonding with other materials, thermal conductivity coefficient and low dielectric properties; among them, the porosity of the product produced by the preparation method provided by the invention is between 40.0 and 95.0%, and its density Between 0.180 and 0.600 g/cm 3 , its dielectric constant ranges from 1.20 to 1.87, and its dielectric loss ranges from 0.0025 to 0.0085.
請參閱圖1,係本發明所提供一種兼具低熱傳與低介電氣凝膠複合材料製備方法之第一實施態樣,其步驟包含:混合水解步驟(S1)、分散縮合步驟(S2)、成型步驟(S3)及乾燥步驟(S4),其中:Please refer to Figure 1, which is a first embodiment of a method for preparing a low heat transfer and low dielectric electrogel composite material provided by the present invention. The steps include: a mixing and hydrolysis step (S1), a dispersion and condensation step (S2), Forming step (S3) and drying step (S4), wherein:
混合水解步驟(S1):於一乙醇水溶液中加入一矽氧烷前軀體以形成一混合溶液,其中,該矽氧烷前軀體包括一疏水改質矽氧烷化合物、一矽氧烷化合物或其組合,隨後將一酸觸媒加入該混合溶液中以進行水解反應;在一些實施例中,該矽氧烷化合物(alkoxysilane)包含四甲氧基矽烷(tetramethoxysilane,TMOS)、四乙氧基矽烷(tetraethoxysilane,TEOS)或其組合,該疏水改質矽氧烷化合物包含疏水性甲基三甲氧基矽烷(methyltrimethoxysilane,MTMS)、甲基三乙氧基矽烷(methyltriethoxysilane,MTES)或其組合;添加該疏水改質矽氧烷的目的在於降低氣凝膠結構於乾燥過程的龜裂現象,而添加該矽氧烷的目的在於調控氣凝膠結構內部微細結構以增加結構中的孔洞含量;在一些實施例中,以整體混合溶液來說,該矽氧烷化合物及疏水改質矽氧烷的總含量莫爾百分比為0.5mol%至40mol%之間,而該乙醇水溶液的含量莫爾比為99.5mol%至60mol%之間。Mixed hydrolysis step (S1): Add a siloxane precursor to an ethanol aqueous solution to form a mixed solution, wherein the siloxane precursor includes a hydrophobically modified siloxane compound, a siloxane compound or other combination, and then an acid catalyst is added to the mixed solution to perform a hydrolysis reaction; in some embodiments, the siloxane compound (alkoxysilane) includes tetramethoxysilane (TMOS), tetraethoxysilane ( tetraethoxysilane (TEOS) or a combination thereof, the hydrophobic modified siloxane compound includes hydrophobic methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES) or a combination thereof; adding the hydrophobic The purpose of modifying siloxane is to reduce the cracking phenomenon of the airgel structure during the drying process, and the purpose of adding the siloxane is to regulate the internal fine structure of the airgel structure to increase the hole content in the structure; in some embodiments In terms of the overall mixed solution, the total molar content of the siloxane compound and hydrophobic modified siloxane is between 0.5 mol% and 40 mol%, and the molar content of the ethanol aqueous solution is 99.5 mol%. to 60mol%.
在一些實施例中,該矽氧烷化合物及該疏水改質矽氧烷化合物莫爾比由0:100至40:60;在一較佳實施例中,矽氧烷化合物及疏水改質矽氧烷化合物莫爾比為5:95;該乙醇水溶液中,乙醇及水莫爾比由0:100至50:50;在一較佳實施例中,乙醇及水莫爾比為15:85。In some embodiments, the molar ratio of the siloxane compound and the hydrophobically modified siloxane compound is from 0:100 to 40:60; in a preferred embodiment, the molar ratio of the siloxane compound and the hydrophobically modified siloxane compound is from 0:100 to 40:60. The molar ratio of the alkane compound is 5:95; in the ethanol aqueous solution, the molar ratio of ethanol and water is from 0:100 to 50:50; in a preferred embodiment, the molar ratio of ethanol and water is 15:85.
在充分混合矽氧烷化合物或疏水改質矽氧烷化合物與大量之含微量酸觸媒乙醇水溶液的混合過程中,同時進行水解反應(hydrolysis),其中,該酸觸媒乙醇水溶液之溶劑包括(1)乙醇、及(2)去離子水、處理水、二次處理水等之一種或不同組成的混合,該矽氧烷與疏水改質矽氧烷混合物之總含量與酸觸媒之含量的莫爾比為1:0.01至1:0.00005,當該矽氧烷與疏水改質矽氧烷混合溶液中該酸觸媒的含量比越高,水解速率越快;換句話說,酸觸媒的含量比越高,整體氣凝膠結構中離子含量越大,氣凝膠的介電損耗將會越大;於一較佳的實施例中,矽氧烷與疏水改質矽氧烷混合物之總含量與酸觸媒之含量的莫爾比為1:0.00014。In the process of fully mixing the siloxane compound or the hydrophobically modified siloxane compound with a large amount of ethanol aqueous solution containing a trace amount of acid catalyst, a hydrolysis reaction (hydrolysis) is performed simultaneously, wherein the solvent of the acid catalyst ethanol aqueous solution includes ( 1) ethanol, and (2) one or a mixture of different compositions of deionized water, treated water, secondary treated water, etc., the total content of the mixture of siloxane and hydrophobic modified siloxane and the content of the acid catalyst The molar ratio is 1:0.01 to 1:0.00005. When the content ratio of the acid catalyst in the mixed solution of siloxane and hydrophobic modified siloxane is higher, the hydrolysis rate is faster; in other words, the acid catalyst The higher the content ratio, the greater the ion content in the overall airgel structure, and the greater the dielectric loss of the airgel will be; in a preferred embodiment, the total of the mixture of siloxane and hydrophobic modified siloxane The molar ratio of the content to the acid catalyst content is 1:0.00014.
縮合分散步驟(S2):於該混合溶液中加入一分散水溶液,該分散水溶液包括一鹼觸媒,並利用乳化機或均質機等快速攪拌設備以高速攪拌使矽氧烷與疏水改質矽氧烷分子均勻分散形成一均勻的溶膠溶液;需進一步說明的是,在縮合反應中,可通過控制該縮合反應溫度,所添加去離子水的含量以及攪拌速率以調節縮合反應的速率,來控制所獲得的溶膠溶液內部氣凝膠微結構;該分散溶液與該乙醇水溶液之體積比由75:25至30:70;在一較佳實施例中,該分散溶液與該乙醇水溶液之體積比為50:50。Condensation and dispersion step (S2): Add a dispersion aqueous solution to the mixed solution. The dispersion aqueous solution includes an alkali catalyst, and use rapid stirring equipment such as an emulsifier or homogenizer to stir the siloxane and the hydrophobic modified silica at high speed. The alkane molecules are evenly dispersed to form a uniform sol solution; it should be further explained that in the condensation reaction, the condensation reaction temperature, the content of the added deionized water and the stirring rate can be adjusted to adjust the rate of the condensation reaction. The internal aerogel microstructure of the obtained sol solution; the volume ratio of the dispersion solution to the ethanol aqueous solution is from 75:25 to 30:70; in a preferred embodiment, the volume ratio of the dispersion solution to the ethanol aqueous solution is 50 :50.
在縮合反應中,溫度的提升有助於明顯縮短縮合反應時間,也就是說,即氣凝膠的凝膠化時間在該分散縮合步驟(S2)中有效的縮短;其中,於鹼觸媒與酸觸媒之含量當量數比為1.0:1.0時,該縮合反應溫度為20至55℃,縮合反應時間為20至250分鐘;在一些較佳實施例中,該縮合反應溫度為25℃,縮合反應時間約220分鐘,當該縮合反應溫度為50℃時,縮合反應時間約15分鐘。In the condensation reaction, the increase in temperature helps to significantly shorten the condensation reaction time, that is to say, the gelation time of the airgel is effectively shortened in the dispersion condensation step (S2); wherein, the alkali catalyst and When the acid catalyst content equivalent ratio is 1.0:1.0, the condensation reaction temperature is 20 to 55°C, and the condensation reaction time is 20 to 250 minutes; in some preferred embodiments, the condensation reaction temperature is 25°C, and the condensation reaction time is 25°C. The reaction time is about 220 minutes. When the condensation reaction temperature is 50°C, the condensation reaction time is about 15 minutes.
在另一些實施例中,鹼觸媒含量增加也會明顯縮短縮合反應時間,其中,1.0M鹼觸媒與1.0M酸觸媒的含量當量數比為0.8:1.0至2.0:1.0,縮合反應時間為360至約3分鐘;在一些實施例,該含量當量數比為0.8:1.0,縮合反應時間為360分鐘;在另一些較佳實施例中,該含量當量數比1.6:1.0,縮合反應時間約為10分鐘;需進一步說明的是,當該含量當量數比小於1.0:1.0時,縮合反應時間逐漸增加,而所製備的氣凝膠介電耗損會有明顯下降;當該含量當量數比大於1.0:1.0時,縮合反應時間逐漸減少,所製備之氣凝膠介電耗損卻會因離子含量而明顯上升;於本實施樣態之一較佳實施例中,該含量體積比為1.2:1.0。In other embodiments, increasing the content of alkali catalyst will also significantly shorten the condensation reaction time, wherein the equivalent ratio of the content of 1.0M alkali catalyst and 1.0M acid catalyst is 0.8:1.0 to 2.0:1.0, and the condensation reaction time is 360 to about 3 minutes; in some embodiments, the content equivalent ratio is 0.8:1.0, and the condensation reaction time is 360 minutes; in other preferred embodiments, the content equivalent ratio is 1.6:1.0, and the condensation reaction time About 10 minutes; it should be further explained that when the content equivalent ratio is less than 1.0:1.0, the condensation reaction time gradually increases, and the dielectric loss of the prepared airgel will decrease significantly; when the content equivalent ratio When the ratio is greater than 1.0:1.0, the condensation reaction time gradually decreases, but the dielectric loss of the prepared airgel will increase significantly due to the ion content; in a preferred embodiment of this implementation, the content volume ratio is 1.2: 1.0.
成型步驟(S3):將該溶膠溶液注入一模型中,促使該溶膠溶液進一步縮合形成一類固態氣凝膠結構,其中,該模型包括一成型模或一含纖維材料的成型模;在此成型步驟中,經乳化機等快速攪拌而形成均勻分散的矽氧烷分子以及疏水性矽氧烷分子在水的排斥作用力催化下加速相互聚集結合而形成三次元的矽氧烷網狀矽氧烷氣凝膠分子聚集體,矽氧烷氣凝膠分子的初始結構尺寸可控制在5至10奈米,初始結構再堆疊形成約50至100奈米的氣凝膠濕膠分子,50至100奈米氣凝膠濕膠分子更進一步堆疊而形成更大的聚集體,並相互連結成三次元網狀結構,形成穩定的含大量溶劑的類固態氣凝膠結構。Molding step (S3): Inject the sol solution into a model to promote further condensation of the sol solution to form a solid aerogel structure, wherein the model includes a molding mold or a molding mold containing fiber material; in this molding step In the process, evenly dispersed siloxane molecules and hydrophobic siloxane molecules are formed through rapid stirring by an emulsifier, etc., and the hydrophobic siloxane molecules accelerate their aggregation and combination with each other under the catalysis of the repulsive force of water to form a three-dimensional siloxane network siloxane gas. Gel molecule aggregates, the initial structural size of siloxane airgel molecules can be controlled at 5 to 10 nanometers, and the initial structures are stacked to form airgel wet glue molecules of about 50 to 100 nanometers, 50 to 100 nanometers The airgel wet glue molecules are further stacked to form larger aggregates, and are interconnected to form a three-dimensional network structure, forming a stable quasi-solid aerogel structure containing a large amount of solvent.
在另一些實施例中,將溶膠溶液注入含大量纖維材料模型中,該纖維材料包括無機纖維或有機纖維的蓆狀、紙狀、毯狀、板狀或其組合,將該溶膠溶液注入纖維材料中;在此條件下,矽氧烷氣凝膠分子在纖維表面吸附,並在纖維表面縮合堆疊成50至100奈米的氣凝膠濕膠分子,50至100奈米氣凝膠濕膠分子更進一步在纖維與纖維結構之間堆疊以形成三次元氣凝膠網狀結構,進而形成穩定且含有大量纖維的半固態氣凝膠結構;在該成型步驟中,該溶膠溶液可利用含浸技術、壓吸、噴淋、灌注、或真空吸附等技術於纖維材料上進行複合加工。In other embodiments, the sol solution is injected into a model containing a large amount of fibrous materials. The fibrous materials include inorganic fibers or organic fibers in the form of mats, paper, blankets, plates or combinations thereof, and the sol solution is injected into the fibrous materials. Medium; under this condition, siloxane airgel molecules are adsorbed on the fiber surface, and condense and stack on the fiber surface to form 50 to 100 nanometer airgel wet glue molecules, 50 to 100 nanometer airgel wet glue molecules Furthermore, the fibers and fiber structures are stacked to form a three-dimensional airgel network structure, thereby forming a stable semi-solid airgel structure containing a large number of fibers; in this molding step, the sol solution can use impregnation technology, pressure Suction, spraying, perfusion, or vacuum adsorption and other technologies are used to perform composite processing on fiber materials.
在一些實施例中,該纖維材料包括玻璃纖維、陶瓷纖維、岩棉纖維、聚丙烯纖維、尼龍纖維、聚酯纖維等無機與有機纖維等所製備之各類多孔隙蓆狀、紙狀、毯狀、繩狀、板狀或其組合。In some embodiments, the fiber material includes various types of porous mat-like, paper-like, and carpet-like materials prepared from inorganic and organic fibers such as glass fiber, ceramic fiber, rock wool fiber, polypropylene fiber, nylon fiber, polyester fiber, etc. Shape, rope, plate or combination thereof.
乾燥步驟(S4):於常壓下,在一乾燥溫度下使該類固體氣凝膠濕膠結構在一常壓條件下以高溫進行乾燥,以獲得結構均一之兼具低熱傳與低介電氣凝膠或氣凝膠/纖維複合材料;在一些實施例中,該乾燥溫度介於60至150℃。Drying step (S4): Dry the solid aerogel wet gel structure at a high temperature under normal pressure at a drying temperature to obtain a uniform structure with both low heat transfer and low dielectric properties. Gel or aerogel/fiber composite; in some embodiments, the drying temperature ranges from 60 to 150°C.
進一步地,該乾燥步驟包括溶劑汽化步驟(S4-1)及溶劑突沸步驟(S4-2)。Further, the drying step includes a solvent vaporization step (S4-1) and a solvent bumping step (S4-2).
溶劑汽化步驟(S4-1):將類固體氣凝膠濕膠結構放置於一汽化溫度的環境下,在同時令類固體氣凝膠濕膠結構在一常壓狀態下,利用溫度讓大量含醇類及水分子快速共沸汽化而將類固體氣凝膠濕膠結構醇類及水分子共沸蒸餾乾燥;在一些實施例中,該汽化溫度為60至110℃。Solvent vaporization step (S4-1): Place the quasi-solid aerogel wet glue structure in an environment with a vaporization temperature, and at the same time put the quasi-solid aerogel wet glue structure under a normal pressure state, and use the temperature to let a large amount of solvent containing Alcohols and water molecules are rapidly azeotropically vaporized to dry the alcohols and water molecules in a solid aerogel-like wet glue structure; in some embodiments, the vaporization temperature is 60 to 110°C.
溶劑突沸步驟(S4-2):將該汽化完畢之含微量溶劑之氣凝膠調整溫度至溶劑突沸溫度,使氣凝膠複合材內部所含有的微量醇類及水分子產生快速汽化突沸現象;在一些實施例中,該突沸溫度為110至150℃;需進一步說明的是,在該突沸溫度所創造的高溫環境下,氣凝膠內部微量醇類及水分子所產生的突沸現象,促使氣凝膠內部產生一正壓力,該正壓力可以抑制氣凝膠結構在乾燥過程中產生收縮或崩潰的現象;另一方面,該正壓力得令氣凝膠網狀結構膨脹而產生多孔性;是以,該製備方法可用以製備低密度且高孔隙率的氣凝膠或氣凝膠/纖維複合材料,其純氣凝膠薄膜或板材之熱傳導性質k約為0.013至0.018W/mk;氣凝膠/纖維薄膜或板材之熱傳導性質k約為0.022至0.032W/mk。Solvent bumping step (S4-2): Adjust the temperature of the vaporized aerogel containing a trace amount of solvent to the solvent bumping temperature, so that the trace amounts of alcohols and water molecules contained in the airgel composite material will produce a rapid vaporization and bumping phenomenon; In some embodiments, the bumping temperature is 110 to 150°C; it should be further explained that in the high-temperature environment created by the bumping temperature, the bumping phenomenon caused by trace amounts of alcohol and water molecules inside the airgel promotes the A positive pressure is generated inside the gel, which can inhibit the shrinkage or collapse of the airgel structure during the drying process; on the other hand, the positive pressure causes the airgel network structure to expand and create porosity; it is Therefore, this preparation method can be used to prepare low-density and high-porosity aerogels or aerogel/fiber composite materials. The thermal conductivity k of the pure aerogel film or sheet is about 0.013 to 0.018W/mk; air condensation The thermal conductivity property k of glue/fiber film or plate is about 0.022 to 0.032W/mk.
此外,由於無添加大量有機溶劑如烷類、芳香苯類或無機溶劑如氨類,且無添加界面活性劑,因此在乾燥過程較為安全且可製備出更高純度的氣凝膠產品。因所製備的高孔隙率氣凝膠材料或氣凝膠/纖維複合材料中不含各類雜質,所以產品的熱傳導性質、介電常數及介電損耗均更低。In addition, since no large amounts of organic solvents such as alkanes, aromatic benzene or inorganic solvents such as ammonia are added, and no surfactants are added, the drying process is safer and higher purity aerogel products can be produced. Because the prepared high-porosity airgel material or airgel/fiber composite material does not contain various impurities, the thermal conductivity properties, dielectric constant and dielectric loss of the product are all lower.
請參閱圖2,係依前述製備方法所製備之兼具低熱傳與低介電之氣凝膠材料及氣凝膠/纖維複合材料之外觀照片,其外觀為一白色厚板或薄板結構。Please refer to Figure 2, which is a photo of the appearance of the airgel material and airgel/fiber composite material with both low heat transfer and low dielectric prepared by the aforementioned preparation method. Its appearance is a white thick plate or thin plate structure.
請參閱圖3,係依前述製備方法所製備之兼具低熱傳與低介電的純氣凝膠板斷面的掃描式電子顯微鏡SEM觀測照片,放大倍率為3000倍;在電子顯微鏡觀測下,其微觀結構呈現出尺寸介於次微米至微米級圓球狀氣凝膠聚集的三次元網狀團聚體;此外,由圖3可看出,兼具低熱傳與低介電氣凝膠材料中除了氣凝膠團聚結構之外,還具備了大量的數微米至次微米級孔洞串聯結構,這些微細孔洞串聯而形成的孔洞結構賦予了其低熱傳及低介電的特性。Please refer to Figure 3, which is a scanning electron microscope SEM observation photo of the cross section of a pure aerogel plate with low heat transfer and low dielectric prepared according to the aforementioned preparation method, with a magnification of 3000 times; under electron microscope observation, Its microstructure presents a three-dimensional network agglomerate of spherical aerogels with sizes ranging from submicron to micron. In addition, as can be seen from Figure 3, among the electrogel materials with both low heat transfer and low dielectric In addition to the agglomeration structure of the airgel, it also has a large number of micron to sub-micron pores in series. The pore structure formed by the series connection of these micro-pores gives it low heat transfer and low dielectric properties.
請參閱圖4,係兼具低熱傳與低介電的氣凝膠/纖維複合材料斷面之SEM掃描式電子顯微鏡觀測照片,放大倍率為250倍;由圖4顯示了,本實施例中兼具低熱傳與低介電氣凝膠/纖維複合材料是由大量次微米級氣凝膠分子吸附在纖維表面並在纖維之間孔洞相互聚集成三次元的氣凝膠網狀結構,且在整體聚集結構中依然含有大量的孔洞,相關孔洞提供氣凝膠/纖維複合材料兼具低熱傳與低介電性質,且大量纖維提升了氣凝膠/纖維複合材料適當強度等性質。Please refer to Figure 4, which is an SEM scanning electron microscope observation photo of the cross section of an aerogel/fiber composite material with both low heat transfer and low dielectric. The magnification is 250 times. Figure 4 shows that in this embodiment, both The electrogel/fiber composite material with low heat transfer and low dielectric is composed of a large number of sub-micron airgel molecules adsorbed on the surface of the fiber and the pores between the fibers aggregate into a three-dimensional airgel network structure, which is aggregated as a whole. The structure still contains a large number of holes. The relevant holes provide the airgel/fiber composite material with both low heat transfer and low dielectric properties, and the large number of fibers improves the appropriate strength and other properties of the airgel/fiber composite material.
請參閱圖5,係說明本發明之第二實施樣態之具體製備流程,其進一步利用大量高分子溶液含浸或注入上述該兼具低熱傳與低介電之氣凝膠材料或氣凝膠/纖維複合材料,以製備成兼具高強度、低熱傳與低介電分子/氣凝膠複合材或高分子/纖維/氣凝膠複合材;於第二實施樣態中,該高分子/氣凝膠複合材或高分子/纖維/氣凝膠複合材之製備方法包含步驟:混合水解步驟(S1”)、分散縮合步驟(S2”)、成型步驟(S3”)、乾燥步驟(S4”)、含浸高分子溶液步驟(S5”)、溶劑乾燥步驟(S6”)及交聯固化步驟(S7”),其中:Please refer to Figure 5, which illustrates the specific preparation process of the second embodiment of the present invention, which further utilizes a large amount of polymer solution to impregnate or inject the above-mentioned airgel material or aerogel/ which has both low heat transfer and low dielectric. Fiber composite materials are prepared into high strength, low heat transfer and low dielectric molecule/airgel composite materials or polymer/fiber/airgel composite materials; in the second embodiment, the polymer/airgel composite material The preparation method of gel composite material or polymer/fiber/airgel composite material includes steps: mixing and hydrolysis step (S1”), dispersion and condensation step (S2”), molding step (S3”), and drying step (S4”) , impregnating polymer solution step (S5”), solvent drying step (S6”) and cross-linking curing step (S7”), among which:
混合水解步驟(S1”):於一乙醇水溶液中加入一矽氧烷前軀體以形成一混合溶液,其中,該矽氧烷前軀體包括一疏水改質矽氧烷化合物、一矽氧烷化合物或其組合,隨後將一酸觸媒加入該混合溶液中以進行水解反應,其中,該矽氧烷化合物(alkoxysilane)包含四甲氧基矽烷(tetramethoxysilane,TMOS)、四乙氧基矽烷(tetraethoxysilane,TEOS)或其組合,該疏水改質矽氧烷化合物包含疏水性甲基三甲氧基矽烷(methyltrimethoxysilane,MTMS)、甲基三乙氧基矽烷(methyltriethoxysilane,MTES)或其組合;在一些實施例中,以整體混合溶液來說,該矽氧烷化合物及疏水改質矽氧烷的總含量莫爾百分比為0.5mol%至40mol%之間,而該乙醇水溶液的含量莫爾比為99.5mol%至60mol%之間。Mixed hydrolysis step (S1"): Add a siloxane precursor to an ethanol aqueous solution to form a mixed solution, wherein the siloxane precursor includes a hydrophobically modified siloxane compound, a siloxane compound or Its combination, and then an acid catalyst is added to the mixed solution to perform a hydrolysis reaction, wherein the siloxane compound (alkoxysilane) includes tetramethoxysilane (TMOS), tetraethoxysilane (TEOS) ) or a combination thereof, the hydrophobic modified siloxane compound includes hydrophobic methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES) or a combination thereof; in some embodiments, For the entire mixed solution, the total molar content of the siloxane compound and hydrophobic modified siloxane is between 0.5 mol% and 40 mol%, and the molar content of the ethanol aqueous solution is between 99.5 mol% and 60 mol%. between %.
在一些實施例中,該矽氧烷化合物及該疏水改質矽氧烷化合物莫爾比由0:100至40:60;在一較佳實施例中,矽氧烷化合物及疏水改質矽氧烷化合物莫爾比為5:95;該乙醇水溶液中,乙醇及水莫爾比由0.01:100至50:50;在一較佳實施例中,乙醇及水莫爾比為15:85。In some embodiments, the molar ratio of the siloxane compound and the hydrophobically modified siloxane compound is from 0:100 to 40:60; in a preferred embodiment, the molar ratio of the siloxane compound and the hydrophobically modified siloxane compound is from 0:100 to 40:60. The molar ratio of the alkane compound is 5:95; in the ethanol aqueous solution, the molar ratio of ethanol and water is from 0.01:100 to 50:50; in a preferred embodiment, the molar ratio of ethanol and water is 15:85.
在充分混合矽氧烷化合物或疏水改質矽氧烷化合物與大量之含微量酸觸媒乙醇水溶液的混合過程中,同時進行水解反應(hydrolysis),其中,該乙醇水溶液包括(1)乙醇、及(2)去離子水、處理水、二次處理水等之一種或不同組成的混合,該矽氧烷與疏水改質矽氧烷混合物之總含量與酸觸媒之含量的莫爾比為1:0.01至1:0.00005;於一較佳的實施例中,矽氧烷與疏水改質矽氧烷混合物之總含量與酸觸媒之含量的莫爾比為1:0.00014。In the process of fully mixing the siloxane compound or the hydrophobically modified siloxane compound with a large amount of ethanol aqueous solution containing a trace amount of acid catalyst, a hydrolysis reaction (hydrolysis) is performed simultaneously, wherein the ethanol aqueous solution includes (1) ethanol, and (2) One or a mixture of different compositions of deionized water, treated water, secondary treated water, etc., the molar ratio of the total content of the mixture of siloxane and hydrophobic modified siloxane to the content of the acid catalyst is 1 : 0.01 to 1:0.00005; in a preferred embodiment, the molar ratio of the total content of the mixture of siloxane and hydrophobic modified siloxane to the content of the acid catalyst is 1:0.00014.
分散縮合步驟(S2”):於該混合溶液中加入一分散溶液,該分散溶液包括一鹼觸媒,並利用乳化機或均質機等快速攪拌設備以高速攪拌使矽氧烷與疏水改質矽氧烷分子均勻分散形成一均勻的溶膠溶液;該分散溶液與該乙醇水溶液之體積比由75:25至30:70;在一較佳實施例中,該分散溶液與該乙醇水溶液之體積比為50:50。Dispersion condensation step (S2"): Add a dispersion solution including an alkali catalyst to the mixed solution, and use rapid stirring equipment such as an emulsifier or homogenizer to stir the siloxane and hydrophobic modified silicon at high speed. Oxane molecules are uniformly dispersed to form a uniform sol solution; the volume ratio of the dispersion solution to the ethanol aqueous solution is from 75:25 to 30:70; in a preferred embodiment, the volume ratio of the dispersion solution to the ethanol aqueous solution is 50:50.
在一些實施例中,鹼觸媒與酸觸媒之含量當量數比為1.0:1.0時,該縮合反應溫度為20至55℃,縮合反應時間為20至250分鐘;在一些較佳實施例中,該縮合反應溫度為25℃,縮合反應時間約220分鐘,當該縮合反應溫度為50℃時,縮合反應時間約25分鐘。In some embodiments, when the equivalent ratio of the content of alkali catalyst and acid catalyst is 1.0:1.0, the condensation reaction temperature is 20 to 55°C, and the condensation reaction time is 20 to 250 minutes; in some preferred embodiments , the condensation reaction temperature is 25°C, and the condensation reaction time is about 220 minutes. When the condensation reaction temperature is 50°C, the condensation reaction time is about 25 minutes.
在另一些實施例中,1.0M鹼觸媒與1.0M酸觸媒的當量數比為0.8:1.0至2.0:1.0,縮合反應時間為約3至360分鐘;在一些實施例,該當量數比為0.8:1.0,縮合反應時間為360分鐘;在另一些較佳實施例中,該當量數比1.6:1.0,縮合反應時間約為10分鐘;於本實施樣態之一較佳實施例中,該當量數比為1.2:1.0。In other embodiments, the equivalent ratio of 1.0M alkali catalyst and 1.0M acid catalyst is 0.8:1.0 to 2.0:1.0, and the condensation reaction time is about 3 to 360 minutes; in some embodiments, the equivalent ratio is 0.8:1.0, and the condensation reaction time is 360 minutes; in other preferred embodiments, the equivalent ratio is 1.6:1.0, and the condensation reaction time is about 10 minutes; in one preferred embodiment of this embodiment, The equivalent number ratio is 1.2:1.0.
成型步驟(S3”):將該溶膠溶液注入一模型中,促使該溶膠溶液進一步縮合形成一類固態氣凝膠結構,該模型包括一成型模或一含纖維的成型模;在一些實施例中,該基材包括一成型模,在此成型步驟中,經乳化機等快速攪拌而形成均勻分散的矽氧烷分子以及疏水性矽氧烷分子在水的排斥作用力催化下加速相互聚集結合而形成三次元的矽氧烷網狀過縮合反應而聚集形成矽氧烷氣凝膠分子聚集體,矽氧烷氣凝膠分子的初始結構尺寸可控制在5至10奈米,初始結構再堆疊形成約50至100奈米的氣凝膠濕膠分子,50至100奈米氣凝膠濕膠分子更進一步堆疊而形成更大的聚集體,並相互連結成三次元網狀結構,形成穩定的含大量溶劑的類固態氣凝膠結構。Molding step (S3″): Inject the sol solution into a mold to promote further condensation of the sol solution to form a solid aerogel structure. The mold includes a molding mold or a fiber-containing molding mold; in some embodiments, The base material includes a molding mold. In this molding step, uniformly dispersed siloxane molecules are formed through rapid stirring by an emulsifier, and hydrophobic siloxane molecules are accelerated to aggregate and combine with each other under the catalysis of the repulsive force of water to form The three-dimensional siloxane network aggregates through a condensation reaction to form a siloxane airgel molecular aggregate. The initial structural size of the siloxane airgel molecules can be controlled at 5 to 10 nanometers. The initial structure is then stacked to form approximately The airgel wet glue molecules of 50 to 100 nanometers are further stacked to form larger aggregates, and are connected to each other into a three-dimensional network structure to form a stable, large-containing Solvent-like solid aerogel structure.
在一些實施例中,該纖維材料包括無機纖維或有機纖維的蓆狀、紙狀、毯狀、板狀或其組合,將溶膠溶液注入纖維材料中;在此條件下,矽氧烷氣凝膠分子在纖維表面吸附,並在纖維表面縮合堆疊成50至100奈米的氣凝膠濕膠分子,50至100奈米氣凝膠濕膠分子更進一步在纖維與纖維結構之間堆疊以形成三次元氣凝膠網狀結構,進而形成穩定且含有大量纖維的半固態氣凝膠結構;在該成型步驟中,溶膠溶液可利用含浸技術、壓吸、噴淋、灌注、或真空吸附等技術於纖維材料上進行複合加工。In some embodiments, the fiber material includes inorganic fibers or organic fibers in the form of mats, paper, blankets, plates or combinations thereof, and the sol solution is injected into the fiber material; under this condition, the siloxane airgel The molecules are adsorbed on the fiber surface and condensed and stacked on the fiber surface to form airgel wet glue molecules of 50 to 100 nanometers. The 50 to 100 nanometer airgel wet glue molecules further stacked between the fibers and the fiber structure to form a three-dimensional The air gel network structure is then formed into a stable semi-solid airgel structure containing a large number of fibers; in this molding step, the sol solution can be applied to the fibers using impregnation technology, pressure suction, spraying, perfusion, or vacuum adsorption. Composite processing is performed on the material.
在一些實施例中,該纖維材料包括玻璃纖維、陶瓷纖維、岩棉纖維、聚丙烯纖維、尼龍纖維、聚酯纖維等無機與有機纖維等所製備之各類多孔隙蓆狀、紙狀、毯狀、繩狀、板狀或其組合。In some embodiments, the fiber material includes various types of porous mat-like, paper-like, and carpet-like materials prepared from inorganic and organic fibers such as glass fiber, ceramic fiber, rock wool fiber, polypropylene fiber, nylon fiber, polyester fiber, etc. Shape, rope, plate or combination thereof.
乾燥步驟(S4”):於常壓下,在一乾燥溫度下使該類固體氣凝膠濕膠結構在一常壓條件下以高溫進行乾燥,以獲得結構均一之兼具低熱傳與低介電氣凝膠或氣凝膠/纖維複合材料;在一些實施例中,該乾燥溫度介於60至150℃。Drying step (S4”): Dry the solid aerogel wet gel structure at a high temperature under normal pressure at a drying temperature to obtain a uniform structure with low heat transfer and low media. Electric gel or aerogel/fiber composite material; in some embodiments, the drying temperature ranges from 60 to 150°C.
進一步地,該乾燥步驟包括溶劑汽化步驟(S4-1”)及溶劑突沸步驟(S4-2”),其中:Further, the drying step includes a solvent vaporization step (S4-1″) and a solvent bumping step (S4-2″), wherein:
溶劑汽化步驟(S4-1”):將類固體氣凝膠濕膠結構放置於一汽化溫度的環境下,同時令類固體氣凝膠濕膠結構在一常壓狀態下,利用溫度讓大量含醇類及水分子快速共沸汽化而將類固體氣凝膠濕膠結構中醇類及水分子共沸蒸餾乾燥;在一些實施例中,該汽化溫度為60至110℃。Solvent vaporization step (S4-1"): Place the quasi-solid aerogel wet glue structure in an environment with a vaporization temperature, and at the same time make the quasi-solid aerogel wet glue structure under a normal pressure state, and use the temperature to let a large amount of solvent containing The alcohol and water molecules are rapidly azeotropically vaporized to dry the alcohol and water molecules in the wet glue structure of the solid-like aerogel through azeotropic distillation; in some embodiments, the vaporization temperature is 60 to 110°C.
溶劑突沸步驟(S4-2”):將該汽化完畢之含微量溶劑之氣凝膠調整溫度至溶劑突沸溫度,使氣凝膠複合材內部所含有的微量醇類及水分子產生快速汽化突沸現象;在一些實施例中,該突沸溫度為110至150℃;需進一步說明的是,在該突沸溫度所創造的高溫環境下,氣凝膠內部微量醇類及水分子所產生的突沸現象,促使氣凝膠內部產生一正壓力,該正壓力可以抑制氣凝膠結構在乾燥過程中產生收縮或崩潰的現象;另一方面,該正壓力得令氣凝膠網狀結構膨脹而產生多孔性;是以,該製備方法可用以製備低密度且高孔隙率的氣凝膠或氣凝膠/纖維複合材料,其純氣凝膠薄膜或板材之熱傳導性質k約為0.013至0.018W/mk;氣凝膠/纖維薄膜或板材之熱傳導性質k約為0.022至0.032W/mk。Solvent bumping step (S4-2"): Adjust the temperature of the vaporized aerogel containing trace amounts of solvent to the solvent bumping temperature to cause the trace amounts of alcohols and water molecules contained in the airgel composite to produce a rapid vaporization and bumping phenomenon ; In some embodiments, the bumping temperature is 110 to 150°C; it should be further explained that in the high temperature environment created by the bumping temperature, the bumping phenomenon generated by trace amounts of alcohols and water molecules inside the airgel promotes A positive pressure is generated inside the airgel, which can inhibit the shrinkage or collapse of the airgel structure during the drying process; on the other hand, the positive pressure causes the airgel network structure to expand to create porosity; Therefore, this preparation method can be used to prepare low-density and high-porosity aerogels or aerogel/fiber composite materials. The thermal conductivity k of the pure aerogel film or sheet is about 0.013 to 0.018W/mk; The thermal conductivity property k of the gel/fiber film or sheet is approximately 0.022 to 0.032W/mk.
含浸高分子溶液步驟(S5”):準備一高分子溶液,將該高分子溶液注入該兼具低熱傳與低介電氣凝膠材料進行含浸,使高分子溶液均勻滲入該氣凝膠內部孔洞中以形成一含高分子溶液之氣凝膠複合材,其中,該高分子溶液包含高分子材料及混合溶劑,該高分子材料包括熱固性高分子、熱塑性高分子、液晶高分子或其組合。Impregnating polymer solution step (S5"): Prepare a polymer solution, inject the polymer solution into the airgel material with both low heat transfer and low dielectric for impregnation, so that the polymer solution can evenly penetrate into the internal pores of the airgel To form an airgel composite material containing a polymer solution, wherein the polymer solution includes a polymer material and a mixed solvent. The polymer material includes a thermosetting polymer, a thermoplastic polymer, a liquid crystal polymer or a combination thereof.
溶劑乾燥步驟(S6”):將該含高分子溶液之氣凝膠複合材放置在高分子溶液的溶劑沸點以上溫度下,促使該含高分子溶液之氣凝膠複合材料內部溶劑汽化,並促使高分子披覆在氣凝膠網狀骨架表面或纖維表面,該溶劑乾燥溫度介於60至115℃。Solvent drying step (S6"): Place the airgel composite material containing the polymer solution at a temperature above the boiling point of the solvent of the polymer solution to promote the vaporization of the solvent inside the airgel composite material containing the polymer solution and promote The polymer is coated on the surface of the airgel network skeleton or fiber surface, and the drying temperature of the solvent is between 60 and 115°C.
具體而言,該高分子溶液為熱塑性高分子,溶劑汽化乾燥後即可固化成型,以獲得兼具高強度、低熱傳且低介電的熱塑性高分子/氣凝膠複合材料或熱塑性高分子/纖維/氣凝膠複合材料;其中,該高分子溶液為熱固性高分子,溶劑汽化乾燥後,隨即在一高溫交聯固化溫度下成型;由以上製程技術即可獲得兼具高強度、低熱傳且低介電的熱固性高分子/氣凝膠複合材料或熱塑性高分子/纖維/氣凝膠複合材料。Specifically, the polymer solution is a thermoplastic polymer, which can be solidified and molded after the solvent is vaporized and dried to obtain a thermoplastic polymer/aerogel composite or thermoplastic polymer/airgel composite material with high strength, low heat transfer, and low dielectric. Fiber/aerogel composite material; wherein, the polymer solution is a thermosetting polymer. After the solvent is vaporized and dried, it is then molded at a high temperature cross-linking curing temperature; the above process technology can obtain high strength, low heat transfer and Low dielectric thermosetting polymer/aerogel composite materials or thermoplastic polymer/fiber/aerogel composite materials.
進一步地,於該含浸高分子溶液步驟(S5”)中,當該兼具低熱傳與低介電氣凝膠材料在乾燥成型後,隨後將該兼具低熱傳與低介電氣凝膠材料以含浸或噴淋一高分子稀薄溶液,使該高分子稀薄溶液均勻地滲入該氣凝膠材料內部孔洞,進一步形成一含高分子溶液之氣凝膠複合材,該含高分子溶液之氣凝膠複合材包括了含高分子溶液氣凝膠複合板或氣凝膠/纖維複合板。Further, in the step of impregnating the polymer solution (S5"), after the electrogel material with both low heat transfer and low dielectric gel is dried and formed, the electrogel material with both low heat transfer and low dielectric gel is then impregnated with the polymer solution. Or spray a thin polymer solution, so that the polymer thin solution can evenly penetrate into the internal pores of the airgel material, and further form an airgel composite material containing the polymer solution. The airgel composite containing the polymer solution Materials include polymer solution-containing airgel composite panels or airgel/fiber composite panels.
進一步地,以該高分子溶液整體而言,該高分子材料的濃度介於0.01 至 80.0wt%;其中,高分子材料濃度越低,高分子材料滲入氣凝膠內部孔洞效率越佳,所製備的含高分子溶液之氣凝膠複合材之孔洞含量越高,因此低熱傳與低介電性質越優越;相對地,高分子材料濃度越高,高分子材料披覆在矽基氣凝膠內部含量越高,所製備的含高分子溶液之氣凝膠複合材內部之高分子含量越高,因此產品強度越佳;是以,利用所添加之高分子溶液的濃度可以控制含高分子溶液之氣凝膠複合材的介電性質以及強度,最佳化的高分子溶液濃度介於5.0至30.0wt%。Furthermore, based on the polymer solution as a whole, the concentration of the polymer material is between 0.01 and 80.0wt%; wherein, the lower the concentration of the polymer material, the better the efficiency of the polymer material penetrating into the internal pores of the airgel. The prepared The higher the pore content of the airgel composite containing the polymer solution, the better the low heat transfer and low dielectric properties; in contrast, the higher the concentration of the polymer material, the polymer material is coated inside the silicon-based aerogel The higher the content, the higher the polymer content inside the prepared airgel composite containing polymer solution, so the better the strength of the product; therefore, the concentration of the polymer-containing solution can be controlled by using the concentration of the added polymer solution. For the dielectric properties and strength of airgel composites, the optimal polymer solution concentration ranges from 5.0 to 30.0wt%.
在上述製備方法中,該高分子材料為一熱塑性高分子(Thermal plastic polymer)時,例如聚乙烯、聚丙烯、聚四氟乙烯等,於溶劑乾燥步驟(S6”)完畢之後,即可形成高強度、高韌性、輕量化且低介電的熱塑性高分子/氣凝膠複合材料或熱塑性高分子/纖維/氣凝膠複合材料;具體而言,該熱塑性高分子包括聚乙烯(Polyethylene, PE)、聚丙烯(Polypropylene, PP)、聚碳酸酯(Polycarbonate, PC)、聚醯胺(Polyamide, PA)、聚醯胺酯(Polyesteramide, PEA)、聚酯(Polyethylene terephthalate, PET)、聚四氟乙烯(Polytetrafluoroethylene, PTFE)或其組合。In the above preparation method, when the polymer material is a thermoplastic polymer, such as polyethylene, polypropylene, polytetrafluoroethylene, etc., after the solvent drying step (S6") is completed, a high polymer material can be formed. Thermoplastic polymer/aerogel composite material or thermoplastic polymer/fiber/aerogel composite material with high strength, high toughness, lightweight and low dielectric; specifically, the thermoplastic polymer includes polyethylene (PE) , polypropylene (PP), polycarbonate (PC), polyamide (PA), polyesteramide (PEA), polyester (Polyethylene terephthalate, PET), polytetrafluoroethylene (Polytetrafluoroethylene, PTFE) or combinations thereof.
在一些實施例中,該兼具低熱傳與低介電氣凝膠複合材料之高分子溶液複合加工可利用溶液注入技術、含浸技術、壓吸技術、噴淋、灌注、或真空吸附等技術進行高分子溶液複合加工;相對的,當該高分子材料為熱固性高分子(Thermal setting polymer),例如環氧樹酯、聚醯亞胺、聚苯醚,於溶劑乾燥步驟(S6”)完畢之後,進行交聯固化步驟(S7”),將獲得具高耐熱性、高強度、輕量化且兼具低熱傳與低介電熱固性高分子/氣凝膠複合材料或熱固性高分子/纖維/氣凝膠複合材料;具體而言,該熱固性高分子包括環氧樹酯(Epoxy)、聚醯亞胺(Polyimide,PI)、聚醚醯亞胺(Polyetherimine, PEI)、聚苯醚(Polyphenylene oxide, PPO)、聚苯硫醚(Polyphenylene sulfide, PPS)、聚醚酮液晶高分子(Polyetherketone, PEK)、聚醚醚酮液晶高分子(Polyetheretherketone, PEEK)或其組合。In some embodiments, the polymer solution composite processing of low heat transfer and low dielectric electrogel composite materials can be processed using solution injection technology, impregnation technology, pressure suction technology, spraying, perfusion, or vacuum adsorption. Molecular solution composite processing; on the contrary, when the polymer material is a thermosetting polymer (Thermal setting polymer), such as epoxy resin, polyimide, polyphenylene ether, after the solvent drying step (S6") is completed, The cross-linking and curing step (S7”) will obtain a thermosetting polymer/aerogel composite or a thermosetting polymer/fiber/aerogel composite with high heat resistance, high strength, lightweight, low heat transfer and low dielectric Material; specifically, the thermosetting polymer includes epoxy resin (Epoxy), polyimide (PI), polyetherimine (PEI), polyphenylene oxide (PPO), Polyphenylene sulfide (PPS), polyetherketone liquid crystal polymer (Polyetherketone, PEK), polyetheretherketone liquid crystal polymer (Polyetheretherketone, PEEK) or combinations thereof.
進一步地,在該兼具低熱傳與低介電氣凝膠複合材料中,當氣凝膠分子含量越高或高分子溶液之濃度越稀薄,則氣凝膠複合材料內部孔洞率含量越大,將導致所製備之氣凝膠複合材料的熱傳導性質、介電常數及介電損耗越低;因此,該兼具低熱傳與低介電氣凝膠複合材料的熱傳導及介電損耗越低,在高頻率條件下越不容易將電場能量轉換成熱量;相反的,所製備的兼具低熱傳與低介電氣凝膠複合材料的物理性質如強度、韌性、剛性等越差;另一方面,在該兼具低熱傳與低介電氣凝膠複合材料中,氣凝膠分子含量越低,或高分子溶液濃度與含量越高,則該兼具低熱傳與低介電氣凝膠複合材料的物理等強度性質越優異,但熱傳導性質、介電常數及介電損耗越高;是以,在本發明所提供的製備方法中,可利用添加氣凝膠含量與含浸高分子溶液的濃度進行該氣凝膠複合材料產品熱傳導與介電性質的調控。Furthermore, in this low heat transfer and low dielectric electrogel composite material, when the airgel molecule content is higher or the concentration of the polymer solution is thinner, the internal porosity content of the airgel composite material will be greater, which will As a result, the thermal conductivity, dielectric constant and dielectric loss of the prepared aerogel composite material are lower; therefore, the thermal conductivity and dielectric loss of the aerogel composite material with both low heat transfer and low dielectric properties are lower, and at high frequencies The harder it is to convert electric field energy into heat under certain conditions; on the contrary, the physical properties such as strength, toughness, rigidity, etc. of the prepared electrogel composite material with both low heat transfer and low dielectric properties are worse; on the other hand, under this condition, the In low heat transfer and low dielectric electrogel composite materials, the lower the airgel molecule content, or the higher the concentration and content of the polymer solution, the better the physical and other strength properties of the low heat transfer and low dielectric electrogel composite material. Excellent, but the thermal conductivity, dielectric constant and dielectric loss are higher; therefore, in the preparation method provided by the invention, the airgel composite material can be made by adding the airgel content and the concentration of the impregnated polymer solution. Control of product thermal conductivity and dielectric properties.
在溶劑乾燥步驟(S6”)中,當該兼具低熱傳與低介電氣凝膠複合材料在含浸高分子溶液完畢之後,可以在一特定高溫常壓環境下進行該含高分子溶液氣凝膠複合材料內部有機溶劑的蒸發;在乾燥過程中,該含高分子溶液氣凝膠複合材料內部高分子溶液會先進行液-固相分離(liquid-solid phase separation),形成一富含溶劑相以及一富含高分子相,並在相分離期間富含溶劑相之溶劑會逐漸汽化;另一方面,富含高分子相內之高分子鏈會優先披覆在氣凝膠骨架或纖維表面,進而在氣凝膠骨架或纖維結構表面形成一高分子膜層;在一些實施例中,混合溶劑為乙醇,其溶劑乾燥溫度為60至75℃;在另一些實施例中,混合溶劑為丁酮,其溶劑乾燥溫度為80至90℃,混合溶劑為甲苯,其溶劑乾燥溫度為100至110℃;是以,乾燥後所得之含高分子溶液之氣凝膠複合材料不會被乾燥溫度過高所產生的大量氣泡導致變形。In the solvent drying step (S6"), after the aerogel composite material with both low heat transfer and low dielectric is impregnated with the polymer solution, the aerogel containing polymer solution can be processed in a specific high temperature and normal pressure environment. Evaporation of organic solvents inside the composite material; during the drying process, the polymer solution inside the airgel composite containing polymer solution will first undergo liquid-solid phase separation to form a solvent-rich phase and One is rich in polymer phase, and the solvent in the rich solvent phase will gradually vaporize during the phase separation; on the other hand, the polymer chains in the rich polymer phase will be preferentially covered on the surface of the airgel skeleton or fiber, and then A polymer film layer is formed on the surface of the airgel skeleton or fiber structure; in some embodiments, the mixed solvent is ethanol, and the solvent drying temperature is 60 to 75°C; in other embodiments, the mixed solvent is methyl ethyl ketone, The solvent drying temperature is 80 to 90°C, the mixed solvent is toluene, and the solvent drying temperature is 100 to 110°C; therefore, the airgel composite material containing the polymer solution obtained after drying will not be affected by excessive drying temperature. The large number of bubbles produced causes deformation.
在一些實施例中,當該高分子溶液係熱固性高分子,該製備方法進一步包括交聯固化步驟 (S7”):在一交聯固化溫度下,使熱固性高分子與氣凝膠分子之間進行交聯反應下相互結合固化,其中,當熱固性高分子為環氧樹脂(Epoxy),該交聯固化溫度為150至180℃,較佳地為150℃或180℃;當熱固性高分子為聚醯亞胺(polyimide),該交聯固化溫度為120至325℃,較佳地為為120、180、260或325℃之一系列交聯固化溫度;在該交聯固化步驟 (S7”)中,於特定的交聯固化溫度下,披覆於氣凝膠網絡骨架上的熱固性高分子分子鏈與矽基氣凝膠分子進行交聯反應;在此交聯反應中,披覆在氣凝膠網絡骨架上的高分子分子鏈相互之間進行化學反應,使得高分子與高分子之間,或高分子與氣凝膠分子之間產生交聯反應而相互結合,因此在此交聯固化溫度下,高分子交聯後將獲得具高耐熱性、高強度、輕量化且低介電的熱固性高分子/矽基氣凝膠複合材料。In some embodiments, when the polymer solution is a thermosetting polymer, the preparation method further includes a cross-linking and curing step (S7″): performing a cross-linking and curing process between the thermosetting polymer and the airgel molecules at a cross-linking and curing temperature. They combine with each other and solidify under the cross-linking reaction. Among them, when the thermosetting polymer is epoxy resin (Epoxy), the cross-linking curing temperature is 150 to 180°C, preferably 150°C or 180°C; when the thermosetting polymer is polyester Imine (polyimide), the cross-linking and curing temperature is 120 to 325°C, preferably a series of cross-linking and curing temperatures of 120, 180, 260 or 325°C; in the cross-linking and curing step (S7″), At a specific cross-linking curing temperature, the thermosetting polymer molecular chains coated on the airgel network skeleton undergo a cross-linking reaction with the silicon-based airgel molecules; during this cross-linking reaction, the airgel network The polymer chains on the skeleton react chemically with each other, causing a cross-linking reaction between polymers or between polymers and airgel molecules to combine with each other. Therefore, at this cross-linking curing temperature, After polymer cross-linking, a thermosetting polymer/silicon-based airgel composite material with high heat resistance, high strength, lightweight and low dielectric properties will be obtained.
請參閱圖6,係依本發明所提供之方法製備而得之兼具低熱傳與低介電氣凝膠複合材料之一較佳實施例其一般外觀照片,其中,該兼具低熱傳與低介電氣凝膠複合材料係一低介電聚醯亞胺(polyimide, PI)/氣凝膠複合板或一低介電聚醯亞胺(polyimide, PI)/陶瓷纖維/氣凝膠複合板。Please refer to Figure 6, which is a general appearance photo of a preferred embodiment of an electrogel composite material with both low heat transfer and low dielectric prepared by the method provided by the present invention. The electrogel composite material with both low heat transfer and low dielectric The electrical gel composite material is a low dielectric polyimide (PI)/airgel composite board or a low dielectric polyimide (PI)/ceramic fiber/airgel composite board.
請參閱圖7,係依本發明所提供之方法製備而得之兼具低熱傳與低介電氣凝膠複合材料之一較佳實施例其斷面的掃描式電子顯微鏡(Scanning electron microscope, SEM)觀測照片,放大倍率為250倍,其顯示了所製備的多孔性聚醯亞胺/氣凝膠複合板之微細結構,可看出高分子聚醯亞胺披覆在氣凝膠顆粒的網狀結構上形成外觀結構均一的多孔性聚醯亞胺/氣凝膠複合板。
請參閱圖8,係本發明所製備之兼具低熱傳與低介電聚醯亞胺/陶瓷纖維/氣凝膠複合材料之一較佳實施例之斷面的掃描式電子顯微鏡(Scanning electron microscope, SEM)觀測照片,放大倍率為1000倍,由照片顯示了一聚醯亞胺/陶瓷纖維/氣凝膠複合板中,高分子聚醯亞胺披覆在陶瓷纖維及氣凝膠網狀結構表面,利用聚醯亞胺提供陶瓷纖維及氣凝膠聚集結構上的黏著,以製備出高強度、高耐熱性、低介電之聚醯亞胺/陶瓷纖維/氣凝膠複合板。Please refer to Figure 8, which is a scanning electron microscope cross-section of a preferred embodiment of the polyimide/ceramic fiber/airgel composite material with both low heat transfer and low dielectric prepared by the present invention. , SEM) observation photo with a magnification of 1000 times. The photo shows that in a polyimide/ceramic fiber/airgel composite board, the polymer polyimide is coated on the ceramic fiber and airgel network structure. On the surface, polyimide is used to provide adhesion on the ceramic fiber and airgel aggregation structure to prepare a polyimide/ceramic fiber/airgel composite board with high strength, high heat resistance, and low dielectric.
請參閱表1,係說明本發明所製備之低介電陶瓷纖維/氣凝膠複合板在不同高分子溶液濃度含浸處理下,所表現的基本物性;分別以聚醯亞胺濃度為80wt%、50wt%、30wt%、20 wt%、15 wt%之高分子溶液含浸低介電聚醯亞胺/陶瓷纖維/氣凝膠複合材,其代號分別為PI-80/陶纖/氣凝膠複合材、PI-50/陶纖/氣凝膠複合材PI-30/陶纖/氣凝膠複合材、PI-20/陶纖/氣凝膠複合材、PI-15/陶纖/氣凝膠複合材;此外,代號純氣凝膠複合材為未添加陶瓷纖維且未經高分子溶液含浸處理,代號陶纖/氣凝膠複合材則為未經過高分子溶液含浸處理。Please refer to Table 1, which illustrates the basic physical properties of the low-dielectric ceramic fiber/airgel composite board prepared by the present invention under impregnation treatment with different polymer solution concentrations; the polyimide concentration is 80wt%, 50wt%, 30wt%, 20wt%, 15wt% polymer solutions impregnated with low dielectric polyimide/ceramic fiber/airgel composites, their codes are respectively PI-80/ceramic fiber/airgel composite material, PI-50/ceramic fiber/aerogel composite material PI-30/ceramic fiber/aerogel composite material, PI-20/ceramic fiber/aerogel composite material, PI-15/ceramic fiber/aerogel composite material Composite materials; in addition, code-named pure airgel composite materials have no added ceramic fibers and have not been impregnated with polymer solutions, while code-named ceramic fiber/airgel composite materials have not been impregnated with polymer solutions.
表1顯示了,純氣凝膠複合材的密度為0.123 g/cm 3,未經處理的陶瓷纖維/氣凝膠複合材密度約為0.204g/cm 3,而聚醯亞胺/陶瓷纖維/氣凝膠複合材的密度隨著聚醯亞胺高分子溶液的濃度上升而上升,其密度分別為PI-15/陶纖/氣凝膠複合材0.366g/cm 3、PI-20/陶纖/氣凝膠複合材0.461 g/cm 3、PI-30/陶纖/氣凝膠複合材0.575 g/cm 3、PI-50/陶纖/氣凝膠複合材0.678 g/cm 3;然而,當聚醯亞胺溶液之濃度提高至約80wt% (PI-80/陶纖/氣凝膠複合材),由於高分子溶液極難滲入氣凝膠內部導致滲入不均的現象,再加上聚醯亞胺溶液的黏度明顯提高,於加工過程中極易導致氣凝膠板材破裂或氣凝膠粉末剝離,導致氣凝膠板材無法成形。 Table 1 shows that the density of pure airgel composite is 0.123 g/cm 3 , the density of untreated ceramic fiber/airgel composite is about 0.204g/cm 3 , while the density of polyimide/ceramic fiber/ The density of airgel composites increases as the concentration of polyimide polymer solution increases. The densities are respectively 0.366g/cm 3 for PI-15/ceramic fiber/airgel composites and PI-20/ceramic fiber. /Aerogel composite material 0.461 g/cm 3 , PI-30/ceramic fiber/airgel composite material 0.575 g/cm 3 , PI-50/ceramic fiber/airgel composite material 0.678 g/cm 3 ; however, When the concentration of the polyimide solution is increased to about 80wt% (PI-80/ceramic fiber/airgel composite), it is extremely difficult for the polymer solution to penetrate into the airgel, resulting in uneven penetration. In addition, the polyimide solution is extremely difficult to penetrate into the airgel. The viscosity of the imine solution is significantly increased, which can easily cause the airgel sheet to break or the airgel powder to peel off during the processing, causing the airgel sheet to fail to form.
此外,純氣凝膠複合材的熱傳導係數為0.0249 W/mk,未經高分子溶液含浸處理的陶瓷纖維/氣凝膠複合材的熱傳導係數則為0.0271W/mk,其熱傳導係數也隨著高分子溶液濃度上升而上升,分別為PI-15/陶纖/氣凝膠複合材0.0472 W/mk、PI-20/陶纖/氣凝膠複合材0.0631 W/mk、PI-30/陶纖/氣凝膠複合材0.1125 W/mk、PI-50/陶纖/氣凝膠複合材0.1632W/mk;由於PI-80/陶纖/氣凝膠複合材在加工過程中,氣凝膠板材無法成形,後續也無法測試其熱傳導係數。In addition, the thermal conductivity coefficient of pure airgel composite is 0.0249 W/mk, and the thermal conductivity coefficient of ceramic fiber/airgel composite without polymer solution impregnation is 0.0271W/mk. The thermal conductivity coefficient also increases with the increase. The molecular solution concentration increases with the increase, which are 0.0472 W/mk for PI-15/ceramic fiber/airgel composite, 0.0631 W/mk for PI-20/ceramic fiber/airgel composite, and 0.0631 W/mk for PI-30/ceramic fiber/ Airgel composite material 0.1125 W/mk, PI-50/ceramic fiber/airgel composite material 0.1632W/mk; due to the processing of PI-80/ceramic fiber/airgel composite material, the airgel sheet cannot After forming, its thermal conductivity cannot be tested later.
進一步地,其介電性質包括D K以及D F值均隨著測試頻率增加而下降,純氣凝膠板材隨測試頻率由2GHz增加至10GHz,其D K值由1.326下降至1.315,其 D F值隨測試頻率增加而由0.025上升至0.026;未經高分子溶液含浸處理之陶瓷纖維/氣凝膠複合材,其D K值由1.372下降至1.346,其 D F值隨測試頻率增加而由約0.0034下降至約0.0026;在10GHz測試頻率下,聚醯亞胺/陶瓷纖維/氣凝膠複合材的D K以及D F值隨高分子溶液濃度上升而上升,其D K值分別為PI-15/陶纖/氣凝膠複合材1.350、PI-20/陶纖/氣凝膠複合材1.521、PI-30/陶纖/氣凝膠複合材1.654、PI-50/陶纖/氣凝膠複合材1.804;D F值分別為PI-15/陶纖/氣凝膠複合材0.0033、PI-20/陶纖/氣凝膠複合材0.0041、PI-30/陶纖/氣凝膠複合材0.0072、PI-30/陶纖/氣凝膠複合材0.0144;由此顯示了,依本發明所提供之方法所製備之陶瓷纖維/氣凝膠複合材以及高分子/陶瓷纖維/氣凝膠複合材均具有極優異的介電性質,且其介電性質隨含浸高分子溶液的濃度而改變,得以通過高分子溶液濃度對高分子/陶瓷纖維/氣凝膠複合材進行物性的調控。 Furthermore, its dielectric properties, including D K and D F values, decrease as the test frequency increases. As the test frequency increases from 2GHz to 10GHz, the D K value of pure airgel sheet decreases from 1.326 to 1.315, and its D F The value increases from 0.025 to 0.026 as the test frequency increases; the D K value of the ceramic fiber/airgel composite without polymer solution impregnation decreases from 1.372 to 1.346, and the D F value increases from approximately 0.0034 dropped to about 0.0026; at the 10GHz test frequency, the D K and D F values of the polyimide/ceramic fiber/airgel composite increased as the concentration of the polymer solution increased, and their D K values were PI-15 respectively. /ceramic fiber/airgel composite 1.350, PI-20/ceramic fiber/airgel composite 1.521, PI-30/ceramic fiber/airgel composite 1.654, PI-50/ceramic fiber/airgel composite Material 1.804; D F values are PI-15/ceramic fiber/airgel composite material 0.0033, PI-20/ceramic fiber/airgel composite material 0.0041, PI-30/ceramic fiber/airgel composite material 0.0072, PI-30/ceramic fiber/airgel composite material 0.0144; This shows that the ceramic fiber/airgel composite material and the polymer/ceramic fiber/airgel composite material prepared according to the method provided by the present invention are both It has extremely excellent dielectric properties, and its dielectric properties change with the concentration of the impregnated polymer solution. The physical properties of the polymer/ceramic fiber/airgel composite can be controlled through the concentration of the polymer solution.
綜合以上實施方式及實施例說明,本發明可在常壓下快速製備各種兼具低熱傳與低介電氣凝膠複合材料,其包括了高分子/氣凝膠複合膜、板或高分子/無機纖維/氣凝膠複合膜、板;此外,本發明所提供的兼具低熱傳與低介電氣凝膠複合材料之製備方法,毋需添加大量有機溶劑;如烷類或芳香苯類、無須進行冗長的溶劑置換,亦不需使用超臨界乾燥設備,整體製程簡便快速、製程安全性高且製造成本低。Based on the above embodiments and examples, the present invention can quickly prepare various low heat transfer and low dielectric electrogel composite materials under normal pressure, including polymer/aerogel composite films, plates or polymer/inorganic Fiber/aerogel composite films and boards; in addition, the preparation method of low heat transfer and low dielectric aerogel composite materials provided by the present invention does not require the addition of a large amount of organic solvents; such as alkanes or aromatic benzene, no need to Lengthy solvent replacement does not require the use of supercritical drying equipment. The overall process is simple and fast, with high process safety and low manufacturing cost.
綜上,本發明之製作、應用及產生之功效應已清楚揭露,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。In summary, the production, application and effects of the present invention should be clearly disclosed. However, the above-mentioned embodiments are only preferred embodiments of the present invention, and should not be used to limit the scope of the present invention. That is, according to the present invention Simple equivalent changes and modifications to the patent scope and invention description are within the scope of the present invention.
(S1):混合水解步驟 (S2):分散縮合步驟 (S3):成型步驟 (S4):乾燥步驟 (S1”):混合水解步驟 (S2”):分散縮合步驟 (S3”):成型步驟 (S4”):乾燥步驟 (S5”):含浸高分子溶液步驟 (S6”):溶劑乾燥步驟 (S7”):交聯固化步驟 (S1): Mixed hydrolysis step (S2): Dispersion and condensation step (S3): Molding step (S4): Drying step (S1”): mixed hydrolysis step (S2”): Dispersion and condensation step (S3”): Forming step (S4”): Drying step (S5”): Step of impregnating polymer solution (S6”): Solvent drying step (S7”): Cross-linking and curing step
圖1係本發明第一實施態樣步驟流程圖,說明本發明所提供之兼具低熱傳與低介電純氣凝膠材料之製備流程。 圖2係依本發明第一實施態樣所製備之兼具低熱傳與低介電純氣凝膠材料及氣凝膠/纖維複合材料之外觀照片。 圖3係依本發明第一實施態樣所製備之純氣凝膠板斷面之SEM掃描式電子顯微鏡觀測照片,放大倍率為3000倍。 圖4係依本發明第一實施態樣所製備之含大量纖維之氣凝膠/纖維複合材料斷面之SEM掃描式電子顯微鏡觀測照片,放大倍率為250倍。 圖5係說明本發明第二實施態樣之步驟流程圖。 圖6係依本發明第二實施態樣所製備含高分子之兼具低熱傳與低介電/氣凝膠複合材料之外觀照片。 圖7係依本發明第二實施態樣所製備之兼具低熱傳與低介電/氣凝膠複合材料之斷面SEM掃描式電子顯微鏡觀測照片,放大倍率為250倍。 圖8係依本發明第二實施態樣所製備之兼具低熱傳與低介電/氣凝膠複合材料之斷面SEM掃描式電子顯微鏡觀測照片,放大倍率為1000倍。 Figure 1 is a step flow chart of the first embodiment of the present invention, illustrating the preparation process of the pure aerogel material with both low heat transfer and low dielectric provided by the present invention. Figure 2 is a photo of the appearance of a pure aerogel material and an aerogel/fiber composite material with both low heat transfer and low dielectric prepared according to the first embodiment of the present invention. Figure 3 is an SEM scanning electron microscope observation photograph of the cross section of a pure aerogel plate prepared according to the first embodiment of the present invention, with a magnification of 3000 times. Figure 4 is a SEM scanning electron microscope observation photograph of a cross section of an aerogel/fiber composite material containing a large amount of fibers prepared according to the first embodiment of the present invention, with a magnification of 250 times. FIG. 5 is a step flow chart illustrating the second embodiment of the present invention. Figure 6 is a photo of the appearance of a polymer-containing/airgel composite material with both low heat transfer and low dielectric prepared according to the second embodiment of the present invention. Figure 7 is a cross-sectional SEM scanning electron microscope observation photograph of the low heat transfer and low dielectric/aerogel composite material prepared according to the second embodiment of the present invention, with a magnification of 250 times. Figure 8 is a cross-sectional SEM scanning electron microscope observation photograph of the low heat transfer and low dielectric/aerogel composite material prepared according to the second embodiment of the present invention, with a magnification of 1000 times.
(S1”):混合水解步驟 (S1”): mixed hydrolysis step
(S2”):分散縮合步驟 (S2”): Dispersion and condensation step
(S3”):成型步驟 (S3”): Forming step
(S4”):乾燥步驟 (S4”): Drying step
(S5”):含浸高分子溶液步驟 (S5”): Step of impregnating polymer solution
(S6”):溶劑乾燥步驟 (S6”): Solvent drying step
(S7”):交聯或固化步驟 (S7”): Cross-linking or curing step
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111115411A TWI829147B (en) | 2022-04-22 | 2022-04-22 | Low thermal conductivity and low-k dielectric aerogel composites and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111115411A TWI829147B (en) | 2022-04-22 | 2022-04-22 | Low thermal conductivity and low-k dielectric aerogel composites and preparation method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202342169A TW202342169A (en) | 2023-11-01 |
TWI829147B true TWI829147B (en) | 2024-01-11 |
Family
ID=89720500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111115411A TWI829147B (en) | 2022-04-22 | 2022-04-22 | Low thermal conductivity and low-k dielectric aerogel composites and preparation method therefor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI829147B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080287561A1 (en) * | 2005-10-21 | 2008-11-20 | Cabot Corporation | Aerogel Based Composites |
TW202140629A (en) * | 2020-04-27 | 2021-11-01 | 台灣氣凝膠科技材料開發股份有限公司 | Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof |
-
2022
- 2022-04-22 TW TW111115411A patent/TWI829147B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080287561A1 (en) * | 2005-10-21 | 2008-11-20 | Cabot Corporation | Aerogel Based Composites |
TW202140629A (en) * | 2020-04-27 | 2021-11-01 | 台灣氣凝膠科技材料開發股份有限公司 | Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202342169A (en) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Low dielectric constant polyimide hybrid films prepared by in situ blow-balloon method | |
CN110770168A (en) | Method of manufacturing silica aerogel blanket and apparatus for manufacturing the same | |
CN109942848B (en) | Preparation method of hydrophobic polyimide aerogel film with surface structure | |
CN103599705A (en) | Method for preparing organic/inorganic hybrid membrane by ultrasonic immersing | |
CN114854087B (en) | Polyimide composite material with double heat-conducting networks and preparation method thereof | |
TWI764584B (en) | Low-k dielectric aerogel and preparation method therefor | |
US12054585B2 (en) | Low-k dielectric aerogel and preparation method therefor | |
Hwang et al. | Controllable growth of porous morphology in low dielectric polyimides via thermal-driven spontaneous phase separation | |
TWI829147B (en) | Low thermal conductivity and low-k dielectric aerogel composites and preparation method therefor | |
CN107675549A (en) | A kind of preparation method of modified polyimide fibrous paper | |
EP4261187A1 (en) | Aerogel and preparation method therefor | |
JP6395145B2 (en) | Polyimide-silica composite porous body and method for producing the same | |
CN117004077A (en) | Aerogel composite material with low heat transfer and low dielectric and preparation method thereof | |
US20230348284A1 (en) | Low thermal conductivity and low-k dielectric aerogel material and preparation method therefor | |
CN104292488B (en) | A kind of preparation method of surface high connductivity polyimide composite film | |
TWI793839B (en) | Low-k dielectric aerogel powder and low-k dielectric aerogel suspension, composite film and preparation method therefor | |
JP5919185B2 (en) | Polyetherimide porous body and method for producing the same | |
JP5919184B2 (en) | Polyetherimide porous body and method for producing the same | |
JP7272566B1 (en) | Low dielectric constant aerogel and its preparation method | |
US20240301150A1 (en) | Low-k dielectric aerogel/polymer composite film preparation method | |
CN118580529A (en) | Preparation method of low dielectric aerogel/polymer composite film | |
TWI833358B (en) | Low-dielectric and low-thermal-conductivity aerogel composite and preparation method thereof | |
TW202311386A (en) | Low-k dielectric aerogel/polymer composite film preparation method | |
KR102139544B1 (en) | A process for producing a polyimide foam and a polyimide foam produced thereby | |
JP6300415B2 (en) | Polyimide-silica composite porous body and method for producing the same |