TWI668725B - Control of etch rate using modeling, feedback and impedance match - Google Patents
Control of etch rate using modeling, feedback and impedance match Download PDFInfo
- Publication number
- TWI668725B TWI668725B TW103133992A TW103133992A TWI668725B TW I668725 B TWI668725 B TW I668725B TW 103133992 A TW103133992 A TW 103133992A TW 103133992 A TW103133992 A TW 103133992A TW I668725 B TWI668725 B TW I668725B
- Authority
- TW
- Taiwan
- Prior art keywords
- variable
- impedance
- computer
- complex
- value
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/3299—Feedback systems
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
描述用以達成蝕刻速率的方法。該方法包括接收與對電漿腔室內的工作件進行處理相關聯的一計算變數。該方法更包括了將該計算變數傳遞通過一模型以產生在該模型之輸出端的該計算變數之值、辨識與該值相關聯的一計算處理速率、及基於該計算處理速率而辨識一預定處理速率。該方法亦包括了基於該預定處理速率而辨識欲於該輸出端達成的一預定變數、及辨識與該預定變數的實部及虛部相關聯之特性。該方法包括控制可變電路組件來達成該等特性以進一步達成該預定變數。The method used to achieve the etch rate is described. The method includes receiving a calculation variable associated with processing a work piece in a plasma chamber. The method further includes passing the calculation variable through a model to generate a value of the calculation variable at an output end of the model, identifying a calculation processing rate associated with the value, and identifying a predetermined process based on the calculation processing rate. rate. The method also includes identifying a predetermined variable to be achieved at the output terminal based on the predetermined processing rate, and identifying characteristics associated with the real and imaginary parts of the predetermined variable. The method includes controlling a variable circuit component to achieve the characteristics to further achieve the predetermined variable.
Description
本實施例係關於使用模型化、回授、及阻抗匹配電路來控制蝕刻速率。 This embodiment relates to the use of modeling, feedback, and impedance matching circuits to control the etching rate.
在一些電漿處理系統中,使用一射頻(RF)產生器來產生RF信號。該RF信號被供應至電漿腔室以於腔室中產生電漿。 In some plasma processing systems, a radio frequency (RF) generator is used to generate the RF signal. This RF signal is supplied to a plasma chamber to generate a plasma in the chamber.
電漿被廣泛地用於各樣的操作,例如清潔晶圓、於晶圓上沉積氧化物、蝕刻氧化物、蝕刻晶圓、等。為了達成晶圓良率,對電漿的均勻性進行控制係重要的。 Plasma is widely used for various operations, such as cleaning wafers, depositing oxides on wafers, etching oxides, etching wafers, and the like. In order to achieve wafer yield, it is important to control the uniformity of the plasma.
在此背景下,本揭露內容中描述的實施例產生。 Against this background, the embodiments described in this disclosure have arisen.
本揭露範圍之實施例提供了使用模型化、回授、及阻抗匹配電路來控制蝕刻速率之設備、方法、及電腦程式。吾人應了解本發明可以許多方式加以實行,例如處理、設備、系統、裝置、或電腦可讀媒體上的方法。以下描述幾個實施例。 The embodiments of the present disclosure provide a device, a method, and a computer program for controlling the etching rate using a modeling, feedback, and impedance matching circuit. We should understand that the present invention can be implemented in many ways, such as processes, devices, systems, devices, or methods on computer-readable media. Several embodiments are described below.
在一些實施例中,晶圓上之均勻性控制係在一蝕刻反應器(例如300公釐(mm)晶圓蝕刻反應器、200mm晶圓蝕刻反應器、等)內達成。影響蝕刻 均勻性的一些因子包括了由與RF產生器之運作的基本頻率相關聯的諧波頻率所產生、及由互調失真(IMD)頻率所產生之駐波。 In some embodiments, uniformity control on the wafer is achieved in an etch reactor (eg, a 300 mm (mm) wafer etch reactor, a 200 mm wafer etch reactor, etc.). Affect etch Some factors of uniformity include the harmonic waves generated by the fundamental frequency with which the RF generator operates and the standing waves generated by the intermodulation distortion (IMD) frequency.
在各樣的實施例中,處理器產生一電漿系統的一部分之模型。於模型之輸出端判定一變數。基於該變數而判定一參數,例如蝕刻速率、沉積速率、伽瑪、等。對該計算的參數與一預定的參數進行比較以判定該計算的參數與預定的參數之間是否匹配。一旦判定不匹配,則改變阻抗匹配電路中的可變電容器的電容及/或阻抗匹配電路中的可變電感器的電感以達成匹配。當達成匹配時,電漿腔室中的電漿之均勻性增加。 In various embodiments, the processor generates a model of a portion of a plasma system. A variable is determined at the output of the model. A parameter is determined based on the variable, such as an etching rate, a deposition rate, a gamma, and the like. The calculated parameter is compared with a predetermined parameter to determine whether the calculated parameter matches the predetermined parameter. Once a mismatch is determined, the capacitance of the variable capacitor in the impedance matching circuit and / or the inductance of the variable inductor in the impedance matching circuit is changed to achieve matching. When a match is reached, the uniformity of the plasma in the plasma chamber increases.
在幾個實施例中,描述用以達成蝕刻速率的方法。該方法包括接收與對一電漿腔室內的一工作件進行處理相關聯的一計算變數。該電漿腔室經由一射頻(RF)傳輸線連接至一阻抗匹配電路。該阻抗匹配電路經由一RF纜線連接至一RF產生器。該方法更包括將該計算變數傳遞通過一電腦產生模型以產生在該電腦產生模型之輸出端的該計算變數之值、辨識與該計算變數之值相關聯的一計算處理速率、及基於該計算處理速率而辨識待達成的一預定處理速率。該方法亦包括了基於該預定處理速率而辨識欲於該電腦產生模型之輸出端達成的一預定變數、及辨識與該預定變數的一實部相關聯的一第一特性。該第一特性屬於該阻抗匹配電路內的一第一可變電路組件。該方法包括了控制該第一可變電路組件來達成該第一特性以進一步達成該預定變數的該實部、及辨識與該預定變數的一虛部相關聯的一第二特性。該第二特性屬於該阻抗匹配電路內的一第二可變電路組件。該方法包括發送一信號至該第二可變電路組件來達成該第二特性以進一步達成該預定變數的該虛部。 In several embodiments, a method to achieve an etch rate is described. The method includes receiving a calculation variable associated with processing a work piece in a plasma chamber. The plasma chamber is connected to an impedance matching circuit via a radio frequency (RF) transmission line. The impedance matching circuit is connected to an RF generator via an RF cable. The method further includes passing the calculation variable through a computer-generated model to generate a value of the calculation variable at the output of the computer-generated model, identifying a calculation processing rate associated with the value of the calculation variable, and based on the calculation processing Rate to identify a predetermined processing rate to be achieved. The method also includes identifying a predetermined variable to be achieved at the output of the computer-generated model based on the predetermined processing rate, and identifying a first characteristic associated with a real part of the predetermined variable. The first characteristic belongs to a first variable circuit component in the impedance matching circuit. The method includes controlling the first variable circuit component to achieve the first characteristic to further achieve the real part of the predetermined variable, and identifying a second characteristic associated with an imaginary part of the predetermined variable. The second characteristic belongs to a second variable circuit component in the impedance matching circuit. The method includes sending a signal to the second variable circuit component to achieve the second characteristic to further achieve the imaginary part of the predetermined variable.
在一些實施例中,描述一主機控制器。該主機控制器包括用以儲存一複變數的一記憶元件、及連接至該記憶元件的一主機處理器。該該主機處理器係用以接收與對一電漿腔室內的一工作件進行處理相關聯的一計算變數、 將該計算變數傳遞通過一電腦產生模型以產生在該電腦產生模型之輸出端的該計算變數之值、及辨識與該計算變數之值相關聯的一計算處理速率。該主機處理器更用以基於該計算處理速率而辨識待達成的一預定處理速率、基於該預定處理速率而辨識在該電腦產生模型之輸出端的一預定變數、及辨識與該預定變數的一實部相關聯的一第一特性。該第一特性屬於該阻抗匹配電路內的一第一可變電路組件。該主機處理器係用以發送一信號至該第一可變電路組件來達成該第一特性以進一步達成該預定變數的該實部、及辨識與該預定變數的一虛部相關聯的一第二特性。該第二特性屬於該阻抗匹配電路內的一第二可變電路組件。該方法包括發送一信號至該第二可變電路組件來達成該第二特性以進一步達成該預定變數的該虛部。 In some embodiments, a host controller is described. The host controller includes a memory element for storing a plurality of variables, and a host processor connected to the memory element. The host processor is used to receive a calculation variable associated with processing a work piece in a plasma chamber, Passing the calculation variable through a computer-generated model to generate the value of the calculation variable at the output of the computer-generated model, and identifying a calculation processing rate associated with the value of the calculation variable. The host processor is further configured to identify a predetermined processing rate to be achieved based on the calculated processing rate, identify a predetermined variable at the output of the computer-generated model based on the predetermined processing rate, and identify a real variable with the predetermined variable. A first characteristic associated with the ministry. The first characteristic belongs to a first variable circuit component in the impedance matching circuit. The host processor is used to send a signal to the first variable circuit component to achieve the first characteristic to further achieve the real part of the predetermined variable, and to identify an The second characteristic. The second characteristic belongs to a second variable circuit component in the impedance matching circuit. The method includes sending a signal to the second variable circuit component to achieve the second characteristic to further achieve the imaginary part of the predetermined variable.
在幾個實施例中,描述一非暫態電腦可讀儲存媒體,該非暫態電腦可讀儲存媒體具有儲存於其上的可執行程式。該程式指示處理器執行以下操作。該等操作包括了接收與對一電漿腔室內的一工作件進行處理相關聯的一計算變數。該等操作更包括將該計算變數傳遞通過一電腦產生模型以產生在該電腦產生模型之輸出端的該計算變數之值、辨識與該計算變數之值相關聯的一計算處理速率、及基於該計算處理速率而辨識待達成的一預定處理速率。該等操作亦包括了基於該預定處理速率而辨識欲於該電腦產生模型之輸出端達成的一預定變數、及辨識與該預定變數的一實部相關聯的一第一特性。該第一特性屬於該阻抗匹配電路內的一第一可變電路組件。該等操作包括發送一信號至該第一可變電路組件來達成該第一特性以進一步達成該預定變數的該實部、及辨識與該預定變數的一虛部相關聯的一第二特性。該第二特性屬於該阻抗匹配電路內的一第二可變電路組件。該等操作包括發送一信號至該第二可變電路組件來達成該第二特性以進一步達成該預定變數的該虛部。 In several embodiments, a non-transitory computer-readable storage medium is described, the non-transitory computer-readable storage medium having an executable program stored thereon. The program instructs the processor to perform the following operations. These operations include receiving a calculation variable associated with processing a work piece in a plasma chamber. The operations further include passing the calculation variable through a computer-generated model to generate a value of the calculation variable at the output of the computer-generated model, identifying a calculation processing rate associated with the value of the calculation variable, and based on the calculation. The processing rate identifies a predetermined processing rate to be achieved. These operations also include identifying a predetermined variable to be reached at the output of the computer-generated model based on the predetermined processing rate, and identifying a first characteristic associated with a real part of the predetermined variable. The first characteristic belongs to a first variable circuit component in the impedance matching circuit. The operations include sending a signal to the first variable circuit component to achieve the first characteristic to further achieve the real part of the predetermined variable, and identifying a second characteristic associated with an imaginary part of the predetermined variable. . The second characteristic belongs to a second variable circuit component in the impedance matching circuit. The operations include sending a signal to the second variable circuit component to achieve the second characteristic to further achieve the imaginary part of the predetermined variable.
上述實施例的一些優點包括於電漿腔室中達成一電漿均勻性的程度。該均勻性的程度係藉由控制已經在一阻抗匹配電路內的一電路組件而達成。因此,與達成該均勻性相關的額外費用係不存在或極少的。在一些實施例中,均勻性係藉由在電漿腔室中添加一電路組件而達成。添加該電路組件所消耗的費用及時間不高。該電路組件係控制用以達成該均勻性。 Some advantages of the above embodiments include the extent to which a plasma uniformity is achieved in the plasma chamber. The degree of uniformity is achieved by controlling a circuit component already in an impedance matching circuit. Therefore, the additional costs associated with achieving this uniformity are non-existent or minimal. In some embodiments, uniformity is achieved by adding a circuit component to the plasma chamber. The cost and time consumed for adding this circuit component is not high. The circuit component is controlled to achieve the uniformity.
上述實施例的其他優點包括了控制阻抗匹配電路的一電路元件來控制變數的實部、並控制阻抗匹配電路的另一電路元件來控制變數的虛部。對變數的不同部分進行分開地控制有助於達成均勻性。例如,藉由控制虛部而達成在均勻性上的輕微改變,並藉由控制實部而達成在均勻性上的巨大改變。 Other advantages of the above embodiment include controlling one circuit element of the impedance matching circuit to control the real part of the variable, and controlling another circuit element of the impedance matching circuit to control the imaginary part of the variable. Separate control of different parts of a variable helps achieve uniformity. For example, a slight change in uniformity is achieved by controlling the imaginary part, and a large change in uniformity is achieved by controlling the real part.
從以下配合隨附圖式所做出之詳細描述,將更清楚本發明的其他態樣。 Other aspects of the invention will be apparent from the following detailed description made in conjunction with the accompanying drawings.
102‧‧‧可變分流電容器 102‧‧‧Variable Shunt Capacitor
104‧‧‧可變電容器 104‧‧‧Variable capacitor
106‧‧‧電感器 106‧‧‧Inductor
120‧‧‧工作件 120‧‧‧workpiece
122‧‧‧電漿腔室 122‧‧‧ Plasma Chamber
130‧‧‧電漿系統 130‧‧‧ Plasma system
132‧‧‧RF產生器 132‧‧‧RF generator
134‧‧‧阻抗匹配電路 134‧‧‧Impedance matching circuit
135‧‧‧阻抗匹配電路 135‧‧‧Impedance matching circuit
137‧‧‧可變電感器 137‧‧‧Variable inductor
138‧‧‧驅動器 138‧‧‧Drive
140A‧‧‧電腦產生模型 140A‧‧‧Computer-generated model
140B‧‧‧電腦產生模型 140B‧‧‧Computer Generated Model
140C‧‧‧電腦產生模型 140C‧‧‧Computer Generated Model
140D‧‧‧電腦產生模型 140D‧‧‧ Computer Generated Model
142A‧‧‧輸出端 142A‧‧‧output
142B‧‧‧輸出端 142B‧‧‧ Output
142C‧‧‧輸出端 142C‧‧‧Output
142D‧‧‧輸出端 142D‧‧‧output
144‧‧‧RF纜線 144‧‧‧RF cable
150‧‧‧電漿系統 150‧‧‧ Plasma System
152‧‧‧阻抗匹配電路 152‧‧‧Impedance matching circuit
158‧‧‧電容器 158‧‧‧Capacitor
162‧‧‧可變分流電容器 162‧‧‧Variable shunt capacitor
164‧‧‧電感器 164‧‧‧Inductor
168‧‧‧RF傳輸線 168‧‧‧RF transmission line
172‧‧‧輸出端 172‧‧‧output
202‧‧‧記憶元件 202‧‧‧Memory element
204‧‧‧處理器 204‧‧‧Processor
212‧‧‧本地控制器 212‧‧‧Local Controller
214‧‧‧感測器 214‧‧‧Sensor
216‧‧‧RF電源供應器 216‧‧‧RF Power Supply
218‧‧‧卡盤 218‧‧‧chuck
220‧‧‧上電極 220‧‧‧up electrode
222‧‧‧上表面 222‧‧‧upper surface
224‧‧‧主機控制器 224‧‧‧Host Controller
226A‧‧‧配方 226A‧‧‧Recipe
226B‧‧‧配方 226B‧‧‧Recipe
226C‧‧‧配方 226C‧‧‧Recipe
226D‧‧‧配方 226D‧‧‧Recipe
227‧‧‧纜線 227‧‧‧cable
250‧‧‧電漿系統 250‧‧‧ Plasma System
252‧‧‧電漿系統 252‧‧‧ Plasma System
254‧‧‧阻抗匹配電路 254‧‧‧Impedance matching circuit
256‧‧‧可變電感器 256‧‧‧Variable inductor
280‧‧‧控制系統 280‧‧‧Control System
282‧‧‧馬達 282‧‧‧Motor
284‧‧‧電路組件 284‧‧‧Circuit Components
286‧‧‧連結器 286‧‧‧Connector
290‧‧‧輸入裝置 290‧‧‧ input device
292‧‧‧輸出裝置 292‧‧‧Output device
294‧‧‧I/O介面 294‧‧‧I / O interface
296‧‧‧I/O介面 296‧‧‧I / O interface
298‧‧‧網路介面控制器(NIC) 298‧‧‧Network Interface Controller (NIC)
302‧‧‧匯流排 302‧‧‧Bus
306‧‧‧曲線圖 306‧‧‧curve
310‧‧‧曲線圖 310‧‧‧ Graph
參考以下配合隨附圖式所做的詳細描述可以最好地理解本發明。 The invention can best be understood with reference to the following detailed description made in conjunction with the accompanying drawings.
根據本揭露內容中所描述之實施例,圖1為一系統之方塊圖,該系統係用以使用電腦產生模型及阻抗匹配電路來控制一速率。 According to the embodiment described in this disclosure, FIG. 1 is a block diagram of a system for controlling a rate using a computer-generated model and an impedance matching circuit.
根據本揭露內容中所描述之實施例,圖2為一電漿系統之圖式,該電漿系統係用以使用電腦產生模型及阻抗匹配電路來控制蝕刻或沉積之速率。 According to the embodiment described in this disclosure, FIG. 2 is a diagram of a plasma system, which is used to control the rate of etching or deposition using a computer-generated model and an impedance matching circuit.
根據本揭露內容中所描述之實施例,圖3為一電漿系統之圖式,該電漿系統係用以使用電腦產生模型及阻抗匹配電路來控制蝕刻或沉積之速率。 According to the embodiment described in this disclosure, FIG. 3 is a diagram of a plasma system, which is used to control the rate of etching or deposition using a computer-generated model and an impedance matching circuit.
根據本揭露內容中所描述之實施例,圖4為一電漿系統之圖式,該電漿系統係用以使用電腦產生模型及阻抗匹配電路來控制蝕刻或沉積之速率。 According to the embodiment described in this disclosure, FIG. 4 is a diagram of a plasma system, which is used to control the rate of etching or deposition using a computer-generated model and an impedance matching circuit.
根據本揭露內容中所描述之實施例,圖5為一表格之圖式,該表格係用以說明阻抗匹配網絡的電容及電感值之判定,該判定係基於在電腦產生模型之輸出端所判定的複電壓及電流(complex voltage and current)而進行。 According to the embodiment described in this disclosure, FIG. 5 is a diagram of a table used to explain the determination of the capacitance and inductance values of the impedance matching network. Complex voltage and current (complex voltage and current).
根據本揭露內容中所描述之實施例,圖6為一控制系統之方塊圖,該控制系統係用以控制電路元件。 According to the embodiment described in this disclosure, FIG. 6 is a block diagram of a control system for controlling circuit elements.
根據本揭露內容中所描述之實施例,圖7為圖1至4中之系統的一主機控制器的圖式。 According to the embodiment described in this disclosure, FIG. 7 is a diagram of a host controller of the system in FIGS. 1 to 4.
根據本揭露內容中所描述之實施例,圖8為一曲線圖,該曲線圖繪製了在電腦產生模型之節點的阻抗對在RF傳輸線上一點之RF供應信號的諧波頻率之曲線,其中在RF傳輸線上的該點與該節點相對應。 According to the embodiment described in this disclosure, FIG. 8 is a graph that plots the impedance of the node at the computer-generated model versus the harmonic frequency of the RF supply signal at a point on the RF transmission line, where This point on the RF transmission line corresponds to this node.
根據本揭露內容中所描述之實施例,圖9為一曲線圖,該曲線圖為不同程度之蝕刻速率控制繪製了蝕刻基板的蝕刻速率(相對於基板的半徑)。 According to the embodiment described in this disclosure, FIG. 9 is a graph which plots the etching rate (relative to the radius of the substrate) of the etched substrate for different degrees of etch rate control.
下述的實施例描述使用模型化、回授、及阻抗匹配電路來控制蝕刻速率的系統及方法。顯而易見的,本發明可被實行而無須這些特定細節其中的一些或全部。在其他情況下,為了不對本發明造成不必要地混淆,眾所周知的處理操作則沒有被詳述。 The following embodiments describe a system and method for controlling etching rates using modeling, feedback, and impedance matching circuits. It will be apparent that the invention may be practiced without some or all of these specific details. In other cases, well-known processing operations have not been described in detail in order not to unnecessarily obscure the present invention.
圖1為電漿系統130之實施例的方塊圖,該系統係用以藉由使用電腦產生模型140A及阻抗匹配電路134而控制一速率(例如蝕刻速率、沉積速率、在伽瑪上的變化、等)。電漿系統130包括了RF產生器132、主機控制器224、阻 抗匹配電路134、及電漿腔室122。RF產生器132之範例包括了2百萬赫茲(MHz)RF產生器、27MHz RF產生器、及60MHz RF產生器。 FIG. 1 is a block diagram of an embodiment of a plasma system 130, which is used to control a rate (e.g., etch rate, deposition rate, change in gamma, Wait). The plasma system 130 includes an RF generator 132, a host controller 224, The anti-matching circuit 134 and the plasma chamber 122. Examples of the RF generator 132 include a 2 million hertz (MHz) RF generator, a 27 MHz RF generator, and a 60 MHz RF generator.
RF產生器132包括了本地控制器212、感測器214、及射頻(RF)電源供應器216。在各樣的實施例中,感測器214為一電壓及電流探針,該電壓及電流探針係用以校準RF產生器132且遵守著國家標準科技研究院(NIST)標準。例如,用以校準RF產生器132之感測器214係可追溯到NIST的。NIST標準對感測器214提供了NIST標準所指定的準確度程度。感測器214連接至RF產生器132的輸出端172。 The RF generator 132 includes a local controller 212, a sensor 214, and a radio frequency (RF) power supply 216. In various embodiments, the sensor 214 is a voltage and current probe. The voltage and current probe is used to calibrate the RF generator 132 and complies with the National Institute of Standards and Technology (NIST) standards. For example, the sensor 214 used to calibrate the RF generator 132 is traceable to NIST. The NIST standard provides the sensor 214 with the degree of accuracy specified by the NIST standard. The sensor 214 is connected to the output terminal 172 of the RF generator 132.
在一些實施例中,感測器214位於RF產生器132的外面。 In some embodiments, the sensor 214 is located outside the RF generator 132.
如本文中所使用,控制器包括一或更多處理器、及一或更多記憶元件。處理器之範例包括了中央處理單元(CPU)、微處理器、特定應用積體電路(ASIC)、可程式化邏輯裝置(PLD)、等。記憶元件之範例包括了唯讀記憶體(ROM)、隨機存取記憶體(RAM)、或其組合。記憶元件的其它範例包括了快閃記憶體、儲存磁碟冗餘陣列(RAID)、非暫態電腦可讀媒體、硬碟、等。 As used herein, a controller includes one or more processors, and one or more memory elements. Examples of processors include a central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a programmable logic device (PLD), and the like. Examples of memory elements include read-only memory (ROM), random-access memory (RAM), or a combination thereof. Other examples of memory components include flash memory, redundant arrays of storage disks (RAID), non-transitory computer-readable media, hard drives, and the like.
在一些實施例中,RF供應器216包括一驅動器(未顯示)及一放大器(未顯示)。該驅動器(例如信號產生器、RF信號產生器、等)連接至放大器,放大器進一步連接至RF纜線144。該驅動器連接至本地控制器212。 In some embodiments, the RF supply 216 includes a driver (not shown) and an amplifier (not shown). The driver (eg, a signal generator, an RF signal generator, etc.) is connected to an amplifier, which is further connected to an RF cable 144. This drive is connected to the local controller 212.
RF產生器132經由RF纜線144連接至阻抗匹配電路134。在幾個實施例中,阻抗匹配電路134為由一或更多電感器及/或一或更多電容器所組成之電路。阻抗匹配電路134的每一組件(例如電感器、電容器、等)以串聯、或並聯、或作為分流器而連接至阻抗匹配電路134的另一組件。 The RF generator 132 is connected to the impedance matching circuit 134 via an RF cable 144. In several embodiments, the impedance matching circuit 134 is a circuit composed of one or more inductors and / or one or more capacitors. Each component (eg, inductor, capacitor, etc.) of the impedance matching circuit 134 is connected to another component of the impedance matching circuit 134 in series, or in parallel, or as a shunt.
阻抗匹配電路134經由RF傳輸線168而連接至電漿腔室122的卡盤218。在各樣的實施例中,RF傳輸線168包括一圓柱(例如通道、等),該圓柱連接至阻抗匹配網絡134。在圓柱的中空部內存在一絕緣體及一RF棒。RF傳輸線 168更包括一RF匙(例如RF帶、等),該RF匙在一端連接至該圓柱之RF棒。該RF匙在另一端連接至一垂直放置之圓柱的RF棒,且該RF棒連接至電漿腔室122的卡盤218。 The impedance matching circuit 134 is connected to the chuck 218 of the plasma chamber 122 via an RF transmission line 168. In various embodiments, the RF transmission line 168 includes a cylinder (eg, a channel, etc.) that is connected to the impedance matching network 134. There is an insulator and an RF rod in the hollow part of the cylinder. RF transmission line 168 further includes an RF key (such as an RF band, etc.), which is connected to the cylindrical RF rod at one end. The RF key is connected to a vertically placed cylindrical RF rod at the other end, and the RF rod is connected to the chuck 218 of the plasma chamber 122.
電漿腔室122包括了卡盤218、上電極220、及其它零件(未顯示),例如圍繞上電極220的上介電環、圍繞上介電環的上電極延伸部、圍繞卡盤218之下電極的下介電環、圍繞下介電環的下電極延伸部、上電漿排除區(PEZ)環、下PEZ環、等。上電極220位於卡盤218的對面且面向該卡盤。一工作件120被支撐於卡盤218的上表面222上。工作件120之範例包括了基板、晶圓、於其上形成積體電路之基板、於其上沉積材料層之基板、於其上沉積氧化物之基板、等。下電極及上電極220其中每一者係由金屬所製成,例如鋁、鋁的合金、銅、等。該卡盤218可為靜電卡盤(ESC)或磁性卡盤。上電極220連接至基準電壓,例如接地電壓、零電壓、負電壓、等。 The plasma chamber 122 includes a chuck 218, an upper electrode 220, and other components (not shown), such as an upper dielectric ring surrounding the upper electrode 220, an upper electrode extension surrounding the upper dielectric ring, and The lower dielectric ring of the lower electrode, the lower electrode extension surrounding the lower dielectric ring, the upper plasma exclusion zone (PEZ) ring, the lower PEZ ring, and the like. The upper electrode 220 is located opposite the chuck 218 and faces the chuck. A work piece 120 is supported on the upper surface 222 of the chuck 218. Examples of the work piece 120 include a substrate, a wafer, a substrate on which an integrated circuit is formed, a substrate on which a material layer is deposited, a substrate on which an oxide is deposited, and the like. Each of the lower electrode and the upper electrode 220 is made of a metal, such as aluminum, an aluminum alloy, copper, or the like. The chuck 218 may be an electrostatic chuck (ESC) or a magnetic chuck. The upper electrode 220 is connected to a reference voltage, such as a ground voltage, a zero voltage, a negative voltage, and the like.
主機控制器224經由纜線227(例如,促成數據之並列傳輸的纜線、促成數據之串列傳輸的纜線、或通用串列匯流排(USB)纜線)而連接至RF產生器132的本地控制器212。 The host controller 224 is connected to the RF generator 132 via a cable 227 (eg, a cable that facilitates side-by-side transmission of data, a cable that facilitates serial transmission of data, or a universal serial bus (USB) cable). Local controller 212.
主機控制器224包括了電腦產生模型140A。電腦產生模型140A之範例包括了RF纜線144及阻抗匹配電路134之模型、或RF纜線144及阻抗匹配電路134及至少一部分的RF傳輸線168之模型。該部分的RF傳輸線168從阻抗匹配電路134的輸出端延伸至RF傳輸線168上的一點。 The host controller 224 includes a computer-generated model 140A. Examples of the computer-generated model 140A include a model of the RF cable 144 and the impedance matching circuit 134, or a model of the RF cable 144 and the impedance matching circuit 134 and at least a portion of the RF transmission line 168. This portion of the RF transmission line 168 extends from the output terminal of the impedance matching circuit 134 to a point on the RF transmission line 168.
電漿系統130的一部份之電腦產生模型具有與該部份相似的結構及功能。例如,電腦產生模型140A包括複數電路元件,該等電路元件代表了電漿系統130的一部分之複數電路組件,且該等電路元件具有與該等電路組件相同之連接關係。進一步說明,當阻抗匹配電路134的可變電容器104以串聯與阻抗匹配電路134的電感器106連接時,一可變電容器(可變電容器104之電腦軟體表現 形式)以串聯與一電感器(電感器106之電腦軟體表現形式)連接。如另一說明,當阻抗匹配電路134的可變分流電容器102以T形配置與可變電容器104及RF纜線144連接時,電腦產生模型140A的一可變分流電容器(可變分流電容器102之電腦軟體表現形式)以T形配置與一可變電容器(可變電容器104之電腦軟體表現形式)及一RF纜線模型(RF纜線144之電腦軟體表現形式)連接。如再另一說明,當阻抗匹配電路134的第一電容器以並聯與阻抗匹配電路134的第二電容器連接時,一電容器(第一電容器的電腦軟體表現形式)以並聯與一電容器(第二電容器的電腦軟體表現形式)連接。如另一範例,一電腦產生模型與該模型所代表的部分具有相似的特性,例如電容、電阻、電感、阻抗、複電壓及電流(complex voltage and current)、等。電感器106以串聯與RF傳輸線168及連接至RF纜線144的可變電容器104連接。 A computer-generated model of a part of the plasma system 130 has a structure and function similar to that of the part. For example, the computer-generated model 140A includes a plurality of circuit elements, which represent a plurality of circuit components of a part of the plasma system 130, and the circuit elements have the same connection relationship as the circuit components. Further explanation, when the variable capacitor 104 of the impedance matching circuit 134 is connected in series with the inductor 106 of the impedance matching circuit 134, a variable capacitor (the computer software performance of the variable capacitor 104) Form) is connected in series with an inductor (the computer software representation of the inductor 106). As another explanation, when the variable shunt capacitor 102 of the impedance matching circuit 134 is connected to the variable capacitor 104 and the RF cable 144 in a T-shaped configuration, a variable shunt capacitor (of the variable shunt capacitor 102 The computer software representation) is connected in a T configuration with a variable capacitor (the computer software representation of the variable capacitor 104) and an RF cable model (the computer software representation of the RF cable 144). As another explanation, when the first capacitor of the impedance matching circuit 134 is connected in parallel with the second capacitor of the impedance matching circuit 134, a capacitor (a computer software representation of the first capacitor) is connected in parallel with a capacitor (the second capacitor). Computer software representation) connection. As another example, a computer-generated model has similar characteristics to the parts represented by the model, such as capacitance, resistance, inductance, impedance, complex voltage and current, and so on. The inductor 106 is connected in series with the RF transmission line 168 and the variable capacitor 104 connected to the RF cable 144.
在一些實施例中,複電壓及電流包括了電流的強度、電壓的強度、及電流與電壓之間的相位。 In some embodiments, the complex voltage and current include the strength of the current, the strength of the voltage, and the phase between the current and the voltage.
電漿系統的一部分之範例包括了RF纜線、或連接至該RF纜線的阻抗匹配電路、或連接至該阻抗匹配電路的RF傳輸線、或連接至該RF傳輸線的卡盤、或其組合。電漿系統的一部分之電路組件的範例包括了電容器、電感器、及電阻器。電腦產生模型之電路元件的範例包括了電容器、電感器、及電阻器。 Examples of a part of the plasma system include an RF cable, or an impedance matching circuit connected to the RF cable, or an RF transmission line connected to the impedance matching circuit, or a chuck connected to the RF transmission line, or a combination thereof. Examples of circuit components that are part of a plasma system include capacitors, inductors, and resistors. Examples of circuit components for computer-generated models include capacitors, inductors, and resistors.
在一些實施例中,當電腦產生模型的一電路元件具有與電漿系統130的一部份之電路組件相似之特性(例如電容、阻抗、電感、或其組合、等)時,該電路元件代表了該電路組件。例如,電腦產生模型140A的一電感器具有與電感器106相同的電感。如另一範例,電腦產生模型140A的一可變電容器具有與可變電容器104相同的電容。如再另一範例,電腦產生模型140A的可變電容器之電容具有與可變電容器102相同的電容。 In some embodiments, when a circuit element of the computer-generated model has characteristics similar to circuit components of a part of the plasma system 130 (such as capacitance, impedance, inductance, or a combination thereof, etc.), the circuit element represents The circuit assembly. For example, an inductor of the computer-generated model 140A has the same inductance as the inductor 106. As another example, a variable capacitor of the computer-generated model 140A has the same capacitance as the variable capacitor 104. As yet another example, the capacitance of the variable capacitor of the computer-generated model 140A has the same capacitance as the variable capacitor 102.
電腦產生模型係由主機控制器224之處理器所產生。 The computer-generated model is generated by a processor of the host controller 224.
主機控制器224之處理器包括了一配方,該配方係用以於電漿腔室122中產生電漿、及修改特性(例如電漿的阻抗、均勻性、等)。在一些實施例中,一配方包括了功率、及RF產生器132的運作頻率。主機控制器224之處理器經由纜線227將該功率及運作頻率發送至本地控制器212以使RF產生器132以該功率及頻率運作。當RF產生器132以該功率及頻率運作時,RF產生器132產生具有該功率及頻率的RF信號。 The processor of the host controller 224 includes a recipe for generating plasma in the plasma chamber 122 and modifying characteristics (such as impedance, uniformity, etc.) of the plasma. In some embodiments, a recipe includes power and the operating frequency of the RF generator 132. The processor of the host controller 224 sends the power and operating frequency to the local controller 212 via the cable 227 so that the RF generator 132 operates at the power and frequency. When the RF generator 132 operates at the power and frequency, the RF generator 132 generates an RF signal having the power and frequency.
主機控制器224的配方226A包括了欲於RF傳輸線168上位於阻抗匹配電路134之輸出端與卡盤218之間的該點達成的一阻抗,例如一期望阻抗、等。該點位於阻抗匹配電路134的輸出端、或在RF傳輸線168上、或在卡盤218的輸入端。配方226A包括了在該點的阻抗(例如,期望阻抗、等)與電腦產生模型140A之輸出端142A的阻抗之間的一對應關係,例如一關係、一鏈結、一對一關係、一對一表格式關係、表格內的一對一關係、等。在一些實施例中,配方包括了表格或表格的一部分。 The recipe 226A of the host controller 224 includes an impedance, such as a desired impedance, etc., which is to be reached at the point between the output terminal of the impedance matching circuit 134 and the chuck 218 on the RF transmission line 168. This point is located at the output of the impedance matching circuit 134, or on the RF transmission line 168, or the input of the chuck 218. Formula 226A includes a correspondence relationship between the impedance at this point (for example, desired impedance, etc.) and the impedance of the output terminal 142A of the computer-generated model 140A, such as a relationship, a link, a one-to-one relationship, a pair A tabular relationship, a one-to-one relationship within a table, etc. In some embodiments, the recipe includes a form or part of a form.
在各樣的實施例中,配方226A包括了在電腦產生模型140A之輸出端142A的另一變數的值與在該點的該另一變數的值之間的對應關係(該點位於阻抗匹配電路134與上電極220之間),而不是在該點的阻抗與在電腦產生模型140A之輸出端142A的阻抗之間的對應關係。其它變數之範例包括了電壓、電流、蝕刻速率、伽瑪、沉積速率、複電壓及電流、等。 In various embodiments, the formula 226A includes a correspondence between the value of another variable at the output end 142A of the computer-generated model 140A and the value of the other variable at that point (this point is located in the impedance matching circuit 134 and the upper electrode 220), rather than the correspondence between the impedance at that point and the impedance of the output terminal 142A of the computer-generated model 140A. Examples of other variables include voltage, current, etching rate, gamma, deposition rate, complex voltage and current, and so on.
在一些實施例中,待達成之期望阻抗係位於該點,且電腦產生模型140A為在RF產生器132的輸出端172與RF傳輸線168上的該點之間的電漿系統130之零件的模型。例如,當待達成之期望阻抗位於RF傳輸線168之RF帶的輸入端時,電腦產生模型140A係由RF纜線144、阻抗匹配電路134、及RF傳輸線168的一部分(包括了通道)所組成。如另一範例,當待達成之期望阻抗位於卡盤218 的輸入端時,電腦產生模型140A係由RF纜線144、阻抗匹配電路134、及RF傳輸線168所組成。 In some embodiments, the desired impedance to be achieved is located at this point, and the computer-generated model 140A is a model of a part of the plasma system 130 between the output terminal 172 of the RF generator 132 and the point on the RF transmission line 168 . For example, when the desired impedance to be achieved is located at the input of the RF band of the RF transmission line 168, the computer-generated model 140A is composed of the RF cable 144, the impedance matching circuit 134, and a portion (including the channel) of the RF transmission line 168. As another example, when the desired impedance to be reached is on the chuck 218 At the input end of the computer, the computer-generated model 140A is composed of an RF cable 144, an impedance matching circuit 134, and an RF transmission line 168.
主機控制器224從主機控制器224的記憶元件取得參數(例如,頻率、功率、等)並將參數提供至RF產生器132的本地控制器212。本地控制器212接收該等參數並將該等參數提供至RF電源供應器216,該RF電源供應器產生具有該等參數之RF信號(例如脈衝信號、非脈衝信號、等)。 The host controller 224 obtains parameters (eg, frequency, power, etc.) from the memory elements of the host controller 224 and provides the parameters to the local controller 212 of the RF generator 132. The local controller 212 receives the parameters and provides the parameters to an RF power supply 216, which generates an RF signal (e.g., a pulse signal, a non-pulse signal, etc.) with the parameters.
在一些實施例中,本地控制器212包括一查閱表,該查閱表包括了該等參數與待提供至RF電源供應器216的複數參數之間的對應關係。本地控制器212查閱與所接收到的參數相對應之參數(例如頻率、功率、等)並將所查閱到的參數提供至RF電源供應器216,而不是從主機控制器224所接收到的參數。 In some embodiments, the local controller 212 includes a lookup table that includes correspondences between the parameters and a plurality of parameters to be provided to the RF power supply 216. The local controller 212 consults the parameters (e.g. frequency, power, etc.) corresponding to the received parameters and provides the retrieved parameters to the RF power supply 216 instead of the parameters received from the host controller 224 .
阻抗匹配電路134從RF產生器132接收該RF信號,並將連接至阻抗匹配電路134之負載的阻抗與連接至阻抗匹配電路134之來源的阻抗相匹配以產生一修改後RF信號。來源之範例包括RF產生器132、或RF纜線144、或其組合。負載之範例包括RF傳輸線168、或電漿腔室122、或其組合。 The impedance matching circuit 134 receives the RF signal from the RF generator 132 and matches the impedance of the load connected to the impedance matching circuit 134 with the impedance of the source connected to the impedance matching circuit 134 to generate a modified RF signal. Examples of sources include RF generator 132, or RF cable 144, or a combination thereof. Examples of loads include RF transmission line 168, or plasma chamber 122, or a combination thereof.
卡盤218經由RF傳輸線168而從阻抗匹配電路134接收該修改後RF信號,且一旦處理氣體被導入電漿腔室122內,電漿在電漿腔室122內產生。處理氣體之範例包括含氧氣體,例如O2。處理氣體的其他範例包括含氟氣體,例如四氟化碳(CF4)、六氟化硫(SF6)、六氟乙烷(C2F6)、等。 The chuck 218 receives the modified RF signal from the impedance matching circuit 134 via the RF transmission line 168, and once the processing gas is introduced into the plasma chamber 122, the plasma is generated in the plasma chamber 122. Examples of the processing gas include an oxygen-containing gas, such as O 2 . Other examples of the processing gas include a fluorine-containing gas, such as carbon tetrafluoride (CF 4 ), sulfur hexafluoride (SF 6 ), hexafluoroethane (C 2 F 6 ), and the like.
電漿係用以處理工作件120。例如,電漿係用以蝕刻工作件120、或蝕刻沉積在工作件120上的材料、或在工作件120上沉積材料、或清潔工作件120、等。 The plasma is used to process the work piece 120. For example, the plasma is used to etch the work piece 120, or to etch the material deposited on the work piece 120, or to deposit material on the work piece 120, or to clean the work piece 120, and so on.
當供應的RF信號正在對工作件120進行處理時,主機控制器224藉由將感測器214於RF產生器132的輸出端172所測得的複電壓及電流傳遞通過電腦產生模型140A而產生在電腦產生模型140A之輸出端142A的阻抗。例如,主 機控制器224計算在RF產生器132的輸出端172的複電壓及電流與電腦產生模型140A的複數電路組件的複電壓及電流之方向性總和(directional sum)以產生在電腦產生模型140A的輸出端142A之複電壓及電流,並從在輸出端142A之複電壓及電流來計算在RF產生器132之輸出端172的阻抗。 When the supplied RF signal is processing the work piece 120, the host controller 224 is generated by transmitting the complex voltage and current measured by the sensor 214 to the output terminal 172 of the RF generator 132 through the computer-generated model 140A. The impedance of the output terminal 142A of the model 140A is generated at the computer. For example, the main The machine controller 224 calculates the directional sum of the complex voltage and current at the output terminal 172 of the RF generator 132 and the complex voltage and current of the complex circuit component of the computer-generated model 140A to generate the output of the computer-generated model 140A. The complex voltage and current at the terminal 142A, and the impedance at the output terminal 172 of the RF generator 132 is calculated from the complex voltage and current at the output terminal 142A.
在使用在輸出端142A的其他變數之實施例中,主機控制器224基於在輸出端142A的複電壓及電流來計算其它變數。 In an embodiment using other variables at the output terminal 142A, the host controller 224 calculates other variables based on the complex voltage and current at the output terminal 142A.
當阻抗匹配電路134從RF產生器132接收RF信號時,主機控制器224判定在阻抗匹配電路134與卡盤218之間的該點之期望阻抗是否與在電腦產生模型140A之輸出端142A的阻抗相匹配。一旦判定在該點的期望阻抗與在輸出端142A的阻抗不匹配,主機控制器224藉由改變可變分流電容器102的電容而調整在輸出端142A之阻抗的實部。主機控制器224改變可變分流電容器102之電容以使輸出端142A之阻抗的實部與在該點之期望阻抗的實部匹配。在輸出端142A之阻抗的實部與在RF傳輸線168上的該點之期望阻抗的實部之間的匹配係發生以達成一蝕刻速率、或一沉積速率、或一伽瑪值、或其組合。下面對伽瑪進行說明。 When the impedance matching circuit 134 receives an RF signal from the RF generator 132, the host controller 224 determines whether the desired impedance at that point between the impedance matching circuit 134 and the chuck 218 is the same as the impedance at the output terminal 142A of the computer-generated model 140A. Match. Once it is determined that the desired impedance at this point does not match the impedance at the output terminal 142A, the host controller 224 adjusts the real part of the impedance at the output terminal 142A by changing the capacitance of the variable shunt capacitor 102. The host controller 224 changes the capacitance of the variable shunt capacitor 102 so that the real part of the impedance of the output terminal 142A matches the real part of the desired impedance at that point. The matching between the real part of the impedance at the output 142A and the real part of the desired impedance at that point on the RF transmission line 168 occurs to achieve an etch rate, or a deposition rate, or a gamma value, or a combination thereof . Gamma is explained below.
此外,在一些實施例中,一旦判定在該點的期望阻抗與在輸出端142A的阻抗不匹配,主機控制器224藉由改變可變電容器104的電容而調整在輸出端142A之阻抗的虛部。主機控制器224改變可變電容器104之電容以達成在輸出端142A之阻抗的虛部與該期望阻抗的虛部之間的匹配。在輸出端142A之阻抗的虛部與在RF傳輸線168上的該點之期望阻抗的虛部之間的匹配係發生以達成一蝕刻速率、或一沉積速率、或其組合。 In addition, in some embodiments, once it is determined that the desired impedance at this point does not match the impedance at the output terminal 142A, the host controller 224 adjusts the imaginary part of the impedance at the output terminal 142A by changing the capacitance of the variable capacitor 104 . The host controller 224 changes the capacitance of the variable capacitor 104 to achieve a match between the imaginary part of the impedance at the output terminal 142A and the imaginary part of the desired impedance. The matching between the imaginary part of the impedance at the output 142A and the imaginary part of the desired impedance at that point on the RF transmission line 168 occurs to achieve an etch rate, or a deposition rate, or a combination thereof.
在各樣的實施例中,調整可變電容器104的電容而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使在電腦產生模型140A之輸出端142A的阻抗與在該點的期望阻抗相匹配。 In various embodiments, the capacitance of the variable capacitor 104 is adjusted without adjusting the capacitance of the variable shunt capacitor 102, or adjusted together with the capacitance of the variable shunt capacitor 102 so that the impedance of the output terminal 142A of the model 140A is generated in the computer Match the desired impedance at this point.
在一些實施例中,在RF傳輸線168上的該點包括在連接至RF傳輸線168的阻抗匹配電路之輸出端的一點、或在卡盤218之輸入端的一點。 In some embodiments, the point on the RF transmission line 168 includes a point on the output terminal of the impedance matching circuit connected to the RF transmission line 168 or a point on the input terminal of the chuck 218.
在一些實施例中,將一感測器(未顯示)連接至RF傳輸線168上的該點並用以測量在該點的阻抗,而不是使用在電腦產生模型140A之輸出端142A的阻抗。感測器(未顯示)連接至主機控制器224以將所測量到的阻抗提供至主機控制器224。主機控制器224判定所測量到的阻抗是否與欲於該點達成的期望阻抗相匹配。一旦判定測量到的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變可變分流電容器102的電容而調整在輸出端142A之阻抗的實部。主機控制器224改變可變分流電容器102的電容以使測量到的阻抗之實部與期望阻抗之實部相匹配。在測量到的阻抗的實部與在RF傳輸線168上之該點的期望阻抗的實部之間的匹配係發生以達成一蝕刻速率、或一沉積速率、或其組合。 In some embodiments, a sensor (not shown) is connected to the point on the RF transmission line 168 and is used to measure the impedance at that point, instead of using the impedance at the output 142A of the computer-generated model 140A. A sensor (not shown) is connected to the host controller 224 to provide the measured impedance to the host controller 224. The host controller 224 determines whether the measured impedance matches the desired impedance to be reached at that point. Once it is determined that the measured impedance does not match the desired impedance at this point, the host controller 224 adjusts the real part of the impedance at the output terminal 142A by changing the capacitance of the variable shunt capacitor 102. The host controller 224 changes the capacitance of the variable shunt capacitor 102 so that the real part of the measured impedance matches the real part of the desired impedance. Matching between the real part of the measured impedance and the real part of the desired impedance at that point on the RF transmission line 168 occurs to achieve an etch rate, or a deposition rate, or a combination thereof.
此外,在幾個實施例中,一旦判定在該點的期望阻抗與所測量到的阻抗不匹配,主機控制器224藉由改變可變電容器104的電容而調整從連接至該點的感測器(未顯示)所獲得之測量到的阻抗之虛部。主機控制器224改變可變電容器104的電容以達成在從該感測器(未顯示)所接收之測量的阻抗的虛部與該期望阻抗的虛部之間的匹配。在測量到的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部之間的匹配係發生以達成一蝕刻速率、或一沉積速率、或其組合。 Further, in several embodiments, once it is determined that the desired impedance at the point does not match the measured impedance, the host controller 224 adjusts the sensor connected to the point by changing the capacitance of the variable capacitor 104 (Not shown) The imaginary part of the measured impedance obtained. The host controller 224 changes the capacitance of the variable capacitor 104 to achieve a match between the imaginary part of the measured impedance received from the sensor (not shown) and the imaginary part of the desired impedance. Matching between the imaginary part of the measured impedance and the imaginary part of the desired impedance at that point on the RF transmission line 168 occurs to achieve an etch rate, or a deposition rate, or a combination thereof.
在各樣的實施例中,調整可變電容器104的電容而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使從該感測器(未顯示)所接收之測量的阻抗與該期望阻抗相匹配。 In various embodiments, the capacitance of the variable capacitor 104 is adjusted without adjusting the capacitance of the variable shunt capacitor 102, or adjusted together with the capacitance of the variable shunt capacitor 102 so as to be received from the sensor (not shown). The measured impedance matches the desired impedance.
吾人應注意在一些實施例中,在可變電容器104被添加到阻抗匹配電路134的時候,可變分流電容器102及電感器106位於阻抗匹配電路134中。例如,在可變電容器104被包括在阻抗匹配電路134中之前,阻抗匹配電路134藉 由使用可變分流電容器102及電感器106來使連接至阻抗匹配電路134一端之負載的阻抗與連接在阻抗匹配電路134另一端之來源的阻抗相匹配。 I should note that in some embodiments, when the variable capacitor 104 is added to the impedance matching circuit 134, the variable shunt capacitor 102 and the inductor 106 are located in the impedance matching circuit 134. For example, before the variable capacitor 104 is included in the impedance matching circuit 134, the impedance matching circuit 134 borrows The variable shunt capacitor 102 and the inductor 106 are used to match the impedance of a load connected to one end of the impedance matching circuit 134 with the impedance of a source connected to the other end of the impedance matching circuit 134.
在各樣的實施例中,本文中描述為由主機控制器224執行之操作係由主機控制器224的一或更多處理器來執行。 In various embodiments, the operations described herein as being performed by the host controller 224 are performed by one or more processors of the host controller 224.
在一些實施例中,使用一可變電感器(未顯示)來取代可變分流電容器102,並改變該可變電感器之電感以使在電腦產生模型之輸出端的阻抗的實部與欲於RF傳輸線168上的該點達成之阻抗的實部、或與由感測器(未顯示)在該點所測得之阻抗的實部相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the variable shunt capacitor 102, and the inductance of the variable inductor is changed so that the real part of the impedance at the output of the model is generated by the computer The real part of the impedance reached at this point on the RF transmission line 168 matches the real part of the impedance measured by the sensor (not shown) at that point.
圖2為電漿系統150之實施例的圖式,該電漿系統係用以使用電腦產生模型140B及一阻抗匹配電路135來控制蝕刻或沉積之速率。電腦產生模型140B之範例包括了RF纜線144及阻抗匹配電路135之模型、或RF纜線144及阻抗匹配電路135及至少一部分的RF傳輸線168之模型。電腦產生模型140B係以與從阻抗匹配電路134(圖1)產生電腦產生模型140A(圖1)相似的方式而從阻抗匹配電路135產生。除了電漿系統150包括了阻抗匹配電路135(該阻抗匹配電路不包括固定電感器106(圖1)而是包括可變電感器137)、電漿系統150不包括電腦產生模型140A而是包括電腦產生模型140B、及電漿系統150不包括配方226A(圖1)而是包括配方226B之外,電漿系統150與電漿系統130(圖1)為相似的。 FIG. 2 is a diagram of an embodiment of a plasma system 150 that is used to control the rate of etching or deposition using a computer-generated model 140B and an impedance matching circuit 135. Examples of the computer-generated model 140B include a model of the RF cable 144 and the impedance matching circuit 135, or a model of the RF cable 144 and the impedance matching circuit 135 and at least a portion of the RF transmission line 168. The computer-generated model 140B is generated from the impedance-matching circuit 135 in a similar manner to the computer-generated model 140A (FIG. 1) from the impedance-matching circuit 134 (FIG. 1). In addition to the plasma system 150 including an impedance matching circuit 135 (the impedance matching circuit does not include a fixed inductor 106 (Figure 1) but a variable inductor 137), the plasma system 150 does not include a computer-generated model 140A but includes The computer-generated model 140B and the plasma system 150 do not include the recipe 226A (FIG. 1) but include the recipe 226B. The plasma system 150 and the plasma system 130 (FIG. 1) are similar.
主機控制器224的配方226B亦包括了欲於阻抗匹配電路135之輸出端與卡盤218之間的RF傳輸線168上之該點達成的阻抗,例如期望阻抗、等。配方226B包括了在RF傳輸線168上之該點的阻抗與在電腦產生模型140B之輸出端142B的阻抗之間的一對應關係。 The formula 226B of the host controller 224 also includes the impedance, such as the desired impedance, etc., which is to be reached at this point on the RF transmission line 168 between the output of the impedance matching circuit 135 and the chuck 218. Formula 226B includes a correspondence between the impedance at that point on the RF transmission line 168 and the impedance at the output 142B of the computer-generated model 140B.
在一些實施例中,配方226B包括了在輸出端142B的另一變數的值與在該點的該另一變數的值之間的對應關係(該點位於阻抗匹配電路135與上 電極220之間),而不是在RF傳輸線168上的該點的阻抗與在輸出端142B的阻抗之間的對應關係。 In some embodiments, the formula 226B includes a correspondence between the value of another variable at the output terminal 142B and the value of the other variable at that point (this point is located in the impedance matching circuit 135 and above Between electrodes 220), rather than the correspondence between the impedance at that point on the RF transmission line 168 and the impedance at the output terminal 142B.
可變電感器137以串聯與可變電容器104及RF傳輸線168連接。 The variable inductor 137 is connected in series with the variable capacitor 104 and the RF transmission line 168.
此外,在一些實施例中,一旦判定在該點的期望阻抗與在電腦產生模型140B之輸出端142B的阻抗不匹配,主機控制器224藉由改變可變電感器137的電感而調整在輸出端142B之阻抗的虛部。主機控制器224改變可變電感器137之電感以達成在輸出端142B之阻抗的虛部與在該點之期望阻抗的虛部之間的匹配。 In addition, in some embodiments, once it is determined that the desired impedance at this point does not match the impedance at the output terminal 142B of the computer-generated model 140B, the host controller 224 adjusts the output at the output by changing the inductance of the variable inductor 137. The imaginary part of the impedance of terminal 142B. The host controller 224 changes the inductance of the variable inductor 137 to achieve a match between the imaginary part of the impedance at the output terminal 142B and the imaginary part of the desired impedance at that point.
在各樣的實施例中,調整可變電感器137的電感而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使在電腦產生模型140B之輸出端142B的阻抗與該期望阻抗相匹配。 In various embodiments, the inductance of the variable inductor 137 is adjusted without adjusting the capacitance of the variable shunt capacitor 102, or adjusted together with the capacitance of the variable shunt capacitor 102 so that the output terminal 142B of the model 140B is generated in the computer The impedance of is matched to the desired impedance.
在幾個實施例中,一旦判定在該點的期望阻抗與在輸出端142B的阻抗不匹配,主機控制器224藉由改變可變電感器137的電感及改變可變電容器104的電容而調整在輸出端142B之阻抗的虛部。主機控制器224改變可變電感器137的電感及可變電容器104的電容而達成在輸出端142B的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部之間的匹配。 In several embodiments, once it is determined that the desired impedance at this point does not match the impedance at the output terminal 142B, the host controller 224 adjusts by changing the inductance of the variable inductor 137 and the capacitance of the variable capacitor 104 The imaginary part of the impedance at the output terminal 142B. The host controller 224 changes the inductance of the variable inductor 137 and the capacitance of the variable capacitor 104 to match the imaginary part of the impedance at the output terminal 142B and the imaginary part of the desired impedance at that point on the RF transmission line 168 .
在各樣的實施例中,調整可變電感器137的電感及可變電容器104的電容而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使在電腦產生模型140B之輸出端142B的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, the inductance of the variable inductor 137 and the capacitance of the variable capacitor 104 are adjusted without adjusting the capacitance of the variable shunt capacitor 102 or adjusted together with the capacitance of the variable shunt capacitor 102 so that The impedance of the output 142B of the resulting model 140B matches the desired impedance at that point on the RF transmission line 168.
在一些實施例中,將一感測器(未顯示)連接至RF傳輸線168上的該點並用以測量在RF傳輸線168上之該點的阻抗,而不是使用在電腦產生模型140B之輸出端142B的阻抗。感測器(未顯示)將測量到的阻抗提供至主機控制器224。主機控制器224判定所測量到的阻抗是否與欲於該點達成的期望阻抗相匹 配。一旦判定測量到的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變可變電感器137的電感而調整在輸出端142B之阻抗的虛部。主機控制器224改變可變電感器137的電感以使從該感測器(未顯示)所接收之測量到的阻抗之虛部與期望阻抗的虛部相匹配。 In some embodiments, a sensor (not shown) is connected to the point on the RF transmission line 168 and is used to measure the impedance at that point on the RF transmission line 168 instead of using the output terminal 142B of the computer-generated model 140B The impedance. A sensor (not shown) provides the measured impedance to the host controller 224. The host controller 224 determines whether the measured impedance matches the expected impedance to be reached at that point Match. Once it is determined that the measured impedance does not match the desired impedance at that point, the host controller 224 adjusts the imaginary part of the impedance at the output terminal 142B by changing the inductance of the variable inductor 137. The host controller 224 changes the inductance of the variable inductor 137 so that the imaginary part of the measured impedance received from the sensor (not shown) matches the imaginary part of the desired impedance.
在各樣的實施例中,調整可變電感器137的電感而不調整可變分流電容器102之電容、或與可變分流電容器102之電容一起調整以使從感測器(未顯示)所接收之測量的阻抗與該期望阻抗相匹配。 In various embodiments, the inductance of the variable inductor 137 is adjusted without adjusting the capacitance of the variable shunt capacitor 102, or adjusted together with the capacitance of the variable shunt capacitor 102 so that the voltage from the sensor (not shown) is adjusted. The received measured impedance matches the desired impedance.
在一些實施例中,一旦判定從該感測器(未顯示)接收到的所測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變可變電感器137的電感、及可變電容器104的電容而調整在該輸出端142B之阻抗的虛部。主機控制器224改變可變電感器137的電感及可變電容器104的電容以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, once it is determined that the measured impedance received from the sensor (not shown) does not match the desired impedance at that point, the host controller 224 changes the inductance of the variable inductor 137, And the capacitance of the variable capacitor 104 to adjust the imaginary part of the impedance at the output terminal 142B. The host controller 224 changes the inductance of the variable inductor 137 and the capacitance of the variable capacitor 104 such that the imaginary part of the measured impedance received from the sensor (not shown) and the imaginary part of the impedance on the RF transmission line 168 The imaginary part of the impedance is expected to match.
在各樣的實施例中,調整可變電感器137的電感及可變電容器104的電容而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使從該感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的該期望阻抗相匹配。 In various embodiments, the inductance of the variable inductor 137 and the capacitance of the variable capacitor 104 are adjusted without adjusting the capacitance of the variable shunt capacitor 102 or adjusted together with the capacitance of the variable shunt capacitor 102 such that The measured impedance received by the sensor (not shown) matches the desired impedance at that point on the RF transmission line 168.
吾人應注意在一些實施例中,在可變電容器104被添加到阻抗匹配電路135的時候,可變分流電容器102及可變電感器137位於阻抗匹配電路135中。例如,在可變電容器104被包括在阻抗匹配電路135中之前,阻抗匹配電路135藉由使用可變分流電容器102及可變電感器137來使連接至阻抗匹配電路135一端之負載的阻抗與連接在阻抗匹配電路135另一端之來源的阻抗相匹配。 I should note that in some embodiments, when the variable capacitor 104 is added to the impedance matching circuit 135, the variable shunt capacitor 102 and the variable inductor 137 are located in the impedance matching circuit 135. For example, before the variable capacitor 104 is included in the impedance matching circuit 135, the impedance matching circuit 135 uses the variable shunt capacitor 102 and the variable inductor 137 to make the impedance of the load connected to one end of the impedance matching circuit 135 and The impedance of the source connected to the other end of the impedance matching circuit 135 matches.
圖3為電漿系統250之實施例的圖式,該電漿系統係用以使用電腦產生模型140C及阻抗匹配電路152來控制蝕刻或沉積之速率。電腦產生模型140C 之範例包括了RF纜線144及阻抗匹配電路152之模型、或RF纜線144及阻抗匹配電路152及至少一部分的RF傳輸線168之模型。電腦產生模型140C係以與從阻抗匹配電路134(圖1)產生電腦產生模型140A(圖1)相似的方式而從阻抗匹配電路152產生。除了阻抗匹配電路152包括一電容器158來取代可變電容器104、包括一可變分流電容器162、及包括一電感器164之外,電漿系統250與電漿系統130(圖1)為相似的。電容器158係與電感器106串聯且係連接至RF纜線144。此外,電感器164係以T形配置與電感器106及RF傳輸線168連接。可變電容器162以串聯與電感器164連接。 FIG. 3 is a diagram of an embodiment of a plasma system 250, which is used to control the rate of etching or deposition using a computer-generated model 140C and an impedance matching circuit 152. Computer Generated Model 140C Examples include a model of the RF cable 144 and the impedance matching circuit 152, or a model of the RF cable 144 and the impedance matching circuit 152 and at least a portion of the RF transmission line 168. The computer-generated model 140C is generated from the impedance-matching circuit 152 in a similar manner to the computer-generated model 140A (FIG. 1) from the impedance-matching circuit 134 (FIG. 1). Except that the impedance matching circuit 152 includes a capacitor 158 instead of the variable capacitor 104, a variable shunt capacitor 162, and an inductor 164, the plasma system 250 is similar to the plasma system 130 (FIG. 1). The capacitor 158 is connected in series with the inductor 106 and is connected to the RF cable 144. The inductor 164 is connected to the inductor 106 and the RF transmission line 168 in a T-shaped configuration. The variable capacitor 162 is connected in series with the inductor 164.
除了電漿系統250包括電腦產生模型140C而不是電腦產生模型140A、及電漿系統250包括配方226C而不是配方226A(圖1)之外,電漿系統250與電漿系統130(圖1)為相似的。 Except that plasma system 250 includes computer-generated model 140C instead of computer-generated model 140A, and plasma system 250 includes formula 226C instead of formula 226A (Figure 1), plasma system 250 and plasma system 130 (Figure 1) are similar.
主機控制器224的配方226C亦包括了欲於阻抗匹配電路152的輸出端與卡盤218之間的RF傳輸線168上之該點達成的阻抗,例如期望阻抗、等。配方226C包括了在RF傳輸線168上之該點的阻抗與在電腦產生模型140C之輸出端142C的阻抗之間的一對應關係。 The formula 226C of the host controller 224 also includes the impedance, such as the desired impedance, etc., which is desired to be reached on the RF transmission line 168 between the output terminal of the impedance matching circuit 152 and the chuck 218. Formula 226C includes a correspondence between the impedance at that point on the RF transmission line 168 and the impedance at the output 142C of the computer-generated model 140C.
在一些實施例中,配方226C包括了在輸出端142C的另一變數的值與在該點的該另一變數的值之間的對應關係(該點在阻抗匹配電路152與上電極220之間),而不是在該點的阻抗與在輸出端142C的阻抗之間的對應關係。 In some embodiments, the formula 226C includes a correspondence between the value of another variable at the output terminal 142C and the value of the other variable at that point (this point is between the impedance matching circuit 152 and the upper electrode 220 ), Not the correspondence between the impedance at that point and the impedance at the output 142C.
在一些實施例中,一旦判定在該點的期望阻抗與在電腦產生模型140C之輸出端142C的阻抗不匹配,主機控制器224藉由改變可變分流電容器162的電容而調整在輸出端142C之阻抗的虛部。主機控制器224改變可變分流電容器162的電容以達成在輸出端142C之阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部之間的匹配。 In some embodiments, once it is determined that the desired impedance at this point does not match the impedance of the output terminal 142C of the computer-generated model 140C, the host controller 224 adjusts the output terminal 142C by changing the capacitance of the variable shunt capacitor 162. The imaginary part of the impedance. The host controller 224 changes the capacitance of the variable shunt capacitor 162 to achieve a match between the imaginary part of the impedance at the output terminal 142C and the imaginary part of the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,調整可變分流電容器162的電容而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使在電腦產生模型140C之輸出端142C的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, the capacitance of the variable shunt capacitor 162 is adjusted without adjusting the capacitance of the variable shunt capacitor 102, or adjusted together with the capacitance of the variable shunt capacitor 102 so that the output terminal 142C of the model 140C is generated in the computer. The impedance matches the desired impedance at that point on the RF transmission line 168.
在幾個實施例中,使用一可變電容器(未顯示)來取代電容器158。調整該可變電容器(未顯示)之電容及可變分流電容器162的電容的電容以使在電腦產生模型140C之輸出端142C的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In several embodiments, a variable capacitor (not shown) is used in place of the capacitor 158. Adjust the capacitance of the variable capacitor (not shown) and the capacitance of the variable shunt capacitor 162 so that the imaginary part of the impedance at the output terminal 142C of the model 140C is generated by the computer and the desired impedance at that point on the RF transmission line 168 The imaginary parts match.
在各樣的實施例中,使用一可變電容器(未顯示)來取代電容器158。在調整可變分流電容器102的電容之外,另外對該可變電容器(未顯示)之電容及可變分流電容器162的電容進行調整以使在電腦產生模型140C之輸出端142C的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, a variable capacitor (not shown) is used in place of the capacitor 158. In addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of the variable capacitor (not shown) and the capacitance of the variable shunt capacitor 162 are adjusted so that the impedance of the output terminal 142C of the model 140C in the computer and the impedance at RF The desired impedance at this point on the transmission line 168 matches.
在一些實施例中,使用一可變電感器(未顯示)來取代電感器106。調整該可變電感器(未顯示)之電感及可變分流電容器162之電容以使在電腦產生模型140C之輸出端142C的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the inductor 106. Adjust the inductance of the variable inductor (not shown) and the capacitance of the variable shunt capacitor 162 so that the imaginary part of the impedance at the output terminal 142C of the model 140C is generated by the computer and the desired impedance at that point on the RF transmission line 168 The imaginary parts match.
在一些實施例中,使用一可變電感器(未顯示)來取代電感器106。在調整可變分流電容器102的電容之外,另外對該可變電感器(未顯示)之電感及可變分流電容器162之電容進行調整以使在電腦產生模型140C之輸出端142C的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the inductor 106. In addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of the variable inductor (not shown) and the capacitance of the variable shunt capacitor 162 are adjusted so that the impedance of the output terminal 142C of the model 140C and the The desired impedance at this point on the RF transmission line 168 matches.
在一些實施例中,使用一可變電容器(未顯示)來取代電容器158、並使用一可變電感器(未顯示)來取代電感器106。調整該可變電容器(未顯示)之電容、該可變電感器(未顯示)之電感、及可變分流電容器162的電容以使在電腦產生模型140C之輸出端142C的阻抗的虛部與該期望阻抗的虛部相匹配。 In some embodiments, a variable capacitor (not shown) is used in place of capacitor 158, and a variable inductor (not shown) is used in place of inductor 106. Adjust the capacitance of the variable capacitor (not shown), the inductance of the variable inductor (not shown), and the capacitance of the variable shunt capacitor 162 so that the imaginary part of the impedance of the output terminal 142C of the model 140C and the The imaginary part of the desired impedance matches.
在一些實施例中,將感測器(未顯示)連接至RF傳輸線168上的該點並用以測量在該點的阻抗,而不是使用在電腦產生模型140C之輸出端142C的阻抗。感測器(未顯示)將測量到的阻抗提供至主機控制器224。主機控制器224判定所測量到的阻抗是否與欲於RF傳輸線168上之該點達成的期望阻抗相匹配。一旦判定測量到的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變可變分流電容器162的電容而調整在輸出端142C之阻抗的虛部。主機控制器224改變可變分流電容器162的電容以使從感測器(未顯示)所接收之測量的阻抗之虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a sensor (not shown) is connected to the point on the RF transmission line 168 and used to measure the impedance at that point instead of using the impedance at the output 142C of the computer-generated model 140C. A sensor (not shown) provides the measured impedance to the host controller 224. The host controller 224 determines whether the measured impedance matches the desired impedance to be reached at that point on the RF transmission line 168. Once it is determined that the measured impedance does not match the desired impedance at this point, the host controller 224 adjusts the imaginary part of the impedance at the output terminal 142C by changing the capacitance of the variable shunt capacitor 162. The host controller 224 changes the capacitance of the variable shunt capacitor 162 to match the imaginary part of the measured impedance received from the sensor (not shown) with the imaginary part of the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,在調整可變分流電容器102的電容之外,另外對可變分流電容器162的電容進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of the variable shunt capacitor 162 is adjusted so that the measured impedance received from the sensor (not shown) and the RF The desired impedance at this point on the transmission line 168 matches.
在使用可變電容器(未顯示)來取代電容器158的實施例中,一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電容器(未顯示)的電容、及可變分流電容器162的電容而調整在輸出端142C之阻抗的虛部。主機控制器224改變可變電容器(未顯示)的電容及可變分流電容器162的電容以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In the embodiment where a variable capacitor (not shown) is used instead of the capacitor 158, once it is determined that the measured impedance does not match the expected impedance at that point, the host controller 224 changes the value of the variable capacitor (not shown) by The capacitance and the capacitance of the variable shunt capacitor 162 adjust the imaginary part of the impedance at the output terminal 142C. The host controller 224 changes the capacitance of the variable capacitor (not shown) and the capacitance of the variable shunt capacitor 162 so that the imaginary part of the measured impedance received from the sensor (not shown) is the same as that on the RF transmission line 168 The imaginary part of the point's desired impedance matches.
在幾個實施例中,對取代了電容器158而連接的可變電容器(未顯示)之電容、及可變分流電容器162的電容進行調整以使從感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In several embodiments, the capacitance of a variable capacitor (not shown) connected in place of the capacitor 158 and the capacitance of the variable shunt capacitor 162 are adjusted so that the measurement received from the sensor (not shown) The imaginary part of the impedance matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
在幾個實施例中,在調整可變分流電容器102的電容之外,另外對取代了電容器158而連接的可變電容器(未顯示)之電容、及可變分流電容器162的電容進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In several embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of a variable capacitor (not shown) connected instead of the capacitor 158 and the capacitance of the variable shunt capacitor 162 are adjusted so that The measured impedance received from a sensor (not shown) matches the desired impedance at that point on the RF transmission line 168.
在使用可變電感器(未顯示)來取代電感器106的實施例中,一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電感器(未顯示)的電感、及可變分流電容器162的電容而調整在輸出端142C之阻抗的虛部。主機控制器224改變該可變電感器(未顯示)的電感及可變分流電容器162的電容以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In an embodiment using a variable inductor (not shown) instead of the inductor 106, once it is determined that the measured impedance does not match the desired impedance at that point, the host controller 224 changes the variable inductor by The inductance (not shown) and the capacitance of the variable shunt capacitor 162 adjust the imaginary part of the impedance at the output terminal 142C. The host controller 224 changes the inductance of the variable inductor (not shown) and the capacitance of the variable shunt capacitor 162 so that the imaginary part of the measured impedance received from the sensor (not shown) and the RF transmission line 168 The imaginary part of the desired impedance at this point matches.
在幾個實施例中,在調整可變分流電容器102的電容之外,另外對取代了電感器106而連接的可變電感器(未顯示)之電感、及可變分流電容器162的電容進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In several embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of a variable inductor (not shown) connected in place of the inductor 106 and the capacitance of the variable shunt capacitor 162 are additionally performed. Adjust so that the measured impedance received from the sensor (not shown) matches the desired impedance at that point on the RF transmission line 168.
在一些實施例中,使用可變電感器(未顯示)來取代電感器106且使用可變電容器(未顯示)來取代電容器158。一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電感器(未顯示)的電感、該可變電容器(未顯示)的電容、及可變分流電容器162的電容而調整在輸出端142C之阻抗的虛部。主機控制器224改變該可變電感器(未顯示)的電感、可變電容器(未顯示)的電容、及可變分流電容器162的電容以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the inductor 106 and a variable capacitor (not shown) is used in place of the capacitor 158. Once it is determined that the measured impedance does not match the desired impedance at that point, the host controller 224 changes the inductance of the variable inductor (not shown), the capacitance of the variable capacitor (not shown), and the variable The capacitance of the shunt capacitor 162 adjusts the imaginary part of the impedance at the output terminal 142C. The host controller 224 changes the inductance of the variable inductor (not shown), the capacitance of the variable capacitor (not shown), and the capacitance of the variable shunt capacitor 162 so that it receives from the sensor (not shown) The imaginary part of the measured impedance matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
在幾個實施例中,在調整可變分流電容器102的電容之外,另外對取代了電感器106而連接的可變電感器(未顯示)的電感、取代了電容器158而連接的可變電容器(未顯示)之電容、及可變分流電容器162的電容進行調整以使從感測器(未顯示)所接收之測量的阻抗之虛部與在RF傳輸線168上之該點的期望阻抗之虛部相匹配。 In several embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of a variable inductor (not shown) connected instead of the inductor 106 and a variable connected instead of the capacitor 158 The capacitance of the capacitor (not shown) and the capacitance of the variable shunt capacitor 162 are adjusted so that the imaginary part of the measured impedance received from the sensor (not shown) and the desired impedance at that point on the RF transmission line 168 The imaginary parts match.
吾人應注意在一些實施例中,在電感器164及可變分流電容器162被添加到阻抗匹配電路152的時候,可變分流電容器102、電容器158、及電感器 106位於阻抗匹配電路152中。例如,在電感器164及可變分流電容器162被包括在阻抗匹配電路152中之前,阻抗匹配電路152藉由使用可變分流電容器102、電容器158、及電感器106來使連接至阻抗匹配電路152一端之負載的阻抗與連接在阻抗匹配電路152另一端之來源的阻抗相匹配。 I should note that in some embodiments, when inductor 164 and variable shunt capacitor 162 are added to impedance matching circuit 152, variable shunt capacitor 102, capacitor 158, and inductor 106 is located in the impedance matching circuit 152. For example, before the inductor 164 and the variable shunt capacitor 162 are included in the impedance matching circuit 152, the impedance matching circuit 152 connects to the impedance matching circuit 152 by using the variable shunt capacitor 102, the capacitor 158, and the inductor 106. The impedance of the load at one end matches the impedance of a source connected to the other end of the impedance matching circuit 152.
圖4為電漿系統252之實施例的圖式,該電漿系統係用以使用電腦產生模型140D及阻抗匹配電路254來控制蝕刻或沉積之速率。電腦產生模型140D之範例包括了RF纜線144及阻抗匹配電路254之模型、或RF纜線144及阻抗匹配電路254及至少一部分的RF傳輸線168之模型。電腦產生模型140D係以與從阻抗匹配電路152(圖3)產生電腦產生模型140C(圖3)相似的方式而從阻抗匹配電路254產生。除了阻抗匹配電路254包括一可變電感器256來取代電感器164之外,電漿系統252與電漿系統250(圖3)為相似的。可變電感器256以串聯與可變電容器162連接,並與電感器106及RF傳輸線168形成T形配置。 FIG. 4 is a diagram of an embodiment of a plasma system 252 that uses a computer-generated model 140D and an impedance matching circuit 254 to control the rate of etching or deposition. Examples of the computer-generated model 140D include a model of the RF cable 144 and the impedance matching circuit 254, or a model of the RF cable 144 and the impedance matching circuit 254 and at least a portion of the RF transmission line 168. The computer generated model 140D is generated from the impedance matching circuit 254 in a manner similar to the computer generated model 140C (FIG. 3) generated from the impedance matching circuit 152 (FIG. 3). The plasma system 252 is similar to the plasma system 250 (FIG. 3) except that the impedance matching circuit 254 includes a variable inductor 256 instead of the inductor 164. The variable inductor 256 is connected in series with the variable capacitor 162 and forms a T-shaped configuration with the inductor 106 and the RF transmission line 168.
除了電漿系統252包括電腦產生模型140D而不是電腦產生模型140C、及電漿系統252包括配方226D而不是配方226C(圖3)之外,電漿系統252與電漿系統250為相似的。 The plasma system 252 is similar to the plasma system 250 except that the plasma system 252 includes a computer-generated model 140D instead of the computer-generated model 140C, and the plasma system 252 includes a recipe 226D instead of a recipe 226C (FIG. 3).
主機控制器224的配方226D包括了欲於阻抗匹配電路254的輸出端與卡盤218之間的RF傳輸線168上之該點達成的阻抗,例如期望阻抗、等。配方226D包括了在RF傳輸線168上之該點的阻抗與在電腦產生模型140D之輸出端142D的阻抗之間的一對應關係。 The recipe 226D of the host controller 224 includes the impedance, such as the desired impedance, etc., which is desired to be reached on the RF transmission line 168 between the output terminal of the impedance matching circuit 254 and the chuck 218. Formula 226D includes a correspondence between the impedance at that point on the RF transmission line 168 and the impedance at the output 142D of the computer-generated model 140D.
在一些實施例中,配方226D包括了在輸出端142D的另一變數的值與在該點的該另一變數的值之間的對應關係(該點在阻抗匹配電路254與上電極220之間),而不是在RF傳輸線168上之該點的阻抗與在輸出端142D的阻抗之間的對應關係。 In some embodiments, the formula 226D includes a correspondence between the value of another variable at the output terminal 142D and the value of the other variable at that point (this point is between the impedance matching circuit 254 and the upper electrode 220 ) Instead of the correspondence between the impedance at that point on the RF transmission line 168 and the impedance at the output terminal 142D.
在一些實施例中,一旦判定在該點的期望阻抗與在電腦產生模型140D之輸出端142D的阻抗不匹配,主機控制器224藉由改變可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變可變電感器256的電感以達成在輸出端142D之阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部之間的匹配。 In some embodiments, once it is determined that the desired impedance at this point does not match the impedance at the output terminal 142D of the computer-generated model 140D, the host controller 224 adjusts the output terminal 142D by changing the inductance of the variable inductor 256 The imaginary part of the impedance. The host controller 224 changes the inductance of the variable inductor 256 to achieve a match between the imaginary part of the impedance at the output terminal 142D and the imaginary part of the desired impedance at that point on the RF transmission line 168.
在幾個實施例中,一旦判定在該點的期望阻抗與在電腦產生模型140D之輸出端142D的阻抗不匹配,主機控制器224藉由改變可變電感器256的電感、及可變分流電容器162的電容而調整在輸出端142D之阻抗的虛部。主機控制器224改變可變電感器256的電感、及可變分流電容器162的電容以達成在輸出端142D之阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部之間的匹配。 In several embodiments, once it is determined that the expected impedance at this point does not match the impedance of the output terminal 142D of the computer-generated model 140D, the host controller 224 changes the inductance of the variable inductor 256 and the variable shunt. The capacitance of the capacitor 162 adjusts the imaginary part of the impedance at the output terminal 142D. The host controller 224 changes the inductance of the variable inductor 256 and the capacitance of the variable shunt capacitor 162 to achieve the imaginary part of the impedance at the output terminal 142D and the imaginary part of the desired impedance at that point on the RF transmission line 168 Match.
在各樣的實施例中,調整可變電感器256的電感而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使在電腦產生模型140D之輸出端142D的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, the inductance of the variable inductor 256 is adjusted without adjusting the capacitance of the variable shunt capacitor 102 or adjusted together with the capacitance of the variable shunt capacitor 102 so that the output terminal 142D of the model 140D is generated in the computer. The impedance of is matched to the desired impedance at that point on the RF transmission line 168.
在幾個實施例中,一旦判定在該點的期望阻抗與在輸出端142D的阻抗不匹配,主機控制器224藉由改變可變電感器256的電感、可變分流電容器162的電容、及可變分流電容器102的電容而調整在輸出端142D之阻抗的虛部。主機控制器224改變可變分流電容器162的電容、可變電感器256的電感、及可變分流電容器102的電容以達成在輸出端142D之之阻抗的虛部與在RF傳輸線168上之該點之期望阻抗的虛部之間的匹配。 In several embodiments, once it is determined that the desired impedance at this point does not match the impedance at the output 142D, the host controller 224 changes the inductance of the variable inductor 256, the capacitance of the variable shunt capacitor 162, and The capacitance of the variable shunt capacitor 102 is adjusted to the imaginary part of the impedance at the output terminal 142D. The host controller 224 changes the capacitance of the variable shunt capacitor 162, the inductance of the variable inductor 256, and the capacitance of the variable shunt capacitor 102 to achieve the imaginary part of the impedance at the output terminal 142D and the same on the RF transmission line 168. Match between the imaginary part of the desired impedance of a point.
在各樣的實施例中,使用一可變電容器(未顯示)來取代電容器158。調整該可變電容器(未顯示)之電容及可變電感器256的電感以使在電腦產生模型140D之輸出端142D的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In various embodiments, a variable capacitor (not shown) is used in place of the capacitor 158. Adjust the capacitance of the variable capacitor (not shown) and the inductance of the variable inductor 256 so that the imaginary part of the impedance of the output terminal 142D of the model 140D and the desired impedance of the point on the RF transmission line 168 are generated by the computer. Department matches.
在一些實施例中,使用一可變電容器(未顯示)來取代電容器158。在調整可變分流電容器102的電容之外,另外對該可變電容器(未顯示)之電容及可變電感器256的電感進行調整以使在電腦產生模型140D之輸出端142D的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In some embodiments, a variable capacitor (not shown) is used in place of the capacitor 158. In addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of the variable capacitor (not shown) and the inductance of the variable inductor 256 are adjusted so that the impedance of the output terminal 142D of the model 140D and the The desired impedance at this point on the RF transmission line 168 matches.
在幾個實施例中,使用一可變電感器(未顯示)來取代電感器106。調整該可變電感器(未顯示)之電感及可變電感器256之電感以使在電腦產生模型140D之輸出端142D的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In several embodiments, a variable inductor (not shown) is used in place of the inductor 106. Adjust the inductance of the variable inductor (not shown) and the inductance of the variable inductor 256 so that the imaginary part of the impedance of the output terminal 142D of the model 140D is generated by the computer and the desired impedance at that point on the RF transmission line 168 Matches the imaginary part.
在一些實施例中,使用一可變電感器(未顯示)來取代電感器106。在調整可變分流電容器102的電容之外,另外對該可變電感器(未顯示)之電感及可變電感器256之電感進行調整以使在電腦產生模型140D之輸出端142D的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the inductor 106. In addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of the variable inductor (not shown) and the inductance of the variable inductor 256 are adjusted so that the impedance of the output terminal 142D of the model 140D is generated in the computer. Matches the desired impedance at this point on the RF transmission line 168.
在一些實施例中,使用一可變電容器(未顯示)來取代電容器158並使用一可變電感器(未顯示)來取代電感器106。調整該可變電容器(未顯示)之電容、該可變電感器(未顯示)之電感、及可變電感器256的電感以使在電腦產生模型140D之輸出端142D的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a variable capacitor (not shown) is used in place of capacitor 158 and a variable inductor (not shown) is used in place of inductor 106. Adjust the capacitance of the variable capacitor (not shown), the inductance of the variable inductor (not shown), and the inductance of the variable inductor 256 so that the imaginary part of the impedance of the output terminal 142D of the model 140D is generated in the computer. Matches the imaginary part of the desired impedance at this point on the RF transmission line 168.
在一些實施例中,使用一可變電容器(未顯示)來取代電容器158並使用一可變電感器(未顯示)來取代電感器106。在調整可變分流電容器102的電容之外,另外對該可變電容器(未顯示)之電容、該可變電感器(未顯示)之電感、及可變電感器256的電感進行調整以使在電腦產生模型140D之輸出端142D的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In some embodiments, a variable capacitor (not shown) is used in place of capacitor 158 and a variable inductor (not shown) is used in place of inductor 106. In addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of the variable capacitor (not shown), the inductance of the variable inductor (not shown), and the inductance of the variable inductor 256 are adjusted to The impedance at the output 142D of the computer-generated model 140D is matched to the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,使用一可變電容器(未顯示)來取代電容器158。在調整可變分流電容器102的電容之外,另外對該可變電容器(未顯示)之電 容、可變分流電容器162之電容、及可變電感器256的電感進行調整以使在電腦產生模型140D之輸出端142D的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, a variable capacitor (not shown) is used in place of the capacitor 158. In addition to adjusting the capacitance of the variable shunt capacitor 102, the power of the variable capacitor (not shown) is additionally adjusted. The capacitance, the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256 are adjusted so that the impedance at the output 142D of the computer-generated model 140D matches the desired impedance at that point on the RF transmission line 168.
在一些實施例中,使用一可變電容器(未顯示)來取代電容器158並使用一可變電感器(未顯示)來取代電感器106。調整該可變電容器(未顯示)之電容、該可變電感器(未顯示)之電感、可變分流電容器162之電容、及可變電感器256的電感以使在電腦產生模型140D之輸出端142D的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a variable capacitor (not shown) is used in place of capacitor 158 and a variable inductor (not shown) is used in place of inductor 106. Adjust the capacitance of the variable capacitor (not shown), the inductance of the variable inductor (not shown), the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256 so that the model 140D The imaginary part of the impedance at the output 142D matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
在一些實施例中,使用一可變電容器(未顯示)來取代電容器158並使用一可變電感器(未顯示)來取代電感器106。在調整可變分流電容器102的電容之外,另外對該可變電容器(未顯示)之電容、該可變電感器(未顯示)之電感、可變分流電容器162之電容、及可變電感器256的電感進行調整以使在電腦產生模型140D之輸出端142D的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In some embodiments, a variable capacitor (not shown) is used in place of capacitor 158 and a variable inductor (not shown) is used in place of inductor 106. In addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of the variable capacitor (not shown), the inductance of the variable inductor (not shown), the capacitance of the variable shunt capacitor 162, and the variable current are additionally adjusted. The inductance of the inductor 256 is adjusted so that the impedance at the output 142D of the computer-generated model 140D matches the desired impedance at that point on the RF transmission line 168.
在一些實施例中,將感測器(未顯示)連接至RF傳輸線168上的該點並用以測量在該點的阻抗,而不是使用在電腦產生模型140D之輸出端142D的阻抗。感測器(未顯示)將測量到的阻抗提供至主機控制器224。主機控制器224判定所測量到的阻抗是否與欲於RF傳輸線168上之該點達成的期望阻抗相匹配。一旦判定測量到的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變可變電感器256的電感以使該測量的阻抗之虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a sensor (not shown) is connected to the point on the RF transmission line 168 and used to measure the impedance at that point instead of using the impedance at the output 142D of the computer-generated model 140D. A sensor (not shown) provides the measured impedance to the host controller 224. The host controller 224 determines whether the measured impedance matches the desired impedance to be reached at that point on the RF transmission line 168. Once it is determined that the measured impedance does not match the desired impedance at this point, the host controller 224 adjusts the imaginary part of the impedance at the output terminal 142D by changing the inductance of the variable inductor 256. The host controller 224 changes the inductance of the variable inductor 256 so that the imaginary part of the measured impedance matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,調整可變電感器256的電感而不調整可變分流電容器102的電容、或與可變分流電容器102的電容一起調整以使從該感測器所接收之測量的阻抗與在RF傳輸線168上之該點的該期望阻抗相匹配。 In various embodiments, the inductance of the variable inductor 256 is adjusted without adjusting the capacitance of the variable shunt capacitor 102, or adjusted together with the capacitance of the variable shunt capacitor 102 to enable measurements received from the sensor. The impedance of is matched to the desired impedance at that point on the RF transmission line 168.
在使用可變電容器(未顯示)來取代電容器158的實施例中,一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電容器(未顯示)的電容、及可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變該可變電容器(未顯示)的電容及可變電感器256的電感以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In the embodiment where a variable capacitor (not shown) is used instead of the capacitor 158, once it is determined that the measured impedance does not match the expected impedance at that point, the host controller 224 changes the value of the variable capacitor (not shown) by The capacitance and the inductance of the variable inductor 256 adjust the imaginary part of the impedance at the output terminal 142D. The host controller 224 changes the capacitance of the variable capacitor (not shown) and the inductance of the variable inductor 256 so that the imaginary part of the measured impedance received from the sensor (not shown) and the RF transmission line 168 The imaginary part of the desired impedance at this point matches.
在幾個實施例中,在調整可變分流電容器102的電容之外,另外對取代了電容器158而連接的可變電容器(未顯示)之電容、及可變電感器256的電感進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In several embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of a variable capacitor (not shown) connected instead of the capacitor 158 and the inductance of the variable inductor 256 are adjusted to The measured impedance received from the sensor (not shown) is matched to the desired impedance at that point on the RF transmission line 168.
在使用可變電感器(未顯示)來取代電感器106的實施例中,一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電感器(未顯示)的電感、及可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變該可變電感器(未顯示)的電感及可變電感器256的電感以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In an embodiment using a variable inductor (not shown) instead of the inductor 106, once it is determined that the measured impedance does not match the desired impedance at that point, the host controller 224 changes the variable inductor by The inductance (not shown) and the inductance of the variable inductor 256 adjust the imaginary part of the impedance at the output terminal 142D. The host controller 224 changes the inductance of the variable inductor (not shown) and the inductance of the variable inductor 256 so that the imaginary part of the measured impedance received from the sensor (not shown) and the RF transmission line The imaginary part of the desired impedance at 168 matches this point.
在各樣的實施例中,在調整可變分流電容器102的電容之外,另外對取代了電感器106而連接的可變電感器(未顯示)的電感、及可變電感器256的電感進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of a variable inductor (not shown) connected instead of the inductor 106 and the inductance of the variable inductor 256 The inductance is adjusted so that the measured impedance received from a sensor (not shown) matches the desired impedance at that point on the RF transmission line 168.
在一些實施例中,使用可變電感器(未顯示)來取代電感器106且使用可變電容器(未顯示)來取代電容器158。一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電感器(未顯示)的電感、該可變電容器(未顯示)的電容、及可變電感器256的電感而調整在輸出端142D之阻抗 的虛部。主機控制器224改變該可變電感器(未顯示)的電感、可變電容器(未顯示)的電容、及可變電感器256的電感以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the inductor 106 and a variable capacitor (not shown) is used in place of the capacitor 158. Once it is determined that the measured impedance does not match the desired impedance at that point, the host controller 224 changes the inductance of the variable inductor (not shown), the capacitance of the variable capacitor (not shown), and the variable The inductance of the inductor 256 adjusts the impedance at the output 142D Imaginary part. The host controller 224 changes the inductance of the variable inductor (not shown), the capacitance of the variable capacitor (not shown), and the inductance of the variable inductor 256 so as to be received from the sensor (not shown). The imaginary part of the measured impedance matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,在調整可變分流電容器102的電容之外,另外對取代了電感器106而連接的可變電感器(未顯示)的電感、取代了電容器158而連接的可變電容器(未顯示)的電容、及可變電感器256的電感進行調整以使從感測器(未顯示)所接收之測量的阻抗與該期望阻抗相匹配。 In various embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of a variable inductor (not shown) connected instead of the inductor 106, The capacitance of the variable capacitor (not shown) and the inductance of the variable inductor 256 are adjusted so that the measured impedance received from the sensor (not shown) matches the desired impedance.
在使用可變電容器(未顯示)來取代電容器158的實施例中,一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電容器(未顯示)的電容、可變分流電容器162的電容、及可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變該可變電容器(未顯示)的電容、可變分流電容器162的電容、及可變電感器256的電感以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In the embodiment where a variable capacitor (not shown) is used instead of the capacitor 158, once it is determined that the measured impedance does not match the expected impedance at that point, the host controller 224 changes the value of the variable capacitor (not shown) by The capacitance, the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256 adjust the imaginary part of the impedance at the output terminal 142D. The host controller 224 changes the capacitance of the variable capacitor (not shown), the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256 to make the measured impedance received from the sensor (not shown) The imaginary part of is matched with the imaginary part of the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,在調整可變分流電容器102的電容之外,另外對取代了電容器158連接的可變電容器(未顯示)的電容、可變分流電容器162的電容、及可變電感器256的電感進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的期望阻抗相匹配。 In various embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the capacitance of a variable capacitor (not shown) connected to the capacitor 158, the capacitance of the variable shunt capacitor 162, and the variable current are additionally adjusted. The inductance of the sensor 256 is adjusted so that the measured impedance received from the sensor (not shown) matches the desired impedance at that point on the RF transmission line 168.
在使用可變電感器(未顯示)來取代電感器106的一些實施例中,一旦判定從該感測器(未顯示)所接收之該測量的阻抗與在RF傳輸線168上之該點的期望阻抗不匹配,主機控制器224藉由改變該可變電感器(未顯示)的電感、可變分流電容器162的電容、及可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變該可變電感器(未顯示)的電感、可變分流電容器162 的電容、及可變電感器256的電感以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments that use a variable inductor (not shown) instead of the inductor 106, once it is determined that the measured impedance received from the sensor (not shown) and the measured impedance at that point on the RF transmission line 168 Expected impedance mismatch, the host controller 224 adjusts the impedance at the output terminal 142D by changing the inductance of the variable inductor (not shown), the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256. Imaginary part. The host controller 224 changes the inductance of the variable inductor (not shown) and the variable shunt capacitor 162 And the inductance of the variable inductor 256 such that the imaginary part of the measured impedance received from the sensor (not shown) matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
各樣的實施例中,在調整可變分流電容器102的電容之外,另外對取代了電感器106而連接的可變電感器(未顯示)的電感、可變分流電容器162的電容、及可變電感器256的電感進行調整以使從感測器(未顯示)所接收之測量的阻抗與該期望阻抗相匹配。 In various embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of a variable inductor (not shown) connected instead of the inductor 106, the capacitance of the variable shunt capacitor 162, and The inductance of the variable inductor 256 is adjusted to match the measured impedance received from a sensor (not shown) to the desired impedance.
在一些實施例中,使用可變電感器(未顯示)來取代電感器106且使用可變電容器(未顯示)來取代電容器158。一旦判定該測量的阻抗與在該點的期望阻抗不匹配,主機控制器224藉由改變該可變電感器(未顯示)的電感、該可變電容器(未顯示)的電容、可變分流電容器162的電容、及可變電感器256的電感而調整在輸出端142D之阻抗的虛部。主機控制器224改變該可變電感器(未顯示)的電感、可變電容器(未顯示)的電容、可變分流電容器162的電容、及可變電感器256的電感以使從該感測器(未顯示)所接收之測量的阻抗的虛部與在RF傳輸線168上之該點的期望阻抗的虛部相匹配。 In some embodiments, a variable inductor (not shown) is used in place of the inductor 106 and a variable capacitor (not shown) is used in place of the capacitor 158. Once it is determined that the measured impedance does not match the desired impedance at that point, the host controller 224 changes the inductance of the variable inductor (not shown), the capacitance of the variable capacitor (not shown), and the variable shunt by changing The capacitance of the capacitor 162 and the inductance of the variable inductor 256 adjust the imaginary part of the impedance at the output terminal 142D. The host controller 224 changes the inductance of the variable inductor (not shown), the capacitance of the variable capacitor (not shown), the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256 so that the inductance The imaginary part of the measured impedance received by the tester (not shown) matches the imaginary part of the desired impedance at that point on the RF transmission line 168.
在各樣的實施例中,在調整可變分流電容器102的電容之外,另外對取代了電感器106而連接的可變電感器(未顯示)的電感、取代了電容器158而連接的可變電容器(未顯示)的電容、可變分流電容器162的電容、及可變電感器256的電感進行調整以使從感測器(未顯示)所接收之測量的阻抗與在RF傳輸線168上之該點的該期望阻抗相匹配。 In various embodiments, in addition to adjusting the capacitance of the variable shunt capacitor 102, the inductance of a variable inductor (not shown) connected instead of the inductor 106, The capacitance of the variable capacitor (not shown), the capacitance of the variable shunt capacitor 162, and the inductance of the variable inductor 256 are adjusted so that the measured impedance received from the sensor (not shown) is on the RF transmission line 168 The desired impedance at this point matches.
吾人應注意在一些實施例中,在可變電感器256及可變分流電容器162被添加至阻抗匹配電路254中的時候,可變分流電容器102、電容器158、及電感器106位於阻抗匹配電路254中。例如,在可變電感器256及可變分流電容器162被包括在阻抗匹配電路254中之前,阻抗匹配電路254藉由使用可變分流電 容器102、電容器158、及電感器106來使連接至阻抗匹配電路254一端之負載的阻抗與連接在阻抗匹配電路254另一端之來源的阻抗相匹配。 I should note that in some embodiments, when the variable inductor 256 and the variable shunt capacitor 162 are added to the impedance matching circuit 254, the variable shunt capacitor 102, the capacitor 158, and the inductor 106 are located in the impedance matching circuit 254. For example, before the variable inductor 256 and the variable shunt capacitor 162 are included in the impedance matching circuit 254, the impedance matching circuit 254 uses a variable shunt current The container 102, capacitor 158, and inductor 106 match the impedance of a load connected to one end of the impedance matching circuit 254 to the impedance of a source connected to the other end of the impedance matching circuit 254.
吾人更應注意在各樣的實施例中,對可變電容器102的電容進行控制以改變在該點之阻抗的實部,且該實部不受通過在RF傳輸線168上之該點的RF信號之頻率的影響。在一些實施例中,改變可變電容器104的電容、或可變電感器137(圖2)的電感、或可變分流電容器162(圖3)的電容、或可變電感器256的電感、或其組合以改變在該點之阻抗的虛部,且該虛部為在該點之諧波頻率的函數。 I should also note that in various embodiments, the capacitance of the variable capacitor 102 is controlled to change the real part of the impedance at that point, and the real part is not subject to the RF signal passing through that point on the RF transmission line 168 The effect of frequency. In some embodiments, the capacitance of the variable capacitor 104, or the inductance of the variable inductor 137 (FIG. 2), or the capacitance of the variable shunt capacitor 162 (FIG. 3), or the inductance of the variable inductor 256 is changed. , Or a combination thereof to change the imaginary part of the impedance at that point, and the imaginary part is a function of the harmonic frequency at that point.
在一些實施例中,主機控制器224發送信號至本地控制器212以改變(例如調整、等)與RF電源供應器216之運作相關聯的一諧波頻率(例如三階諧波頻率、四階諧波頻率、五階諧波頻率、m階諧波頻率、等,其中m為大於1的整數),而不改變可變電容器104的電容及/或可變電感器137的電感及/或可變電感器256的電感及/或可變電容器162的電容、或與改變可變電容器104的電容及/或可變電感器137的電感及/或可變電感器256的電感及/或可變電容器162的電容一起執行。該諧波頻率係改變來達成一蝕刻速率與一預定蝕刻速率之間的匹配,其中該蝕刻速率係基於在輸出端142D之複電壓及電流而計算。例如,主機控制器224發送信號至本地控制器212以調整RF電源供應器216的運作頻率(例如,運作的基本頻率、等)。基於從主機控制器224所接收到的信號,本地控制器212將一頻率值發送至RF電源供應器216以使該RF電源供應器216以該頻率值運作。一旦接收到頻率值,RF電源供應器216產生具有該頻率值之RF信號。當供應具有該頻率值之RF信號時,於RF產生器132之輸出端172測量一複電壓及電流,並基於該測量的複電壓及電流而在電腦產生模型140D之輸出端142D判定一複電壓及電流。基於在輸出端142D判定之複電壓及電流而計算一蝕刻速率,並對該蝕刻速率與預定的蝕刻速率進行比較。一旦判定該計算的蝕刻速率與預定的蝕刻速 率不匹配,主機控制器224發送另一信號至本地控制器212來調整該RF電源供應器216之運作頻率。 In some embodiments, the host controller 224 sends a signal to the local controller 212 to change (e.g., adjust, etc.) a harmonic frequency (e.g., third-order harmonic frequency, fourth-order harmonic) associated with the operation of the RF power supply 216. (Harmonic frequency, fifth-order harmonic frequency, m-order harmonic frequency, etc., where m is an integer greater than 1) without changing the capacitance of the variable capacitor 104 and / or the inductance of the variable inductor 137 and / or The inductance of the variable inductor 256 and / or the capacitance of the variable capacitor 162, or the capacitance of the variable capacitor 104 and / or the inductance of the variable inductor 137 and / or the inductance of the variable inductor 256 and The capacitance of the variable capacitor 162 is performed together. The harmonic frequency is changed to achieve a match between an etching rate and a predetermined etching rate, wherein the etching rate is calculated based on the complex voltage and current at the output terminal 142D. For example, the host controller 224 sends a signal to the local controller 212 to adjust the operating frequency (eg, the basic frequency of operation, etc.) of the RF power supply 216. Based on the signal received from the host controller 224, the local controller 212 sends a frequency value to the RF power supply 216 so that the RF power supply 216 operates at the frequency value. Upon receiving the frequency value, the RF power supply 216 generates an RF signal having the frequency value. When an RF signal having the frequency value is supplied, a complex voltage and current are measured at the output terminal 172 of the RF generator 132, and a complex voltage is determined at the output terminal 142D of the computer-generated model 140D based on the measured complex voltage and current. And current. An etching rate is calculated based on the complex voltage and current determined at the output terminal 142D, and the etching rate is compared with a predetermined etching rate. Once it is judged that the calculated etching rate and the predetermined etching rate If the rates do not match, the host controller 224 sends another signal to the local controller 212 to adjust the operating frequency of the RF power supply 216.
圖5為一表格之實施例的圖式,該表格係用以說明阻抗匹配網絡的電容及電感值之判定,該判定係基於在電腦產生模型(例如,電腦產生模型140A(圖1)、電腦產生模型140B(圖2)、電腦產生模型140C(圖3)、電腦產生模型140D(圖4)、等)之輸出端所判定的複電壓及電流而進行。圖5之表格係儲存於主機控制器224(圖1)的記憶元件內。該複電壓及電流係於電腦產生模型之輸出端所判定。 FIG. 5 is a diagram of an example of a table used to explain the determination of the capacitance and inductance values of the impedance matching network. The determination is based on a computer-generated model (for example, computer-generated model 140A (Figure 1), computer The complex voltage and current determined by the output terminals of the model 140B (FIG. 2), the computer-generated model 140C (FIG. 3), the computer-generated model 140D (FIG. 4), etc. are generated. The table in FIG. 5 is stored in a memory element of the host controller 224 (FIG. 1). The complex voltage and current are determined at the output of the computer-generated model.
此外,主機控制器224(圖1)基於在一電腦產生模型之輸出端的複電壓及電流而辨識(例如讀取、取得、等)在該電腦產生模型之輸出端的蝕刻速率。例如,主機控制器224將一蝕刻速率ERC1辨識為與複電壓及電流V&I1相對應、基於複電壓及電流V&I2而辨識另一蝕刻速率ERC2、並以此類推直到主機控制器224基於複電壓及電流V&In而辨識一蝕刻速率ERCn,其中n為大於2的整數。複電壓及電流V&I1、V&I2、直到V&In為在電腦產生模型之輸出端的複電壓及電流。 In addition, the host controller 224 (FIG. 1) identifies (e.g., reads, obtains, etc.) the etching rate at the output of the computer-generated model based on the complex voltage and current at the output of the computer-generated model. For example, the host controller 224 recognizes an etching rate ERC1 as corresponding to the complex voltage and current V & I1, identifies another etching rate ERC2 based on the complex voltage and current V & I2, and so on until the host controller 224 is based on the complex voltage and current V & In identifies an etch rate ERCn, where n is an integer greater than two. The complex voltage and current V & I1, V & I2, and V & In are the complex voltage and current at the output end of the computer-generated model.
在一些實施例中,於電腦產生模型之輸出端所計算的蝕刻速率與欲於RF傳輸線168上的該點達成之預定蝕刻速率相關聯。例如,主機控制器224包括了在計算的蝕刻速率ERC1與預定的蝕刻速率ERP1之間、在計算的蝕刻速率ERC2與預定的蝕刻速率ERP2之間、並以此類推直到在計算的蝕刻速率ERCn與預定的蝕刻速率ERPN之間的關聯性。在一些實施例中,蝕刻速率ERP1至ERPn全部具有相同的值。在各樣的實施例中,ERP1與其餘的預定蝕刻速率ERP2至ERPn其中一或更多者具有不同的值。 In some embodiments, the etch rate calculated at the output of the computer-generated model is associated with a predetermined etch rate to be achieved at that point on the RF transmission line 168. For example, the host controller 224 includes between the calculated etching rate ERC1 and the predetermined etching rate ERP1, between the calculated etching rate ERC2 and the predetermined etching rate ERP2, and so on until the calculated etching rate ERCn and Correlation between predetermined etch rates ERPN. In some embodiments, the etch rates ERP1 to ERPn all have the same value. In various embodiments, ERP1 has a different value from one or more of the remaining predetermined etch rates ERP2 to ERPn.
在各樣的實施例中,預定的蝕刻速率ERP1處於計算的蝕刻速率ERC1的一預定範圍內、預定的蝕刻速率ERP2處於計算的蝕刻速率ERC2的一預 定範圍內、並以此類推直到預定的蝕刻速率ERPn處於計算的蝕刻速率ERCn的一預定範圍內。 In various embodiments, the predetermined etch rate ERP1 is within a predetermined range of the calculated etch rate ERC1, and the predetermined etch rate ERP2 is within a predetermined range of the calculated etch rate ERC2. Within a predetermined range, and so on until the predetermined etching rate ERPn is within a predetermined range of the calculated etching rate ERCn.
在幾個實施例中,主機控制器224基於計算的蝕刻速率來辨識預定的蝕刻速率。例如,主機控制器224判定蝕刻速率ERP1與蝕刻速率ERC1相關聯、蝕刻速率ERP2與蝕刻速率ERC2相關聯、並以此類推直到主機控制器224判定蝕刻速率ERPn與蝕刻速率ERCn相關聯。 In several embodiments, the host controller 224 identifies a predetermined etch rate based on the calculated etch rate. For example, the host controller 224 determines that the etching rate ERP1 is associated with the etching rate ERC1, the etching rate ERP2 is associated with the etching rate ERC2, and so on until the host controller 224 determines that the etching rate ERPn is associated with the etching rate ERCn.
欲於該點達成的每一預定阻抗ZP與一預定蝕刻速率相對應。例如,主機控制器224從預定蝕刻速率ERP1計算出預定阻抗ZP1。如另一範例,主機控制器224從預定蝕刻速率ERP2計算出預定阻抗ZP2、並以此類推直到主機控制器224從預定蝕刻速率ERPn計算出預定阻抗ZPn。如再另一範例,主機控制器224基於不同時間在電壓、電流、及預定蝕刻速率之間的關係而解出在不同時間的電壓及電流。進一步說明,主機控制器224解出方程式C11VP1+C12IP1=ERP1、及C11VP2+C12IP2=ERP2中的VP1、VP2、IP1、及IP2以計算電壓VP1及VP2、及電流IP1及IP2。主機控制器224基於電壓VP1與電流IP1之比率、及電壓VP2與電流IP2之比例來判定預定的複阻抗。 Each predetermined impedance ZP to be achieved at this point corresponds to a predetermined etching rate. For example, the host controller 224 calculates a predetermined impedance ZP1 from the predetermined etching rate ERP1. As another example, the host controller 224 calculates a predetermined impedance ZP2 from the predetermined etching rate ERP2, and so on until the host controller 224 calculates a predetermined impedance ZPn from the predetermined etching rate ERPn. As yet another example, the host controller 224 resolves the voltage and current at different times based on the relationship between the voltage, current, and predetermined etch rate at different times. To further explain, the host controller 224 solves the equations C 11 VP1 + C 12 IP1 = ERP1, and C 11 VP2 + C 12 IP2 = VP1, VP2, IP1, and IP2 in ERP2 to calculate the voltages VP1 and VP2, and the current IP1. And IP2. The host controller 224 determines a predetermined complex impedance based on the ratio of the voltage VP1 to the current IP1 and the ratio of the voltage VP2 to the current IP2.
在一些實施例中,主機控制器224基於預定的蝕刻速率ERP而辨識預定的阻抗ZP。例如,主機控制器224基於阻抗ZP1與蝕刻速率ERP1之間的對應關係來判定預定的阻抗ZP1、基於阻抗ZP2與蝕刻速率ERP2之間的對應關係來判定預定的阻抗ZP2、並以此類推直到主機控制器224基於阻抗ZPn與蝕刻速率ERPn之間的對應關係來判定預定的阻抗ZPn。 In some embodiments, the host controller 224 identifies a predetermined impedance ZP based on the predetermined etch rate ERP. For example, the host controller 224 determines the predetermined impedance ZP1 based on the correspondence between the impedance ZP1 and the etching rate ERP1, and determines the predetermined impedance ZP2 based on the correspondence between the impedance ZP2 and the etching rate ERP2, and so on until the host The controller 224 determines a predetermined impedance ZPn based on a correspondence relationship between the impedance ZPn and the etching rate ERPn.
每一預定阻抗具有一實部及一虛部。例如,主機控制器224將預定阻抗ZP1分割為一實部ZPR1及一虛部ZPI1、將預定阻抗ZP2分割為一實部ZPR2及一虛部ZPI2、並以此類推直到主機控制器224將預定阻抗ZPn分割為一實部ZPRn及一虛部ZPIn。 Each predetermined impedance has a real part and an imaginary part. For example, the host controller 224 divides the predetermined impedance ZP1 into a real part ZPR1 and an imaginary part ZPI1, divides the predetermined impedance ZP2 into a real part ZPR2 and an imaginary part ZPI2, and so on until the host controller 224 divides the predetermined impedance ZPn is divided into a real part ZPRn and an imaginary part ZPIn.
在一些實施例中,主機控制器224使一預定阻抗的實部與電容器102(圖1-4)的一電容值、或用以取代可變電容器102之可變電感器的一電感值相關聯(例如鏈結、建立連接關係、建立對應關係、等)。例如,使實部ZPR1與電容值C1021相關聯、使實部ZPR2與電容值C1022相關聯、並以此類推直到使實部ZPRn與電容值C102n相關聯。主機控制器224更使該預定阻抗之虛部與電容器104(圖1及2)的電容值、或電容器162(圖3及4)的電容值、或電感器137(圖2)的電感值、或可變電感器256(圖4)的電感值、或用以取代電感器106(圖3,4)之可變電感器(未顯示)的電感值、或用以取代電容器158(圖3,4)之可變電容器的電容值、或其組合相關聯。例如,虛部ZPI1係與電容器104之電容值C1041、或與電感器137之電感值L1371、或與電容器C162之電容值C1621、或與電感L256之電感值L2561、或與用以取代電感器106的可變電感器(未顯示)之電感值、或與用以取代電容器158的可變電容器之電容值,或其組合相關聯。如另一範例,虛部ZPI2係與電容器104的電容值C1042、或與電感器137的電感值L1372、或與電容器C162的電容值C1622、或與電感器L256的電感值L2562、或與用以取代電感器106之可變電感器(未顯示)的電感值、或與用以取代電容器158之可變電容的電容值、或其組合相關聯。如另一範例,虛部ZPIn係與電容器104的電容值C104n、或與電感器137的電感值L137n、或與電容器C162的電容值C162n、或與電感器L256的電感值L256n、或與用以取代電感器106之可變電感器(未顯示)的電感值、或與用以取代電容器158之可變電容器的電容值、或其組合相關聯。 In some embodiments, the host controller 224 correlates a real part of a predetermined impedance with a capacitance value of the capacitor 102 (FIGS. 1-4) or an inductance value of a variable inductor to replace the variable capacitor 102 Link (such as linking, establishing a connection relationship, establishing a corresponding relationship, etc.). For example, the real part ZPR1 is associated with the capacitance value C1021, the real part ZPR2 is associated with the capacitance value C1022, and so on until the real part ZPRn is associated with the capacitance value C102n. The host controller 224 further sets the imaginary part of the predetermined impedance and the capacitance value of the capacitor 104 (FIGS. 1 and 2), or the capacitance value of the capacitor 162 (FIGS. 3 and 4), or the inductance value of the inductor 137 (FIG. 2), Or the inductance of the variable inductor 256 (Figure 4), or the inductance of a variable inductor (not shown) to replace the inductor 106 (Figures 3, 4), or the capacitor 158 (Figure The capacitance value of the variable capacitor of 3, 4), or a combination thereof. For example, the imaginary part ZPI1 is the capacitance value C1041 of the capacitor 104 or the inductance value L1371 of the inductor 137 or the capacitance value C1621 of the capacitor C162 or the inductance value L2561 of the inductor L256 or the replacement of the inductor 106 The value of the inductance of a variable inductor (not shown) may be associated with the capacitance of the variable capacitor used to replace the capacitor 158, or a combination thereof. As another example, the imaginary part ZPI2 is the capacitance value C1042 of the capacitor 104, or the inductance value L1372 of the inductor 137, or the capacitance value C1622 of the capacitor C162, or the inductance value L2562 of the inductor L256, or the The inductance value of the variable inductor (not shown) replacing the inductor 106 is associated with the capacitance value of the variable capacitor replacing the capacitor 158, or a combination thereof. As another example, the imaginary part ZPIn is the capacitance value C104n of the capacitor 104, or the inductance value L137n of the inductor 137, or the capacitance value C162n of the capacitor C162, or the inductance value L256n of the inductor L256, or the The inductance value of the variable inductor (not shown) replacing the inductor 106 is associated with the capacitance value of the variable capacitor replacing the capacitor 158, or a combination thereof.
主機控制器224基於實部ZPR而辨識電容器102的電容值。例如,主機控制器224判定在實部ZPR1與電容值C1021之間存在著一對應關係,並基於該實部ZPR1來辨識電容值C1021。如另一範例,主機控制器224判定在實部ZPR2與電容值C1022之間存在著對應關係並辨識電容值C1022、並以此類推直到主機 控制器224判定在實部ZPRn與電容值C102n之間存在著對應關係並辨識該電容值C102n。 The host controller 224 recognizes the capacitance value of the capacitor 102 based on the real part ZPR. For example, the host controller 224 determines that there is a corresponding relationship between the real part ZPR1 and the capacitance value C1021, and identifies the capacitance value C1021 based on the real part ZPR1. As another example, the host controller 224 determines that there is a correspondence between the real part ZPR2 and the capacitance value C1022, and recognizes the capacitance value C1022, and so on until the host The controller 224 determines that there is a corresponding relationship between the real part ZPRn and the capacitance value C102n and recognizes the capacitance value C102n.
相似地,主機控制器224基於虛部ZPI而判定電容器104的電容值、或電感器137的電感值、或電容器162的電容值、或電感器256的電感值、或用以取代電感器106之可變電感器(未顯示)的電感值、或用以取代電容器158之可變電容器的電容值、或其組合。例如,主機控制器224判定在虛部ZPI1與電容值C1041、或電感值L1371、或電容值1621、或電感值2561、或用以取代電感器106之可變電感器(未顯示)的電感值、或用以取代電容器158之可變電容器的電容值、或其組合之間存在著對應關係,並基於該虛部ZPI1而辨識電容值C1041、或電感值L1371、或電容值1621、或電感值2561、或用以取代電感器106之可變電感器(未顯示)的電感值、或用以取代電容器158之可變電容器的電容值、或其組合。如另一範例,主機控制器224判定在虛部ZPIn與電容值C104n、或電感值L137n、或電容值162n、或電感值256n、或用以取代電感器106之可變電感器(未顯示)的電感值、或用以取代電容器158之可變電容器的電容值、或其組合之間存在著對應關係,並基於該虛部ZPIn而辨識電容值C104n、或電感值L137n、或電容值162n、或電感值256n、或用以取代電感器106之可變電感器(未顯示)的電感值、或用以取代電容器158之可變電容器的電容值、或其組合。 Similarly, the host controller 224 determines the capacitance value of the capacitor 104 or the inductance value of the inductor 137 or the capacitance value of the capacitor 162 or the inductance value of the inductor 256 based on the imaginary part ZPI. An inductance value of a variable inductor (not shown), or a capacitance value of a variable capacitor to replace the capacitor 158, or a combination thereof. For example, the host controller 224 determines the inductance of the variable inductor (not shown) to replace the inductor 106 in the imaginary part ZPI1 and the capacitance value C1041, or the inductance value L1371, or the capacitance value 1621, or the inductance value 2561. Value, or the capacitance value of the variable capacitor to replace the capacitor 158, or a combination thereof, and the capacitance value C1041, the inductance value L1371, or the capacitance value 1621, or the inductance is identified based on the imaginary part ZPI1. The value 2561 or the inductance value of a variable inductor (not shown) to replace the inductor 106, or the capacitance value of a variable capacitor to replace the capacitor 158, or a combination thereof. As another example, the host controller 224 determines that the imaginary part ZPIn and the capacitance value C104n, or the inductance value L137n, or the capacitance value 162n, or the inductance value 256n, or a variable inductor to replace the inductor 106 (not shown) ), Or the capacitance value of the variable capacitor to replace the capacitor 158, or a combination thereof, and based on the imaginary part ZPIn, the capacitance value C104n, or the inductance value L137n, or the capacitance value 162n is identified. Or an inductance value of 256n, or an inductance value of a variable inductor (not shown) to replace the inductor 106, or a capacitance value of a variable capacitor to replace the capacitor 158, or a combination thereof.
吾人應注意在一些實施例中,主機控制器224使用沉積速率或伽瑪值,而不是蝕刻速率。例如,主機控制器224基於反射的功率與供應的功率之比率來計算及/或判定伽瑪值,其中該反射的功率係由電漿腔室122內的電漿反射向RF產生器132,且該供應的功率係由RF產生器132產生的RF信號所供應。主機控制器224使用在電腦產生模型之輸出端的複電壓及電流來計算及/或辨識在該輸出端之供應的功率及反射的功率。基於供應的功率及反射的功率,主機控制器224計算及/或辨識在電腦產生模型之輸出端的伽瑪值。主機控制器224對計算 的伽瑪值與儲存於主機控制器224之記憶元件中的預定伽瑪值進行比較以判定該計算的伽瑪值是否與該預定伽瑪值相匹配。如一範例,預定伽瑪值為零或在零的範圍內。預定伽瑪值為欲於RF傳輸線168上的該點達成之伽瑪值。一旦判定計算的伽瑪值與預定的伽瑪值不匹配,主機控制器224基於該預定的伽瑪值而計算及/或辨識一阻抗。改變可變分流電容器102之電容以達成該阻抗的實部。此外,不改變可變分流電容器102之電容或在改變可變分流電容器102之電容之外,改變可變電容器104的電容、及/或可變電感器137的電感、及/或可變電容器162的電容、及/或可變電感器256之電感、及/或用以取代電感器106之可變電感器(未顯示)的電感值、及/或用以取代電容器158之可變電容器的電容值以達成該阻抗的虛部。 I should note that in some embodiments, the host controller 224 uses a deposition rate or a gamma value instead of an etch rate. For example, the host controller 224 calculates and / or determines a gamma value based on a ratio of the reflected power to the supplied power, where the reflected power is reflected by the plasma in the plasma chamber 122 to the RF generator 132, and The supplied power is supplied by the RF signal generated by the RF generator 132. The host controller 224 uses the complex voltage and current at the output of the computer-generated model to calculate and / or identify the supplied power and reflected power at the output. Based on the supplied power and reflected power, the host controller 224 calculates and / or identifies the gamma value at the output of the computer-generated model. Host controller 224 The gamma value is compared with a predetermined gamma value stored in a memory element of the host controller 224 to determine whether the calculated gamma value matches the predetermined gamma value. As an example, the predetermined gamma value is zero or within a range of zero. The predetermined gamma value is a gamma value to be achieved at that point on the RF transmission line 168. Once it is determined that the calculated gamma value does not match the predetermined gamma value, the host controller 224 calculates and / or identifies an impedance based on the predetermined gamma value. The capacitance of the variable shunt capacitor 102 is changed to achieve the real part of the impedance. In addition, the capacitance of the variable shunt capacitor 102 is not changed or the capacitance of the variable capacitor 104 and / or the inductance of the variable inductor 137 and / or the variable capacitor is changed in addition to the capacitance of the variable shunt capacitor 102. Capacitance of 162 and / or inductance of variable inductor 256 and / or inductance value of variable inductor (not shown) to replace inductor 106 and / or variable value of capacitor 158 to replace The capacitance of the capacitor to achieve the imaginary part of the impedance.
圖6為一控制系統280之實施例的方塊圖,該控制系統係用以控制電路組件284。控制系統280包括了驅動器138、馬達282、及電路組件284。電路組件284之範例包括電感器及電容器。電容器之範例包括了可變電容器。可變電容器之範例包括了真空可變電容器(VVC)及空氣可變電容器。在一些實施例中,馬達282係整合於該電路組件284中。驅動器138之範例包括一產生電流之電路。於施加了臨界電壓時產生電流之電路的範例包括了一包括一些電晶體的電路。 FIG. 6 is a block diagram of an embodiment of a control system 280 for controlling a circuit component 284. The control system 280 includes a driver 138, a motor 282, and a circuit assembly 284. Examples of circuit components 284 include inductors and capacitors. Examples of capacitors include variable capacitors. Examples of variable capacitors include vacuum variable capacitors (VVC) and air variable capacitors. In some embodiments, the motor 282 is integrated into the circuit assembly 284. An example of the driver 138 includes a circuit that generates a current. An example of a circuit that generates a current when a critical voltage is applied includes a circuit including some transistors.
當主機控制器224發送信號至驅動器138以控制電路組件284時,驅動器138產生使馬達282之轉子相對於馬達282之定子而旋轉的電流。該旋轉導致在馬達282與電路組件284之間的一連結器286(例如,棒、螺棒、螺桿、套筒及柱塞、等)之旋轉。連結器286之旋轉導致了在電容器的板之間的距離改變、或電感器之延長或收縮。在電容器的板之間的距離之變化改變了該電容器的電容。此外,電感器的延伸或收縮改變了該電感器的電感。 When the host controller 224 sends a signal to the driver 138 to control the circuit assembly 284, the driver 138 generates a current that rotates the rotor of the motor 282 relative to the stator of the motor 282. This rotation causes rotation of a coupler 286 (eg, a rod, screw, screw, sleeve, plunger, etc.) between the motor 282 and the circuit assembly 284. The rotation of the connector 286 causes a change in the distance between the plates of the capacitor, or an extension or contraction of the inductor. A change in the distance between the plates of a capacitor changes the capacitance of the capacitor. In addition, the extension or contraction of the inductor changes the inductance of the inductor.
在各樣的實施例中,驅動器138連接至電路組件284而不連接至馬達282。例如,一逆向偏壓半導體二極體具有隨著施加穿過該二極體之直流(DC)電壓而改變的空乏層厚度。 In various embodiments, the driver 138 is connected to the circuit assembly 284 and not to the motor 282. For example, a reverse-biased semiconductor diode has an empty layer thickness that changes as a direct current (DC) voltage is applied across the diode.
圖7為主機控制器224之實施例的圖式。主機控制器224包括了處理器204、記憶元件202、輸入裝置290、輸出裝置292、輸入/輸出(I/O)介面294、I/O介面296、網路介面控制器(NIC)298、及匯流排302。處理器204、記憶元件202、輸入裝置290、輸出裝置292、I/O介面294、I/O介面296、及NIC298經由匯流排302而互相連接。輸入裝置290的範例包括了滑鼠、鍵盤、觸控筆、等。輸出裝置292的範例包括了顯示器、揚聲器、或其組合。該顯示器可為液晶顯示器、發光二極體顯示器、陰極射線管、電漿顯示器、等。NIC 298的範例包括了網絡介面卡、網絡轉接器、等。 FIG. 7 is a diagram of an embodiment of the host controller 224. The host controller 224 includes a processor 204, a memory element 202, an input device 290, an output device 292, an input / output (I / O) interface 294, an I / O interface 296, a network interface controller (NIC) 298, and Bus 302. The processor 204, the memory element 202, the input device 290, the output device 292, the I / O interface 294, the I / O interface 296, and the NIC 298 are connected to each other via a bus 302. Examples of the input device 290 include a mouse, a keyboard, a stylus, and the like. Examples of the output device 292 include a display, a speaker, or a combination thereof. The display may be a liquid crystal display, a light emitting diode display, a cathode ray tube, a plasma display, and the like. Examples of the NIC 298 include a network interface card, a network adapter, and the like.
I/O介面的範例包括了在連接至該介面的複數硬件之間提供相容性的介面。例如,I/O介面294將從輸入裝置290接收的信號轉換為與匯流排302相容之形式、振幅、及/或速度。如另一範例,I/O介面296將從匯流排302接收的信號轉換成與輸出裝置292相容之形式、振幅、及/或速度。 Examples of I / O interfaces include interfaces that provide compatibility between multiple hardware connected to the interface. For example, the I / O interface 294 converts signals received from the input device 290 into a form, amplitude, and / or speed compatible with the bus 302. As another example, the I / O interface 296 converts signals received from the bus 302 into a form, amplitude, and / or speed compatible with the output device 292.
圖8為曲線圖306之實施例,該曲線圖繪製了在電腦產生模型之節點的阻抗對在RF傳輸線168(圖1)上一點之RF信號的頻率之曲線,其中在RF傳輸線上的該點與該節點相對應。如曲線圖306中所示,該阻抗隨著供應該RF信號之RF產生器132(圖1)的頻率而改變,且反之亦然。該阻抗在該RF信號之諧波頻率附近的頻率達到最小值。 FIG. 8 is an example of a graph 306 that plots the impedance of a node at a computer-generated model versus the frequency of an RF signal at a point on the RF transmission line 168 (FIG. 1), where the point on the RF transmission line Corresponds to this node. As shown in graph 306, the impedance changes with the frequency of the RF generator 132 (FIG. 1) supplying the RF signal, and vice versa. The impedance has a minimum frequency near the harmonic frequency of the RF signal.
圖9為曲線圖310之實施例,該曲線圖為不同程度之蝕刻速率控制繪製了蝕刻基板的蝕刻速率(相對於基板的半徑)。使用電腦產生模型來判定一蝕刻速率,並對該蝕刻速率與預定的蝕刻速率進行比較以增加在蝕刻速率上的均勻性。另外,圖310中顯示當不使用電腦產生模型時蝕刻速率上存在著非均勻性。 FIG. 9 is an example of a graph 310, which plots the etching rate (relative to the radius of the substrate) of the etched substrate for varying degrees of etch rate control. A computer-generated model is used to determine an etch rate, and the etch rate is compared to a predetermined etch rate to increase uniformity in the etch rate. In addition, FIG. 310 shows that there is non-uniformity in the etching rate when the model is not generated using a computer.
另外注意,雖然上述的操作係參照平行板電漿腔室而描述,例如電容耦合電漿腔室、等,但在一些實施例中,上述的操作適用於其他類型的電漿腔室,例如感應耦合電漿(ICP)反應器、變壓耦合電漿(TCP)反應器、導體工具、電子迴旋共振(ECR)反應器、等之電漿腔室。例如,RF產生器132(圖1)連接至在ICP反應器之電漿腔室中的電感器。 Also note that although the above operations are described with reference to a parallel plate plasma chamber, such as a capacitively coupled plasma chamber, etc., in some embodiments, the above operations are applicable to other types of plasma chambers, such as induction Plasma chambers for coupled plasma (ICP) reactors, transformer coupled plasma (TCP) reactors, conductor tools, electron cyclotron resonance (ECR) reactors, etc. For example, the RF generator 132 (FIG. 1) is connected to an inductor in the plasma chamber of the ICP reactor.
亦應注意,雖然上述操作被描述為由主機控制器224(圖1)來執行,但在一些實施例中,該等操作可由主機控制器224的一或更多處理器、或由多重主機系統的多重處理器、或由RF產生器的多重處理器來執行。 It should also be noted that although the above operations are described as being performed by the host controller 224 (FIG. 1), in some embodiments, these operations may be performed by one or more processors of the host controller 224, or by multiple host systems Multiple processors, or multiple processors of the RF generator.
吾人應注意,雖然上述的實施例係關於將RF信號提供至電漿腔室之卡盤的下電極並將電漿腔室的上電極接地,但在幾個實施例中,將RF信號提供至上電極而將下電極接地。 I should note that although the above embodiments are related to the RF signal provided to the lower electrode of the chuck of the plasma chamber and the upper electrode of the plasma chamber is grounded, in several embodiments, the RF signal is provided above Electrode and ground the lower electrode.
本文中描述之實施例可以各樣的電腦系統結構實行,包括手持硬體單元、微處理器系統、基於微處理器或可程式化之消費電子產品、微電腦、大型電腦、及相似物。本發明亦可在分散式計算環境中實施,其中任務透過網路連線之遠端處理硬體單元執行。 The embodiments described herein can be implemented in a variety of computer system architectures, including handheld hardware units, microprocessor systems, microprocessor-based or programmable consumer electronics, microcomputers, mainframe computers, and the like. The present invention can also be implemented in a decentralized computing environment, where tasks are performed through remote processing hardware units connected via a network.
在了解上面的實施例後,吾人應理解該等實施例可使用各樣電腦實行的操作,其中操作涉及儲存在電腦系統中的資料。這些操作為需要物理量之物理操縱的操作。本文中描述之任何構成本發明之部分的操作為有用的機械操作。該等實施例亦關於用以執行這些操作的硬體單元或設備。可特別為特殊用途電腦建構設備。當被定義為特殊用途電腦時,該電腦在仍可執行特殊用途的同時,亦可執行非特殊用途部分之其他處理、程式執行、或例行程式。在一些實施例中,操作可藉由一電腦加以處理,其中該電腦被一或更多儲存在電腦記憶體、快取記憶體、或透過網路得到的電腦程式選擇性地啟動或配置。當透 過網路得到資料時,可以網路上的其他電腦處理該資料,例如,雲端的計算資源。 After understanding the above embodiments, I should understand that these embodiments can be performed using various computers, where the operations involve data stored in a computer system. These operations are operations requiring physical manipulations of physical quantities. Any operation described herein that forms part of the invention is a useful mechanical operation. The embodiments are also related to a hardware unit or device used to perform these operations. Equipment can be constructed especially for special purpose computers. When it is defined as a special-purpose computer, while the computer can still perform special purposes, it can also perform other processing, program execution, or routine execution of non-special-use parts. In some embodiments, operations may be processed by a computer, where the computer is selectively activated or configured by one or more computer programs stored in computer memory, cache memory, or obtained through a network. Be thorough When data is obtained over the network, it can be processed by other computers on the network, such as cloud computing resources.
一或更多實施例亦可被製作為非暫態的電腦可讀媒體上的電腦可讀代碼。在一些實施例中,該非暫態的電腦可讀媒體係可儲存資料的記憶體元件,其中該記憶體元件之後可被電腦系統讀取。非暫態的電腦可讀媒體的範例包括硬碟、網路附接儲存器(NAS)、ROM、RAM、光碟唯讀記憶體(CD-ROMs)、可錄式光碟(CD-Rs)、可覆寫式光碟(CD-RWs)、磁帶、及其他光學與非光學資料儲存硬體單元。非暫態的電腦可讀媒體可包括電腦可讀的有形媒體,其中該媒體係透過連接網路的電腦系統加以散佈,俾使電腦可讀代碼被以散佈的方式被儲存及執行。 One or more embodiments can also be made as computer-readable code on a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable medium is a memory element capable of storing data, wherein the memory element can be thereafter read by a computer system. Examples of non-transitory computer-readable media include hard drives, network-attached storage (NAS), ROM, RAM, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage hardware units. Non-transitory computer-readable media may include computer-readable tangible media, where the media is distributed through a computer system connected to a network, so that the computer-readable code is stored and executed in a distributed manner.
雖然以特定順序描述上述方法操作,吾人應理解可在操作之間執行其他庶務操作,或可調整操作使得其在略為不同之時間發生,或可將其分散在系統中,其中只要重疊之操作的處理被以期望的方式執行則該系統允許處理操作發生在與處理有關的不同區間。 Although the above method operations are described in a specific order, I should understand that other tasks can be performed between operations, or operations can be adjusted so that they occur at slightly different times, or they can be dispersed in the system, where only overlapping operations Processing is performed in a desired manner and the system allows processing operations to occur at different intervals related to processing.
可將任何實施例的一或更多特徵與任何其他實施例的一或更多特徵結合而不超出本揭露內容中描述之各樣實施例所描述的範圍。 One or more features of any embodiment may be combined with one or more features of any other embodiment without departing from the scope described by the various embodiments described in this disclosure.
雖然為了清楚理解的目的已對前述的實施例進行詳細地描述,顯而易見的,仍可在隨附申請專利範圍的範圍內實行某些改變及修改。因此,本發明之實施例應被認為係說明性的而非限制性的,且本發明之實施例不受限於本文中所提供的細節,而係可在隨附申請專利範圍的範圍及均等物內修改。 Although the foregoing embodiments have been described in detail for the purpose of clear understanding, it is obvious that certain changes and modifications can be implemented within the scope of the accompanying patent application. Therefore, the embodiments of the present invention should be considered as illustrative and not restrictive, and the embodiments of the present invention are not limited to the details provided herein, but are within the scope and equality of the scope of the accompanying patent application. In-kind modification.
Claims (43)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/043,525 | 2013-10-01 | ||
US14/043,574 US9401264B2 (en) | 2013-10-01 | 2013-10-01 | Control of impedance of RF delivery path |
US14/043,525 US9337000B2 (en) | 2013-10-01 | 2013-10-01 | Control of impedance of RF return path |
US14/043,574 | 2013-10-01 | ||
US14/152,729 US9620334B2 (en) | 2012-12-17 | 2014-01-10 | Control of etch rate using modeling, feedback and impedance match |
US14/152,729 | 2014-01-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201528322A TW201528322A (en) | 2015-07-16 |
TWI668725B true TWI668725B (en) | 2019-08-11 |
Family
ID=52793582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103133992A TWI668725B (en) | 2013-10-01 | 2014-09-30 | Control of etch rate using modeling, feedback and impedance match |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102313223B1 (en) |
CN (1) | CN104518753B (en) |
TW (1) | TWI668725B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9720022B2 (en) * | 2015-05-19 | 2017-08-01 | Lam Research Corporation | Systems and methods for providing characteristics of an impedance matching model for use with matching networks |
KR102571772B1 (en) * | 2015-05-19 | 2023-08-25 | 램 리써치 코포레이션 | Systems and methods for using multiple inductive and capacitive fixtures for applying a variety of plasma conditions to determine a match network model |
US10386828B2 (en) * | 2015-12-17 | 2019-08-20 | Lam Research Corporation | Methods and apparatuses for etch profile matching by surface kinetic model optimization |
KR102460246B1 (en) * | 2016-03-04 | 2022-10-27 | 램 리써치 코포레이션 | Systems and methods for tuning an impedance matching network in a step-wise fashion |
US10197908B2 (en) | 2016-06-21 | 2019-02-05 | Lam Research Corporation | Photoresist design layout pattern proximity correction through fast edge placement error prediction via a physics-based etch profile modeling framework |
US9978621B1 (en) * | 2016-11-14 | 2018-05-22 | Applied Materials, Inc. | Selective etch rate monitor |
KR102080115B1 (en) * | 2016-11-24 | 2020-04-23 | 주식회사 원익아이피에스 | Method for controlling of substrate processing apparatus |
US10572697B2 (en) | 2018-04-06 | 2020-02-25 | Lam Research Corporation | Method of etch model calibration using optical scatterometry |
CN111971551A (en) | 2018-04-10 | 2020-11-20 | 朗姆研究公司 | Optical metrology in machine learning to characterize features |
KR20200131342A (en) | 2018-04-10 | 2020-11-23 | 램 리써치 코포레이션 | Resist and Etch Modeling |
US10977405B2 (en) | 2019-01-29 | 2021-04-13 | Lam Research Corporation | Fill process optimization using feature scale modeling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070095788A1 (en) * | 2003-05-16 | 2007-05-03 | Hoffman Daniel J | Method of controlling a chamber based upon predetermined concurrent behavoir of selected plasma parameters as a function of selected chamber paramenters |
US20080179948A1 (en) * | 2005-10-31 | 2008-07-31 | Mks Instruments, Inc. | Radio frequency power delivery system |
US20090284156A1 (en) * | 2008-05-14 | 2009-11-19 | Applied Materials, Inc. | Method and apparatus for pulsed plasma processing using a time resolved tuning scheme for rf power delivery |
US20110214811A1 (en) * | 2010-03-04 | 2011-09-08 | Tokyo Electron Limited | Automatic matching method, computer-readable storage medium, automatic matching unit, and plasma processing apparatus |
US8222821B2 (en) * | 2007-06-26 | 2012-07-17 | Samsung Electronics Co., Ltd. | Pulse plasma matching systems and methods including impedance matching compensation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6265831B1 (en) * | 1999-03-31 | 2001-07-24 | Lam Research Corporation | Plasma processing method and apparatus with control of rf bias |
US6528751B1 (en) * | 2000-03-17 | 2003-03-04 | Applied Materials, Inc. | Plasma reactor with overhead RF electrode tuned to the plasma |
KR100708313B1 (en) * | 2002-10-31 | 2007-04-17 | 세메스 주식회사 | Apparatus and method for treating plasma |
KR20080072642A (en) * | 2005-10-31 | 2008-08-06 | 엠케이에스 인스트루먼츠, 인코포레이티드 | Radio frequency power delivery system |
-
2014
- 2014-09-30 TW TW103133992A patent/TWI668725B/en active
- 2014-10-01 KR KR1020140132714A patent/KR102313223B1/en active IP Right Grant
- 2014-10-08 CN CN201410524866.2A patent/CN104518753B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070095788A1 (en) * | 2003-05-16 | 2007-05-03 | Hoffman Daniel J | Method of controlling a chamber based upon predetermined concurrent behavoir of selected plasma parameters as a function of selected chamber paramenters |
US20080179948A1 (en) * | 2005-10-31 | 2008-07-31 | Mks Instruments, Inc. | Radio frequency power delivery system |
US8222821B2 (en) * | 2007-06-26 | 2012-07-17 | Samsung Electronics Co., Ltd. | Pulse plasma matching systems and methods including impedance matching compensation |
US20090284156A1 (en) * | 2008-05-14 | 2009-11-19 | Applied Materials, Inc. | Method and apparatus for pulsed plasma processing using a time resolved tuning scheme for rf power delivery |
US20110214811A1 (en) * | 2010-03-04 | 2011-09-08 | Tokyo Electron Limited | Automatic matching method, computer-readable storage medium, automatic matching unit, and plasma processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN104518753A (en) | 2015-04-15 |
KR20150039125A (en) | 2015-04-09 |
CN104518753B (en) | 2018-07-10 |
KR102313223B1 (en) | 2021-10-15 |
TW201528322A (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI668725B (en) | Control of etch rate using modeling, feedback and impedance match | |
US10381201B2 (en) | Control of etch rate using modeling, feedback and impedance match | |
US20190318919A1 (en) | Control of etch rate using modeling, feedback and impedance match | |
US10707056B2 (en) | Using modeling to determine ion energy associated with a plasma system | |
TWI767088B (en) | Plasma processing system, control method for modulating supplies therein and related plasma processing control system | |
US10325759B2 (en) | Multiple control modes | |
US10008371B2 (en) | Determining a value of a variable on an RF transmission model | |
US9652567B2 (en) | System, method and apparatus for improving accuracy of RF transmission models for selected portions of an RF transmission path | |
US9620337B2 (en) | Determining a malfunctioning device in a plasma system | |
KR102223863B1 (en) | Dual control mode | |
JP6312405B2 (en) | Plasma processing equipment | |
US9508529B2 (en) | System, method and apparatus for RF power compensation in a plasma processing system | |
US20160117425A1 (en) | System, Method and Apparatus for Refining RF Transmission System Models | |
US20150069912A1 (en) | RF Impedance Model Based Fault Detection | |
US9155182B2 (en) | Tuning a parameter associated with plasma impedance | |
CN108447759B (en) | Method and system for determining ion energy associated with a plasma system using a model | |
TWI639182B (en) | System, method and apparatus for rf power compensation in plasma etch chamber | |
JP2016081933A (en) | Identifying components associated with fault in plasma system | |
TWI650563B (en) | Cable power loss decision for virtual measurement | |
KR20230164552A (en) | Systems and methods for controlling plasma sheath properties | |
TWI692798B (en) | Segmenting a model within a plasma system | |
TWI784989B (en) | Plasma system for using variables based on plasma system state, and method and computer system for controlling the variables |