TWI611468B - Semiconductor devices - Google Patents
Semiconductor devices Download PDFInfo
- Publication number
- TWI611468B TWI611468B TW105123009A TW105123009A TWI611468B TW I611468 B TWI611468 B TW I611468B TW 105123009 A TW105123009 A TW 105123009A TW 105123009 A TW105123009 A TW 105123009A TW I611468 B TWI611468 B TW I611468B
- Authority
- TW
- Taiwan
- Prior art keywords
- pattern
- ion implantation
- unit
- reticle
- region
- Prior art date
Links
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本揭示提供用於離子佈植的光罩,此光罩包含複數個透光圖案單元以及複數個不透光圖案單元,這些透光圖案單元與不透光圖案單元在一重複單元內具有一數量比例,此重複單元沿著至少一維方向重複地排列,構成光罩圖案,其中透光圖案單元與不透光圖案單元具有相同的尺寸和相同的形狀。此外,本揭示還提供使用此光罩進行離子佈植的方法,以及利用此離子佈植方法形成的半導體裝置。 The present disclosure provides a photomask for ion implantation, the photomask comprising a plurality of light transmissive pattern units and a plurality of opaque pattern units, the light transmissive pattern unit and the opaque pattern unit having an amount in a repeating unit In proportion, the repeating unit is repeatedly arranged along at least one dimension to form a reticle pattern, wherein the light transmissive pattern unit has the same size and the same shape as the opaque pattern unit. Further, the present disclosure also provides a method of ion implantation using the photomask, and a semiconductor device formed using the ion implantation method.
Description
本發明係有關於積體電路的製造技術,特別有關於利用離子佈植方法形成的半導體裝置。 The present invention relates to a manufacturing technique of an integrated circuit, and more particularly to a semiconductor device formed by an ion implantation method.
在積體電路的製造中,通常會利用離子佈植的方式對半導體材料進行摻雜,以形成半導體元件的摻雜區,例如金屬氧化物半導體(metal oxide semiconductor:MOS)元件的源極/汲極區。 In the fabrication of integrated circuits, the semiconductor material is usually doped by ion implantation to form a doped region of the semiconductor device, such as a source/汲 of a metal oxide semiconductor (MOS) device. Polar zone.
在離子佈植製程中,首先會利用光罩對半導體晶圓上塗佈的光阻進行曝光,接著將曝光後的光阻顯影,形成圖案化的光阻。用於離子佈植的習知光罩通常具有塊狀圖案,使用習知的光罩所形成的光阻圖案具有開口完全暴露出半導體晶圓上欲進行離子佈植的區域,經由此開口對半導體晶圓進行離子佈植。因此,當使用習知的光罩進行離子佈植時,一道光罩步驟只能在半導體晶圓上形成一種離子佈植濃度的區域,若要在半導體晶圓上形成多種離子佈植濃度的區域,則需要使用多道光罩步驟才能完成。 In the ion implantation process, the photoresist coated on the semiconductor wafer is first exposed by a photomask, and then the exposed photoresist is developed to form a patterned photoresist. Conventional reticle for ion implantation usually has a block pattern, and the photoresist pattern formed by using a conventional reticle has an opening completely exposing a region on the semiconductor wafer to be ion implanted, through which the semiconductor wafer is Perform ion implantation. Therefore, when ion implantation is performed using a conventional mask, a mask step can only form an ion implantation concentration region on the semiconductor wafer, and a plurality of ion implantation concentration regions are formed on the semiconductor wafer. , you need to use multiple mask steps to complete.
在積體電路的製造中,因應不同的元件之不同電性需求,通常需要在半導體晶圓上形成多種離子佈植濃度的區域,然而,使用習知的離子佈植用光罩需要多道光罩製程才能在半導體晶圓上形成多種離子佈植濃度的區域,無法節省光罩 數目及製造成本。 In the manufacture of integrated circuits, it is often necessary to form a plurality of regions of ion implantation concentration on a semiconductor wafer in response to different electrical requirements of different components. However, the use of conventional ion implantation masks requires multiple masks. The process can form a variety of ion implantation concentration areas on the semiconductor wafer, and the mask cannot be saved. Number and manufacturing cost.
在本揭示之實施例中,提供用於離子佈植的光罩,此光罩包含複數個透光圖案單元;以及複數個不透光圖案單元,這些透光圖案單元與不透光圖案單元在第一重複單元內具有第一數量比例,此第一重複單元沿著至少一維方向重複地排列,構成第一光罩圖案,其中透光圖案單元與不透光圖案單元具有相同的尺寸和相同的形狀。 In an embodiment of the present disclosure, a photomask for ion implantation is provided, the photomask includes a plurality of light transmissive pattern units; and a plurality of opaque pattern units, the light transmissive pattern unit and the opaque pattern unit are The first repeating unit has a first quantity ratio, and the first repeating unit is repeatedly arranged along at least one dimension to form a first mask pattern, wherein the light transmissive pattern unit has the same size and the same as the opaque pattern unit shape.
在本揭示之實施例中,還提供離子佈植的方法,此方法包含在半導體基底上塗佈光阻層;提供如上述之用於離子佈植的光罩,對光阻層進行曝光;將曝光後的光阻層顯影,形成具有複數個開口的第一光阻圖案,此第一光阻圖案對應至第一光罩圖案中的這些不透光圖案單元,且第一光阻圖案中的這些開口對應至第一光罩圖案中的這些透光圖案單元;以及經由第一光阻圖案中的這些開口,對半導體基底的第一區域進行第一導電型摻雜物的離子佈植,形成具有第一離子佈植濃度的第一摻雜區。 In an embodiment of the present disclosure, there is also provided a method of ion implantation, the method comprising coating a photoresist layer on a semiconductor substrate; providing a photomask for ion implantation as described above, exposing the photoresist layer; Developing the exposed photoresist layer to form a first photoresist pattern having a plurality of openings, the first photoresist pattern corresponding to the opaque pattern units in the first mask pattern, and in the first photoresist pattern The openings correspond to the light transmissive pattern units in the first mask pattern; and the ion implantation of the first conductivity type dopant is performed on the first region of the semiconductor substrate via the openings in the first photoresist pattern A first doped region having a first ion implantation concentration.
此外,在本揭示之實施例中,提供半導體裝置,其包含半導體基底,第一摻雜區形成於半導體基底上並且具有第一離子佈植濃度,此第一摻雜區包含複數個具有第一導電型的井區與複數個具有第二導電型的井區間隔地設置,以及第二摻雜區形成於半導體基底上並且具有第二離子佈植濃度,此第二摻雜區包含複數個具有第一導電型的井區與複數個具有第二導電型的井區間隔地設置,其中第二離子佈植濃度與第一離 子佈植濃度不同。 Further, in an embodiment of the present disclosure, there is provided a semiconductor device including a semiconductor substrate, a first doped region formed on the semiconductor substrate and having a first ion implantation concentration, the first doped region comprising a plurality of having a first The conductive well region is disposed at a distance from the plurality of well regions having the second conductivity type, and the second doped region is formed on the semiconductor substrate and has a second ion implantation concentration, the second doped region comprising a plurality of The first conductivity type well region is spaced apart from the plurality of well regions having the second conductivity type, wherein the second ion implantation concentration and the first separation The sub-planting concentration is different.
100‧‧‧P型基底 100‧‧‧P type substrate
102‧‧‧P型磊晶層 102‧‧‧P type epitaxial layer
104‧‧‧P型井區 104‧‧‧P type well area
106‧‧‧隔絕區 106‧‧ ‧ isolation zone
108‧‧‧閘極 108‧‧‧ gate
110‧‧‧閘極介電層 110‧‧‧gate dielectric layer
112‧‧‧光阻層 112‧‧‧ photoresist layer
112P‧‧‧圖案化光阻層 112P‧‧‧ patterned photoresist layer
113‧‧‧開口 113‧‧‧ openings
114‧‧‧透光圖案單元 114‧‧‧Light pattern unit
115‧‧‧光阻圖案 115‧‧‧resist pattern
116‧‧‧不透光圖案單元 116‧‧‧Opacity pattern unit
118‧‧‧第一導電型井區 118‧‧‧First Conductive Well Area
120‧‧‧第二導電型井區 120‧‧‧Second Conductive Well Area
122‧‧‧摻雜區 122‧‧‧Doped area
124‧‧‧離子佈植區 124‧‧‧Ion implantation area
200‧‧‧光罩 200‧‧‧ mask
200A‧‧‧光罩圖案 200A‧‧‧mask pattern
200U‧‧‧重複單元 200U‧‧‧repeating unit
300‧‧‧曝光製程 300‧‧‧Exposure process
400‧‧‧離子佈植製程 400‧‧‧Ion implantation process
為了讓本揭示之目的、特徵、及優點能更明顯易懂,以下配合所附圖式作詳細說明如下:第1-4圖顯示依據一實施例,使用本揭示之用於離子佈植的光罩進行離子佈植的方法之各中間階段的剖面示意圖;以及第5A-5C、6A-6C和7A-7C圖顯示依據本揭示之各種實施例,用於離子佈植的光罩之各種光罩圖案的局部平面示意圖。 In order to make the objects, features, and advantages of the present disclosure more comprehensible, the following description will be described in detail with reference to the accompanying drawings. Figures 1-4 show light for ion implantation using the present disclosure in accordance with an embodiment. A cross-sectional schematic view of each intermediate stage of the method of ion implantation by the cover; and 5A-5C, 6A-6C, and 7A-7C are diagrams showing various masks for the photomask for ion implantation in accordance with various embodiments of the present disclosure. A partial plan view of the pattern.
本揭示提供用於離子佈植的光罩之圖案設計的各種實施例,藉由本揭示各種實施例所提供的光罩之圖案設計,可以僅利用一道光罩步驟與一道離子佈植步驟,在半導體晶圓上形成具有不同離子佈植濃度的多個摻雜區,藉此可減少積體電路製程使用的光罩數目,並且節省製造成本。 The present disclosure provides various embodiments of the pattern design of a reticle for ion implantation. With the pattern design of the reticle provided by various embodiments of the present disclosure, only one reticle step and one ion implantation step can be used in the semiconductor A plurality of doped regions having different ion implantation densities are formed on the wafer, whereby the number of masks used in the integrated circuit process can be reduced, and manufacturing costs are saved.
第1-4圖說明依據一實施例,使用本揭示之用於離子佈植的光罩200進行離子佈植的方法之各中間階段的剖面示意圖。參閱第1圖,首先提供半導體晶圓,在一實施例中,半導體晶圓可包含P型基底100,P型磊晶層102成長於P型基底100上,在P型磊晶層102中形成有P型井區104,此外,在半導體晶圓上還形成隔絕區106,例如為淺溝槽隔絕區(shallow trench isolation:STI)或場氧化物(field oxide:FOX), 藉由隔絕區106的設置可定義出半導體晶圓上的元件區。此外,在P型井區104上還形成閘極108與閘極介電層110。在本實施例中,使用本揭示之用於離子佈植的光罩200進行離子佈植,以形成N型金屬氧化物半導體元件(NMOS)的源極/汲極區。在其他實施例中,也可以使用本揭示之用於離子佈植的光罩200進行離子佈植,以形成其他類型的元件之各種摻雜區,此外,上述的半導體晶圓之結構僅作為示範用,其係用於說明本揭示的實施方式,並非用於限定本揭示。 1-4 illustrate cross-sectional schematic views of intermediate stages of a method of ion implantation using the reticle 200 for ion implantation in accordance with an embodiment. Referring to FIG. 1, a semiconductor wafer is first provided. In an embodiment, the semiconductor wafer may include a P-type substrate 100. The P-type epitaxial layer 102 is grown on the P-type substrate 100 and formed in the P-type epitaxial layer 102. There is a P-type well region 104, and in addition, an isolation region 106 is formed on the semiconductor wafer, such as shallow trench isolation (STI) or field oxide (FOX). The component area on the semiconductor wafer can be defined by the arrangement of the isolation region 106. In addition, a gate 108 and a gate dielectric layer 110 are also formed on the P-type well region 104. In the present embodiment, ion implantation is performed using the photomask 200 for ion implantation of the present disclosure to form a source/drain region of an N-type metal oxide semiconductor device (NMOS). In other embodiments, the photomask 200 for ion implantation of the present disclosure may also be used for ion implantation to form various doping regions of other types of components. Further, the structure of the above semiconductor wafer is merely exemplary. It is intended to illustrate the embodiments of the present disclosure and is not intended to limit the disclosure.
如第1圖所示,在半導體晶圓上塗佈光阻層112,並使用本揭示之用於離子佈植的光罩200對光阻層112進行曝光製程300,在光罩200上具有複數個光罩圖案200A,這些光罩圖案200A對應至半導體晶圓上欲進行離子佈植的區域,雖然在第1圖中僅繪出兩個光罩圖案200A,然而,依據本揭示的各種實施例,在用於離子佈植的光罩200上可具有兩個以上的光罩圖案200A,並且這些光罩圖案200A可分別具有不同的圖案設計,以應用在不同元件上具有不同離子佈植濃度的各種摻雜區,或者應用在相同元件上具有不同離子佈植濃度的各種摻雜區。此外,在第1圖中顯示的兩個光罩圖案200A可以具有相同的圖案設計,藉此在P型井區104內形成離子佈植濃度相同的源極/汲極區;或者在第1圖中顯示的兩個光罩圖案200A可以分別具有不同的圖案設計,藉此在P型井區104內形成離子佈植濃度不同的源極/汲極區。 As shown in FIG. 1, the photoresist layer 112 is coated on the semiconductor wafer, and the photoresist layer 112 is exposed to the photomask 200 for ion implantation, and the photomask 200 has a plurality of exposure processes on the photomask 200. a reticle pattern 200A corresponding to a region on the semiconductor wafer where ion implantation is to be performed, although only two reticle patterns 200A are depicted in FIG. 1, however, various embodiments in accordance with the present disclosure There may be more than two reticle patterns 200A on the reticle 200 for ion implantation, and these reticle patterns 200A may have different pattern designs, respectively, to apply different ion implantation concentrations on different components. Various doped regions, or various doped regions with different ion implantation concentrations on the same component. In addition, the two mask patterns 200A shown in FIG. 1 may have the same pattern design, thereby forming source/drain regions of the same ion implantation concentration in the P-type well region 104; or in FIG. The two reticle patterns 200A shown in the above may have different pattern designs, respectively, thereby forming source/drain regions having different ion implantation densities in the P-type well region 104.
依據本揭示之實施例,光罩200上的光罩圖案200A具有複數個透光圖案單元114以及複數個不透光圖案單 元116,透光圖案單元114與不透光圖案單元116具有相同的尺寸和相同的形狀,並且透光圖案單元114與不透光圖案單元116在光罩圖案200A的一個重複單元內具有一數量比例,例如透光圖案單元114與不透光圖案單元116在重複單元內的數量比例可以是1:1、2:1、3:1或其他任何的數量比例,此數量比例由元件的設計需求決定。重複單元沿著至少一維方向重複地排列,以構成一種光罩圖案200A,藉由光罩圖案200A的使用進行離子佈植後,其形成的摻雜區之離子佈植濃度由透光圖案單元114與不透光圖案單元116在光罩圖案200A的一個重複單元內的數量比例控制。 In accordance with an embodiment of the present disclosure, the reticle pattern 200A on the reticle 200 has a plurality of light transmissive pattern elements 114 and a plurality of opaque pattern sheets In the element 116, the light transmissive pattern unit 114 has the same size and the same shape as the opaque pattern unit 116, and the light transmissive pattern unit 114 and the opaque pattern unit 116 have an amount in one repeating unit of the reticle pattern 200A. The ratio, for example, the ratio of the number of the light-transmitting pattern unit 114 and the opaque pattern unit 116 in the repeating unit may be 1:1, 2:1, 3:1 or any other ratio, which is determined by the design requirements of the component. Decide. The repeating unit is repeatedly arranged along at least one dimension to form a reticle pattern 200A. After ion implantation by using the reticle pattern 200A, the ion implantation concentration of the doped region formed by the opaque pattern unit is The number of 114 and the opaque pattern unit 116 are proportionally controlled within a repeating unit of the reticle pattern 200A.
接著,請先參閱第5A-5C圖,其係顯示依據本揭示的各種實施例,用於離子佈植的光罩200之各種光罩圖案200A的局部平面示意圖。如第5A圖中所示,在一實施例中,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為長條形(strip),構成光罩圖案200A的一個重複單元200U係由一個長條形的透光圖案單元114與一個長條形的不透光圖案單元116組成,並且此重複單元200U沿著一維方向,例如X軸方向重複地排列,以構成具有柵欄圖案(fence-shaped pattern)的光罩圖案200A。為了符合各種不同面積的離子佈植區之需求,構成光罩圖案200A的重複單元200U之數目可以任意調整,此外,在光罩圖案200A的邊界之圖案可以是不完整的重複單元200U,亦即位於光罩圖案200A的邊界之圖案可以僅包含部份的透光圖案單元114以及/或部份的不透光圖案單元116。 Next, please refer to FIGS. 5A-5C, which are partial plan views showing various reticle patterns 200A of the reticle 200 for ion implantation in accordance with various embodiments of the present disclosure. As shown in FIG. 5A, in an embodiment, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are strips, and a repeating unit 200U constituting the reticle pattern 200A is formed. It is composed of an elongated light-transmissive pattern unit 114 and an elongated opaque pattern unit 116, and the repeating unit 200U is repeatedly arranged along a one-dimensional direction, for example, an X-axis direction, to form a fence pattern. A mask pattern 200A of a fence-shaped pattern. The number of repeating units 200U constituting the reticle pattern 200A may be arbitrarily adjusted in order to meet the requirements of the ion implantation areas of different areas. Further, the pattern at the boundary of the reticle pattern 200A may be an incomplete repeating unit 200U, that is, The pattern located at the boundary of the reticle pattern 200A may include only a portion of the light transmissive pattern unit 114 and/or a portion of the opaque pattern unit 116.
由於本揭示之用於離子佈植的光罩200之光罩圖案200A是由包含透光圖案單元114與不透光圖案單元116的重複單元200U構成,當元件的尺寸大小改變時,僅需調整重複單元200U的數目,即可配合元件的尺寸,因此不會增加光罩佈局的困難度。 Since the reticle pattern 200A of the reticle 200 for ion implantation of the present disclosure is constituted by the repeating unit 200U including the light transmitting pattern unit 114 and the opaque pattern unit 116, when the size of the element is changed, only adjustment is required. The number of repeating units 200U can match the size of the components, and thus does not increase the difficulty of the mask layout.
參閱第5B圖,在一實施例中,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為六邊形,光罩圖案200A的一個重複單元200U係由一個六邊形的透光圖案單元114與一個六邊形的不透光圖案單元116組成,此重複單元200U沿著二維方向,例如X軸與Y軸方向重複地排列,以構成具有蜂巢狀馬賽克圖案(beehive-shaped mosaic pattern)的光罩圖案200A。 Referring to FIG. 5B, in an embodiment, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are both hexagonal, and one repeating unit 200U of the reticle pattern 200A is formed by a hexagon. The light transmissive pattern unit 114 is composed of a hexagonal opaque pattern unit 116 which is repeatedly arranged in a two-dimensional direction, for example, an X-axis and a Y-axis direction, to form a honeycomb-like mosaic pattern (beehive- Shaped mosaic pattern) reticle pattern 200A.
參閱第5C圖,在一實施例中,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為四邊形,光罩圖案200A的一個重複單元200U係由一個四邊形的透光圖案單元114與一個四邊形的不透光圖案單元116組成,此重複單元200U沿著二維方向,例如X軸與Y軸方向重複地排列,以構成具有棋盤狀馬賽克圖案(chessboard-shaped mosaic pattern)的光罩圖案200A。 Referring to FIG. 5C, in an embodiment, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are both quadrangular, and one repeating unit 200U of the reticle pattern 200A is formed by a quadrilateral transparent pattern unit. 114 is composed of a quadrangular opaque pattern unit 116 which is repeatedly arranged in a two-dimensional direction, for example, an X-axis and a Y-axis direction, to constitute light having a chessboard-shaped mosaic pattern. Cover pattern 200A.
在第5A-5C圖的實施例中,光罩圖案200A的一個重複單元200U都是由一個透光圖案單元114與一個不透光圖案單元116組成,但是藉由改變透光圖案單元114與不透光圖案單元116的形狀以及/或改變這些透光圖案單元114與不透光圖案單元116的排列方式,可以使得後續在第二導電型的井區 中進行第一導電型的摻雜物之離子佈植時,產生第二導電型井區與第一導電型井區的分佈狀態不同的各種摻雜區。 In the embodiment of FIGS. 5A-5C, one repeating unit 200U of the reticle pattern 200A is composed of one light transmissive pattern unit 114 and one opaque pattern unit 116, but by changing the light transmissive pattern unit 114 or not The shape of the light transmissive pattern unit 116 and/or the manner in which the light transmissive pattern unit 114 and the opaque pattern unit 116 are arranged may be subsequent to the second conductivity type well region. When the ion implantation of the dopant of the first conductivity type is performed, various doping regions different in the distribution state of the second conductivity type well region and the first conductivity type well region are generated.
請參閱第2圖,在一實施例中,可使用第5A-5C圖所提供的光罩圖案200A對半導體晶圓上的光阻層112進行曝光及顯影製程,形成圖案化光阻層112P,其具有複數個開口113以及複數個光阻圖案115。在一實施例中,光阻層112可以是正型光阻,其形成的圖案化光阻層112P具有與光罩圖案200A相應的光阻圖案115,亦即開口113對應至光罩圖案200A中的透光圖案單元114,並且光阻圖案115對應至光罩圖案200A中的不透光圖案單元116。反之,在另一實施例中,光阻層112可以是負型光阻,其形成的圖案化光阻層112P具有與光罩圖案200A相反的光阻圖案,亦即開口113對應至光罩圖案200A中的不透光圖案單元116,並且光阻圖案115對應至光罩圖案200A中的透光圖案單元114。 Referring to FIG. 2, in an embodiment, the photoresist layer 112 on the semiconductor wafer can be exposed and developed using the mask pattern 200A provided in FIGS. 5A-5C to form a patterned photoresist layer 112P. It has a plurality of openings 113 and a plurality of photoresist patterns 115. In an embodiment, the photoresist layer 112 may be a positive photoresist, and the patterned photoresist layer 112P has a photoresist pattern 115 corresponding to the mask pattern 200A, that is, the opening 113 corresponds to the mask pattern 200A. The light-transmitting pattern unit 114, and the photoresist pattern 115 corresponds to the opaque pattern unit 116 in the reticle pattern 200A. On the other hand, in another embodiment, the photoresist layer 112 may be a negative photoresist, and the patterned photoresist layer 112P has a photoresist pattern opposite to the mask pattern 200A, that is, the opening 113 corresponds to the mask pattern. The opaque pattern unit 116 in 200A, and the photoresist pattern 115 corresponds to the light transmissive pattern unit 114 in the reticle pattern 200A.
如第2圖中所示,於圖案化的光阻層112P形成之後,在半導體晶圓上進行離子佈植製程400,在一實施例中,第一導電型的摻雜物之離子束,例如N型摻雜物的離子束,可經由圖案化光阻層112P的開口113植入第二導電型的井區104,例如P型井區內,並且到達一特定深度,此深度可由第一導電型的摻雜物之離子束的能量決定。 As shown in FIG. 2, after the patterned photoresist layer 112P is formed, an ion implantation process 400 is performed on the semiconductor wafer. In one embodiment, the first conductivity type dopant ion beam, for example, The ion beam of the N-type dopant can be implanted into the well region 104 of the second conductivity type via the opening 113 of the patterned photoresist layer 112P, such as a P-type well region, and reaches a specific depth, which can be made by the first conductive The energy of the ion beam of the type of dopant is determined.
在離子佈植製程400完成之後,形成如第3圖所示之摻雜區122,摻雜區122包含複數個第一導電型井區118例如為N型井區,以及複數個第二導電型井區120例如為P型井區,這些第一導電型井區118與第二導電型井區120為間 隔地設置,並且在摻雜區122內的這些第一導電型井區118與第二導電型井區120具有一面積比例,此面積比例與光罩圖案200A的一個重複單元200U內的透光圖案單元114與不透光圖案單元116的數量比例大抵上是相同的,以使用第5A-5C圖的光罩圖案200A為例,其形成的摻雜區122內之第一導電型井區118與第二導電型井區120的面積比例也約為1:1,摻雜區122的離子佈植濃度由第一導電型井區118與第二導電型井區120的面積比例控制。 After the ion implantation process 400 is completed, a doping region 122 as shown in FIG. 3 is formed. The doping region 122 includes a plurality of first conductivity type well regions 118, for example, an N-type well region, and a plurality of second conductivity types. The well area 120 is, for example, a P-type well area, and the first conductive type well area 118 and the second conductive type well area 120 are inter The first conductive type well region 118 and the second conductive type well region 120 in the doping region 122 have an area ratio which is different from the light transmitting pattern in a repeating unit 200U of the reticle pattern 200A. The ratio of the number of the cells 114 to the opaque pattern unit 116 is substantially the same. To use the reticle pattern 200A of the 5A-5C diagram as an example, the first conductive well region 118 in the doped region 122 is formed. The area ratio of the second conductivity type well region 120 is also about 1:1, and the ion implantation concentration of the doping region 122 is controlled by the area ratio of the first conductivity type well region 118 and the second conductivity type well region 120.
參閱第4圖,在一實施例中,於離子佈植製程完成之後,可以對半導體晶圓進行熱擴散製程,讓第3圖所示之摻雜區122內的N型井區118中的五價佈植離子與P型井區120中的三價佈植離子經由熱擴散互相中和,得到如第4圖中所示之離子佈植區124,在離子佈植區124中,N型摻雜物的離子佈植濃度約為50%,在此實施例中,離子佈植區124為NMOS元件的源極/汲極區。 Referring to FIG. 4, in an embodiment, after the ion implantation process is completed, the semiconductor wafer may be subjected to a thermal diffusion process to allow five of the N-type well regions 118 in the doped region 122 shown in FIG. The valence implant ions and the trivalent implant ions in the P-type well region 120 are mutually neutralized via thermal diffusion to obtain an ion implantation region 124 as shown in FIG. 4, and in the ion implantation region 124, the N-type doping The ion implantation concentration of the debris is about 50%. In this embodiment, the ion implantation region 124 is the source/drain region of the NMOS device.
相較於使用傳統的光罩進行離子佈植,使用本揭示之光罩進行離子佈植時可降低或調整摻雜區的離子佈植濃度。由於傳統的光罩上具有塊狀圖案對應至離子佈植區域,其形成的圖案化光阻層的開口完全暴露出離子佈植區域,使得後續進行第一導電型例如N型摻雜物的離子佈植時,其產生的離子佈植區完全為N型井區,亦即使用傳統的光罩所得到的離子佈植區之N型摻雜物的離子佈植濃度約為100%,因此使用傳統的光罩無法藉由一道光罩步驟及一道離子佈植步驟進行離子佈植濃度的調整,需要增加額外的光罩,才可以改變離子佈 植濃度,導致製造成本增加。 Compared to the conventional photomask for ion implantation, the ion implantation density of the doped region can be reduced or adjusted when ion implantation is performed using the photomask of the present disclosure. Since the conventional reticle has a block pattern corresponding to the ion implantation region, the opening of the patterned photoresist layer formed completely exposes the ion implantation region, so that the ions of the first conductivity type such as the N-type dopant are subsequently performed. When implanted, the ion implantation area generated by the ion implantation area is completely N-type well area, that is, the ion implantation concentration of the N-type dopant in the ion implantation area obtained by using the conventional mask is about 100%, so the use The traditional reticle cannot adjust the ion implantation density by a reticle step and an ion implantation step, and an additional reticle is needed to change the ion cloth. Plant concentration leads to increased manufacturing costs.
參閱第6A-6C圖,在第6A-6C圖的實施例中,光罩圖案200A的重複單元200U皆由兩個透光圖案單元114與一個不透光圖案單元116組成,亦即在第6A-6C圖之實施例的重複單元200U中,透光圖案單元114與不透光圖案單元116的數量比例為2:1。如第6A圖所示,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為長條形(strip),由兩個長條形透光圖案單元114與一個長條形不透光圖案單元116組成的重複單元200U沿著一維方向,例如X軸方向重複地排列,構成具有柵欄圖案(fence-shaped pattern)的光罩圖案200A。 Referring to FIGS. 6A-6C, in the embodiment of FIGS. 6A-6C, the repeating unit 200U of the reticle pattern 200A is composed of two transparent pattern units 114 and one opaque pattern unit 116, that is, at the 6A. In the repeating unit 200U of the embodiment of the -6C diagram, the ratio of the number of the light transmitting pattern unit 114 to the opaque pattern unit 116 is 2:1. As shown in FIG. 6A, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are strips, and the two strip-shaped transparent pattern units 114 and one strip shape are not The repeating unit 200U composed of the light transmitting pattern unit 116 is repeatedly arranged in a one-dimensional direction, for example, an X-axis direction, to constitute a mask pattern 200A having a fence-shaped pattern.
如第6B圖所示,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為六邊形,由兩個六邊形透光圖案單元114與一個六邊形不透光圖案單元116組成的重複單元200U沿著二維方向,例如X軸與Y軸方向重複地排列,構成具有蜂巢狀馬賽克圖案的光罩圖案200A。 As shown in FIG. 6B, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are all hexagonal, and are composed of two hexagonal transparent pattern units 114 and a hexagonal opaque pattern. The repeating unit 200U composed of the unit 116 is repeatedly arranged in a two-dimensional direction, for example, an X-axis and a Y-axis direction, to constitute a mask pattern 200A having a honeycomb mosaic pattern.
如第6C圖所示,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為四邊形,由兩個四邊形透光圖案單元114與一個四邊形不透光圖案單元116組成的重複單元200U沿著二維方向,例如X軸與Y軸方向重複地排列,構成具有棋盤狀馬賽克圖案的光罩圖案200A。 As shown in FIG. 6C, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are all quadrangular, and the repeating unit consists of two quadrangular light transmissive pattern units 114 and one quadrangular opaque pattern unit 116. The 200U is repeatedly arranged in a two-dimensional direction, for example, an X-axis and a Y-axis direction, to constitute a mask pattern 200A having a checkerboard mosaic pattern.
由於在第6A-6C圖的實施例中,光罩圖案200A的重複單元200U皆由兩個透光圖案單元114與一個不透光圖案單元116組成,亦即在重複單元200U中透光圖案單元114與不透光圖案單元116的數量比例為2:1,因此使用第6A-6C 圖之光罩圖案200A進行離子佈植後,在使用N型摻雜物對P型井區進行離子佈植的一實施例中,於第3圖中所示之摻雜區122內,N型井區118與P型井區120的面積比例也約為2:1,摻雜區122的離子佈植濃度由N型井區118與P型井區120的面積比例控制。 In the embodiment of FIG. 6A-6C, the repeating unit 200U of the reticle pattern 200A is composed of two transparent pattern units 114 and one opaque pattern unit 116, that is, the light transmitting pattern unit in the repeating unit 200U. The ratio of the number of 114 to the opaque pattern unit 116 is 2:1, so the use of the 6A-6C In an embodiment in which the reticle pattern 200A of the figure is ion implanted, in the ion implantation of the P-type well region using the N-type dopant, in the doped region 122 shown in FIG. 3, the N-type The area ratio of the well region 118 to the P-type well region 120 is also about 2:1, and the ion implantation concentration of the doped region 122 is controlled by the area ratio of the N-type well region 118 and the P-type well region 120.
之後,對第3圖中所示之摻雜區122進行熱擴散製程,相較於使用第5A-5C圖的光罩圖案200A進行N型摻雜物的離子佈植之實施例,使用第6A-6C圖的光罩圖案200A進行N型摻雜物的離子佈植之實施例,可以得到N型摻雜物的離子佈植濃度較高(約為67%)的離子佈植區124。 Thereafter, the doping region 122 shown in FIG. 3 is subjected to a thermal diffusion process, and the sixth embodiment is used to perform ion implantation of the N-type dopant using the mask pattern 200A of FIGS. 5A-5C. In the embodiment in which the mask pattern 200A of the -6C pattern is subjected to ion implantation of an N-type dopant, an ion implantation region 124 having a high ion implantation concentration (about 67%) of the N-type dopant can be obtained.
參閱第7A-7C圖,在第7A-7C圖的實施例中,光罩圖案200A的重複單元200U皆由三個透光圖案單元114與一個不透光圖案單元116組成,亦即在第7A-7C圖的重複單元200U中,透光圖案單元114與不透光圖案單元116的數量比例為3:1。如第7A圖所示,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為長條形,由三個長條形透光圖案單元114與一個長條形不透光圖案單元116組成的重複單元200U沿著一維方向,例如X軸方向重複地排列,構成具有柵欄圖案的光罩圖案200A。 Referring to FIGS. 7A-7C, in the embodiment of FIGS. 7A-7C, the repeating unit 200U of the reticle pattern 200A is composed of three light transmissive pattern units 114 and one opaque pattern unit 116, that is, at the 7A. In the repeating unit 200U of the -7C diagram, the number ratio of the light transmissive pattern unit 114 to the opaque pattern unit 116 is 3:1. As shown in FIG. 7A, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are each elongated, and are formed by three elongated stripe pattern units 114 and one strip opaque pattern. The repeating unit 200U composed of the units 116 is repeatedly arranged in a one-dimensional direction, for example, an X-axis direction, to constitute a mask pattern 200A having a fence pattern.
如第7B圖所示,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為六邊形,由三個六邊形透光圖案單元114與一個六邊形不透光圖案單元116組成的重複單元200U沿著二維方向,例如X軸與Y軸方向重複地排列,構成具有蜂巢狀馬賽克圖案的光罩圖案200A。 As shown in FIG. 7B, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are all hexagonal, and are composed of three hexagonal transparent pattern units 114 and a hexagonal opaque pattern. The repeating unit 200U composed of the unit 116 is repeatedly arranged in a two-dimensional direction, for example, an X-axis and a Y-axis direction, to constitute a mask pattern 200A having a honeycomb mosaic pattern.
如第7C圖所示,光罩圖案200A的透光圖案單元114與不透光圖案單元116皆為四邊形,由三個四邊形透光圖案單元114與一個四邊形不透光圖案單元116組成的重複單元200U沿著二維方向,例如X軸與Y軸方向重複地排列,構成具有棋盤狀馬賽克圖案的光罩圖案200A。 As shown in FIG. 7C, the light transmissive pattern unit 114 and the opaque pattern unit 116 of the reticle pattern 200A are all quadrangular, and the repeating unit consists of three quadrangular light transmissive pattern units 114 and one quadrangular opaque pattern unit 116. The 200U is repeatedly arranged in a two-dimensional direction, for example, an X-axis and a Y-axis direction, to constitute a mask pattern 200A having a checkerboard mosaic pattern.
由於在第7A-7C圖的實施例中,光罩圖案200A的重複單元200U皆由三個透光圖案單元114與一個不透光圖案單元116組成,亦即在第7A-7C圖的重複單元200U中,透光圖案單元114與不透光圖案單元116的數量比例為3:1,因此使用第7A-7C圖的光罩圖案200A進行離子佈植後,在使用N型摻雜物對P型井區進行離子佈植的一實施例中,於第3圖中所示之摻雜區122內,N型井區118與P型井區120的面積比例約為3:1,摻雜區122的離子佈植濃度由N型井區118與P型井區120的面積比例控制。 In the embodiment of the 7A-7C diagram, the repeating unit 200U of the reticle pattern 200A is composed of three light transmissive pattern units 114 and one opaque pattern unit 116, that is, the repeating unit in the 7A-7C diagram. In 200U, the ratio of the number of the light-transmitting pattern unit 114 to the opaque pattern unit 116 is 3:1, so after ion implantation using the mask pattern 200A of the seventh embodiment 7A-7C, the N-type dopant pair is used. In an embodiment in which the well region is subjected to ion implantation, in the doped region 122 shown in FIG. 3, the area ratio of the N-type well region 118 to the P-type well region 120 is about 3:1, and the doped region The ion implantation concentration of 122 is controlled by the ratio of the area of the N-type well region 118 to the P-type well region 120.
之後,對第3圖中所示之摻雜區122進行熱擴散製程,相較於使用第6A-6C圖的光罩圖案200A進行N型摻雜物的離子佈植之實施例,使用第7A-7C圖的光罩圖案200A進行N型摻雜物的離子佈植之實施例,可以得到N型摻雜物的離子佈植濃度更高(約為75%)的離子佈植區124。 Thereafter, the doping region 122 shown in FIG. 3 is subjected to a thermal diffusion process, and the seventh embodiment is used to perform ion implantation of the N-type dopant using the mask pattern 200A of FIGS. 6A-6C. The etch mask pattern 200A of the -7C pattern is subjected to ion implantation of an N-type dopant, and an ion implantation region 124 having a higher ion implantation concentration (about 75%) of the N-type dopant can be obtained.
在上述的實施例中,構成光罩圖案200A的重複單元200U之透光圖案單元114與不透光圖案單元116的形狀、數量比例以及排列方式僅作為示範用,其係用於說明本揭示的實施方式,在其他的實施例中,也可以採用長條形、六邊形和四邊形以外的其他形狀作為透光圖案單元114與不透光圖案單 元116,並不限於上述實施例中列舉的形狀,而且透光圖案單元114與不透光圖案單元116還可以採用其他的數量比例組成重複單元200U,並不限於上述實施例中列舉的數量比例。此外,除了上述實施例中所示之柵欄圖案和馬賽克圖案的排列方式之外,在其他的實施例中,也可以採用其他的排列方式,並不限於上述實施例中列舉的排列方式,只要可以讓光罩圖案200A中的透光圖案單元114與不透光圖案單元116形成均勻分佈的狀態之排列方式皆可,藉由光罩圖案200A中透光圖案單元114與不透光圖案單元116為均勻分佈的狀態,可以使得後續產生的離子佈植區達到較佳的離子佈植之均勻度。 In the above embodiment, the shape, the number ratio, and the arrangement of the light transmissive pattern unit 114 and the opaque pattern unit 116 constituting the repeating unit 200U of the reticle pattern 200A are merely exemplary, and are used to explain the present disclosure. In other embodiments, other shapes than the elongated shape, the hexagonal shape, and the quadrangular shape may be used as the light transmissive pattern unit 114 and the opaque pattern. The element 116 is not limited to the shape exemplified in the above embodiment, and the light-transmitting pattern unit 114 and the opaque pattern unit 116 may also constitute the repeating unit 200U in other quantitative ratios, and is not limited to the number ratios listed in the above embodiments. . In addition, in addition to the arrangement of the barrier pattern and the mosaic pattern shown in the above embodiments, in other embodiments, other arrangements may be adopted, and are not limited to the arrangement listed in the above embodiments, as long as The light-transmitting pattern unit 114 and the opaque pattern unit 116 in the reticle pattern 200A are arranged in a uniformly distributed state, and the light-transmitting pattern unit 114 and the opaque pattern unit 116 in the reticle pattern 200A are The evenly distributed state can achieve a better uniformity of ion implantation in the subsequently generated ion implantation zone.
雖然在上述實施例中係以NMOS元件的源極/汲極區之離子佈植作為示範,然而,本揭示之用於離子佈植的光罩之圖案設計也可應用在其他類型的半導體元件上,例如PMOS元件。此外,使用本揭示之光罩的圖案設計,可藉由控制透光圖案單元與不透光圖案單元在重複單元內的數量比例,在光罩上產生多種數量比例的多個光罩圖案,因此經由一道光罩步驟及一道離子佈植步驟,即可在半導體晶圓上產生具有多種離子佈植濃度的多個摻雜區,這些不同離子佈植濃度的摻雜區可以應用在相同的元件或不同的元件上。因此,相較於使用傳統的光罩來產生多種離子佈植濃度的多個摻雜區,本揭示之實施例可以減少光罩數量及步驟,並降低製造成本。 Although the ion implantation of the source/drain regions of the NMOS device is exemplified in the above embodiment, the pattern design of the reticle for ion implantation of the present disclosure can also be applied to other types of semiconductor devices. , for example, a PMOS device. In addition, by using the pattern design of the reticle of the present disclosure, a plurality of reticle patterns of various quantity ratios can be generated on the reticle by controlling the ratio of the number of the light-transmitting pattern unit and the opaque pattern unit in the repeating unit. Through a mask step and an ion implantation step, a plurality of doped regions having a plurality of ion implantation concentrations can be generated on the semiconductor wafer, and the doping regions of different ion implantation concentrations can be applied to the same component or On different components. Thus, embodiments of the present disclosure can reduce the number and steps of reticle and reduce manufacturing costs compared to using a conventional reticle to create multiple doped regions of various ion implantation densities.
此外,使用本揭示之光罩的圖案設計可改善製造積體電路的製程,藉由控制光罩圖案中透光圖案單元與不透光圖案單元的比例與排列方式,可以讓離子佈植的效能達到較佳 化,例如,相較於使用傳統的光罩所製造的超高電壓平台NMOS元件,使用本揭示之光罩製造超高電壓平台NMOS元件可以提高元件的崩潰電壓,例如可由30伏提高至51伏,並且還可以縮小元件的通道長度,例如可由10μm縮小至5μm,因此,使用本揭示之光罩的圖案設計還可以進一步提升元件的效能。 In addition, the pattern design of the reticle of the present disclosure can improve the manufacturing process of the integrated circuit, and the efficiency of the ion implantation can be improved by controlling the ratio and arrangement of the light-transmitting pattern unit and the opaque pattern unit in the reticle pattern. Achieve better For example, compared to an ultra-high voltage platform NMOS device fabricated using a conventional photomask, the fabrication of an ultra-high voltage platform NMOS device using the reticle of the present disclosure can increase the breakdown voltage of the device, for example, from 30 volts to 51 volts. And it is also possible to reduce the channel length of the element, for example, from 10 μm to 5 μm, and therefore, the pattern design of the reticle of the present disclosure can further enhance the performance of the element.
雖然本發明已揭露較佳實施例如上,然其並非用以限定本發明,在此技術領域中具有通常知識者當可瞭解,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定為準。 While the present invention has been described in its preferred embodiments, it is not intended to limit the invention, and it is understood by those of ordinary skill in the art that Retouching. Accordingly, the scope of the invention is defined by the scope of the appended claims.
100‧‧‧P型基底 100‧‧‧P type substrate
102‧‧‧P型磊晶層 102‧‧‧P type epitaxial layer
104‧‧‧P型井區 104‧‧‧P type well area
106‧‧‧隔絕區 106‧‧ ‧ isolation zone
108‧‧‧閘極 108‧‧‧ gate
110‧‧‧閘極介電層 110‧‧‧gate dielectric layer
118‧‧‧第一導電型井區 118‧‧‧First Conductive Well Area
120‧‧‧第二導電型井區 120‧‧‧Second Conductive Well Area
122‧‧‧摻雜區 122‧‧‧Doped area
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105123009A TWI611468B (en) | 2013-07-12 | 2013-07-12 | Semiconductor devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105123009A TWI611468B (en) | 2013-07-12 | 2013-07-12 | Semiconductor devices |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201640565A TW201640565A (en) | 2016-11-16 |
TWI611468B true TWI611468B (en) | 2018-01-11 |
Family
ID=57850728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105123009A TWI611468B (en) | 2013-07-12 | 2013-07-12 | Semiconductor devices |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI611468B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200423415A (en) * | 2002-12-20 | 2004-11-01 | Cree Inc | Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors and methods of fabricating vertical JFET limited silicon carbide metal-oxide semiconductor field effect transistors |
TW201320239A (en) * | 2006-05-31 | 2013-05-16 | Advanced Analogic Tech Inc | Isolation structures for integrated circuits and modular methods of forming the same |
-
2013
- 2013-07-12 TW TW105123009A patent/TWI611468B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200423415A (en) * | 2002-12-20 | 2004-11-01 | Cree Inc | Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors and methods of fabricating vertical JFET limited silicon carbide metal-oxide semiconductor field effect transistors |
TW201320239A (en) * | 2006-05-31 | 2013-05-16 | Advanced Analogic Tech Inc | Isolation structures for integrated circuits and modular methods of forming the same |
Also Published As
Publication number | Publication date |
---|---|
TW201640565A (en) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007053356A5 (en) | ||
TWI635617B (en) | High voltage metal oxide semiconductor device and manufacturing method thereof | |
JP2012178543A5 (en) | ||
TW201320335A (en) | High voltage semiconductor device and fabricating method thereof | |
TWI611468B (en) | Semiconductor devices | |
TWI553709B (en) | Masks for ion implantation, methods of ion implantation and semiconductor devices | |
TWI701713B (en) | Method for integrated circuit manufacturing | |
KR100232197B1 (en) | Method of manufacturing semiconductor device | |
JPH11111855A (en) | Photomask and manufacture of semiconductor device | |
TWI674674B (en) | Transistor structure and manufacturing method thereof | |
CN102956441A (en) | Method for producing semiconductor components on substrate and substrate with semiconductor components | |
CN111584637B (en) | PIN structure based on FDSOI and manufacturing method thereof | |
TWI463661B (en) | High voltage device and manufacturing method thereof | |
TWI484634B (en) | Isolated device and manufacturing method thereof | |
KR100575333B1 (en) | Method of manufacturing in a semiconductor devices | |
TWI535022B (en) | Manufacturing method of high voltage device | |
KR100901648B1 (en) | Method for fabricating of semiconductor device | |
TWI469349B (en) | High voltage device and manufacturing method thereof | |
CN111243956B (en) | Semiconductor manufacturing process | |
TWI638225B (en) | Methods for forming a photo-mask and a semiconductor device | |
KR100897474B1 (en) | Method for Fabricating Bipolar Transistor | |
KR101201499B1 (en) | Semiconductor device and method for manufacturing the same | |
TWI451574B (en) | High voltage device and manufacturing method thereof | |
TWI426611B (en) | Semiconductor overlapped pn structure and manufacturing method thereof | |
CN116613067A (en) | High-voltage transistor and manufacturing method thereof |