TWI502208B - Electric leakage detection apparatus - Google Patents
Electric leakage detection apparatus Download PDFInfo
- Publication number
- TWI502208B TWI502208B TW101109870A TW101109870A TWI502208B TW I502208 B TWI502208 B TW I502208B TW 101109870 A TW101109870 A TW 101109870A TW 101109870 A TW101109870 A TW 101109870A TW I502208 B TWI502208 B TW I502208B
- Authority
- TW
- Taiwan
- Prior art keywords
- pulse
- unit
- output
- detecting device
- leakage detecting
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Emergency Protection Circuit Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Description
本發明是有關於一種漏電偵測裝置。本發明尤其是有關於如下的漏電偵測裝置,該漏電偵測裝置根據零相變流器的偵測輸出,判定交流電路中是否已產生漏電。 The invention relates to a leakage detecting device. More particularly, the present invention relates to a leakage detecting device that determines whether a leakage has occurred in an AC circuit based on a detected output of a zero-phase converter.
[專利文獻1]日本專利特開平10-094161號公報 [Patent Document 1] Japanese Patent Laid-Open No. Hei 10-094161
漏電阻斷裝置包括零相變流器(Zero-phase Current Transformer,ZCT),該零相變流器(ZCT)包含:貫通構成交流電路的多個一次導體的包含軟磁性材料等磁性體的環狀鐵心(core);以及纏繞於上述鐵心的圓環狀(toroidal shape)的線圈(coil),上述漏電阻斷裝置根據上述零相變流器的上述線圈兩端的偵測輸出,即,輸出電壓,判定上述多個一次導體中是否已產生漏電。 The leakage resistance breaking device includes a Zero-phase Current Transformer (ZCT) including a ring containing a magnetic body such as a soft magnetic material that constitutes a plurality of primary conductors constituting the AC circuit. a core (core); and a toroidal shape coil wound around the core, the leakage resistance device according to the detection output of the coil at the two ends of the zero-phase converter, that is, an output voltage It is determined whether or not leakage has occurred in the plurality of primary conductors.
當於任一個一次導體中產生漏電時,在交流電路的往路方向上流動的電流與在歸路方向上流動的電流之間產生差異,從而產生基於該差異的漏電電流。而且,由於多個一次導體的通電電流整體上變得不平衡,因此,零相變流器的鐵心的磁通量的狀態會根據上述漏電電流所產生的磁通量而發生變化。藉此,於零相變流器的線圈兩端,會偵測出與漏電電流相對應的感應電壓。 When leakage occurs in any of the primary conductors, a difference occurs between the current flowing in the forward direction of the alternating current circuit and the current flowing in the return path, thereby generating a leakage current based on the difference. Further, since the currents of the plurality of primary conductors are totally unbalanced as a whole, the state of the magnetic flux of the core of the zero-phase current converter changes depending on the magnetic flux generated by the leakage current. Thereby, the induced voltage corresponding to the leakage current is detected at both ends of the coil of the zero-phase current transformer.
又,當於任一個一次導體中均未產生漏電時,處於所謂的平衡狀態,即,上述多個一次導體的通電電流的向量和(vector sum)為零。於上述平衡狀態下,在零相變流器 的鐵心中存在磁通量,但這些磁通量彼此抵消,零相變流器不會偵測出如上所述的感應電壓。因此,藉由將零相變流器的線圈兩端的輸出電壓作為偵測輸出而予以輸出,可判定交流電路中是否已產生漏電電流。 Further, when no leakage occurs in any of the primary conductors, it is in a so-called equilibrium state, that is, the vector sum of the energization currents of the plurality of primary conductors is zero. In the above equilibrium state, in the zero phase converter There is magnetic flux in the core, but these magnetic fluxes cancel each other out, and the zero-phase converter does not detect the induced voltage as described above. Therefore, by outputting the output voltage across the coil of the zero-phase current transformer as a detection output, it is possible to determine whether or not a leakage current has occurred in the AC circuit.
作為偵測出漏電電流時的漏電的情形,可考慮通常漏電的狀態與雷電突波(lightning surge)的狀態。通常漏電是指如下的漏電,即,漏電電流的電流值會週期性地出現。雷電突波是指如下的漏電,即,漏電電流的電流值比較大,且該電流值會短暫地出現。 As a case of detecting leakage current at the time of leakage current, a state of normal leakage and a state of lightning surge can be considered. Generally, leakage refers to leakage as follows, that is, the current value of the leakage current periodically appears. The lightning surge refers to the following leakage current, that is, the current value of the leakage current is relatively large, and the current value appears briefly.
於兩種漏電中的通常漏電的情形時,由於預計會長時間地產生漏電,因此,較佳為迅速地將經由交流電路的電力供給予以阻斷。另一方面,於雷電突波的情形時,由於僅短暫地產生漏電,因此,若每當產生雷電突波時,將經由交流電路的電力供給予以阻斷,則不佳。 In the case of normal leakage in the two types of leakage, since leakage is expected to occur for a long period of time, it is preferable to quickly block the supply of electric power via the AC circuit. On the other hand, in the case of a lightning surge, since leakage occurs only briefly, it is not preferable to block the supply of electric power via the AC circuit every time a lightning surge is generated.
作為先前的漏電阻斷器,可防止由雷電突波引起的不必要的阻斷的漏電阻斷器已為人所知(例如參照專利文獻1)。該漏電阻斷器藉由第2比較器,區分由雷電突波或重接地故障(尤其是通常漏電中,漏電電流的電流值比較大的漏電)引起的接地故障電流(earth fault current)與漏電電流,上述第2比較器的臨限值大於對漏電電流進行偵測的第1比較器的臨限值。而且,於單穩態多諧振盪器(monostable multivibrator)所製成的時間閘(time gate)的期間中,利用3波計數器(counter)來偵測是否已自第1比較器將3波以上的脈衝(pulse)予以輸出,從而對雷 電突波與重接地故障進行區分,上述單穩態多諧振盪器利用第2比較器的輸出而啟動。藉此,僅於包含重接地故障的通常漏電的情形時,自阻斷信號輸出電路將阻斷信號予以輸出。 As a conventional leakage resistor, a leakage resistor that can prevent unnecessary blocking caused by a lightning surge is known (for example, refer to Patent Document 1). The leakage resistor is distinguished from the ground fault current and the leakage caused by a lightning surge or a heavy ground fault (especially a leakage current with a relatively large current value of the leakage current in the normal leakage) by the second comparator. The current, the threshold of the second comparator is greater than the threshold of the first comparator that detects the leakage current. Moreover, in the period of the time gate made by the monostable multivibrator, a three-wave counter is used to detect whether three or more waves have been used from the first comparator. Pulse is output to the thunder The electrical glitch is distinguished from the heavy ground fault, and the monostable multivibrator is activated by the output of the second comparator. Thereby, the self-blocking signal output circuit outputs a blocking signal only in the case of a normal leakage including a heavy ground fault.
然而,對於專利文獻1所示的漏電阻斷器而言,為了對雷電突波與通常漏電進行區分,必須根據情形,對電流值比較大的漏電電流進行3次計數(count)。亦即,於交流電路中,根據交流電源的波形而產生漏電電流,當正側或負側的漏電電流為規定值以上時產生脈衝,連續地對此種脈衝進行3次計數,藉此,判定為漏電。此以上述方式來對漏電電流進行三次計數來判定為漏電的方法的漏電偵測時間變長。尤其於通常漏電中的重接地故障的情形時,存在比較大的漏電電流會持續地流動的可能性,因此,根據人體保護等的觀點,較佳為更迅速地判定為通常漏電還是雷電突波。 However, in the leakage resistor shown in Patent Document 1, in order to distinguish between a lightning surge and a normal leakage, it is necessary to count the leakage current having a relatively large current value three times depending on the situation. In other words, in the AC circuit, a leakage current is generated according to the waveform of the AC power source, and when the leakage current on the positive side or the negative side is equal to or greater than a predetermined value, a pulse is generated, and the pulse is continuously counted three times, thereby determining For leakage. In this way, the leakage detection time of the method of determining the leakage current by counting the leakage current three times in the above manner becomes long. In particular, in the case of a heavy earth fault in a normal electric leakage, there is a possibility that a relatively large leakage current continuously flows. Therefore, it is preferable to determine whether it is a normal electric leakage or a lightning surge more quickly, from the viewpoint of human body protection or the like. .
然而,專利文獻1所示的漏電阻斷器雖將漏電予以阻斷,但並不對應於零相變流器的輸出電壓而根據有效值等來顯示漏電。因此,管理者等無法瞭解產生了何種程度的漏電。又,假設在將漏電予以阻斷的同時顯示漏電,較為理想的是,可儘可能設為簡單的構成而降低成本。 However, the leakage resistor shown in Patent Document 1 blocks the leakage, but does not display the leakage according to the effective value or the like in accordance with the output voltage of the zero-phase converter. Therefore, managers and the like cannot understand how much leakage has occurred. Further, it is assumed that leakage current is displayed while blocking leakage, and it is preferable to reduce the cost by making it as simple as possible.
本發明是鑒於上述情況而成的發明,本發明提供如下的漏電偵測裝置,該漏電偵測裝置能夠迅速地對通常漏電與雷電突波進行識別。 The present invention has been made in view of the above circumstances, and provides a leakage detecting device capable of quickly identifying a normal electric leakage and a lightning surge.
本發明是鑒於上述情況而成的發明,本發明提供如下的漏電偵測裝置,該漏電偵測裝置可利用簡單且廉價的構成,在將漏電予以阻斷的同時顯示漏電。 The present invention has been made in view of the above circumstances, and provides a leakage detecting device capable of displaying leakage while blocking leakage while using a simple and inexpensive configuration.
本發明的一個實施形態的漏電偵測裝置包括:具有貫通交流電路的零相變流器;積分運算部,對上述零相變流器的輸出電壓進行積分;積分值比較部,當上述積分運算部的運算結果大於規定範圍時,將第1信號予以輸出;波形判別部,對上述零相變流器的輸出電壓波形的反曲點進行偵測且進行計數,當上述反曲點的數量達到規定數量時,將第2信號予以輸出;以及漏電偵測部,當藉由上述積分值比較部來將上述第1信號予以輸出,且藉由上述波形判別部來將上述第2信號予以輸出時,將漏電偵測信號予以輸出,該漏電偵測信號表示上述交流電路中已產生漏電。 A leakage detecting device according to an embodiment of the present invention includes: a zero-phase current transformer having a through-current circuit; an integral calculation unit that integrates an output voltage of the zero-phase current transformer; and an integral value comparison unit that performs the integral operation When the calculation result of the part is larger than the predetermined range, the first signal is output; the waveform determination unit detects and counts the inflection point of the output voltage waveform of the zero-phase current transformer, and when the number of the inflection points reaches When the number is a predetermined number, the second signal is output; and the leakage detecting unit outputs the first signal by the integral value comparing unit, and outputs the second signal by the waveform determining unit. The leakage detection signal is outputted, and the leakage detection signal indicates that leakage has occurred in the AC circuit.
較為理想的是,上述波形判別部自上述零相變流器的輸出電壓為正電壓或負電壓時起,開始對上述反曲點進行偵測。 Preferably, the waveform determining unit starts detecting the inflection point from when the output voltage of the zero-phase current transformer is a positive voltage or a negative voltage.
又,較為理想的是,上述積分運算部使用積分運算,求出上述零相變流器的輸出電壓的有效值。 Further, it is preferable that the integral calculation unit obtains an effective value of an output voltage of the zero-phase current transformer by using an integral calculation.
又,上述積分運算部亦可使用積分運算,求出上述零相變流器的輸出電壓的平均值。 Further, the integral calculation unit may obtain an average value of the output voltage of the zero-phase current transformer by using an integral calculation.
上述波形判別部亦可包括:脈衝產生部,基於上述零相變流器的輸出電壓波形而產生脈衝;以及脈衝計數部,對上述脈衝產生部所產生的脈衝的數量進行計數,當上述 脈衝的數量達到規定數量時,將上述第2信號予以輸出。 The waveform determining unit may include a pulse generating unit that generates a pulse based on an output voltage waveform of the zero-phase current transformer, and a pulse counting unit that counts the number of pulses generated by the pulse generating unit. When the number of pulses reaches a predetermined number, the second signal is output.
較為理想的是,當上述零相變流器的輸出電壓大於規定範圍時,上述脈衝產生部產生上述脈衝。 Preferably, when the output voltage of the zero-phase current transformer is larger than a predetermined range, the pulse generating unit generates the pulse.
又,亦可當上述零相變流器的輸出電壓大於規定範圍的狀態持續規定時間以上時,由上述脈衝產生部產生上述脈衝。 Further, when the output voltage of the zero-phase current transformer is greater than the predetermined range for a predetermined time or longer, the pulse generating unit may generate the pulse.
又,較為理想的是,開始產生上述脈衝之後,當上述零相變流器的輸出電壓不足規定電壓時,上述脈衝產生部停止產生上述脈衝。 Further, preferably, after the pulse is started, when the output voltage of the zero-phase current transformer is less than a predetermined voltage, the pulse generating unit stops generating the pulse.
又,上述脈衝產生部亦可為如下的構成,即,當自開始產生上述脈衝起經過規定時間後,停止產生上述脈衝。 Further, the pulse generating unit may be configured to stop generating the pulse after a predetermined time has elapsed since the start of the generation of the pulse.
又,上述脈衝產生部亦可為如下的構成,即,自產生第1脈衝起直至經過規定時間為止,停止產生第2脈衝。 Further, the pulse generation unit may be configured to stop generating the second pulse from the generation of the first pulse until a predetermined time elapses.
較為理想的是,上述脈衝計數部對上述脈衝產生部所產生的脈衝的上升的數量進行計數,當該數量達到規定數量時,將上述第2信號予以輸出。 Preferably, the pulse counting unit counts the number of rises of the pulse generated by the pulse generating unit, and when the number reaches a predetermined number, outputs the second signal.
上述脈衝計數部亦可為如下的構成,即,於上述脈衝產生部所產生的脈衝的脈衝寬度為規定寬度以上時進行計數,於上述數量達到規定數量時,將上述第2信號予以輸出。 The pulse counting unit may be configured to count when the pulse width of the pulse generated by the pulse generating unit is equal to or larger than a predetermined width, and output the second signal when the number reaches a predetermined number.
又,上述脈衝計數部亦可為如下的構成,即,對上述脈衝產生部所產生的脈衝的下降的數量進行計數,當該數量達到規定數量時,將上述第2信號予以輸出。 Further, the pulse counting unit may be configured to count the number of drops of the pulse generated by the pulse generating unit, and output the second signal when the number reaches a predetermined number.
又,亦可自對上述脈衝產生部所產生的第1脈衝進行 計數起,直至經過規定時間為止,由上述脈衝計數部停止對第2脈衝進行計數。 Further, the first pulse generated by the pulse generating unit may be performed. When the counting is completed, the pulse counting unit stops counting the second pulse until a predetermined time elapses.
上述波形判別部亦可包括計數值變更部,當基於上述脈衝產生部所產生的脈衝的脈衝輸出寬度為規定寬度以上時,上述計數值變更部將上述脈衝計數部所計數的計數值予以變更。 The waveform determining unit may include a count value changing unit that changes the count value counted by the pulse counting unit when the pulse output width of the pulse generated by the pulse generating unit is equal to or larger than a predetermined width.
較為理想的是,上述脈衝輸出寬度是自上述脈衝產生部所產生的脈衝的輸出開始時間點至輸出結束時間點為止的時間寬度。 Preferably, the pulse output width is a time width from an output start time point of the pulse generated by the pulse generating unit to an output end time point.
上述脈衝輸出寬度亦可是自上述脈衝產生部所產生的第1脈衝的輸出開始時間點至與上述第1脈衝相連的第2脈衝的輸出開始時間點為止的時間寬度。 The pulse output width may be a time width from an output start time point of the first pulse generated by the pulse generating unit to an output start time point of the second pulse connected to the first pulse.
又,上述脈衝輸出寬度亦可是自上述脈衝產生部所產生的第1脈衝的輸出結束時間點至與上述第1脈衝相連的第2脈衝的輸出結束時間點為止的時間寬度。 Further, the pulse output width may be a time width from an output end time point of the first pulse generated by the pulse generating unit to an output end time point of the second pulse connected to the first pulse.
又,上述脈衝輸出寬度亦可是自上述脈衝產生部所產生的第1脈衝的輸出開始時間點至第2脈衝的輸出結束時間點為止的時間寬度。 Further, the pulse output width may be a time width from an output start time point of the first pulse generated by the pulse generation unit to an output end time point of the second pulse.
又,漏電偵測裝置亦可更包括脈衝產生條件變更部,該脈衝產生條件變更部基於上述脈衝計數部所計數的計數值,將上述脈衝產生部的脈衝的產生條件予以變更。 Further, the leakage detecting device may further include a pulse generation condition changing unit that changes the generation condition of the pulse of the pulse generation unit based on the count value counted by the pulse counting unit.
較為理想的是,上述脈衝產生條件變更部將電壓臨限值或脈衝寬度臨限值中的至少一個臨限值予以變更,上述電壓臨限值是於判定上述脈衝產生部是否已產生脈衝時使 用,上述脈衝寬度臨限值是於判定是否對脈衝進行計數時使用。 Preferably, the pulse generation condition changing unit changes at least one of a voltage threshold value and a pulse width threshold value, and the voltage threshold value is used to determine whether or not the pulse generation unit has generated a pulse. The pulse width threshold is used when determining whether to count pulses.
又,上述脈衝產生部亦可產生基於上述零相變流器的正側的輸出電壓的脈衝,即正側脈衝、與基於上述零相變流器的負側的輸出電壓的脈衝,即負側脈衝,上述脈衝計數部對上述正側脈衝與上述負側脈衝進行計數,當上述正側脈衝的數量及上述負側脈衝的數量中的至少一個數量為規定數量以上時,將上述第2信號予以輸出。 Further, the pulse generating unit may generate a pulse based on the output voltage of the positive side of the zero-phase current transformer, that is, a positive side pulse and a pulse based on the output voltage of the negative side of the zero-phase current transformer, that is, the negative side. The pulse counting unit counts the positive side pulse and the negative side pulse, and when the number of the positive side pulse and the number of the negative side pulse are a predetermined number or more, the second signal is given Output.
又,漏電偵測裝置亦可更包括信號輸入部,該信號輸入部將信號輸出指示信號予以輸入,上述信號輸出指示信號用以使上述積分值比較部輸出上述第1信號,或用以使波形判別部輸出上述第2信號。 Further, the leakage detecting device may further include a signal input unit that inputs a signal output instruction signal for causing the integral value comparing unit to output the first signal or for making a waveform The determination unit outputs the second signal.
較為理想的是,上述信號輸入部自外部電阻將上述信號輸出指示信號予以輸入。 Preferably, the signal input unit inputs the signal output instruction signal from an external resistor.
又,漏電偵測裝置亦可更包括:積分部,對上述零相變流器的輸出電壓進行積分;以及運算結果輸出部,根據上述積分部的運算結果而進行輸出,上述運算結果輸出部與上述漏電偵測部由一個模組(module)構成。 Further, the leakage detecting device may further include: an integrating unit that integrates an output voltage of the zero-phase current transformer; and an operation result output unit that outputs the result of the calculation by the integrating unit, wherein the calculation result output unit and the calculation result output unit The leakage detecting unit is composed of a module.
較為理想的是,上述漏電偵測部使用上述積分部作為上述積分運算部。 Preferably, the leakage detecting unit uses the integral unit as the integral calculating unit.
又,上述積分部亦可為如下的構成,即,與上述積分運算部相比較,對更長期間內的上述零相變流器的輸出電壓進行平均,計算出平均值,接著對該平均值進行積分。 Further, the integration unit may be configured to average the output voltage of the zero-phase current transformer for a longer period of time than the integral calculation unit, and calculate an average value, and then the average value. Make points.
較為理想的是,當上述積分部的運算結果大於在判定 是否已藉由上述積分值比較部來將上述第1信號予以輸出時使用的電壓臨限值的範圍更狹窄的規定範圍時,上述運算結果輸出部將警告信號予以輸出。 Preferably, when the calculation result of the above integral part is greater than the determination When the range of the voltage threshold value used when the first signal is outputted by the integral value comparing unit is narrower than a predetermined range, the calculation result output unit outputs a warning signal.
又,上述運算結果輸出部亦可為如下的構成,即,根據上述積分部的運算結果,變更將上述警告信號予以輸出時的輸出形態。 Further, the calculation result output unit may be configured to change an output form when the warning signal is output based on a calculation result of the integration unit.
漏電偵測裝置亦可更包括運算結果記憶部,該運算結果記憶部記憶規定時間量的上述積分部的運算結果的資訊。 The leakage detecting device may further include a calculation result storage unit that stores information of a calculation result of the integration unit for a predetermined amount of time.
又,較為理想的是,漏電偵測裝置更包括外部端子部,該外部端子部用以將記憶於上述運算結果記憶部的運算結果的資訊予以輸出。 Further, preferably, the leakage detecting device further includes an external terminal portion for outputting information stored in the calculation result of the calculation result storage unit.
又,亦可更包括資訊輸出部,該資訊輸出部將記憶於上述運算結果記憶部的運算結果的資訊輸出至記憶媒體。 Further, the information output unit may further include information outputted in the calculation result storage unit to the memory medium.
又,亦可為如下的構成,即,包括資訊發送部,該資訊發送部將記憶於上述運算結果記憶部的運算結果的資訊發送至外部伺服器(server)。 In addition, the information transmitting unit may transmit the information stored in the calculation result storage unit to the external server (server).
本發明的其他實施形態的漏電偵測裝置包括:具有貫通交流電路的零相變流器;第1積分運算部,對上述零相變流器的輸出電壓進行積分;漏電偵測部,基於上述第1積分運算部的運算結果,將漏電偵測信號予以輸出,上述漏電偵測信號表示上述交流電路中已產生漏電;第2積分運算部,對上述零相變流器的輸出電壓進行積分;以及運算結果輸出部,根據上述第2積分運算部的運算結果而進 行輸出,上述運算結果輸出部與上述漏電偵測部由一個模組構成。 A leakage detecting device according to another embodiment of the present invention includes: a zero-phase current transformer having a through-current circuit; a first integral calculating unit that integrates an output voltage of the zero-phase current transformer; and a leakage detecting unit based on the The operation result of the first integral calculation unit outputs a leakage detection signal indicating that leakage has occurred in the AC circuit, and the second integration calculation unit integrates the output voltage of the zero-phase converter; And the calculation result output unit is advanced based on the calculation result of the second integral calculation unit In the row output, the calculation result output unit and the leakage detecting unit are constituted by one module.
較為理想的是,上述漏電偵測部使用上述第2積分運算部作為上述第1積分運算部。 Preferably, the leakage detecting unit uses the second integral calculating unit as the first integral calculating unit.
又,上述第2積分運算部亦可為如下的構成,即,與上述第1積分運算部相比較,對更長期間內的上述零相變流器的輸出電壓進行平均,計算出平均值,接著對該平均值進行積分。 Further, the second integral calculation unit may be configured to average the output voltage of the zero-phase current transformer for a longer period of time than the first integral calculation unit, and calculate an average value. This average is then integrated.
較為理想的是,包括積分值比較部,當上述第1積分運算部的運算結果大於規定範圍時,上述積分值比較部將第1信號予以輸出,當上述第2積分運算部的運算結果大於在判定是否已藉由上述積分值比較部來將上述第1信號予以輸出時使用的電壓臨限值的範圍更狹窄的規定範圍時,上述運算結果輸出部將警告信號予以輸出。 Preferably, the integral value comparing unit includes, when the calculation result of the first integral calculating unit is larger than a predetermined range, the integral value comparing unit outputs the first signal, and the calculation result of the second integral calculating unit is larger than When the range of the voltage threshold value used when the first signal is outputted by the integral value comparing unit is determined to be narrower than a predetermined range, the calculation result output unit outputs a warning signal.
又,上述運算結果輸出部亦可為如下的構成,即,根據上述第2積分運算部的運算結果,變更將上述警告信號予以輸出時的輸出形態。 Further, the calculation result output unit may be configured to change an output form when the warning signal is output based on a calculation result of the second integral calculation unit.
漏電偵測裝置亦可更包括運算結果記憶部,該運算結果記憶部記憶規定時間量的上述第2積分運算部的運算結果的資訊。 The leakage detecting device may further include a calculation result storage unit that stores information of a calculation result of the second integral calculation unit for a predetermined amount of time.
又,較為理想的是,漏電偵測裝置更包括外部端子部,該外部端子部用以將記憶於上述運算結果記憶部的運算結果的資訊予以輸出。 Further, preferably, the leakage detecting device further includes an external terminal portion for outputting information stored in the calculation result of the calculation result storage unit.
又,亦可更包括資訊輸出部,該資訊輸出部將記憶於 上述運算結果記憶部的運算結果的資訊輸出至記憶媒體。 Moreover, it may further include an information output unit, and the information output unit will memorize The information of the calculation result of the calculation result storage unit is output to the memory medium.
又,亦可為如下的構成,即,包括資訊發送部,該資訊發送部將記憶於上述運算結果記憶部的運算結果的資訊發送至外部伺服器。 Further, the information transmission unit may be configured to transmit information stored in the calculation result storage unit to the external server.
又,漏電偵測裝置亦可包括:積分值比較部,當上述第1積分運算部的運算結果大於規定範圍時,將第1信號予以輸出;以及波形判別部,對上述零相變流器的輸出電壓波形的反曲點進行偵測且進行計數,當上述反曲點的數量達到規定數量時,將第2信號予以輸出,當藉由上述積分值比較部來將上述第1信號予以輸出,且藉由上述波形判別部來將上述第2信號予以輸出時,上述漏電偵測部將上述漏電偵測信號予以輸出。 Further, the leakage detecting device may further include: an integral value comparing unit that outputs a first signal when the calculation result of the first integral calculating unit is larger than a predetermined range; and a waveform determining unit that detects the zero-phase current transformer The inflection point of the output voltage waveform is detected and counted, and when the number of the inflection points reaches a predetermined number, the second signal is output, and the first signal is output by the integral value comparing unit. When the second signal is output by the waveform determining unit, the leakage detecting unit outputs the leakage detecting signal.
較為理想的是,上述波形判別部是自上述零相變流器的輸出電壓為正電壓或負電壓時起,開始對上述反曲點進行偵測。 Preferably, the waveform determining unit starts detecting the inflection point from when the output voltage of the zero-phase current converter is a positive voltage or a negative voltage.
又,較為理想的是,上述第1積分運算部使用積分運算,求出上述零相變流器的輸出電壓的有效值。 Further, it is preferable that the first integral calculation unit obtains an effective value of an output voltage of the zero-phase current transformer by using an integral calculation.
又,上述第1積分運算部亦可使用積分運算,求出上述零相變流器的輸出電壓的平均值。 Further, the first integral calculation unit may obtain an average value of the output voltage of the zero-phase current transformer using an integral calculation.
上述波形判別部亦可包括:脈衝產生部,基於上述零相變流器的輸出電壓波形來產生脈衝;以及脈衝計數部,對上述脈衝產生部所產生的脈衝的數量進行計數,當上述脈衝的數量達到規定數量時,將上述第2信號予以輸出。 The waveform determining unit may include a pulse generating unit that generates a pulse based on an output voltage waveform of the zero-phase current transformer, and a pulse counting unit that counts the number of pulses generated by the pulse generating unit. When the number reaches a predetermined number, the second signal is output.
較為理想的是,當上述零相變流器的輸出電壓大於規 定範圍時,上述脈衝產生部產生上述脈衝。 Ideally, when the output voltage of the above zero-phase converter is greater than the gauge When the range is fixed, the pulse generating unit generates the pulse.
又,亦可當上述零相變流器的輸出電壓大於規定範圍的狀態持續規定時間以上時,由上述脈衝產生部產生上述脈衝。 Further, when the output voltage of the zero-phase current transformer is greater than the predetermined range for a predetermined time or longer, the pulse generating unit may generate the pulse.
又,較為理想的是,於開始產生上述脈衝之後,當上述零相變流器的輸出電壓不足規定電壓時,上述脈衝產生部停止產生上述脈衝。 Further, preferably, after the pulse is started, when the output voltage of the zero-phase current transformer is less than a predetermined voltage, the pulse generating unit stops generating the pulse.
又,上述脈衝產生部亦可為如下的構成,即,當自開始產生上述脈衝起經過規定時間後,停止產生上述脈衝。 Further, the pulse generating unit may be configured to stop generating the pulse after a predetermined time has elapsed since the start of the generation of the pulse.
又,上述脈衝產生部亦可為如下的構成,即,自產生第1脈衝起直至經過規定時間為止,停止產生第2脈衝。 Further, the pulse generation unit may be configured to stop generating the second pulse from the generation of the first pulse until a predetermined time elapses.
較為理想的是,上述脈衝計數部對上述脈衝產生部所產生的脈衝的上升的數量進行計數,當該數量達到規定數量時,將上述第2信號予以輸出。 Preferably, the pulse counting unit counts the number of rises of the pulse generated by the pulse generating unit, and when the number reaches a predetermined number, outputs the second signal.
上述脈衝計數部亦可為如下的構成,即,於上述脈衝產生部所產生的脈衝的脈衝寬度為規定寬度以上時進行計數,於上述數量達到規定數量時,將上述第2信號予以輸出。 The pulse counting unit may be configured to count when the pulse width of the pulse generated by the pulse generating unit is equal to or larger than a predetermined width, and output the second signal when the number reaches a predetermined number.
又,上述脈衝計數部亦可為如下的構成,即,對上述脈衝產生部所產生的脈衝的下降的數量進行計數,當該數量達到規定數量時,將上述第2信號予以輸出。 Further, the pulse counting unit may be configured to count the number of drops of the pulse generated by the pulse generating unit, and output the second signal when the number reaches a predetermined number.
又,亦可自對上述脈衝產生部所產生的第1脈衝進行計數起,直至經過規定時間為止,由上述脈衝計數部停止對第2脈衝進行計數。 Further, the first pulse generated by the pulse generating unit may be counted until the predetermined time elapses, and the pulse counting unit stops counting the second pulse.
上述波形判別部亦可包括計數值變更部,當基於上述脈衝產生部所產生的脈衝的脈衝輸出寬度為規定寬度以上時,上述計數值變更部將上述脈衝計數部所計數的計數值予以變更。 The waveform determining unit may include a count value changing unit that changes the count value counted by the pulse counting unit when the pulse output width of the pulse generated by the pulse generating unit is equal to or larger than a predetermined width.
較為理想的是,上述脈衝輸出寬度是自上述脈衝產生部所產生的脈衝的輸出開始時間點至輸出結束時間點為止的時間寬度。 Preferably, the pulse output width is a time width from an output start time point of the pulse generated by the pulse generating unit to an output end time point.
上述脈衝輸出寬度亦可是自上述脈衝產生部所產生的第1脈衝的輸出開始時間點至與上述第1脈衝相連的第2脈衝的輸出開始時間點為止的時間寬度。 The pulse output width may be a time width from an output start time point of the first pulse generated by the pulse generating unit to an output start time point of the second pulse connected to the first pulse.
又,上述脈衝輸出寬度亦可是自上述脈衝產生部所產生的第1脈衝的輸出結束時間點至與上述第1脈衝相連的第2脈衝的輸出結束時間點為止的時間寬度。 Further, the pulse output width may be a time width from an output end time point of the first pulse generated by the pulse generating unit to an output end time point of the second pulse connected to the first pulse.
又,上述脈衝輸出寬度亦可是自上述脈衝產生部所產生的第1脈衝的輸出開始時間點至第2脈衝的輸出結束時間點為止的時間寬度。 Further, the pulse output width may be a time width from an output start time point of the first pulse generated by the pulse generation unit to an output end time point of the second pulse.
又,漏電偵測裝置亦可更包括脈衝產生條件變更部,該脈衝產生條件變更部基於上述脈衝計數部所計數的計數值,將上述脈衝產生部的脈衝的產生條件予以變更。 Further, the leakage detecting device may further include a pulse generation condition changing unit that changes the generation condition of the pulse of the pulse generation unit based on the count value counted by the pulse counting unit.
較為理想的是,上述脈衝產生條件變更部將電壓臨限值或脈衝寬度臨限值中的至少一個臨限值予以變更,上述電壓臨限值是於判定上述脈衝產生部是否已產生脈衝時使用,上述脈衝寬度臨限值是於判定是否對脈衝進行計數時使用。 Preferably, the pulse generation condition changing unit changes at least one of a voltage threshold value and a pulse width threshold value, and the voltage threshold value is used when determining whether the pulse generation unit has generated a pulse. The pulse width threshold is used when determining whether to count pulses.
又,上述脈衝產生部亦可產生基於上述零相變流器的正側的輸出電壓的脈衝,即正側脈衝、與基於上述零相變流器的負側的輸出電壓的脈衝,即負側脈衝,上述脈衝計數部對上述正側脈衝與上述負側脈衝進行計數,當上述正側脈衝的數量及上述負側脈衝的數量中的至少一個數量為規定數量以上時,將上述第2信號予以輸出。 Further, the pulse generating unit may generate a pulse based on the output voltage of the positive side of the zero-phase current transformer, that is, a positive side pulse and a pulse based on the output voltage of the negative side of the zero-phase current transformer, that is, the negative side. The pulse counting unit counts the positive side pulse and the negative side pulse, and when the number of the positive side pulse and the number of the negative side pulse are a predetermined number or more, the second signal is given Output.
又,漏電偵測裝置亦可更包括信號輸入部,該信號輸入部將信號輸出指示信號予以輸入,上述信號輸出指示信號用以使上述積分值比較部輸出上述第1信號,或用以使波形判別部輸出上述第2信號。 Further, the leakage detecting device may further include a signal input unit that inputs a signal output instruction signal for causing the integral value comparing unit to output the first signal or for making a waveform The determination unit outputs the second signal.
較為理想的是,上述信號輸入部自外部電阻將上述信號輸出指示信號予以輸入。 Preferably, the signal input unit inputs the signal output instruction signal from an external resistor.
根據本發明,能夠迅速地對通常漏電與雷電突波進行識別。 According to the present invention, it is possible to quickly recognize the normal leakage and the lightning surge.
以下,參照構成本說明書的一部分的隨附圖式,更詳細地對本發明的實施形態進行說明。於整個圖式中,對相同或類似的部分附上相同的參照符號,且將說明予以省略。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings which form a part of this specification. In the entire drawings, the same or similar components are denoted by the same reference numerals, and the description will be omitted.
(第1實施形態) (First embodiment)
圖1是表示本發明的第1實施形態中的漏電偵測裝置的構成例的區塊圖。圖1所示的漏電偵測裝置100包括:零相變流器10、積分運算部20、積分值比較部30、波形判別部40、以及漏電偵測部50。 1 is a block diagram showing a configuration example of a leakage detecting device according to a first embodiment of the present invention. The leakage detecting device 100 shown in FIG. 1 includes a zero-phase current transformer 10, an integral calculating unit 20, an integral value comparing unit 30, a waveform determining unit 40, and a leakage detecting unit 50.
零相變流器10包含:貫通構成交流電路的多個一次導體的包含軟磁性材料等的磁性體的環狀鐵心(core),其中上述交流電路流動有三相的通電電流;以及纏繞於上述鐵心的圓環狀線圈。當在交流電路的往路方向上流動的電流與在歸路方向上流動的電流之間產生差異時,零相變流器10會產生基於該差異的漏電電流。而且,與漏電電流相對應的感應電壓會產生於線圈的兩端。零相變流器10將上述感應電壓作為零相變流器10的輸出電壓,即ZCT輸出電壓,輸出至積分運算部20以及波形判別部40。又,雖未圖示,為了自零相變流器10獲得電壓輸出,與零相變流器10並聯地插入電阻元件。 The zero-phase current transformer 10 includes a ring-shaped core including a magnetic body such as a soft magnetic material that constitutes a plurality of primary conductors of an alternating current circuit, wherein the alternating current circuit has a three-phase current flowing; and is wound around the core Ring coil. When a difference occurs between the current flowing in the forward direction of the alternating current circuit and the current flowing in the return path, the zero-phase current transformer 10 generates a leakage current based on the difference. Moreover, an induced voltage corresponding to the leakage current is generated at both ends of the coil. The zero-phase current transformer 10 outputs the induced voltage as the output voltage of the zero-phase current transformer 10, that is, the ZCT output voltage, to the integral calculation unit 20 and the waveform determination unit 40. Further, although not shown, in order to obtain a voltage output from the zero-phase current transformer 10, a resistance element is inserted in parallel with the zero-phase current transformer 10.
積分運算部20包含積分電路等,對ZCT輸出電壓進行累計,將累計所得的電壓(累計電壓)作為輸出電壓而輸出至積分值比較部30。 The integral calculation unit 20 includes an integration circuit or the like, and integrates the ZCT output voltage, and outputs the accumulated voltage (accumulated voltage) as an output voltage to the integral value comparison unit 30.
又,積分運算部20亦可使用積分運算來求出ZCT輸出電壓的有效值。例如,對一個週期的ZCT輸出電壓的平方值進行積分,接著除以一個週期的時間,求出上述值的平方根。於該情形時,可精度更佳地對漏電電流進行偵測,對於畸變波(distorted wave)的漏電偵測性能提高。又,積分運算部20亦可使用積分運算來求出ZCT輸出電壓的平均值。例如,對一個週期的ZCT輸出電壓的絕對值進行積分,接著除以一個週期的時間,從而對絕對值的平均值進行計算。於積分值比較部30中,上述絕對值的平均值用於比較。於該情形時,與求出有效值相比較,可使運算量 減少,從而能夠以低成本來構成漏電偵測裝置100。 Further, the integral calculation unit 20 may obtain an effective value of the ZCT output voltage using an integral calculation. For example, the square value of the ZCT output voltage of one cycle is integrated, and then divided by the time of one cycle to find the square root of the above value. In this case, the leakage current can be detected with higher accuracy, and the leakage detection performance for the distorted wave is improved. Further, the integral calculation unit 20 may obtain an average value of the ZCT output voltage using an integral calculation. For example, the absolute value of the ZCT output voltage of one cycle is integrated, and then divided by the time of one cycle, so that the average value of the absolute value is calculated. In the integral value comparing unit 30, the average value of the above absolute values is used for comparison. In this case, the calculation amount can be compared with the determination of the effective value. The reduction is made so that the leakage detecting device 100 can be constructed at low cost.
積分值比較部30包含比較電路等,當積分運算部20的運算結果,即積分值的絕對值,為作為規定值的積分值判定臨限值th1以上時,將電壓H輸出至漏電偵測部50(參照圖3)。此處,積分值判定臨限值th1為正數。另一方面,當累計值的絕對值不足積分值判定臨限值th1時,將電壓L輸出至漏電偵測部50。積分值比較部30的輸出電壓為電壓H,此相當於積分值比較部30將規定信號(第1信號)予以輸出。再者,電壓H高於電壓L。 The integrated value comparison unit 30 includes a comparison circuit or the like, and when the calculation result of the integral calculation unit 20, that is, the absolute value of the integral value is equal to or greater than the integral value determination threshold value th1 as the predetermined value, the voltage H is output to the leakage detecting unit. 50 (refer to Figure 3). Here, the integral value determination threshold value th1 is a positive number. On the other hand, when the absolute value of the integrated value is less than the integral value determination threshold value th1, the voltage L is output to the leakage detecting unit 50. The output voltage of the integrated value comparing unit 30 is the voltage H, and the integrated value comparing unit 30 outputs a predetermined signal (first signal). Furthermore, the voltage H is higher than the voltage L.
波形判別部40對ZCT輸出電壓的電壓波形的反曲點進行偵測且進行計數,當該反曲點的數量達到規定數量時,將電壓H輸出至漏電偵測部50。另一方面,當反曲點的數量尚未達到規定數量時,將電壓L輸出至漏電偵測部50。波形判別部40的輸出電壓為電壓H,此相當於波形判別部40將規定信號(第2信號)予以輸出。此處,所謂規定數量,例如為「2」、「3」等。再者,波形判別部40的詳細構成容後再述。 The waveform discriminating unit 40 detects and counts the inflection point of the voltage waveform of the ZCT output voltage, and when the number of the inflection points reaches a predetermined number, outputs the voltage H to the leakage detecting unit 50. On the other hand, when the number of inflection points has not reached the prescribed number, the voltage L is output to the leakage detecting portion 50. The output voltage of the waveform discriminating unit 40 is the voltage H. This corresponds to the waveform determining unit 40 outputting a predetermined signal (second signal). Here, the predetermined number is, for example, "2", "3", or the like. The detailed configuration of the waveform discriminating unit 40 will be described later.
又,波形判別部40無論從ZCT輸出電壓為正電壓還是負電壓開始進行偵測上述反曲點皆可。藉此,可高速地對反曲點進行偵測,於通常漏電的情形時,可更高速地將交流電路予以阻斷。 Further, the waveform discriminating unit 40 may detect the inflection point from whether the ZCT output voltage is a positive voltage or a negative voltage. Thereby, the inflection point can be detected at a high speed, and in the case of normal leakage, the AC circuit can be blocked at a higher speed.
漏電偵測部50包含AND電路等,當積分值比較部30的輸出電壓為電壓H,且波形判別部40的輸出電壓為電壓H時,將電壓H予以輸出。漏電偵測部50的輸出電壓為 電壓H,此相當於將漏電偵測信號予以輸出,該漏電偵測信號表示交流電路中已產生漏電。再者,漏電偵測信號是作為用以使交流電路的電路接點打開(用以將交流電路予以阻斷)的阻斷信號,送出至使上述電路接點打開的跳脫線圈(trip coil)(未圖示)。結果,交流電路的電路接點被打開。 The leakage detecting unit 50 includes an AND circuit or the like. When the output voltage of the integrated value comparing unit 30 is the voltage H and the output voltage of the waveform determining unit 40 is the voltage H, the voltage H is output. The output voltage of the leakage detecting unit 50 is The voltage H is equivalent to outputting a leakage detection signal indicating that leakage has occurred in the AC circuit. Furthermore, the leakage detection signal is sent as a blocking signal for opening the circuit contacts of the alternating current circuit (to block the alternating current circuit) to a trip coil for opening the circuit contacts. (not shown). As a result, the circuit contacts of the AC circuit are turned on.
接著,對波形判別部40的詳細的構成進行說明。圖2是表示波形判別部40的詳細的構成例的區塊圖。圖2所示的波形判別部40包括:脈衝產生部41、脈衝計數部42。 Next, a detailed configuration of the waveform determination unit 40 will be described. FIG. 2 is a block diagram showing a detailed configuration example of the waveform determination unit 40. The waveform discriminating unit 40 shown in FIG. 2 includes a pulse generating unit 41 and a pulse counting unit 42.
脈衝產生部41包含脈衝產生電路等,且基於ZCT輸出電壓而產生脈衝。於圖3的例子中,以規定電壓值(電壓H),將短時間的電壓作為脈衝而予以輸出。 The pulse generation unit 41 includes a pulse generation circuit or the like, and generates a pulse based on the ZCT output voltage. In the example of FIG. 3, a short-time voltage is output as a pulse with a predetermined voltage value (voltage H).
脈衝計數部42包含脈衝計數器(pulse counter)等,對脈衝產生部41所產生的脈衝的數量進行計數,當脈衝的數量達到規定數量時,將輸出電壓設為電壓H,且將上述第2信號予以輸出。另一方面,當脈衝的數量尚未達到規定數量時,將輸出電壓設為電壓L,且不將上述的第2信號予以輸出。 The pulse counting unit 42 includes a pulse counter or the like, and counts the number of pulses generated by the pulse generating unit 41. When the number of pulses reaches a predetermined number, the output voltage is set to a voltage H, and the second signal is set. Output it. On the other hand, when the number of pulses has not reached the predetermined number, the output voltage is set to the voltage L, and the above-described second signal is not output.
接著,對本實施形態的漏電偵測裝置100的動作進行說明。圖3是用以對本實施形態的漏電偵測裝置100的第1動作例進行說明的時序圖。 Next, the operation of the leakage detecting device 100 of the present embodiment will be described. FIG. 3 is a timing chart for explaining a first operation example of the leakage detecting device 100 of the present embodiment.
於圖3的例子中,假設當ZCT輸出電壓的絕對值為漏電電流偵測臨限值th2以上時,脈衝產生部41產生狹窄寬度的脈衝。此處,漏電電流偵測臨限值th2為正數。此種 脈衝產生部41的脈衝產生動作相當於對輸出電壓波形的反曲點進行偵測。藉此,不會因雷電突波而進行誤動作,可於所期望的漏電電流值的情形時進行動作,且可更高速地對漏電進行偵測。另一方面,當ZCT輸出電壓的絕對值不足漏電電流偵測臨限值th2時,不產生脈衝。又,此處,於脈衝上升時,藉由脈衝計數部42來進行計數。 In the example of FIG. 3, when the absolute value of the ZCT output voltage is equal to or greater than the leakage current detection threshold value th2, the pulse generating portion 41 generates a pulse having a narrow width. Here, the leakage current detection threshold th2 is a positive number. Such The pulse generating operation of the pulse generating unit 41 corresponds to detecting the inflection point of the output voltage waveform. Thereby, the malfunction does not occur due to the lightning surge, the operation can be performed in the case of the desired leakage current value, and the leakage can be detected at a higher speed. On the other hand, when the absolute value of the ZCT output voltage is less than the leakage current detection threshold th2, no pulse is generated. Here, the counting is performed by the pulse counting unit 42 when the pulse rises.
圖3的「漏電電流」表示各情況(case)(通常漏電、雷電突波)中的於零相變流器10中產生的漏電電流。如圖3所示,於通常漏電的情形時,產生週期性的漏電電流,於雷電突波的情形時,產生電流值比較大且短暫的漏電電流。 The "leakage current" of FIG. 3 indicates the leakage current generated in the zero-phase current transformer 10 in each case (normally, a leakage current, a lightning surge). As shown in FIG. 3, in the case of normal leakage, a periodic leakage current is generated, and in the case of a lightning surge, a relatively large and short leakage current is generated.
圖3的「ZCT輸出」表示各情況中的與漏電電流相對應的零相變流器10的輸出電壓(ZCT輸出電壓)。 The "ZCT output" of Fig. 3 indicates the output voltage (ZCT output voltage) of the zero-phase current transformer 10 corresponding to the leakage current in each case.
圖3的「脈衝產生部輸出」表示各情況中的脈衝產生部41的輸出電壓。於圖3的例子中,在相同期間中,於通常漏電的情形,產生3波脈衝,而於雷電突波的情形,產生2波脈衝,通常漏電的情形產生更多的脈衝。 The "pulse generation unit output" of Fig. 3 indicates the output voltage of the pulse generation unit 41 in each case. In the example of Fig. 3, in the same period, in the case of normal leakage, three-wave pulses are generated, and in the case of lightning surges, two-wave pulses are generated, and in the case of leakage, more pulses are generated.
圖3的「計數器」表示各情況中的脈衝計數部42所保持的計數值。 The "counter" of Fig. 3 indicates the count value held by the pulse counting unit 42 in each case.
圖3的「計數器輸出」表示各情況中的脈衝計數部42的輸出電壓。於圖3的例子中,若產生第3波的脈衝,則脈衝計數部42的輸出電壓變為電壓H。 The "counter output" of Fig. 3 indicates the output voltage of the pulse counting unit 42 in each case. In the example of FIG. 3, when the pulse of the third wave is generated, the output voltage of the pulse counting unit 42 becomes the voltage H.
圖3的「積分運算輸出」表示各情況中的積分運算部20的輸出電壓。 The "integral operation output" of FIG. 3 indicates the output voltage of the integral calculation unit 20 in each case.
圖3的「積分值比較輸出」表示各情況中的積分值比較部30的輸出電壓。 The "integral value comparison output" of FIG. 3 indicates the output voltage of the integral value comparing unit 30 in each case.
圖3的「漏電偵測信號輸出」表示各情況中的漏電偵測部50的輸出電壓。 The "leakage detection signal output" of Fig. 3 indicates the output voltage of the leakage detecting unit 50 in each case.
根據如上所述的第1動作例,能夠迅速地對通常漏電與雷電突波進行識別。 According to the first operation example described above, it is possible to quickly recognize the normal electric leakage and the lightning surge.
圖4是用以對本實施形態的漏電偵測裝置100的第2動作例進行說明的時序圖。 FIG. 4 is a timing chart for explaining a second operation example of the leakage detecting device 100 of the embodiment.
於圖4的例子中,假設當ZCT輸出電壓的絕對值為漏電電流偵測臨限值th2以上的的狀態持續規定時間t1以上時,脈衝產生部41產生狹窄寬度的脈衝。另一方面,當ZCT輸出電壓的絕對值不足漏電電流偵測臨限值th2時,或當ZCT輸出電壓的絕對值為漏電電流偵測臨限值th2以上的狀態未持續規定時間以上時,不產生脈衝。 In the example of FIG. 4, when the state in which the absolute value of the ZCT output voltage is equal to or greater than the leakage current detection threshold value th2 is equal to or longer than the predetermined time t1, the pulse generation unit 41 generates a pulse having a narrow width. On the other hand, when the absolute value of the ZCT output voltage is less than the leakage current detection threshold th2, or when the absolute value of the ZCT output voltage is greater than or equal to the leakage current detection threshold th2, the time is not exceeded. Generate a pulse.
如圖4所示,由於一併考慮到ZCT輸出電壓的電壓值以及規定時間的持續,因此,若與圖3作比較,則「脈衝產生部輸出」是以延遲了規定時間的時序(timing)而被輸出。於本實施形態中,脈衝計數部42是根據脈衝的上升邊緣(edge)來對脈衝進行計數。相應地,「計數器」、「計數器輸出」、以及「漏電偵測信號輸出」的時序亦延遲。藉此,不會因雷電突波而進行誤動作,可於所期望的漏電電流值的情形時進行動作,且可更高速地對漏電進行偵測。而且,對於雜訊(noise)的耐受性亦強,且穩健性(robustness)提高。 As shown in FIG. 4, the voltage value of the ZCT output voltage and the continuation of the predetermined time are taken into consideration. Therefore, when compared with FIG. 3, the "pulse generation unit output" is delayed by a predetermined time (timing). And is output. In the present embodiment, the pulse counting unit 42 counts the pulses based on the rising edge of the pulse. Accordingly, the timings of the "counter", "counter output", and "leakage detection signal output" are also delayed. Thereby, the malfunction does not occur due to the lightning surge, the operation can be performed in the case of the desired leakage current value, and the leakage can be detected at a higher speed. Moreover, the tolerance to noise is also strong, and the robustness is improved.
再者,於圖4中,將「積分運算輸出」、「積分值比較輸出」、以及「漏電偵測信號輸出」的圖示予以省略。 In addition, in FIG. 4, the illustration of "integration calculation output", "integrated value comparison output", and "leakage detection signal output" is abbreviate|omitted.
圖5是用以對漏電偵測裝置100的第3動作例進行說明的時序圖。 FIG. 5 is a timing chart for explaining a third operation example of the leakage detecting device 100.
於圖5的例子中,假設於開始產生脈衝之後,當ZCT輸出電壓的絕對值不足脈衝停止判定臨限值th3時,脈衝產生部41停止產生脈衝。另一方面,當ZCT輸出電壓的絕對值為脈衝停止判定臨限值th3以上時,繼續產生脈衝。此處,th2>th3>0。 In the example of FIG. 5, it is assumed that after the pulse is started, when the absolute value of the ZCT output voltage is less than the pulse stop determination threshold value th3, the pulse generation portion 41 stops generating the pulse. On the other hand, when the absolute value of the ZCT output voltage is equal to or greater than the pulse stop determination threshold value th3, the pulse is continuously generated. Here, th2>th3>0.
因此,如圖5的「脈衝產生部輸出」所示,自ZCT輸出電壓的絕對值為漏電電流偵測臨限值th2以上,直至該ZCT輸出電壓的絕對值不足脈衝停止判定臨限值th3為止,產生一個脈衝。又,此處,當脈衝下降時,藉由脈衝計數部42來進行計數。因此,若與在脈衝上升時進行計數的情形作比較,則「計數器」、「計數器輸出」、以及「漏電偵測信號輸出」的時序延遲。 Therefore, as shown in the "pulse generation unit output" of Fig. 5, the absolute value of the output voltage from the ZCT is greater than or equal to the leakage current detection threshold th2 until the absolute value of the ZCT output voltage is less than the pulse stop determination threshold th3. , produces a pulse. Here, when the pulse is lowered, the counting is performed by the pulse counting unit 42. Therefore, the timing of the "counter", "counter output", and "leakage detection signal output" is delayed when compared with the case where the pulse is counted up.
再者,於圖5中,將「積分運算輸出」、「積分值比較輸出」、以及「漏電偵測信號輸出」的圖示予以省略。 In addition, in FIG. 5, the illustration of "integration calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
又,此處,表示了如下的情形,即,考慮電壓來決定脈衝停止時間點,但亦可考慮時間來代替電壓。例如,如後述的圖6所示,脈衝產生部41亦可於開始產生脈衝起經過規定時間(規定寬度)t2時,使脈衝停止。若為此種方式,則於開始產生脈衝之後的規定時間內,雜訊不會對漏電偵測產生影響。 Here, the case where the pulse stop time point is determined in consideration of the voltage is shown here, but the time may be considered in place of the voltage. For example, as shown in FIG. 6 to be described later, the pulse generation unit 41 may stop the pulse when a predetermined time (predetermined width) t2 has elapsed since the start of the pulse generation. If this is the case, the noise will not affect the leakage detection within the specified time after the pulse is started.
圖6是用以對本實施形態的漏電偵測裝置100的第4動作例進行說明的時序圖。 FIG. 6 is a timing chart for explaining a fourth operation example of the leakage detecting device 100 of the embodiment.
於圖6的例子中,假設脈衝產生部41產生具有規定寬度t2的脈衝之後,在規定時間內不產生下一個脈衝。亦即,假設自產生第1脈衝起直至經過規定時間為止,脈衝產生部41停止產生第2脈衝。於圖6的例子中,上述脈衝輸出遮蔽期間僅適用於通常漏電的情形。 In the example of FIG. 6, after the pulse generation unit 41 generates a pulse having a predetermined width t2, the next pulse is not generated for a predetermined period of time. In other words, it is assumed that the pulse generation unit 41 stops generating the second pulse from the time when the first pulse is generated until a predetermined time elapses. In the example of Fig. 6, the above-described pulse output masking period is only applicable to the case of normal leakage.
於圖6的例子中,對於通常漏電而言,在作為規定時間的脈衝輸出遮蔽期間中,包含一個脈衝的產生時序。於該情形時,應由脈衝產生部41產生的第2脈衝由於與輸出遮蔽期間重複,因此,於上述輸出遮蔽期間結束之後才會產生。因此,延遲一個脈衝地對脈衝計數的計數值進行計數。 In the example of FIG. 6, for the normal leakage, the generation timing of one pulse is included in the pulse output masking period which is a predetermined time. In this case, since the second pulse to be generated by the pulse generating portion 41 overlaps with the output masking period, it is generated after the end of the output masking period. Therefore, the count value of the pulse count is counted by one pulse delay.
又,於圖6的雷電突波所示的例子中,假設無輸出遮蔽期間地藉由脈衝產生部41來產生第1脈衝與第2脈衝,且脈衝計數部42根據脈衝下降邊緣來對脈衝進行計數,自對第1脈衝進行計數起,直至經過規定時間為止,停止對第2脈衝進行計數。於圖6的例子中,上述計數遮蔽期間僅適用於雷電突波的情形。 Further, in the example shown by the lightning glitch of FIG. 6, it is assumed that the first pulse and the second pulse are generated by the pulse generating unit 41 in the absence of the output occlusion period, and the pulse counting unit 42 performs the pulse on the basis of the pulse falling edge. The counting is performed until the first pulse is counted until the predetermined time elapses, and the counting of the second pulse is stopped. In the example of Fig. 6, the above-described count shading period is only applicable to the case of a lightning surge.
於雷電突波所示的例子中,在作為規定時間的計數遮蔽期間中,包含一個脈衝的計數時序。於該情形時,應由脈衝計數部42計數的第2脈衝由於與計數遮蔽期間重複,因此,於上述計數遮蔽期間結束之後才被計數。因此,延遲一個脈衝地對脈衝計數的計數值進行計數。因此,「計數 器」的時序延遲,故而相應地,「計數器輸出」、「漏電偵測信號輸出」的時序亦延遲。 In the example shown by the lightning glitch, the counting timing of one pulse is included in the counting occlusion period as the predetermined time. In this case, the second pulse to be counted by the pulse counting unit 42 is overlapped with the count mask period, and therefore is counted after the end of the count mask period. Therefore, the count value of the pulse count is counted by one pulse delay. Therefore, "counting The timing of the "timer" is delayed, so the timing of "counter output" and "leakage detection signal output" is also delayed.
再者,於圖6中,將「積分運算輸出」、「積分值比較輸出」、以及「漏電偵測信號輸出」的圖示予以省略。 In addition, in FIG. 6, the illustration of "integrated operation output", "integrated value comparison output", and "leakage detection signal output" is abbreviate|omitted.
如此,藉由設置規定時間的脈衝遮蔽期間或計數遮蔽期間,可正確地產生脈衝或可正確地對脈衝進行計數。尤其可防止雷電突波的誤偵測,從而可防止漏電偵測裝置100的誤動作。又,於本實施形態中,在脈衝輸出遮蔽期間中,包含一個脈衝的產生時序,且在計數遮蔽期間中,包含一個脈衝的計數時序,因此,若對第二個脈衝進行計數,則脈衝計數部42的輸出電壓變為電壓H。 Thus, by setting the pulse masking period or the counting masking period for a predetermined time, the pulse can be correctly generated or the pulse can be correctly counted. In particular, it is possible to prevent false detection of lightning surges, thereby preventing malfunction of the leakage detecting device 100. Further, in the present embodiment, the pulse output masking period includes the generation timing of one pulse, and the count masking period includes the counting timing of one pulse. Therefore, if the second pulse is counted, the pulse counting is performed. The output voltage of the portion 42 becomes the voltage H.
圖7是用以對本實施形態的漏電偵測裝置100的第5動作例進行說明的時序圖。 FIG. 7 is a timing chart for explaining a fifth operation example of the leakage detecting device 100 of the embodiment.
於圖7的例子中,自ZCT輸出電壓的絕對值為漏電電流偵測臨限值th2以上,直至該ZCT輸出電壓的絕對值不足漏電電流偵測臨限值th2為止,脈衝產生部41產生一個脈衝。又,假設當脈衝產生部41所產生的脈衝的脈衝寬度(時間寬度)為規定寬度A以上時,脈衝計數部42進行計數。另一方面,當脈衝的脈衝寬度不足規定寬度A時,不對脈衝進行計數。 In the example of FIG. 7, the absolute value of the ZCT output voltage is greater than or equal to the leakage current detection threshold value th2 until the absolute value of the ZCT output voltage is less than the leakage current detection threshold value th2, and the pulse generating portion 41 generates a pulse. In addition, when the pulse width (time width) of the pulse generated by the pulse generating unit 41 is equal to or larger than the predetermined width A, the pulse counting unit 42 counts. On the other hand, when the pulse width of the pulse is less than the prescribed width A, the pulse is not counted.
又,此處,當脈衝下降時,藉由脈衝計數部42來進行計數。因此,若與在脈衝上升時進行計數的情形作比較,則「計數器」、「計數器輸出」、以及「漏電偵測信號輸出」的時序延遲。 Here, when the pulse is lowered, the counting is performed by the pulse counting unit 42. Therefore, the timing of the "counter", "counter output", and "leakage detection signal output" is delayed when compared with the case where the pulse is counted up.
再者,於圖7中,將「積分運算輸出」、「積分值比較輸出」、以及「漏電偵測信號輸出」的圖示予以省略。根據此種動作例,可容易對雷電突波與通常漏電進行區分且偵測出該雷電突波。 In addition, in FIG. 7, the illustration of "integration calculation output", "integrated value comparison output", and "leakage detection signal output" is abbreviate|omitted. According to such an operation example, it is possible to easily distinguish between a lightning surge and a normal leakage and detect the lightning surge.
(第2實施形態) (Second embodiment)
如圖8所示,第2實施形態的漏電偵測裝置100包括波形判別部40B來代替第1實施形態所示的波形判別部40。再者,關於本實施形態的漏電偵測裝置100,對與第1實施形態所示的漏電偵測裝置100相同的構成附上相同的符號,且將說明予以省略。 As shown in FIG. 8, the leakage detecting device 100 according to the second embodiment includes a waveform determining unit 40B instead of the waveform determining unit 40 shown in the first embodiment. In the leakage detecting device 100 of the present embodiment, the same components as those of the leakage detecting device 100 of the first embodiment are denoted by the same reference numerals and will not be described.
圖8是表示本發明的第2實施形態中的波形判別部40B的構成例的區塊圖。圖8所示的波形判別部40B除了包括脈衝產生部41以及脈衝計數部42之外,亦包括計數值變更部43。 FIG. 8 is a block diagram showing an example of the configuration of the waveform determining unit 40B in the second embodiment of the present invention. The waveform determining unit 40B shown in FIG. 8 includes a count value changing unit 43 in addition to the pulse generating unit 41 and the pulse counting unit 42.
計數值變更部43包含控制電路等,且對基於脈衝產生部41所產生的脈衝的脈衝輸出寬度進行偵測,當該脈衝輸出寬度為規定寬度以上或不足規定寬度時,將脈衝計數部42的計數值予以變更。例如,當脈衝輸出寬度為規定寬度以上時,可將計數值增大1,當脈衝輸出寬度不足規定寬度時,可將計數值減小1。 The count value changing unit 43 includes a control circuit or the like, and detects a pulse output width of a pulse generated by the pulse generating unit 41. When the pulse output width is equal to or larger than a predetermined width or less than a predetermined width, the pulse counting unit 42 is used. The count value is changed. For example, when the pulse output width is equal to or greater than a predetermined width, the count value can be increased by 1, and when the pulse output width is less than a predetermined width, the count value can be decreased by one.
於本實施形態中,脈衝產生部41於如下的區間中產生脈衝,該區間是ZCT輸出電壓的絕對值為漏電電流偵測臨限值th2以上時的區間。又,根據各脈衝的下降邊緣來對脈衝進行計數。此處,所謂「脈衝輸出寬度」,是指如下所 述的寬度(參照後述的圖9)。 In the present embodiment, the pulse generation unit 41 generates a pulse in a section in which the absolute value of the ZCT output voltage is equal to or greater than the leakage current detection threshold value th2. Also, the pulses are counted based on the falling edges of the respective pulses. Here, the "pulse output width" means the following The width described (refer to FIG. 9 described later).
(A)自作為第1脈衝的脈衝P1的輸出開始時間點(上升時間點)至輸出結束時間點(下降時間點)為止的時間寬度A1(此時使用臨限值T1) (A) Time width A1 from the output start time point (rise time point) of the pulse P1 as the first pulse to the output end time point (fall time point) (the threshold value T1 is used at this time)
(B)自作為第1脈衝的脈衝P1的輸出開始時間點至作為與第1脈衝相連的第2脈衝的脈衝P2的輸出開始時間點為止的時間寬度A2(此時使用臨限值T2) (B) Time width A2 from the output start time point of the pulse P1 as the first pulse to the output start time point of the pulse P2 as the second pulse connected to the first pulse (the threshold value T2 is used at this time)
(C)自脈衝P1的輸出結束時間點至脈衝P2的輸出結束時間點為止的時間寬度A3(此時使用臨限值T3) (C) Time width A3 from the output end time point of the pulse P1 to the output end time point of the pulse P2 (the threshold value T3 is used at this time)
(D)自脈衝P1的輸出開始時間點至脈衝P2的輸出結束時間點為止的時間寬度A4(此時使用臨限值T4) (D) Time width A4 from the output start time point of the pulse P1 to the output end time point of the pulse P2 (the threshold value T4 is used at this time)
圖9是用以對本實施形態的漏電偵測裝置100的動作例進行說明的時序圖。 FIG. 9 is a timing chart for explaining an operation example of the leakage detecting device 100 of the present embodiment.
於圖9的例子中,當脈衝輸出寬度A3為臨限值T3以上時,將計數值僅增大1。藉此,可靈活地對將計數值予以變更的時序進行設定。因此,藉由將各個時間寬度A1~時間寬度A4中的任一個時間寬度設定為脈衝輸出寬度,漏電偵測裝置100的動作時間不會延遲,可防止誤動作。 In the example of FIG. 9, when the pulse output width A3 is equal to or greater than the threshold value T3, the count value is increased by only one. Thereby, the timing for changing the count value can be flexibly set. Therefore, by setting any one of the time widths A1 to A4 to the pulse output width, the operation time of the leakage detecting device 100 is not delayed, and malfunction can be prevented.
於圖9所示的例子中,於通常漏電的情形時,脈衝P1與脈衝P2之間的脈衝寬度A3大於臨限值T3,因此,於脈衝P2的下降邊緣的時間點,將計數值自2增加至3,於該時間點,由脈衝計數部42產生電壓H。 In the example shown in FIG. 9, in the case of normal leakage, the pulse width A3 between the pulse P1 and the pulse P2 is greater than the threshold value T3, and therefore, at the time point of the falling edge of the pulse P2, the count value is from 2 Increasing to 3, at this point in time, the voltage H is generated by the pulse counting portion 42.
再者,於圖9中,將「積分運算輸出」、「積分值比較 輸出」、以及「漏電偵測信號輸出」的圖示予以省略。 Furthermore, in Fig. 9, "integration operation output" and "integral value comparison" The illustration of "output" and "leakage detection signal output" is omitted.
(第3實施形態) (Third embodiment)
第3實施形態的漏電偵測裝置100包括波形判別部40C來代替第1實施形態所示的波形判別部40。再者,關於本實施形態的漏電偵測裝置100,對與第1實施形態所示的漏電偵測裝置100相同的構成附上相同的符號,且將說明予以省略。 The leakage detecting device 100 according to the third embodiment includes a waveform determining unit 40C instead of the waveform determining unit 40 shown in the first embodiment. In the leakage detecting device 100 of the present embodiment, the same components as those of the leakage detecting device 100 of the first embodiment are denoted by the same reference numerals and will not be described.
圖10是表示本發明的第3實施形態中的波形判別部40C的構成例的區塊圖。圖10所示的波形判別部40C除了包括脈衝產生部41以及脈衝計數部42之外,亦包括脈衝產生條件變更部44。 FIG. 10 is a block diagram showing a configuration example of the waveform determining unit 40C in the third embodiment of the present invention. The waveform determination unit 40C shown in FIG. 10 includes a pulse generation condition changing unit 44 in addition to the pulse generation unit 41 and the pulse counting unit 42.
脈衝產生條件變更部44包含控制電路等,且基於脈衝計數部42所計數的計數值,將脈衝產生部41的脈衝的產生條件及/或脈衝計數部42的脈衝計數條件予以變更。存在電壓臨限值作為脈衝的產生條件,且存在脈衝寬度(時間寬度)臨限值等作為脈衝計數條件,上述電壓臨限值是於判定脈衝產生部41是否已產生脈衝時使用。脈衝產生條件變更部44例如將上述電壓臨限值(例如第1實施形態中所說明的「漏電電流偵測臨限值th2」)及脈衝寬度臨限值(例如第1實施形態中所說明的「規定寬度A」)中的至少一個臨限值予以變更。 The pulse generation condition changing unit 44 includes a control circuit or the like, and changes the pulse generation condition of the pulse generation unit 41 and/or the pulse count condition of the pulse count unit 42 based on the count value counted by the pulse count unit 42. The voltage threshold value is used as a pulse generation condition, and a pulse width (time width) threshold value or the like is present as a pulse count condition, and the voltage threshold value is used when determining whether or not the pulse generation unit 41 has generated a pulse. The pulse generation condition changing unit 44 sets the voltage threshold (for example, "leakage current detection threshold value th2" described in the first embodiment) and the pulse width threshold (for example, as described in the first embodiment). At least one of the "predetermined width A") is changed.
圖11是用以對本實施形態的漏電偵測裝置100的動作例進行說明的時序圖。 FIG. 11 is a timing chart for explaining an operation example of the leakage detecting device 100 of the present embodiment.
於圖11的例子中,當脈衝寬度比A更長時,根據脈 衝的下降邊緣來對第1脈衝及第2脈衝進行計數,脈衝產生條件變更部44於計數器的輸出為「2」的時間點,將脈衝計數部42的脈衝產生判定時的時間臨限值予以變更。亦即,於計數2次的時間點,針對脈衝產生部41的時間臨限值,變更為瞬間偵測。亦即,根據脈衝的上升邊緣來進行計數。藉此,可防止由雷電突波等引起的漏電偵測裝置100的誤動作,且於通常漏電的情形時,可更高速地將交流電路予以阻斷。 In the example of FIG. 11, when the pulse width is longer than A, according to the pulse The first pulse and the second pulse are counted by the falling edge of the rush, and the pulse generation condition changing unit 44 sets the time threshold at the time of the pulse generation determination of the pulse counting unit 42 when the output of the counter is "2". change. In other words, the time threshold for the pulse generation unit 41 is changed to the instantaneous detection at the time of counting twice. That is, counting is performed based on the rising edge of the pulse. Thereby, malfunction of the leakage detecting device 100 caused by a lightning surge or the like can be prevented, and in the case of normal leakage, the AC circuit can be blocked at a higher speed.
再者,於圖11中,將「積分運算輸出」、「積分值比較輸出」、以及「漏電偵測信號輸出」的圖示予以省略。 In addition, in FIG. 11, the illustration of "integration calculation output", "integrated value comparison output", and "leakage detection signal output" is abbreviate|omitted.
(第4實施形態) (Fourth embodiment)
第4實施形態的漏電偵測裝置100包括波形判別部40D來代替第1實施形態所示的波形判別部40。再者,關於本實施形態的漏電偵測裝置100,對與第1實施形態所示的漏電偵測裝置100相同的構成附上相同的符號,且將說明予以省略。 The leakage detecting device 100 of the fourth embodiment includes a waveform determining unit 40D instead of the waveform determining unit 40 shown in the first embodiment. In the leakage detecting device 100 of the present embodiment, the same components as those of the leakage detecting device 100 of the first embodiment are denoted by the same reference numerals and will not be described.
圖12是表示本發明的第4實施形態中的波形判別部40D的構成例的區塊圖。圖12所示的波形判別部40D包括:正側脈衝產生部41A、負側脈衝產生部41B、正側脈衝計數部42A、以及負側脈衝計數部42B。 FIG. 12 is a block diagram showing an example of the configuration of the waveform determining unit 40D in the fourth embodiment of the present invention. The waveform discriminating unit 40D shown in FIG. 12 includes a positive side pulse generating unit 41A, a negative side pulse generating unit 41B, a positive side pulse counting unit 42A, and a negative side pulse counting unit 42B.
正側脈衝產生部41A產生基於正側的ZCT輸出電壓的脈衝,即正側脈衝。負側脈衝產生部41B產生基於負側的ZCT輸出電壓的脈衝,即負側脈衝。再者,由ZCT輸出電壓產生正側脈衝或負側脈衝時的條件是與之前已說明 的條件相同。 The positive side pulse generating portion 41A generates a pulse based on the positive side ZCT output voltage, that is, a positive side pulse. The negative side pulse generating portion 41B generates a pulse based on the negative side ZCT output voltage, that is, a negative side pulse. Furthermore, the condition when the positive side pulse or the negative side pulse is generated by the ZCT output voltage is as explained above. The conditions are the same.
正側脈衝計數部42A對正側脈衝進行計數,當該計數數為規定數量以上時,將輸出電壓設為電壓H,且將第2信號予以輸出。負側脈衝計數部42B對負側脈衝進行計數,當該計數數為規定數量以上時,將輸出電壓設為電壓H,且將第2信號予以輸出。因此,當正側脈衝的數量及負側脈衝的數量中的至少一個數量為規定數量以上時,將第2信號予以輸出。再者,對正側脈衝或負側脈衝進行計數時的條件是與之前已說明的條件相同。 The positive side pulse counting unit 42A counts the positive side pulse, and when the number of counts is equal to or greater than a predetermined number, sets the output voltage to the voltage H and outputs the second signal. The negative side pulse counting unit 42B counts the negative side pulse, and when the number of counts is equal to or greater than a predetermined number, the output voltage is set to the voltage H, and the second signal is output. Therefore, when at least one of the number of positive side pulses and the number of negative side pulses is a predetermined number or more, the second signal is output. Furthermore, the conditions for counting the positive side pulse or the negative side pulse are the same as those previously described.
圖13是用以對本實施形態的漏電偵測裝置100的動作例進行說明的時序圖。 FIG. 13 is a timing chart for explaining an operation example of the leakage detecting device 100 of the present embodiment.
圖13的「正側脈衝產生部輸出」表示各情況中的正側脈衝產生部41A的輸出電壓。於圖13的例子中,於相同期間的通常漏電的情形時,產生2波正側脈衝,而於雷電突波的情形時,產生1波正側脈衝,通常漏電時產生了更多的脈衝。 The "positive side pulse generating portion output" of Fig. 13 indicates the output voltage of the positive side pulse generating portion 41A in each case. In the example of Fig. 13, two waves of positive side pulses are generated in the case of normal leakage in the same period, and one wave of positive side pulses are generated in the case of lightning surges, and more pulses are generally generated in the case of electric leakage.
圖13的「正側計數器」表示各情況中的正側脈衝計數部42A所保持的計數值。 The "positive side counter" of Fig. 13 indicates the count value held by the positive side pulse counting unit 42A in each case.
圖13的「負側脈衝產生部輸出」表示各情況中的負側脈衝產生部41B的輸出電壓。於圖13的例子中,於相同期間的通常漏電的情形時,產生1波負側脈衝,而於雷電突波的情形時,亦產生1波負側脈衝。 The "negative side pulse generation unit output" of Fig. 13 indicates the output voltage of the negative side pulse generation portion 41B in each case. In the example of Fig. 13, one wave of the negative side pulse is generated in the case of the normal leakage in the same period, and one wave of the negative side pulse is also generated in the case of the lightning surge.
圖13的「負側計數器」表示各情況中的負側脈衝計數部42B所保持的計數值。 The "negative side counter" of Fig. 13 indicates the count value held by the negative side pulse counting unit 42B in each case.
圖13的「計數器輸出」表示考慮了正側計數器與負側計數器的輸出。於圖13的例子中,當正側脈衝計數部42A及負側脈衝計數部42B中的至少一個脈衝計數部,計數正側脈衝及負側脈衝中的至少一個脈衝達到2波以上時,計數器輸出的輸出電壓變為電壓H。因此,於圖13的例子中,僅於通常漏電的情形時,計數器輸出變為電壓H。又,雖未圖示,但正側脈衝計數部42A、負側脈衝計數部42B的輸出經由OR閘極而輸出至漏電輸出部50。 The "counter output" of Fig. 13 indicates that the outputs of the positive side counter and the negative side counter are considered. In the example of FIG. 13, when at least one of the positive side pulse counting unit 42A and the negative side pulse counting unit 42B counts at least one of the positive side pulse and the negative side pulse to reach two or more pulses, the counter outputs The output voltage becomes the voltage H. Therefore, in the example of FIG. 13, the counter output becomes the voltage H only in the case of normal leakage. Further, although not shown, the outputs of the positive side pulse counting unit 42A and the negative side pulse counting unit 42B are output to the leakage output unit 50 via the OR gate.
再者,於圖13中,將「積分運算輸出」、「積分值比較輸出」、以及「漏電偵測信號輸出」的圖示予以省略。 In addition, in FIG. 13, the illustration of "integrated operation output", "integrated value comparison output", and "leakage detection signal output" is abbreviate|omitted.
如此,對ZCT輸出電壓的正側及負側進行區分而產生脈衝及對脈衝進行計數,藉此,可容易地偵測出半波漏電。 In this manner, the positive side and the negative side of the ZCT output voltage are distinguished to generate a pulse and the pulse is counted, whereby the half-wave leakage can be easily detected.
(第5實施形態) (Fifth Embodiment)
圖14是表示本發明的第5實施形態中的漏電偵測裝置100E的構成例的區塊圖。漏電偵測裝置100E包括:零相變流器10、積分運算部20、積分值比較部30、波形判別部40、漏電偵測部50E、以及作為積體電路的多個邏輯運算部。此處,例示了包括第1邏輯運算部60以及第2邏輯運算部70作為多個邏輯電路部的情形,但不限於此。再者,亦可使用之前已說明的波形判別部40B~波形判別部40D來代替波形判別部40。關於本實施形態的漏電偵測裝置100E,對與第1實施形態~第4實施形態所示的漏電偵測裝置100相同的構成附上相同的符號,且將說明予以省略。 FIG. 14 is a block diagram showing a configuration example of the leakage detecting device 100E in the fifth embodiment of the present invention. The leakage detecting device 100E includes a zero-phase current transformer 10, an integral computing unit 20, an integral value comparing unit 30, a waveform determining unit 40, a leakage detecting unit 50E, and a plurality of logical computing units as integrated circuits. Here, the case where the first logical operation unit 60 and the second logical operation unit 70 are included as the plurality of logical circuit units is exemplified, but the present invention is not limited thereto. Further, instead of the waveform determination unit 40, the waveform determination unit 40B to the waveform determination unit 40D described above may be used. The same components as those of the leakage detecting device 100 according to the first embodiment to the fourth embodiment are denoted by the same reference numerals and will not be described.
第1邏輯運算部60以及第2邏輯運算部70具有作為信號輸入部的功能,該信號輸入部將信號輸出指示信號予以輸入,該信號輸出指示信號用以使積分值比較部30的輸出電壓變為電壓H(即,將第1信號予以輸出)、以及用以使波形判別部40的輸出電壓變為電壓H(即,將第2信號予以輸出)。因此,可藉由上述電路部來將第1實施形態~第4實施形態所說明的多個演算法予以變更。亦即,第1邏輯運算部60以及第2邏輯運算部70分別根據來自外部的信號,與積分值比較部30及波形判別部40的輸出無關地將第1信號及第2信號輸出至漏電偵測部50E。 The first logic operation unit 60 and the second logic operation unit 70 have a function as a signal input unit that inputs a signal output instruction signal for causing the output voltage of the integrated value comparison unit 30 to be changed. The voltage H (that is, the first signal is output) and the output voltage of the waveform determining unit 40 are changed to a voltage H (that is, the second signal is output). Therefore, the plurality of algorithms described in the first to fourth embodiments can be changed by the above-described circuit unit. In other words, the first logic unit 60 and the second logic unit 70 output the first signal and the second signal to the leakage detection independently of the outputs of the integral value comparing unit 30 and the waveform determining unit 40, based on signals from the outside. Measuring unit 50E.
第1邏輯運算部60包含OR電路等,當積分值比較部30的輸出電壓與外置電路部的輸出電壓中的至少一個輸出電壓為電壓H時,將電壓H予以輸出。 The first logic operation unit 60 includes an OR circuit or the like, and outputs voltage H when at least one of the output voltage of the integrated value comparison unit 30 and the output voltage of the external circuit unit is the voltage H.
第2邏輯運算部70包含OR電路等,當波形判別部40的輸出電壓與外置電路部的輸出電壓中的至少一個輸出電壓為電壓H時,將電壓H予以輸出。 The second logic operation unit 70 includes an OR circuit or the like, and outputs voltage H when at least one of the output voltage of the waveform determination unit 40 and the output voltage of the external circuit unit is the voltage H.
再者,作為第1邏輯運算部60與第2邏輯運算部70的外置電路部,可考慮低容量的晶片(chip)電阻。該晶片電阻連接於第1邏輯運算部60、第2邏輯運算部70的輸入接腳(pin)。藉此,可包含外置電路部地廉價地構成電路。如此,亦可自外部電阻將信號輸出指示信號予以輸入。 Further, as the external circuit portion of the first logic operation unit 60 and the second logic operation unit 70, a low-capacity chip resistor can be considered. The chip resistor is connected to the input pins of the first logic operation unit 60 and the second logic operation unit 70. Thereby, the circuit can be configured inexpensively including the external circuit portion. In this way, the signal output indication signal can also be input from an external resistor.
漏電偵測部50E包含AND電路等,當第1邏輯運算部60的輸出電壓為電壓H,且第2邏輯運算部70的輸出 電壓為電壓H時,將電壓H予以輸出。漏電偵測部50E的輸出電壓為電壓H,此相當於將漏電偵測信號予以輸出,該漏電偵測信號表示交流電路中已產生漏電。再者,漏電偵測信號是作為用以使交流電路的電路接點打開(用以將交流電路予以阻斷)的阻斷信號,送出至使上述電路接點打開的跳脫線圈(未圖示)。結果,交流電路的電路接點打開。 The leakage detecting unit 50E includes an AND circuit or the like, and the output voltage of the first logical operation unit 60 is the voltage H and the output of the second logical operation unit 70. When the voltage is the voltage H, the voltage H is output. The output voltage of the leakage detecting unit 50E is a voltage H, which is equivalent to outputting a leakage detecting signal indicating that leakage has occurred in the AC circuit. Furthermore, the leakage detection signal is sent to a tripping coil for opening the circuit contacts of the AC circuit (to block the AC circuit) (not shown) ). As a result, the circuit contacts of the AC circuit are turned on.
根據如上所述的本實施形態的漏電偵測裝置100E,若將連接於第1邏輯運算部60的外置電路部的輸出電壓設為電壓H,則等價於第1實施形態~第4實施形態的積分值比較部30的輸出電壓總是為電壓H,因此,可使積分值比較部30的功能失效。同樣地,若將連接於第2邏輯運算部70的外置電路部的輸出電壓設為電壓H,則等價於第1實施形態~第4實施形態的波形判別部40等(40、40B~40D中的任一個)的輸出電壓總是為電壓H,因此,可使波形判別部40等的功能失效。亦即,可使用外置電路部來使單個功能失效。 According to the leakage detecting device 100E of the present embodiment, the output voltage of the external circuit unit connected to the first logic calculating unit 60 is set to the voltage H, which is equivalent to the first embodiment to the fourth embodiment. The output voltage of the form integral value comparing unit 30 is always the voltage H, and therefore the function of the integral value comparing unit 30 can be disabled. In the same manner, the output voltage of the external circuit unit connected to the second logic unit 70 is set to the voltage H, which is equivalent to the waveform determination unit 40 of the first embodiment to the fourth embodiment (40, 40B~). The output voltage of any one of 40D is always the voltage H, and therefore, the function of the waveform discriminating section 40 or the like can be disabled. That is, an external circuit portion can be used to disable a single function.
又,此處,已對如下的情形進行了說明,該情形是指使用第1邏輯運算部60以及第2邏輯運算部70來使漏電偵測裝置100E的功能的一部分失效,但亦可不使用上述電路部。例如,亦可採用如下的構成,即,自未圖示的外部裝置將變更信號予以輸入,該變更信號用以將積分運算部20、積分值比較部30、或波形判別部40中的至少一個的電壓臨限值或時間臨限值等的各臨限值予以變更,或將 計數值予以變更。例如,當將各臨限值予以變更時,亦可將測量電壓或測量時間變更為總是超過上述臨限值的值。又,例如,亦可將計數值變更為總是超過計數臨限值的值。藉由如上所述的構成,同樣亦可使漏電偵測裝置100E的功能的一部分失效。 Here, the following description has been made. In this case, the first logic operation unit 60 and the second logic operation unit 70 are used to disable a part of the function of the leakage detecting device 100E. Circuit department. For example, a configuration may be adopted in which a change signal is input from an external device (not shown) for at least one of the integral calculation unit 20, the integral value comparison unit 30, or the waveform determination unit 40. The thresholds such as voltage thresholds or time thresholds are changed, or The count value is changed. For example, when the threshold value is changed, the measurement voltage or the measurement time may be changed to a value that always exceeds the threshold value. Further, for example, the count value may be changed to a value that always exceeds the count threshold. With the configuration as described above, a part of the function of the leakage detecting device 100E can also be disabled.
(第6實施形態) (Sixth embodiment)
圖15是表示本發明的第6實施形態中的漏電偵測裝置100F的構成例的區塊圖。本實施形態的漏電偵測裝置100F包括:零相變流器10;第1系統(漏電級別(level)偵測部80),具有作為第1實施形態~第5實施形態所說明的除了零相變流器10之外的漏電偵測裝置100、100E的功能;以及第2系統,對零相變流器10的輸出電壓(ZCT輸出電壓)進行積分,且根據積分結果而進行輸出。亦即,第1系統實現漏電阻斷的功能,第2系統實現用以將漏電量(漏電電流值)通知使用者(user)的功能。 FIG. 15 is a block diagram showing a configuration example of the leakage detecting device 100F according to the sixth embodiment of the present invention. The leakage detecting device 100F of the present embodiment includes a zero-phase current transformer 10, and a first system (level of leakage detecting unit 80) having zero phase as explained in the first embodiment to the fifth embodiment. The functions of the leakage detecting devices 100 and 100E other than the converter 10; and the second system integrate the output voltage (ZCT output voltage) of the zero-phase converter 10, and output according to the integration result. That is, the first system realizes the function of the leakage resistance, and the second system realizes the function of notifying the user (user) of the leakage amount (leakage current value).
作為第1系統的漏電級別偵測部80包括:如上所述的積分運算部20、積分值比較部30、波形判別部40、以及漏電偵測部50等。其中,漏電級別偵測部80至少包括積分運算部20與漏電偵測部50。當漏電級別偵測部80僅包括積分運算部20與漏電偵測部50時,漏電偵測部50基於積分運算部20的運算結果,將漏電偵測信號予以輸出。 The leakage level detecting unit 80 as the first system includes the integral calculating unit 20, the integral value comparing unit 30, the waveform determining unit 40, the leakage detecting unit 50, and the like as described above. The leakage level detecting unit 80 includes at least the integral calculating unit 20 and the leakage detecting unit 50. When the leakage level detecting unit 80 includes only the integral calculating unit 20 and the leak detecting unit 50, the leak detecting unit 50 outputs a leak detecting signal based on the calculation result of the integral calculating unit 20.
第2系統包括:積分部91以及運算結果輸出部92。積分部91對ZCT輸出電壓進行積分,且具有與之前已說明的積分運算部20相同的構成。運算結果輸出部92根據 積分部91的運算結果(積分值)而進行輸出。運算結果輸出部92例如藉由未圖示的顯示器(display)或揚聲器(speaker)等,將各種資訊予以輸出。此處,例如將之前已說明的使用積分運算所得的ZCT輸出電壓的有效值(有效值運算結果)或使用積分運算所得的ZCT輸出電壓的平均值(平均值運算結果)作為運算結果而予以輸出。 The second system includes an integration unit 91 and an operation result output unit 92. The integration unit 91 integrates the ZCT output voltage and has the same configuration as the integral calculation unit 20 described above. The operation result output unit 92 is based on The calculation result (integral value) of the integration unit 91 is output. The calculation result output unit 92 outputs various kinds of information by, for example, a display (not shown) or a speaker. Here, for example, the effective value (the effective value calculation result) of the ZCT output voltage obtained by the integration operation described above or the average value (the average value calculation result) of the ZCT output voltage obtained by the integral operation is output as an operation result. .
此處,第1系統與第2系統的各構成部是構成於一個積體電路(一個模組)內。因此,以上述方式,利用相同的封裝體(package)來構成漏電偵測裝置100F,藉此,可降低成本。亦即,可利用簡單且廉價的構成,在將漏電予以阻斷的同時顯示漏電。 Here, each component of the first system and the second system is formed in one integrated circuit (one module). Therefore, in the above manner, the leakage detecting device 100F is configured by the same package, whereby the cost can be reduced. That is, it is possible to display the leakage while blocking the leakage by using a simple and inexpensive configuration.
又,如圖16所示,亦可使用積分部91作為第1實施形態所說明的積分運算部20。亦即,漏電級別偵測部80亦可不包括積分運算部20,且由積分值比較部30將積分部91的輸出予以輸入。如此,用以進行積分的構成被共用,藉此可降低成本。又,使積分電路等的硬體(hardware)被共用,藉此,不會被由硬體引起的差異或用於積分運算的演算方式左右,因此,用於漏電偵測的水準偵測值、與用以顯示漏電程度的顯示值不會產生誤差,故而可以不使兩者之間產生矛盾的方式來進行調整。 Further, as shown in FIG. 16, the integration unit 91 may be used as the integral calculation unit 20 described in the first embodiment. In other words, the leakage level detecting unit 80 does not include the integral calculating unit 20, and the integral value comparing unit 30 inputs the output of the integrating unit 91. In this way, the components for performing integration are shared, whereby the cost can be reduced. Further, hardware such as an integrating circuit is shared, whereby the difference caused by the hardware or the calculation method for the integral operation is not affected, and therefore, the level detection value for the leakage detection, There is no error in the display value for indicating the degree of leakage, and therefore it is possible to adjust without causing a contradiction between the two.
又,運算結果輸出部92亦可將積分部91所運算出的積分值平均化後所得的值(平均值)予以輸出。又,積分值比較部30亦可將將積分運算部20所運算出的積分值平均化後所得的值(平均值)與規定值(積分值判定臨限值 th1)作比較。所謂平均值,例如是指平均時間。此時,較佳為使由運算結果輸出部92進行平均化時的期間,比由積分值比較部30進行平均化時的期間更長。又,與積分運算部20相比較,積分部91亦可對更長期間內的ZCT輸出電壓進行平均,計算出ZCT輸出電壓的平均值,接著對該平均值進行積分而獲得積分值。藉此,不會受到由突波電壓(surge voltage)等的雜訊引起的ZCT輸出電壓的變動的影響,可正確地將積分值(相當於漏電電流值)等予以輸出。 Further, the calculation result output unit 92 may output a value (average value) obtained by averaging the integral values calculated by the integration unit 91. Further, the integral value comparing unit 30 may also obtain a value (average value) obtained by averaging the integral values calculated by the integral calculating unit 20 and a predetermined value (integral value judgment threshold) Th1) for comparison. The average value is, for example, the average time. In this case, it is preferable that the period when the calculation result is output by the calculation result output unit 92 is longer than the period when the integration value comparison unit 30 performs averaging. Further, the integration unit 91 can average the ZCT output voltage over a longer period of time than the integral calculation unit 20, calculate an average value of the ZCT output voltage, and then integrate the average value to obtain an integral value. Thereby, the integral value (corresponding to the leakage current value) or the like can be accurately output without being affected by the fluctuation of the ZCT output voltage caused by noise such as a surge voltage.
再者,此處對平均值進行說明,但亦可使用有效值來代替平均值。 Furthermore, the average value will be described here, but an effective value may be used instead of the average value.
又,亦可於積分部91的運算結果(積分值)的絕對值大於臨限值th4(th2>th4>0)時,由運算結果輸出部92將警告信號(警報(alarm))予以輸出,上述臨限值th4(th2>th4>0)小於漏電級別偵測部80中的用於漏電偵測的漏電電流偵測臨限值th2。此處的警告信號可考慮採用利用聲音資訊的警告或利用顯示資訊的警告等。亦即,亦可於積分部91的運算結果大於臨限值th2時,將警告信號予以輸出,上述臨限值th2是於判定積分值比較部30是否已將第1信號予以輸出時使用。藉此,在對將交流電路予以阻斷的程度的漏電進行偵測之前,使用者可事先瞭解漏電的狀態。 In addition, when the absolute value of the calculation result (integral value) of the integration unit 91 is larger than the threshold value th4 (th2>th4>0), the calculation result output unit 92 outputs a warning signal (alarm). The threshold value th4 (th2>th4>0) is smaller than the leakage current detection threshold value th2 for the leakage detection in the leakage level detecting unit 80. The warning signal here can be considered to use a warning using sound information or a warning to display information. In other words, the warning signal may be output when the calculation result of the integration unit 91 is greater than the threshold value th2, and the threshold value th2 is used when determining whether the integrated value comparison unit 30 has output the first signal. Thereby, the user can know the state of the leakage in advance before detecting the leakage of the degree to block the AC circuit.
又,運算結果輸出部92亦可根據積分部91的運算結果,變更將警告信號予以輸出的輸出形態。於該情形時, 例如考慮當積分部91的運算結果的絕對值超過漏電電流偵測臨限值th2的絕對值的50%時,使發光二極體(Light Emitting Diode,LED)點燈,當積分部91的運算結果的絕對值超過漏電電流偵測臨限值th2的絕對值的80%時,將警報音予以輸出。藉此,能夠正確地通報直至漏電阻斷為止的緊急度(級別),從而可避免突然進行漏電阻斷的事態。 Further, the calculation result output unit 92 can change the output form in which the warning signal is output based on the calculation result of the integration unit 91. In this case, For example, when the absolute value of the calculation result of the integration unit 91 exceeds 50% of the absolute value of the leakage current detection threshold value th2, the light-emitting diode (LED) is turned on, and the operation of the integration unit 91 is performed. When the absolute value of the result exceeds 80% of the absolute value of the leakage current detection threshold th2, an alarm sound is output. Thereby, it is possible to accurately report the degree of urgency (level) until the leakage resistance is broken, and it is possible to avoid a situation in which the leakage resistance is suddenly broken.
又,如圖17所示,漏電偵測裝置100F亦可包括運算結果記憶部93,該運算結果記憶部93記憶積分部91的運算結果。運算結果記憶部93例如記憶規定時間量(一星期等)的運算結果的資訊。此時,亦可於經過規定時間之後,覆寫地對資訊進行重寫。再者,所謂運算結果的資訊,是指ZCT輸出電壓的積分值(有效值、平均值)等。藉此,由於記憶直至漏電阻斷為止的固定時間的運算結果,因此,易於確定阻斷原因。 Further, as shown in FIG. 17, the leakage detecting device 100F may further include a calculation result storage unit 93 that memorizes the calculation result of the integration unit 91. The calculation result storage unit 93 stores, for example, information of a calculation result of a predetermined amount of time (one week or the like). At this time, the information may be overwritten after being overwritten for a predetermined period of time. In addition, the information of the calculation result refers to the integral value (effective value, average value) of the ZCT output voltage. As a result, since the calculation result of the fixed time until the leakage resistance is broken, it is easy to determine the cause of the blocking.
又,如圖18所示,漏電偵測裝置100F亦可包括外部端子部94,該外部端子部94用以經由外部端子,將積分部91的運算結果的資訊或運算結果記憶部93的運算結果的資訊予以輸出。外部端子部94例如為通用串列匯流排(Universal Serial Bus,USB)端子等。由於包括外部端子部94,因此,可容易地將運算結果的資訊予以輸出,從而易於確定阻斷原因。 Further, as shown in FIG. 18, the leakage detecting device 100F may include an external terminal portion 94 for calculating the calculation result of the integrating portion 91 or the calculation result of the calculation result storage portion 93 via the external terminal. The information is output. The external terminal portion 94 is, for example, a universal serial bus (USB) terminal or the like. Since the external terminal portion 94 is included, the information of the calculation result can be easily output, and the cause of the blocking can be easily determined.
又,如圖19所示,漏電偵測裝置100F亦可包括資訊輸出部95,該資訊輸出部95將積分部91的運算結果的資 訊或運算結果記憶部93的運算結果的資訊輸出至記憶媒體。記憶媒體例如為USB記憶體(memory)或安全數位(Secure Digital,SD)卡等。藉此,例如由於將直至漏電阻斷為止的固定時間的運算結果輸出至記憶媒體,因此,資料(data)易於攜帶,且易於確定阻斷原因。 Further, as shown in FIG. 19, the leakage detecting device 100F may further include an information output unit 95 for calculating the calculation result of the integrating unit 91. The information of the calculation result of the operation result storage unit 93 is output to the memory medium. The memory medium is, for example, a USB memory or a Secure Digital (SD) card. Thereby, for example, since the calculation result of the fixed time until the leakage resistance is broken is output to the memory medium, the data is easy to carry, and it is easy to determine the cause of the blocking.
又,如圖20所示,漏電偵測裝置100F亦可包括資訊發送部96,該資訊發送部96將積分部91的運算結果的資訊或運算結果記憶部93的運算結果的資訊發送至外部伺服器。藉此,例如由於將直至漏電阻斷為止的固定時間的運算結果輸出至外部伺服器,因此,遠端的控制中心等亦可容易地掌握漏電狀況,且易於確定阻斷原因。 Further, as shown in FIG. 20, the leakage detecting device 100F may further include an information transmitting unit 96 that transmits information of the calculation result of the integrating unit 91 or information of the calculation result of the calculation result storage unit 93 to the external servo. Device. As a result, for example, since the calculation result of the fixed time until the leakage resistance is broken is output to the external server, the remote control center or the like can easily grasp the leakage condition and easily determine the cause of the blocking.
可將上述全部的實施形態、實施形態中的說明例以及變形例彼此組合地使用。以上,對本發明的較佳實施形態進行了說明,但本發明並不限於上述特定的實施形態,可實現不脫離申請專利範圍的範疇的各種變更及變形,且上述各種變更及變形亦處於本發明的範疇內。 All of the above embodiments and the examples and modifications of the embodiments can be used in combination with each other. The preferred embodiments of the present invention have been described above, but the present invention is not limited to the specific embodiments described above, and various changes and modifications may be made without departing from the scope of the inventions. Within the scope of the.
10‧‧‧零相變流器(ZCT) 10‧‧‧Zero-phase converter (ZCT)
20‧‧‧積分運算部 20‧‧‧Integral Computing Department
30‧‧‧積分值比較部 30‧‧‧Integral value comparison department
40、40B、40C、40D‧‧‧波形判別部 40, 40B, 40C, 40D‧‧‧ waveform discriminating department
41‧‧‧脈衝產生部 41‧‧‧ Pulse Generation Department
41A‧‧‧正側脈衝產生部 41A‧‧‧ Positive Side Pulse Generation Department
41B‧‧‧負側脈衝產生部 41B‧‧‧Negative side pulse generation unit
42‧‧‧脈衝計數部 42‧‧‧pulse counting section
42A‧‧‧正側脈衝計數部 42A‧‧‧positive side pulse counting unit
42B‧‧‧負側脈衝計數部 42B‧‧‧negative side pulse counting unit
43‧‧‧計數值變更部 43‧‧‧Count value change department
44‧‧‧脈衝產生條件變更部 44‧‧‧Pulse generation condition change department
50、50E‧‧‧漏電偵測部 50, 50E‧‧‧Leakage Detection Department
60‧‧‧第1邏輯運算部 60‧‧‧1st logical operation department
70‧‧‧第2邏輯運算部 70‧‧‧2nd logical operation department
80‧‧‧漏電級別偵測部 80‧‧‧Leakage Level Detection Department
91‧‧‧積分部 91‧‧ ‧ points department
92‧‧‧運算結果輸出部 92‧‧‧Operation result output
93‧‧‧運算結果記憶部 93‧‧‧Computation Results Memory
94‧‧‧外部端子部 94‧‧‧External terminal
95‧‧‧資訊輸出部 95‧‧‧Information Export Department
96‧‧‧資訊發送部 96‧‧‧Information Transmission Department
100、100E、100F‧‧‧漏電偵測裝置 100, 100E, 100F‧‧‧ leakage detection device
H、L‧‧‧電壓 H, L‧‧‧ voltage
t1‧‧‧規定時間 T1‧‧‧specified time
t2‧‧‧規定時間(規定寬度) T2‧‧‧specified time (specified width)
th1‧‧‧積分值判定臨限值 Th1‧‧‧ integral value judgment threshold
th2‧‧‧漏電電流偵測臨限值 Th2‧‧‧ leakage current detection threshold
th3‧‧‧脈衝停止判定臨限值 Th3‧‧‧pulse stop determination threshold
T1~T4‧‧‧臨限值 T1~T4‧‧‧ threshold
A‧‧‧規定寬度 A‧‧‧specified width
A3‧‧‧時間寬度 A3‧‧‧ time width
P1、P2‧‧‧脈衝 P1, P2‧‧‧ pulse
藉由如下所述的隨附圖式與較佳實例的說明,使本發明的目的以及特徵變得明確。 The objects and features of the present invention will become apparent from the following description of the preferred embodiments.
圖1是表示本發明的第1實施形態中的漏電偵測裝置的構成例的電路區塊圖。 1 is a circuit block diagram showing a configuration example of a leakage detecting device according to a first embodiment of the present invention.
圖2是表示本發明的第1實施形態中的波形判別部的詳細的構成例的電路區塊圖。 FIG. 2 is a circuit block diagram showing a detailed configuration example of the waveform determination unit in the first embodiment of the present invention.
圖3是用以對本發明的第1實施形態中的漏電偵測裝 置的第1動作例進行說明的時序圖。 Fig. 3 is a view showing the leakage detecting device in the first embodiment of the present invention; A timing chart for explaining the first operation example.
圖4是用以對本發明的第1實施形態中的漏電偵測裝置的第2動作例進行說明的時序圖。 FIG. 4 is a timing chart for explaining a second operation example of the leakage detecting device according to the first embodiment of the present invention.
圖5是用以對本發明的第1實施形態中的漏電偵測裝置的第3動作例進行說明的時序圖。 FIG. 5 is a timing chart for explaining a third operation example of the leakage detecting device according to the first embodiment of the present invention.
圖6是用以對本發明的第1實施形態中的漏電偵測裝置的第4動作例進行說明的時序圖。 FIG. 6 is a timing chart for explaining a fourth operation example of the leakage detecting device according to the first embodiment of the present invention.
圖7是用以對本發明的第1實施形態中的漏電偵測裝置的第5動作例進行說明的時序圖。 FIG. 7 is a timing chart for explaining a fifth operation example of the leakage detecting device according to the first embodiment of the present invention.
圖8是表示本發明的第2實施形態中的波形判別部的詳細的構成例的電路區塊圖。 FIG. 8 is a circuit block diagram showing a detailed configuration example of the waveform determination unit in the second embodiment of the present invention.
圖9是用以對本發明的第2實施形態中的漏電偵測裝置的動作例進行說明的時序圖。 FIG. 9 is a timing chart for explaining an operation example of the leakage detecting device according to the second embodiment of the present invention.
圖10是表示本發明的第3實施形態中的波形判別部的詳細的構成例的電路區塊圖。 FIG. 10 is a circuit block diagram showing a detailed configuration example of a waveform determination unit in the third embodiment of the present invention.
圖11是用以對本發明的第3實施形態中的漏電偵測裝置的動作例進行說明的時序圖。 FIG. 11 is a timing chart for explaining an operation example of the leakage detecting device according to the third embodiment of the present invention.
圖12是表示本發明的第4實施形態中的波形判別部的詳細的構成例的電路區塊圖。 FIG. 12 is a circuit block diagram showing a detailed configuration example of a waveform determination unit in the fourth embodiment of the present invention.
圖13是用以對本發明的第4實施形態中的漏電偵測裝置的動作例進行說明的時序圖。 FIG. 13 is a timing chart for explaining an operation example of the leakage detecting device in the fourth embodiment of the present invention.
圖14是表示本發明的第5實施形態中的漏電偵測裝置的構成例的電路區塊圖。 FIG. 14 is a circuit block diagram showing a configuration example of a leakage detecting device according to a fifth embodiment of the present invention.
圖15是表示本發明的第6實施形態中的漏電偵測裝置 的第1構成例的區塊圖。 Figure 15 is a view showing a leakage detecting device according to a sixth embodiment of the present invention; A block diagram of the first configuration example.
圖16是表示本發明的第6實施形態中的漏電偵測裝置的第2構成例的區塊圖。 FIG. 16 is a block diagram showing a second configuration example of the leakage detecting device according to the sixth embodiment of the present invention.
圖17是表示本發明的第6實施形態中的漏電偵測裝置的第3構成例的區塊圖。 FIG. 17 is a block diagram showing a third configuration example of the leakage detecting device according to the sixth embodiment of the present invention.
圖18是表示本發明的第6實施形態中的漏電偵測裝置的第4構成例的區塊圖。 FIG. 18 is a block diagram showing a fourth configuration example of the leakage detecting device according to the sixth embodiment of the present invention.
圖19是表示本發明的第6實施形態中的漏電偵測裝置的第5構成例的區塊圖。 FIG. 19 is a block diagram showing a fifth configuration example of the leakage detecting device according to the sixth embodiment of the present invention.
圖20是表示本發明的第6實施形態中的漏電偵測裝置的第6構成例的區塊圖。 FIG. 20 is a block diagram showing a sixth configuration example of the leakage detecting device according to the sixth embodiment of the present invention.
10‧‧‧零相變流器(ZCT) 10‧‧‧Zero-phase converter (ZCT)
20‧‧‧積分運算部 20‧‧‧Integral Computing Department
30‧‧‧積分值比較部 30‧‧‧Integral value comparison department
40‧‧‧波形判別部 40‧‧‧ Waveform Identification Department
50‧‧‧漏電偵測部 50‧‧‧Leakage Detection Department
100‧‧‧漏電偵測裝置 100‧‧‧Leakage detection device
Claims (61)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011064687A JP6065253B2 (en) | 2011-03-23 | 2011-03-23 | Earth leakage detector |
JP2011064686A JP6065252B2 (en) | 2011-03-23 | 2011-03-23 | Earth leakage detector |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201245728A TW201245728A (en) | 2012-11-16 |
TWI502208B true TWI502208B (en) | 2015-10-01 |
Family
ID=46878683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101109870A TWI502208B (en) | 2011-03-23 | 2012-03-22 | Electric leakage detection apparatus |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN103430036B (en) |
TW (1) | TWI502208B (en) |
WO (1) | WO2012127307A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3000315B1 (en) | 2012-12-20 | 2015-01-16 | Renault Sa | METHOD FOR CONTROLLING A MOTOR VEHICLE BATTERY CHARGER AND ASSOCIATED CHARGER. |
CN103684409B (en) * | 2013-12-25 | 2016-06-22 | 上海艾为电子技术股份有限公司 | Method for transmitting signals |
JP6708463B2 (en) | 2016-04-01 | 2020-06-10 | ローム株式会社 | Earth leakage detection circuit and earth leakage circuit breaker |
JP6725104B2 (en) * | 2016-04-04 | 2020-07-15 | 新日本無線株式会社 | Leakage detector |
JP6697746B2 (en) * | 2016-11-29 | 2020-05-27 | パナソニックIpマネジメント株式会社 | Leakage detector |
KR102063097B1 (en) * | 2017-07-19 | 2020-01-07 | 이현창 | Electrical leak detecting apparatus and electrical leak detecting method for improving the electrical leak detecting accuracy |
KR102017805B1 (en) | 2018-03-28 | 2019-09-03 | 엘에스산전 주식회사 | Earth leakage circuit breaker |
KR102672226B1 (en) * | 2019-01-07 | 2024-06-05 | 엘에스일렉트릭(주) | Circuit leakage Breaker capable of output the type of the leaked current and method of control the same |
CN110850194B (en) * | 2019-10-15 | 2020-10-30 | 上海交通大学 | Working condition simulation test circuit and method for cascaded converter submodule |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4422034A (en) * | 1980-01-22 | 1983-12-20 | Toyo Sushinki Kabushiki Kaisha | Method for measuring insulation resistance and device therefor |
JP2000102158A (en) * | 1998-07-24 | 2000-04-07 | Fuji Electric Co Ltd | Earth leakage circuit breaker |
WO2010001950A1 (en) * | 2008-07-02 | 2010-01-07 | パナソニック電工株式会社 | Wiring device with leakage detection function |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0670662B2 (en) * | 1989-01-31 | 1994-09-07 | 中部電力株式会社 | Power cable ground fault prediction method |
JPH07296708A (en) * | 1994-04-28 | 1995-11-10 | Matsushita Electric Works Ltd | Wiring breaker |
JP3267900B2 (en) * | 1996-07-09 | 2002-03-25 | 富士電機株式会社 | Earth leakage breaker |
DE19729168B4 (en) * | 1996-07-09 | 2007-08-16 | Fuji Electric Co., Ltd., Kawasaki | Residual-current device |
JP3788353B2 (en) * | 2002-01-24 | 2006-06-21 | 三菱電機株式会社 | Ground fault detection device for earth leakage breaker and phase control device |
KR100638635B1 (en) * | 2005-06-02 | 2006-10-27 | (주)갑진 | Earth leakage circuit breaker |
JP4935455B2 (en) * | 2007-03-27 | 2012-05-23 | 富士電機機器制御株式会社 | Earth leakage detector |
JP2009081928A (en) * | 2007-09-26 | 2009-04-16 | Tempearl Ind Co Ltd | Apparatus for detecting leakage current |
JP4931754B2 (en) * | 2007-10-03 | 2012-05-16 | 三菱電機株式会社 | Earth leakage breaker |
CN201408978Y (en) * | 2009-04-24 | 2010-02-17 | 北京Abb低压电器有限公司 | Electric leakage protector |
-
2012
- 2012-03-22 WO PCT/IB2012/000560 patent/WO2012127307A1/en active Application Filing
- 2012-03-22 CN CN201280014407.9A patent/CN103430036B/en active Active
- 2012-03-22 TW TW101109870A patent/TWI502208B/en active
- 2012-03-22 CN CN201510184300.4A patent/CN104764975B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4422034A (en) * | 1980-01-22 | 1983-12-20 | Toyo Sushinki Kabushiki Kaisha | Method for measuring insulation resistance and device therefor |
JP2000102158A (en) * | 1998-07-24 | 2000-04-07 | Fuji Electric Co Ltd | Earth leakage circuit breaker |
WO2010001950A1 (en) * | 2008-07-02 | 2010-01-07 | パナソニック電工株式会社 | Wiring device with leakage detection function |
Also Published As
Publication number | Publication date |
---|---|
WO2012127307A1 (en) | 2012-09-27 |
CN103430036B (en) | 2016-03-30 |
CN104764975B (en) | 2018-06-01 |
CN104764975A (en) | 2015-07-08 |
CN103430036A (en) | 2013-12-04 |
TW201245728A (en) | 2012-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI502208B (en) | Electric leakage detection apparatus | |
EP2541715B1 (en) | Dc power supply insulation fault detection circuit | |
CA2857710C (en) | Built-in testing of an arc fault/transient detector | |
JP6126930B2 (en) | Insulation state detector | |
EP2752674B1 (en) | A detection method of a ground fault in an electric power distribution network | |
CN103795022A (en) | Fault current detecting circuit | |
ES2608364T3 (en) | Protection device and procedure for verifying its operation | |
EP3657187A1 (en) | Fault detection in a low voltage differential signaling (lvds) system | |
KR102066713B1 (en) | Arc detection device for each eletric line | |
JP6065252B2 (en) | Earth leakage detector | |
JP6509029B2 (en) | Distribution board | |
CN109900979B (en) | Voltage suppressor test circuit and method for testing voltage suppressor | |
JP6065253B2 (en) | Earth leakage detector | |
US6842319B2 (en) | Procedure for producing an initiation signal after the current differential protection principle arrangement | |
US20140320297A1 (en) | Alarm signal generator circuit and alarm signal generation method | |
TW200947823A (en) | Protection apparatus and method for a power converter | |
ES2906835T3 (en) | Differential protection device and procedure and electrical apparatus comprising said device | |
JP6283919B2 (en) | Earth leakage detector | |
JP7072982B2 (en) | Discharge accident detection structure | |
CN112186725A (en) | Power supply device, surge detection device, and electronic apparatus | |
JP2016122007A (en) | Leak detection device | |
JP2021013224A5 (en) | Power supplies and electronics | |
KR101409479B1 (en) | Surge protect device having short detection type surge counter | |
CN105116314B (en) | A kind of thyristor protection detection trigger method | |
RU2408121C1 (en) | Device for radio-electronic equipment overvoltage protection |