Nothing Special   »   [go: up one dir, main page]

TWI462307B - Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel - Google Patents

Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel Download PDF

Info

Publication number
TWI462307B
TWI462307B TW098107027A TW98107027A TWI462307B TW I462307 B TWI462307 B TW I462307B TW 098107027 A TW098107027 A TW 098107027A TW 98107027 A TW98107027 A TW 98107027A TW I462307 B TWI462307 B TW I462307B
Authority
TW
Taiwan
Prior art keywords
layer
germanium
rich
dielectric layer
forming
Prior art date
Application number
TW098107027A
Other languages
Chinese (zh)
Other versions
TW201011923A (en
Inventor
An Thung Cho
Chih Wei Chao
Chia Tien Peng
Kun Chih Lin
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/202,647 external-priority patent/US9577137B2/en
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Publication of TW201011923A publication Critical patent/TW201011923A/en
Application granted granted Critical
Publication of TWI462307B publication Critical patent/TWI462307B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Liquid Crystal (AREA)

Description

具備多重能隙的矽奈米晶體光電池及其在一低溫多晶矽薄膜電晶體面板內之應用Nanocrystalline crystal photocell with multiple energy gaps and its application in a low temperature polycrystalline germanium thin film transistor panel

本發明一般係關於一光電池,尤其係關於具有擁有多重能隙的光電轉換層之光電池,及其在低溫多晶矽薄膜電晶體(LTPS-TFT,“low temperature polycrystalline silicon thin film transistor”)或非晶矽薄膜電晶體(a-Si TFT,“amorphous silicon thin film transistor”)面板內的應用。The present invention relates generally to a photovoltaic cell, and more particularly to a photovoltaic cell having a photoelectric conversion layer having multiple energy gaps, and a low temperature polycrystalline silicon thin film transistor (LTPS-TFT) or amorphous germanium. Application in a thin film transistor (a-Si TFT, "amorphous silicon thin film transistor") panel.

一太陽能電池或光電池屬於一種利用該光電效應將太陽能/光能轉換成電能的半導體裝置。一般來說,一太陽能電池配置成由矽製成的大面積P-N接合(P-N junction),其具有一層N型(負型)矽和一層與該層N型矽直接接觸的P型(正型)矽。當一光子撞擊該太陽能電池時,該光子可直接通過該矽(若該光子具有低光能)或從表面反射,或被該矽吸收(若該光子的光能高於該矽能隙值)。根據該太陽能電池的頻帶結構,後者產生一電子電洞配對以及一些熱量。由於該P-N接合的介面電場,所產生的電洞朝該P型矽層的陽極移動,同時所產生的電子朝該矽太陽能電池內該N型矽層上的陰極移動,藉此產生電能。A solar cell or photovoltaic cell belongs to a semiconductor device that converts solar/light energy into electrical energy using the photoelectric effect. Generally, a solar cell is configured as a large-area PN junction made of tantalum having a layer of N-type (negative) crucible and a P-type (positive type) in direct contact with the layer N-type crucible. Hey. When a photon strikes the solar cell, the photon can pass directly through the 矽 (if the photon has low light energy) or be reflected from the surface or absorbed by the ( (if the photon's light energy is higher than the 矽 energy gap value) . Depending on the frequency band structure of the solar cell, the latter produces an electron hole pairing and some heat. Due to the interface electric field of the P-N junction, the generated holes move toward the anode of the P-type germanium layer, and the generated electrons move toward the cathode on the N-type germanium layer in the germanium solar cell, thereby generating electrical energy.

太陽能電池所用的材料包含矽、III-V族半導體(例如GaAs)、II-VI族半導體(例如CdS/CdTe)、有機/聚合物材料以及其他。在這之中,最常發展的就是包含單晶矽晶圓式太陽能電池、多晶矽(poly-Si)薄膜式太陽能電池以及非晶矽(a-Si)薄膜式太陽能電池的矽太陽能電池。III-V族半導體式太陽能電池形成於鍺(Ge)基板上並且具有高效率,但是非常昂貴,所以只運用在衛星與積體光學當中,因為此成本當中有絕大部份用在該Ge基板。此外,III-V族和II-VI族半導體式太陽能電池無法輕易與矽基CMOS以及薄膜電晶體液晶顯示器(TFT-LCD)玻璃面板和低溫多晶矽(LTPS)處理整合。更進一步,製造III-V和II-VI族半導體式太陽能電池時會有嚴重金屬污染的問題。雖然非晶矽薄膜太陽能電池的成本不高,不過效率和穩定性也不高。因此,矽晶圓式太陽能電池成為太陽能電池市場的主力。Materials used for solar cells include germanium, III-V semiconductors (such as GaAs), II-VI semiconductors (such as CdS/CdTe), organic/polymer materials, and others. Among them, the most commonly developed are solar cells including single crystal germanium wafer type solar cells, polycrystalline silicon (poly-Si) thin film solar cells, and amorphous germanium (a-Si) thin film solar cells. III-V semiconductor solar cells are formed on germanium (Ge) substrates and have high efficiency, but are very expensive, so they are only used in satellite and integrated optics, because most of this cost is used in the Ge substrate. . In addition, III-V and II-VI semiconductor solar cells cannot be easily integrated with germanium-based CMOS and thin film transistor liquid crystal display (TFT-LCD) glass panels and low temperature polysilicon (LTPS) processing. Further, there is a problem of serious metal contamination when manufacturing III-V and II-VI semiconductor solar cells. Although the cost of amorphous germanium thin film solar cells is not high, efficiency and stability are not high. Therefore, silicon wafer solar cells have become the mainstay of the solar cell market.

太陽能電池屬於能量轉換裝置,因此轉換效率受限於Camot Limit,這大約是85%。目前為止,市面上的太陽能電池其達到的最高轉換效率大約是33%。因此,該等太陽能電池效率還有改善的空間。Solar cells are energy conversion devices, so conversion efficiency is limited by the Camot Limit, which is about 85%. So far, the highest conversion efficiency achieved by solar cells on the market is about 33%. Therefore, there is room for improvement in the efficiency of such solar cells.

理論上,能量低於該吸收材料能隙的光子並無法被材料所吸收而產生一電子電洞配對,如此其能量無法轉換只能穿過該吸收材料。對於能量高於該能隙的光子而言,只有高於該能隙的一些能量可以轉換成有用的電子電洞配對輸出。當能量更大的光子被吸收時,高於該能隙的過多能量會轉換成該載子組合的動能。這些過多的動能隨著該等載子動能減緩至均衡速度而透過光子互動轉成熱量。該太陽頻譜接近大約6000K的黑體頻譜,大多數到達地球的太陽輻射由能量大於該矽能隙(矽能帶間隙)的光子所構成。這些較高能量的光子將由該太陽能電池吸收,但是這些光子與該矽能隙之間的能量差將透過晶格震動(聲子)轉換成熱量,而非轉換成可用的電能。針對單一接合(單一能隙)太陽能電池而言,理論上最高轉換效率大約28%。不過,因為材料無法吸收所有能量高於該能隙的光子之本質限制,並且因為該等材料的自由載子吸收限制了該光子吸收100%轉換成電子電洞配對,所以市面上單晶矽與多晶矽(poly-Si)太陽能電池的平均轉換效率只有大約15%。In theory, photons with energies below the energy gap of the absorbing material are not absorbed by the material to create an electron hole pairing so that their energy cannot be converted through the absorbing material. For photons with energies above the energy gap, only some of the energy above the energy gap can be converted into a useful electron hole paired output. When a more energetic photon is absorbed, excess energy above the energy gap is converted into kinetic energy of the carrier combination. These excessive kinetic energy is converted into heat through photon interaction as the kinetic energy of the carriers slows down to equilibrium speed. The solar spectrum is close to a blackbody spectrum of approximately 6000K, and most of the solar radiation reaching the Earth consists of photons with energy greater than the chirp energy gap. These higher energy photons will be absorbed by the solar cell, but the energy difference between these photons and the chirp gap will be converted into heat through lattice vibrations (phonons) rather than being converted into usable electrical energy. For a single bonded (single band gap) solar cell, the theoretical maximum conversion efficiency is approximately 28%. However, because the material cannot absorb all the essential limitations of photons whose energy is higher than the energy gap, and because the free carrier absorption of these materials limits the photon absorption to 100% conversion into electron hole pairing, Polycrystalline germanium (poly-Si) solar cells have an average conversion efficiency of only about 15%.

對於多重接合(或多重能隙)太陽能電池而言,以能隙的遞減順序堆疊(串接)個別單接合太陽能電池,最頂端電池擷取該等高能量光子並通過較低能隙電池要吸收的剩餘光子。使用多重能隙(或多接合)可減少該頻帶間能量關係,如此相較於單一接合(單一能隙)太陽能電池,減少產生光子的可能性,藉此減少熱量產生並改善該光電轉換效率。不過,該等串接的太陽能電池具有接合損失與晶格誤配的問題。For multiple-junction (or multiple-gap) solar cells, individual single-junction solar cells are stacked (serially) in descending order of energy gap, and the top-most cells capture the high-energy photons and absorb them through lower-gap cells. The remaining photons. The use of multiple energy gaps (or multiple junctions) reduces the energy relationship between the bands, thus reducing the likelihood of photons being generated compared to a single junction (single band gap) solar cell, thereby reducing heat generation and improving the photoelectric conversion efficiency. However, such tandem solar cells have problems with joint loss and lattice mismatch.

因此,該技術內至今所要解決的問題就是解決上述缺陷與不完備。Therefore, the problem to be solved in the technology to date is to solve the above defects and incompleteness.

近來,因為具備高光電效率以及奈米結構光吸收的波長可調整性,所以眾人的注意力都集中在量子點太陽能電池,即第三代太陽能電池上。對於一運用矽的太陽能電池而言,一種間接能隙半導體,已經利用奈米結構發展出量子侷限效應(quantum confinement effect)。為了獲得小於5nm的結晶或非晶矽(a-Si)奈米結構,像是量子井、量子線和量子點產生的量子侷限效應,必須使用能階大於矽能階之材料當成矩陣(材料基底)或障壁。吾人知道,隨著奈米結構尺寸變小,光的波長變短。在這些奈米結構之中,量子點結構具有高量子效率的優點。Recently, because of the high photoelectric efficiency and the wavelength adjustability of nanostructured light absorption, attention has been focused on quantum dot solar cells, that is, third generation solar cells. For a solar cell using germanium, an indirect gap semiconductor has developed a quantum confinement effect using nanostructures. In order to obtain a crystalline or amorphous yttrium (a-Si) nanostructure of less than 5 nm, such as the quantum confinement effect of quantum wells, quantum wires, and quantum dots, it is necessary to use materials with energy levels greater than the 矽 energy level as a matrix (material substrate ) or barriers. I know that as the nanostructure size becomes smaller, the wavelength of light becomes shorter. Among these nanostructures, quantum dot structures have the advantage of high quantum efficiency.

對於一矽量子點太陽能電池而言,該等矽量子點通常內嵌在一介電矩陣內,像是氧化矽(SiOx)、氮化矽(SiNy)、碳化矽(SiCz)等。該等矽量子點可提供一寬廣的多重能隙(大約4.1eV至1.2eV)結構。For a quantum dot solar cell, the germanium quantum dots are usually embedded in a dielectric matrix such as yttrium oxide (SiOx), tantalum nitride (SiNy), tantalum carbide (SiCz), or the like. The germanium quantum dots provide a broad multiple energy gap (approximately 4.1 eV to 1.2 eV) structure.

本發明一方面係關於一光電池或太陽能電池。在一個具體實施例內,該光電池包含一第一導電層;一形成於第一導電層上的N型摻雜半導體層;一形成於該N型摻雜半導體層上的第一矽層;一形成於第一矽層上的奈米結晶矽(nc-Si)層;一形成於該奈米結晶矽層上的第二矽層;一形成於第二矽層上的P型摻雜半導體層;以及一形成於該P型摻雜半導體層上的第二導電層。One aspect of the invention relates to a photovoltaic cell or a solar cell. In a specific embodiment, the photovoltaic cell comprises a first conductive layer; an N-type doped semiconductor layer formed on the first conductive layer; and a first germanium layer formed on the N-type doped semiconductor layer; a nanocrystalline yttrium (nc-Si) layer formed on the first ruthenium layer; a second ruthenium layer formed on the nano crystallization layer; and a P-type doped semiconductor layer formed on the second ruthenium layer And a second conductive layer formed on the P-type doped semiconductor layer.

在一個具體實施例內,第一矽層與第二矽層兩者其中之一者由非晶矽(a-Si)形成,並且第一矽層與第二矽層兩者其中的另一者由多晶矽(poly-Si)所形成。該N型摻雜半導體層由N型摻雜矽所形成,並且在此該P型摻雜半導體層由P型摻雜矽所形成。In a specific embodiment, one of the first tantalum layer and the second tantalum layer is formed of amorphous germanium (a-Si), and the other of the first tantalum layer and the second tantalum layer It is formed of polycrystalline silicon (poly-Si). The N-type doped semiconductor layer is formed of an N-type doped germanium, and here the P-type doped semiconductor layer is formed of a P-type doped germanium.

該奈米結晶矽層具有複數個矽奈米晶體,矽奈米晶體大小在大約1-20nm的範圍內。The nanocrystalline ruthenium layer has a plurality of ruthenium crystals having a crystal size ranging from about 1 to 20 nm.

第一導電層和第二導電層兩者當中,至少一者是由一透明導電材料形成。該透明導電材料可為銦錫氧化物(ITO)、銦鋅氧化物(IZO)、鋁鋅氧化物(AZO)、鉿氧化物(HfO)或這些化合物的組合。At least one of the first conductive layer and the second conductive layer is formed of a transparent conductive material. The transparent conductive material may be indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), cerium oxide (HfO), or a combination of these compounds.

在另一方面,本發明係關於製造一光電池的方法。在一具體實施例內,該方法包含下列步驟:提供一基板;在該基板上形成一第一導電層;在第一導電層上形成一N型摻雜半導體層;在該N型摻雜半導體層上形成一第一矽層;在第一矽層上形成一奈米結晶矽層;在該奈米結晶矽層上形成一第二矽層;在第二矽層上形成一P型摻雜半導體層;以及在該P型摻雜半導體層上形成一第二導電層。In another aspect, the invention is directed to a method of making a photovoltaic cell. In a specific embodiment, the method comprises the steps of: providing a substrate; forming a first conductive layer on the substrate; forming an N-type doped semiconductor layer on the first conductive layer; and forming the N-type doped semiconductor on the first conductive layer; Forming a first germanium layer on the layer; forming a nanocrystalline germanium layer on the first germanium layer; forming a second germanium layer on the nanocrystalline germanium layer; forming a P-type doping on the second germanium layer a semiconductor layer; and a second conductive layer formed on the P-type doped semiconductor layer.

在一個具體實施例內,形成該奈米結晶矽層的步驟包含在第一矽層上形成富矽(Si-rich)介電層,並且雷射退火該富矽介電層來在其內形成複數個矽奈米晶體。In a specific embodiment, the step of forming the nanocrystalline germanium layer comprises forming a germanium-rich (Si-rich) dielectric layer on the first germanium layer, and laser annealing the germanium-rich dielectric layer to form therein A plurality of nano crystals.

在一個具體實施例內,該N型摻雜半導體層由N型摻雜矽所形成,並且在此該P型摻雜半導體層由P型摻雜矽所形成。該奈米結晶矽層具有複數個矽奈米晶體,矽奈米晶體大小在大約1-20nm的範圍內。第一矽層與第二矽層其中之一者由非晶矽形成,另一者由多晶矽所形成。In a specific embodiment, the N-type doped semiconductor layer is formed of an N-type doped germanium, and here the P-type doped semiconductor layer is formed of a P-type doped germanium. The nanocrystalline ruthenium layer has a plurality of ruthenium crystals having a crystal size ranging from about 1 to 20 nm. One of the first layer and the second layer is formed of amorphous germanium, and the other is formed of polycrystalline germanium.

第一導電層和第二導電層兩者當中,至少一者由一透明導電材料形成。該透明導電材料可為銦錫氧化物(ITO)、銦鋅氧化物(IZO)、鋁鋅氧化物(AZO)、鉿氧化物(HfO)或這些化合物的組合。At least one of the first conductive layer and the second conductive layer is formed of a transparent conductive material. The transparent conductive material may be indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), cerium oxide (HfO), or a combination of these compounds.

本發明另一方面係關於一光電池。在一個具體實施例內,該光電池具有一第一導電層、一第二導電層以及一光電轉換層,其中該光電轉換層形成在第一導電層與第二導電層之間。該光電轉換層具有一多重能隙。第一導電層和第二導電層兩者當中,至少一者由一透明導電材料形成。在一個具體實施例內,該光電池進一步具有一N型摻雜半導體層和一P型摻雜半導體層。N型摻雜半導體層形成在第一導電層與該光電轉換層之間,P型摻雜半導體層形成在第二導電層與該光電轉換層之間。Another aspect of the invention relates to a photovoltaic cell. In a specific embodiment, the photovoltaic cell has a first conductive layer, a second conductive layer, and a photoelectric conversion layer, wherein the photoelectric conversion layer is formed between the first conductive layer and the second conductive layer. The photoelectric conversion layer has a multiple energy gap. At least one of the first conductive layer and the second conductive layer is formed of a transparent conductive material. In a specific embodiment, the photovoltaic cell further has an N-type doped semiconductor layer and a P-type doped semiconductor layer. An N-type doped semiconductor layer is formed between the first conductive layer and the photoelectric conversion layer, and a P-type doped semiconductor layer is formed between the second conductive layer and the photoelectric conversion layer.

在一個具體實施例內,該光電轉換層包含一非晶矽(a-Si)層、一多晶矽(poly-Si)層以及在該非晶矽層與該多晶矽層之間形成的一富矽介電層。該富矽介電層的組合之材料可為富矽氧化物、富矽氮化物、富矽氮氧化物、富矽碳化物或這些化合物的組合。該富矽介電層包含一奈米結晶矽層,奈米結晶矽層具有複數個矽奈米晶體,其中矽奈米晶體大小在大約1-20nm的範圍之內。In a specific embodiment, the photoelectric conversion layer comprises an amorphous germanium (a-Si) layer, a poly-Si layer, and a germanium-rich dielectric formed between the amorphous germanium layer and the poly germanium layer. Floor. The material of the combination of the ytterbium-rich dielectric layer may be a cerium-rich oxide, a cerium-rich nitride, a cerium-rich oxynitride, a cerium-rich carbide or a combination of these compounds. The ruthenium-rich dielectric layer comprises a nanocrystalline ruthenium layer having a plurality of ruthenium crystals, wherein the ruthenium crystal size is in the range of about 1-20 nm.

在另一具體實施例內,該光電轉換層包含在第一導電層上形成並具有一折射率n1的一第一富矽介電層,以及在第一富矽介電層上形成並具有一折射率n2的一第二富矽介電層,其中n2<n1。在一個具體實施例內,該光電轉換層可進一步包含在第二富矽介電層與第二導電層之間形成並具有一折射率n3的一第三富矽介電層,其中n3<n2<n1。各第一富矽介電層、第二富矽介電層和第三富矽介電層的組成材料可為富矽氧化物、富矽氮化物、富矽氮氧化物、富矽碳化物或這些化合物的組合。在其他具體實施例內,該光電轉換層也包含一非晶矽層和一多晶矽層,第一富矽介電層與第二富矽介電層形成於該非晶矽層與該多晶矽層之間。In another embodiment, the photoelectric conversion layer comprises a first germanium-rich dielectric layer formed on the first conductive layer and having a refractive index n1, and formed on the first germanium-rich dielectric layer and having a a second cerium-rich dielectric layer having a refractive index n2, wherein n2 < n1. In a specific embodiment, the photoelectric conversion layer may further include a third germanium-rich dielectric layer formed between the second germanium-rich dielectric layer and the second conductive layer and having a refractive index n3, wherein n3<n2 <n1. The constituent materials of each of the first ruthenium-rich dielectric layer, the second ruthenium-rich dielectric layer, and the third ruthenium-rich dielectric layer may be cerium-rich oxide, cerium-rich nitride, cerium-rich oxynitride, ore-rich carbide or A combination of these compounds. In other embodiments, the photoelectric conversion layer also includes an amorphous germanium layer and a poly germanium layer, and the first germanium-rich dielectric layer and the second germanium-rich dielectric layer are formed between the amorphous germanium layer and the poly germanium layer. .

本發明另一方面係關於製造一光電池的方法。在一個具體實施例內,該方法包含:提供一基板;在該基板上形成一第一導電層;在第一導電層上形成一光電轉換層,其中該光電轉換層具有一多重能隙;以及在該光電轉換層上形成一第二導電層之該等步驟。Another aspect of the invention relates to a method of making a photovoltaic cell. In a specific embodiment, the method includes: providing a substrate; forming a first conductive layer on the substrate; forming a photoelectric conversion layer on the first conductive layer, wherein the photoelectric conversion layer has a multiple energy gap; And the steps of forming a second conductive layer on the photoelectric conversion layer.

此外,該方法也包含在第一導電層與該光電轉換層之間形成一N型摻雜半導體層,以及在第二導電層與該光電轉換層形成一P型摻雜半導體層之該等步驟。In addition, the method also includes the steps of forming an N-type doped semiconductor layer between the first conductive layer and the photoelectric conversion layer, and forming a P-type doped semiconductor layer between the second conductive layer and the photoelectric conversion layer. .

在一個具體實施例內,形成該光電轉換層的步驟包含在第一導電層上形成一第一矽層、在第一矽層上形成一富矽介面層以及在該富矽介電層上形成一第二矽層。第一矽層與第二矽層兩者其中之一者包含一非晶矽層,另一者包含一多晶矽層。形成該富矽介電層的步驟進一步包含雷射退火該富矽介電層以在其內形成複數個矽奈米晶體。In a specific embodiment, the step of forming the photoelectric conversion layer includes forming a first germanium layer on the first conductive layer, forming a germanium rich interposer layer on the first germanium layer, and forming on the germanium rich dielectric layer. A second layer of enamel. One of the first layer and the second layer includes an amorphous layer and the other includes a polysilicon layer. The step of forming the germanium-rich dielectric layer further includes laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals therein.

在另一具體實施例內,形成該光電轉換層的步驟包含在第一導電層上形成並具有一折射率n1的一第一富矽介電層,以及在第一富矽介電層上形成並具有一折射率n2的一第二富矽介電層。在一個具體實施例內,形成該光電轉換層的步驟進一步包含在第二富矽介電層與第二導電層之間形成並具有一折射率n3的一第三富矽介電層,其中n3<n2<n1。In another embodiment, the step of forming the photoelectric conversion layer includes forming a first germanium-rich dielectric layer on the first conductive layer and having a refractive index n1, and forming on the first germanium-rich dielectric layer And having a second ytterbium-rich dielectric layer having a refractive index n2. In a specific embodiment, the step of forming the photoelectric conversion layer further includes forming a third germanium-rich dielectric layer between the second germanium-rich dielectric layer and the second conductive layer and having a refractive index n3, wherein n3 <n2<n1.

本發明另一方面係關於在操作上可由一液晶顯示驅動器所驅動並且可由背光照明的液晶顯示面板(LCD panel,“liquid crystal display panel”)。在一個具體實施例內,該液晶顯示面板具有一顯示區域來顯示相關資訊,以及一光電池,該光電池置於圍繞該顯示區域的區域內並曝露在一光線下,來將該光線的光學能量轉換成一電能,該電能供應至該液晶顯示驅動器當成一驅動電力。該光電池包含一第一導電層、一第二導電層以及在第一導電層與第二導電層之間形成的一光電轉換層,其中該光電轉換層具有一多重能隙。在一個具體實施例內,該顯示區域具有複數個低溫多晶矽薄膜電晶體(LTPS-TFT,“low temperature polycrystalline silicon thin film transistor”)或非晶矽薄膜電晶體(a-Si TFT,“amorphous silicon thin film transistor”)。Another aspect of the invention relates to a liquid crystal display panel (LCD panel) that is operatively operable by a liquid crystal display driver and that can be illuminated by a backlight. In a specific embodiment, the liquid crystal display panel has a display area for displaying related information, and a photocell placed in an area surrounding the display area and exposed to a light to convert the optical energy of the light. The electric energy is supplied to the liquid crystal display driver as a driving power. The photovoltaic cell includes a first conductive layer, a second conductive layer, and a photoelectric conversion layer formed between the first conductive layer and the second conductive layer, wherein the photoelectric conversion layer has a multiple energy gap. In one embodiment, the display region has a plurality of low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) or amorphous silicon thin film transistors (a-Si TFTs, "amorphous silicon thin" Film transistor").

在一個具體實施例內,該光電轉換層包含一非晶矽層、一多晶矽層以及在該非晶矽層與該多晶矽層之間形成的一富矽介電層。該富矽介電層由包含富矽氧化物、富矽氮化物、富矽氮氧化物、富矽碳化物或這些的組合之材料所形成。在一個具體實施例內,該富矽介電層包含一奈米結晶矽層,奈米結晶矽層具有複數個矽奈米晶體,矽奈米晶體大小在大約1-20nm的範圍之內。In a specific embodiment, the photoelectric conversion layer comprises an amorphous germanium layer, a poly germanium layer, and a germanium-rich dielectric layer formed between the amorphous germanium layer and the poly germanium layer. The ytterbium-rich dielectric layer is formed of a material comprising a cerium-rich oxide, a cerium-rich nitride, a cerium-rich oxynitride, a cerium-rich carbide, or a combination thereof. In one embodiment, the ruthenium-rich dielectric layer comprises a nanocrystalline ruthenium layer having a plurality of ruthenium crystals having a crystal size ranging from about 1 to 20 nm.

在其他具體實施例內,該光電轉換層包含在第一導電層上形成並具有一折射率n1的一第一富矽介電層,以及在第一富矽介電層上形成並具有一折射率n2的一第二富矽介電層,其中n2<n1。該光電轉換層可進一步具有在第二富矽介電層與第二導電層之間形成並具有一折射率n3的一第三富矽介電層,其中n3<n2<n1。In other embodiments, the photoelectric conversion layer comprises a first ytterbium-rich dielectric layer formed on the first conductive layer and having a refractive index n1, and formed on the first ytterbium-rich dielectric layer and having a refraction A second bismuth-rich dielectric layer of rate n2, where n2 < n1. The photoelectric conversion layer may further have a third germanium-rich dielectric layer formed between the second germanium-rich dielectric layer and the second conductive layer and having a refractive index n3, where n3 < n2 < n1.

本發明一方面係關於製造可由一液晶顯示驅動器所驅動並且可由背光照明的液晶顯示面板之方法。在一個具體實施例內,該方法包含:提供一基板;在該基板上形成一顯示區域;以及在該基板上圍繞該顯示區域的一區域內形成一光電池並曝露在一光線下。如此當接收到光線的光學能量時,該光電池將該光學能量轉換成一電能,該電能供應至該液晶顯示驅動器當成一驅動電力。形成該光電池的步驟包含:形成一第一導電層;形成一第二導電層;以及在第一導電層與第二導電層之間形成一光電轉換層,其中該光電轉換層具有一多重能隙。One aspect of the invention relates to a method of fabricating a liquid crystal display panel that can be driven by a liquid crystal display driver and that can be illuminated by a backlight. In one embodiment, the method includes: providing a substrate; forming a display area on the substrate; and forming a photocell in the area surrounding the display area on the substrate and exposing it to a light. Thus, when the optical energy of the light is received, the photovoltaic cell converts the optical energy into an electrical energy that is supplied to the liquid crystal display driver as a driving power. The step of forming the photovoltaic cell includes: forming a first conductive layer; forming a second conductive layer; and forming a photoelectric conversion layer between the first conductive layer and the second conductive layer, wherein the photoelectric conversion layer has a multiple energy Gap.

在一個具體實施例內,形成該光電轉換層的步驟包含在第一導電層上形成一第一矽層、在第一矽層上形成一富矽介電層以及在該雷射退火的富矽介電層上形成一第二矽層。第一矽層與第二矽層兩者其中之一者包含一非晶矽層,另一者包含一多晶矽層。在一個具體實施例內,形成該富矽介電層的步驟進一步包含雷射退火該富矽介電層以在其內形成複數個矽奈米晶體。In a specific embodiment, the step of forming the photoelectric conversion layer comprises forming a first germanium layer on the first conductive layer, forming a germanium-rich dielectric layer on the first germanium layer, and enriching the laser in the laser annealing A second layer of germanium is formed on the dielectric layer. One of the first layer and the second layer includes an amorphous layer and the other includes a polysilicon layer. In a specific embodiment, the step of forming the germanium-rich dielectric layer further comprises laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals therein.

在其他具體實施例內,形成該光電轉換層的步驟包含在第一導電層上形成並具有一折射率n1的一第一富矽介電層,以及在第一富矽介電層上形成並具有一折射率n2的一第二富矽介電層。此外,形成該光電轉換層的步驟進一步具有在第二富矽介電層與第二導電層之間形成並具有一折射率n3的一第三富矽介電層,其中n3<n2<n1。In other embodiments, the step of forming the photoelectric conversion layer includes forming a first germanium-rich dielectric layer on the first conductive layer and having a refractive index n1, and forming on the first germanium-rich dielectric layer A second ytterbium-rich dielectric layer having a refractive index n2. Further, the step of forming the photoelectric conversion layer further has a third germanium-rich dielectric layer formed between the second germanium-rich dielectric layer and the second conductive layer and having a refractive index n3, wherein n3 < n2 < n1.

本發明另一方面係關於具有複數個以矩陣形式排列的像素之顯示面板。每一像素包含用於顯示相關資訊的一主動區域、具有一或多個切換元件的一切換區域以及在該主動區域與該切換區域之間形成的光電池,其中該光電池具有一擁有一多重能隙的光電轉換層。Another aspect of the invention relates to a display panel having a plurality of pixels arranged in a matrix. Each pixel includes an active area for displaying related information, a switching area having one or more switching elements, and a photovoltaic cell formed between the active area and the switching area, wherein the photovoltaic cell has a multiple energy The photoelectric conversion layer of the gap.

在一個具體實施例內,該光電轉換層包含一非晶矽層、一多晶矽層以及在該非晶矽層與該多晶矽層之間形成的一富矽介電層。該富矽介電層包含一奈米結晶矽層,其具有複數個矽奈米晶體大小在大約1-20nm的範圍之內。In a specific embodiment, the photoelectric conversion layer comprises an amorphous germanium layer, a poly germanium layer, and a germanium-rich dielectric layer formed between the amorphous germanium layer and the poly germanium layer. The ruthenium-rich dielectric layer comprises a nanocrystalline ruthenium layer having a plurality of ruthenium crystal sizes ranging from about 1 to 20 nm.

本發明另一方面係關於製造顯示面板的方法。在一個具體實施例內,該方法包含:提供一基板;並且在該基板上以矩陣形式形成複數個像素。其中,每一像素包含一光電池,該光電池具有一擁有一多重能隙的光電轉換層。Another aspect of the invention relates to a method of manufacturing a display panel. In a specific embodiment, the method includes: providing a substrate; and forming a plurality of pixels in a matrix on the substrate. Each of the pixels includes a photocell having a photoelectric conversion layer having a plurality of energy gaps.

在一個具體實施例內,形成該複數個像素的方法包含該等步驟:(a)形成複數個電耦合至該基板上閘線的閘極,該複數個閘極在空間上彼此相隔,並且每一對相鄰閘極之間定義一主動區域、切換區域以及一光電池。;(b)在該複數個閘極以及該基板的該剩餘區域上形成一閘絕緣層;(c)在該閘絕緣層上形成一非晶矽層,並覆蓋每一切換區域內每一閘極;(d)在該非晶矽層上形成一摻雜的非晶矽層;(e)在該摻雜的非晶矽層上以及該閘絕緣層的剩餘區域上形成一第一導電層;(f)在第一導電層上放置覆蓋每一光電池區域的一富矽介電層;(g)在每一切換區域內形成一源極和一汲極,藉此在該基板上形成場效電晶體的一陣列;(h)在第一導電層上形成一覆蓋該場效電晶體陣列與該富矽介電層的被動層;(i)通道接觸並且在該切換區域和該光電池區域內該被動層上;以及(j)在該切換區域與該光電池區域之間一區域上形成具有一第一部分的一第二導電層,如此第一部分在每一切換區域內通過該通道接觸該場效電晶體的汲極,以及接觸該光電池區域內該富矽介電層上一第二部分。In a specific embodiment, the method of forming the plurality of pixels includes the steps of: (a) forming a plurality of gates electrically coupled to the gate lines of the substrate, the plurality of gates being spatially separated from each other, and each An active area, a switching area, and a photocell are defined between a pair of adjacent gates. (b) forming a gate insulating layer on the plurality of gates and the remaining region of the substrate; (c) forming an amorphous germanium layer on the gate insulating layer and covering each gate in each switching region (d) forming a doped amorphous germanium layer on the amorphous germanium layer; (e) forming a first conductive layer on the doped amorphous germanium layer and remaining regions of the gate insulating layer; (f) placing a ruthenium-rich dielectric layer covering each photocell region on the first conductive layer; (g) forming a source and a drain in each of the switching regions, thereby forming a field effect on the substrate An array of transistors; (h) forming a passive layer overlying the field effect transistor array and the germanium-rich dielectric layer on the first conductive layer; (i) channel contact and in the switching region and the photocell region And (j) forming a second conductive layer having a first portion on a region between the switching region and the photovoltaic cell region, such that the first portion contacts the field effect through the channel in each switching region a drain of the transistor and a second portion of the fused dielectric layer in contact with the photocell region.

形成該複數個像素的步驟進一步包含雷射退火該富矽介電層來在其內形成複數個矽奈米晶體。The step of forming the plurality of pixels further includes laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals therein.

在一個具體實施例內,該閘絕緣層由氧化矽、氮化矽或氮氧化矽形成。該摻雜的非晶矽層包含n+摻雜的非晶矽或p+摻雜的非晶矽。形成該被動層的一介電材料可包含氧化矽或氮化矽。在第一導電層和第二導電層當中,至少一者為透明。在一個具體實施例內,第二導電層可由銦錫氧化物(ITO)、銦鋅氧化物(IZO)、鋁鋅氧化物(AZO)、鉿氧化物(HfO)或這些化合物的組合來形成。In a specific embodiment, the gate insulating layer is formed of hafnium oxide, tantalum nitride or hafnium oxynitride. The doped amorphous germanium layer comprises an n+ doped amorphous germanium or a p+ doped amorphous germanium. A dielectric material forming the passive layer may comprise hafnium oxide or tantalum nitride. At least one of the first conductive layer and the second conductive layer is transparent. In a specific embodiment, the second conductive layer may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), hafnium oxide (HfO), or a combination of these compounds.

從下列較佳具體實施例結合附圖的說明當中,將可瞭解本發明的這些與其他範圍,不過在不悖離所公佈創新概念的精神與範疇之下可進行變化與修改。These and other aspects of the invention will be apparent from the following description of the preferred embodiments of the invention.

在下列僅供說明的範例中會更詳細說明本發明,如此精通此技術的人士將可瞭解許多修改與變化。在此將詳細說明本發明的許多具體實施例。請參閱圖式,圖式中相同的號碼表示相同的組件。針對此處所說明以及稍後整個申請專利範圍中所使用,除非清楚指示,否則「一」和「該」的意思包含複數。另外,針對此處所說明以及稍後整個申請專利範圍中所使用,除非清楚指示,否則「之中」的意思包含「之中」和「之上」。此外,底下會對本說明書內使用的某些詞彙有更特殊的定義。The invention will be described in more detail in the following description of the examples, and many modifications and variations will be apparent to those skilled in the art. Many specific embodiments of the invention are described in detail herein. Please refer to the drawings, in which like numerals indicate like components. The use of the terms "a", "an" and "the" In addition, the meaning of "middle" includes "middle" and "above" as used herein and as used throughout the claims. In addition, there are more specific definitions of certain terms used in this specification.

如此處所使用,「大約」或「約略」一般表示在已知值或範圍的百分之20內,較佳在百分之10內,更佳在百分之5內。其中給予的數量為約略值,表示若未明確表示則可推論為「大約」或「約略」等詞。As used herein, "about" or "about" generally means within 20 percent of the known value or range, preferably within 10 percent, and more preferably within 5 percent. The quantity given is an approximate value, which means that if it is not clearly indicated, it can be inferred to be "about" or "about".

如此處所使用,本說明書內使用的「太陽能電池」與「光電池」為同義字,表示利用該光電效應將太陽能/光能轉換成電力的裝置。As used herein, "solar cell" and "photocell" as used in this specification are synonymous, and means a device that converts solar energy/light energy into electric power by the photoelectric effect.

此處使用許多簡稱和縮寫,「nc-Si」就是奈米晶體矽、「a-Si」為非晶矽、「poly-Si」為多晶矽、「Si-rich」為富矽、「LTPS」為低溫多晶矽、「TFT」為薄膜電晶體、「PECVD」為電漿增強化學汽相沈積、「ELA」為準分子雷射退火、「CLC」為連續波雷射晶體化。Many abbreviations and abbreviations are used here. "nc-Si" is a nanocrystal, "a-Si" is amorphous, "poly-Si" is polycrystalline, "Si-rich" is rich, and "LTPS" is Low-temperature polysilicon, "TFT" is a thin film transistor, "PECVD" is plasma-enhanced chemical vapor deposition, "ELA" is excimer laser annealing, and "CLC" is continuous-wave laser crystallization.

在此將詳細參考本發明的具體實施例,並結合第1圖至第14圖來做說明。根據本發明的目的,如此處所具體實施以及廣泛說明,在一個範圍內,本發明係關於具有多重能隙(多頻帶能隙,multi-band gap)的矽奈米晶體之光電池及其在一低溫多晶矽薄膜電晶體(LTPS-TFT)面板內的應用。Specific embodiments of the present invention will be described in detail herein with reference to FIGS. 1 through 14. In accordance with the purpose of the present invention, as embodied and broadly described herein, in one aspect, the present invention is directed to a photovoltaic cell having a multi-band gap and a low-energy gap and its low temperature Applications in polycrystalline germanium thin film transistor (LTPS-TFT) panels.

請參閱第1圖,在此圖解顯示根據本發明一個具體實施例的光電池100。在此示例性具體實施例內,光電池100具有一個第一導電層110、一個形成於第一導電層110上的富矽介電層140以及一個形成於富矽介電層140上的第二導電層170。富矽介電層140可用PECVD來沈積。在該富矽介電沈積處理中,四氫化矽(SiH4)與一氧化二氮(N2O)(或氨NH3或氮N2)氣體的比例經過調整,以獲得所要的折射率範圍。其中,折射率的範圍表示薄膜內矽的富含程度。利用適當的雷射退火,將富矽介電層140內多餘的矽原子分離、聚集並且轉成矽奈米晶體,以形成奈米結晶富矽介電層(奈米結晶矽層)。如此可製造出具有不同的折射率(1.6-3.7)、不同的厚度(50-500nm)和不同大小(1-20nm)的矽奈米晶體145的富矽介電層。由於不同半導體材料熔點及其能量吸收效率等級的變化,利用雷射結晶多晶矽或非晶矽薄膜也可形成複數個雷射感應矽奈米晶體。因此,該雷射結晶處理建構出一種多重能隙光吸收結構,其讓光電池100可吸收波長範圍大約300-1000nm的光線。Referring to Figure 1, there is shown a photovoltaic cell 100 in accordance with an embodiment of the present invention. In this exemplary embodiment, the photovoltaic cell 100 has a first conductive layer 110, a germanium-rich dielectric layer 140 formed on the first conductive layer 110, and a second conductive layer formed on the germanium-rich dielectric layer 140. Layer 170. The ruthenium rich dielectric layer 140 can be deposited by PECVD. In the cerium-rich dielectric deposition process, the ratio of tetrahydrogen hydride (SiH4) to nitrous oxide (N2O) (or ammonia NH3 or nitrogen N2) gas is adjusted to obtain a desired refractive index range. Among them, the range of the refractive index indicates the degree of enrichment of ruthenium in the film. The excess germanium atoms in the germanium-rich dielectric layer 140 are separated, aggregated, and converted into nanocrystals by appropriate laser annealing to form a nanocrystalline crystalline germanium dielectric layer (nanocrystalline germanium layer). Thus, a germanium-rich dielectric layer of germanium crystals 145 having different refractive indices (1.6-3.7), different thicknesses (50-500 nm), and different sizes (1-20 nm) can be fabricated. Due to the change of the melting point of different semiconductor materials and the energy absorption efficiency level, a plurality of laser-inducing nanocrystals can also be formed by using a laser crystal polycrystalline germanium or an amorphous germanium film. Thus, the laser crystallization process constructs a multiple energy gap light absorbing structure that allows the photovoltaic cell 100 to absorb light having a wavelength in the range of about 300-1000 nm.

富矽介電層140由包含富矽氧化物(SiOx)、富矽氮化物(SiNy)、富矽氮氧化物(SiOxNy)、富矽碳化物(SiCz)或這些的材料之組合所形成,其中0<x<2、0<y<1.34並且0<z<1。富矽介電層140可形成為單層或多層結構。不論是單層或多層結構,富矽介電層140包含富矽氧化物薄膜、富矽氮化物薄膜以及富矽氮氧化物薄膜三者當中至少一者。The lanthanum-rich dielectric layer 140 is formed of a combination of materials containing cerium-rich oxide (SiOx), cerium-rich nitride (SiNy), cerium-rich oxynitride (SiOxNy), cerium-rich carbide (SiCz), or the like, wherein 0<x<2, 0<y<1.34 and 0<z<1. The ruthenium-rich dielectric layer 140 can be formed in a single layer or a multilayer structure. Regardless of the single layer or multilayer structure, the germanium-rich dielectric layer 140 includes at least one of a germanium-rich oxide film, a germanium-rich nitride film, and a germanium-rich oxynitride film.

第一導電層110和第二導電層170可用金屬、金屬氧化物或這些材料的任意組合來形成。該材料可為折射材料,包含鋁、銅、銀、金、鈦、鉬、鋰、鉭、釹、鎢、合金、其他或這些材料的疊層或合金等任意組合。該金屬氧化物可為透明導電材料,包含銦錫氧化物(ITO)、銦鋅氧化物(IZO)、鋁鋅氧化物(AZO)、鉿氧化物(HfO)等。該材料可為該等折射材料和該等透明導電材料的組合。實施上,至少第一導電層與第二導電層之一由透明導電材料製成,像是ITO、IZO、AZO、HfO等。該透明導電材料允許周圍光線穿透並到達該富矽介電層(感光區域)。The first conductive layer 110 and the second conductive layer 170 may be formed of a metal, a metal oxide, or any combination of these materials. The material may be a refractive material comprising any combination of aluminum, copper, silver, gold, titanium, molybdenum, lithium, niobium, tantalum, tungsten, alloys, other or a laminate or alloy of these materials. The metal oxide may be a transparent conductive material, and includes indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), hafnium oxide (HfO), or the like. The material can be a combination of the refractive materials and the transparent conductive materials. In practice, at least one of the first conductive layer and the second conductive layer is made of a transparent conductive material such as ITO, IZO, AZO, HfO, or the like. The transparent conductive material allows ambient light to penetrate and reach the ytterbium-rich dielectric layer (photosensitive region).

實際上,在富矽介電層140上形成層間介電層(UHA層)180。然後,一圖樣製作/遮罩處理套用至UHA層180來定義其內的通道或接觸孔181。第二導電層170透過通道或接觸孔181在富矽介電層140上形成。In effect, an interlayer dielectric layer (UHA layer) 180 is formed over the germanium-rich dielectric layer 140. A patterning/masking process is then applied to the UHA layer 180 to define the channels or contact holes 181 therein. The second conductive layer 170 is formed on the germanium-rich dielectric layer 140 through the via or contact hole 181.

相較於具有以能隙遞減順序來堆疊個別單接合光電池的傳統多接合(串接)光電池,具有一單接合的多重能隙Si奈米晶體光電池擁有許多優點。在該多接合單元裝置內,該頂端單元擷取該高能量光子並讓較低能隙單元所要吸收的剩餘光子通過。不過,該等串接的光電池包含有接合損失與晶格誤配的缺點,因此降低該光電轉換效率。具有多重能隙吸收材料的光電池可更有效轉換該太陽光譜。藉由使用多重能隙,該太陽光譜可分成更小部分,在此熱力學效率對於每一部分的限制更高。Compared to conventional multi-junction (serial) photovoltaic cells having individual single-bonded photovoltaic cells stacked in a decreasing order of energy, a single-junction multiple energy gap Si nanocrystalline photovoltaic cell has many advantages. Within the multi-junction unit device, the top unit captures the high energy photons and allows the remaining photons to be absorbed by the lower energy gap unit to pass. However, such tandem photovoltaic cells contain the disadvantage of joint loss and lattice mismatch, thus reducing the photoelectric conversion efficiency. Photovoltaic cells with multiple energy gap absorbing materials can convert the solar spectrum more efficiently. By using multiple energy gaps, the solar spectrum can be divided into smaller fractions where thermodynamic efficiency is more restrictive for each part.

第2圖圖解顯示根據本發明一個具體實施例製造一光電池200之處理。首先,如第2A圖內所示,在一第一導電層210上形成一富矽介電層240。接下來,將富矽介電層240曝露在雷射292的光束下,以在其內形成複數個矽奈米晶體245,如第2B圖內所示。然後,第二導電層270在富矽介電層240上形成,如第2C圖內所示。Figure 2 illustrates a process for fabricating a photovoltaic cell 200 in accordance with an embodiment of the present invention. First, as shown in FIG. 2A, a germanium-rich dielectric layer 240 is formed on a first conductive layer 210. Next, the germanium-rich dielectric layer 240 is exposed to the beam of laser 292 to form a plurality of nanocrystals 245 therein, as shown in FIG. 2B. Then, a second conductive layer 270 is formed over the germanium-rich dielectric layer 240 as shown in FIG. 2C.

運用一電漿增強化學氣相沉積(PECVD)處理,以大約1托爾(torr)的低壓,在溫度低於大約400℃的條件下,可在第一導電層210上形成富矽介電層240。在一個具體實施例內,富矽介電層240可在大約200℃至400℃或大約350℃至400℃的溫度範圍內,較佳在大約370℃的溫度上形成。針對已知的溫度範圍,大約耗費從13秒至250秒,較佳大約25秒至125秒,以形成大約50奈米(nm)至大約1000nm所要厚度的富矽介電層240。在形成富矽介電層240的處理期間,透過調整含矽比例SiH4/N2O可控制富矽介電層240的折射率。在一個具體實施例內,含矽比例SiH4/N2O在大約1:10至大約10:1的範圍內調整,導致折射率至少在大約1.47至大約3.7的範圍內,該含矽比例較佳在大約1:5至大約10:1的範圍內,導致折射率至少在大約1.7至大約3.7的範圍內。富矽介電層240也可用其他方法或處理來形成。A ruthenium-rich dielectric layer can be formed on the first conductive layer 210 by a plasma enhanced chemical vapor deposition (PECVD) process at a low pressure of about 1 torr at a temperature below about 400 °C. 240. In one embodiment, the germanium-rich dielectric layer 240 can be formed at a temperature in the range of about 200 ° C to 400 ° C or about 350 ° C to 400 ° C, preferably at about 370 ° C. For a known temperature range, it takes from about 13 seconds to 250 seconds, preferably from about 25 seconds to 125 seconds, to form a ytterbium-rich dielectric layer 240 having a desired thickness of from about 50 nanometers (nm) to about 1000 nm. During the process of forming the germanium-rich dielectric layer 240, the refractive index of the germanium-rich dielectric layer 240 can be controlled by adjusting the germanium-containing ratio SiH4/N2O. In a specific embodiment, the cerium-containing ratio SiH4/N2O is adjusted in the range of from about 1:10 to about 10:1, resulting in a refractive index at least in the range of from about 1.47 to about 3.7, and the cerium-containing ratio is preferably about In the range of 1:5 to about 10:1, the refractive index is caused to be at least in the range of about 1.7 to about 3.7. The ruthenium rich dielectric layer 240 can also be formed by other methods or processes.

例如藉由使用準分子雷射退火(ELA,“excimer laser annealing”)可完成富矽介電層240的雷射退火。在溫度低於400℃時可利用具有可調整頻率並且可調整雷射功率密度的準分子雷射。在一個具體實施例內,該ELA以大約1大氣壓力(760托爾)或大約1 x103Pa的壓力,在低於大約400℃的溫度上來執行。在其他具體實施例內,在室溫上執行該ELA,即是大約20-25℃。也可用具有對應參數的其他種雷射退火來實施本發明。Laser annealing of the germanium-rich dielectric layer 240 can be accomplished, for example, by using excimer laser annealing (ELA). Excimer lasers with adjustable frequencies and adjustable laser power densities can be utilized at temperatures below 400 °C. In a specific embodiment, the ELA is performed at a pressure of about 1 atmosphere (760 Torr) or about 1 x 103 Pa at a temperature below about 400 °C. In other embodiments, the ELA is performed at room temperature, i.e., about 20-25 °C. Other types of laser annealing with corresponding parameters can also be used to practice the invention.

該雷射波長與該雷射功率等級可調整,來產生所要的雷射感應矽奈米晶體直徑。針對任何雷射種類,像是例如ELA、連續波雷射結晶(CLC,“continuous-wave laser crystallization”)、固態CW綠雷射等,該雷射波長在大約266-1024nm的範圍內。所要的雷射感應矽奈米晶體直徑在大約1-20nm的範圍內,較佳在大約3-6nm的範圍內。在一個具體實施例內,在一波長大約在266-532nm的範圍內,較佳在大約308nm上執行富矽介電層240的ELA。富矽介電層240的ELA通常在雷射功率強度大約70-440mJ/cm2的範圍上,較佳在雷射功率強度大約70-200mJ/cm2的範圍上執行。在其他具體實施例內,在一波長例如大約532-1024nm的範圍上執行富矽介電層240的CLC。在其他具體實施例內,在一波長例如大約532nm的範圍上執行富矽介電層240的固態CW綠雷射。不過,當該雷射功率強度超過大約200mJ/cm2時,在富矽介電層240之下的第一導電層會受損或剝離。為了產生具有範圍在大約4nm至大約10nm的較大雷射感應矽奈米晶體之富矽介電層240,所以富矽介電層240的準分子雷射退火較佳在雷射功率強度大約200-440mJ/cm2的範圍上執行。在另一方面,為了產生具有範圍在大約2nm至大約6nm的較小雷射感應矽奈米晶體之富矽介電層240,所以富矽介電層240的ELA較佳在雷射功率強度大約70-200mJ/cm2的範圍上執行。在富矽介電層240內雷射感應矽奈米晶體245的密度較佳在大約1x1011/cm2至大約1x1012/cm2的範圍內。The laser wavelength and the laser power level can be adjusted to produce the desired laser induced nanocrystal diameter. For any laser type, such as, for example, ELA, "continuous-wave laser crystallization" (CLC), solid state CW green laser, etc., the laser wavelength is in the range of about 266-1024 nm. The desired laser-induced 矽 nanocrystals have a diameter in the range of about 1-20 nm, preferably in the range of about 3-6 nm. In one embodiment, the ELA of the germanium-rich dielectric layer 240 is performed at a wavelength in the range of about 266-532 nm, preferably about 308 nm. The ELA of the germanium-rich dielectric layer 240 is typically performed over a range of laser power intensities of about 70-440 mJ/cm2, preferably in the range of laser power intensities of about 70-200 mJ/cm2. In other embodiments, the CLC of the germanium-rich dielectric layer 240 is performed over a range of wavelengths, for example, about 532-1024 nm. In other embodiments, the solid state CW green laser of the germanium-rich dielectric layer 240 is performed over a range of wavelengths, such as about 532 nm. However, when the laser power intensity exceeds about 200 mJ/cm 2 , the first conductive layer under the germanium-rich dielectric layer 240 may be damaged or peeled off. In order to produce a germanium-rich dielectric layer 240 having a large laser-induced nanocrystal ranging from about 4 nm to about 10 nm, the excimer laser annealing of the germanium-rich dielectric layer 240 is preferably at a laser power intensity of about 200. Executed on the range of -440mJ/cm2. In another aspect, to produce a germanium-rich dielectric layer 240 having a smaller laser-induced nanocrystal having a range of from about 2 nm to about 6 nm, the ELA of the germanium-rich dielectric layer 240 is preferably at a laser power intensity. Executed on the range of 70-200 mJ/cm2. The density of the laser-induced nanocrystals 245 in the germanium-rich dielectric layer 240 is preferably in the range of from about 1 x 1011 /cm2 to about 1x1012 / cm2.

第3圖顯示雷射感應矽奈米晶體的特性:(A)一穿透式電子顯微(TEM)影像顯示該等矽奈米晶體的大小,以及(B)具有直徑大約4nm尖峰值量的雷射感應矽奈米晶體內奈米晶體大小之分布。Figure 3 shows the characteristics of a laser-induced nanocrystal: (A) a transmission electron microscopy (TEM) image showing the size of the nanocrystals, and (B) a peak with a diameter of about 4 nm. Laser-induced distribution of nanocrystal size in nanocrystals.

請回頭參閱第2C圖,在此具體實施例內,第二導電層270透明。當光線295的入射光束通過透明層270並到達具有複數個雷射感應矽奈米晶體245的富矽介電層240,則會吸收具有能量等於或大於富矽介電層240的多重能隙之光束光子。因此,在富矽介電層240內會產生電洞(h+)和電子(e-)配對。所產生的電洞(h+)和電子(e-)分別朝向並通過第二導電層270和第一導電層210。若一負載連接第一導電層210與第二導電層270,則將有一電流流過該負載。也就是,入射光295的光子能量利用光電池200轉換成電能。Referring back to Figure 2C, in this embodiment, the second conductive layer 270 is transparent. When the incident beam of light 295 passes through the transparent layer 270 and reaches the germanium-rich dielectric layer 240 having a plurality of laser-induced nanocrystals 245, it absorbs multiple energy gaps having energy equal to or greater than the germanium-rich dielectric layer 240. Beam photons. Therefore, a hole (h+) and an electron (e-) pair are generated in the rich dielectric layer 240. The generated holes (h+) and electrons (e-) are directed toward and through the second conductive layer 270 and the first conductive layer 210, respectively. If a load connects the first conductive layer 210 and the second conductive layer 270, a current will flow through the load. That is, the photon energy of the incident light 295 is converted into electrical energy by the photocell 200.

此外,第一導電層210也可由一透明導電材料製成。Further, the first conductive layer 210 may also be made of a transparent conductive material.

上面公佈的步驟並不需要依照順序執行,而該處理也不是實施本發明的唯一方法。The steps disclosed above do not need to be performed in order, and the process is not the only way to implement the invention.

例如:利用提供一基板、在該基板上形成第一導電層、在第一導電層上形成富矽介電層以及在該富矽介電層上形成一第二導電層可製造光電池。然後,執行雷射退火該富矽介電層來形成複數個矽奈米晶體。在一個具體實施例內,利用從第二導電層頂端將一雷射光束導引至該富矽介電層來執行該雷射退火。在其他具體實施例內,該基板與第一導電層由透明導電材料製成,如此利用直接從該基板底部導引一雷射光束至該富矽介電層來執行該雷射退火。在替代具體實施例內,從該光電池頂端和底部將兩雷射光束分別導引至該富矽介電層來執行該雷射退火。For example, a photovoltaic cell can be fabricated by providing a substrate, forming a first conductive layer on the substrate, forming a germanium-rich dielectric layer on the first conductive layer, and forming a second conductive layer on the germanium-rich dielectric layer. Then, the ruthenium-rich dielectric layer is subjected to laser annealing to form a plurality of ruthenium crystals. In a specific embodiment, the laser annealing is performed by directing a laser beam from the top end of the second conductive layer to the germanium rich dielectric layer. In other embodiments, the substrate and the first conductive layer are made of a transparent conductive material such that the laser annealing is performed by directing a laser beam from the bottom of the substrate to the germanium-rich dielectric layer. In an alternative embodiment, the laser annealing is performed by directing two laser beams from the top and bottom of the photovoltaic cell to the ytterbium-rich dielectric layer, respectively.

請參閱第4圖,在此顯示根據本發明一個具體實施例的光電池電池400。光電池電池組400包含一光電池401,其用於將入射至光電池401的光線495之光子能量轉換成電能。光電池401具有一第一導電層410、一第二導電層470以及一個形成於第一導電層410與第二導電層470之間的富矽介電層440。富矽介電層440具有複數個擁有一多重能隙的雷射感應矽奈米晶體445。更進一步,光電池電池組400也包含一個可充電電池組480,其電耦合在第一導電層410與第二導電層470之間用於儲存電能。此外,在光電池401與可充電電池480之間連接一個電流表485。光電池401可由上述處理所製造。Referring to Figure 4, there is shown a photovoltaic cell battery 400 in accordance with an embodiment of the present invention. Photovoltaic battery pack 400 includes a photocell 401 for converting photon energy of light 495 incident on photovoltaic cell 401 into electrical energy. The photocell 401 has a first conductive layer 410, a second conductive layer 470, and a germanium-rich dielectric layer 440 formed between the first conductive layer 410 and the second conductive layer 470. The ruthenium-rich dielectric layer 440 has a plurality of laser-induced nanocrystals 445 having a multiple energy gap. Furthermore, the photovoltaic cell stack 400 also includes a rechargeable battery pack 480 electrically coupled between the first conductive layer 410 and the second conductive layer 470 for storing electrical energy. Further, an ammeter 485 is connected between the photocell 401 and the rechargeable battery 480. The photovoltaic cell 401 can be manufactured by the above process.

此外,在使用一負載,例如一電阻,取代可充電電池480之下,如第4圖內所示的配置也可用來當成一光感測器。Further, in place of the rechargeable battery 480 using a load, such as a resistor, the configuration as shown in Fig. 4 can also be used as a light sensor.

請參閱第5圖,曲線510為具有Si奈米晶體SiOx光電轉換(感光)層的光電池對於白光的入射光束,例如陽光,的光譜反應。該光電池的白光子反應特性(400-650nm)來自於該光電池的Si奈米晶體之多重能隙。Referring to FIG. 5, a curve 510 is a spectral response of a photocell having a Si nanocrystal SiOx photoelectric conversion (photosensitive) layer to an incident light beam of white light, such as sunlight. The white photon reaction characteristic (400-650 nm) of the photovoltaic cell is derived from the multiple energy gap of the Si nanocrystal of the photovoltaic cell.

第6圖顯示利用富矽氧化矽(Si-rich SiOx)層上不同的雷射退火功率強度,一光電池對入射白光的光致發光反應。曲線610、620、630和640分別為雷射能量300mJ/cm2、350mJ/cm2、400mJ/cm2和440mJ/cm2的光致發光反應。Figure 6 shows the photoluminescence reaction of a photocell to incident white light using different laser annealing power intensities on a Si-rich SiOx layer. Curves 610, 620, 630, and 640 are photoluminescence reactions of laser energies of 300 mJ/cm2, 350 mJ/cm2, 400 mJ/cm2, and 440 mJ/cm2, respectively.

請參閱第7圖,在此顯示根據本發明一個具體實施例的光電池之電流電壓特性。曲線710和720分別為該光電池的暗電流和光電流。該光電特性指出,在所研發的光電池中可輕易獲得比傳統P-I-N(正-固有-負)二極體還要高的感度以及可比較的暗電流等級。Referring to Figure 7, there is shown the current-voltage characteristics of a photovoltaic cell in accordance with an embodiment of the present invention. Curves 710 and 720 are the dark current and photocurrent of the photovoltaic cell, respectively. This photoelectric characteristic indicates that a higher sensitivity than a conventional P-I-N (positive-inherent-negative) diode and a comparable dark current level can be easily obtained in the developed photocell.

第8圖圖解顯示根據本發明一個具體實施例具有一多重能隙的光電池之光譜特性。該多重能隙區分成複數個狹窄區域,每一對應至要光電轉換成電能的光波長範圍。Figure 8 illustrates the spectral characteristics of a photovoltaic cell having a multiple energy gap in accordance with an embodiment of the present invention. The multiple energy gap is divided into a plurality of narrow regions, each corresponding to a range of wavelengths of light to be photoelectrically converted into electrical energy.

請參閱第9圖,顯示根據本發明一個具體實施例的光電池900之剖面圖。在一個具體實施例內,一光電池900具有一第一導電層910、一形成於第一導電層910上的第一半導體層920、一形成於第一半導體層920上的第一富矽介電層930、一個形成於第一富矽介電層930上的第二富矽介電層940、一形成於第二富矽介電層940上的第二半導體層960以及一形成於第二半導體層960上的第二導電層970。Referring to Figure 9, a cross-sectional view of a photovoltaic cell 900 in accordance with an embodiment of the present invention is shown. In a specific embodiment, a photovoltaic cell 900 has a first conductive layer 910, a first semiconductor layer 920 formed on the first conductive layer 910, and a first fused dielectric formed on the first semiconductor layer 920. a layer 930, a second germanium-rich dielectric layer 940 formed on the first germanium-rich dielectric layer 930, a second semiconductor layer 960 formed on the second germanium-rich dielectric layer 940, and a second semiconductor A second conductive layer 970 on layer 960.

在一個具體實施例內,第一半導體層920與第二半導體層960之一為N型摻雜半導體層,並且第一半導體層920與第二半導體層960另一為P型摻雜半導體層。例如:第一半導體層920為N型摻雜半導體層,並且第二半導體層960為P型摻雜半導體層。該N型摻雜半導體層包含N型摻雜矽,並且該P型摻雜半導體層包含P型摻雜矽。也可使用其他半導體材料來實現本發明。N型摻雜半導體層920和P型摻雜半導體層960可用一標準處理形成,像是一植入處理、一PECVD處理。In one embodiment, one of the first semiconductor layer 920 and the second semiconductor layer 960 is an N-type doped semiconductor layer, and the first semiconductor layer 920 and the second semiconductor layer 960 are another P-type doped semiconductor layer. For example, the first semiconductor layer 920 is an N-type doped semiconductor layer, and the second semiconductor layer 960 is a P-type doped semiconductor layer. The N-type doped semiconductor layer includes an N-type doped germanium, and the P-type doped semiconductor layer includes a P-type doped germanium. Other semiconductor materials can also be used to implement the invention. The N-type doped semiconductor layer 920 and the P-type doped semiconductor layer 960 can be formed by a standard process such as an implant process and a PECVD process.

在其他具體實施例內,第一半導體層920和第二半導體層960兩者當中,其中之一是由非晶矽形成,另一者是由多晶矽所形成。例如:第一半導體層920由多晶矽形成,則第二半導體層960由非晶矽形成。第一導電層920和第二導電層960可由微晶矽、單晶矽或這些材料的任意組合來形成。該雷射結晶的N型半導體和該雷射結晶的P型半導體由一雷射結晶處理所形成。In other embodiments, one of the first semiconductor layer 920 and the second semiconductor layer 960 is formed of amorphous germanium and the other is formed of polysilicon. For example, the first semiconductor layer 920 is formed of polysilicon, and the second semiconductor layer 960 is formed of amorphous germanium. The first conductive layer 920 and the second conductive layer 960 may be formed of microcrystalline germanium, single crystal germanium, or any combination of these materials. The laser crystallized N-type semiconductor and the laser crystallized P-type semiconductor are formed by a laser crystallization process.

第一富矽介電層930具有一折射率n1,並且第二富矽介電層940具有折射率n2,在此n2<n1。第一富矽介電層930與第二富矽介電層940兩者當中至少一者具有複數個擁有一多重能隙的矽奈米晶體。利用如上所述的雷射退火處理或一CVD處理可形成複數個矽奈米晶體。第一富矽介電層930和第二富矽介電層940的形成材料可為相同的材料或大體上不同的材料,像是富矽氧化物、富矽氮化物、富矽氮氧化物等。在一個具體實施例內,第一富矽介電層930和/或第二富矽介電層940為擁有一多重能隙的奈米結晶矽層(奈米結晶富矽介電層)。The first germanium-rich dielectric layer 930 has a refractive index n1, and the second germanium-rich dielectric layer 940 has a refractive index n2, where n2 < n1. At least one of the first ruthenium-rich dielectric layer 930 and the second ruthenium-rich dielectric layer 940 has a plurality of ruthenium crystals having a multiple energy gap. A plurality of nanocrystals can be formed by a laser annealing treatment or a CVD treatment as described above. The first germanium-rich dielectric layer 930 and the second germanium-rich dielectric layer 940 may be formed of the same material or substantially different materials, such as germanium-rich oxides, germanium-rich nitrides, germanium-rich oxynitrides, and the like. . In one embodiment, the first germanium-rich dielectric layer 930 and/or the second germanium-rich dielectric layer 940 is a nanocrystalline germanium layer (nanocrystalline germanium-rich dielectric layer) having a multiple energy gap.

第一導電層910和第二導電層970可用金屬、金屬氧化物或這些材料的任意組合來形成。該材料可為折射材料,包含鋁、銅、銀、金、鈦、鉬、鋰、鉭、釹、鎢、合金、其他或這些材料的任意組合。該金屬氧化物可為透明導電材料,包含ITO、IZO、AZO、HfO等等。該材料可為折射材料和透明導電材料的組合。實施上,至少第一導電層與第二導電層之一由透明導電材料製成,像是ITO、IZO、AZO、HfO等等。在此具體實施例內,第二導電層970較佳為由一透明導電材料製成的透明導電材料層。The first conductive layer 910 and the second conductive layer 970 may be formed of a metal, a metal oxide, or any combination of these materials. The material can be a refractive material comprising aluminum, copper, silver, gold, titanium, molybdenum, lithium, niobium, tantalum, tungsten, alloys, other or any combination of these materials. The metal oxide may be a transparent conductive material including ITO, IZO, AZO, HfO, and the like. The material can be a combination of a refractive material and a transparent conductive material. In practice, at least one of the first conductive layer and the second conductive layer is made of a transparent conductive material such as ITO, IZO, AZO, HfO or the like. In this embodiment, the second conductive layer 970 is preferably a transparent conductive material layer made of a transparent conductive material.

第10圖顯示根據本發明一個具體實施例的光電池1000。在一個具體實施例內,光電池1000包含一第一導電層1010、一形成於第一導電層1010上的N型摻雜半導體層1020、一形成於N型摻雜半導體層1020上的光電轉換層1001、一位於光電轉換層1001上的P型摻雜半導體層1060以及一位於P型摻雜半導體層1060上的第二導電層1070。Figure 10 shows a photovoltaic cell 1000 in accordance with an embodiment of the present invention. In a specific embodiment, the photovoltaic cell 1000 includes a first conductive layer 1010, an N-type doped semiconductor layer 1020 formed on the first conductive layer 1010, and a photoelectric conversion layer formed on the N-type doped semiconductor layer 1020. 1001, a P-type doped semiconductor layer 1060 on the photoelectric conversion layer 1001 and a second conductive layer 1070 on the P-type doped semiconductor layer 1060.

N型摻雜半導體層1020包含N型摻雜矽,並且P型摻雜半導體層1060包含P型摻雜矽。The N-type doped semiconductor layer 1020 includes an N-type doped germanium, and the P-type doped semiconductor layer 1060 includes a P-type doped germanium.

光電轉換層1001包含複數個擁有一多重能隙的矽奈米晶體。在一個具體實施例內,光電轉換層1001包含具有該多重能隙的單層。該單層由具有複數個擁有一多重能隙的矽奈米晶體之奈米結晶矽所形成。在其他具體實施例內,光電轉換層1001包含一多層結構,該結構具有至少包含複數個擁有一多重能隙的矽奈米晶體之一層。The photoelectric conversion layer 1001 includes a plurality of nano crystals having a multiple energy gap. In a specific embodiment, the photoelectric conversion layer 1001 includes a single layer having the multiple energy gaps. The monolayer is formed of a nanocrystalline ruthenium having a plurality of nanocrystals having a multiple energy gap. In other embodiments, the photoelectric conversion layer 1001 includes a multilayer structure having at least one of a plurality of layers of nanocrystals having a multiple energy gap.

有關該多層結構,在一個具體實施例內,光電轉換層1001具有形成於N型摻雜半導體層1020上的第一富矽介電層1030、形成於第一富矽介電層1030上的第二富矽介電層1040以及形成於第二富矽介電層1040上的第三富矽介電層1050。每一第一富矽介電層1030、第二富矽介電層1040和第三富矽介電層1050都分別具有一對應的折射率n1、n2和n3,在此n3<n2<n1。在替代具體實施例內,第一富矽介電層1030和第三富矽介電層1050可交換。在一個具體實施例內,每一第一富矽介電層1030、第二富矽介電層1040和第三富矽介電層1050都包含富矽氧化物、富矽氮化物、富矽氮氧化物、富矽碳化物或這些的組合。在形成光電轉換層1001之後,一雷射退火處理可施加於光電轉換層1001來形成具有複數個擁有一多重能隙的雷射感應矽奈米晶體之一或多層。在改良的具體實施例內,第一半導體層920(未顯示)可形成於N型摻雜半導體層1020與該多層結構之間,並且第二半導體層960可形成於多層結構與P型摻雜半導體層1060之間。With respect to the multilayer structure, in one embodiment, the photoelectric conversion layer 1001 has a first germanium-rich dielectric layer 1030 formed on the N-type doped semiconductor layer 1020, and a first germanium-rich dielectric layer 1030. The second ytterbium-rich dielectric layer 1040 and the third ytterbium-rich dielectric layer 1050 formed on the second ytterbium-rich dielectric layer 1040. Each of the first germanium-rich dielectric layer 1030, the second germanium-rich dielectric layer 1040, and the third germanium-rich dielectric layer 1050 respectively have a corresponding refractive index n1, n2, and n3, where n3 < n2 < n1. In an alternate embodiment, the first ruthenium-rich dielectric layer 1030 and the third ruthenium-rich dielectric layer 1050 can be exchanged. In a specific embodiment, each of the first germanium-rich dielectric layer 1030, the second germanium-rich dielectric layer 1040, and the third germanium-rich dielectric layer 1050 comprise a germanium-rich oxide, a germanium-rich nitride, and a germanium-rich nitrogen. Oxide, cerium-rich carbide or a combination of these. After the photoelectric conversion layer 1001 is formed, a laser annealing treatment may be applied to the photoelectric conversion layer 1001 to form one or more layers of a plurality of laser-induced nanocrystals having a multiple energy gap. In a modified embodiment, a first semiconductor layer 920 (not shown) may be formed between the N-type doped semiconductor layer 1020 and the multilayer structure, and the second semiconductor layer 960 may be formed in a multilayer structure and P-type doped. Between the semiconductor layers 1060.

在其他具體實施例內,光電轉換層1001具有形成於N型摻雜半導體層1020上的第一矽子層1030、形成於第一矽子層1030上的奈米結晶矽子層1040以及形成於奈米結晶矽子層1040上的第二矽子層1050。第一矽子層1030與第二矽子層1050兩者當中,其中一者是由非晶矽形成,並且另一者是由多晶矽所形成。因此,光電轉換層1001具有一多重能隙,a-Si/Si奈米晶體/poly-Si分層結構。In other embodiments, the photoelectric conversion layer 1001 has a first germanium layer 1030 formed on the N-type doped semiconductor layer 1020, a nanocrystalline germanium layer 1040 formed on the first germanium layer 1030, and formed on The second hazel layer 1050 on the nanocrystalline hazelnut layer 1040. Of the first die layer 1030 and the second die layer 1050, one of them is formed of amorphous germanium, and the other is formed of polycrystalline germanium. Therefore, the photoelectric conversion layer 1001 has a multiple energy gap, a-Si/Si nanocrystal/poly-Si layered structure.

第一導電層1010和第二導電層1070可用金屬、金屬氧化物或這些材料的任意組合來形成。該材料可為折射材料,包含鋁、銅、銀、金、鈦、鉬、鋰、鉭、釹、鎢、合金、其他或這些材料的任意組合。該金屬氧化物可為透明導電材料,包含ITO、IZO、AZO、HfO等。該材料可為折射材料和透明導電材料的組合。實施上,第一導電層與第二導電層兩者當中,至少一者是由一透明導電材料製成,像是ITO、IZO、AZO、HfO等。The first conductive layer 1010 and the second conductive layer 1070 may be formed of a metal, a metal oxide, or any combination of these materials. The material can be a refractive material comprising aluminum, copper, silver, gold, titanium, molybdenum, lithium, niobium, tantalum, tungsten, alloys, other or any combination of these materials. The metal oxide may be a transparent conductive material including ITO, IZO, AZO, HfO, or the like. The material can be a combination of a refractive material and a transparent conductive material. In practice, at least one of the first conductive layer and the second conductive layer is made of a transparent conductive material such as ITO, IZO, AZO, HfO, or the like.

本發明的光電池可在一寬廣的頻譜領域內找到許多應用方式,像是一光感測器、包含一觸控面板的顯示面板以及一非揮發性記憶體裝置。The photovoltaic cell of the present invention can find many applications in a wide spectrum of fields, such as a light sensor, a display panel including a touch panel, and a non-volatile memory device.

請參閱第11A圖,根據本發明一個具體實施例顯示與一或多個光電池(感光器)1140整合的顯示面板1101。顯示面板1101包含用於顯示相關資訊的顯示區域1110,以及一或多個放在顯示區域1110周圍區域內並曝露在光線下的光電池1140。一或多個光電池1140每一都具有一富矽介電層,該層具有擁有一多重能隙的矽奈米晶體,並且該單元調適用於將光能轉換成電能。該光能可接收自背光和/或周圍光線。Referring to FIG. 11A, a display panel 1101 integrated with one or more photovoltaic cells (photoreceptors) 1140 is shown in accordance with an embodiment of the present invention. The display panel 1101 includes a display area 1110 for displaying related information, and one or more photocells 1140 placed in the area around the display area 1110 and exposed to light. The one or more photovoltaic cells 1140 each have a germanium-rich dielectric layer having a nanocrystal having a multiple energy gap, and the cell is adapted to convert light energy into electrical energy. The light energy can be received from the backlight and/or ambient light.

顯示面板1101也可包含顯示資訊並接收使用者輸入的顯示區域1120、偵測光線的光感測器1130以及偵測周圍光線的周圍光感測器1150。此中每一都至少具有矽奈米晶體的富矽介電層。The display panel 1101 may also include a display area 1120 for displaying information and receiving a user input, a light sensor 1130 for detecting light, and a surrounding light sensor 1150 for detecting ambient light. Each of these has at least a germanium-rich dielectric layer of nanocrystals.

光感測器1130和周圍光感測器1150可放置在任何角落區域來偵測周圍光線或其他光線。一或多個光電池1140可定位在顯示區域1110周圍,將所接收的光線轉換成電能,來節省顯示面板1101所消耗的電力。The light sensor 1130 and the ambient light sensor 1150 can be placed in any corner area to detect ambient light or other light. One or more photocells 1140 can be positioned around the display area 1110 to convert the received light into electrical energy to conserve power consumed by the display panel 1101.

顯示面板1101可為一觸控面板或一液晶顯示面板。The display panel 1101 can be a touch panel or a liquid crystal display panel.

第11B圖圖解顯示具有一液晶顯示驅動器1160來驅動一液晶顯示面板1102以及一背光1170用來照明液晶顯示面板1102。液晶顯示面板1102包含用於顯示相關資訊的顯示區域1110,以及一或多個放在顯示區域1110周圍區域內並暴露在背光1170下的光電池1140。一或多個光電池1140每一都包含一多層結構,該結構具有矽奈米晶體的富矽介電層,並且該單元調適用於將光能轉換成電能。該光能可接收自背光和/或周圍光線。該電能供應給液晶顯示驅動器1160當成驅動電力。FIG. 11B is a diagram showing a liquid crystal display driver 1160 for driving a liquid crystal display panel 1102 and a backlight 1170 for illuminating the liquid crystal display panel 1102. The liquid crystal display panel 1102 includes a display area 1110 for displaying related information, and one or more photocells 1140 placed in the area around the display area 1110 and exposed under the backlight 1170. The one or more photovoltaic cells 1140 each comprise a multilayer structure having a germanium-rich dielectric layer of germanium crystals, and the cell is adapted to convert light energy into electrical energy. The light energy can be received from the backlight and/or ambient light. This electric energy is supplied to the liquid crystal display driver 1160 as driving power.

本發明內所公佈的方法可用於在低溫上使用一高效率雷射退火,來製造發光裝置的光電層以及/或光感測裝置的感光層。該介電層內根據本發明具體實施例所製作的雷射感應矽奈米晶體展現出高密度、相當一致並且均勻的雷射感應矽奈米晶體分佈,以及一致的雷射感應矽奈米晶體直徑。該等方法運用低溫準分子雷射退火處理。此處理不需要高溫後置退火並且與生產低溫多晶矽薄膜電晶體(Low-Temperature Poly-Si Thin Film Transistors,LTPS-TFT)的傳統處理相容。根據本發明許多具體實施例製造的具有雷射感應矽奈米晶體之富矽介電層對於太陽能電池、觸控面板、周圍光感測器、光感測器相當有用,並且也與一彩色高品質場效電晶體(TFT)面板顯示器整合。根據本發明許多具體實施例製造的雷射感應矽奈米晶體也可用來當成非揮發性記憶體裝置內的儲存節點,具備較高保留性、較高耐用性以及較高操作速度。The method disclosed in the present invention can be used to fabricate a photovoltaic layer of a light-emitting device and/or a photosensitive layer of a light-sensing device using a high-efficiency laser annealing at a low temperature. The laser-induced nanocrystals fabricated in accordance with embodiments of the present invention within the dielectric layer exhibit high density, fairly uniform and uniform laser-induced nanocrystal distribution, and uniform laser-induced nanocrystals. diameter. These methods utilize low temperature excimer laser annealing treatment. This treatment does not require high temperature post annealing and is compatible with conventional processing for the production of Low-Temperature Poly-Si Thin Film Transistors (LTPS-TFT). A germanium-rich dielectric layer having a laser-induced nanocrystal fabricated in accordance with many embodiments of the present invention is quite useful for solar cells, touch panels, ambient light sensors, light sensors, and also with a color Quality field effect transistor (TFT) panel display integration. Laser-induced nanocrystals fabricated in accordance with many embodiments of the present invention can also be used as storage nodes in non-volatile memory devices with high retention, high durability, and high operating speed.

第12圖圖解顯示根據本發明一個具體實施例與光電池(或感光器)整合的低溫多晶矽(LTPS)面板1200。低溫多晶矽面板1200可具有複數個矩陣形式排列的像素。在第12圖內,只有說明一個低溫多晶矽面板1200的像素。在此具體實施例內,每一像素具有一顯示場效電晶體1221和形成於顯示場效電晶體1221上的光電池1201。Figure 12 illustrates a low temperature polysilicon (LTPS) panel 1200 integrated with a photovoltaic cell (or photoreceptor) in accordance with an embodiment of the present invention. The low temperature polysilicon panel 1200 can have a plurality of pixels arranged in a matrix form. In Fig. 12, only the pixels of a low temperature polysilicon panel 1200 are illustrated. In this embodiment, each pixel has a display field effect transistor 1221 and a photocell 1201 formed on the display field effect transistor 1221.

光電池1201具有一個三層堆疊結構,包含一第一導電層1230、一第二導電層1270以及一形成於這兩者之間並且具有複數個矽奈米晶體1245的富矽介電層1240。The photocell 1201 has a three-layer stack structure including a first conductive layer 1230, a second conductive layer 1270, and a germanium-rich dielectric layer 1240 formed between the plurality of germanium crystals 1245.

顯示場效電晶體1220形成於基板1210上。顯示場效電晶體1221具有一源極區域1222(電耦合至光電池1201的第一導電層1230)、一汲極區域1224和一閘極電極1226。汲極區域1224(源極區域1222)和閘極電極1226由基板1210上形成的閘極絕緣層1220所分隔。基板1210可形成為一透明基板,像是一玻璃基板,或一彈性基板,像是一塑膠基板。The field effect transistor 1220 is formed on the substrate 1210. The field effect transistor 1221 has a source region 1222 (electrically coupled to the first conductive layer 1230 of the photovoltaic cell 1201), a drain region 1224, and a gate electrode 1226. The drain region 1224 (source region 1222) and the gate electrode 1226 are separated by a gate insulating layer 1220 formed on the substrate 1210. The substrate 1210 can be formed as a transparent substrate, such as a glass substrate, or an elastic substrate, such as a plastic substrate.

當一顯示面板1200內運用這種光電池1201,光電池1201會配置成面對周圍光線1295。此外,通常使用一背光1296照明顯示面板1200來顯示其上的資訊。為了避免背光1296偏轉光電池1201的輸出,運用第一導電層1230來有效阻擋背光1296。When such a photovoltaic cell 1201 is utilized within a display panel 1200, the photovoltaic cell 1201 is configured to face ambient light 1295. In addition, a backlight 1296 is typically used to illuminate the display panel 1200 to display information thereon. In order to prevent the backlight 1296 from deflecting the output of the photocell 1201, the first conductive layer 1230 is utilized to effectively block the backlight 1296.

在一個具體實施例內,光電池1201的富矽介電層1240由富矽氧化物、富矽氮化物、富矽氮氧化物、富矽碳化物等所製成。該富矽氧化物層較佳具有範圍大約1.7-3.7的折射率,並且該富矽氮化物層較佳具有範圍大約1.7-3.7的折射率。至少某些矽奈米晶體較佳具有範圍大約2-10nm的直徑。富矽介電層1240的厚度在大約50-500nm的範圍內。雷射感應矽奈米晶體的密度較佳在大約1x1011-1x1012/cm2的範圍內。第二導電層1270較佳由透明導電材料製成,像是ITO、IZO、AZO、HfO等。In one embodiment, the germanium-rich dielectric layer 1240 of the photovoltaic cell 1201 is made of a cerium-rich oxide, a cerium-rich nitride, a cerium-rich oxynitride, a cerium-rich carbide, or the like. The cerium-rich oxide layer preferably has a refractive index in the range of about 1.7 to 3.7, and the cerium-rich nitride layer preferably has a refractive index in the range of about 1.7 to 3.7. At least some of the nanocrystals preferably have a diameter in the range of about 2-10 nm. The thickness of the ytterbium-rich dielectric layer 1240 is in the range of about 50-500 nm. The density of the laser-induced nanocrystals is preferably in the range of about 1 x 1011-1 x 1012 /cm2. The second conductive layer 1270 is preferably made of a transparent conductive material such as ITO, IZO, AZO, HfO or the like.

如第12圖內所示,矽奈米晶體單元的填充因數遠高於傳統單元,這是因為形成光電池1201來覆蓋顯示場效電晶體1221放置的較大切換區域。更進一步,金屬電極1230可提供有效的周圍光線與背光分別隔離單元電路與光電池1201,如此電晶體特性比一P-I-N單元內的更穩定。As shown in Fig. 12, the fill factor of the nanocrystal unit is much higher than that of the conventional unit because the photovoltaic cell 1201 is formed to cover the larger switching region where the field effect transistor 1221 is placed. Further, the metal electrode 1230 can provide effective ambient light and the backlight to separate the unit circuit from the photocell 1201, such that the transistor characteristics are more stable than in a P-I-N unit.

請參閱第13圖,顯示根據本發明一個具體實施例與光電池(或感光器)整合的低溫多晶矽面板1300。在此具體實施例內,每一像素具有一場效電晶體1301、一儲存電容器1303、一感光器1305和在基板1310上彼此相鄰形成的主動區域1307。感光器1305包含一第一電極1355、一第二電極1375和其間形成的富矽介電層1365。在一個具體實施例內製造非晶矽場效電晶體(a-Si TFT)面板1300的處理說明於第14圖內。Referring to Figure 13, there is shown a low temperature polysilicon panel 1300 integrated with a photovoltaic cell (or photoreceptor) in accordance with an embodiment of the present invention. In this embodiment, each pixel has a field transistor 1301, a storage capacitor 1303, a photoreceptor 1305, and an active region 1307 formed adjacent to each other on the substrate 1310. The photoreceptor 1305 includes a first electrode 1355, a second electrode 1375, and a germanium-rich dielectric layer 1365 formed therebetween. The process of fabricating an amorphous germanium field effect transistor (a-Si TFT) panel 1300 in one embodiment is illustrated in FIG.

請參閱第14A圖至第14F圖,根據本發明一個具體實施例圖解顯示整合光電池(感光器)的非晶矽場效電晶體面板製造方法1400。該方法包含下列步驟:首先、提供一第一基板1410。其中,第一基板1410由玻璃等所形成。然後,在第一基板1410上形成彼此分開的複數個閘極電極1420,該些閘極電極1420電耦合至一閘極線。其中,形成複數個閘極電極1420的步驟執行如下:首先用濺鍍方式在基板1410上沈積金屬層;在適當位置上遮蓋金屬層來定義該複數個閘極電極1420;然後讓未覆蓋的金屬層剩餘部分曝光;蝕刻掉該金屬層的未覆蓋部分;以及去除遮罩部分來形成複數個閘極電極1420。每一對相鄰閘極電極1420其間定義出切換區域1412和太陽能電池區域1414。太陽能電池區域1414與切換區域1412相鄰,其中形成對應的閘極電極1420,如第14A圖內所示。閘極電極1420由金屬形成,像是鋁(Al)、鉬(Mo)、鉻(Cr)、鈦(Ta)、銅(Cu)或合金。Referring to Figures 14A through 14F, an amorphous germanium field effect transistor panel fabrication method 1400 for integrating photovoltaic cells (photoreceptors) is illustrated in accordance with an embodiment of the present invention. The method includes the following steps: First, a first substrate 1410 is provided. The first substrate 1410 is formed of glass or the like. Then, a plurality of gate electrodes 1420 separated from each other are formed on the first substrate 1410, and the gate electrodes 1420 are electrically coupled to a gate line. The step of forming a plurality of gate electrodes 1420 is performed by first depositing a metal layer on the substrate 1410 by sputtering; masking the metal layer at an appropriate position to define the plurality of gate electrodes 1420; and then allowing the uncovered metal The remaining portion of the layer is exposed; the uncovered portion of the metal layer is etched away; and the mask portion is removed to form a plurality of gate electrodes 1420. Each pair of adjacent gate electrodes 1420 defines a switching region 1412 and a solar cell region 1414 therebetween. Solar cell region 1414 is adjacent to switching region 1412, wherein a corresponding gate electrode 1420 is formed, as shown in FIG. 14A. The gate electrode 1420 is formed of a metal such as aluminum (Al), molybdenum (Mo), chromium (Cr), titanium (Ta), copper (Cu), or an alloy.

在第一基板1410和複數個閘極電極1420上形成一介電層(閘絕緣薄膜)1430。在一個具體實施例內,閘絕緣薄膜1430由氧化矽、氮化矽或氮氧化矽所形成。A dielectric layer (gate insulating film) 1430 is formed on the first substrate 1410 and the plurality of gate electrodes 1420. In one embodiment, the gate insulating film 1430 is formed of hafnium oxide, tantalum nitride or hafnium oxynitride.

然後,閘絕緣層1430上形成的一非晶矽層1442覆蓋每一切換區域1412上閘極電極1420,並且接著在非晶矽層1442上形成摻雜的非晶矽層1444。摻雜的非晶矽層1444形成於n+摻雜(n型重摻雜)的非晶矽或p+摻雜(p型重摻雜)的非晶矽上,並且當成一接觸層,如第14B圖內所示。在一個具體實施例內,非晶矽層1442和接觸層1444以利用PECVD連續沈積非晶矽和摻雜的非晶矽然後製作圖案的方式來形成。Then, an amorphous germanium layer 1442 formed on the gate insulating layer 1430 covers the gate electrode 1420 on each of the switching regions 1412, and then a doped amorphous germanium layer 1444 is formed on the amorphous germanium layer 1442. The doped amorphous germanium layer 1444 is formed on an n+ doped (n-type heavily doped) amorphous germanium or p+ doped (p-type heavily doped) amorphous germanium, and forms a contact layer, such as section 14B. Shown in the figure. In one embodiment, the amorphous germanium layer 1442 and the contact layer 1444 are formed by successively depositing amorphous germanium and doped amorphous germanium by PECVD and then patterning.

另外,依序沈積氧化矽或氮化矽的閘絕緣薄膜1430、非晶矽層1442和摻雜的非晶矽層1444,然後非晶矽層1442和摻雜的非晶矽層1444經過圖案製作來形成非晶矽層1442和摻雜的非晶矽層1444,如第14B圖內所示。In addition, a gate insulating film 1430 of yttrium oxide or tantalum nitride, an amorphous germanium layer 1442 and a doped amorphous germanium layer 1444 are sequentially deposited, and then the amorphous germanium layer 1442 and the doped amorphous germanium layer 1444 are patterned. An amorphous germanium layer 1442 and a doped amorphous germanium layer 1444 are formed as shown in FIG. 14B.

之後,在閘絕緣薄膜1430上形成金屬層1450並且在切換區域1412內形成接觸層1444。然後,在該金屬層上的每一太陽能電池區域1414上形成一富矽介電層1460,如第14C圖內所示。Thereafter, a metal layer 1450 is formed on the gate insulating film 1430 and a contact layer 1444 is formed in the switching region 1412. A germanium-rich dielectric layer 1460 is then formed over each of the solar cell regions 1414 on the metal layer, as shown in Figure 14C.

如第14D圖內所示,遮罩、曝光與蝕刻處理依序施加於金屬層1450來進一步定義每一切換區域1412內的場效電晶體,其中接觸層1444區分成一源極接口1444a和一汲極接口1444b,並且金屬層1450在每一區換區域1412內也區分成一第一部分1452和一第二部分1454。第一部分1452連接至源極接口1444a和一信號線,並且第二部分1454與第一部分1452相隔並連接至汲極接口1444b,如第14D圖內所示。此外,在每一太陽能電池區域內形成金屬層1450上與第一部分1452和第二部分1454相隔的第三部分1456,如底下所討論,當成太陽能電池的第一電極。As shown in FIG. 14D, masking, exposure, and etching processes are sequentially applied to metal layer 1450 to further define field effect transistors in each switching region 1412, wherein contact layer 1444 is divided into a source interface 1444a and a stack. The pole interface 1444b, and the metal layer 1450 is also divided into a first portion 1452 and a second portion 1454 within each zone 1412. The first portion 1452 is coupled to the source interface 1444a and a signal line, and the second portion 1454 is spaced apart from the first portion 1452 and to the drain interface 1444b as shown in FIG. 14D. In addition, a third portion 1456 of the metal layer 1450 spaced apart from the first portion 1452 and the second portion 1454 is formed in each solar cell region, as discussed below, as the first electrode of the solar cell.

如第14E圖內所示,然後形成覆蓋每一切換區域1412內所有場效電晶體,以及覆蓋每一太陽能電池區域1414內富矽介電層1460的保護層(薄膜)1470。然後,對保護層1470依序施加遮罩、曝光和蝕刻處理,以定義用於讓切換元件與該像素電極耦合(透過汲極電極1454)的通孔1472,並且去除富矽介電層1460的覆蓋。在此階段上,一雷射退火處理可施加於富矽介電層1460,形成複數個擁有多重能隙的雷射感應矽奈米晶體。As shown in FIG. 14E, a protective layer (film) 1470 covering all of the field effect transistors in each of the switching regions 1412 and covering the germanium-rich dielectric layer 1460 in each of the solar cell regions 1414 is then formed. Then, a protective layer 1470 is sequentially applied with a mask, an exposure, and an etching process to define a via 1472 for coupling the switching element to the pixel electrode (through the drain electrode 1454), and removing the germanium-rich dielectric layer 1460. cover. At this stage, a laser annealing treatment can be applied to the germanium-rich dielectric layer 1460 to form a plurality of laser-induced nanocrystals having multiple energy gaps.

如第14F圖內所示,下個步驟為在通孔1472上形成具有一第一部分1482以及在富矽介電層1460上具有一分開的第二部分1484的透明金屬層。第一部分1482連接至場效電晶體的汲極電極1454,並當成一像素電極。該透明金屬層的第二部分1484、富矽介電層1460和金屬層1450的第三部分1456構成一太陽能電池。該透明金屬層由一透明、導電的材料形成,包含銦鋅氧化物(IZO)、非晶系銦錫氧化物(amorphous ITO)、poly-ITO等,厚度大約為0.01-3.0μm的範圍。As shown in FIG. 14F, the next step is to form a transparent metal layer having a first portion 1482 on the via 1472 and a separate second portion 1484 on the germanium-rich dielectric layer 1460. The first portion 1482 is coupled to the drain electrode 1454 of the field effect transistor and is referred to as a pixel electrode. The second portion 1484 of the transparent metal layer, the germanium-rich dielectric layer 1460, and the third portion 1456 of the metal layer 1450 form a solar cell. The transparent metal layer is formed of a transparent, electrically conductive material, and includes indium zinc oxide (IZO), amorphous indium oxide (ITO), poly-ITO, etc., and has a thickness in the range of about 0.01 to 3.0 μm.

在這些說明當中本發明公佈一種矽奈米晶體、多重能隙的光電池及其應用。該光電池具有利用富矽氧化物層進行後置退火所形成的奈米晶體層。該矽奈米晶體光電池(或感光器)可為嵌入式液晶顯示面板應用當中穩定的、有利的、彈性的、可靠的以及功能性的元件,具有大填充因數、完整背光隔離以及可調整吸收光譜之優點。Among these descriptions, the present invention discloses a germanium crystal, a multiple energy gap photocell, and applications thereof. The photovoltaic cell has a nanocrystal layer formed by post-annealing with a cerium-rich oxide layer. The nanocrystalline crystal cell (or photoreceptor) is a stable, advantageous, flexible, reliable and functional component for embedded LCD panels with large fill factor, complete backlight isolation and adjustable absorption spectrum. The advantages.

上述本發明示例性具體實施例的描述僅供說明,並非用於將本發明侷限在所公佈的精確形式中。許多修改與變化都可以上述為依據。The above description of the exemplary embodiments of the present invention is intended to be illustrative and not restrictive Many modifications and changes can be made based on the above.

具體實施例經過選擇與說明來最佳闡述本發明原理,並且以許多具體實施例讓其他精通此技術的人士對本系統有最佳瞭解,這些具體實施例都適合特定使用期待。精通此技術的人士可瞭解到,在不悖離本發明精神與範疇之下,其他具體實施例也隸屬於本發明。因此,由申請專利範圍來定義本發明範疇而非前述說明與其中描述的示例性具體實施例。DETAILED DESCRIPTION OF THE INVENTION The present invention is best understood by the following description of the preferred embodiments of the invention Those skilled in the art will appreciate that other embodiments are also within the scope of the invention. Therefore, the scope of the invention is defined by the scope of the claims, rather than the foregoing description and the exemplary embodiments described herein.

100...光電池100. . . Photocell

110...第一導電層110. . . First conductive layer

140...富矽介電層140. . . Rich dielectric layer

145...矽奈米晶體145. . . Nano crystal

170...第二導電層170. . . Second conductive layer

180...介電層180. . . Dielectric layer

181...接觸孔181. . . Contact hole

200...光電池200. . . Photocell

210...第一導電層210. . . First conductive layer

240...富矽介電層240. . . Rich dielectric layer

245...矽奈米晶體245. . . Nano crystal

270...第二導電層270. . . Second conductive layer

292...雷射292. . . Laser

295...光線295. . . Light

400...光電池電池組400. . . Photocell battery pack

401...光電池401. . . Photocell

410...第一導電層410. . . First conductive layer

440...富矽介電層440. . . Rich dielectric layer

445...矽奈米晶體445. . . Nano crystal

470...第二導電層470. . . Second conductive layer

480...可充電電池組480. . . Rechargeable battery pack

485...電流表485. . . Ammeter

495...光線495. . . Light

510-720...曲線510-720. . . curve

900...光電池900. . . Photocell

910...第一導電層910. . . First conductive layer

920...第一半導體層920. . . First semiconductor layer

930...第一富矽介電層930. . . First rich dielectric layer

940...第二富矽介電層940. . . Second rich dielectric layer

960...第二半導體層960. . . Second semiconductor layer

970...第二導電層970. . . Second conductive layer

1000...光電池1000. . . Photocell

1001...光電轉換層1001. . . Photoelectric conversion layer

1010...第一導電層1010. . . First conductive layer

1020...N型摻雜半導體層1020. . . N-type doped semiconductor layer

1030...第一富矽介電層1030. . . First rich dielectric layer

1040...第二富矽介電層1040. . . Second rich dielectric layer

1050...第三富矽介電層1050. . . Third rich dielectric layer

1060...P型摻雜半導體層1060. . . P-type doped semiconductor layer

1070...第二導電層1070. . . Second conductive layer

1101...顯示面板1101. . . Display panel

1102...液晶顯示面板1102. . . LCD panel

1110...顯示區域1110. . . Display area

1120...顯示區域1120. . . Display area

1130...光感測器1130. . . Light sensor

1140...光電池1140. . . Photocell

1150...周圍光感測器1150. . . Ambient light sensor

1160...液晶顯示驅動器1160. . . LCD driver

1200...低溫多晶矽面板1200. . . Low temperature polycrystalline germanium panel

1201...光電池1201. . . Photocell

1210...基板1210. . . Substrate

1221...顯示場效電晶體1221. . . Display field effect transistor

1222...源極區域1222. . . Source area

1224...汲極區域1224. . . Bungee area

1226...閘極電極1226. . . Gate electrode

1230...第一導電層1230. . . First conductive layer

1240...富矽介電層1240. . . Rich dielectric layer

1245...矽奈米晶體1245. . . Nano crystal

1270...第二導電層1270. . . Second conductive layer

1295...周圍光線1295. . . Ambient light

1296...背光1296. . . Backlight

1300...低溫多晶矽面板1300. . . Low temperature polycrystalline germanium panel

1301...場效電晶體1301. . . Field effect transistor

1303...儲存電容器1303. . . Storage capacitor

1305...感光器1305. . . Photoreceptor

1307...主動區域1307. . . Active area

1310...基板1310. . . Substrate

1355...第一電極1355. . . First electrode

1365...富矽介電層1365. . . Rich dielectric layer

1375...第二電極1375. . . Second electrode

1400...方法1400. . . method

1410...第一基板1410. . . First substrate

1412...切換區域1412. . . Switching area

1414...太陽能電池區域1414. . . Solar cell area

1420...閘極電極1420. . . Gate electrode

1430...介電層1430. . . Dielectric layer

1442...非晶矽層1442. . . Amorphous layer

1444...摻雜的非晶矽層1444. . . Doped amorphous germanium layer

1444a...源極接口1444a. . . Source interface

1444b...汲極接口1444b. . . Bungee interface

1450...金屬層1450. . . Metal layer

1452...第一部分1452. . . first part

1454...第二部分1454. . . the second part

1456...第三部分1456. . . the third part

1460...富矽介電層1460. . . Rich dielectric layer

1470...保護層1470. . . The protective layer

1472...通孔1472. . . Through hole

1482...第一部分1482. . . first part

1484...第二部分1484. . . the second part

附圖說明本發明的一或多個具體實施例,並且在搭配內容說明之後可用來解釋本發明原理。無論在什麼地方,所有圖式中將使用相同的參考號碼來代表相同或相似的部分,其中:BRIEF DESCRIPTION OF THE DRAWINGS One or more embodiments of the present invention can be used to explain the principles of the invention. Wherever they are used, the same reference numbers will be used in all drawings to represent the same or similar parts, in which:

第1圖圖解顯示根據本發明一個具體實施例的光電池之剖面圖;1 is a cross-sectional view showing a photovoltaic cell in accordance with an embodiment of the present invention;

第2圖圖解顯示根據本發明一個具體實施例製造一具有一富矽介電層,而該富矽介電層具有複數個雷射感應矽奈米晶體的光電池之處理:(A)在一第一導電層上形成一富矽介電層;(B)雷射退火該富矽介電層來形成複數個矽奈米晶體;以及(C)在該富矽介電層上形成一第二導電層;2 is a diagram showing the fabrication of a photovoltaic cell having a germanium-rich dielectric layer having a plurality of laser-induced nanocrystals in accordance with an embodiment of the present invention: (A) in a Forming a germanium-rich dielectric layer on a conductive layer; (B) laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals; and (C) forming a second conductive layer on the germanium-rich dielectric layer Floor;

第3圖顯示該等雷射感應的矽奈米晶體的特性:(A)一TEM影像顯示該等矽奈米晶體的大小,以及(B)該等雷射感應矽奈米晶體內奈米晶體大小的分布;Figure 3 shows the characteristics of the laser-induced nanocrystals: (A) a TEM image showing the size of the nanocrystals, and (B) the nanocrystals in the laser-induced nanocrystals Distribution of size;

第4圖圖解顯示根據本發明一個具體實施例的光電池之剖面圖;4 is a cross-sectional view showing a photovoltaic cell in accordance with an embodiment of the present invention;

第5圖顯示該光電池對於一入射白光的光電流反應;Figure 5 shows the photocurrent response of the photocell to an incident white light;

第6圖顯示利用不同的雷射退火功率強度製成的富矽氧化矽層,該光電池對一入射白光的光致發光反應;Figure 6 shows an ytterbium-rich yttrium oxide layer formed using different laser annealing power intensities, which photochromic reaction to an incident white light;

第7圖顯示根據本發明一個具體實施例的光電池之電流電壓特性;Figure 7 is a diagram showing current-voltage characteristics of a photovoltaic cell in accordance with an embodiment of the present invention;

第8圖圖解顯示根據本發明一個具體實施例具有一多重能隙的光電池之光譜特性,其中該多重能隙分成複數個狹窄區域;Figure 8 is a diagram showing the spectral characteristics of a photovoltaic cell having a multiple energy gap in accordance with an embodiment of the present invention, wherein the multiple energy gap is divided into a plurality of narrow regions;

第9圖圖解顯示根據本發明一個具體實施例的光電池之剖面圖;Figure 9 is a cross-sectional view showing a photovoltaic cell in accordance with an embodiment of the present invention;

第10圖圖解顯示根據本發明其他具體實施例的光電池之剖面圖;Figure 10 is a cross-sectional view showing a photovoltaic cell according to other embodiments of the present invention;

第11A圖和第11B圖圖解顯示根據本發明具體實施例整合一個或多個矽奈米晶體光電池之顯示面板;11A and 11B are diagrams showing a display panel incorporating one or more nanocrystalline crystal cells in accordance with an embodiment of the present invention;

第12圖圖解顯示根據本發明一個具體實施例整合複數個矽奈米晶體光電池的低溫多晶矽面板之剖面圖;12 is a cross-sectional view showing a low temperature polycrystalline germanium panel incorporating a plurality of nanocrystalline crystal cells in accordance with an embodiment of the present invention;

第13圖圖解顯示根據本發明其他具體實施例整合複數個矽奈米晶體光電池的低溫多晶矽面板之剖面圖;以及Figure 13 is a cross-sectional view showing a low temperature polycrystalline germanium panel incorporating a plurality of nanocrystalline crystal cells in accordance with other embodiments of the present invention;

第14A圖至第14F圖圖解顯示根據本發明一個具體實施例用於製造整合複數個矽奈米晶體光電池的低溫多晶矽面板之處理。14A through 14F are diagrams showing the process for fabricating a low temperature polycrystalline germanium panel incorporating a plurality of nanocrystalline crystal cells in accordance with an embodiment of the present invention.

100...光電池100. . . Photocell

110...第一導電層110. . . First conductive layer

140...富矽介電層140. . . Rich dielectric layer

145...矽奈米晶體145. . . Nano crystal

170...第二導電層170. . . Second conductive layer

180...介電層180. . . Dielectric layer

181...接觸孔181. . . Contact hole

Claims (39)

一種光電池,包含:(a)一第一導電層;(b)一N型摻雜半導體層形成於該第一導電層上;(c)一第一矽層形成於該N型摻雜半導體層上;(d)一第一富矽(Si-rich)介電層,形成於該第一矽層上並且具有一折射率n1;(e)一第二富矽(Si-rich)介電層,形成於該第一富矽介電層上並且具有一折射率n2,其中n2<n1;(f)一第二矽層形成於該第二富矽介電層上;(g)一P型摻雜半導體層形成於該第二矽層上;以及(h)一第二導電層形成於該P型摻雜半導體層上。 A photovoltaic cell comprising: (a) a first conductive layer; (b) an N-type doped semiconductor layer formed on the first conductive layer; (c) a first germanium layer formed on the N-type doped semiconductor layer (d) a first silicon-rich (Si-rich) dielectric layer formed on the first germanium layer and having a refractive index n1; (e) a second germanium-rich (Si-rich) dielectric layer Forming on the first ytterbium-rich dielectric layer and having a refractive index n2, wherein n2<n1; (f) a second ruthenium layer is formed on the second ytterbium-rich dielectric layer; (g) a P-type A doped semiconductor layer is formed on the second germanium layer; and (h) a second conductive layer is formed on the p-type doped semiconductor layer. 如申請專利範圍第1項所述之光電池,其中該第一矽層與該第二矽層其中之一者的材質為非晶矽(a-Si),並且該第一矽層與該第二矽層其中之另一者的材質為多晶矽(poly-Si)。 The photovoltaic cell of claim 1, wherein one of the first layer and the second layer is made of amorphous germanium (a-Si), and the first layer and the second layer The other of the tantalum layers is made of poly-Si. 如申請專利範圍第1項所述之光電池,其中該第一富矽介電層與該第二富矽介電層兩者之中至少一者包含一奈米晶體矽(nc-Si)層,該奈米結晶矽層包含複數個矽奈米晶體,每一該矽奈米晶體的大小介於約1奈米到20奈米之間。 The photovoltaic cell of claim 1, wherein at least one of the first ruthenium-rich dielectric layer and the second ruthenium-rich dielectric layer comprises a nanocrystalline germanium (nc-Si) layer, The nanocrystalline ruthenium layer comprises a plurality of ruthenium crystals, each of which has a size between about 1 nm and 20 nm. 如申請專利範圍第1項所述之光電池,其中該第一導電層和該第二導電層兩者之中至少一者的材質為一透明導電材料。 The photovoltaic cell of claim 1, wherein at least one of the first conductive layer and the second conductive layer is made of a transparent conductive material. 如申請專利範圍第4項所述之光電池,其中該透明導電材料為銦錫氧化物(ITO)、銦鋅氧化物(IZO)、鋁鋅氧化物(AZO)、鉿氧化物(HfO)或這些的組合。 The photovoltaic cell according to claim 4, wherein the transparent conductive material is indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), hafnium oxide (HfO) or the like. The combination. 如申請專利範圍第1項所述之光電池,其中該N型摻雜半導體層的材質為N型摻雜矽,並且其中該P型摻雜半導體層的材質為P型摻雜矽。 The photovoltaic cell of claim 1, wherein the material of the N-type doped semiconductor layer is an N-type doped germanium, and wherein the material of the P-type doped semiconductor layer is a P-type doped germanium. 一種製造一光電池之方法,包含步驟:(a)提供一基板;(b)在該基板上形成一第一導電層;(c)在該第一導電層上形成一N型摻雜半導體層;(d)在該N型摻雜半導體層上形成一第一矽層;(e)在該第一矽層上形成一第一富矽(Si-rich)介電層,其中該第一富矽介電層具有一折射率n1;(f)在該第一富矽介電層上形成一第二富矽(Si-rich)介電層,其中該第二富矽介電層上具有一折射率n2,且n2<n1;(g)在該第二富矽介電層上形成一第二矽層;(h)在該第二矽層上形成一P型摻雜半導體層;以及(i)在該P型摻雜半導體層上形成一第二導電層。 A method of manufacturing a photovoltaic cell, comprising the steps of: (a) providing a substrate; (b) forming a first conductive layer on the substrate; (c) forming an N-type doped semiconductor layer on the first conductive layer; (d) forming a first germanium layer on the N-type doped semiconductor layer; (e) forming a first germanium-rich (Si-rich) dielectric layer on the first germanium layer, wherein the first germanium layer The dielectric layer has a refractive index n1; (f) forming a second germanium-rich (Si-rich) dielectric layer on the first germanium-rich dielectric layer, wherein the second germanium-rich dielectric layer has a refraction a rate n2, and n2 < n1; (g) forming a second germanium layer on the second germanium-rich dielectric layer; (h) forming a p-type doped semiconductor layer on the second germanium layer; and (i Forming a second conductive layer on the P-type doped semiconductor layer. 如申請專利範圍第7項所述之方法,更包含:雷射退火該第一富矽介電層與該第二富矽介電層兩者之中至少一者以形成複數個矽奈米晶體。 The method of claim 7, further comprising: laser annealing at least one of the first ruthenium-rich dielectric layer and the second ruthenium-rich dielectric layer to form a plurality of ruthenium crystals . 一種光電池,包含: (a)一第一導電層;(b)一第二導電層;以及(c)一光電轉換層,形成於該第一導電層與該第二導電層之間,其中該光電轉換層具有一多重能隙,該光電轉換層包含:(i)一第一富矽(Si-rich)介電層,形成於該第一導電層上並且具有一折射率n1;以及(ii)一第二富矽(Si-rich)介電層,形成於該第一富矽介電層上並且具有一折射率n2,其中n2<n1。 A photovoltaic cell comprising: (a) a first conductive layer; (b) a second conductive layer; and (c) a photoelectric conversion layer formed between the first conductive layer and the second conductive layer, wherein the photoelectric conversion layer has a a multiple energy gap, the photoelectric conversion layer comprising: (i) a first silicon-rich (Si-rich) dielectric layer formed on the first conductive layer and having a refractive index n1; and (ii) a second A Si-rich dielectric layer is formed on the first ytterbium-rich dielectric layer and has a refractive index n2, where n2 < n1. 如申請專利範圍第9項所述之光電池,其中該光電轉換層更包含:(i)一非晶矽(a-Si)層;以及(ii)一多晶矽(poly-Si)層,其中該第一富矽介電層和該第二富矽介電層形成在該非晶矽層和該多晶矽層之間。 The photovoltaic cell of claim 9, wherein the photoelectric conversion layer further comprises: (i) an amorphous germanium (a-Si) layer; and (ii) a poly-Si layer, wherein the A germanium rich dielectric layer and the second germanium rich dielectric layer are formed between the amorphous germanium layer and the poly germanium layer. 如申請專利範圍第10項所述之光電池,其中該第一富矽介電層與該第二富矽介電層的材質包含一富矽氧化物、一富矽氮化物、一富矽氮氧化物、一富矽碳化物或這些的組合。 The photovoltaic cell of claim 10, wherein the material of the first ruthenium-rich dielectric layer and the second ruthenium-rich dielectric layer comprises a ruthenium-rich oxide, a ruthenium-rich nitride, and a ruthenium-rich ruthenium oxide. a substance, a ruthenium-rich carbide or a combination of these. 如申請專利範圍第10項所述之光電池,其中該第一富矽介電層與該第二富矽介電層兩者之中至少一者包含一奈米晶體矽(nc-Si)層,該奈米晶體矽層具有複數個矽奈米晶體,每一該矽奈米晶體的大小介於約1奈米到約20奈米之間。 The photovoltaic cell of claim 10, wherein at least one of the first germanium-rich dielectric layer and the second germanium-rich dielectric layer comprises a nanocrystalline germanium (nc-Si) layer, The nanocrystalline crystalline layer has a plurality of nanocrystals, each of which has a size between about 1 nanometer and about 20 nanometers. 如申請專利範圍第9項所述之光電池,其中該光電轉換層更包含一第三富矽介電層形成在該第二富矽介電層與該第二導電層之間,該第三富矽介電層具有一折射率n3,其中n3<n2<n1。 The photovoltaic cell of claim 9, wherein the photoelectric conversion layer further comprises a third germanium-rich dielectric layer formed between the second germanium-rich dielectric layer and the second conductive layer, the third rich The germanium dielectric layer has a refractive index n3, where n3 < n2 < n1. 如申請專利範圍第13項所述之光電池,其中每一該第一富矽介電層、第二富矽介電層和第三富矽介電層的材質包含一富矽氧化物、一富矽氮化物、一富矽氮氧化物、一富矽碳化物或這些的組合。 The photovoltaic cell of claim 13, wherein the material of each of the first ruthenium-rich dielectric layer, the second ruthenium-rich dielectric layer, and the third ruthenium-rich dielectric layer comprises a ruthenium-rich oxide and a rich Niobium nitride, a niobium-rich niobium oxide, a niobium-rich carbide or a combination of these. 如申請專利範圍第9項所述之光電池,進一步包含:(i)一N型摻雜半導體層形成在該第一導電層與該光電轉換層之間;以及(ii)一P型摻雜半導體層形成在該第二導電層與該光電轉換層之間。 The photovoltaic cell of claim 9, further comprising: (i) an N-type doped semiconductor layer formed between the first conductive layer and the photoelectric conversion layer; and (ii) a P-type doped semiconductor A layer is formed between the second conductive layer and the photoelectric conversion layer. 如申請專利範圍第9項所述之光電池,其中該第一和第二導電層其中之至少一者的材質為一透明導電材料。 The photovoltaic cell of claim 9, wherein at least one of the first and second conductive layers is made of a transparent conductive material. 一種製造一光電池之方法,包含步驟:(a)提供一基板;(b)形成一第一導電層在該基板上;(c)形成一光電轉換層在該第一導電層上,其中該光電轉換層具有一多重能隙(multi-band gap)並包含:(i)形成一第一富矽(Si-rich)介電層在該第一導電層 上,其中該第一富矽層具有一折射率n1;以及(ii)形成一第二富矽(Si-rich)介電層在該第一富矽層上,其中該第二富矽層具有一折射率n2,且n2<n1;以及(d)形成一第二導電層在該光電轉換層上。 A method of manufacturing a photovoltaic cell comprising the steps of: (a) providing a substrate; (b) forming a first conductive layer on the substrate; (c) forming a photoelectric conversion layer on the first conductive layer, wherein the photovoltaic The conversion layer has a multi-band gap and comprises: (i) forming a first silicon-rich (Si-rich) dielectric layer on the first conductive layer The first ytterbium layer has a refractive index n1; and (ii) forms a second ytterbium (Si-rich) dielectric layer on the first ytterbium layer, wherein the second ytterbium layer has a refractive index n2, and n2 < n1; and (d) forming a second conductive layer on the photoelectric conversion layer. 如申請專利範圍第17項所述之方法,其中形成該光電轉換層的步驟更包含步驟:(i)形成一第一矽層在該第一導電層上;(ii)形成一第二矽層在該第二富矽介電層上,其中該第一矽層與該第二矽層其中之一者包含一非晶矽(a-Si)層,並且該第一矽層與該第二矽層其中之另一者包含一多晶矽(poly-Si)層。 The method of claim 17, wherein the step of forming the photoelectric conversion layer further comprises the steps of: (i) forming a first germanium layer on the first conductive layer; and (ii) forming a second germanium layer. On the second germanium-rich dielectric layer, wherein one of the first germanium layer and the second germanium layer comprises an amorphous germanium (a-Si) layer, and the first germanium layer and the second germanium layer The other of the layers contains a poly-Si layer. 如申請專利範圍第17項所述之方法,其中形成該第一富矽層以及該第二富矽層的步驟進一步包含:雷射退火該第一富矽層以及該第二富矽層來形成複數個矽奈米晶體。 The method of claim 17, wherein the step of forming the first ruthenium rich layer and the second ruthenium rich layer further comprises: laser annealing the first ruthenium rich layer and the second ruthenium rich layer to form A plurality of nano crystals. 如申請專利範圍第17項所述之方法,其中形成該光電轉換層的步驟進一步包含:形成一第三富矽介電層在該第二富矽介電層與該第二導電層之間,該第三富矽介電層具有一折射率n3,其中n3<n2<n1。 The method of claim 17, wherein the step of forming the photoelectric conversion layer further comprises: forming a third germanium-rich dielectric layer between the second germanium-rich dielectric layer and the second conductive layer, The third germanium-rich dielectric layer has a refractive index n3, where n3 < n2 < n1. 如申請專利範圍第17項所述之方法,該方法進一步包 含:(i)形成一N型摻雜半導體層在該第一導電層與該光電轉換層之間;以及(ii)形成一P型摻雜半導體層在該第二導電層與該光電轉換層之間。 If the method described in claim 17 is applied, the method further includes And comprising: (i) forming an N-type doped semiconductor layer between the first conductive layer and the photoelectric conversion layer; and (ii) forming a P-type doped semiconductor layer on the second conductive layer and the photoelectric conversion layer between. 一種液晶顯示面板,係利用一液晶顯示驅動器來驅動操作並且利用一背光來照明,該液晶顯示面板包含:(a)一顯示區域,用於顯示相關資訊;以及(b)一光電池,該光電池置於圍繞該顯示區域的一區域內並曝露在一光線下,來將該光線的光學能量轉換成一電能,該電能供應至該液晶顯示驅動器當成一驅動電力,其中該光電池包含:(i)一第一導電層;(ii)一第二導電層;以及(iii)一光電轉換層,形成於該第一導電層與該第二導電層之間,其中該光電轉換層具有一多重能隙。 A liquid crystal display panel is driven by a liquid crystal display driver and illuminated by a backlight, the liquid crystal display panel comprising: (a) a display area for displaying related information; and (b) a photocell, the photocell The optical energy of the light is converted into an electric energy in an area surrounding the display area and exposed to a light, and the electric energy is supplied to the liquid crystal display driver as a driving power, wherein the photo battery comprises: (i) a first a conductive layer; (ii) a second conductive layer; and (iii) a photoelectric conversion layer formed between the first conductive layer and the second conductive layer, wherein the photoelectric conversion layer has a multiple energy gap. 如申請專利範圍第22項所述之液晶顯示面板,其中該光電轉換層進一步包含:(i)一非晶矽(a-Si)層;(ii)一多晶矽(poly-Si)層;以及(iii)一富矽(Si-rich)介電層形成在該非晶矽層和該多晶矽層之間。 The liquid crystal display panel of claim 22, wherein the photoelectric conversion layer further comprises: (i) an amorphous germanium (a-Si) layer; (ii) a poly-Si layer; Iii) A Si-rich dielectric layer is formed between the amorphous germanium layer and the polysilicon layer. 如申請專利範圍第23項所述之液晶顯示面板,其中該富 矽介電層的材質包含一富矽氧化物、一富矽氮化物、一富矽氮氧化物、一富矽碳化物或這些的組合。 The liquid crystal display panel of claim 23, wherein the rich The material of the germanium dielectric layer comprises a cerium-rich oxide, a germanium-rich nitride, a germanium-rich oxynitride, a germanium-rich carbide or a combination of these. 如申請專利範圍第24項所述之液晶顯示面板,其中該富矽介電層包含一奈米晶體矽(nc-Si)層,該奈米晶體矽層具有複數個矽奈米晶體,每一該矽奈米晶體的大小介於約1奈米到約20奈米之間。 The liquid crystal display panel of claim 24, wherein the ytterbium-rich dielectric layer comprises a nanocrystalline 矽 (nc-Si) layer, the nanocrystalline 矽 layer having a plurality of 矽 nanocrystals, each The size of the nanocrystals is between about 1 nanometer and about 20 nanometers. 如申請專利範圍第22項所述之液晶顯示面板,其中該光電轉換層包含:(i)一第一富矽(Si-rich)介電層,形成於該第一導電層上並且具有一折射率n1;以及(ii)一第二富矽(Si-rich)介電層,形成於該第一富矽介電層上並且具有一折射率n2,其中n2<n1。 The liquid crystal display panel of claim 22, wherein the photoelectric conversion layer comprises: (i) a first silicon-rich (Si-rich) dielectric layer formed on the first conductive layer and having a refraction And a (ii) a second Si-rich dielectric layer formed on the first ytterbium-rich dielectric layer and having a refractive index n2, wherein n2 < n1. 如申請專利範圍第26項所述之液晶顯示面板,其中該光電轉換層進一步包含一第三富矽介電層形成在該第二富矽介電層與該第二導電層之間,該第三富矽介電層具有一折射率n3,其中n3<n2<n1。 The liquid crystal display panel of claim 26, wherein the photoelectric conversion layer further comprises a third germanium-rich dielectric layer formed between the second germanium-rich dielectric layer and the second conductive layer, the first The tri-rich dielectric layer has a refractive index n3, where n3 < n2 < n1. 如申請專利範圍第22項所述之液晶顯示面板,其中該顯示區域具有複數個低溫多晶矽薄膜電晶體(LTPS-TFT,“low temperature polycrystalline silicon thin film transistor”)。 The liquid crystal display panel of claim 22, wherein the display region has a plurality of low temperature polycrystalline silicon thin film transistors (LTPS-TFTs). 一種用於製造一液晶顯示(LCD)面板之方法,該液晶顯 示面板係利用一液晶顯示驅動器來驅動操作並且利用一背光來照明,該方法包含:(a)提供一基板;(b)形成一顯示區域在該基板上;以及(c)形成一光電池在圍繞該顯示區域的一區域內之該基板上,並曝露在光線下,當該光電池將光能轉換成一電能,該電能供應至該液晶顯示驅動器當成一驅動電力,其中形成該光電池的步驟包含步驟:(i)形成一第一導電層;(ii)形成一第二導電層;以及(iii)形成一光電轉換層在該第一導電層與該第二導電層之間,其中該光電轉換層具有一多重能隙。 A method for manufacturing a liquid crystal display (LCD) panel, the liquid crystal display The display panel is driven by a liquid crystal display driver and illuminated by a backlight, the method comprising: (a) providing a substrate; (b) forming a display area on the substrate; and (c) forming a photocell around The substrate in an area of the display area is exposed to light. When the photocell converts light energy into an electric energy, the electric energy is supplied to the liquid crystal display driver as a driving power, and the step of forming the photocell includes the steps of: (i) forming a first conductive layer; (ii) forming a second conductive layer; and (iii) forming a photoelectric conversion layer between the first conductive layer and the second conductive layer, wherein the photoelectric conversion layer has A multiple energy gap. 如申請專利範圍第29項所述之方法,其中形成該光電轉換層的步驟包含:(i)形成一第一矽層在該第一導電層上;(ii)形成一富矽(Si-rich)介電層在該第一矽層上;以及(iii)形成一第二矽層在完成雷射退火的該富矽介電層上,其中該第一矽層與該第二矽層其中之一者包含一非晶矽(a-Si)層,並且該第一矽層與該第二矽層其中之另一者包含一多晶矽(poly-Si)層。 The method of claim 29, wherein the step of forming the photoelectric conversion layer comprises: (i) forming a first germanium layer on the first conductive layer; (ii) forming a germanium rich (Si-rich) a dielectric layer on the first germanium layer; and (iii) forming a second germanium layer on the germanium-rich dielectric layer that completes the laser annealing, wherein the first germanium layer and the second germanium layer are One comprises an amorphous germanium (a-Si) layer, and the other of the first germanium layer and the second germanium layer comprises a poly-Si layer. 如申請專利範圍第30項所述之方法,其中形成該富矽介電層的步驟進一步包含:雷射退火該富矽介電層來形成複數個矽奈米晶體。 The method of claim 30, wherein the step of forming the germanium-rich dielectric layer further comprises: laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals. 如申請專利範圍第29項所述之方法,其中形成該光電轉換層的步驟包含:(i)形成一第一富矽(Si-rich)介電層於該第一導電層上,該第一富矽介電層具有一折射率n1;以及(ii)形成一第二富矽(Si-rich)介電層於該第一富矽介電層上,該第二富矽介電層具有一折射率n2,其中n2<n1。 The method of claim 29, wherein the step of forming the photoelectric conversion layer comprises: (i) forming a first silicon-rich (Si-rich) dielectric layer on the first conductive layer, the first The ruthenium-rich dielectric layer has a refractive index n1; and (ii) a second Si-rich dielectric layer is formed on the first ytterbium-rich dielectric layer, the second ytterbium-rich dielectric layer has a The refractive index n2, where n2 < n1. 如申請專利範圍第32項所述之方法,其中形成該光電轉換層的步驟更包含:形成一第三富矽介電層在該第二富矽介電層與該第二導電層之間,該第三富矽介電層具有一折射率n3,其中n3<n2<n1。 The method of claim 32, wherein the step of forming the photoelectric conversion layer further comprises: forming a third germanium-rich dielectric layer between the second germanium-rich dielectric layer and the second conductive layer, The third germanium-rich dielectric layer has a refractive index n3, where n3 < n2 < n1. 一種顯示面板,包含:複數個矩陣形式排列的像素,每一像素包含:(a)一主動區域,用於顯示相關資訊;(b)一切換區域,具有至少一切換元件;以及(c)一光電池,形成於該主動區域與該切換區域之間,其中該光電池具有一光電轉換層,該光電轉換層包含一多重能隙。 A display panel comprising: a plurality of pixels arranged in a matrix form, each pixel comprising: (a) an active area for displaying related information; (b) a switching area having at least one switching element; and (c) a A photocell is formed between the active region and the switching region, wherein the photovoltaic cell has a photoelectric conversion layer, and the photoelectric conversion layer includes a multiple energy gap. 如申請專利範圍第34項所述之顯示面板,其中該光電轉換層包含:(i)一非晶矽(a-Si)層;(ii)一多晶矽(poly-Si)層;以及 (iii)一富矽(Si-rich)介電層形成在該非晶矽層和該多晶矽層之間。 The display panel of claim 34, wherein the photoelectric conversion layer comprises: (i) an amorphous germanium (a-Si) layer; (ii) a poly-Si layer; (iii) A Si-rich dielectric layer is formed between the amorphous germanium layer and the polysilicon layer. 如申請專利範圍第35項所述之顯示面板,其中該富矽介電層包含一奈米晶體矽(nc-Si)層,該奈米晶體矽層具有複數個矽奈米晶體,每一該矽奈米晶體大小介於約1奈米到約20奈米之間。 The display panel of claim 35, wherein the ytterbium-rich dielectric layer comprises a nanocrystalline germanium (nc-Si) layer, the nanocrystalline germanium layer having a plurality of nanocrystals, each of which The nanocrystal size ranges from about 1 nanometer to about 20 nanometers. 一種製造一顯示面板之方法,包含:(a)提供一基板;以及(b)在該基板上以矩陣形式形成複數個像素,其中每一像素包含一光電池,其中該光電池具有一光電轉換層,該光電轉換層包含一多重能隙。 A method of manufacturing a display panel, comprising: (a) providing a substrate; and (b) forming a plurality of pixels in a matrix on the substrate, wherein each pixel comprises a photovoltaic cell, wherein the photovoltaic cell has a photoelectric conversion layer, The photoelectric conversion layer includes a multiple energy gap. 如申請專利範圍第37項所述之方法,其中形成該些像素的步驟包含:(i)形成複數個閘極電耦合至該基板上的複數個閘線,其中該些閘極在空間上彼此相隔,並且其中每一對相鄰該些閘極定義一主動區域、一切換區域以及一光電池,該切換區域中形成該閘極,該光電池位於位於該主動區域和該切換區域之間;(ii)在該些閘極以及該基板的剩餘區域上形成一閘絕緣層;(iii)形成一非晶矽(a-Si)層在該閘絕緣層上覆蓋每一切換區域內的該些閘極;(iv)在該非晶矽層上形成一摻雜非晶矽層; (v)在該摻雜非晶矽層上以及該閘絕緣層的剩餘區域上形成一第一導電層;(vi)在該第一導電層上形成覆蓋每一光電池區域的一富矽(Si-rich)介電層;(vii)在每一切換區域內形成一源極和一汲極,藉此在該基板上形成具有一場效電晶體陣列;(viii)形成一被動層在第一導電層上覆蓋該場效電晶體陣列與該富矽介電層;(ix)在該切換區域和該光電池區域內該被動層上形成通孔接觸;以及(x)在該切換區域與該光電池區域之間一區域上形成具有一第一部分的一第二導電層,如此該第一部分在每一切換區域內通過該通孔與該場效電晶體的該汲極接觸,以及接觸該光電池區域內該富矽介電層上一第二部分。 The method of claim 37, wherein the forming the pixels comprises: (i) forming a plurality of gates electrically coupled to the plurality of gate lines on the substrate, wherein the gates are spatially each other Separating, and each pair of adjacent ones of the gates defines an active area, a switching area, and a photocell in which the gate is formed, the photocell being located between the active area and the switching area; (ii) Forming a gate insulating layer on the gates and the remaining regions of the substrate; (iii) forming an amorphous germanium (a-Si) layer over the gate insulating layer covering the gates in each switching region (iv) forming a doped amorphous germanium layer on the amorphous germanium layer; (v) forming a first conductive layer on the doped amorphous germanium layer and the remaining region of the gate insulating layer; (vi) forming a germanium-rich (Si) covering each photocell region on the first conductive layer a -rich) dielectric layer; (vii) forming a source and a drain in each switching region, thereby forming a field-effect transistor array on the substrate; (viii) forming a passive layer at the first conductive Overlaying the field effect transistor array and the germanium rich dielectric layer; (ix) forming a via contact on the passive region in the switching region and the photocell region; and (x) in the switching region and the photocell region Forming a second conductive layer having a first portion therebetween, such that the first portion contacts the drain of the field effect transistor through the via hole in each switching region, and contacts the photocell region A second part of the rich dielectric layer. 如申請專利範圍第38項所述之方法,其中形成該複數個像素的步驟進一步包含雷射退火該富矽介電層來在其內形成複數個矽奈米晶體。 The method of claim 38, wherein the step of forming the plurality of pixels further comprises laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals therein.
TW098107027A 2008-09-02 2009-03-04 Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel TWI462307B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/202,647 US9577137B2 (en) 2007-01-25 2008-09-02 Photovoltaic cells with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel

Publications (2)

Publication Number Publication Date
TW201011923A TW201011923A (en) 2010-03-16
TWI462307B true TWI462307B (en) 2014-11-21

Family

ID=41039972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107027A TWI462307B (en) 2008-09-02 2009-03-04 Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel

Country Status (3)

Country Link
JP (1) JP5131993B2 (en)
CN (1) CN101515608B (en)
TW (1) TWI462307B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744227B (en) * 2015-03-23 2021-11-01 美商太陽電子公司 Blister-free polycrystalline silicon for solar cells

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253547B (en) * 2010-05-21 2015-03-11 北京京东方光电科技有限公司 Array substrate and manufacturing method thereof as well as liquid crystal display
KR101801960B1 (en) 2010-07-01 2017-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driving method of liquid crystal display device
US9627564B2 (en) 2010-09-09 2017-04-18 Electricite De France Optoelectronic device comprising nanostructures of hexagonal type crystals
TWI440194B (en) * 2011-08-01 2014-06-01 Au Optronics Corp Photoelectric module and lighting method thereof
CN103681774B (en) * 2013-12-31 2018-11-23 北京维信诺科技有限公司 A kind of OLED display of integrated solar cell
US9337369B2 (en) * 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
CN107272235A (en) * 2017-05-12 2017-10-20 惠科股份有限公司 Display device and active array switch substrate thereof
CN108596134B (en) * 2018-04-28 2020-08-11 京东方科技集团股份有限公司 Touch panel or grain recognition panel and manufacturing method and device
CN110098489B (en) * 2019-05-16 2021-07-20 哈尔滨工业大学 Adjustable ultra-narrow-band absorber based on four nano-column coupled vibrators
CN112135502A (en) * 2019-06-24 2020-12-25 禾达材料科技股份有限公司 Electromagnetic wave shield and transmission line assembly using the same
CN114093899B (en) * 2021-08-11 2024-08-16 苏州希卓科技有限公司 Detector integrated with solar cell and manufacturing method thereof
CN115037999B (en) * 2022-07-01 2024-05-03 杭州迪普科技股份有限公司 485 Signal-to-optical fiber detection device and method, electronic equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092357A1 (en) * 2003-10-29 2005-05-05 Xunming Deng Hybrid window layer for photovoltaic cells
WO2005106966A1 (en) * 2004-04-30 2005-11-10 Unisearch Limited Artificial amorphous semiconductors and applications to solar cells
US20060246301A1 (en) * 2001-12-21 2006-11-02 Guardian Industries Corp. Low-E coating with high visible transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698115B2 (en) * 1988-09-20 1998-01-19 三洋電機株式会社 Method for manufacturing photovoltaic device
JP2717583B2 (en) * 1988-11-04 1998-02-18 キヤノン株式会社 Stacked photovoltaic element
JP2740284B2 (en) * 1989-08-09 1998-04-15 三洋電機株式会社 Photovoltaic element
US20070166916A1 (en) * 2006-01-14 2007-07-19 Sunvolt Nanosystems, Inc. Nanostructures-based optoelectronics device
US7857907B2 (en) * 2007-01-25 2010-12-28 Au Optronics Corporation Methods of forming silicon nanocrystals by laser annealing
US20080179762A1 (en) * 2007-01-25 2008-07-31 Au Optronics Corporation Layered structure with laser-induced aggregation silicon nano-dots in a silicon-rich dielectric layer, and applications of the same
CN101237000A (en) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 Nano crystal silicon and non crystal germanium mixed absorption layer for multi-node light voltage part based on film silicon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246301A1 (en) * 2001-12-21 2006-11-02 Guardian Industries Corp. Low-E coating with high visible transmission
US20050092357A1 (en) * 2003-10-29 2005-05-05 Xunming Deng Hybrid window layer for photovoltaic cells
WO2005106966A1 (en) * 2004-04-30 2005-11-10 Unisearch Limited Artificial amorphous semiconductors and applications to solar cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744227B (en) * 2015-03-23 2021-11-01 美商太陽電子公司 Blister-free polycrystalline silicon for solar cells

Also Published As

Publication number Publication date
JP5131993B2 (en) 2013-01-30
CN101515608A (en) 2009-08-26
CN101515608B (en) 2014-03-26
TW201011923A (en) 2010-03-16
JP2010062539A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
TWI462307B (en) Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel
US9577137B2 (en) Photovoltaic cells with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel
TWI397111B (en) Layered structure with silicon nanocrystals, solar cell, nonvolatile memory element, photo sensitive element and fabrications thereof, and method for forming silicon nanocrystals
TWI395034B (en) Thin film transistor array substrate, display panel, liquid crystal display apparatus and manufacturing method thereof
US8772770B2 (en) P-type semiconductor material and semiconductor device
TWI464887B (en) Photo-voltaic cell device and display panel
US8895839B2 (en) Multijunction photovoltaic device
US20090242019A1 (en) Method to create high efficiency, low cost polysilicon or microcrystalline solar cell on flexible substrates using multilayer high speed inkjet printing and, rapid annealing and light trapping
TWI420700B (en) Solar cell
EP4293729A1 (en) Method for preparing solar cell and solar cell, photovoltaic module
US20100059111A1 (en) Solar Cell Module having Multiple Module Layers and Manufacturing Method Thereof
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
JP2010130023A (en) Solar cell and method of manufacturing the same
US20120181503A1 (en) Method of Fabricating Silicon Quantum Dot Layer and Device Manufactured Using the Same
WO2018205320A1 (en) Display device and active array switch substrate thereof
TWI475705B (en) Solar cell having light-focusing elements and larger effective area and the method of the same
US20120104382A1 (en) Photo diode, method of manufacturing the photo-diode, and photo sensor including the photo diode
WO2016021267A1 (en) Photoelectric conversion element
TW200933908A (en) A silicon-based thin film solar-cell
CN108649095B (en) Nano-crystal structure carbon film-based field effect tube structure photoelectric device and preparation method thereof
US20100147380A1 (en) Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers and Wide Bandgap Dopant Layers
JPH04230081A (en) Photoelectric conversion device
US8697482B1 (en) Method for manufacturing junction plane of solar cell through aluminum induced crystallization method
JPS5928387A (en) Semiconductor device
Kiaee et al. Fabrication and characterization of lateral PIN poly-Si solar cell utilizing Ni silicide-induced crystallization on glass substrate