Nothing Special   »   [go: up one dir, main page]

TWI776398B - Manufacturing method of mask - Google Patents

Manufacturing method of mask Download PDF

Info

Publication number
TWI776398B
TWI776398B TW110106130A TW110106130A TWI776398B TW I776398 B TWI776398 B TW I776398B TW 110106130 A TW110106130 A TW 110106130A TW 110106130 A TW110106130 A TW 110106130A TW I776398 B TWI776398 B TW I776398B
Authority
TW
Taiwan
Prior art keywords
layer
hard mask
silicon
intermediate layer
mask layer
Prior art date
Application number
TW110106130A
Other languages
Chinese (zh)
Other versions
TW202141161A (en
Inventor
謝瑋哲
王子奕
林秉勳
連大成
李信昌
李環陵
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/086,299 external-priority patent/US20210333717A1/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202141161A publication Critical patent/TW202141161A/en
Application granted granted Critical
Publication of TWI776398B publication Critical patent/TWI776398B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method of fabricating a mask is provided. The method includes providing a hard mask layer disposed on top of absorber, a capping layer, and a multilayer that are disposed on a substrate. The method includes forming a middle layer over the hard mask layer, forming a photo resist layer over the middle layer, patterning the photo resist layer, etching the middle layer through the patterned photo resist layer, etching the hard mask layer through the patterned middle layer, and etching the absorber through the patterned hard mask layer. In some embodiments, etching the hard mask layer through the patterned middle layer includes a dry-etching process that has a first removal rate of the hard mask layer and a second removal rate of the middle layer, and a ratio of the first removal rate of the hard mask layer to the second removal rate of the middle layer is greater than 5.

Description

光罩的形成方法 How to form a mask

本公開涉及光罩的形成方法。 The present disclosure relates to methods of forming photomasks.

微影操作是半導體製造過程中的一些關鍵操作。微影技術包括紫外光微影(ultraviolet lithography)、深紫外光微影(deep ultraviolet lithography)和極紫外光微影(extreme ultraviolet lithography,EUVL)。在這種技術中,光罩是微影操作中的重要組成部分。例如,在極紫外光微影中,製造具有高反射率部分和高吸收率部分之具有高對比度的極紫外光光罩是至關重要的。隨著尺寸縮小以製造更小的特徵,較新的積體電路技術需要具有更窄的臨界尺寸之更精細的圖案。因此,需要新的和改進的極紫外光光罩膜結構以提高微影分辨率,並且需要更強健的製程來製造這種極紫外光光罩。 Lithography operations are some of the key operations in the semiconductor manufacturing process. Lithography techniques include ultraviolet lithography, deep ultraviolet lithography, and extreme ultraviolet lithography (EUVL). In this technique, the reticle is an important part of the lithography operation. For example, in EUV lithography, it is critical to fabricate EUV photomasks with high contrast between high reflectivity portions and high absorbance portions. As dimensions shrink to make smaller features, newer integrated circuit technologies require finer patterns with narrower critical dimensions. Therefore, new and improved EUV photomask film structures are needed to increase lithography resolution, and more robust processes are required to manufacture such EUV photomasks.

依據本公開之部分實施例,提供一種形成光罩的方法,包含:提供設置在吸收體頂部上的硬遮罩層、覆蓋層 和設置在基材上的多層;形成中間層於硬遮罩層上;形成光阻層於中間層上;圖案化光阻層;透過圖案化的光阻層蝕刻中間層;透過圖案化的中間層蝕刻硬遮罩層;以及透過圖案化的硬遮罩層蝕刻吸收體。 According to some embodiments of the present disclosure, there is provided a method of forming a photomask, comprising: providing a hard mask layer, a cover layer disposed on top of an absorber and multiple layers disposed on the substrate; forming an intermediate layer on the hard mask layer; forming a photoresist layer on the intermediate layer; patterning the photoresist layer; etching the intermediate layer through the patterned photoresist layer; layer etching the hard mask layer; and etching the absorber through the patterned hard mask layer.

依據本公開之部分實施例,提供一種形成光罩的方法,包含:形成多層於基材上;形成吸收體於設置在多層上的覆蓋層上;形成硬遮罩層於吸收體上;形成中間層於硬遮罩層上,其中中間層包含選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)或鎳(Ni)所組成的群組中的一種或多種;形成光阻層於中間層上;圖案化光阻層;透過圖案化的光阻層蝕刻中間層;以及在蝕刻中間層之後,對硬遮罩層進行乾式蝕刻製程,其中,乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率的比例大於5。 According to some embodiments of the present disclosure, there is provided a method of forming a photomask, comprising: forming multiple layers on a substrate; forming an absorber on a cover layer disposed on the multiple layers; forming a hard mask layer on the absorber; forming an intermediate layer layered on the hard mask layer, wherein the intermediate layer comprises a material selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd) or nickel (Ni). one or more of the group consisting of; forming a photoresist layer on the interlayer; patterning the photoresist layer; etching the interlayer through the patterned photoresist layer; and drying the hard mask layer after etching the interlayer An etching process, wherein the dry etching process has a first removal rate for the hard mask layer and a second removal rate for the intermediate layer, and a difference between the first removal rate for the hard mask layer and the second removal rate for the intermediate layer The ratio is greater than 5.

依據本公開之部分實施例,提供一種形成光罩的方法,包含:形成中間層於極紫外膜堆疊上,極紫外膜堆疊包含基材、在基材上的多層,在多層上的覆蓋層,在覆蓋層上的吸收體和在吸收體上的硬遮罩層;形成光阻層於中間層上,其中中間層包含選自於由氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一種或多種;圖案化光阻層;透過圖案化的光阻層來圖案化中間層;透過圖案化的中間層來圖案 化硬遮罩層;以及透過圖案化的硬遮罩層來圖案化吸收體。 According to some embodiments of the present disclosure, there is provided a method of forming a photomask, comprising: forming an intermediate layer on an EUV film stack, the EUV film stack comprising a substrate, multiple layers on the substrate, and a cover layer on the multiple layers, an absorber on the cover layer and a hard mask layer on the absorber; a photoresist layer is formed on the intermediate layer, wherein the intermediate layer comprises selected from the group consisting of silicon oxide (SiO), silicon oxynitride (SiON), nitride one or more of the group consisting of silicon (SiN), silicon boron nitride (SiBN), silicon borocarbide (SiBC), silicon boron nitride (SiBCN), or polysiloxane; patterned photoresist layer; Patterned interlayer through patterned photoresist layer; patterned through patterned interlayer and patterning the absorber through the patterned hard mask layer.

10:極紫外光光罩結構 10: EUV mask structure

20:光阻層 20: photoresist layer

30:中間層 30: middle layer

30-1:中間層 30-1: Middle layer

30-2:中間層 30-2: Middle layer

30-10:中間層 30-10: Middle layer

40:圖案 40: Pattern

50:圖案 50: Pattern

100:極紫外光光罩基材 100: EUV photomask substrate

101:極紫外光光罩基材 101: EUV photomask substrate

110:硬遮罩層 110: Hard mask layer

120:吸收體 120: Absorber

130:覆蓋層 130: Overlay

140:多層 140: Multilayer

150:基材 150: Substrate

160:導電層 160: Conductive layer

S100:方法 S100: Method

S110:步驟 S110: Steps

S120:步驟 S120: Steps

S130:步驟 S130: Steps

S140:步驟 S140: Steps

S150:步驟 S150: Steps

S160:步驟 S160: Steps

S170:步驟 S170: Steps

S200:方法 S200: Method

S210:步驟 S210: Steps

S220:步驟 S220: Steps

S230:步驟 S230: Steps

S240:步驟 S240: Steps

S250:步驟 S250: Steps

S260:步驟 S260: Steps

S270:步驟 S270: Steps

S280:步驟 S280: Steps

S300:方法 S300: Method

S310:步驟 S310: Steps

S320:步驟 S320: Steps

S330:步驟 S330: Steps

S340:步驟 S340: Steps

S350:步驟 S350: Steps

S360:步驟 S360: Steps

當結合附圖閱讀時,根據以下詳細描述可以最好地理解本公開。要強調的是,根據行業中的標準實踐,各種特徵未按比例繪製,僅用於說明目的。實際上,為了討論的清楚,各種特徵的尺寸可以任意地增加或減小。 The present disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, in accordance with standard practice in the industry, the various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion.

第1A圖、第1B圖和第1C圖繪示根據本公開的不同實施例之極紫外光光罩結構。 FIGS. 1A , 1B and 1C illustrate EUV photomask structures according to various embodiments of the present disclosure.

第2A圖、第2B圖和第2C圖示意性地繪示根據本公開的不同實施例之用於製造極紫外光光罩的策略。 Figures 2A, 2B, and 2C schematically illustrate strategies for fabricating EUV photomasks according to various embodiments of the present disclosure.

第3A圖、第3B圖和第3C圖示意性地繪示根據本公開的不同實施例之製造極紫外光光罩的方法之依序的製程步驟。 FIGS. 3A , 3B and 3C schematically illustrate sequential process steps of a method for manufacturing an EUV photomask according to various embodiments of the present disclosure.

第4A圖、第4B圖、第4C圖、第4D圖、第4E圖和第4F圖示意性地繪示根據本公開的不同實施例之製造極紫外光光罩的方法之依序的製程步驟。 FIGS. 4A, 4B, 4C, 4D, 4E, and 4F schematically illustrate sequential processes of a method for manufacturing an EUV photomask according to various embodiments of the present disclosure. step.

第5圖繪示根據本公開的不同實施例之製造極紫外光光罩的示例性方法的流程圖。 5 depicts a flowchart of an exemplary method of fabricating an EUV photomask according to various embodiments of the present disclosure.

第6圖繪示根據本公開的不同實施例之製造極紫外光光罩的另一示例性方法的流程圖。 6 is a flowchart illustrating another exemplary method of fabricating an EUV photomask according to various embodiments of the present disclosure.

第7圖繪示根據本公開的不同實施例之製造極紫外光光罩 的另一示例性方法的流程圖。 FIG. 7 illustrates the fabrication of EUV photomasks according to various embodiments of the present disclosure A flowchart of another exemplary method of .

應當理解,以下的內容提供了用於實現本公開的不同特徵之許多不同的實施例或示例。下面描述元件和配置的特定實施例或示例以簡化本公開。當然,這些僅僅是示例,而無意於進行限制。例如,元件的尺寸不限於所公開的範圍或值,而是可以取決於製程條件和/或裝置的期望特性。此外,在下面的描述中,在第二特徵之上或上方形成第一特徵可以包括其中第一特徵和第二特徵以直接接觸形成的實施例,並且還可以包括其中在第一特徵和第二特徵之間形成附加特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。為了簡單和清楚起見,可以以不同的比例任意繪製各種特徵。 It should be understood that the following provides many different embodiments or examples for implementing different features of the present disclosure. Specific embodiments or examples of elements and configurations are described below to simplify the present disclosure. Of course, these are only examples and are not intended to be limiting. For example, the dimensions of the elements are not limited to the disclosed ranges or values, but may depend on process conditions and/or desired characteristics of the device. Furthermore, in the following description, forming a first feature on or over a second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include embodiments in which the first feature and the second feature are formed in direct contact. Embodiments where additional features are formed between features such that the first feature and the second feature may not be in direct contact. Various features may be arbitrarily drawn in different scales for simplicity and clarity.

更甚者,空間相對的詞彙(例如,「低於」、「下方」、「之下」、「上方」、「之上」等相關詞彙)於此用以簡單描述如圖所示之元件或特徵與另一元件或特徵的關係。在使用或操作時,除了圖中所繪示的轉向之外,這些空間相對的詞彙涵蓋裝置的不同轉向。再者,這些裝置可旋轉(旋轉90度或其他角度),且在此使用之空間相對的描述語可作對應的解讀。另外,術語「由…製成」可以表示「包含」或「由…組成」。在本公開中,片語「A、B和C之一」是指「A、B和/或C」(A、B、C、A和B、A和C、B和C或A、B和C),除非另有說明,否則不 表示來自A的一個元素、來自B的一個元素和來自C的一個元素。 What's more, spatially relative terms (eg, "below", "below", "below", "above", "above", etc. related terms) are used here to simply describe the elements shown in the figures or The relationship of a feature to another element or feature. In use or operation, these spatially relative terms encompass different turns of the device in addition to the turns shown in the figures. Furthermore, these devices can be rotated (90 degrees or other angles) and the spatially relative descriptors used herein can be interpreted accordingly. Additionally, the term "made of" can mean "comprising" or "consisting of." In this disclosure, the phrase "one of A, B and C" means "A, B and/or C" (A, B, C, A and B, A and C, B and C or A, B and C), unless otherwise stated, not Represents one element from A, one element from B, and one element from C.

本公開的實施例提供一種製造極紫外光光罩的方法。本公開提供了增強微影分辨率的方法和技術,並且需要更強健的製程來製造這種極紫外光光罩。更具體地,本公開涉及用於製造極紫外光光罩之新的膜結構,其包含在光阻層和硬遮罩層之間的中間層,在本文中也稱為「三層策略」。這種三層策略可以融入在晶圓製程中並在極紫外光微影中實施,其中將中間層配置為對在頂部的光阻層和在下面的硬遮罩層具有蝕刻選擇性。根據本公開的不同實施例,可使用相對較薄的光阻層將圖案轉移到中間層,其中中間層的蝕刻選擇性可以減輕由於光阻層的損失而導致的圓角化問題,從而增加了圖案保真度。中間層的使用能夠減輕常規問題,例如,當光阻的橫向尺寸比光阻的厚度小得多時,這種高長寬比的光阻層會導致光阻層的損失而造成圖案的邊角變圓和/或圖案塌陷。更具體地,所公開的方法和技術透過減小光阻層的厚度來提高圖案分辨率,並且透過提高耐蝕刻性來提高圖案保真度。所公開的膜方案(膜結構)可以在極紫外光光罩基材中清楚地識別,並改善當前的極紫外光光罩製造製程並促進下一代極紫外光微影的發展。 Embodiments of the present disclosure provide a method of manufacturing an EUV photomask. The present disclosure provides methods and techniques to enhance lithography resolution, and more robust processes are required to manufacture such EUV photomasks. More specifically, the present disclosure relates to new film structures for the fabrication of EUV photomasks that include an interlayer between a photoresist layer and a hardmask layer, also referred to herein as a "three-layer strategy." This three-layer strategy can be incorporated into the wafer process and implemented in EUV lithography, where the intermediate layer is configured to have etch selectivity for the photoresist layer on top and the hardmask layer below. According to various embodiments of the present disclosure, a relatively thin photoresist layer can be used to transfer the pattern to the intermediate layer, wherein the etch selectivity of the intermediate layer can alleviate the problem of rounding due to the loss of the photoresist layer, thereby increasing the pattern fidelity. The use of an intermediate layer can alleviate conventional problems, such as a high aspect ratio photoresist layer that results in loss of photoresist layer and rounded corners of the pattern when the lateral dimension of the photoresist is much smaller than the thickness of the photoresist and/or pattern collapse. More specifically, the disclosed methods and techniques improve pattern resolution by reducing the thickness of the photoresist layer, and improve pattern fidelity by improving etch resistance. The disclosed film scheme (film structure) can be clearly identified in EUV photomask substrates and improves current EUV photomask manufacturing processes and facilitates the development of next generation EUV photolithography.

通常,極紫外光微影使用的掃描儀是使用在極紫外光(extreme ultraviolet,EUV)區域中的光,在此區域中的光波長為大約1奈米至大約100奈米(例如,13.5 奈米)。光罩是極紫外光微影系統的關鍵元件。由於光學材料對極紫外輻射不透明,因此極紫外光光罩是反射式光罩。電路圖案形成在設置在反射式結構上方的吸收體層中。吸收體具有低的極紫外光反射率(例如,小於3%至5%)。本公開提供了具有窄臨界尺寸的精細圖案的極紫外光反射式光罩。利用所公開的極紫外光光罩方案和製程,將原始光阻層中具有高長寬比的精細圖案轉移到極紫外光光罩中的吸收體層會具有更好的圖案保真度。 Typically, scanners used in EUV lithography use light in the extreme ultraviolet (EUV) region, where the wavelength of light is from about 1 nm to about 100 nm (eg, 13.5 nm). nanometer). The reticle is a key element of an EUV lithography system. Because the optical material is opaque to EUV radiation, EUV reticles are reflective reticles. A circuit pattern is formed in an absorber layer disposed over the reflective structure. The absorber has low EUV reflectance (eg, less than 3% to 5%). The present disclosure provides EUV reflective masks with fine patterns of narrow critical dimensions. Using the disclosed EUV photomask scheme and process, the fine pattern with high aspect ratio in the original photoresist layer is transferred to the absorber layer in the EUV photomask with better pattern fidelity.

第1A圖、第1B圖和第1C圖繪示根據本公開的不同實施例之極紫外光光罩結構10(亦可稱之為極紫外光光罩)。如第1A圖、第1B圖和第1C圖所示,由極紫外光光罩結構10形成具有電路圖案之期望的極紫外光光罩,此極紫外光光罩結構10被繪示為具有設置在極紫外光光罩基材100上的光阻層20和中間層30。參照第1A圖,根據本公開的不同實施例,極紫外光光罩基材100包括硬遮罩層(hardmask)110、吸收體(亦稱為吸收層、吸收體層)120、覆蓋層130、(反射式)多層140、基材150(在本文中也稱為低熱膨脹材料(low-thermal expansion material,LTEM)150和導電層160。在部分實施例中,改良的極紫外光光罩基材100(其被稱為極紫外光光罩基材101)可以包括中間層30、硬遮罩層110、吸收體120、覆蓋層130、多層140、基材150和導電層160。除非另有明確地說明,否則極紫外光光罩基材101是具有中間層30的極紫外光光罩基材100(如第 1A圖、第1B圖和第1C圖所示)。因此,在部分實施例中,如果將光罩基材稱為極紫外光光罩基材101,則可以將硬遮罩層110稱為第一硬遮罩層,並且可以將中間層30稱為第二硬遮罩層。 FIGS. 1A , 1B and 1C illustrate an EUV photomask structure 10 (also referred to as an EUV photomask) according to various embodiments of the present disclosure. As shown in FIGS. 1A , 1B and 1C, a desired EUV photomask with circuit patterns is formed from the EUV photomask structure 10, which is shown as having a set of The photoresist layer 20 and the intermediate layer 30 on the EUV photomask substrate 100 . Referring to FIG. 1A , according to different embodiments of the present disclosure, an EUV photomask substrate 100 includes a hardmask layer 110 , an absorber (also referred to as an absorber layer, an absorber layer) 120 , a cover layer 130 , ( reflective) multilayer 140, substrate 150 (also referred to herein as a low-thermal expansion material (LTEM) 150), and conductive layer 160. In some embodiments, modified EUV reticle substrate 100 (which is referred to as EUV reticle substrate 101) may include intermediate layer 30, hard mask layer 110, absorber 120, cover layer 130, multilayer 140, substrate 150, and conductive layer 160. Unless expressly stated otherwise Note, otherwise the EUV photomask substrate 101 is the EUV photomask substrate 100 with the intermediate layer 30 (eg, the 1A, 1B and 1C). Thus, in some embodiments, if the reticle substrate is referred to as EUV reticle substrate 101, the hard mask layer 110 may be referred to as the first hard mask layer, and the intermediate layer 30 may be referred to as the first hard mask layer The second hard mask layer.

根據不同的實施例,極紫外光光罩的製造方法從極紫外光光罩基材100開始,並且如果在基材100上已經具有中間層則從極紫外光光罩基材101開始。在不同實施例中,將中間層30和光阻層20設置在極紫外光光罩基材100上以獲得極紫外光光罩結構10。根據不同的實施例,選擇對光阻層20和極紫外光光罩基材100的頂層(硬遮罩層110)具有蝕刻選擇性的中間層30。 According to various embodiments, the method of manufacturing an EUV reticle starts with EUV reticle substrate 100 and, if an intermediate layer is already on substrate 100 , with EUV reticle substrate 101 . In different embodiments, the intermediate layer 30 and the photoresist layer 20 are disposed on the EUV photomask substrate 100 to obtain the EUV photomask structure 10 . According to various embodiments, the intermediate layer 30 is selected to have etch selectivity to the photoresist layer 20 and the top layer (hard mask layer 110 ) of the EUV reticle substrate 100 .

在不同的實施例中,光阻層20包含對電子束暴光敏感的正型化學增幅光阻(positive chemically amplified resist,PCAR)、負型化學增幅光阻(negative chemically amplified resist,NCAR)、非化學增幅光阻(non-chemically amplified resist,Non CAR)光阻層或無機光阻(例如,金屬光阻(metal photoresist,MePR)或氫矽鹽酸類(hydrogen silsesquioxane,HSQ))。光阻層20的厚度在大約2奈米至大約150奈米、大約5奈米至大約100奈米、大約7奈米至大約75奈米、大約10奈米至大約50奈米或大約70奈米至大約150奈米的範圍內,並包括在其間的任何厚度值或範圍。 In various embodiments, the photoresist layer 20 includes a positive chemically amplified resist (PCAR), a negative chemically amplified resist (NCAR), a non-chemically amplified photoresist that is sensitive to electron beam exposure Amplified photoresist (non-chemically amplified resist, Non CAR) photoresist layer or inorganic photoresist (for example, metal photoresist (metal photoresist, MePR) or hydrogen silsesquioxane (hydrogen silsesquioxane, HSQ)). The thickness of the photoresist layer 20 is about 2 nm to about 150 nm, about 5 nm to about 100 nm, about 7 nm to about 75 nm, about 10 nm to about 50 nm or about 70 nm meters to about 150 nanometers and including any thickness value or range in between.

在不同的實施例中,中間層30包括可以吸收極紫 外光的金屬或金屬合金膜。可以作為中間層30的金屬的非限制性示例包括過渡金屬(例如,鉭(Ta)、鈀(Pd)、鎳(Ni))以及它們的合金(例如,氧硼化鉭(TaBO)、氮硼化鉭(TaBN)等)。在不同的實施例中,中間層30包括矽基材料(例如,氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷)。中間層30的厚度在大約2奈米至大約200奈米、大約2奈米至大約150奈米、大約2奈米至大約100奈米、大約2奈米至大約50奈米或約2奈米至約30奈米的範圍內,並且包括在它們之間的任何厚度值或範圍。在部分實施例中,中間層30透過化學氣相沉積(chemical vapor deposition,CVD)、電漿增強化學氣相沉積(plasma-enhanced chemical vapor deposition,PECVD)、原子層沉積(atomic layer deposition,ALD)、物理氣相沉積(physical vapor deposition,PVD)(濺鍍)或任何其他合適的成膜方法形成。 In various embodiments, the intermediate layer 30 includes a material that can absorb extreme violet Metal or metal alloy film for external light. Non-limiting examples of metals that may serve as the intermediate layer 30 include transition metals (eg, tantalum (Ta), palladium (Pd), nickel (Ni)) and their alloys (eg, tantalum oxyboride (TaBO), nitrogen boron tantalum (TaBN), etc.). In various embodiments, the interlayer 30 includes a silicon-based material (eg, silicon oxide (SiO), silicon oxynitride (SiON), silicon nitride (SiN), silicon boron nitride (SiBN), silicon boron carbide ( SiBC), silicon boron nitride (SiBCN) or polysiloxane). The thickness of the intermediate layer 30 is about 2 nm to about 200 nm, about 2 nm to about 150 nm, about 2 nm to about 100 nm, about 2 nm to about 50 nm, or about 2 nm to about 30 nanometers, and including any thickness value or range in between. In some embodiments, the intermediate layer 30 is formed by chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD) , physical vapor deposition (PVD) (sputtering) or any other suitable film formation method.

如第1B圖所示,根據不同的實施例,中間層30包括設置在光阻層20和硬遮罩層110之間的兩個中間層(在本文中也稱為子層)30-1和30-2。在部分實施例中,中間層30-1(底部子層)可以包括含矽的材料,並且中間層30-2(頂部子層)可以包括含過渡金屬的材料。在部分實施例中,中間層30-1可以包括含過渡金屬的材料,並且中間層30-2可以包括含矽的材料。如第1C圖所示,根 據不同的實施例,中間層30可以是多層堆疊,即,其為具有金屬氧化物和矽基材料的組合之多個中間層(多個子層)30-1、30-2、…、30-10,其層數範圍從大約2到大約10。根據不同的實施例,中間層30-1、30-2、…、30-10中的每一個的厚度在大約1奈米至大約30奈米、大約2奈米至大約30奈米、大約2奈米至約20奈米、或約1奈米至約10奈米的範圍內,並且包括在其間的任何厚度值或範圍。在部分實施例中,多層的中間層30的厚度為約4奈米至約200奈米、約4奈米至約150奈米、約4奈米至約100奈米、約3奈米至約50奈米或約3奈米至約30奈米,並且包括在其間的任何厚度值或範圍。在部分實施例中,多層的中間層30有助於在硬遮罩層蝕刻期間保持高圖案保真度。在部分實施例中,多層的中間層30有助於減少光阻層的損失。 As shown in FIG. 1B , according to various embodiments, the intermediate layer 30 includes two intermediate layers (also referred to herein as sublayers) 30 - 1 and 30-2. In some embodiments, the middle layer 30-1 (bottom sublayer) may include a silicon-containing material, and the middle layer 30-2 (top sublayer) may include a transition metal-containing material. In some embodiments, the intermediate layer 30-1 may include a transition metal-containing material, and the intermediate layer 30-2 may include a silicon-containing material. As shown in Figure 1C, the root According to different embodiments, the intermediate layer 30 may be a multi-layer stack, that is, it is a plurality of intermediate layers (sub-layers) 30-1, 30-2, . . . , 30- having a combination of metal oxide and silicon-based materials 10, with layers ranging from about 2 to about 10. According to various embodiments, each of the intermediate layers 30-1, 30-2, . . . , 30-10 has a thickness of about 1 to about 30 nanometers, about 2 to about 30 nanometers to about 20 nanometers, or about 1 nanometer to about 10 nanometers, and including any thickness value or range therebetween. In some embodiments, the thickness of the multi-layered intermediate layer 30 is about 4 nm to about 200 nm, about 4 nm to about 150 nm, about 4 nm to about 100 nm, about 3 nm to about 50 nm or about 3 nm to about 30 nm, and including any thickness value or range therebetween. In some embodiments, the multi-layered interlayer 30 helps maintain high pattern fidelity during hard mask layer etching. In some embodiments, the multi-layered interlayer 30 helps reduce photoresist loss.

在不同的實施例中,中間層30對光阻層20和硬遮罩層110具有蝕刻選擇性。例如,可以透過以高達600埃/秒(A/s)的蝕刻速率之混和的氣體電漿四氟化碳/氧氣(CF4/O2)來蝕刻矽基中間層30,其中可以以高達40埃/秒的蝕刻速率蝕刻包含氮氧化鉻(CrON)的硬遮罩層110。在類似條件下,光阻層20的蝕刻速率為約220埃/秒至約240埃/秒。在某些條件下,中間層30對硬遮罩層110的蝕刻選擇性可以高達80:1,這可以幫助促進中間層30的薄化。在不同的實施例中,中間層30包括與吸收層120相同的材料。在不同的實施例中,中間層30包括 與吸收層120不同的材料。 In various embodiments, the intermediate layer 30 has etch selectivity to the photoresist layer 20 and the hard mask layer 110 . For example, the silicon-based interlayer 30 can be etched by a mixed gas plasma carbon tetrafluoride/oxygen (CF 4 /O 2 ) at etch rates as high as 600 angstroms per second (A/s), which can be as high as 40 The etch rate of Angstrom/sec etches the hard mask layer 110 comprising chromium oxynitride (CrON). Under similar conditions, the etch rate of the photoresist layer 20 is about 220 angstroms/second to about 240 angstroms/second. Under certain conditions, the etch selectivity of the interlayer 30 to the hard mask layer 110 may be as high as 80:1, which may help facilitate thinning of the interlayer 30 . In various embodiments, the intermediate layer 30 includes the same material as the absorber layer 120 . In various embodiments, the intermediate layer 30 includes a different material than the absorber layer 120 .

在不同的實施例中,硬遮罩層110的功能為向吸收層進行圖案轉移。硬遮罩層110包括金屬層(例如,鉻(Cr)或鉭(Ta)),或它們的合金(例如,氮氧化鉻(CrON)、氧化鉭(TaO)、氧硼化鉭(TaBO))。在不同的實施例中,硬遮罩層110包括矽、矽基化合物(例如,氮化矽(SiN)或氮氧化矽(SiON))。硬遮罩層110的厚度在大約2奈米至大約50奈米、大約3奈米至大約30奈米、大約4奈米至大約15奈米或大約6奈米至大約10奈米的範圍內,並且包括在其間的任何厚度值或範圍。在不同的實施例中,硬遮罩層110透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積(例如,濺鍍)或任何其他合適的成膜方法形成。 In various embodiments, the function of the hard mask layer 110 is to perform pattern transfer to the absorber layer. The hard mask layer 110 includes a metal layer (eg, chromium (Cr) or tantalum (Ta)), or an alloy thereof (eg, chromium oxynitride (CrON), tantalum oxide (TaO), tantalum oxyboride (TaBO)) . In various embodiments, the hard mask layer 110 includes silicon, a silicon-based compound (eg, silicon nitride (SiN) or silicon oxynitride (SiON)). The thickness of the hard mask layer 110 is in the range of about 2 nm to about 50 nm, about 3 nm to about 30 nm, about 4 nm to about 15 nm, or about 6 nm to about 10 nm , and includes any thickness value or range in between. In various embodiments, the hard mask layer 110 is formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition (eg, sputtering), or any other suitable film formation method.

在不同的實施例中,光阻層20與中間層30的厚度比在從大約1:1至大約75:1、從大約1:1至大約50:1、從大約1:1至大約25:1的範圍內,並且包括在其間的任何比例範圍或比例值。在不同的實施例中,中間層30與硬遮罩層110的厚度比在從大約1:1到大約100:1、從大約1:1到大約75:1、從大約1:1到大約50:1、從大約1:1到大約25:1的範圍內,並且包括在其間的任何範圍或比例值。可以選擇此比例,以便調整乾式蝕刻的化學物質,以在光阻層20與硬遮罩層110之間的蝕刻中具有高蝕刻選擇性,而不會損失圖案的保真度。在不同的實施例中,選擇中間層30的厚度,使得其不會進行可能 會損壞開放的硬遮罩層區域之延伸的乾式蝕刻剝離。在不同的實施例中,選擇中間層30的厚度,使得其可以在硬遮罩層蝕刻期間承受電漿而不損失圖案保真度。 In various embodiments, the thickness ratio of the photoresist layer 20 to the intermediate layer 30 is from about 1:1 to about 75:1, from about 1:1 to about 50:1, from about 1:1 to about 25:1 1 and including any scale range or scale value therebetween. In various embodiments, the thickness ratio of the intermediate layer 30 to the hard mask layer 110 is from about 1:1 to about 100:1, from about 1:1 to about 75:1, from about 1:1 to about 50 : 1. In the range from about 1:1 to about 25:1 and including any range or ratio therebetween. This ratio can be selected in order to adjust the dry etch chemistry to have high etch selectivity in the etch between the photoresist layer 20 and the hard mask layer 110 without loss of pattern fidelity. In various embodiments, the thickness of the intermediate layer 30 is chosen such that it is not possible to Dry etch lift off that can damage the extension of the open hardmask area. In various embodiments, the thickness of the interlayer 30 is selected such that it can withstand the plasma during hard mask layer etching without loss of pattern fidelity.

在不同的實施例中,吸收體120包括用於在極紫外光曝光工具上吸收極紫外光的金屬層。吸收體120包括鉭基材料。在本公開的部分實施例中,吸收體120具有如下所述的多層結構。在不同的實施例中,吸收體120包括鉭(Ta)、鈷(Co)、鉻(Cr)、碲(Te)、鉑(Pt)、鈀(Pd)、釕(Ru)、銥(Ir)、鎳(Ni)和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)的層。 In various embodiments, the absorber 120 includes a metal layer for absorbing EUV light on an EUV exposure tool. The absorber 120 includes a tantalum based material. In some embodiments of the present disclosure, the absorbent body 120 has a multi-layer structure as described below. In various embodiments, the absorber 120 includes tantalum (Ta), cobalt (Co), chromium (Cr), tellurium (Te), platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir) , nickel (Ni) and/or alloys thereof (eg, derivatives of nitrides, carbides, oxides and/or borides).

在部分實施例中,抗反射層(在第1圖中未繪示)可選地設置在吸收體120上方。在部分實施例中,抗反射層由氧化矽製成,並且具有在約2奈米至約10奈米範圍內的厚度。在部分實施例中,使用具有厚度在大約12奈米至大約18奈米範圍內的氧硼化鉭(TaBO)層作為抗反射層。在部分實施例中,抗反射層的厚度在約3奈米至約6奈米的範圍內。在部分實施例中,抗反射層透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積或任何其他合適的成膜方法形成。 In some embodiments, an anti-reflection layer (not shown in FIG. 1 ) is optionally disposed over the absorber 120 . In some embodiments, the anti-reflective layer is made of silicon oxide and has a thickness in the range of about 2 nanometers to about 10 nanometers. In some embodiments, a tantalum boron oxide (TaBO) layer having a thickness in the range of about 12 nanometers to about 18 nanometers is used as the antireflective layer. In some embodiments, the thickness of the antireflection layer is in the range of about 3 nanometers to about 6 nanometers. In some embodiments, the anti-reflective layer is formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition, or any other suitable film formation method.

在不同的實施例中,覆蓋層130包括金屬層以保護下面的多層140不被蝕刻。在不同的實施例中,覆蓋層130設置在多層140上以防止多層140氧化。在不同的實施例中,覆蓋層130包括釕、釕合金(例如,硼化釕(RuB)、 矽化釕(RuSi)或鈮化釕(RuNb))或氧化釕(例如,氧化釕(RuO2)或氧鈮化釕(RuNbO))。覆蓋層130的厚度在約1奈米至約20奈米、約2奈米至約10奈米或約2奈米至約4奈米的範圍內,並且包括在其間的任何厚度值或範圍。在部分實施例中,覆蓋層130具有3.5奈米±10%的厚度。在部分實施例中,覆蓋層130透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積(例如,濺鍍)或任何其他合適的成膜方法形成。在部分實施例中,使用矽(Si)層作為覆蓋層130。 In various embodiments, the capping layer 130 includes a metal layer to protect the underlying multilayer 140 from being etched. In various embodiments, the capping layer 130 is disposed on the multilayer 140 to prevent the multilayer 140 from oxidizing. In various embodiments, the capping layer 130 includes ruthenium, a ruthenium alloy (eg, ruthenium boride (RuB), ruthenium silicide (RuSi), or ruthenium niobium (RuNb)), or ruthenium oxide (eg, ruthenium oxide (RuO 2 )) or ruthenium niobium oxide (RuNbO)). The thickness of the capping layer 130 is in the range of about 1 nanometer to about 20 nanometers, about 2 nanometers to about 10 nanometers, or about 2 nanometers to about 4 nanometers, and including any thickness value or range therebetween. In some embodiments, capping layer 130 has a thickness of 3.5 nm±10%. In some embodiments, the capping layer 130 is formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition (eg, sputtering), or any other suitable film formation method. In some embodiments, a silicon (Si) layer is used as the capping layer 130 .

在不同的實施例中,多層140包括含有多達約60對的鉬和矽的膜堆疊(在本文中也稱為「鉬/矽(Mo/Si)堆疊」)。在不同的實施例中,多層140包括膜堆疊,此膜堆疊包含鉬和矽對以及頂部矽保護層。在部分實施例中,多層140包括矽和鉬中的每一個的約30個交替的層對、約40個交替的層對、約50個交替的層對或約60個交替的層對。在部分實施例中,對於感興趣的波長(例如,13.5奈米),多層140的反射率高於約70%。在部分實施例中,矽和鉬層對透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積(濺鍍)或任何其他合適的成膜方法形成。 In various embodiments, the multilayer 140 includes a film stack containing up to about 60 pairs of molybdenum and silicon (also referred to herein as a "molybdenum/silicon (Mo/Si) stack"). In various embodiments, the multi-layer 140 includes a film stack including a molybdenum and silicon pair and a top silicon protection layer. In some embodiments, multilayer 140 includes about 30 alternating layer pairs, about 40 alternating layer pairs, about 50 alternating layer pairs, or about 60 alternating layer pairs of each of silicon and molybdenum. In some embodiments, the reflectivity of multilayer 140 is greater than about 70% for wavelengths of interest (eg, 13.5 nm). In some embodiments, the pair of silicon and molybdenum layers is formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition (sputtering), or any other suitable film formation method.

在不同的實施例中,多層140中之矽和鉬的每一層具有約2奈米、約3奈米、約4奈米、約5奈米、約6奈米、約7奈米、約8奈米、約9奈米、或約10奈米的厚度,並且包括在其間的任何厚度值。在部分實施例中, 矽和鉬的層具有大約相同的厚度。在部分實施例中,矽和鉬的層具有不同的厚度。在部分實施例中,每個矽層的厚度為大約4奈米,並且每個鉬層的厚度為大約3奈米。 In various embodiments, each layer of silicon and molybdenum in multilayer 140 has about 2 nanometers, about 3 nanometers, about 4 nanometers, about 5 nanometers, about 6 nanometers, about 7 nanometers, about 8 nanometers A thickness of nanometers, about 9 nanometers, or about 10 nanometers, and including any thickness values in between. In some embodiments, The layers of silicon and molybdenum have approximately the same thickness. In some embodiments, the layers of silicon and molybdenum have different thicknesses. In some embodiments, each silicon layer is about 4 nanometers thick, and each molybdenum layer is about 3 nanometers thick.

在部分實施例中,多層140包括交替的鉬層和鈹層。在部分實施例中,多層140中的層數在約20至約100的範圍內,然而只要保持足夠的反射率以使目標基材成像就可以允許任何數量的層。在部分實施例中,對於感興趣的波長(例如,13.5奈米),反射率高於約70%。在部分實施例中,多層140包括約30至約60個鉬(Mo)和鈹(Be)之交替的層。在本公開的其他實施例中,多層140包括約40至約50個鉬(Mo)和鈹(Be)中的每一個之交替的層。 In some embodiments, multilayer 140 includes alternating molybdenum and beryllium layers. In some embodiments, the number of layers in multilayer 140 ranges from about 20 to about 100, although any number of layers is permissible as long as sufficient reflectivity is maintained to image the target substrate. In some embodiments, the reflectivity is higher than about 70% for the wavelength of interest (eg, 13.5 nm). In some embodiments, multilayer 140 includes about 30 to about 60 alternating layers of molybdenum (Mo) and beryllium (Be). In other embodiments of the present disclosure, the multilayer 140 includes about 40 to about 50 alternating layers of each of molybdenum (Mo) and beryllium (Be).

在不同的實施例中,基材150包括摻雜鈦的二氧化矽(SiO2)、低熱膨脹玻璃或石英(例如,熔融氧化矽或熔融石英)。在部分實施例中,基材150透射在可見光波長、可見光譜附近之一部分的紅外光波長(近紅外光)和一部分的紫外光波長的光。在部分實施例中,基材150吸收極紫外光波長和接近此極紫外光的深紫外光波長。在部分實施例中,基材150尺寸的長度和寬度分別是152毫米mm和152毫米並具有約0.25英寸的厚度。 In various embodiments, the substrate 150 includes titanium doped silicon dioxide ( SiO2 ), low thermal expansion glass, or quartz (eg, fused silica or fused silica). In some embodiments, the substrate 150 transmits light at wavelengths of visible light, a portion of infrared light wavelengths (near-infrared light) near the visible spectrum, and a portion of ultraviolet light wavelengths. In some embodiments, the substrate 150 absorbs extreme ultraviolet wavelengths and deep ultraviolet wavelengths close to the extreme ultraviolet light. In some embodiments, the substrate 150 dimensions are 152 mm in length and 152 mm in width and have a thickness of about 0.25 inches.

在不同的實施例中,導電層160包括金屬層,此金屬層用於將極紫外光光罩安裝到在極紫外曝光工具中的光罩支架上。在部分實施例中,導電層160包括鉭基材料(例如,硼化鉭(TaB)或其他合適的鉭基導電材料)。 在部分實施例中,硼化鉭是晶體。晶體鉭硼化物包括硼化鉭(TaB)、六硼化五鉭(Ta5B6)、四硼化三鉭(Ta3B4)和二硼化鉭(TaB2)。在部分實施例中,硼化鉭是多晶的或非晶的。在部分實施例中,導電層160包括鉻基導電材料(例如,氮化鉻(CrN)或氮氧化鉻(CrON))。在部分實施例中,導電層160的層電阻為約0.1Ω/sq至約20Ω/sq、約0.15Ω/sq至約15Ω/sq、約0.2Ω/sq至約10Ω/sq或大約0.3Ω/sq至大約100Ω/sq,並且包括在其間的任何層電阻值或範圍。 In various embodiments, the conductive layer 160 includes a metal layer used to mount the EUV reticle to a reticle holder in an EUV exposure tool. In some embodiments, the conductive layer 160 includes a tantalum-based material (eg, tantalum boride (TaB) or other suitable tantalum-based conductive material). In some embodiments, the tantalum boride is crystalline. Crystalline tantalum borides include tantalum boride ( TaB ), pentatantalum hexaboride ( Ta5B6 ), tritantalum tetraboride ( Ta3B4 ), and tantalum diboride ( TaB2 ) . In some embodiments, the tantalum boride is polycrystalline or amorphous. In some embodiments, the conductive layer 160 includes a chromium-based conductive material (eg, chromium nitride (CrN) or chromium oxynitride (CrON)). In some embodiments, the layer resistance of the conductive layer 160 is about 0.1Ω/sq to about 20Ω/sq, about 0.15Ω/sq to about 15Ω/sq, about 0.2Ω/sq to about 10Ω/sq, or about 0.3Ω/sq sq to about 100 Ω/sq, and including any value or range of layer resistance in between.

在部分實施例中,導電層160的表面粗糙度Ra等於或小於0.25奈米。在部分實施例中,導電層160的表面粗糙度Ra等於或大於0.05奈米。此外,在部分實施例中,導電層160的平坦度等於或小於50奈米(在極紫外光光罩內)。在部分實施例中,導電層160的平坦度大於1奈米。在部分實施例中,導電層160的厚度在約50奈米至約400奈米的範圍內。在部分實施例中,導電層160具有約50奈米至約100奈米的厚度。在部分實施例中,此厚度在約65奈米至約75奈米的範圍內。在部分實施例中,導電層160透過大氣化學氣相沉積、低壓化學氣相沉積、電漿增強化學氣相沉積、雷射增強化學氣相沉積、原子層沉積、分子束磊晶(molecular beam epitaxy,MBE)、物理氣相沉積(包括熱沉積、脈衝雷射沉積、電子束蒸發、離子束輔助蒸發和濺鍍)或任何其他合適的成膜方法形成。在化學氣相沉積的情況下,在部分實施例中, 來源氣體包括五氯化鉭(TaCl5)和三氯化硼(BCl3)。 In some embodiments, the surface roughness Ra of the conductive layer 160 is equal to or less than 0.25 nm. In some embodiments, the surface roughness Ra of the conductive layer 160 is equal to or greater than 0.05 nm. Furthermore, in some embodiments, the flatness of the conductive layer 160 is equal to or less than 50 nm (within the EUV mask). In some embodiments, the flatness of the conductive layer 160 is greater than 1 nm. In some embodiments, the thickness of the conductive layer 160 is in the range of about 50 nanometers to about 400 nanometers. In some embodiments, the conductive layer 160 has a thickness of about 50 nanometers to about 100 nanometers. In some embodiments, this thickness is in the range of about 65 nanometers to about 75 nanometers. In some embodiments, the conductive layer 160 is formed by atmospheric chemical vapor deposition, low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, laser enhanced chemical vapor deposition, atomic layer deposition, molecular beam epitaxy , MBE), physical vapor deposition (including thermal deposition, pulsed laser deposition, electron beam evaporation, ion beam assisted evaporation and sputtering) or any other suitable film formation method. In the case of chemical vapor deposition, in some embodiments, the source gases include tantalum pentachloride (TaCl5 ) and boron trichloride ( BCl3 ).

第2A圖、第2B圖和第2C圖示意性地繪示根據本公開的不同實施例之用於製造極紫外光光罩的製程策略。此製程策略包括實現高圖案保真度和微影分辨率的三層策略。 2A, 2B, and 2C schematically illustrate process strategies for fabricating EUV photomasks according to various embodiments of the present disclosure. This process strategy includes a three-layer strategy to achieve high pattern fidelity and lithography resolution.

第2A圖、第2B圖和第2C圖示意性地繪示從極紫外光光罩結構10開始之在製程的三個示例性階段之製程策略的進展。第2A圖繪示極紫外光光罩結構10的製造階段,其中將光阻層20作為光罩以圖案化設置在吸收體120上的硬遮罩層110上的中間層30。透過由光阻層20限定的低長寬比圖案,可以使用低長寬比的光阻層20作為蝕刻光罩來形成中間層30。一旦在中間層30中蝕刻出圖案,就可以去除光阻層20。第2B圖繪示從極紫外光光罩結構10去除光阻層20之後的極紫外光光罩結構10的階段。參照第2B圖,中間層30可以用於以高保真度和分辨率蝕刻極紫外光光罩基材100。第2C圖繪示極紫外光光罩結構10的階段,其中中間層30作為光罩以圖案化和蝕刻極紫外光光罩基材100或極紫外光光罩基材100的任何層。如第1圖所示,根據本公開的不同實施例,極紫外光光罩基材100是指包括硬遮罩層110、吸收體120、覆蓋層130、多層140、基材150和導電層160的層堆疊。 FIGS. 2A , 2B, and 2C schematically illustrate the progression of the process strategy at three exemplary stages of the process, starting with EUV mask structure 10 . FIG. 2A shows the manufacturing stage of the EUV photomask structure 10 , wherein the photoresist layer 20 is used as a photomask to pattern the intermediate layer 30 on the hard mask layer 110 on the absorber 120 . Through the low aspect ratio pattern defined by the photoresist layer 20, the intermediate layer 30 may be formed using the low aspect ratio photoresist layer 20 as an etch mask. Once the pattern is etched in the intermediate layer 30, the photoresist layer 20 can be removed. FIG. 2B shows the stage of the EUV photomask structure 10 after removing the photoresist layer 20 from the EUV photomask structure 10 . Referring to Figure 2B, the intermediate layer 30 may be used to etch the EUV photomask substrate 100 with high fidelity and resolution. FIG. 2C shows a stage of the EUV reticle structure 10 in which the intermediate layer 30 acts as a reticle to pattern and etch the EUV reticle substrate 100 or any layer of the EUV reticle substrate 100 . As shown in FIG. 1 , according to different embodiments of the present disclosure, EUV photomask substrate 100 refers to a hard mask layer 110 , an absorber 120 , a cover layer 130 , a multilayer 140 , a substrate 150 and a conductive layer 160 . layer stacking.

第3A圖、第3B圖和第3C圖示意性地繪示根據本公開的不同實施例之製造極紫外光光罩的方法之依序的製程步驟。第3A圖繪示根據本公開的不同實施例之極紫 外光光罩基材100,其包括硬遮罩層110、吸收體120、覆蓋層130、多層140、基材150和導電層160。在部分實施例中,極紫外光光罩基材100可以不包括如第3A圖所示之層堆疊中所有的層。在部分實施例中,極紫外光光罩基材100可包括比第3A圖所示之層堆疊多的一個或多個附加層。第3A圖中所示的極紫外光光罩基材100可以透過各種合適的製程技術來形成。 FIGS. 3A , 3B and 3C schematically illustrate sequential process steps of a method for manufacturing an EUV photomask according to various embodiments of the present disclosure. Figure 3A depicts extreme violet according to various embodiments of the present disclosure The external light mask substrate 100 includes a hard mask layer 110 , an absorber 120 , a cover layer 130 , a multilayer 140 , a substrate 150 and a conductive layer 160 . In some embodiments, EUV photomask substrate 100 may not include all of the layers in the layer stack as shown in FIG. 3A. In some embodiments, EUV reticle substrate 100 may include one or more additional layers than the layer stack shown in FIG. 3A. The EUV photomask substrate 100 shown in FIG. 3A can be formed by various suitable process techniques.

第3B圖繪示製造過程的階段,其中,中間層30設置在極紫外光光罩基材100上。由於中間層30已在第1A圖至第1C圖中描述過,因此在此將不再詳細描述。如上所述,中間層30可以是單層,或者可以包括兩個中間層(子層)30-1和30-2,或者可以是具有多個子層(即,中間層30-1、30-2、…、30-10)的多層堆疊,其分別繪示和描述在第1A圖、第1B圖和第1C圖中。根據不同的實施例,包括單個或多個子層30-1、30-2、…、30-10的任何中間層可以包括含矽的材料或含過渡金屬的材料。中間層30-1、30-2、…、30-10的組成可以相同或不同,以使中間層30-1、30-2、…、30-10中的至少兩個具有交替的組成、厚度或具有不同的物理尺寸或化學組成。類似地,如上所述,可以透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積(例如,濺鍍)或任何其他合適的成膜方法形成包括中間層30-1、30-2、…、30-10的中間層30。 FIG. 3B shows a stage of the manufacturing process in which the intermediate layer 30 is disposed on the EUV photomask substrate 100 . Since the intermediate layer 30 has been described in FIGS. 1A to 1C, it will not be described in detail here. As described above, the intermediate layer 30 may be a single layer, or may include two intermediate layers (sublayers) 30-1 and 30-2, or may have multiple sublayers (ie, intermediate layers 30-1, 30-2). , ..., 30-10), which are shown and described in Figure 1A, Figure 1B, and Figure 1C, respectively. According to various embodiments, any intermediate layer including single or multiple sub-layers 30-1, 30-2, . . . 30-10 may include a silicon-containing material or a transition metal-containing material. The composition of the intermediate layers 30-1, 30-2, ..., 30-10 may be the same or different, such that at least two of the intermediate layers 30-1, 30-2, ..., 30-10 have alternating compositions, thicknesses Or have different physical dimensions or chemical compositions. Similarly, as described above, the interlayer 30 - including the intermediate layer 30 - may be formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition (eg, sputtering), or any other suitable film formation method. 1, 30-2, ..., 30-10 intermediate layer 30.

第3C圖繪示製造製程的階段,其中將光阻層20 配置在已經配置在極紫外光光罩基材100上的中間層30上。如同已在第1A圖中之描述,光阻層20包含對電子束暴光敏感的正型化學增幅光阻、負型化學增幅光阻、非化學增幅光阻光阻層或無機光阻(例如,金屬光阻或氫矽鹽酸類)。根據不同的實施例,所沉積的光阻層20的厚度可以在大約2奈米至大約150奈米、大約5奈米至大約100奈米、大約7奈米至大約75奈米、大約10奈米至約50奈米或大約70奈米至大約150奈米的範圍內,並且包括在其間的任何厚度值或範圍。 Figure 3C shows a stage of the manufacturing process in which the photoresist layer 20 is It is arranged on the intermediate layer 30 which has been arranged on the EUV photomask substrate 100 . As already described in Figure 1A, the photoresist layer 20 includes a positive chemically amplified photoresist, a negative chemically amplified photoresist, a non-chemically amplified photoresist layer, or an inorganic photoresist that is sensitive to electron beam exposure (eg, metal photoresist or hydrosilicone hydrochloric acid type). According to different embodiments, the thickness of the deposited photoresist layer 20 may be about 2 nm to about 150 nm, about 5 nm to about 100 nm, about 7 nm to about 75 nm, about 10 nm in the range of from about 50 nanometers to about 50 nanometers, or from about 70 nanometers to about 150 nanometers, and including any thickness value or range therebetween.

第4A圖、第4B圖、第4C圖、第4D圖、第4E圖和第4F圖示意性地繪示根據本公開的不同實施例之極紫外光光罩10的製造方法中之依序的製程步驟。應該理解的是,可以在第4A圖至第4F圖所示的製程之前、期間和之後提供附加的操作,並且下面描述的一些操作可以被替換或消除以作為此方法的其他的實施例。操作和/或過程的順序可以互換。 FIGS. 4A, 4B, 4C, 4D, 4E, and 4F schematically illustrate the sequence in the manufacturing method of the EUV photomask 10 according to different embodiments of the present disclosure. process steps. It should be understood that additional operations may be provided before, during, and after the process shown in Figures 4A-4F, and that some of the operations described below may be replaced or eliminated as other embodiments of this method. The order of operations and/or processes may be interchanged.

如第4A圖所示,極紫外光光罩結構10包括形成在已經配置在極紫外光光罩基材100上的中間層30上方的光阻層20。根據本公開的不同實施例(如第3A圖至第3C圖所示),光阻層20和中間層30配置在極紫外光光罩基材100上,此極紫外光光罩基材100具有硬遮罩層110、吸收體120、覆蓋層130、多層140、基材150和導電層160的堆疊。一旦將光阻層20設置在中間層30上,就將光阻層20在圖案中暴露於光化輻射(actinic radiation)。烘烤並顯影選擇性暴光的光阻層20,以在光阻層20中形成圖案。在部分實施例中,光化輻射是電子束或離子束。在部分實施例中,可選地實施電漿除膠渣(descum)步驟以去除在開口中的光阻殘留物。 As shown in FIG. 4A , the EUV photomask structure 10 includes a photoresist layer 20 formed over the intermediate layer 30 that has been disposed on the EUV photomask substrate 100 . According to various embodiments of the present disclosure (as shown in FIGS. 3A to 3C ), the photoresist layer 20 and the intermediate layer 30 are disposed on the EUV photomask substrate 100 , and the EUV photomask substrate 100 has Stack of hard mask layer 110 , absorber 120 , cover layer 130 , multilayer 140 , substrate 150 and conductive layer 160 . Once the photoresist layer 20 is disposed on the intermediate layer 30, the photoresist layer 20 is exposed to actinic radiation in a pattern radiation). The selectively exposed photoresist layer 20 is baked and developed to form a pattern in the photoresist layer 20 . In some embodiments, the actinic radiation is an electron beam or an ion beam. In some embodiments, a plasma descum step is optionally performed to remove photoresist residues in the openings.

第4B圖繪示在已經使用圖案40顯影光阻層20之後的階段,此圖案40可以對應於極紫外光光罩10將在隨後的操作中形成之半導體裝置特徵的圖案。一旦在光阻層20中形成了圖案40,就執行乾式蝕刻(或任何其他合適的製程步驟)以將光阻層20中的圖案40轉移到中間層30中。根據部分實施例,使用光阻層20作為光罩來蝕刻中間層30有助於減小光阻層20的邊角變圓。在部分實施例中,取決於採用的乾式刻蝕法,中間層30的乾式蝕刻對光阻層20的反應性可能較低。在部分實施例中,當蝕刻中間層30時,選擇對光阻層20具有高蝕刻選擇性的蝕刻。當選擇高蝕刻選擇性時,光阻層20不容易被磨損並且因此可防止在中間層30的乾式蝕刻期間引起之邊角變圓。在部分實施例中,與如果不使用中間層30直接蝕刻硬遮罩層110相比,在蝕刻中間層30期間光阻層20的邊角變圓的量將減少。在不使用中間層30直接蝕刻硬遮罩層110的情況下(硬遮罩層110可以包括具有任何百分比的氧和氮的氮氧化鉻(CrON)或鉻(Cr)),硬遮罩層110可以使用含氯氣體(氯氣(Cl2)、三氯化硼(BCl3)、四氯化碳(CCl4))和氧氣的混合氣體進行乾式蝕刻。在部分實施例中,可以在蝕刻期間使用惰性氣體。在部分實施例 中,中間層30的乾式蝕刻可以是四氟化碳(CF4)、三氟甲烷(CHF3)、二氟甲烷(CH2F2)、氟甲烷(CH3F)之一或這些含氟氣體的組合。 Figure 4B depicts a stage after photoresist layer 20 has been developed using pattern 40, which pattern 40 may correspond to the pattern of semiconductor device features that EUV reticle 10 will form in subsequent operations. Once pattern 40 is formed in photoresist layer 20 , dry etching (or any other suitable process step) is performed to transfer pattern 40 in photoresist layer 20 into intermediate layer 30 . According to some embodiments, etching the intermediate layer 30 using the photoresist layer 20 as a mask helps to reduce corner rounding of the photoresist layer 20 . In some embodiments, the dry etching of the interlayer 30 may be less reactive to the photoresist layer 20 depending on the dry etching method employed. In some embodiments, when the interlayer 30 is etched, an etch with high etch selectivity to the photoresist layer 20 is selected. When a high etch selectivity is selected, the photoresist layer 20 is not easily worn and thus can prevent corner rounding caused during dry etching of the intermediate layer 30 . In some embodiments, the amount of corner rounding of the photoresist layer 20 during etching of the interlayer 30 will be reduced compared to if the interlayer 30 were not used to directly etch the hard mask layer 110 . Without directly etching hard mask layer 110 using interlayer 30 (hard mask layer 110 may include chromium oxynitride (CrON) or chromium (Cr) with any percentage of oxygen and nitrogen), hard mask layer 110 Dry etching may be performed using a mixed gas of chlorine-containing gas (chlorine gas (Cl 2 ), boron trichloride (BCl 3 ), carbon tetrachloride (CCl 4 )) and oxygen gas. In some embodiments, an inert gas may be used during etching. In some embodiments, the dry etching of the intermediate layer 30 may be one of carbon tetrafluoride (CF 4 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), fluoromethane (CH 3 F) or a combination of these fluorine-containing gases.

根據不同的實施例,可以使用光阻層20的較薄層,這可防止在光阻層20的顯影期間高長寬比特徵的塌陷。在部分實施例中,中間層30可以比光阻層20薄,因為中間層30對硬遮罩層110的蝕刻選擇性比光阻層20對硬遮罩層110的蝕刻選擇性高。例如,可以透過蝕刻速率高達約240埃/秒(A/s)的混合氣體電漿氯氣/氧氣(Cl2/O2)蝕刻包括氮氧化鉻(CrON)的硬遮罩層110,其中二氧化矽(SiO2)的蝕刻速率可能僅高達約3埃/秒。在類似條件下,光阻層20的蝕刻速率為約220埃/秒至約240埃/秒。在部分實施例中,中間層30對硬遮罩層110的蝕刻選擇性為大約80:1,這可以幫助促進中間層30的薄化。 According to various embodiments, thinner layers of photoresist layer 20 may be used, which may prevent collapse of high aspect ratio features during development of photoresist layer 20 . In some embodiments, the interlayer 30 may be thinner than the photoresist layer 20 because the interlayer 30 has a higher etch selectivity to the hard mask layer 110 than the photoresist layer 20 is to the hard mask layer 110 . For example, the hard mask layer 110 comprising chromium oxynitride ( CrON ), in which dioxide The etch rate for silicon ( SiO2 ) may only be as high as about 3 Angstroms/sec. Under similar conditions, the etch rate of the photoresist layer 20 is about 220 angstroms/second to about 240 angstroms/second. In some embodiments, the etch selectivity of the interlayer 30 to the hard mask layer 110 is about 80:1, which may help facilitate thinning of the interlayer 30 .

根據不同的實施例,中間層30可以包括過渡金屬和/或其合金,以及矽基材料。在部分實施例中,選擇中間層30的材料,使其對光阻層20和硬遮罩層110具有期望的刻蝕選擇性。在部分實施例中,對於具有氮氧化鉻(CrON)的硬遮罩層110,選擇中間層30為一種或多種氧化物材料(例如,氮氧化硼鉭(TaBON)或矽基材料),其可以用四氟化碳(CF4)、三氟甲烷(CHF3)、二氟甲烷(CH2F2)、氟甲烷(CH3F)或這些含氟氣體的組合進行乾式蝕刻。在部分實施例中,對於具有氧化物材料的硬遮罩層110(例 如,氮氧化硼鉭(TaBON)或矽基材料),選擇中間層30為氮化物材料(例如,氮化鉻(CrN)或氮化鉭(TaN)),其可以使用含氯氣氣體(含有氯氣(Cl2)、三氯化硼(BCl3)等氣體)並且可以可選地與氧氣或惰性氣體混合的乾式蝕刻。 According to various embodiments, the intermediate layer 30 may include transition metals and/or alloys thereof, and silicon-based materials. In some embodiments, the material of the intermediate layer 30 is selected to have a desired etch selectivity to the photoresist layer 20 and the hard mask layer 110 . In some embodiments, for the hard mask layer 110 with chromium oxynitride (CrON), the intermediate layer 30 is selected to be one or more oxide materials (eg, tantalum boron oxynitride (TaBON) or silicon-based materials), which may Dry etching is performed with carbon tetrafluoride (CF 4 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), fluoromethane (CH 3 F), or a combination of these fluorine-containing gases. In some embodiments, for the hard mask layer 110 having an oxide material (eg, tantalum boron oxynitride (TaBON) or a silicon-based material), the interlayer 30 is selected to be a nitride material (eg, chromium nitride (CrN) or tantalum nitride (TaN)), which can be dry etched using chlorine-containing gas (gases containing chlorine (Cl2 ) , boron trichloride ( BCl3 ), etc.) and optionally mixed with oxygen or an inert gas.

在完成對中間層30的蝕刻之後,可以使用合適的剝離技術來剝離光阻層20,所述合適的剝離技術包括濕式蝕刻和乾式蝕刻,其中濕式蝕刻包括例如使用有機材料,例如,使用硫酸(H2SO4)和過氧化氫(H2O2)的混合物(SPM)進行的濕式蝕刻或在使用硫酸(H2SO4)和過氧化氫(H2O2)的混合物(SPM)之後,使用氨和過氧化氫的水溶液的表面調節-1(SC-1)處理作為清潔步驟以去除有機薄層或用於去除顆粒,使用有機溶劑(四酚基乙烷縮水甘油醚(PGEE)或丙二醇單甲基醚酯(PGMEA))沖洗,而乾式蝕刻包括使用任何氧化性電漿化學物質(氧氣(O2)、一氧化碳(CO)、二氧化碳(CO2)、水(H2O)或這些含氧氣體的組合)或任何還原性電漿化學物質(氮氣(N2)、氫氣(H2)、氨氣(NH3)、聯安(N2H4)或這些氫氣和氮氣的組合)進行的乾式蝕刻。在部分實施例中,可以省略光阻層20的剝離,直到完成硬遮罩層110的蝕刻為止。 After the etching of the interlayer 30 is complete, the photoresist layer 20 may be stripped using suitable lift-off techniques including wet etching and dry etching, where wet etching includes, for example, using organic materials, eg, using Wet etching using a mixture of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) (SPM) or using a mixture of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) ( After SPM), a surface conditioning-1 (SC-1) treatment with an aqueous solution of ammonia and hydrogen peroxide was used as a cleaning step to remove organic thin layers or for particle removal, using an organic solvent (tetraphenol ethane glycidyl ether ( PGEE) or propylene glycol monomethyl ether ester (PGMEA)) rinses, while dry etching involves the use of any oxidizing plasma chemistry (oxygen ( O2 ), carbon monoxide (CO), carbon dioxide ( CO2 ), water ( H2O ) ) or a combination of these oxygen-containing gases) or any reducing plasma chemistry (nitrogen ( N2 ), hydrogen ( H2 ), ammonia ( NH3 ), N2H4 ) or these hydrogen and nitrogen combination) of dry etching. In some embodiments, the lift-off of the photoresist layer 20 may be omitted until the etching of the hard mask layer 110 is completed.

第4C圖繪示已經用圖案40蝕刻(或以其他方式形成)中間層30之後的階段。一旦圖案40已經被轉移到中間層30中,則圖案化的中間層30用於在極紫外光光罩 基材100的硬遮罩層110中形成圖案40。根據不同的實施例,對硬遮罩層110的蝕刻可以透過用含氯的氣體(氯氣(Cl2)、三氯化硼(BCl3)和/或四氯化碳(CCl4))和氧氣的混合氣體對由氮氧化鉻(CrON)或鉻(Cr)製成並且氧和氮的百分比是任意的硬遮罩層110進行乾式蝕刻來完成。在部分實施例中,可以在蝕刻期間使用惰性氣體。在部分實施例中,對硬遮罩層110的蝕刻可以透過用四氟化碳(CF4)、三氟甲烷(CHF3)、二氟甲烷(CH2F2)、氟甲烷(CH3F)或這些含氟氣體的組合對由金屬氧化物或矽基材料製成的硬遮罩層110進行乾式蝕刻來完成。 FIG. 4C shows the stage after the interlayer 30 has been etched (or otherwise formed) with the pattern 40 . Once the pattern 40 has been transferred into the interlayer 30 , the patterned interlayer 30 is used to form the pattern 40 in the hardmask layer 110 of the EUV reticle substrate 100 . According to various embodiments, the hard mask layer 110 may be etched by using chlorine-containing gases (chlorine (Cl 2 ), boron trichloride (BCl 3 ) and/or carbon tetrachloride (CCl 4 )) and oxygen The mixed gas is done by dry etching the hard mask layer 110 which is made of chromium oxynitride (CrON) or chromium (Cr) and the percentages of oxygen and nitrogen are arbitrary. In some embodiments, an inert gas may be used during etching. In some embodiments, the hard mask layer 110 may be etched by using carbon tetrafluoride (CF 4 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), fluoromethane (CH 3 F ) or a combination of these fluorine-containing gases by dry etching the hard mask layer 110 made of metal oxide or silicon-based material.

在完成對硬遮罩層110的蝕刻之後,可以透過利用與中間層30反應的電漿化學物質過度蝕刻中間層30來去除中間層30。在部分實施例中,過度蝕刻可以透過在有或沒有物理轟擊的情況下的乾式蝕刻來完成。在部分實施例中,可以用四氟化碳(CF4)、三氟甲烷(CHF3)、二氟甲烷(CH2F2)、氟甲烷(CH3F)或這些含氟氣體的組合過度蝕刻金屬氧化物或矽基材料。在部分實施例中,可以用諸如氯氣(Cl2)、三氯化硼(BCl3)的含氯氣體過度蝕刻諸如氮化鉻(CrN)或氮化鉭(TaN)的氮化物材料。在部分實施例中,在蝕刻期間可以使用與氧氣或惰性氣體混合的氣體。 After the etching of the hard mask layer 110 is completed, the interlayer 30 may be removed by overetching the interlayer 30 with a plasma chemical that reacts with the interlayer 30 . In some embodiments, overetching may be accomplished by dry etching with or without physical bombardment. In some embodiments, carbon tetrafluoride (CF4 ) , trifluoromethane (CHF3), difluoromethane ( CH2F2 ) , fluoromethane ( CH3F ) , or a combination of these fluorine-containing gases may be used Etching metal oxide or silicon based materials. In some embodiments, nitride materials such as chromium nitride (CrN) or tantalum nitride (TaN) may be overetched with chlorine-containing gases such as chlorine (Cl 2 ), boron trichloride (BCl 3 ). In some embodiments, a gas mixed with oxygen or an inert gas may be used during etching.

根據不同的實施例,必須選擇相較於圖案轉移的中間層30,對硬遮罩層110具有高度蝕刻選擇性的電漿化學物質。換句話說,對硬遮罩層110的氮氧化鉻(CrON) 的蝕刻速率可以透過調節氯氣(Cl2)和氧氣(O2)的氣體比例來調整,這將改變中間層30的蝕刻速率。在部分實施例中,硬遮罩層110相對於中間層30的蝕刻速率比為約10:1或更高。 According to various embodiments, plasma chemistries must be selected that have a high etch selectivity for the hard mask layer 110 compared to the pattern-transfer interlayer 30 . In other words, the etch rate of chromium oxynitride (CrON) for the hard mask layer 110 can be adjusted by adjusting the gas ratio of chlorine (Cl 2 ) and oxygen (O 2 ), which will change the etch rate of the interlayer 30 . In some embodiments, the etch rate ratio of the hard mask layer 110 relative to the intermediate layer 30 is about 10:1 or higher.

在部分實施例中,特別是在硬遮罩層110的蝕刻完成之前省略光阻層20的剝離的情況下,光阻層20的剝離可以透過利用有機材料之任何常規的剝離方法來完成,例如,使用硫酸(H2SO4)和過氧化氫(H2O2)的混合物(SPM)或表面調節-1(SC-1)進行的濕式蝕刻,使用有機溶劑(四酚基乙烷縮水甘油醚(PGEE)或丙二醇單甲基醚酯(PGMEA))沖洗,或使用任何氧化性電漿化學物質(氧氣(O2)、一氧化碳(CO)、二氧化碳(CO2)、水(H2O)或這些含氧氣體的組合)或任何還原性電漿化學物質(氮氣(N2)、氫氣(H2)、氨氣(NH3)、聯安(N2H4)或這些氫氣和氮氣的組合)進行的乾式蝕刻。在這些實施例中,氧化或還原的乾式蝕刻方法可以選擇性地去除或剝離光阻層20,因為這些刻蝕方法可能不會與中間層30反應。 In some embodiments, particularly where the lift-off of the photoresist layer 20 is omitted before the etching of the hard mask layer 110 is completed, the lift-off of the photoresist layer 20 may be accomplished by any conventional lift-off method utilizing organic materials, such as , wet etching using a mixture of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) (SPM) or Surface Conditioning-1 (SC-1), using an organic solvent (tetraphenolic ethane shrunk) Glyceryl ether (PGEE) or propylene glycol monomethyl ether ester (PGMEA)) rinse, or use any oxidizing plasma chemical (oxygen ( O2 ), carbon monoxide (CO), carbon dioxide ( CO2 ), water ( H2O ) ) or a combination of these oxygen-containing gases) or any reducing plasma chemistry (nitrogen ( N2 ), hydrogen ( H2 ), ammonia ( NH3 ), N2H4 ) or these hydrogen and nitrogen combination) of dry etching. In these embodiments, oxidative or reductive dry etching methods may selectively remove or strip the photoresist layer 20 because these etching methods may not react with the interlayer 30 .

第4D圖繪示已經用圖案40蝕刻(或以其他方式形成)硬遮罩層110之後的階段。一旦圖案40已經被轉移到硬遮罩層110中,則使用圖案化的硬遮罩層110作為蝕刻光罩在吸收體120中透過乾式蝕刻圖案40的暴露部分在吸收體120中形成圖案40。可以執行乾式蝕刻(或任何合適的濕式蝕刻)以去除吸收體層120中的暴露部分, 以在吸收體120中形成圖案40。一旦已經將圖案40轉移到吸收體120上,則可以透過利用與硬遮罩層110反應的電漿化學物質過度蝕刻硬遮罩層110來去除硬遮罩層110的殘留部分。在部分實施例中,過度蝕刻可以透過在有或沒有物理轟擊的情況下的乾式蝕刻來完成。在部分實施例中,可以用四氟化碳(CF4)、三氟甲烷(CHF3)、二氟甲烷(CH2F2)、氟甲烷(CH3F)或這些含氟氣體的組合過度蝕刻金屬氧化物或矽基材料。在部分實施例中,可以用諸如氯氣(Cl2)、三氯化硼(BCl3)的含氯氣體過度蝕刻諸如氮化鉻(CrN)或氮化鉭(TaN)的氮化物材料。在部分實施例中,在蝕刻期間可以使用與氧氣或惰性氣體混合的氣體。 FIG. 4D shows the stage after the hard mask layer 110 has been etched (or otherwise formed) with the pattern 40 . Once pattern 40 has been transferred into hard mask layer 110, pattern 40 is formed in absorber 120 by dry etching exposed portions of pattern 40 in absorber 120 using patterned hard mask layer 110 as an etch mask. A dry etch (or any suitable wet etch) may be performed to remove exposed portions in absorber layer 120 to form pattern 40 in absorber 120 . Once the pattern 40 has been transferred onto the absorber 120 , the remaining portions of the hard mask layer 110 may be removed by overetching the hard mask layer 110 with a plasma chemistry that reacts with the hard mask layer 110 . In some embodiments, overetching may be accomplished by dry etching with or without physical bombardment. In some embodiments, carbon tetrafluoride (CF4 ) , trifluoromethane (CHF3), difluoromethane ( CH2F2 ) , fluoromethane ( CH3F ) , or a combination of these fluorine-containing gases may be used Etching metal oxide or silicon based materials. In some embodiments, nitride materials such as chromium nitride (CrN) or tantalum nitride (TaN) may be overetched with chlorine-containing gases such as chlorine (Cl 2 ), boron trichloride (BCl 3 ). In some embodiments, a gas mixed with oxygen or an inert gas may be used during etching.

第4E圖繪示已經用圖案40蝕刻(或以其他方式形成)吸收體120之後的階段。一旦將圖案40轉移到吸收體120中,就可以對覆蓋層130或多層140進行附加的蝕刻。在部分實施例中,透過重複另一組合適的處理步驟(例如,透過使用另一個(第二個)光阻層以形成圖案並將其作為蝕刻光罩以在極紫外光光罩10中執行蝕刻(乾式蝕刻或濕式蝕刻)),可以將另一個圖案50轉移到極紫外光光罩10中。根據不同的實施例,圖案50定義極紫外光光罩10的黑色邊界圖案。 FIG. 4E shows the stage after the absorber 120 has been etched (or otherwise formed) with the pattern 40 . Once the pattern 40 has been transferred into the absorber 120, additional etching of the capping layer 130 or multilayers 140 may be performed. In some embodiments, by repeating another set of suitable processing steps (eg, by using another (second) photoresist layer to form a pattern and use it as an etch mask to perform in EUV reticle 10 etching (dry or wet), another pattern 50 can be transferred into the EUV reticle 10 . According to various embodiments, pattern 50 defines a black border pattern of EUV reticle 10 .

第4F圖繪示在將圖案50轉移到極紫外光光罩10中之後的階段。如第4F圖所示,將圖案50轉移到覆蓋層130和多層140中。一旦完成圖案50的圖案轉移,則可 透過合適的光阻層剝離劑去除第二光阻層以暴露出吸收體120的上表面(其具有在吸收體120中定義的圖案40和50)。在本公開的部分實施例中,吸收體120、覆蓋層130和多層140中的圖案50定義了極紫外光光罩10的黑色邊界。在去除第二光阻層之後,極紫外光光罩10經歷了清潔操作、檢查,並且根據需要修復極紫外光光罩10,以提供完成的極紫外光光罩10。 FIG. 4F shows the stage after the pattern 50 has been transferred into the EUV reticle 10 . Pattern 50 is transferred into cap layer 130 and multilayer 140 as shown in Figure 4F. Once the pattern transfer of pattern 50 is complete, the The second photoresist layer is removed through a suitable photoresist layer stripper to expose the upper surface of absorber 120 (which has patterns 40 and 50 defined in absorber 120). In some embodiments of the present disclosure, the pattern 50 in the absorber 120 , the cover layer 130 , and the multilayer 140 defines the black boundary of the EUV reticle 10 . After removing the second photoresist layer, the EUV reticle 10 is subjected to cleaning operations, inspections, and repairs as needed to provide the finished EUV reticle 10 .

第5圖繪示根據本公開的不同實施例之製造極紫外光光罩的方法S100的流程圖。根據不同的實施例,方法S100包括在步驟S110中提供設置在吸收體頂部上的硬遮罩層、覆蓋層和設置在基材上的多層。在部分實施例中,硬遮罩層包括金屬層(例如,鉻(Cr)或鉭(Ta))或它們的合金(例如,氮氧化鉻(CrON)、硼化鉭(TaB)、氧化鉭(TaO)、氧硼化鉭(TaBO)或氮硼化鉭(TaBN)),或矽基化合物(例如,氮化矽(SiN)或氧氮化矽(SiON))。硬遮罩層的厚度在約2奈米至約50奈米、約3奈米至約30奈米、約4奈米至約15奈米或約6奈米至約10奈米的範圍內。在不同的實施例中,透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積(例如,濺鍍)或任何其他合適的成膜方法來形成硬遮罩層。在部分實施例中,吸收體包括用於在極紫外曝光工具上吸收極紫外光的金屬層。吸收體包括鉭基材料。在本公開的一些實施方式中,吸收體具有如下所述的多層結構。在不同的實施例中,吸收體包括鉭(Ta)、鈷(Co)、鉻(Cr)、 碲(Te)、鉑(Pt)、鈀(Pd)、釕(Ru)、銥(Ir)、鎳(Ni)和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)的層。在部分實施例中,覆蓋層包括金屬層,例如但不限於釕、釕合金(例如,硼化釕(RuB)、矽化釕(RuSi)或鈮化釕(RuNb))或氧化釕(例如,氧化釕(RuO2)或氧鈮化釕(RuNbO))。覆蓋層的厚度在約1奈米至約20奈米、約2奈米至約10奈米或約2奈米至約4奈米的範圍內,並且包括在其間的任何厚度值或範圍。在部分實施例中,多層包括包含鉬和矽對的膜堆疊,其包括矽和鉬中的每一個的約30個交替的層對、約40個交替的層對、約50個交替的層對或約60個交替的層對。在部分實施例中,此多層包括多達50對的多個鉬和矽層對,以及頂部矽保護層。在部分實施例中,對於感興趣的波長(例如,13.5奈米),多層的反射率高於約70%。在部分實施例中,基材包括摻雜鈦的氧化矽(SiO2)、低熱膨脹玻璃或石英(例如,熔融氧化矽或熔融石英)。在部分實施例中,基材透射可見光波長,可見光譜附近的一部分紅外光波長(近紅外光)和一部分紫外光波長。在部分實施例中,基材吸收極紫外光波長和接近此極端紫外光的深紫外光波長。 FIG. 5 illustrates a flowchart of a method S100 of manufacturing an EUV photomask according to various embodiments of the present disclosure. According to various embodiments, method S100 includes providing, in step S110, a hard mask layer disposed on top of the absorbent body, a cover layer, and multiple layers disposed on a substrate. In some embodiments, the hard mask layer includes a metal layer (eg, chromium (Cr) or tantalum (Ta)) or alloys thereof (eg, chromium oxynitride (CrON), tantalum boride (TaB), tantalum oxide ( TaO), tantalum oxyboride (TaBO) or tantalum boron nitride (TaBN)), or silicon-based compounds (eg, silicon nitride (SiN) or silicon oxynitride (SiON)). The thickness of the hard mask layer is in the range of about 2 nm to about 50 nm, about 3 nm to about 30 nm, about 4 nm to about 15 nm, or about 6 nm to about 10 nm. In various embodiments, the hard mask layer is formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition (eg, sputtering), or any other suitable film formation method. In some embodiments, the absorber includes a metal layer for absorbing EUV light on the EUV exposure tool. The absorber includes a tantalum based material. In some embodiments of the present disclosure, the absorbent body has a multilayer structure as described below. In various embodiments, the absorber includes tantalum (Ta), cobalt (Co), chromium (Cr), tellurium (Te), platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir), A layer of nickel (Ni) and/or alloys thereof (eg, derivatives of nitrides, carbides, oxides and/or borides). In some embodiments, the capping layer includes a metal layer such as, but not limited to, ruthenium, a ruthenium alloy (eg, ruthenium boride (RuB), ruthenium silicide (RuSi), or ruthenium niobium (RuNb)), or ruthenium oxide (eg, ruthenium oxide Ruthenium (RuO 2 ) or ruthenium niobium oxide (RuNbO)). The thickness of the capping layer is in the range of about 1 nanometer to about 20 nanometers, about 2 nanometers to about 10 nanometers, or about 2 nanometers to about 4 nanometers, and including any thickness value or range therebetween. In some embodiments, the multilayer includes a film stack including pairs of molybdenum and silicon including about 30 alternating layer pairs, about 40 alternating layer pairs, about 50 alternating layer pairs of each of silicon and molybdenum Or about 60 alternating layer pairs. In some embodiments, the multilayer includes as many as 50 pairs of molybdenum and silicon layers, and a top silicon protection layer. In some embodiments, the reflectivity of the multilayer is greater than about 70% for wavelengths of interest (eg, 13.5 nm). In some embodiments, the substrate includes titanium-doped silicon oxide ( SiO2 ), low thermal expansion glass, or quartz (eg, fused silica or fused silica). In some embodiments, the substrate transmits visible light wavelengths, a portion of infrared light wavelengths near the visible spectrum (near infrared light), and a portion of ultraviolet light wavelengths. In some embodiments, the substrate absorbs extreme ultraviolet wavelengths and deep ultraviolet wavelengths near such extreme ultraviolet light.

方法S100包括在步驟S120處在硬遮罩層上方形成中間層。在部分實施例中,中間層的厚度在2奈米至200奈米的範圍內。在部分實施例中,中間層的厚度在約2奈米至約150奈米、約2奈米至約100奈米、約2奈米 至約50奈米或約2奈米至約30奈米的範圍內。在部分實施例中,中間層包括選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)、鎳(Ni)、氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一種或多種。在部分實施例中,中間層包括頂部子層和底部子層,其中頂部子層包括含矽的材料,並且底部子層包括含過渡金屬的材料,反之亦然。在部分實施例中,中間層包括多個子層,其中至少一個子層包括含金屬的材料,並且至少另一個子層包括含矽的材料。在部分實施例中,可以使用不同比例的混合氣體來蝕刻多個中間層,所述混合氣體例如是含氯、含氟和含氧的氣體,並且可以選擇添加惰性載氣(例如,氦氣(He)或氬氣(Ar))。在部分條件下,多個中間層可有助於在蝕刻過程中控制精細的臨界尺寸。 The method S100 includes forming an intermediate layer over the hard mask layer at step S120. In some embodiments, the thickness of the intermediate layer is in the range of 2 nm to 200 nm. In some embodiments, the thickness of the intermediate layer is about 2 nm to about 150 nm, about 2 nm to about 100 nm, about 2 nm to about 50 nanometers or in the range of about 2 nanometers to about 30 nanometers. In some embodiments, the intermediate layer includes a material selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), nickel (Ni), silicon oxide ( SiO), Silicon Oxy Nitride (SiON), Silicon Nitride (SiN), Silicon Boron Nitride (SiBN), Silicon Boron Carbide (SiBC), Silicon Boron Carbide (SiBCN) or Polysiloxane one or more of. In some embodiments, the intermediate layer includes a top sublayer and a bottom sublayer, wherein the top sublayer includes a silicon-containing material and the bottom sublayer includes a transition metal-containing material, and vice versa. In some embodiments, the intermediate layer includes a plurality of sub-layers, wherein at least one sub-layer includes a metal-containing material and at least another sub-layer includes a silicon-containing material. In some embodiments, multiple interlayers may be etched using different ratios of gas mixtures, such as chlorine, fluorine, and oxygen-containing gases, with the optional addition of an inert carrier gas (eg, helium ( He) or argon (Ar)). Under some conditions, multiple interlayers can help control fine critical dimensions during etching.

方法S100包括在步驟S130中在中間層上方形成光阻層。在部分實施例中,光阻層包含對電子束暴光敏感的正型化學增幅光阻、負型化學增幅光阻、非化學增幅光阻光阻層。在部分實施例中,光阻層20的厚度在約2奈米至約120奈米、約5奈米至約100奈米、約7奈米至約75奈米、約10奈米至約50奈米,或約70奈米至約120奈米的範圍內。 Method S100 includes forming a photoresist layer over the intermediate layer in step S130. In some embodiments, the photoresist layer includes a positive type chemically amplified photoresist, a negative type chemically amplified photoresist, and a non-chemically amplified photoresist layer that are sensitive to electron beam exposure. In some embodiments, the thickness of the photoresist layer 20 is about 2 nm to about 120 nm, about 5 nm to about 100 nm, about 7 nm to about 75 nm, about 10 nm to about 50 nm nanometers, or in the range of about 70 nanometers to about 120 nanometers.

方法S100包括在步驟S140中對光阻層進行圖案化。在部分實施例中,圖案化光阻層包括在經由電子束 或離子束形成圖案之後,將光阻層暴露於光化輻射。在暴露於光化輻射之後,將曝光的光阻層烘烤並顯影以在光阻層中形成圖案。一旦光阻層20在光阻層中具有圖案,則在光罩的製造過程中,圖案化的光阻層可以用於在下面的層(例如,中間層)中形成相同的圖案。 The method S100 includes patterning the photoresist layer in step S140. In some embodiments, patterning the photoresist layer includes passing the electron beam Or after the ion beam is patterned, the photoresist layer is exposed to actinic radiation. After exposure to actinic radiation, the exposed photoresist layer is baked and developed to form a pattern in the photoresist layer. Once the photoresist layer 20 is patterned in the photoresist layer, the patterned photoresist layer can be used to form the same pattern in the underlying layers (eg, interlayers) during the fabrication of the reticle.

方法S100包括在步驟S150中透過圖案化的光阻層蝕刻中間層。在部分實施例中,蝕刻包括乾式蝕刻(或任何其他合適的製程步驟),其可將光阻層中的圖案轉移到中間層中。在部分實施例中,使用光阻層作為光罩來蝕刻中間層可減小光阻層的邊角變圓。在部分實施例中,當蝕刻中間層時,選擇對光阻層具有高蝕刻選擇性的蝕刻。當選擇高蝕刻選擇性時,光阻層不容易被磨耗並且因此防止在中間層的乾式蝕刻期間引起之邊角變圓。在部分實施例中,中間層的乾式蝕刻可以是四氟化碳(CF4)、三氟甲烷(CHF3)、二氟甲烷(CH2F2)、氟甲烷(CH3F)之一或這些含氟氣體的組合。 The method S100 includes etching the intermediate layer through the patterned photoresist layer in step S150. In some embodiments, the etching includes dry etching (or any other suitable process step) that can transfer the pattern in the photoresist layer into the intermediate layer. In some embodiments, etching the interlayer using the photoresist layer as a mask can reduce corner rounding of the photoresist layer. In some embodiments, when etching the interlayer, an etch with high etch selectivity to the photoresist layer is selected. When a high etch selectivity is selected, the photoresist layer is not easily worn away and thus prevents corner rounding caused during dry etching of the interlayer. In some embodiments, the dry etching of the interlayer may be one of carbon tetrafluoride (CF 4 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), fluoromethane (CH 3 F), or A combination of these fluorine-containing gases.

方法S100包括在步驟S160處透過圖案化的中間層蝕刻硬遮罩層。根據不同的實施例,對硬遮罩層的蝕刻可以透過用含氯的氣體(氯氣(Cl2)、三氯化硼(BCl3)和/或四氯化碳(CCl4))和氧氣的混合氣體對由氮氧化鉻(CrON)或鉻(Cr)製成並且氧和氮的百分比是任意的硬遮罩層110進行乾式蝕刻來完成。在部分實施例中,可以在蝕刻期間使用惰性氣體。在部分實施例中,對硬遮罩層的蝕刻可以透過用四氟化碳(CF4)、三氟甲烷(CHF3)、 二氟甲烷(CH2F2)、氟甲烷(CH3F)或這些含氟氣體的組合對由金屬氧化物或矽基材料製成的硬遮罩層進行乾式蝕刻來完成。在部分實施例中,可以在蝕刻期間使用惰性氣體。在部分實施例中,可以透過以高達約240埃/秒的蝕刻速率之混合的氣體電漿氯氣/氧氣(Cl2/O2)來蝕刻包括氮氧化鉻(CrON)的硬遮罩層。 The method S100 includes etching the hard mask layer through the patterned interlayer at step S160. According to various embodiments, the etching of the hard mask layer can be carried out by using chlorine-containing gases (chlorine (Cl 2 ), boron trichloride (BCl 3 ) and/or carbon tetrachloride (CCl 4 )) and oxygen The mixed gas is done by dry etching the hard mask layer 110 made of chromium oxynitride (CrON) or chromium (Cr) and the percentages of oxygen and nitrogen are arbitrary. In some embodiments, an inert gas may be used during etching. In some embodiments, the hard mask layer can be etched by using carbon tetrafluoride (CF 4 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), fluoromethane (CH 3 F) Or a combination of these fluorine-containing gases to dry-etch a hardmask layer made of metal oxide or silicon-based materials. In some embodiments, an inert gas may be used during etching. In some embodiments, a hard mask layer comprising chromium oxynitride (CrON) may be etched by mixed gas plasma chlorine/oxygen gas (Cl2/ O2 ) at etch rates up to about 240 Angstroms/sec.

方法S100包括在步驟S170中透過圖案化的硬遮罩層蝕刻吸收體。在部分實施例中,透過圖案化的中間層蝕刻硬遮罩層包括乾式蝕刻製程,此乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率之比大於5。 The method S100 includes etching the absorber through the patterned hard mask layer in step S170. In some embodiments, etching the hard mask layer through the patterned interlayer includes a dry etch process having a first removal rate for the hard mask layer and a second removal rate for the interlayer, and The ratio of the first removal rate of the mask layer to the second removal rate of the intermediate layer is greater than 5.

在部分實施例中,吸收體包括鉭,選自於由鉭、鈷、鉻、碲、鉑、鈀、鈀、釕、銥、鎳和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)所組成的群組中的一種或多種。在部分實施例中,硬遮罩層包括氮氧化鉻(CrON)並且具有在2奈米至15奈米之間的厚度,和/或覆蓋層包括釕。 In some embodiments, the absorber comprises tantalum selected from the group consisting of tantalum, cobalt, chromium, tellurium, platinum, palladium, palladium, ruthenium, iridium, nickel, and/or alloys thereof (eg, nitrides, carbides, oxides and/or boride derivatives) one or more of the group. In some embodiments, the hard mask layer includes chromium oxynitride (CrON) and has a thickness between 2 nm and 15 nm, and/or the capping layer includes ruthenium.

第6圖繪示根據本公開的不同實施例之製造極紫外光光罩的方法S200的流程圖。方法S200包括在步驟S210處在基材上方形成多層。在部分實施例中,多層包括包含鉬和矽對的膜堆疊,其包括矽和鉬中的每一個的約30個交替的層對、約40個交替的層對、約50個交替的層對或約60個交替的層對。在部分實施例中,此多層包括多達 50對的多個鉬和矽層對,以及頂部矽保護層。在部分實施例中,對於感興趣的波長(例如,13.5奈米),多層的反射率高於約70%。在不同的實施例中,多層中的矽和鉬中的每一層具有約2奈米、約3奈米、約4奈米、約5奈米、約6奈米、約7奈米、約8奈米、約9奈米或約10奈米的厚度。在部分實施例中,矽和鉬的層具有大約相同的厚度。在部分實施例中,矽和鉬的層具有不同的厚度。在部分實施例中,每個矽層的厚度為大約4奈米,並且每個鉬層的厚度為大約3奈米。 FIG. 6 is a flowchart of a method S200 of manufacturing an EUV photomask according to various embodiments of the present disclosure. Method S200 includes forming a multilayer over the substrate at step S210. In some embodiments, the multilayer includes a film stack including pairs of molybdenum and silicon including about 30 alternating layer pairs, about 40 alternating layer pairs, about 50 alternating layer pairs of each of silicon and molybdenum Or about 60 alternating layer pairs. In some embodiments, the multilayer includes up to 50 pairs of multiple molybdenum and silicon layer pairs, and top silicon protection layer. In some embodiments, the reflectivity of the multilayer is greater than about 70% for wavelengths of interest (eg, 13.5 nm). In various embodiments, each of the silicon and molybdenum in the multilayer has about 2 nanometers, about 3 nanometers, about 4 nanometers, about 5 nanometers, about 6 nanometers, about 7 nanometers, about 8 nanometers nanometers, about 9 nanometers, or about 10 nanometers thick. In some embodiments, the layers of silicon and molybdenum have about the same thickness. In some embodiments, the layers of silicon and molybdenum have different thicknesses. In some embodiments, each silicon layer is about 4 nanometers thick, and each molybdenum layer is about 3 nanometers thick.

在部分實施例中,多層包括交替的鉬層和鈹層。在部分實施例中,多層中的層數在約20至約100的範圍內,然而只要保持足夠的反射率以使目標基材成像就可以允許任何的層數。在部分實施例中,對於感興趣的波長(例如,13.5奈米),反射率高於約70%。在部分實施例中,此多層包括約30至約60個鉬(Mo)和鈹(Be)的交替層。在本公開的其他實施例中,多層140包括鉬(Mo)和鈹(Be)中的每一個的約40個至約50個交替的層。在部分實施例中,透過化學氣相沉積、電漿增強化學氣相沉積、原子層沉積、物理氣相沉積(濺鍍)或任何其他合適的成膜方法來形成矽和鉬層對和/或矽和鈹對。 In some embodiments, the multilayer includes alternating molybdenum and beryllium layers. In some embodiments, the number of layers in the multilayer ranges from about 20 to about 100, although any number of layers is permissible as long as sufficient reflectivity is maintained to image the target substrate. In some embodiments, the reflectivity is higher than about 70% for the wavelength of interest (eg, 13.5 nm). In some embodiments, the multilayer includes about 30 to about 60 alternating layers of molybdenum (Mo) and beryllium (Be). In other embodiments of the present disclosure, the multilayer 140 includes about 40 to about 50 alternating layers of each of molybdenum (Mo) and beryllium (Be). In some embodiments, the silicon and molybdenum layer pairs and/or are formed by chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition (sputtering), or any other suitable film formation method. silicon and beryllium pair.

方法S200包括在步驟S220處在設置在多層上的覆蓋層上方形成吸收體。方法S200包括在步驟S230處在吸收體上方形成硬遮罩層。方法S200還包括在步驟S240處在硬遮罩層上方形成中間層。根據不同的實施例, 中間層包括選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)或鎳(Ni)所組成的群組中的一個或多個。在部分實施例中,中間層包括多個子層,其中至少一個子層包括含金屬的材料,並且至少另一個子層包括含矽的材料。在部分實施例中,多個子層包括第一子層和第二子層,其中第一子層包括含矽的材料,第二子層包括含過渡金屬的材料,並且第一子層和第二子層是交替的對。 Method S200 includes forming an absorber over a cover layer disposed on the multilayer at step S220. Method S200 includes forming a hard mask layer over the absorber at step S230. The method S200 also includes forming an intermediate layer over the hard mask layer at step S240. According to different embodiments, The intermediate layer includes one or more selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd) or nickel (Ni) indivual. In some embodiments, the intermediate layer includes a plurality of sub-layers, wherein at least one sub-layer includes a metal-containing material and at least another sub-layer includes a silicon-containing material. In some embodiments, the plurality of sublayers includes a first sublayer and a second sublayer, wherein the first sublayer includes a silicon-containing material, the second sublayer includes a transition metal-containing material, and the first sublayer and the second sublayer Sublayers are alternating pairs.

方法S200還包括在步驟S250在中間層上方形成光阻層。方法S200包括在步驟S260中對光阻層進行圖案化。方法S200包括在步驟S270中透過圖案化的光阻層蝕刻中間層。 The method S200 also includes forming a photoresist layer over the intermediate layer at step S250. The method S200 includes patterning the photoresist layer in step S260. The method S200 includes etching the intermediate layer through the patterned photoresist layer in step S270.

方法S200包括在步驟S280中,在蝕刻中間層之後對硬遮罩層執行乾式蝕刻製程。此乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率之比大於5。在部分實施例中,每個子層的厚度在2奈米至30奈米的範圍之間,和/或中間層的厚度在4奈米至200奈米的範圍之間。在部分實施例中,中間層包括選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)、鎳(Ni)、氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中一種或多種。在部分實施例中,吸收體包 括鉭,選自於由鉭、鈷、鉻、碲、鉑、鈀、鈀、釕、銥、鎳和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)所組成的群組中的一種或多種。在部分實施例中,硬遮罩層包括氮氧化鉻(CrON)並且具有在2奈米至15奈米之間的厚度,和/或覆蓋層包括釕,並且多層包括多達50對的多個鉬和矽層對。在部分實施例中,此方法還包括透過圖案化的硬遮罩層蝕刻吸收體。 The method S200 includes, in step S280, performing a dry etching process on the hard mask layer after etching the intermediate layer. The dry etching process has a first removal rate for the hard mask layer and a second removal rate for the intermediate layer, and the ratio of the first removal rate for the hard mask layer to the second removal rate for the intermediate layer is greater than 5. In some embodiments, the thickness of each sub-layer is in the range of 2 nm to 30 nm, and/or the thickness of the intermediate layer is in the range of 4 nm to 200 nm. In some embodiments, the intermediate layer includes a material selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), nickel (Ni), silicon oxide ( SiO), Silicon Oxy Nitride (SiON), Silicon Nitride (SiN), Silicon Boron Nitride (SiBN), Silicon Boron Carbide (SiBC), Silicon Boron Carbide (SiBCN) or Polysiloxane one or more of them. In some embodiments, the absorbent pack including tantalum, selected from derivatives of tantalum, cobalt, chromium, tellurium, platinum, palladium, palladium, ruthenium, iridium, nickel and/or alloys thereof (e.g., nitrides, carbides, oxides and/or borides) ) one or more of the groups. In some embodiments, the hard mask layer includes chromium oxynitride (CrON) and has a thickness between 2 nm and 15 nm, and/or the capping layer includes ruthenium, and the multilayer includes multiples of up to 50 pairs Molybdenum and Si layer pair. In some embodiments, the method further includes etching the absorber through the patterned hard mask layer.

第7圖繪示根據本公開的不同實施例之製造極紫外光光罩的方法S300的流程圖。方法S300包括在步驟S310中在極紫外膜堆疊上形成中間層,此極紫外膜堆疊包括基材、在基材上的多層、在多層上的覆蓋層、在覆蓋層上的吸收體和在吸收體上的硬遮罩層。方法S300包括在步驟S320中在中間層上方形成光阻層,其中中間層包括選自由氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一個或多個。方法S300還包括在步驟S330中對光阻層進行圖案化。方法S300包括在步驟S340透過使用圖案化的光阻層來圖案化中間層。方法S300包括在步驟S350處透過使用圖案化的中間層來圖案化硬遮罩層。方法S300包括在步驟S360透過使用圖案化的硬遮罩層來圖案化吸收體。在部分實施例中,對硬遮罩層進行圖案化包括透過使用圖案化的中間層作為光罩之乾式蝕刻製程來蝕刻硬遮罩層,其中,此乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去 除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率之比大於約5。在部分實施例中,中間層包括多個子層,其中至少一個子層包括含金屬的材料,並且至少另一個子層包括含矽的材料。在部分實施例中,每個子層的厚度在2奈米至30奈米的範圍之間,和/或中間層的厚度在4奈米至200奈米的範圍之間。在部分實施例中,吸收體包括鉭,選自於由鉭、鈷、鉻、碲、鉑、鈀、鈀、釕、銥、鎳和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)所組成的群組中的一種或多種。 FIG. 7 is a flowchart of a method S300 of manufacturing an EUV photomask according to various embodiments of the present disclosure. Method S300 includes forming an intermediate layer on an EUV film stack in step S310, the EUV film stack including a substrate, a multilayer on the substrate, a cover layer on the multilayer, an absorber on the cover layer, and an absorber on the cover layer. A hard mask layer on the body. The method S300 includes forming a photoresist layer over the interlayer in step S320, wherein the interlayer includes a layer selected from the group consisting of silicon oxide (SiO), silicon oxynitride (SiON), silicon nitride (SiN), silicon boron nitride (SiBN), One or more of the group consisting of silicon boron carbide (SiBC), silicon boron nitride (SiBCN), or polysiloxane. The method S300 also includes patterning the photoresist layer in step S330. The method S300 includes patterning the intermediate layer by using the patterned photoresist layer at step S340. The method S300 includes patterning the hard mask layer at step S350 by using a patterned intermediate layer. Method S300 includes patterning the absorber at step S360 by using a patterned hard mask layer. In some embodiments, patterning the hard mask layer includes etching the hard mask layer through a dry etch process using the patterned interlayer as a mask, wherein the dry etch process has a first step on the hard mask layer. A removal rate and a second removal for the intermediate layer removal rate, and the ratio of the first removal rate for the hard mask layer to the second removal rate for the intermediate layer is greater than about 5. In some embodiments, the intermediate layer includes a plurality of sub-layers, wherein at least one sub-layer includes a metal-containing material and at least another sub-layer includes a silicon-containing material. In some embodiments, the thickness of each sub-layer is in the range of 2 nm to 30 nm, and/or the thickness of the intermediate layer is in the range of 4 nm to 200 nm. In some embodiments, the absorber comprises tantalum selected from the group consisting of tantalum, cobalt, chromium, tellurium, platinum, palladium, palladium, ruthenium, iridium, nickel, and/or alloys thereof (eg, nitrides, carbides, oxides and/or boride derivatives) one or more of the group.

在本公開中,實現了一種透過使用中間層以增強硬遮罩層和光阻層之間的蝕刻選擇性來製造極紫外光光罩的方法。本公開提供了增強微影分辨率和製造這種極紫外光光罩所需之更強健的製程的方法和技術。所公開的製造策略可以與所公開之用於極紫外光光罩製造的膜結構結合使用,從而改善當前的極紫外光光罩製造製程並促進下一代極紫外光微影的發展。將理解的是,在本文中並不須要討論所有益處,對於所有實施例或示例不需要特定的益處,並且其他實施例或示例可以提供不同的益處。 In the present disclosure, a method of fabricating an EUV photomask by using an intermediate layer to enhance etch selectivity between a hardmask layer and a photoresist layer is achieved. The present disclosure provides methods and techniques for enhancing lithography resolution and the more robust process required to fabricate such EUV photomasks. The disclosed fabrication strategies can be used in conjunction with the disclosed film structures for EUV photomask fabrication to improve current EUV photomask fabrication processes and facilitate the development of next-generation EUV photolithography. It will be understood that not all benefits need to be discussed herein, that no particular benefit is required for all embodiments or examples, and that other embodiments or examples may provide different benefits.

根據本公開的一個方面,提供了一種形成光罩的方法。此方法包括提供設置在吸收體頂部上的硬遮罩層、覆蓋層和設置在基材上的多層。此方法包括在硬遮罩層上方形成中間層,在中間層上方形成光阻層,圖案化光阻層,透過圖案化的光阻層蝕刻中間層,透過圖案化的中間層蝕刻硬遮罩層,並且透過圖案化的硬遮罩層蝕刻吸收體。在 部分實施例中,透過圖案化的中間層蝕刻硬遮罩層包括乾式蝕刻製程,此乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率之比大於5。在部分實施例中,中間層的厚度在2奈米至200奈米的範圍之間。在部分實施例中,中間層包括選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)、鎳(Ni)、氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一種或多種。在部分實施例中,中間層包括頂部子層和底部子層,其中頂部子層包括含矽的材料,並且底部子層包括含過渡金屬的材料,反之亦然。在部分實施例中,中間層包括多個子層,其中至少一個子層包括含金屬的材料,並且至少另一個子層包括含矽的材料。在部分實施例中,吸收體包括鉭,選自於由鉭、鈷、鉻、碲、鉑、鈀、鈀、釕、銥、鎳和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)所組成的群組中的一種或多種。在部分實施例中,硬遮罩層包括氮氧化鉻(CrON)並且具有在2奈米至15奈米之間的厚度,和/或覆蓋層包括釕。在部分實施例中,此多層包括多達50對的多個鉬和矽層對,以及頂部矽保護層。 According to one aspect of the present disclosure, a method of forming a reticle is provided. The method includes providing a hardmask layer disposed on top of the absorbent body, a cover layer, and multiple layers disposed on a substrate. The method includes forming an intermediate layer over the hard mask layer, forming a photoresist layer over the intermediate layer, patterning the photoresist layer, etching the intermediate layer through the patterned photoresist layer, and etching the hard mask layer through the patterned intermediate layer , and the absorber is etched through the patterned hardmask layer. exist In some embodiments, etching the hard mask layer through the patterned interlayer includes a dry etch process having a first removal rate for the hard mask layer and a second removal rate for the interlayer, and The ratio of the first removal rate of the cap layer to the second removal rate of the intermediate layer is greater than 5. In some embodiments, the thickness of the intermediate layer ranges from 2 nm to 200 nm. In some embodiments, the intermediate layer includes a material selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), nickel (Ni), silicon oxide ( SiO), Silicon Oxy Nitride (SiON), Silicon Nitride (SiN), Silicon Boron Nitride (SiBN), Silicon Boron Carbide (SiBC), Silicon Boron Carbide (SiBCN) or Polysiloxane one or more of. In some embodiments, the intermediate layer includes a top sublayer and a bottom sublayer, wherein the top sublayer includes a silicon-containing material and the bottom sublayer includes a transition metal-containing material, and vice versa. In some embodiments, the intermediate layer includes a plurality of sub-layers, wherein at least one sub-layer includes a metal-containing material and at least another sub-layer includes a silicon-containing material. In some embodiments, the absorber comprises tantalum selected from the group consisting of tantalum, cobalt, chromium, tellurium, platinum, palladium, palladium, ruthenium, iridium, nickel, and/or alloys thereof (eg, nitrides, carbides, oxides and/or boride derivatives) one or more of the group. In some embodiments, the hard mask layer includes chromium oxynitride (CrON) and has a thickness between 2 nm and 15 nm, and/or the capping layer includes ruthenium. In some embodiments, the multilayer includes as many as 50 pairs of molybdenum and silicon layers, and a top silicon protection layer.

根據本公開的一個方面,提供了一種形成光罩的方法。此方法包括在基材上方形成多層,在設置於多層上的 覆蓋層上方形成吸收體,在吸收體上方形成硬遮罩層,在硬遮罩層上方形成中間層。中間層包括多個子層,其中至少一個子層包括含金屬的材料,並且至少另一個子層包括含矽的材料。此方法還包括在中間層上方形成光阻層,對光阻層進行圖案化,透過圖案化的光阻層蝕刻中間層,以及在蝕刻中間層之後,對硬遮罩層進行乾式蝕刻製程。此乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率之比大於5。在部分實施例中,多個子層包括第一子層和第二子層,第一子層包括含矽的材料,第二子層包括含過渡金屬的材料,其中第一子層和第二子層是交替的對。在部分實施例中,每個子層的厚度在2奈米至30奈米之間,和/或中間層的厚度在4奈米至200奈米之間。在部分實施例中,中間層包括選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)、鎳(Ni)、氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一種或多種。在部分實施例中吸收體包括鉭,選自於由鉭、鈷、鉻、碲、鉑、鈀、鈀、釕、銥、鎳和/或其合金(例如,氮化物、碳化物、氧化物和/或硼化物的衍生物)所組成的群組中的一種或多種。在部分實施例中,硬遮罩層包括氮氧化鉻(CrON)並且具有在2奈米至15奈米之間的厚度,和/或覆蓋層包括釕,並且多層包括多達50對的多個鉬和 矽層對。在部分實施例中,此方法還包括透過圖案化的硬遮罩層蝕刻吸收體。 According to one aspect of the present disclosure, a method of forming a reticle is provided. The method includes forming a multi-layer over a substrate, on a layer disposed on the multi-layer An absorber is formed over the cover layer, a hard mask layer is formed over the absorber, and an intermediate layer is formed over the hard mask layer. The intermediate layer includes a plurality of sublayers, wherein at least one sublayer includes a metal-containing material and at least another sublayer includes a silicon-containing material. The method further includes forming a photoresist layer over the interlayer, patterning the photoresist layer, etching the interlayer through the patterned photoresist layer, and performing a dry etching process on the hard mask layer after etching the interlayer. The dry etching process has a first removal rate for the hard mask layer and a second removal rate for the intermediate layer, and the ratio of the first removal rate for the hard mask layer to the second removal rate for the intermediate layer is greater than 5. In some embodiments, the plurality of sublayers includes a first sublayer and a second sublayer, the first sublayer includes a silicon-containing material, the second sublayer includes a transition metal-containing material, wherein the first sublayer and the second sublayer Layers are alternating pairs. In some embodiments, the thickness of each sub-layer is between 2 nm and 30 nm, and/or the thickness of the intermediate layer is between 4 nm and 200 nm. In some embodiments, the intermediate layer includes a material selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), nickel (Ni), silicon oxide ( SiO), Silicon Oxy Nitride (SiON), Silicon Nitride (SiN), Silicon Boron Nitride (SiBN), Silicon Boron Carbide (SiBC), Silicon Boron Carbide (SiBCN) or Polysiloxane one or more of. In some embodiments the absorber comprises tantalum selected from the group consisting of tantalum, cobalt, chromium, tellurium, platinum, palladium, palladium, ruthenium, iridium, nickel and/or alloys thereof (eg, nitrides, carbides, oxides and One or more of the group consisting of derivatives of boride). In some embodiments, the hard mask layer includes chromium oxynitride (CrON) and has a thickness between 2 nm and 15 nm, and/or the capping layer includes ruthenium, and the multilayer includes multiples of up to 50 pairs Molybdenum and Silicon pair. In some embodiments, the method further includes etching the absorber through the patterned hard mask layer.

根據本公開的一個方面,提供了一種形成光罩的方法。此方法包括在極紫外膜堆疊上形成中間層,此極紫外膜堆疊包括基材,在基材上的多層,在多層上的覆蓋層,在覆蓋層上的吸收體,以及在吸收體上的硬遮罩層。此方法包括在中間層上方形成光阻層,其中中間層包括選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)、鎳(Ni)、氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中一種或多種。此方法還包括圖案化光阻層,透過使用圖案化的光阻層來圖案化中間層,透過使用圖案化的中間層來圖案化硬遮罩層,以及透過使用圖案化的硬遮罩層來圖案化吸收體。在部分實施例中,對硬遮罩層進行圖案化包括透過使用以圖案化的中間層作為光罩的乾式蝕刻製程來蝕刻硬遮罩層,其中,乾式蝕刻製程具有對硬遮罩層的第一去除速率和對中間層的第二去除速率,並且對硬遮罩層的第一去除速率與對中間層的第二去除速率之比大於約5。在部分實施例中,中間層包括多個子層,其中至少一個子層包含含金屬的材料,並且至少另一個子層包含含矽的材料。在部分實施例中,每個子層的厚度在2奈米至30奈米之間,和/或中間層的厚度在4奈米至200奈米之間。 According to one aspect of the present disclosure, a method of forming a reticle is provided. The method includes forming an intermediate layer on an EUV film stack, the EUV film stack including a substrate, a multilayer on the substrate, a cover layer on the multilayer, an absorber on the cover layer, and a layer on the absorber Hard mask layer. The method includes forming a photoresist layer over an interlayer, wherein the interlayer includes a layer selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), nickel (Ni), Silicon Oxide (SiO), Silicon Oxy Nitride (SiON), Silicon Nitride (SiN), Silicon Boron Nitride (SiBN), Silicon Boron Carbide (SiBC), Silicon Boron Carbide (SiBCN) or Polysilicon One or more of the group consisting of oxanes. The method also includes patterning the photoresist layer, by patterning the interlayer using the patterned photoresist layer, by patterning the hard mask layer by using the patterned interlayer, and by using the patterned hard mask layer Patterned absorber. In some embodiments, patterning the hard mask layer includes etching the hard mask layer by using a dry etch process with the patterned interlayer as a mask, wherein the dry etch process has a first step on the hard mask layer. A removal rate and a second removal rate for the intermediate layer, and the ratio of the first removal rate for the hard mask layer to the second removal rate for the intermediate layer is greater than about 5. In some embodiments, the intermediate layer includes a plurality of sub-layers, wherein at least one sub-layer includes a metal-containing material and at least another sub-layer includes a silicon-containing material. In some embodiments, the thickness of each sub-layer is between 2 nm and 30 nm, and/or the thickness of the intermediate layer is between 4 nm and 200 nm.

根據本公開的一個方面,提供了一種極紫外光光罩基材。此極紫外光光罩基材包括設置在基材上的多層,設置在多層上的覆蓋層,設置在覆蓋層上方的吸收體,設置在吸收體上方的硬遮罩層,以及設置在硬遮罩層上的中間層。中間層對光阻的蝕刻選擇性比對硬遮罩層高。在部分實施例中,中間層的厚度在2奈米至200奈米之間。在部分實施例中,中間層包括選自由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)或鎳(Ni)所組成的群組中的一個或多個。在部分實施例中,中間層包括選自由氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一種或多種。在部分實施例中,中間層包括頂部子層和底部子層,其中頂部子層包括含矽的材料,並且底部子層包括含過渡金屬的材料,反之亦然。在部分實施例中,中間層包括多個子層,其中至少一個子層包括含金屬的材料,並且至少另一個子層包括含矽的材料。在部分實施例中,吸收體包含鉭,或選自於由鉭、氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)、鎳(Ni)、氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一個或多個。在部分實施例中,硬遮罩層包括氮氧化鉻(CrON)並且具有在2奈米至15奈米之間的厚度。 According to one aspect of the present disclosure, an EUV photomask substrate is provided. The EUV photomask substrate includes multiple layers disposed on the substrate, a cover layer disposed on the multiple layers, an absorber disposed above the cover layer, a hard mask layer disposed above the absorber, and a hard mask layer disposed above the absorber. Intermediate layer over cover layer. The etch selectivity of the interlayer to the photoresist is higher than that of the hard mask layer. In some embodiments, the thickness of the intermediate layer is between 2 nm and 200 nm. In some embodiments, the interlayer includes a member selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), or nickel (Ni). one or more of. In some embodiments, the interlayer includes a layer selected from the group consisting of silicon oxide (SiO), silicon oxynitride (SiON), silicon nitride (SiN), silicon boron nitride (SiBN), silicon boron carbide (SiBC), and boron nitride nitride One or more of the group consisting of silicon (SiBCN) or polysiloxane. In some embodiments, the intermediate layer includes a top sublayer and a bottom sublayer, wherein the top sublayer includes a silicon-containing material and the bottom sublayer includes a transition metal-containing material, and vice versa. In some embodiments, the intermediate layer includes a plurality of sub-layers, wherein at least one sub-layer includes a metal-containing material and at least another sub-layer includes a silicon-containing material. In some embodiments, the absorber comprises tantalum, or is selected from the group consisting of tantalum, tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd), nickel (Ni) ), silicon oxide (SiO), silicon oxynitride (SiON), silicon nitride (SiN), silicon boron nitride (SiBN), silicon boron carbide (SiBC), silicon boron nitride (SiBCN) or polysiloxane one or more of the groups. In some embodiments, the hard mask layer includes chromium oxynitride (CrON) and has a thickness between 2 nm and 15 nm.

前述概述了幾個實施例或示例的特徵,使得本領域具普通知識者可以更好地理解本公開的各方面。本領域具普通知識者應當理解,他們可以容易地將本公開內容作為設計或修改其他過程和結構的基礎,以實現與本文介紹的實施例或示例相同的目的和/或實現相同的益處。本領域具普通知識者還應該認識到,這樣的等效構造並不脫離本公開的精神和範圍,並且在不脫離本公開的精神和範圍的情況下,它們可以進行各種改變、替換和變更。 The foregoing has outlined features of several embodiments or examples so that those of ordinary skill in the art may better understand various aspects of the present disclosure. Those of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same benefits as the embodiments or examples described herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations without departing from the spirit and scope of the present disclosure.

S100:方法 S100: Method

S110:步驟 S110: Steps

S120:步驟 S120: Steps

S130:步驟 S130: Steps

S140:步驟 S140: Steps

S150:步驟 S150: Steps

S160:步驟 S160: Steps

S170:步驟 S170: Steps

Claims (10)

一種光罩的形成方法,包含:提供設置在吸收體的頂部上的一硬遮罩層、一覆蓋層和設置在一基材上的一多層;形成一中間層於該硬遮罩層上;形成一光阻層於該中間層上;圖案化該光阻層;透過圖案化的該光阻層蝕刻該中間層;透過圖案化的該中間層蝕刻該硬遮罩層,其中透過圖案化的該中間層蝕刻該硬遮罩層包含一乾式蝕刻製程,該乾式蝕刻製程具有對該硬遮罩層的一第一去除速率和對該中間層的一第二去除速率,並且對該硬遮罩層的該第一去除速率與對該中間層的該第二去除速率的一比例大於5;以及透過圖案化的該硬遮罩層蝕刻該吸收體。 A method for forming a photomask, comprising: providing a hard mask layer, a cover layer and a multi-layer arranged on a base material arranged on the top of an absorber; forming an intermediate layer on the hard mask layer ; forming a photoresist layer on the intermediate layer; patterning the photoresist layer; etching the intermediate layer through the patterned photoresist layer; etching the hard mask layer through the patterned intermediate layer, wherein through the patterned The intermediate layer etching the hard mask layer includes a dry etching process, the dry etching process has a first removal rate for the hard mask layer and a second removal rate for the intermediate layer, and the hard mask layer is A ratio of the first removal rate of the cap layer to the second removal rate of the intermediate layer is greater than 5; and the absorber is etched through the patterned hard mask layer. 根據請求項1所述的方法,其中,該中間層包含複數個子層,該些子層中的至少一個子層包含一含金屬的材料,並且該些子層中的至少另一個子層包含一含矽的材料。 The method of claim 1, wherein the intermediate layer includes a plurality of sublayers, at least one of the sublayers includes a metal-containing material, and at least another sublayer of the sublayers includes a Silicon-containing materials. 根據請求項1所述的方法,其中,該中間層包含選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)或鎳(Ni)所組成的 群組中的一個或複數個。 The method according to claim 1, wherein the intermediate layer comprises a material selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd) or nickel ( Ni) is composed of One or more of the groups. 根據請求項1所述的方法,其中,該中間層包含選自於由氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN)或聚矽氧烷所組成的群組中的一個或複數個。 The method according to claim 1, wherein the intermediate layer comprises a material selected from the group consisting of silicon oxide (SiO), silicon oxynitride (SiON), silicon nitride (SiN), silicon boron nitride (SiBN), carbon boride One or more of the group consisting of silicon (SiBC), silicon boron nitride (SiBCN) or polysiloxane. 根據請求項1所述的方法,其中,該硬遮罩層包含一金屬層,該金屬層包含鉻或鈦,或者氮氧化鉻(CrON)、硼化鉭(TaB)、氧化鉭(TaO)、氧硼化鉭(TaBO)或氮硼化鉭(TaBN)之一,或者來自氮化矽(SiN)或氮氧化矽(SiON)之一的一矽基化合物,並且具有在2奈米至15奈米之間的一厚度。 The method according to claim 1, wherein the hard mask layer comprises a metal layer, and the metal layer comprises chromium or titanium, or chromium oxynitride (CrON), tantalum boride (TaB), tantalum oxide (TaO), One of tantalum oxyboride (TaBO) or tantalum boron nitride (TaBN), or a silicon-based compound derived from one of silicon nitride (SiN) or silicon oxynitride (SiON), and has a range of 2nm to 15nm A thickness between meters. 一種光罩的形成方法,包含:形成一多層於一基材上;形成一吸收體於設置在該多層上的一覆蓋層上;形成一硬遮罩層於該吸收體上;形成一中間層於該硬遮罩層上,其中該中間層包含選自於由氧硼化鉭(TaBO)、氮硼化鉭(TaBN)、氮氧化硼鉭(TaBON)、鈀(Pd)或鎳(Ni)所組成的群組中的一種或多種;形成一光阻層於該中間層上; 圖案化該光阻層;透過圖案化的該光阻層蝕刻該中間層;以及在蝕刻該中間層之後,對該硬遮罩層進行一乾式蝕刻製程,其中,該乾式蝕刻製程具有對該硬遮罩層的一第一去除速率和對該中間層的一第二去除速率,並且對該硬遮罩層的該第一去除速率與對該中間層的該第二去除速率的一比例大於5。 A method for forming a photomask, comprising: forming a multilayer on a substrate; forming an absorber on a cover layer disposed on the multilayer; forming a hard mask layer on the absorber; forming an intermediate layer on the hard mask layer, wherein the intermediate layer is selected from the group consisting of tantalum oxyboride (TaBO), tantalum boron nitride (TaBN), tantalum boron oxynitride (TaBON), palladium (Pd) or nickel (Ni) ) one or more of the group consisting of; forming a photoresist layer on the intermediate layer; patterning the photoresist layer; etching the intermediate layer through the patterned photoresist layer; and after etching the intermediate layer, performing a dry etching process on the hard mask layer, wherein the dry etching process has the hard mask layer A first removal rate of the mask layer and a second removal rate of the intermediate layer, and a ratio of the first removal rate of the hard mask layer to the second removal rate of the intermediate layer is greater than 5 . 根據請求項6所述的方法,其中,該中間層包含複數個子層,其中,該些子層中的至少一個子層包含一含金屬的材料,並且該些子層的至少另一個子層包含一含矽的材料。 The method of claim 6, wherein the intermediate layer includes a plurality of sublayers, wherein at least one sublayer of the sublayers includes a metal-containing material, and at least another sublayer of the sublayers includes A silicon-containing material. 根據請求項6所述的方法,其更包含透過圖案化的該硬遮罩層蝕刻該吸收體。 The method of claim 6, further comprising etching the absorber through the patterned hard mask layer. 一種光罩的形成方法,包含:形成一中間層於一極紫外膜堆疊上,該極紫外膜堆疊包含一基材、在該基材上的一多層,在該多層上的一覆蓋層,在該覆蓋層上的一吸收體和在該吸收體上的一硬遮罩層;形成一光阻層於該中間層上,其中該中間層包含選自於由氧化矽(SiO)、氮氧化矽(SiON)、氮化矽(SiN)、氮硼化矽(SiBN)、碳硼化矽(SiBC)、氮碳化硼矽(SiBCN) 或聚矽氧烷所組成的群組中的一種或多種;圖案化該光阻層;透過圖案化的該光阻層來圖案化該中間層;透過圖案化的該中間層來圖案化該硬遮罩層;以及透過圖案化的該硬遮罩層來圖案化該吸收體。 A method for forming a photomask, comprising: forming an intermediate layer on an EUV film stack, the EUV film stack comprising a substrate, a multi-layer on the substrate, and a cover layer on the multi-layer, an absorber on the cover layer and a hard mask layer on the absorber; a photoresist layer is formed on the intermediate layer, wherein the intermediate layer is selected from the group consisting of silicon oxide (SiO), oxynitride Silicon (SiON), Silicon Nitride (SiN), Silicon Boron Nitride (SiBN), Silicon Boron Carbide (SiBC), Silicon Boron Carbide (SiBCN) or one or more of the group consisting of polysiloxanes; patterning the photoresist layer; patterning the intermediate layer through the patterned photoresist layer; patterning the hard layer through the patterned intermediate layer a mask layer; and patterning the absorber through the patterned hard mask layer. 根據請求項9所述的方法,其中,該吸收體包含鉭,或選自於由鉭、鈷、鉻、碲、鉑、鈀、釕、銥、鎳和/或它們的合金(包含氮化物、碳化物、氧化物和/或硼化物的衍生物)所組成的群組中的一種或多種。 The method according to claim 9, wherein the absorber comprises tantalum, or is selected from the group consisting of tantalum, cobalt, chromium, tellurium, platinum, palladium, ruthenium, iridium, nickel and/or their alloys (including nitride, one or more of the group consisting of carbides, oxides and/or boride derivatives).
TW110106130A 2020-04-23 2021-02-22 Manufacturing method of mask TWI776398B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063014391P 2020-04-23 2020-04-23
US63/014,391 2020-04-23
US17/086,299 2020-10-30
US17/086,299 US20210333717A1 (en) 2020-04-23 2020-10-30 Extreme ultraviolet mask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW202141161A TW202141161A (en) 2021-11-01
TWI776398B true TWI776398B (en) 2022-09-01

Family

ID=76509424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106130A TWI776398B (en) 2020-04-23 2021-02-22 Manufacturing method of mask

Country Status (2)

Country Link
CN (1) CN113053734A (en)
TW (1) TWI776398B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122422B2 (en) * 2007-12-28 2013-01-16 エスケーハイニックス株式会社 Manufacturing method of semiconductor device
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI477927B (en) * 2012-04-20 2015-03-21 Taiwan Semiconductor Mfg Co Ltd Mask, extreme ultraviolet mask and method for fabricating the same
TWI592737B (en) * 2014-11-26 2017-07-21 台灣積體電路製造股份有限公司 Photolithography masks, methods of fabricating the same and wafer manufacturing processes
US9975758B2 (en) * 2016-08-25 2018-05-22 Applied Materials, Inc. Wafer processing equipment having exposable sensing layers
TWI652543B (en) * 2017-09-20 2019-03-01 台灣美日先進光罩股份有限公司 Method for manufacturing the photomask
TWI655495B (en) * 2017-04-12 2019-04-01 美商格芯(美國)集成電路科技有限公司 Extreme ultraviolet lithography (euvl) reflective mask and method of forming the same
CN109669318A (en) * 2017-10-16 2019-04-23 格芯公司 Extreme ultraviolet (EUV) mask
TWI676076B (en) * 2018-04-27 2019-11-01 台灣美日先進光罩股份有限公司 Photomask, method for manufacturing photomask, and semiconductor photomask substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091947B2 (en) * 2013-07-19 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet light (EUV) photomasks and fabrication methods thereof
WO2016043147A1 (en) * 2014-09-17 2016-03-24 Hoya株式会社 Reflective mask blank, method for manufacturing same, reflective mask, method for manufacturing same, and method for manufacturing semiconductor device
US10515817B2 (en) * 2017-09-29 2019-12-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming features of semiconductor structure having reduced end-to-end spacing
CN110658676B (en) * 2018-06-29 2022-10-25 台湾积体电路制造股份有限公司 Extreme ultraviolet lithography mask and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5122422B2 (en) * 2007-12-28 2013-01-16 エスケーハイニックス株式会社 Manufacturing method of semiconductor device
TWI477927B (en) * 2012-04-20 2015-03-21 Taiwan Semiconductor Mfg Co Ltd Mask, extreme ultraviolet mask and method for fabricating the same
TWI592737B (en) * 2014-11-26 2017-07-21 台灣積體電路製造股份有限公司 Photolithography masks, methods of fabricating the same and wafer manufacturing processes
US9975758B2 (en) * 2016-08-25 2018-05-22 Applied Materials, Inc. Wafer processing equipment having exposable sensing layers
TWI655495B (en) * 2017-04-12 2019-04-01 美商格芯(美國)集成電路科技有限公司 Extreme ultraviolet lithography (euvl) reflective mask and method of forming the same
TWI652543B (en) * 2017-09-20 2019-03-01 台灣美日先進光罩股份有限公司 Method for manufacturing the photomask
CN109669318A (en) * 2017-10-16 2019-04-23 格芯公司 Extreme ultraviolet (EUV) mask
TWI676076B (en) * 2018-04-27 2019-11-01 台灣美日先進光罩股份有限公司 Photomask, method for manufacturing photomask, and semiconductor photomask substrate

Also Published As

Publication number Publication date
TW202141161A (en) 2021-11-01
CN113053734A (en) 2021-06-29

Similar Documents

Publication Publication Date Title
CN112424693B (en) Patterning scheme to improve EUV photoresist and hard mask selectivity
JP4953825B2 (en) Reticle manufacturing using removable hard mask
US20210333717A1 (en) Extreme ultraviolet mask and method of manufacturing the same
US11886109B2 (en) EUV photo masks and manufacturing method thereof
JP6743505B2 (en) Reflective mask blank and reflective mask
US20240337917A1 (en) Methods of making a semiconductor device
CN111758071A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
TWI776398B (en) Manufacturing method of mask
US20210364906A1 (en) Euv photo masks and manufacturing method thereof
TWI768650B (en) Reflective mask and manufacturing method thereof
TWI760057B (en) Reflective mask and manufacturing method thereof
TWI767567B (en) Reflective masks and manufacturing method thereof
US12147154B2 (en) EUV photo masks and manufacturing method thereof
TW202144900A (en) Reflective mask and manufacturing method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent