TWI747703B - Charge and discharge control system and method thereof - Google Patents
Charge and discharge control system and method thereof Download PDFInfo
- Publication number
- TWI747703B TWI747703B TW110100702A TW110100702A TWI747703B TW I747703 B TWI747703 B TW I747703B TW 110100702 A TW110100702 A TW 110100702A TW 110100702 A TW110100702 A TW 110100702A TW I747703 B TWI747703 B TW I747703B
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- grid
- frequency
- frequency band
- power storage
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/10—Flexible AC transmission systems [FACTS]
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本發明係關於一種充放電控制系統與控制方法,尤其是指一種用於控制一儲電系統與一電網間之充放電的充放電控制系統與控制方法。The present invention relates to a charging and discharging control system and a control method, in particular to a charging and discharging control system and a control method for controlling the charging and discharging between a power storage system and a power grid.
近年來,由於傳統的火力發電會對環境造成大量的汙染,而核能發電又存在著極高的風險,因此為了減輕發電所環境造成的負擔,有越來越多的專家學者致力於再生能源的開發,以期有一日能慢慢的取代現有的火力發電或核能發電。In recent years, because traditional thermal power generation has caused a lot of pollution to the environment, and nuclear power generation has extremely high risks, in order to reduce the burden on the environment caused by power generation, more and more experts and scholars are committed to renewable energy. Development, in order to one day slowly replace the existing thermal or nuclear power generation.
由於再生能源的電力供應較不穩定,因此現有的電力來源仍以火力發電或核能發電為主,然後再生能源則以輔助的形式連結到電網;其中,再生能源較不穩定的原因主要是因為再生能源都是仰賴自然現象,例如太陽能主要是利用太陽能板將太陽照射之光線轉換成電力,因此當天候不佳時,其產電能力也會跟著下降。Because the power supply of renewable energy is relatively unstable, the existing power sources are still thermal power or nuclear power generation, and then renewable energy is connected to the grid in the form of auxiliary; among them, the reason for the relatively unstable renewable energy is mainly due to regeneration Energy is dependent on natural phenomena. For example, solar energy mainly uses solar panels to convert the sun's rays into electricity. Therefore, when the weather is bad, its power generation capacity will also decline.
隨著環保意識的抬頭,再生能源為電網提供越來越多的電力,因此解決電力供應不穩定的問題對於維持電力供應品質變得非常重要。在現有的技術中,主要是透過自動頻率控制(Automatic Frequency Control, AFC)系統來維持電網的供電品質,當電網頻率超過標準電網頻率(60Hz)時,意味著電網的供電量超過了需求量,此時AFC會控制電池儲能系統(Battery Energy Storage System, BESS)吸收多餘的電量,並將其存儲在電池中;相反的,當電網頻率低於標準電網頻率時,BESS應立即將存儲的電量提供給電網。With the rise of environmental awareness, renewable energy sources provide more and more power to the grid, so solving the problem of unstable power supply becomes very important to maintain the quality of power supply. In the existing technology, the automatic frequency control (AFC) system is mainly used to maintain the power supply quality of the grid. When the grid frequency exceeds the standard grid frequency (60Hz), it means that the power supply of the grid exceeds the demand. At this time, AFC will control the battery energy storage system (Battery Energy Storage System, BESS) to absorb the excess power and store it in the battery; on the contrary, when the grid frequency is lower than the standard grid frequency, BESS should immediately save the stored power Provided to the grid.
承上所述,BESS通常應保留足夠的容量以響應電網頻率變化在電網上吸收(電池充電)或供應(電池放電)電力,通常,其充電狀態(State of Charge, SoC)應保持在50%至75%之間,而不是0%或100%。由此可知,控制BESS輸出功率以緊密響應電網頻率變化是AFC服務的一種簡便方法,但是頻繁地來回充電和放電會嚴重損害電池壽命。As mentioned above, BESS should generally reserve enough capacity to absorb (battery charging) or supply (battery discharge) power on the grid in response to changes in grid frequency. Generally, its state of charge (SoC) should be maintained at 50% To 75% instead of 0% or 100%. It can be seen that controlling the output power of BESS to closely respond to changes in grid frequency is a simple and convenient method for AFC services, but frequent charging and discharging will seriously damage the battery life.
有鑒於在現有的技術中,將再生能源所產生之電力傳輸至電網時,很容易因為再生能源的供電能力不穩定而導致電網品質下降,因此為了維護電網的供電品質,通常會利用自動頻率控制系統來控制電網與電池儲能系統之間的充方電,但頻繁的充放電很容易導致電池受損會減少使用壽命;緣此,本發明的主要目的在於提供一種充放電控制系統,可以在將電網的品質維持在一定的程度下,有效的減少電池充放電的次數,藉以延長電池的使用壽命。In view of the fact that in the existing technology, when the power generated by renewable energy is transmitted to the grid, it is easy to reduce the quality of the grid due to the unstable power supply capacity of the renewable energy. Therefore, in order to maintain the power supply quality of the grid, automatic frequency control is usually used. The system is used to control the charging between the grid and the battery energy storage system, but frequent charging and discharging can easily cause damage to the battery and reduce the service life; therefore, the main purpose of the present invention is to provide a charging and discharging control system that can be used in Maintain the quality of the power grid to a certain level, effectively reducing the number of battery charging and discharging, thereby extending the service life of the battery.
本發明為解決先前技術之問題,所採用的必要技術手段是提供一種充放電控制系統,係透過一電力調節系統控制一儲電系統與一電網間之充放電,充放電控制系統包含一量測模組以及一電網頻率自動控制裝置。In order to solve the problems of the prior art, the necessary technical means adopted by the present invention is to provide a charging and discharging control system, which controls the charging and discharging between a power storage system and a power grid through a power regulation system. The charging and discharging control system includes a measurement Module and a grid frequency automatic control device.
量測模組係電性連接於電網與電力調節系統,用以量測電網之一即時電網頻率與電力調節系統之一實際淨輸出功率。電網頻率自動控制裝置包含一電網頻率狀態判斷模組、一服務效能判斷模組、一儲電量區間判斷模組以及一核心控制單元。The measurement module is electrically connected to the power grid and the power conditioning system to measure the real-time grid frequency of the power grid and the actual net output power of the power conditioning system. The power grid frequency automatic control device includes a power grid frequency state judgment module, a service performance judgment module, a power storage interval judgment module, and a core control unit.
電網頻率狀態判斷模組係電性連接於量測模組,設有複數個參考頻帶,參考頻帶至少包含一涵蓋一標準電網頻率之標準運作頻帶、一遠離標準電網頻率之緊急運作頻帶以及一位於標準運作頻帶與緊急運作頻帶間之警戒運作頻帶,且電網頻率狀態判斷模組更用以判斷即時電網頻率落於參考頻帶中之何者。The power grid frequency status judgment module is electrically connected to the measurement module and has a plurality of reference frequency bands. The reference frequency band includes at least a standard operating frequency band covering a standard power grid frequency, an emergency operating frequency band far away from the standard power grid frequency, and an The warning operating frequency band between the standard operating frequency band and the emergency operating frequency band, and the grid frequency status determination module is used to determine which of the real-time grid frequency falls within the reference frequency band.
服務效能判斷模組係電性連接於量測模組,設有一電網頻率與目標輸出功率對照表,用以依據量測模組所量測出之即時電網頻率,計算出即時電網頻率所對應之一用以使即時電網頻率趨近於一標準電網頻率之目標輸出功率,並利用目標輸出功率與實際淨輸出功率計算出一服務效能指標。The service performance judgment module is electrically connected to the measurement module. A comparison table of grid frequency and target output power is set up to calculate the corresponding real-time grid frequency based on the real-time grid frequency measured by the measurement module. One is used to make the real-time grid frequency approach the target output power of a standard grid frequency, and use the target output power and the actual net output power to calculate a service efficiency index.
儲電量區間判斷模組係電性連接於儲電系統,設有複數個儲電量區間,儲電量區間至少包含一涵蓋一理想儲電量值之理想儲電量區間、一鄰近理想儲電量值且位於理想儲電量區間外之高度操作彈性儲電量區間、一遠離理想儲電量值之低度操作彈性儲電量區間以及一位於高度操作彈性儲電量區間與低度操作彈性儲電量區間間之中度操作彈性儲電量區間,用以判斷儲電系統之儲電量落於儲電量區間中之何者。The power storage interval judging module is electrically connected to the power storage system and has a plurality of power storage intervals. The power storage interval includes at least an ideal power storage interval covering an ideal power storage value, and a neighboring ideal power storage value and located in the ideal A high-operation flexible power storage interval outside the power storage interval, a low-operation flexible power storage interval far away from the ideal power storage value, and a medium-operation flexible power storage interval between the high-operation flexible power storage interval and the low-operation flexible power storage interval The electric quantity interval is used to determine which of the electric storage capacity of the electric storage system falls within the electric energy storage interval.
核心控制單元係電性連接於電網頻率狀態判斷模組、服務效能判斷模組與儲電量區間判斷模組,係設有一電網頻率自動控制規則表,電網頻率自動控制規則表係依據參考頻帶、服務效能指標與儲電量區間分別定義出複數個充放電反應模式,充放電反應模式包含一穩定反應模式、一預測反應模式、一即時反應模式、一待機充電恢復反應模式以及一待機放電恢復反應模式,核心控制單元會控制電力調節系統依調節制儲電系統與電網間之充放電。The core control unit is electrically connected to the power grid frequency status judgment module, the service efficiency judgment module, and the power storage interval judgment module. There is a grid frequency automatic control rule table. The grid frequency automatic control rule table is based on the reference frequency band and service The performance index and power storage interval respectively define a plurality of charge and discharge response modes. The charge and discharge response modes include a stable response mode, a predictive response mode, an instant response mode, a standby charge recovery response mode, and a standby discharge recovery response mode. The core control unit controls the charging and discharging between the power storage system and the grid in accordance with the regulation system of the power regulation system.
其中,在穩定反應模式、預測反應模式與即時反應模式下,係分別在即時電網頻率落於一第一功率零調整頻帶、一第二功率零調整頻帶與一第三功率零調整頻帶時,使儲電系統對電網之實際淨輸出功率為零,第一功率零調整頻帶、第二功率零調整頻帶與第三功率零調整頻帶之中央頻率皆為標準電網頻率,第一功率零調整頻帶之頻寬係大於第二功率零調整頻帶之頻寬,且第二功率零調整頻帶之頻寬係大於第三功率零調整頻帶之頻寬。Among them, in the stable response mode, the predicted response mode and the immediate response mode, when the real-time grid frequency falls within a first zero power adjustment frequency band, a second power zero adjustment frequency band, and a third power zero adjustment frequency band, respectively, The actual net output power of the power storage system to the power grid is zero. The central frequencies of the first zero power adjustment frequency band, the second power zero adjustment frequency band and the third power zero adjustment frequency band are all standard grid frequencies, and the frequency of the first power zero adjustment frequency band The width is greater than the bandwidth of the second power zero adjustment frequency band, and the bandwidth of the second power zero adjustment frequency band is greater than the bandwidth of the third power zero adjustment frequency band.
在待機充電恢復反應模式下,係在服務效能指標符合一服務效能指標容許範圍的條件下,定義出一待機充電恢復反應頻寬,且在即時電網頻率落於待機充電恢復反應頻寬時,使儲電系統對電網之實際淨輸出功率小於零,在待機放電恢復反應模式下,係在服務效能指標符合服務效能指標容許範圍的條件下,定義出一待機放電恢復反應頻寬,且在即時電網頻率落於待機放電恢復反應頻寬時,使儲電系統對電網之實際淨輸出功率大於零。In the standby charging recovery response mode, a standby charging recovery response bandwidth is defined under the condition that the service performance index meets the allowable range of a service performance index, and when the real-time grid frequency falls within the standby charging recovery response bandwidth, The actual net output power of the power storage system to the grid is less than zero. In the standby discharge recovery response mode, a standby discharge recovery response bandwidth is defined under the condition that the service performance index meets the allowable range of the service performance index, and in the real-time grid When the frequency falls within the standby discharge recovery response bandwidth, the actual net output power of the power storage system to the grid is greater than zero.
本發明還提供一種充放電控制方法,係透過一電力調節系統控制一儲電系統與一電網間之充放電,充放電控制方法包含以下步驟(a)至步驟(f):The present invention also provides a charging and discharging control method, which controls the charging and discharging between a power storage system and a power grid through a power regulation system. The charging and discharging control method includes the following steps (a) to (f):
步驟(a)是量測電網之一即時電網頻率與電力調節系統之一實際淨輸出功率。Step (a) is to measure the real-time grid frequency of one of the power grids and the actual net output power of one of the power conditioning systems.
步驟(b)是判斷即時電網頻率落於複數個參考頻帶中之何者,參考頻帶至少包含一涵蓋一標準電網頻率之標準運作頻帶、一遠離標準電網頻率之緊急運作頻帶以及一位於標準運作頻帶與緊急運作頻帶間之警戒運作頻帶。Step (b) is to determine which of the plurality of reference frequency bands the real-time power grid frequency falls into. The reference frequency band includes at least a standard operating frequency band covering a standard power grid frequency, an emergency operating frequency band far away from the standard power grid frequency, and an emergency operating frequency band located in the standard operating frequency band and Warning operation frequency band between emergency operation frequency bands.
步驟(c)是依據量測模組所量測出之即時電網頻率,計算出即時電網頻率所對應之一用以使即時電網頻率趨近於一標準電網頻率之目標輸出功率,並利用目標輸出功率與實際淨輸出功率計算出一服務效能指標。Step (c) is based on the real-time grid frequency measured by the measurement module, calculate the corresponding one of the real-time grid frequency to make the real-time grid frequency approach the target output power of a standard grid frequency, and use the target output The power and the actual net output power calculate a service performance index.
步驟(d)是判斷儲電系統之一儲電量落於複數個儲電量區間中之何者,儲電量區間至少包含一涵蓋一理想儲電量值之理想儲電量區間、一鄰近理想儲電量值且位於理想儲電量區間外之高度操作彈性儲電量區間、一遠離理想儲電量值之低度操作彈性儲電量區間以及一位於高度操作彈性儲電量區間與低度操作彈性儲電量區間間之中度操作彈性儲電量區間。Step (d) is to determine which of the plurality of power storage intervals the power storage of one of the power storage systems falls into. The power storage interval includes at least an ideal power storage region covering an ideal power storage value, a neighboring ideal power storage value and located in A highly operational flexible power storage interval outside the ideal power storage interval, a low-operation flexible power storage interval far away from the ideal power storage value, and a medium operating flexibility between the highly operational flexible power storage interval and the low-operation flexible power storage interval Power storage interval.
步驟(e)是建立一電網頻率自動控制規則表,電網頻率自動控制規則表係依據參考頻帶、服務效能指標與儲電量區間分別定義出複數個充放電反應模式,充放電反應模式包含一穩定反應模式、一預測反應模式、一即時反應模式、一待機充電恢復反應模式以及一待機放電恢復反應模式。Step (e) is to establish a grid frequency automatic control rule table. The grid frequency automatic control rule table defines a plurality of charge and discharge reaction modes according to the reference frequency band, service efficiency index and power storage interval. The charge and discharge reaction mode includes a stable response. Mode, a predictive response mode, an immediate response mode, a standby charge recovery response mode, and a standby discharge recovery response mode.
步驟(f)是判斷即時電網頻率、服務效能指標與儲電量對應於充放電反應模式中之何者,並據以控制電力調節系統調節儲電系統與電網間之充放電。Step (f) is to determine which of the real-time grid frequency, service performance index and power storage corresponds to the charging and discharging response mode, and controlling the power regulation system to adjust the charging and discharging between the power storage system and the grid accordingly.
其中,在穩定反應模式、預測反應模式與即時反應模式下,係分別在即時電網頻率落於一第一功率零調整頻帶、一第二功率零調整頻帶與一第三功率零調整頻帶時,使儲電系統對電網之實際淨輸出功率為零。Among them, in the stable response mode, the predicted response mode and the immediate response mode, when the real-time grid frequency falls within a first zero power adjustment frequency band, a second power zero adjustment frequency band, and a third power zero adjustment frequency band, respectively, The actual net output power of the storage system to the grid is zero.
第一功率零調整頻帶、第二功率零調整頻帶與第三功率零調整頻帶之中央頻率皆為標準電網頻率,第一功率零調整頻帶之頻寬係大於第二功率零調整頻帶之頻寬,且第二功率零調整頻帶之頻寬係大於第三功率零調整頻帶之頻寬。The central frequencies of the first zero power adjustment frequency band, the second power zero adjustment frequency band, and the third power zero adjustment frequency band are all standard grid frequencies. The bandwidth of the first power zero adjustment frequency band is greater than that of the second power zero adjustment frequency band. And the bandwidth of the second power zero adjustment frequency band is greater than the bandwidth of the third power zero adjustment frequency band.
在待機充電恢復反應模式下,係在服務效能指標符合一服務效能指標容許範圍的條件下,定義出一待機充電恢復反應頻寬,且在即時電網頻率落於待機充電恢復反應頻寬時,使儲電系統對電網之實際淨輸出功率小於零,在待機放電恢復反應模式下,係在服務效能指標符合服務效能指標容許範圍的條件下,定義出一待機放電恢復反應頻寬,且在即時電網頻率落於待機放電恢復反應頻寬時,使儲電系統對電網之實際淨輸出功率大於零。In the standby charging recovery response mode, a standby charging recovery response bandwidth is defined under the condition that the service performance index meets the allowable range of a service performance index, and when the real-time grid frequency falls within the standby charging recovery response bandwidth, The actual net output power of the power storage system to the grid is less than zero. In the standby discharge recovery response mode, a standby discharge recovery response bandwidth is defined under the condition that the service performance index meets the allowable range of the service performance index, and in the real-time grid When the frequency falls within the standby discharge recovery response bandwidth, the actual net output power of the power storage system to the grid is greater than zero.
如上所述,由於本發明之充放電控制系統與充放電控制方法是利用量測模組量測電網之即時電網頻率與電力調節系統之實際淨輸出功率,然後透過電網頻率狀態判斷模組與服務效能判斷模組來進一步獲得相對應的參考頻帶與服務效能指標,以及利用儲電量區間判斷模組判斷儲電系統之儲電量所對應的儲電量區間,進而依據參考頻帶、服務效能指標與儲電量區間來定義出多個充放電反應模式,藉此,便能依據相對應的充放電反應模式去控制電力調節系統,使電力調節系統依據充放電反應模式控制儲電系統與電網間之充放電。As mentioned above, because the charging and discharging control system and the charging and discharging control method of the present invention use the measurement module to measure the real-time grid frequency of the power grid and the actual net output power of the power conditioning system, and then judge the module and service through the grid frequency status The performance judgment module further obtains the corresponding reference frequency band and service performance index, and uses the power storage interval judgment module to judge the power storage interval corresponding to the power storage of the power storage system, and then according to the reference frequency band, service performance index and power storage Multiple charge-discharge response modes are defined by interval, so that the power conditioning system can be controlled according to the corresponding charge-discharge response mode, so that the power conditioning system controls the charge and discharge between the storage system and the grid according to the charge-discharge response mode.
本發明所採用的具體實施例,將藉由以下之實施例及圖式作進一步之說明。The specific embodiments adopted in the present invention will be further illustrated by the following embodiments and drawings.
請參閱第一圖至第二圖,第一圖係顯示本發明較佳實施例所提供之充放電控制系統之系統方塊圖;第二圖係顯示本發明較佳實施例所提供之電網頻率自動控制裝置之系統方塊圖。Please refer to the first to second figures. The first figure shows the system block diagram of the charging and discharging control system provided by the preferred embodiment of the present invention; the second figure shows the automatic grid frequency provided by the preferred embodiment of the present invention. System block diagram of the control device.
如第一圖至第二圖所示,一種充放電控制系統100包含一量測模組1以及一電網頻率自動控制裝置2。其中,充放電控制系統100是透過一電力調節系統200控制一儲電系統300與一電網400間之充放電。此外,電網400與儲電系統300更電性連結於一再生能源500,藉以使再生能源500所產生之電力提供至電網400。As shown in the first to second figures, a charging and
量測模組1是電性連接於電網400與電力調節系統200,用以量測電網400之一即時電網頻率與電力調節系統200之一實際淨輸出功率,進而將一載有即時電網頻率之第一訊號S1與一載有實際淨輸出功率之第二訊號S2傳送出。The
電網頻率自動控制裝置2包含一電網頻率狀態判斷模組21、一服務效能判斷模組22、一儲電量區間判斷模組23、一核心控制單元24以及一功率控制模組25。The power grid frequency
電網頻率狀態判斷模組21是電性連接於量測模組1,用以接收第一訊號S1,並且設有複數個參考頻帶(如下表一所示),參考頻帶包含一涵蓋一標準電網頻率之標準運作頻帶、一遠離標準電網頻率之緊急運作頻帶以及一位於標準運作頻帶與緊急運作頻帶間之警戒運作頻帶,且電網頻率狀態判斷模組21更用以判斷即時電網頻率落於參考頻帶中之何者,並將一載有參考頻帶判斷結果之第三訊號S3傳送出。The power grid frequency
表一:參考頻帶對照頻率範圍。
如上所述,標準電網頻率在本實施例中為60Hz,而標準運作頻帶是大於等於59.94Hz且小於等於60.06Hz,警戒運作頻帶包含一第一警戒運作頻帶與一第二警戒運作頻帶,第一警戒運作頻帶是大於等於59.78Hz且小於59.94Hz,第二警戒運作頻帶是大於60.06Hz且小於等於60.22Hz,緊急運作頻帶包含一第一緊急運作頻帶與一第二緊急運作頻帶,第一緊急運作頻帶是小於59.78Hz,第二緊急運作頻帶是大於60.22Hz。As mentioned above, the standard power grid frequency in this embodiment is 60 Hz, and the standard operating frequency band is greater than or equal to 59.94 Hz and less than or equal to 60.06 Hz. The alert operating frequency band includes a first alert operating frequency band and a second alert operating frequency band. The guard operation frequency band is greater than or equal to 59.78 Hz and less than 59.94 Hz, the second guard operation frequency band is greater than or equal to 60.06 Hz and less than or equal to 60.22 Hz, the emergency operation frequency band includes a first emergency operation frequency band and a second emergency operation frequency band, the first emergency operation The frequency band is less than 59.78 Hz, and the second emergency operation frequency band is greater than 60.22 Hz.
服務效能判斷模組22是電性連接於量測模組1,用以接收第二訊號S2,並設有一電網頻率與目標輸出功率對照表,用以依據量測模組所量測出之即時電網頻率,計算出即時電網頻率所對應之一目標輸出功率,目標輸出功率是用以使即時電網頻率趨近於標準電網頻率,且服務效能判斷模組22更利用目標輸出功率與實際淨輸出功率計算出一服務效能指標,藉以將一載有服務效能指標之第四訊號S4傳送出。The service
表二:電網頻率與目標輸出功率對照表。
如以上表二所示,電網頻率與目標輸出功率對照表包含複數個預設頻率、複數個對應於預設頻率之輸出功率上限值以及複數個對應於預設頻率之輸出功率下限值;其中,預設頻率是以標準電網頻率為基準而增減,輸出功率上限值與輸出功率下限值則是指在相對應之預設頻率下,輸出功率上限值與輸出功率下限值之間的輸出功率皆為可容許的輸出功率。As shown in Table 2 above, the grid frequency and target output power comparison table includes a plurality of preset frequencies, a plurality of output power upper limits corresponding to the preset frequencies, and a plurality of output power lower limits corresponding to the preset frequencies; Among them, the preset frequency is increased or decreased based on the standard grid frequency. The upper limit of output power and the lower limit of output power refer to the upper limit of output power and the lower limit of output power at the corresponding preset frequency. The output power in between is the allowable output power.
服務效能判斷模組22利用目標輸出功率與實際淨輸出功率計算出服務效能指標所使用之公式為:SPM= 100% - |TPP - RPP|。其中,SPM(Service Performance Measurement)為服務效能指標;TPP(Target Output Power in percentage)為目標輸出功率,RPP(Real Output Power in percentage)為實際淨輸出功率。The formula used by the service
此外,服務效能指標還包含一服務效能指標短期平均值與一服務效能指標長期平均值,服務效能指標短期平均值例如是以十分鐘為單位來計算出目標輸出功率平均值與實際淨輸出功率平均值,而服務效能指標長期平均值例如是以一個月為單位來計算出目標輸出功率平均值與實際淨輸出功率平均值。In addition, the service performance indicators also include a short-term average of service performance indicators and a long-term average of service performance indicators. For example, the short-term average of service performance indicators is calculated in units of ten minutes to calculate the average target output power and the average actual net output power. For example, the long-term average value of the service performance index is calculated in the unit of one month to calculate the average value of the target output power and the average value of the actual net output power.
儲電量區間判斷模組23是電性連接於儲電系統300,設有複數個儲電量區間(如下表三所示),儲電量區間包含一涵蓋一理想儲電量值之理想儲電量區間、一鄰近理想儲電量值且位於理想儲電量區間外之高度操作彈性儲電量區間、一遠離理想儲電量值之低度操作彈性儲電量區間以及一位於高度操作彈性儲電量區間與低度操作彈性儲電量區間之間之中度操作彈性儲電量區間,用以判斷儲電系統之儲電量落於儲電量區間中之何者,並將一載有儲電量區間判斷結果之第五訊號S5傳送出。The power storage
表三:儲電量區間與電量對照表。
核心控制單元24是電性連接於電網頻率狀態判斷模組21、服務效能判斷模組22與儲電量區間判斷模組23,設有一電網頻率自動控制規則表,電網頻率自動控制規則表是依據參考頻帶、服務效能指標與儲電量區間分別定義出複數個充放電反應模式,充放電反應模式包含一穩定反應模式、一預測反應模式、一即時反應模式、一待機充電恢復反應模式以及一待機放電恢復反應模式。而功率控制模組25是電性連結於核心控制單元24與電力調節系統200。The
承上所述,核心控制單元24會依據充放電反應模式中之一者發送出一功率輸出控制指令S6至功率控制模組25,藉以驅使功率控制模組25控制電力調節系統200之功率輸出,進而使電力調節系統200依據充放電反應模式所對應之輸出功率控制儲電系統300與電網400間之充放電。其中,本實施例之電網頻率自動控制規則表如下表四所示。As mentioned above, the
表四:電網頻率自動控制規則表。
上述之代號CH為理想儲電量區間,CM為高度操作彈性儲電量區間,CL為中度操作彈性儲電量區間,CE為低度操作彈性儲電量區間,SRD為標準電網頻率之標準運作頻帶,NOD為警戒運作頻帶,HRD為緊急運作頻帶,MASPM-10m是以十分鐘為單位所計算出之服務效能指標短期平均值,MASPM-1M是以一個月為單位所計算出之服務效能指標長期平均值;其中,在服務效能指標中,用於作為比較基準值的95%為一服務效能指標容許值,進而透過服務效能指標容許值與服務效能指標短期平均值或服務效能指標長期平均值進行比較而定義出服務效能指標容許範圍。此外,恢復反應模式為待機充電恢復反應模式或待機放電恢復反應模式,其詳細之區分如後所述。The above code CH is the ideal power storage interval, CM is the highly operating flexible power storage interval, CL is the moderate operating flexible power storage interval, CE is the low operating flexible power storage interval, SRD is the standard operating frequency band of the standard grid frequency, NOD It is a warning operation frequency band, HRD is an emergency operation frequency band, MASPM-10m is a short-term average of service performance indicators calculated in ten minutes, and MASPM-1M is a long-term average of service performance indicators calculated in units of one month ; Among them, in the service performance index, 95% of the benchmark value used for comparison is a service performance index allowable value, and then the allowable value of the service performance index is compared with the short-term average value of the service performance index or the long-term average value of the service performance index Define the allowable range of service performance indicators. In addition, the recovery response mode is a standby charge recovery response mode or a standby discharge recovery response mode, and the detailed distinction will be described later.
基於上述電網頻率自動控制規則表所定義出之複數個充放電反應模式之詳細說明如下。The detailed description of the multiple charge and discharge reaction modes defined based on the above grid frequency automatic control rule table is as follows.
穩定反應模式更設有複數個電網頻率低於標準電網頻率之第一低頻帶以及複數個電網頻率高於標準電網頻率之第一高頻帶,每一第一低頻帶是自電網頻率與目標輸出功率對照表中,擷取相對應之預設頻率所對應之輸出功率上限值其中最低者作為一第一低頻帶緩衝輸出功率;每一第一高頻帶是自電網頻率與目標輸出功率對照表中擷取相對應之預設頻率所對應之輸出功率下限值其中最高者作為一第一高頻帶緩衝輸出功率。本實施例之穩定反應模式所具有之第一低頻帶與第一高頻帶所對應之第一低頻帶緩衝輸出功率與第一高頻帶緩衝輸出功率對應如下表五所示。The stable response mode also has a plurality of first low frequency bands with a grid frequency lower than the standard grid frequency and a plurality of first high frequency bands with a grid frequency higher than the standard grid frequency. Each first low frequency band is derived from the grid frequency and the target output power In the comparison table, the lowest of the output power upper limit values corresponding to the corresponding preset frequency is extracted as a first low-band buffer output power; each first high-band is from the grid frequency and the target output power comparison table The highest output power lower limit value corresponding to the corresponding preset frequency is captured as a first high-band buffer output power. The first low-band buffer output power and the first high-band buffer output power corresponding to the first low-frequency band and the first high-frequency band of the stable response mode of this embodiment are shown in Table 5 below.
表五:在穩定反應模式下,第一低頻帶所對應之第一低頻帶緩衝輸出功率,以及第一高頻帶所對應之第一高頻帶緩衝輸出功率。
預測反應模式設有複數個電網頻率低於標準電網頻率之第二低頻帶以及複數個電網頻率高於標準電網頻率之第二高頻帶,每一第二低頻帶是自電網頻率與目標輸出功率對照表中擷取相對應之預設頻率所對應之輸出功率上限值其中最低者作為一第二低頻帶緩衝輸出功率;每一第二高頻帶是自電網頻率與目標輸出功率對照表中擷取相對應之預設頻率所對應之輸出功率下限值其中最高者作為一第二高頻帶緩衝輸出功率。本實施例之預測反應模式所具有之第二低頻帶與第二高頻帶所對應之第二低頻帶緩衝輸出功率與第二高頻帶緩衝輸出功率對應如下表六所示。The predictive response mode has a plurality of second low frequency bands with a grid frequency lower than the standard grid frequency and a plurality of second high frequency bands with a grid frequency higher than the standard grid frequency. Each second low frequency band is compared with the target output power from the grid frequency The upper limit of the output power corresponding to the corresponding preset frequency is extracted in the table, the lowest of which is used as a second low-band buffer output power; each second high-band is extracted from the grid frequency and the target output power comparison table The highest output power lower limit value corresponding to the corresponding preset frequency is used as a second high-band buffer output power. The second low-band buffer output power and the second high-band buffer output power corresponding to the second low-frequency band and the second high-frequency band of the prediction response mode of this embodiment correspond to the following Table 6 below.
表六:在預測反應模式下,第二低頻帶所對應之第二低頻帶緩衝輸出功率,以及第二高頻帶所對應之第二高頻帶緩衝輸出功率。
即時反應模式依據預設頻率設有複數個即時輸出功率值,即時輸出功率值分別為相對應之輸出功率上限值與輸出功率下限值之平均值。本實施例之即時反應模式對應於每個預設頻率所設之即時輸出功率值如下表七所示。The real-time response mode has a plurality of real-time output power values based on the preset frequency, and the real-time output power values are respectively the average value of the corresponding output power upper limit and the output power lower limit. The real-time response mode of this embodiment corresponds to the real-time output power value set for each preset frequency as shown in Table 7 below.
表七:在即時反應模式下,預設頻率與所對應之即時輸出功率值。
如上所述,穩定反應模式具有一第一功率零調整頻帶(59.94Hz至60.06Hz),預測反應模式具有一第二功率零調整頻帶(59.96Hz至60.04Hz),而即時反應模式具有一第三功率零調整頻帶(59.98Hz至60.02Hz),當即時電網頻率落於第一功率零調整頻帶、第二功率零調整頻帶與第三功率零調整頻帶時,儲電系統300對電網400之實際淨輸出功率為零。As mentioned above, the stable response mode has a first zero power adjustment frequency band (59.94 Hz to 60.06 Hz), the predicted response mode has a second power zero adjustment frequency band (59.96 Hz to 60.04 Hz), and the instant response mode has a third power zero adjustment frequency band (59.96 Hz to 60.04 Hz). The power zero adjustment frequency band (59.98 Hz to 60.02 Hz). When the instant grid frequency falls within the first power zero adjustment frequency band, the second power zero adjustment frequency band and the third power zero adjustment frequency band, the actual net effect of the
其中,第一功率零調整頻帶、第二功率零調整頻帶與第三功率零調整頻帶之中央頻率皆為標準電網頻率(60Hz),第一功率零調整頻帶之頻寬是大於第二功率零調整頻帶之頻寬,且第二功率零調整頻帶之頻寬是大於第三功率零調整頻帶之頻寬;由此可知,。Among them, the central frequency of the first zero power adjustment frequency band, the second power zero adjustment frequency band, and the third power zero adjustment frequency band are all standard grid frequencies (60 Hz), and the bandwidth of the first power zero adjustment frequency band is greater than that of the second power zero adjustment frequency band. The frequency width of the frequency band, and the frequency width of the second power zero adjustment frequency band is greater than the frequency width of the third power zero adjustment frequency band;
待機充電恢復反應模式依據預設頻率設有複數個充電優先輸出功率值。本實施例之待機充電恢復反應模式對應於每個預設頻率所設之充電優先輸出功率值如下表八所示。The standby charging recovery response mode sets a plurality of charging priority output power values according to the preset frequency. The standby charging recovery response mode of this embodiment corresponds to the charging priority output power value set for each preset frequency, as shown in Table 8 below.
表八:在待機充電恢復反應模式下,預設頻率與所對應之充電優先輸出功率值。
如上所述,在待機充電恢復反應模式下,是在服務效能指標符合服務效能指標容許範圍的條件下,定義出一待機充電恢復反應頻寬,且在即時電網頻率落於待機充電恢復反應頻寬時,使儲電系統對電網之實際淨輸出功率小於零。As mentioned above, in the standby charge recovery response mode, a standby charge recovery response bandwidth is defined under the condition that the service performance index meets the allowable range of the service performance index, and the frequency of the power grid falls below the standby charge recovery response bandwidth when the grid frequency is in real time. When the actual net output power of the power storage system to the grid is less than zero.
待機放電恢復反應模式依據預設頻率設有複數個放電優先輸出功率值。本實施例之待機放電恢復反應模式對應於每個預設頻率所設之放電優先輸出功率值如下表九所示。The standby discharge recovery response mode sets a plurality of discharge priority output power values according to the preset frequency. The standby discharge recovery response mode of this embodiment corresponds to the discharge priority output power value set for each preset frequency, as shown in Table 9 below.
表九:在待機放電恢復反應模式下,預設頻率與所對應之放電優先輸出功率值。
如上所述,在待機放電恢復反應模式下,是在服務效能指標符合服務效能指標容許範圍的條件下,定義出一待機放電恢復反應頻寬,且在即時電網頻率落於待機放電恢復反應頻寬時,使儲電系統對電網之實際淨輸出功率大於零。As mentioned above, in the standby discharge recovery response mode, a standby discharge recovery response bandwidth is defined under the condition that the service performance index meets the allowable range of the service performance index, and the real-time grid frequency falls within the standby discharge recovery response bandwidth When the actual net output power of the power storage system to the grid is greater than zero.
請繼續參閱第三A圖與第三B圖,第三A圖與第三B圖係顯示本發明較佳實施例所提供之充放電控制方法之步驟流程圖。Please continue to refer to FIG. 3A and FIG. 3B. FIG. 3A and FIG. 3B show the flow chart of the charging and discharging control method provided by the preferred embodiment of the present invention.
如第一圖至第三B圖所示,本發明之充放電控制方法,是透過電力調節系統200控制儲電系統300與電網400間之充放電,充放電控制方法包含以下步驟。As shown in Figures 1 to 3B, the charging and discharging control method of the present invention controls the charging and discharging between the
首先,步驟S101是量測電網400之即時電網頻率與電力調節系統200之實際淨輸出功率。First, step S101 is to measure the real-time grid frequency of the
接著,步驟S102是判斷即時電網頻率落於複數個參考頻帶中之何者。Next, step S102 is to determine which of the plurality of reference frequency bands the real-time grid frequency falls within.
然後,步驟S103是依據量測模組1所量測出之即時電網頻率,計算出即時電網頻率所對應之目標輸出功率,並利用目標輸出功率與實際淨輸出功率計算出服務效能指標。Then, step S103 is to calculate the target output power corresponding to the real-time grid frequency based on the real-time grid frequency measured by the
之後,步驟S104是判斷儲電系統300之儲電量落於複數個儲電量區間中之何者。After that, step S104 is to determine which of the plurality of power storage intervals the power storage amount of the
再來,步驟S105是建立電網頻率自動控制規則表,電網頻率自動控制規則表是依據參考頻帶、服務效能指標與儲電量區間分別定義出複數個充放電反應模式。Next, step S105 is to establish a grid frequency automatic control rule table. The grid frequency automatic control rule table defines a plurality of charging and discharging reaction modes according to the reference frequency band, service efficiency index, and power storage interval.
最後,步驟S106是判斷即時電網頻率、服務效能指標與儲電量區間對應於充放電反應模式中之何者,並據以控制電力調節系統200調節儲電系統300與電網400間之充放電。Finally, step S106 is to determine which of the real-time grid frequency, service performance index, and power storage interval corresponds to the charging and discharging response mode, and controlling the
其中,在步驟S106時,是先透過儲電量區間判斷模組23判斷儲電系統300之儲電量是否落於低度操作彈性儲電量區間,若儲電量未落於低度操作彈性儲電量區間,則會透過電網頻率狀態判斷模組21判斷即時電網頻率落於參考頻帶中之何者。若電網頻率狀態判斷模組21判斷即時電網頻率落於標準運作頻帶,則會進一步透過服務效能判斷模組22判斷服務效能指標是否大於一服務效能指標容許值。若服務效能指標小於服務效能指標容許值,功率控制模組25會依據預測反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據預測反應模式控制儲電系統300與電網400間之充放電。Wherein, in step S106, the power storage
然而,若上述之儲電量區間判斷模組23判斷儲電系統300之儲電量落於低度操作彈性儲電量區間時,則會進一步判斷儲電量是否小於30%,這是因為低度操作彈性儲電量區間包含兩種區間(SoC < 30%,或90% < SoC);然後,若儲電量小於30%,功率控制模組25會依據待機充電恢復反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據待機充電恢復反應模式控制儲電系統300與電網400間之充放電。However, if the aforementioned power storage
相反的,在儲電量區間判斷模組23判斷儲電系統300之儲電量落於低度操作彈性儲電量區間,且進一步判斷儲電量大於30%時,功率控制模組25便會依據待機放電恢復反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據待機放電恢復反應模式控制儲電系統300與電網400間之充放電。Conversely, when the power storage
另一方面,當儲電量區間判斷模組23一開始就判斷儲電系統300之儲電量未落於低度操作彈性儲電量區間,且電網頻率狀態判斷模組21判斷即時電網頻率落於警戒運作頻帶時,則會透過服務效能判斷模組22判斷服務效能指標是否大於服務效能指標容許值;當服務效能指標大於服務效能指標容許值時,功率控制模組25便會依據穩定反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據穩定反應模式控制儲電系統300與電網400間之充放電;反之,若服務效能指標小於服務效能指標容許值,功率控制模組25則會依據預測反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據預測反應模式控制儲電系統300與電網400間之充放電。On the other hand, when the power storage
承上所述,當儲電量區間判斷模組23一開始就判斷儲電系統300之儲電量未落於低度操作彈性儲電量區間,且電網頻率狀態判斷模組21判斷即時電網頻率落於緊急運作頻帶時,則會透過服務效能判斷模組22判斷服務效能指標是否大於服務效能指標容許值;當服務效能指標大於服務效能指標容許值時,功率控制模組25便會依據預測反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據預測反應模式控制儲電系統300與電網400間之充放電;反之,若服務效能指標小於服務效能指標容許值,功率控制模組25則會依據即時反應模式發送出功率輸出控制指令至電力調節系統200,藉以使電力調節系統200依據即時反應模式控制儲電系統300與電網400間之充放電。In summary, when the power storage
綜上所述,由於本發明之充放電控制系統與充放電控制方法是利用量測模組量測電網之即時電網頻率與電力調節系統之實際淨輸出功率,然後透過電網頻率狀態判斷模組與服務效能判斷模組來進一步獲得相對應的參考頻帶與服務效能指標,以及利用儲電量區間判斷模組判斷儲電系統之儲電量所對應的儲電量區間,進而依據參考頻帶、服務效能指標與儲電量區間來定義出多個充放電反應模式,藉此,便能依據相對應的充放電反應模式去控制電力調節系統,使電力調節系統依據充放電反應模式控制儲電系統與電網間之充放電。In summary, because the charging and discharging control system and the charging and discharging control method of the present invention use the measurement module to measure the real-time grid frequency of the power grid and the actual net output power of the power conditioning system, and then use the grid frequency status judgment module to determine the actual net output power of the power grid. The service performance judgment module further obtains the corresponding reference frequency band and service performance index, and uses the power storage interval judgment module to judge the power storage interval corresponding to the power storage system of the power storage system, and then according to the reference frequency band, service performance index and storage A number of charge and discharge response modes are defined by the power interval, so that the power conditioning system can be controlled according to the corresponding charge and discharge response mode, so that the power conditioning system controls the charge and discharge between the storage system and the grid according to the charge and discharge response mode .
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。Based on the above detailed description of the preferred embodiments, it is hoped that the characteristics and spirit of the present invention can be described more clearly, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, its purpose is to cover various changes and equivalent arrangements within the scope of the patent for which the present invention is intended.
100:充放電控制系統 1:量測模組 2:電網頻率自動控制裝置 21:電網頻率狀態判斷模組 22:服務效能判斷模組 23:儲電量區間判斷模組 24:核心控制單元 25:功率控制模組 200:電力調節系統 300:儲電系統 400:電網 500:再生能源 S1:第一訊號 S2:第二訊號 S3:第三訊號 S4:第四訊號 S5:第五訊號 S6:功率輸出控制指令100: charge and discharge control system 1: Measurement module 2: Grid frequency automatic control device 21: Grid frequency status judgment module 22: Service performance judgment module 23: Power storage interval judgment module 24: core control unit 25: Power control module 200: Power conditioning system 300: Power storage system 400: Grid 500: renewable energy S1: The first signal S2: second signal S3: The third signal S4: The fourth signal S5: The Fifth Signal S6: Power output control command
第一圖係顯示本發明較佳實施例所提供之充放電控制系統之系統方塊圖; 第二圖係顯示本發明較佳實施例所提供之電網頻率自動控制裝置之系統方塊圖;以及 第三A圖與第三B圖係顯示本發明較佳實施例所提供之充放電控制方法之步驟流程圖。 The first figure is a system block diagram showing the charging and discharging control system provided by the preferred embodiment of the present invention; The second figure shows the system block diagram of the grid frequency automatic control device provided by the preferred embodiment of the present invention; and The third diagram A and the third diagram B show the flow chart of the charging and discharging control method provided by the preferred embodiment of the present invention.
100:充放電控制系統 100: charge and discharge control system
1:量測模組 1: Measurement module
2:電網頻率自動控制裝置 2: Grid frequency automatic control device
21:電網頻率狀態判斷模組 21: Grid frequency status judgment module
22:服務效能判斷模組 22: Service performance judgment module
23:儲電量區間判斷模組 23: Power storage interval judgment module
24:核心控制單元 24: core control unit
25:功率控制模組 25: Power control module
200:電力調節系統 200: Power conditioning system
300:儲電系統 300: Power storage system
S1:第一訊號 S1: The first signal
S2:第二訊號 S2: second signal
S3:第三訊號 S3: The third signal
S4:第四訊號 S4: The fourth signal
S5:第五訊號 S5: The Fifth Signal
S6:功率輸出控制指令 S6: Power output control command
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110100702A TWI747703B (en) | 2021-01-08 | 2021-01-08 | Charge and discharge control system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110100702A TWI747703B (en) | 2021-01-08 | 2021-01-08 | Charge and discharge control system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI747703B true TWI747703B (en) | 2021-11-21 |
TW202228062A TW202228062A (en) | 2022-07-16 |
Family
ID=79907569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110100702A TWI747703B (en) | 2021-01-08 | 2021-01-08 | Charge and discharge control system and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI747703B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202041613U (en) * | 2011-01-04 | 2011-11-16 | 内蒙古东部电力有限公司 | Local discharge monitoring system for electric equipment |
CN105229886A (en) * | 2013-02-19 | 2016-01-06 | 艾斯通林克国际有限责任公司 | About the system and method for the principle and topological performance of inferring electrical power distribution electrical network |
US10418832B2 (en) * | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
EP3248266B1 (en) * | 2015-10-08 | 2020-09-23 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on statistical estimates of ibdr event probabilities |
-
2021
- 2021-01-08 TW TW110100702A patent/TWI747703B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202041613U (en) * | 2011-01-04 | 2011-11-16 | 内蒙古东部电力有限公司 | Local discharge monitoring system for electric equipment |
CN105229886A (en) * | 2013-02-19 | 2016-01-06 | 艾斯通林克国际有限责任公司 | About the system and method for the principle and topological performance of inferring electrical power distribution electrical network |
CN105229969A (en) * | 2013-02-19 | 2016-01-06 | 艾斯通林克国际有限责任公司 | About performance evaluation and the optimization method of the information-collecting network of electrical power distribution electrical network |
US10418832B2 (en) * | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
EP3248266B1 (en) * | 2015-10-08 | 2020-09-23 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on statistical estimates of ibdr event probabilities |
Also Published As
Publication number | Publication date |
---|---|
TW202228062A (en) | 2022-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6585454B2 (en) | Power demand management apparatus and power demand management method for communication equipment | |
US8543248B2 (en) | System for managing energy at loads | |
JP5584763B2 (en) | DC power distribution system | |
JP5401003B2 (en) | Solar power system | |
CN115296361B (en) | Method, device, equipment and medium for dynamically adjusting electric quantity threshold of equipment | |
JP2012186950A (en) | Electric power supply system | |
JP2012175825A (en) | Power management system | |
JP6166599B2 (en) | Power storage system and its operation method | |
WO2015059873A1 (en) | Power management apparatus | |
JPH1141831A (en) | Power storage device and operating method for the power storage device | |
TWI747703B (en) | Charge and discharge control system and method thereof | |
CN111009912B (en) | Thermal power plant energy storage configuration system and strategy based on power distribution network scene | |
CN108449009A (en) | Photovoltaic generation intelligent energy storage system | |
JP3897289B2 (en) | Cogeneration equipment | |
CN109936151B (en) | Control method for participating in primary frequency modulation of thermal power generating unit through micro-grid system | |
CN114597998A (en) | Charging management method, device and system for prolonging service life of battery | |
JP6207196B2 (en) | DC power supply system | |
CN115115255A (en) | Battery replacement station scheduling control method participating in collaborative multi-scene application | |
JP2017127129A (en) | Storage battery control method | |
CN117937550B (en) | Optimized scheduling method and system for comprehensive energy storage system | |
CN111928337B (en) | Heat accumulating type electric heating monitoring system and method suitable for demand response scene | |
TWI844475B (en) | Energy storage system and control method thereof | |
CN116979508A (en) | Control system and power supply method of air conditioning system | |
WO2024095629A1 (en) | Power system operating method, and power system control device | |
CN110266027A (en) | A kind of electric energy accumulator realtime power control method being adapted to Bidding Mechanism |