TWI252657B - Carrier frequency offset and phase compensation device of OFDM system and method thereof - Google Patents
Carrier frequency offset and phase compensation device of OFDM system and method thereof Download PDFInfo
- Publication number
- TWI252657B TWI252657B TW92103827A TW92103827A TWI252657B TW I252657 B TWI252657 B TW I252657B TW 92103827 A TW92103827 A TW 92103827A TW 92103827 A TW92103827 A TW 92103827A TW I252657 B TWI252657 B TW I252657B
- Authority
- TW
- Taiwan
- Prior art keywords
- phase
- signal
- compensation
- frequency offset
- subchannel
- Prior art date
Links
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1252657 五、發明說明(1) 【發明所屬之技術領域】 本發明係有關於正交分頻多工系統中載波頻率偏移之 處理,尤指利用頻域之導引子通道(pilot subchannel) 的訊號,對載波頻率偏移進行估計及補償,以提昇OFDM系 統效能之頻偏與相位補償裝置及方法。 【先前技術】 隨著寬頻時代的來臨,新的寬頻通訊技術日形重要。 近年來,正交分頻多工(orthogonal frequency division multiplexing,簡稱OFDM)技術已廣泛應用於 高速傳輸系統標準中,如非對稱式數位用戶迴路 (Asymmetric Digital Subscriber Line, ADSL) 、 IEEE 802.11a /g無線區域網路(wireless local area network,WLAN)等。圖一係一典型OF DM通訊系統1 00的方 塊圖。該OF DM系統1 0 0係於發射端(Tx)將所要傳送的資 料透過訊號對應(s i g n a 1 m a p p i ng)裝置1 〇 1分別置於頻 域的N個子通道中(N為2的冪次方),並使各子通道間的 訊號具有正交性(orthogonality),以避免「載波間干 擾」(inter-carrier interference, ICI) 〇 接著,利 用反快速傅立葉轉換(inverse fast Fourier t r a n s f o r m,I F F T)裝置1 0 2轉換成時域訊號,再加上防護 區間 (guard interval,GI)後,經並列至串列轉換器 (parallel-to-serial converter,P/S) 104、婁丈位至類 比轉換器(digital-to-analog converter,DAC) 105, 以及載波調變,經由通道1 0 6進行傳輸。接收端(則1252657 V. INSTRUCTION DESCRIPTION (1) Technical Field of the Invention The present invention relates to processing of carrier frequency offset in an orthogonal frequency division multiplexing system, and more particularly to using a pilot subchannel of a frequency domain. Signal, frequency offset and phase compensation device and method for estimating and compensating carrier frequency offset to improve OFDM system performance. [Prior Art] With the advent of the broadband era, new broadband communication technologies are becoming increasingly important. In recent years, orthogonal frequency division multiplexing (OFDM) technology has been widely used in high-speed transmission system standards, such as Asymmetric Digital Subscriber Line (ADSL), IEEE 802.11a /g. Wireless local area network (WLAN), etc. Figure 1 is a block diagram of a typical OF DM communication system 100. The OF DM system 100 is connected to the signal (signal 1 mappi ng) device 1 〇1 in the N subchannels of the frequency domain (N is a power of 2) at the transmitting end (Tx). ), and the signals between the sub-channels have orthogonality to avoid "inter-carrier interference" (ICI), and then use an inverse fast Fourier transform (IFFT) device. 1 0 2 is converted into a time domain signal, and after the guard interval (GI), it is parallelized to a parallel-to-serial converter (P/S) 104, a bit-to-analog converter (digital-to-analog converter, DAC) 105, and carrier modulation, transmitted via channel 106. Receiving end
1252657 五、發明說明(2) 先經載波解調,以及類比至數位轉換器 (analog-to-digital converter,ADC) 10 7取樣後,將 G I移除’並經過串列至並列轉換器(serial-to-parallel converter,S/P) 110,再送入快速傅立葉轉換(fast Fourier transform,FFT)裝置111轉換回頻域訊號,在 各個子通道中分別進行通道補償(Channel compensation)’ 最後由訊號解對應(signal demapping )裝置1 1 3解調出原傳送資料。如此,透過n個子通道平行 傳輸,可達到高速傳輸的目的。 我們將一組N點IFFT的輸出值稱作符元(Symb〇l)。 而由於通道脈衝響應(channel impulse response,CIR )通常皆非理想,會造成一符元在經過通道1 〇 6後,於接 收端影響到後續符元的接收,造成「符際干擾」 (inter-symb〇l interference, isi)。為避免 is I的問 題’一般會在OFDM符元間額外加入一段防護區間。防護 區間的做法有兩類:(D補零(Zero —Padding,ZP) ' 及(2)循環前置(Cycl ic pref ix,CP) 。ZP即為加入— 連串的0當GI,此法具有較佳的能量效率(energy efficiency) 。CP則是複製一符元之後段訊號置於該符元 之刚當G I,此法可以減少通道脈衝響應所造成之各子通曾 巧的I C I。這部为的5孔號處理,是由圖一中增加防護區 之電路103與移除防護區間之電路1〇9來完成。 曰 在解調OF DM訊號時,需先將接收到的時域訊號,經母 FFT轉換回頻域訊號,在各個子通道中分別進行解調。若、1252657 V. Description of the invention (2) After carrier demodulation and analog-to-digital converter (ADC) 10 7 sampling, the GI is removed 'and serialized to the parallel converter (serial -to-parallel converter, S/P) 110, and then sent to the fast Fourier transform (FFT) device 111 to convert back to the frequency domain signal, and perform channel compensation in each subchannel respectively. The signal demapping device 1 1 3 demodulates the original transmission data. In this way, high-speed transmission can be achieved by parallel transmission through n sub-channels. We call the output value of a set of N-point IFFTs a symbol (Symb〇l). Since the channel impulse response (CIR) is usually not ideal, it will cause a symbol to affect the reception of subsequent symbols at the receiving end after passing through channel 1 〇6, resulting in "inter-symbol interference" (inter- Symb〇l interference, isi). To avoid the problem of is I, an extra guard interval is usually added between OFDM symbols. There are two types of guard intervals: (Z Zero - Padding, ZP) and (2) Cyclic Pref ix (CP). ZP is the join - a series of 0 as GI, this method It has better energy efficiency. CP is the GI that is placed in the symbol after the symbol is copied. This method can reduce the ICI of each sub-pass caused by the channel impulse response. The 5-hole number processing of the part is completed by adding the circuit 103 of the protection zone and the circuit 1〇9 of the protection zone in Fig. 1. 曰 When demodulating the OF DM signal, the received time domain signal is first received. , the mother FFT converts back to the frequency domain signal, and demodulates separately in each subchannel.
1252657 五、發明說明(3) 輸入FFT的時域訊號有同步誤差(synchronization error )存在,則會在輸出的頻域訊號中造成額外的I C I與相位 旋轉,使其正交性被破壞,影響系統效能。因此,OFDM系 統與其他通訊系統相較之下,對於同步的精確度要求更 高。對OF DM傳輸系統而言,同步誤差包含以下四項:(1 )載波頻率偏移(carrier frequency offset) 、( 2) 載波相位誤差(carrier phase error) 、( 3)取樣頻率 偏移(sampling frequency offset)以及(4)取樣相位 誤差(sampling phase error)。其中,載波相位誤差與 取樣相位誤差對接收端之〇FDM訊號所造成的影響,主要是 在頻域之各個子通道輸出產生固定的相位旋轉,所以可用 通道估測(channel estimation)與通道補償的機制來消 除。然而’載波頻率偏移和取樣頻率偏移除了造成額外的 I C I ’也會使各個子通道輸出產生累積的相位旋轉,導致 系統效能逐漸變差。 有鐘於此,本發明的著眼點,即在於提出一些適用於 系統之載波頻率偏移(下文簡稱載波頻偏)與相位補 ^^及方法,其利用頻域之導引子通道的訊號,對載波 作t種同步誤差進行追縱及補償’以提昇0FDM系統的運 户夕又月皂。 【發明内容】 將次^發明主要係應用於0FDM系統中,該系統係於發射端 送,、碼成〇F D M符元,分置於複數個頻域的子通道傳 、送過程中並利用一載波進行調變,其中該些子通道1252657 V. Description of the invention (3) When the time domain signal of the input FFT has a synchronization error, it will cause additional ICI and phase rotation in the output frequency domain signal, causing its orthogonality to be destroyed, affecting the system. efficacy. Therefore, OFDM systems require more precision for synchronization than other communication systems. For the OF DM transmission system, the synchronization error includes the following four items: (1) carrier frequency offset, (2) carrier phase error, and (3) sampling frequency offset (sampling frequency) Offset) and (4) sampling phase error. Among them, the influence of the carrier phase error and the sampling phase error on the 〇FDM signal at the receiving end mainly results in a fixed phase rotation in the output of each subchannel in the frequency domain, so channel estimation and channel compensation can be used. Mechanism to eliminate. However, the addition of the carrier frequency offset and the sampling frequency offset in addition to causing additional I C I ' will result in cumulative phase rotation of each sub-channel output, resulting in progressive degradation of system performance. In view of this, the focus of the present invention is to propose some carrier frequency offset (hereinafter referred to as carrier frequency offset) and phase compensation method suitable for the system, which utilizes the signal of the pilot subchannel in the frequency domain. The carrier is tracing and compensating for the t-type synchronization error to enhance the operator of the 0FDM system. SUMMARY OF THE INVENTION The second invention is mainly applied to an OFDM system, which is sent at the transmitting end, and is coded into a FDM symbol, which is placed in a sub-channel transmission and transmission process of a plurality of frequency domains and utilizes a The carrier is modulated, and the subchannels
1252657 五、發明說明(4) 包含至少一導 係用以傳送接 偵測與估計, 用導引子通道 位誤差,並加 號之解調。所 補償裝置,可 間之載波頻偏 包含: 導引 引子通道 收端已知 資料子通 之已知特 以補償, 以,本發 於OFDM系 所造成接 子通道估 通道之頻 及至少一資料 之特定訊號’ 道則用於傳送 定訊號’估計 以避免載波頻 明之 目的 以估計導引子 引子通道中,前後兩個 差來估計載波頻偏;一 )’依據該頻偏估計裝 位旋轉;以及一相位旋 位累積器所計算之累積 端的OF DM訊號。 本發明之 OF DM系統之接 統之接收端, 收端OFDM訊號 計裝置,接收 率響應;一頻 OFDM符元之頻 相位累積器( 置所估計之載 轉器(phase 相位旋轉,於 子通道。導引子通道 以便進行系統相關的 資料。本發明即是利 載波頻偏及相關的相 偏影響系統接收端訊 即在於提供一種頻偏 補償接收端與發射端 的累積相位旋轉,其 導引子通道之訊號, 偏估計裝置,利用導 率響應估測值的相位 phase accumulator 波頻偏’計鼻累積相 rotator),依該相 時域或頻域補償接收 次一目的,係提出一種相位補償裝置,可於 收端,補償接收端OFDM訊號經頻偏補償裝置 補償後,所殘餘的相位誤差,其包含:一相差估計裝置, 利用一符元之OFDM訊號中,經頻偏補償裝置補償及通道補 通道訊號與發射端原本傳送訊號間的相位 餘的相位誤差;一緩衝器,儲存該相差估計 殘餘相位誤差,以用於補償下一個符元;以 及一相位旋轉器,接收該下一個符元之各個子通道訊號, 償後的導引子 差,來估計殘 裝置所估計之1252657 V. INSTRUCTIONS (4) Include at least one guide for transmitting detection and estimation, using pilot channel bit error, and adding demodulation. The compensation device may have a carrier frequency offset including: a known characteristic of the pilot source channel receiving end is compensated, and the frequency and at least one data of the channel channel estimated by the OFDM system are generated. The specific signal 'channel is used to transmit the fixed signal' estimate to avoid the carrier frequency to estimate the carrier frequency offset in the pilot sub-channel, and the difference between the two is to estimate the carrier frequency offset; a) 'the estimated rotation according to the frequency offset; The OF DM signal of the accumulation end calculated by a phase rotation accumulator. The receiving end of the OF DM system of the present invention, the receiving end OFDM signal meter device, the receiving rate response; the frequency phase accumulator of the one-frequency OFDM symbol (the estimated carrier (phase phase rotation, in the sub-channel) The subchannel is guided to perform system related data. The present invention is to improve the carrier frequency offset and the related phase offset. The receiving end of the system is to provide a frequency offset compensation cumulative phase rotation of the receiving end and the transmitting end, and its pilot The signal of the channel, the bias estimation device, the phase accumulator of the phase response accumulator using the phase response estimation value, and the phase compensation device according to the phase time domain or the frequency domain compensation receiving one. At the receiving end, the residual phase error of the OFDM signal received by the receiving end is compensated by the frequency offset compensation device, which includes: a phase difference estimating device, which compensates and channels the frequency offset compensation device by using a symbol OFDM signal Compensating for the phase error of the phase difference between the channel signal and the transmitting end originally transmitting the signal; a buffer storing the phase difference estimated residual phase error to Compensation at a symbol; and a phase rotator receiving the next symbol of each sub-channel signal, the pilot sub-difference compensation, means to estimate the estimated residual
第9頁 1252657 五、發明說明(5) 以該緩衝器所儲存 下一個符元之各個子 送入該相位旋轉器加 本發明之另一目 OFDM系統之接收端, 補償後,所殘餘的相 留一符元之OFDM訊號 並 通道訊 元之導 置,利 原本傳 位旋轉 以該相 本 系統之 接收端 利用導 的相位 償接收 偏補償 其中導 傳送訊 通道之 本 號;一導引子 引子通道訊號 用該導引子通 送訊號間的相 器,從該缓衝 差估計裝置所 發明之再一目 接收端,補償 OFDM訊號的相 引子通道中, 差來估計載波 端之OF DM訊號 裝置補償後之 引子通道中再 號間的相位差 訊號。 之殘餘相 通道訊號 以補償。 的,係提 補償接收 位誤差, 中,經頻 通道補償 ,以進行 道中,經 位差來估 器接收該 估計之殘 的,係提 接收端與 位旋轉, 前後兩個 頻偏,進 ;以及一 OFDM訊號 經通道補 來估計殘 位誤差加 亦可先進 以補償 行通道 ;其中, 補償後, 該 再 出一種相位補償 端OF DM訊號經頻 其包含:一緩衝 偏補償裝置補償 裝置,從該緩衝 通道補償;一相 通道補償 計殘餘相 符元之資 餘相位誤 出一種補 發射端間 其包含: OFDM符元 而計算累 相位補償 的各個子 償後的訊 餘相位誤 後之訊 位誤差 料子通 差加以 償模組 之载波 一頻偏 之頻率 積相位 裝置, 通道訊 號,與差,以 I置,可於 偏補償裝置 器,用以保 後的所有子 為、接收該符 差估計裝 號與發射端 •’以及一相 道訊號,並 補償。 ’可於OFDM 頻偏所造成 補償裝置, 響應估測值 旋轉,以補 接收經該頻 號,並利用 發射端原本 補償各個子 發明之又一目的,係提出一種頻偏補償方法,可於Page 9 1252657 V. Description of the invention (5) Each sub-segment of the next symbol stored in the buffer is fed into the phase rotator and the receiving end of the other OFDM system of the present invention, after compensation, the residual phase remains. The OFDM signal of a symbol and the channel element are guided, and the original transmission is rotated, and the receiving end of the phase system compensates the local number of the transmission channel by using the phase of the receiving phase; a pilot sub-channel signal Using the phaser between the pilots to transmit signals, from the other receiving end of the buffer difference estimating device, compensating for the difference in the phase sub-channel of the OFDM signal to estimate the offset of the OF DM signal device at the carrier end. The phase difference signal between the numbers in the lead channel. The residual phase channel signal is compensated. Compensation for receiving bit error, medium, frequency channel compensation, to perform the channel, the position difference is used to estimate the receiver to receive the estimated residual, and the receiving end and the bit rotation, before and after the two frequency offsets; An OFDM signal is estimated by the channel complement to estimate the residual error plus an advanced compensation channel; wherein, after compensation, the phase compensation terminal OF DM signal is included in the frequency: a buffer offset compensation device compensation device Buffer channel compensation; the residual phase of the residual phase of the one-phase channel compensator is misinterpreted: a complement error between the transmitter and the receiver: the OFDM symbol is used to calculate the residual phase compensation of the residual phase compensation after the sub-compensation The frequency difference phase device of the carrier-frequency offset of the compensation module, the channel signal, and the difference, can be set to I, and can be used in the offset compensation device to ensure that all the sub-carriers are received and the carrier is estimated. And the transmitter side '' and one phase signal, and compensate. A compensating device capable of OFDM frequency offset, responding to the estimated value rotation, to compensate for receiving the frequency, and using the transmitting end to compensate for another purpose of each sub-invention, proposes a frequency offset compensation method, which can
第10頁 1252657 五、發明說明(6) 系統之接收端,補償接收端與發射端間之載波頻偏所造成 接收端0 F D 號的累積相位旋轉,其包含下列步驟:(a )接收導引子通道之訊號,以估計導引子通道之頻率響 應;(b)利用導引子通道中,前後兩個OFDM符元之頻率 響應估測值的相位差來估計載波頻偏;(c)依據所估計 之載波頻偏,計算累積相位旋轉;以及(d)依所計算之 累積相位旋轉補償接收端之OFDM訊號。 本發明之又一目的,係提出一種相位補償方法,可於 該系統之接收端,補償接收端OFDM訊號經頻偏補償裝置補 償後,所殘餘的相位誤差,其包含下列步驟:(a)利用 一符元之OFDM訊號中,經頻偏補償裝置補償及通道補償後 的導引子通道訊號與發射端原本傳送訊號間的相位差,來 估計殘餘的相位誤差;(b)將所估計之殘餘相位誤差儲 存於一緩衝器;以及(c)以該緩衝器所儲存之殘餘相位 誤差補償下一個符元之各個子通道訊號;其中,步驟(c )前亦可加入一步驟(c0):對下一個符元之各個子通道 訊號進行通道補償。 本發明之又一目的,係提出一種相位補償方法’可於 該系統之接收端,補償接收端OFDM訊號經頻偏補償裝置補 償後,所殘餘的相位誤差,其包含以下步驟·· ( a)以一 緩衝器保留一符元之OFDM訊號中,經頻偏補償裝置補償後 的所有子通道訊號;(b)從該緩衝器取出該符元之導引 子通道訊號,進行通道補償;(c)利用導引子通道中, 經通道補償後之訊號與發射端原本傳送訊號間的相位差來Page 10 1252657 V. Description of the invention (6) The receiving end of the system compensates for the cumulative phase rotation of the 0 FD number at the receiving end caused by the carrier frequency offset between the receiving end and the transmitting end, which includes the following steps: (a) receiving guidance The signal of the subchannel is used to estimate the frequency response of the pilot subchannel; (b) the carrier frequency offset is estimated by using the phase difference of the frequency response estimates of the two OFDM symbols in the pilot subchannel; (c) Estimating the carrier frequency offset, calculating the cumulative phase rotation; and (d) compensating the OFDM signal at the receiving end according to the calculated cumulative phase rotation. Another object of the present invention is to provide a phase compensation method, which can compensate the residual phase error after the OFDM signal of the receiving end is compensated by the frequency offset compensation device at the receiving end of the system, and includes the following steps: (a) utilizing In the OFDM signal of a symbol, the phase difference between the pilot subchannel signal after the channel offset compensation and the channel compensation is transmitted by the frequency offset compensation device to estimate the residual phase error; (b) the estimated residual The phase error is stored in a buffer; and (c) the residual phase error stored in the buffer compensates for each subchannel signal of the next symbol; wherein step (c) may also be preceded by a step (c0): Channel compensation is performed for each subchannel signal of the next symbol. Another object of the present invention is to provide a phase compensation method for compensating the residual phase error of the OFDM signal received by the frequency offset compensation device at the receiving end of the system, which includes the following steps: (a) All subchannel signals compensated by the frequency offset compensation device in the OFDM signal of one symbol by one buffer; (b) the pilot subchannel signal of the symbol is taken out from the buffer for channel compensation; Using the pilot subchannel, the phase difference between the signal compensated by the channel and the original transmitted signal of the transmitting end
第11頁 1252657 五、發明說明(7) 估計殘餘相位誤差;以及(d)從該緩衝器取出該符元之 資料子通道訊號,並以所估計之殘餘相位誤差加以補償。 為使 貴審查委員對於本發明能有更進一步的了解與 認同,茲配合圖式詳述本發明的實施方式如后。 【實施方式】 圖二係一具有載波頻偏之載波調變與解調系統的方塊 圖。圖二中,由於本地振蘯器(local oscillator) 21與 2 2的頻率會有漂移的現象產生,使得發射端的載波頻率 Λ 與接收端的載波頻率 夂不一致,此時接收端的基頻訊號 會因頻率偏移造成相位旋轉,使訊號解調產生錯誤,系統 效能因而變差。在以下分析中’將載波頻偏表不為 ^f = L- fc 。此外,並假設OF DM系統使用頻域的N個子通 道,其中包含至少一導引子通道,其餘皆為資料子通道。 載波頻偏對OFDM訊號的影響,可分為時域與頻域兩方 面。在時域方面,假設OFDM符元之時域訊號有 N + NGI個取 樣點,其中N為FFT的點數,NGI為GI的點數,則連續兩個 OFDM符元之第一個取樣點間會有 ΐπ、Ν + NGI)&fT 的相位 差,其中T為取樣區間。隨著傳送的符元增加,此一相位 差會造成累積相位旋轉的問題。 在頻域方面,假設第k個子通道之頻率響應為 &固定 不變,且發射端第η個OFDM符元之第k個子通道訊號為 ,則在接收端第η個OFDM符元之第k個子通道訊號為Page 11 1252657 V. Description of the invention (7) Estimating the residual phase error; and (d) taking the data subchannel signal of the symbol from the buffer and compensating for the estimated residual phase error. In order to enable the reviewing committee to have a better understanding and recognition of the present invention, the embodiments of the present invention will be described in detail with reference to the drawings. [Embodiment] FIG. 2 is a block diagram of a carrier modulation and demodulation system having a carrier frequency offset. In Figure 2, due to the drift of the local oscillators 21 and 22, the carrier frequency 发射 at the transmitting end is not the same as the carrier frequency 接收 at the receiving end. At this time, the fundamental frequency signal at the receiving end will be due to the frequency. The offset causes phase rotation, which causes signal demodulation to generate errors and system performance to deteriorate. In the following analysis, the carrier frequency offset table is not ^f = L-fc. In addition, it is assumed that the OF DM system uses N sub-channels in the frequency domain, including at least one pilot sub-channel, and the rest are data sub-channels. The influence of carrier frequency offset on OFDM signals can be divided into time domain and frequency domain. In terms of time domain, it is assumed that the time domain signal of the OFDM symbol has N + NGI sampling points, where N is the number of points of the FFT, and NGI is the number of points of the GI, then the first sampling point of two consecutive OFDM symbols There will be a phase difference of ΐπ, Ν + NGI) & fT, where T is the sampling interval. As the transmitted symbols increase, this phase difference causes a problem of cumulative phase rotation. In the frequency domain, assuming that the frequency response of the kth subchannel is & fixed, and the kth subchannel signal of the nth OFDM symbol at the transmitting end is, the kth of the nth OFDM symbol at the receiving end The subchannel signal is
第12頁 1252657 五、發明說明(8) e^N+N^+^.[(Hk ·ΧΜί,)® Φ(/Λ -Δ/)] e i[2ym(N+NGI)A^ -^Αθ] e /[2 ^¢1^+^)4/7+Ai9] e —v —Page 12 1252657 V. Description of invention (8) e^N+N^+^.[(Hk ·ΧΜί,)® Φ(/Λ -Δ/)] ei[2ym(N+NGI)A^ -^Αθ ] e /[2 ^¢1^+^)4/7+Ai9] e —v —
ICI 式(1-1) 其中, hM二& - b為初始相位差,〇(/)為對應於一個 N點全為1的矩形視窗函數(rectangular window function)之離散時間傅立葉轉換(discrete-time Fourier transform, DTFT),亦即 «=〇 ①⑺香黑 式(1 - 1)中,Φ(—Δ乃即為各子通道的失真因素 (distortion factor),其中振幅失真(ampntude sin(^4/T) distortion)為 skl(雕)相位失真(phase d i s tort i on )為 <N-V)^fT 。 既然在OF DM系統中,導引子通道係傳送接收端已知之ICI (1-1) where hM 2 & - b is the initial phase difference, and 〇 (/) is a discrete time Fourier transform corresponding to a rectangular window function with an N point of 1 (discrete- Time Fourier transform, DTFT), that is, «=〇1(7) fragrant black (1 - 1), Φ (-Δ is the distortion factor of each subchannel, where amplitude distortion (ampntude sin(^4 /T) distortion) is skl (phase) to phase distortion (phase dis tort i on ) is <NV)^fT. Since in the OF DM system, the pilot subchannel is known to transmit the receiving end.
第13頁 1252657 五、發明說明(9) 訊號,我們可利用下式取得導引子通道之頻率響應估測 值: Λ e j[2m(N+NGI)^A9] njc 式(1-2) 而 其中,k為導引子通道之索引值(pilot index) X n,k為已知訊號,則為其餘的I C I項和雜訊項。 藉由以上分析,可知載波頻偏可利用前後兩個OFDM符 元的頻率響應估測值之相位差來估計。若OFDM系統使用K 個導引子通道,則於估計載波頻偏時,可分別計算各導引 子通道中,前後兩個OFDM符元的頻率響應估測值之相位 差,再予以加總後,求其平均值而得之,亦即 K A: = pilot indexPage 13 1252657 V. Invention Description (9) Signal, we can use the following formula to obtain the frequency response estimation value of the pilot subchannel: Λ ej[2m(N+NGI)^A9] njc (1-2) Where k is the pilot index of the pilot subchannel X n, where k is a known signal, and the remaining ICI items and noise items. From the above analysis, it can be known that the carrier frequency offset can be estimated by using the phase difference of the frequency response estimates of the two OFDM symbols before and after. If the OFDM system uses K pilot subchannels, when estimating the carrier frequency offset, the phase difference between the frequency response estimates of the two OFDM symbols in each of the pilot subchannels can be separately calculated, and then added. , get the average value, that is, KA: = pilot index
2π{Ν + NGI)AfJ 式(1 -3) 其中,«為由第n個符元估測之載波頻偏。 當載波頻偏不大時,式(;1 -2)中之I C I項 的影響 可被忽略,而振幅失真與相位失真可利用通道補償消除,2π{Ν + NGI) AfJ Equation (1 -3) where « is the carrier frequency offset estimated by the nth symbol. When the carrier frequency offset is not large, the influence of the I C I term in the equation (;1 -2) can be ignored, and the amplitude distortion and phase distortion can be eliminated by channel compensation.
第14頁 1252657 五、發明說明(10) 所以只需在頻域補償累積相位旋轉即可。因此,本發 出:種於頻域進行補償之頻偏補償裝置的架構,如圖二 所示二該頻偏補償裝置30a可在0FDM系統之接收端,於^ 域補償系統接收端與發射端間之載波頻偏所造成接收:、 OFDM訊號的累積相位旋轉。頻偏補償裝置3〇a包含:—而 引子通道估計裝置31,接收〇FDM系統之導引子通道 號,以估計導引子通道之頻率響應(如式(丨—2)所示 ),=頻偏估計裝置3 2,耦接至導引子通道估計装置3 ^ 利用導引子通道中,前後兩個〇FDM符元之頻率響應估你 的相位差來估計載波頻偏;一相位累積器3 3,耦接至苜 ,計裝置3 2,依據頻偏估計裝置3 2所估計之載波頻偏,士 算累積相位旋轉;以及一相位旋轉器34a,耦接至相位’计 積器33,依相位累積器33所計算之累積相位旋轉,於〃 補償接收端的OFDM訊號(即式(卜υ中之γ )。、夕、域 、當載波頻偏較大時,由於ICI項的影響較難在 f消除,所以較佳的作法是回到時域補償累積相位旋轉二 ^此,本發明提出一種於時域進行補償之頻偏補償裝置 =構,如圖三B所示。該頻偏補償裝置3〇b可在〇FDM系統之 1,端,於時域補償系統接收端與發射端間之載波頻偏 乂成接收端OFDM訊號的累積相位旋轉。頻偏補償f置3卟 Z包含的元件與頻偏補償裝置30a幾乎相同,除\相位旋 ΪΙ?部分。在頻偏補償裝置3〇神,相位旋轉器34a係相 'FT裝置1 1 1之輸出,亦即於頻域進行補償;而在頻偏Page 14 1252657 V. Description of the invention (10) Therefore, it is only necessary to compensate for the cumulative phase rotation in the frequency domain. Therefore, the present invention emits a frequency offset compensation apparatus for compensating in the frequency domain, as shown in FIG. 2, the frequency offset compensation apparatus 30a can be at the receiving end of the OFDM system, and between the receiving end and the transmitting end of the ^ domain compensation system. The carrier frequency offset causes reception: the cumulative phase rotation of the OFDM signal. The frequency offset compensating device 3A includes: - the pilot channel estimating device 31 receives the pilot subchannel number of the 〇FDM system to estimate the frequency response of the pilot subchannel (as shown by the equation (丨-2)), The frequency offset estimating device 32 is coupled to the pilot subchannel estimating device 3 to estimate the carrier frequency offset by estimating the phase difference of the frequency response of the two 〇FDM symbols in the leading subchannel; a phase accumulator 3, coupled to the 苜, the counting device 3 2, according to the carrier frequency offset estimated by the frequency offset estimating device 32, the cumulative phase rotation; and a phase rotator 34a coupled to the phase 'ticger 33, According to the cumulative phase rotation calculated by the phase accumulator 33, the OFDM signal at the receiving end is compensated (i.e., γ in the divisor), the evening domain, and when the carrier frequency offset is large, it is difficult due to the influence of the ICI term. In the f elimination, it is preferable to return to the time domain compensation cumulative phase rotation. Therefore, the present invention proposes a frequency offset compensation device that is compensated in the time domain = structure, as shown in Fig. 3B. The device 3〇b can be connected to the time domain compensation system at the 1st end of the 〇FDM system. The carrier frequency offset between the receiving end and the transmitting end is the cumulative phase rotation of the receiving end OFDM signal. The frequency offset compensation f is set to 3卟Z and the components included are almost the same as the frequency offset compensating device 30a except for the phase chirp portion. The frequency offset compensation device 3, the phase rotator 34a is the output of the phase 'FT device 1 1 1 , that is, compensated in the frequency domain;
第15頁 1252657 五、發明說明(Π) 補償裝置3 0 b中,相位旋轉器3 4 b則耦接至F F Τ裝置1 1 1之輸 入’亦即於時域進行補償。 利用前述之頻偏補償裝置30a或30b,本發明提出一種 頻偏補償方法,其包含如圖四之步驟: 41 $引子通道估计裝置3 1接收導引子通道之訊號,以估 計導引子通道之頻率響應; 42頻偏估計裝置32利用導引子通道中,前後兩個〇FDM符 元之頻率響應估測值的相位差來估計裁波頻偏; 4 3 相位累積器3 3依據步驟4 2所估計之載波頻偏,計算累 積相位旋轉;以及 4 4 相位旋轉器3 4 a或3 4 b依步驟4 3所計算之累積相位旋轉 補償接收端之OFDM訊號。 μ ' 若OFDM系統包含複數個導引子通道,則步驟41中,係 ^別估測每一導引子通道之頻率響應,而步^ 42中,係將 每—導引子通道中’前後兩個OFDM符元之頻率響應估測值 的相位差予以加總,再求其平均值來估計栽波頻偏(如式 (1〜3)所示)。 若使用頻偏補償裝置3 0 a,則步驟4 4係補償接收端 〇 F D Μ矾號之頻域號,若使用頻偏補償裝置3 〇 ^,則步驟 4 4係補償接收端OF DM訊號之時域訊號。 接收端之0 F D Μ訊號在經過頻偏補償褒置3 〇 3 〇 b補償 後’仍會有殘餘的相位誤差。若〇FDM系統之各個子通道需 做同調解調(coherent demodulation)(即接收端子通Page 15 1252657 V. INSTRUCTION DESCRIPTION (Π) In the compensation device 3 0 b, the phase rotator 3 4 b is coupled to the input of the F F Τ device 1 1 1 , that is, compensated in the time domain. With the foregoing frequency offset compensating device 30a or 30b, the present invention proposes a frequency offset compensating method, which comprises the steps of FIG. 4: 41 $Introduction channel estimating device 31 receives the signal of the guiding subchannel to estimate the guiding subchannel Frequency response; 42 frequency offset estimating means 32 estimates the clipping frequency offset by using the phase difference of the frequency response estimates of the two 〇FDM symbols in the leading subchannel; 4 3 phase accumulator 3 3 according to step 4 2 estimated carrier frequency offset, calculating cumulative phase rotation; and 4 4 phase rotator 3 4 a or 3 4 b accumulating phase rotation according to step 43 to compensate the OFDM signal of the receiving end. μ ' If the OFDM system includes a plurality of pilot subchannels, then in step 41, the frequency response of each pilot subchannel is estimated, and in step 42, the front and rear of each pilot channel are The phase differences of the frequency response estimates of the two OFDM symbols are summed, and the average value is used to estimate the carrier frequency offset (as shown by equations (1 to 3)). If the frequency offset compensation device 3 0 a is used, step 44 compensates the frequency domain number of the receiving end 〇 FD Μ矾. If the frequency offset compensation device 3 〇 ^ is used, step 44 compensates the receiving terminal OF DM signal. Time domain signal. The 0 F D signal at the receiving end will still have a residual phase error after being compensated by the frequency offset compensation set 3 〇 3 〇 b. If each subchannel of the FDM system needs to perform coherent demodulation (ie, receive terminal pass)
1252657 五、發明說明(12) 道訊號之振幅及相位須與發射端原本傳送之子通道訊號一 致),則需要有一機制來補償此殘餘相位誤差。 假設在經過頻偏補償裝置30a/30b補償後,接收端第I 個OFDM符元之第k個子通道訊號為 式(2 - 1) 以為其餘的ICI項和雜 其中 Δ民為殘餘的相位誤差 訊項 再假設k為導引子通道之索引值,則由式(2-1)可推 知,接收端之導引子通道訊號在經通道補償後的結果為 k n,k1252657 V. INSTRUCTIONS (12) The amplitude and phase of the signal must be identical to the subchannel signal originally transmitted by the transmitter. A mechanism is needed to compensate for this residual phase error. It is assumed that after the compensation by the frequency offset compensation device 30a/30b, the kth subchannel signal of the first OFDM symbol at the receiving end is the equation (2 - 1), and the remaining ICI terms and the residual phase error signal of the Δ mn are residual. The term again assumes that k is the index value of the pilot subchannel, and it can be inferred from equation (2-1) that the result of the pilot subchannel signal at the receiving end is kn,k after being compensated by the channel.
Hk 式(2-2) 其中 /Δ為利用系統之前置訊號(prearnb 1 e)所估測 Θ 出第k個子通道的頻率響應 u則為其餘的1C I項和雜Hk where (2-2) where /Δ is estimated using the system preamble (prearnb 1 e) and the frequency response of the kth subchannel is the remaining 1C I term and miscellaneous
第17頁 !252657Page 17 !252657
藉由以上分析,可知殘餘相位誤差可利用導引、 之通道補償結果與原導引子通道特定理想值的相位差& < 計。若OFDM系統使用K個導引子通道,則於估計殘餘相估 誤差時,可分別計算各導引子通道之通道補償結果與原 引子通道特定理想值的相位差,再予以加總後,I $ 具平均 值而得之,亦即From the above analysis, it can be seen that the residual phase error can be determined by the phase difference between the channel compensation result and the specific ideal value of the original guide subchannel. If the OFDM system uses K pilot subchannels, when estimating the residual phase estimation error, the phase difference between the channel compensation result of each pilot subchannel and the specific ideal value of the original primer channel can be separately calculated, and then added, I $ has the average value, that is,
式(2-3) 當本地振盈器21與22的相位雜訊(phase noise)不 大,且連續兩個OF DM符元之殘餘相位誤差變化不大時,可Equation (2-3) When the phase noise of the local oscillators 21 and 22 is small, and the residual phase error of two consecutive OF DM symbols does not change much,
利用由前一個OFDM符元之導引子通道訊號所得的相位誤差 估測值,補償於後一個OFDM符元的子通道訊號。因此,本 發明提出-種延遲式相位補償裝置的架構,如圖五姆 ;。士處:=二二:指利用前一符元所得 後一符兀。相位補償骏詈R π 償接收端OFDM訊號經頰偏a可於0FDM系統之接收端,補 餘的相位誤差,其包含,償裝置30a/3〇b補償後,所殘 之OF DM訊號中,經頻偏補相差估計裝置5 1 ’接收一符元 1員裝置30a/30b與通道補償裝置The phase error estimate derived from the pilot subchannel signal of the previous OFDM symbol is used to compensate for the subchannel signal of the latter OFDM symbol. Therefore, the present invention proposes an architecture of a delay phase compensating apparatus, as shown in Fig. 5; Division: = 22: refers to the use of the previous symbol to obtain the latter symbol. The phase compensation Jun 詈 R π compensates the receiving end OFDM signal via the buccal offset a at the receiving end of the 0FDM system, the phase error of the replenishment, which includes the compensated device 30a/3〇b compensation, and the residual OF DM signal, The frequency offset compensation phase difference estimating device 5 1 'receives a symbol 1 member device 30a/30b and a channel compensation device
苐18頁 1252657 五、發明說明(14) 1 1 2補償後的導引子通道訊號(即式(2 - 2)中之),並 以該導引子通道訊號與系統發射端原本傳送訊號間的相位 差,來估計殘餘相位誤差;一缓衝器5 2,儲存相差估計裝 置5 1所估計之殘餘相位誤差,以用於補償下一個符元;以 及一相位旋轉器5 3,接收該下一個符元之各個子通道訊 號,並以緩衝器5 2所儲存之殘餘相位誤差加以補償。 圖五A之架構亦可稍作修改如圖五B,其中之相位補償 裝置50b所包含的元件與頻偏補償裝置50a完全相同,惟在 運作上,圖五B之架構係先將該下一個符元之子通道訊號 經由通道補償裝置1 1 2補償後,再送入相位旋轉器5 3。 利用前述之相位補償裝置5 〇 a,本發明提出一種延遲 式相位補償方法,其包含如圖六之步驟: 6 1相差估計裝置5 1利用一符元之OF DM訊號中,經頻偏補 償裝置50a/5 Ob及通道補償裝置112補償後的導引子通 道訊號與系統發射端原本傳送訊號間的相位差,來估 計殘餘的相位誤差; 62將步驟6 1所估計之殘餘相位誤差儲存於緩衝器5 2;以 及 63以緩衝器5 2所儲存之殘餘相位誤差補償下一個符元之 各個子通道訊號。 若OF DM系統包含複數個導引子通道,則步驟61中,係 分別計算該符兀之每一導引子道訊號的相位差,並予以苐18页1252657 V. INSTRUCTIONS (14) 1 1 2 The compensated pilot subchannel signal (ie, in equation (2-2)), and between the pilot subchannel signal and the system transmitting end originally transmitting the signal a phase difference to estimate the residual phase error; a buffer 5 2 storing the residual phase error estimated by the phase difference estimating means 51 for compensating for the next symbol; and a phase rotator 53 for receiving the Each subchannel signal of a symbol is compensated by the residual phase error stored in the buffer 52. The structure of FIG. 5A can also be slightly modified as shown in FIG. 5B, wherein the phase compensation device 50b includes the same components as the frequency offset compensation device 50a, but in operation, the architecture of FIG. The sub-channel signal of the symbol is compensated by the channel compensating device 1 12 and then sent to the phase rotator 53. With the foregoing phase compensating device 5 〇a, the present invention provides a delay phase compensating method, which comprises the steps of FIG. 6: 6 1 phase difference estimating device 51 uses a symbol OFDM signal, and the frequency offset compensating device 50a/5 Ob and the channel compensation device 112 compensates the phase difference between the pilot subchannel signal and the original transmission signal of the system transmitter to estimate the residual phase error; 62 stores the residual phase error estimated in step 61 in the buffer The buffers 5 2; and 63 compensate the respective sub-channel signals of the next symbol with the residual phase error stored in the buffer 52. If the OF DM system includes a plurality of guide subchannels, in step 61, the phase difference of each pilot subchannel signal of the symbol is separately calculated and given
第19頁 1252657 五、發明說明(15) 若使用相位補償裝置50b,其補償方法同步驟6卜6 3, 惟步驟6 3中,在進行相位補償前,先利用通道補償裝置 1 1 2補償下一個符元之各個子通道訊號。 當本地振蘯器2 1與2 2有較大的相位雜訊時,連續兩個 OFDM符元之殘餘相位誤差也會有較大變化,此時宜利用由 一 OF DM符元之導引子通道訊號所得的相位誤差估測值,補 償於同一個OFDM符元的資料子通道訊號,因而需使用一緩 衝器,保留一完整OF DM符元之所有子通道的訊號,先利用 導引子通道估計殘餘相位誤差,再補償於資料子通道。據 此,本發明提出一種緩衝式相位補償裝置的架構,如圖七 A所示。此處「緩衝式」係指將一符元保留,供後續相位 估計及補償同一符元之用。相位補償裝置70a可於OFDM系 統之接收端,補償接收端OFDM訊號經頻偏補償裝置 3 0a/3 Ob補償後,所殘餘的相位誤差,其包含:一緩衝器 7 1,接收並保留一符元之OFDM訊號中,經頻偏補償裝置 3 0a/3 Ob補償後的所有子通道訊號;一導引子通道補償裝 置7 2,從緩衝器7 1接收該符元之導引子通道訊號,以進行Page 19 1252657 V. Description of the invention (15) If the phase compensating device 50b is used, the compensation method is the same as step 6b, but in step 63, before the phase compensation, the channel compensating device 1 1 2 is used to compensate Each subchannel signal of a symbol. When the local oscillators 2 1 and 2 2 have large phase noise, the residual phase error of two consecutive OFDM symbols will also change greatly. In this case, the pilot subchannel by an OF DM symbol should be used. The phase error estimate obtained by the signal compensates for the data subchannel signal of the same OFDM symbol, so a buffer is needed to preserve the signals of all subchannels of a complete OF DM symbol, first using the pilot subchannel estimation. The residual phase error is compensated for the data subchannel. Accordingly, the present invention proposes an architecture of a buffered phase compensation device, as shown in Figure VII. Here, "buffered" means that one symbol is reserved for subsequent phase estimation and compensation for the same symbol. The phase compensating device 70a can compensate the residual phase error after the OFDM signal of the OFDM system is compensated by the frequency offset compensation device 3 0a/3 Ob at the receiving end of the OFDM system, and includes: a buffer 71, receiving and retaining a character In the OFDM signal of the element, all the sub-channel signals compensated by the frequency offset compensation device 3 0a/3 Ob; a pilot sub-channel compensation device 7 2 receives the pilot sub-channel signal of the symbol from the buffer 7 1 , To proceed
通道補償(結果即為式(2-2)中之 I ntk 一相差估計 裝置7 3,耦接至導引子通道補償裝置7 2,利用導引子通道 中,經通道補償後之訊號與系統發射端原本傳送訊號間的 相位差來估計殘餘相位誤差;以及一相位旋轉器7 4,從緩 衝器7 1接收該符元之資料子通道訊號,並以相差估計裝置 7 3所估計之殘餘相位誤差加以補償。Channel compensation (the result is the I ntk phase difference estimation device 73 in equation (2-2), coupled to the pilot subchannel compensation device 72, using the signal and system after channel compensation in the pilot subchannel The transmitting end originally transmits the phase difference between the signals to estimate the residual phase error; and a phase rotator 74 receives the data subchannel signal of the symbol from the buffer 71 and uses the residual phase estimated by the phase difference estimating means 73. The error is compensated.
12526571252657
圖七A之架構亦可稍作修 裝置7 0 b所包含的元件邀相伯 /、τ之相位補償 運作上,圖七Β之架構;^補償裝置…完全相同,惟在 該符元之資料子通道訊H由—資料子通道補償裝置75對 轉器74。 就進行通道補償後,再送入相位旋 利用前述之相位補償梦 ,^ ^ 斗、士 n a、去严七、+ 好 、置7 0 a,本無明出一種缓播^ 式相位補償方法,其包冬Λ 藏衝 0 B如圖八之步驟: 81 以緩衝器7 1保留一斡一 ^ ΟΛ /n 付疋之OFDM訊號中,經頻低妯於啦 置30a/30b補償後的所女7 肩偏補償粟 省…7、= a、、Λ 所有子通道訊號; 在置7 2從緩衝器7 1取出該符亓夕道 子通道訊號,進行通道補償; 付兀之導弓j 相差估計裝置73利用導引=、者Λ γ、s 訊號與系統發射端原本傳送訊號間的補=之 殘餘相位誤差;以及 來估言 1 82 83 84相位旋轉器74從緩衝器71取出該符元之資料 號,並以步驟83所估計之殘餘相位誤差加以^道訊 若0FDM系統包含複數個導引子通道,則步驟:。 为別計算該符元之每一導引子通道訊號的相位差,,係 加總後,再求其平均值來估計殘餘相位誤差(如並予以 )所示)。 巧(2〜3 若使用相位補償裝置7 0 b,其補償方法同步驟 惟步驟8 4中,在進行相位補償前,先利用資料子 8 4, 裝置7 5補償該符元之資料子通道訊號。 、補償 在本發明中,亦可將前述之兩種頻偏補償裳置The structure of Figure 7A can also be slightly repaired. The components included in the 7 0 b are invited to phase//, the phase compensation operation of τ, the structure of Figure 7Β; ^ compensation device... identical, but the data of the symbol The sub-channel signal H is rotated by the data sub-channel compensation device 75. After the channel compensation is performed, the phase is rotated and the phase compensation dream is used. ^ ^ 斗,士娜, 严严七,+好,置七 0 a, there is no explicit slow-motion phase compensation method, the package Λ Λ 藏 0 0 B Figure 8 steps: 81 to buffer 7 1 to retain a 斡 ^ / 疋 疋 OFDM signal, the frequency is lower than the 30a/30b compensation of the female shoulder Partial compensation for the province...7, = a, Λ all sub-channel signals; in the set 7 2, the symmetry channel signal is taken out from the buffer 7 1 to perform channel compensation; the 导 兀 guide j j difference estimation device 73 utilizes The residual phase error between the pilot =, Λ γ, s signal and the original transmission signal of the system transmitter; and the estimation of the 1 82 83 84 phase rotator 74 to retrieve the symbol number of the symbol from the buffer 71, And the residual phase error estimated in step 83 is used. If the 0FDM system includes a plurality of guide subchannels, then step: In order to calculate the phase difference of each pilot subchannel signal of the symbol, after summing up, the average value is used to estimate the residual phase error (as shown in the figure). Qiao (2~3 If the phase compensation device 7 0 b is used, the compensation method is the same as the step only in step 8 4, before the phase compensation is performed, the data sub-channel signal of the symbol is compensated by the data sub- 8 4 , the device 7 5 In the present invention, the above two types of frequency offset compensation may also be placed.
1252657 五、發明說明(17) 3 0 a/30b及四種相位補償裝置50a/50b/70 a/70b,視OFDM系 統的實際需要,各擇其中一種,組合成一補償模組,以完 整地處理載波頻偏所造成接收端OF DM訊號之相位旋轉的問 題。圖九即是此種補償模組之一例,其由頻偏補償裝置 3 0 b及相位補償裝置7 0 a,可用於本地振盪器之載波頻偏與 相位雜訊皆頗大的OF DM系統。 進一步觀察圖九,頻偏補償裝置30b中之導引子通道 估計裝置3 1係執行如式(1 -2)之運算,而相位補償裝置 7 0a中之導引子通道補償裝置72則執行如式(2-2)之運 即 算。若將式(2 -1)之 Z#同時除以X n,k與片*1252657 V. Invention Description (17) 3 0 a/30b and four phase compensation devices 50a/50b/70 a/70b, depending on the actual needs of the OFDM system, each of them is combined into a compensation module for complete processing The carrier frequency offset causes the phase rotation of the OF DM signal at the receiving end. Figure 9 is an example of such a compensation module. The frequency offset compensation device 3 0 b and the phase compensation device 7 0 a can be used for the OF DM system in which the carrier frequency offset and phase noise of the local oscillator are large. Further, referring to FIG. 9, the pilot subchannel estimating device 31 in the frequency offset compensating device 30b performs the operation of Equation (1-2), and the pilot subchannel compensating device 72 in the phase compensating device 70a performs as The operation of equation (2-2) is calculated. If Z# of equation (2 -1) is divided by X n,k and slice *
Pn,k = e + Ω 式(2 -4) ΩPn,k = e + Ω Equation (2 -4) Ω
為其餘的ICI 其中,k為導引子通道之索引值, 項和雜訊項。 由以上分析可知,殘餘的相位誤差可以下式估計(假 設OFDM系統使用K個導引子通道)For the rest of the ICI, where k is the index value, term and noise term of the pilot subchannel. From the above analysis, the residual phase error can be estimated by the following equation (assuming that the OFDM system uses K guide subchannels)
第22頁 1252657 五、發明說明(18) 允=pilot index 式(2-5) 式(2-4)中,/V即為導引子通道,經通道估測與 通道補償後的結果;以圖九來看,即可視為 經過導引 子通道估計裝置3 1與導引子通道補償裝置7 2處理之所得。 因此,我們可將圖九中相位補償裝置的架構略作修改,如 圖十所示。圖十之方塊1 0 0 0可視做一相位補償裝置,其為 此架構中補償殘餘相位旋轉的部分。在方塊1 0 0 0中,訊號 在經過導引子通道估計裝置3 1與導引子通道補償裝置 7 2處理後,結果即為尸μ 。而相差估計裝置1 0 0 2所執行之 運算,即為式(2-5),其較相差估計裝置73 (執行式 (2 - 3))為簡單。另外,資料緩衝器1 0 0 1僅用於儲存資 料子通道的訊號,不像緩衝器7 1需儲存所有子通道訊號, 如此可節省空間。換言之,圖十的架構不但可用於本地振 盪器之載波頻偏與相位雜訊皆頗大的OFDM系統,更可進一 步簡化硬體的設計與成本。 以上所述係利用較佳實施例詳細說明本發明,而非限 制本發明之範圍。大凡熟知此類技藝人士皆能明瞭,適當 而作些微的改變及調整,仍將不失本發明之要義所在,亦 不脫離本發明之精神和範圍。綜上所述,本發明實施之具Page 22 1252657 V. Invention Description (18) Allow = pilot index Equation (2-5) In Equation (2-4), /V is the result of the pilot subchannel, after channel estimation and channel compensation; As seen in Fig. 9, it can be regarded as the result of processing by the pilot sub-channel estimating means 31 and the guiding sub-channel compensating means 72. Therefore, we can slightly modify the architecture of the phase compensation device in Figure 9, as shown in Figure 10. Block 10 of Figure 10 can be viewed as a phase compensation device that is part of the architecture that compensates for residual phase rotation. In block 100, the signal is processed by the pilot subchannel estimating means 31 and the pilot subchannel compensating means 72, and the result is the corpse. The operation performed by the phase difference estimating means 1 0 0 2 is Equation (2-5), which is simpler than the phase difference estimating means 73 (Execution Equation (2 - 3)). In addition, the data buffer 1 0 0 1 is only used to store the signal of the resource subchannel, unlike the buffer 7 1 which needs to store all the subchannel signals, thus saving space. In other words, the architecture of Figure 10 can be used not only for OFDM systems where the carrier frequency offset and phase noise of the local oscillator are large, but also further simplify the hardware design and cost. The above description of the present invention is intended to be illustrative of the preferred embodiments of the invention. It will be apparent to those skilled in the art that such modifications and adaptations may be made without departing from the spirit and scope of the invention. In summary, the present invention is implemented
第23頁 1252657Page 23 1252657
第24頁 1252657 圖式簡單說明 圖一係一典型之OFD Μ通訊系統的方塊圖。 圖二係一具有載波頻偏之載波調變與解調系統的方塊圖 圖三Α係本發明於頻域進行補償之頻偏補償裝置的架構 圖。 圖三B係本發明於時域進行補償之頻偏補償裝置的架構 圖四係本發明之頻偏補償方法的動作流程圖。Page 24 1252657 Schematic description of the diagram Figure 1 is a block diagram of a typical OFD Μ communication system. Figure 2 is a block diagram of a carrier modulation and demodulation system with carrier frequency offset. Figure 3 is a block diagram of a frequency offset compensation apparatus for compensating in the frequency domain. FIG. 3B is a schematic diagram of a frequency offset compensation apparatus for compensating in the time domain according to the present invention. FIG. 4 is an operation flowchart of the frequency offset compensation method of the present invention.
圖五A係本發明之延遲式相位補償裝置的架構圖 圖五B係本發明之另一延遲式相位補償裝置的架構圖。 圖六係本發明之延遲式相位補償方法的動作流程圖。 圖七A係本發明之緩衝式相位補償裝置的架構圖。 圖七B係本發明之另一緩衝式相位補償裝置的架構圖。 圖八係本發明之緩衝式相位補償方法的動作流程圖。 圖九係依本發明組合之補償模組的範例之架構圖。 圖十係為將圖九略作變化後,所得架構之方塊圖。 圖式之圖號說明: 1 0 0 - 0 F D Μ通訊糸統 102- IFFT 裝置 1 0 4 -並列至亊列轉換器 106-通道 1 0 9 -移除防護區間之電路 1 1 1 - F F Τ裝置 1 1 3 -訊號解對應裝置 1 0 1 -訊號對應裝置 1 0 3 -增加防護區間之電路 1 0 5 -數位至類比轉換器 1 0 7 -類比至數位轉換器 1 1 0 -串列至並列轉換器 1 12-通道補償裝置 1252657 圖式簡單說明 2 2 -本地振盪器 30b-頻偏補償裝置 3 2 -頻偏估計裝置 3 4 a -相位旋轉器 方法的動作流程 5 0b-相位補償裝置 5 2 -緩衝器 2 1 -本地振盪器 3 0a-頻偏補償裝置 31-導引子通道估計裝置 3 3 -相位累積器 3 4b-相位旋轉器 4 1〜4 4 -本發明之頻偏補償 5 0a-相位補償裝置 5 1 -相差估計裝置 5 3 -相位旋轉器 6 1〜6 3 -本發明之延遲式相位補償方法的動作流程 70b-相位補償裝置 72-導引子通道補償裝置 7 4 -相位旋轉器 7 0a-相位補償裝置 7 1 -緩衝器 7 3 -相差估計裝置 75-資料子通道補償裝置 1 0 0 1 -資料緩衝器 8 1〜8 4 -本發明之緩衝式相位補償方法的動作流程 1 0 0 0 -相位補償裝置 1 0 0 2 -相差估計裝置Figure 5A is an architectural diagram of a delay phase compensation device of the present invention. Figure 5B is a block diagram of another delay phase compensation device of the present invention. Figure 6 is a flow chart showing the operation of the delay phase compensation method of the present invention. Figure 7A is a block diagram of a buffered phase compensation device of the present invention. Figure 7B is a block diagram of another buffered phase compensation device of the present invention. Figure 8 is a flow chart showing the operation of the buffered phase compensation method of the present invention. Figure 9 is an architectural diagram of an example of a compensation module combined in accordance with the present invention. Figure 10 is a block diagram of the resulting architecture after a slight change in Figure 9. Description of the figure: 1 0 0 - 0 FD Μ Communication System 102 - IFFT device 1 0 4 - Parallel to 亊 column converter 106 - Channel 1 0 9 - Circuit for removing guard interval 1 1 1 - FF Τ Device 1 1 3 - Signal solution corresponding device 1 0 1 - Signal corresponding device 1 0 3 - Circuit for increasing guard interval 1 0 5 - Digital to analog converter 1 0 7 - Analog to digital converter 1 1 0 - Serial to Parallel converter 1 12-channel compensation device 1252657 Brief description of the description 2 2 - Local oscillator 30b - Frequency offset compensation device 3 2 - Frequency offset estimation device 3 4 a - Operation flow of the phase rotator method 5 0b - Phase compensation device 5 2 - Buffer 2 1 - Local oscillator 3 0a - Frequency offset compensation device 31 - Guide subchannel estimation device 3 3 - Phase accumulator 3 4b - Phase rotator 4 1 to 4 4 - Frequency offset compensation of the present invention 5 0a-phase compensating device 5 1 - phase difference estimating device 5 3 - phase rotator 6 1 to 6 3 - operation flow 70b of the delayed phase compensating method of the present invention - phase compensating device 72 - guiding subchannel compensating device 7 4 - Phase rotator 7 0a - Phase compensation device 7 1 - Buffer 7 3 - Phase difference estimation device 75 - Data sub Channel compensation apparatus 1001-- data buffer 8 1~8 4 - buffered phase compensation operation flow of the method of the present invention 1000-- phase compensation means 1002-- phase difference estimating means
第26頁Page 26
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92103827A TWI252657B (en) | 2003-02-19 | 2003-02-19 | Carrier frequency offset and phase compensation device of OFDM system and method thereof |
JP2004005232A JP4440655B2 (en) | 2003-02-19 | 2004-01-13 | Carrier frequency offset and phase compensation apparatus and method for orthogonal frequency division multiplexing system |
US10/779,648 US7684501B2 (en) | 2003-02-19 | 2004-02-18 | Apparatus and method for carrier frequency offset and phase compensation in communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92103827A TWI252657B (en) | 2003-02-19 | 2003-02-19 | Carrier frequency offset and phase compensation device of OFDM system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200417209A TW200417209A (en) | 2004-09-01 |
TWI252657B true TWI252657B (en) | 2006-04-01 |
Family
ID=33029207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92103827A TWI252657B (en) | 2003-02-19 | 2003-02-19 | Carrier frequency offset and phase compensation device of OFDM system and method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4440655B2 (en) |
TW (1) | TWI252657B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI410090B (en) * | 2009-06-12 | 2013-09-21 | Ind Tech Res Inst | Transmitting method, receiving method and receiving device for ofdm system |
TWI566554B (en) * | 2014-03-17 | 2017-01-11 | 史華曲集團研發有限公司 | Synchronous demodulator electronic circuit for phase modulation signals |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101248605B (en) * | 2005-08-26 | 2011-09-21 | 松下电器产业株式会社 | Radio transmitting apparatus and radio transmitting method |
CN102090035B (en) * | 2008-05-19 | 2015-04-22 | 三星电子株式会社 | Methods and an apparatus for estimating a residual frequency error in a communications system |
JP5722472B2 (en) * | 2014-01-22 | 2015-05-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Method for estimating residual frequency error in a communication system |
WO2021245718A1 (en) * | 2020-05-30 | 2021-12-09 | 公立大学法人公立諏訪東京理科大学 | Wireless transmission method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11308821A (en) * | 1998-04-22 | 1999-11-05 | Mitsui High Tec Inc | Manufacture of layered core |
JP4488605B2 (en) * | 1999-07-30 | 2010-06-23 | パナソニック株式会社 | OFDM signal transmission method, transmitter, and receiver |
JP3584794B2 (en) * | 1999-08-05 | 2004-11-04 | 日本電信電話株式会社 | Phase tracking circuit for multicarrier modulation signal |
JP4419271B2 (en) * | 2000-04-21 | 2010-02-24 | ソニー株式会社 | Demodulator and demodulation method |
-
2003
- 2003-02-19 TW TW92103827A patent/TWI252657B/en not_active IP Right Cessation
-
2004
- 2004-01-13 JP JP2004005232A patent/JP4440655B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI410090B (en) * | 2009-06-12 | 2013-09-21 | Ind Tech Res Inst | Transmitting method, receiving method and receiving device for ofdm system |
TWI566554B (en) * | 2014-03-17 | 2017-01-11 | 史華曲集團研發有限公司 | Synchronous demodulator electronic circuit for phase modulation signals |
Also Published As
Publication number | Publication date |
---|---|
TW200417209A (en) | 2004-09-01 |
JP2004254295A (en) | 2004-09-09 |
JP4440655B2 (en) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7680197B2 (en) | Apparatus and method for sampling timing compensation in multi-carrier system | |
US7308063B2 (en) | Apparatus, and associated method, for effectuating post-FFT correction of fine frequency offset | |
US7843805B2 (en) | Method and circuit for frequency offset estimation in frequency domain in the orthogonal frequency division multiplexing baseband receiver for IEEE 802.11a/g wireless LAN standard | |
US20190327043A1 (en) | System and method for common phase error and inter-carrier interference estimation and compensation | |
US8223858B2 (en) | Time synchronization method and frequency offset estimation method using the same in OFDM network | |
US7684501B2 (en) | Apparatus and method for carrier frequency offset and phase compensation in communication system | |
KR100729726B1 (en) | System and Method for Timing Acquisition and Carrier Frequency Offset Estimation in Wireless Communication Based on OFDM | |
US9674024B2 (en) | Method for transmitting a signal with a preamble and corresponding devices, signal with corresponding preamble for synchronization of a receiver | |
US20170265202A1 (en) | Time domain pilot of single-carrier mimo system and synchronization method thereof | |
US11909572B2 (en) | Symbol generator and symbol generation method | |
EP1564952A2 (en) | Symbol timing synchronization method for OFDM based communication system | |
EP2704387B1 (en) | SFO estimation technique for MIMO-OFDM frequency synchronization | |
US8300717B2 (en) | Sampling frequency offset estimation apparatus and method of OFDM system | |
TWI252657B (en) | Carrier frequency offset and phase compensation device of OFDM system and method thereof | |
KR101538595B1 (en) | Method for Time Synchronization and Carrier Frequency Offset Compesation in Optical OFDM System | |
US20170310525A1 (en) | A method for transmitting a multi-carrier signal, a receiving method, devices, and associated computer programs | |
TWI499251B (en) | Carrier and sampling frequency offsets estimating method and associated apparatus applied to multi-carrier communication system | |
KR20060067034A (en) | Method for estimating frequency/time offset and its using apparatus in ofdm communication system | |
KR20100054987A (en) | Apparatus and method for estimating a frequency offset in ofdm | |
US8737544B2 (en) | Method and apparatus of estimating frequency offset based on partial periodogram in wireless communication system | |
US20070098091A1 (en) | Method and system for residual frequency offset compensation of multi-carrier communication system | |
KR100873876B1 (en) | Method of receiving orthogonal frequency division multiplexing signal and orthogonal frequency division multiplexing signal receiving device of enabling the method | |
KR20100000606A (en) | Apparatus and method for frequency offset estimation in ofdm system, and method for time offset estimation | |
KR20120059243A (en) | Method and device for estimation frequency offset in the OFDM system | |
CN102571646A (en) | Timing estimation and adjustment method and device in OFDM (Orthogonal Frequency Division Multiplexing) system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |