TW201527312A - 新穎玉米泛素啓動子(一) - Google Patents
新穎玉米泛素啓動子(一) Download PDFInfo
- Publication number
- TW201527312A TW201527312A TW103144942A TW103144942A TW201527312A TW 201527312 A TW201527312 A TW 201527312A TW 103144942 A TW103144942 A TW 103144942A TW 103144942 A TW103144942 A TW 103144942A TW 201527312 A TW201527312 A TW 201527312A
- Authority
- TW
- Taiwan
- Prior art keywords
- gene
- plant
- transgenic
- sequence
- promoter
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/46—Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
- A01H6/4636—Oryza sp. [rice]
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/46—Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
- A01H6/4678—Triticum sp. [wheat]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Physiology (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Crystallography & Structural Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Nutrition Science (AREA)
- Compounds Of Unknown Constitution (AREA)
Abstract
玉米(Zea mays)c.v.B73泛素-1(Z.mays c.v.B73 Ubi-1)啟動子驅動植物之高位準構成性轉殖基因表現。於多基因構成體中重複使用相同玉米c.v.B73 Ubi-1啟動子也可能導致基因靜默,因而使得轉殖基因變成較為無效。本發明提出使用得自不同玉米種屬茂密玉米(Zea luxurians)v1之Ubi-1啟動子的基因調節元體於植物細胞及/或植物組織表現轉殖基因之基因調節啟動子元體、構成體、及方法。
Description
本案遵照35 USC §119(e)請求美國臨時專利申請案第61/922,529號申請日2013年12月31日之權益,該案全文內容係爰引於此並融入本說明書之揭示。
概略言之,本發明係有關於植物分子生物學領域,及更明確言之,係有關於植物之轉殖基因表現領域。
許多植物種屬能夠以轉殖基因轉形以導入農藝上期望的性狀或特性。植物種屬經發育及/或改性以具有特定期望的性狀。概略言之,期望的性狀例如包括改良營養價值品質,提高產率,賦與防病蟲害或抗病能力,增加耐旱性及耐壓性,改進園藝品質(例如色素沈著及生長),賦與耐除草劑性質,許可得自植物之工業上有用的化合物及/或材料之製造,及/或許可藥物之製造。
包含多個轉殖基因堆疊在單一基因體座的轉殖基因植物種屬係透過植物轉形技術製造。植物轉形技術結果導致將一轉殖基因導入一植物細胞內,回收可繁殖轉殖
基因植物,其含有轉殖基因之穩定整合複本於該植物基因體,及隨後透過植物基因體之轉錄及轉譯進行轉殖基因表現,結果導致具有期望性狀及表現型的轉殖基因植物。但期望有許可製造轉殖基因植物種屬成高度表現多個轉殖基因經基因工程為一性狀堆疊體的機轉。
同理,期望有許可一轉殖基因在植物的特定組織或器官內部表現。舉例言之,增加植物對受土壤媒介病原感染的抗性之目的可藉下述方式達成,使用抗病原基因轉形該植物基因體,使得抗病原蛋白穩健地表現於植物根部。另外,可能期望表現一轉殖基因於在一特定生長期或發育期諸如細胞分裂或伸長的植物組織。
此處描述包括啟動子、上游啟動子、5’-UTR、及內含子之茂密玉米(Zea luxurians)Ubi-1啟動子調節元體。進一步描述利用基因調節元體之構成體及方法。
此處揭示於植物細胞及/或植物組織表現轉殖基因之基因調節啟動子、構成體、及方法。於一實施例中,轉殖基因之表現包含使用一啟動子。於一實施例中,一啟動子包含多核苷酸序列。於一實施例中,一啟動子多核苷酸序列包含一上游啟動子、一5’-非轉譯區(5’-UTR)或先導子序列、及一內含子。於一實施例中,一啟動子多核苷酸序列包含泛素-1基因(Ubi-1)。於一實施例中,一啟動子多核苷酸序列包含茂密玉米之泛素-1基因(Ubi-1)。
於一實施例中,一構成體包括一基因表現匣,其包含得自茂密玉米之Ubi-1之一啟動子多核苷酸序列。於一實施例中,得自茂密玉米之Ubi-1啟動子多核苷酸序列包含一上游啟動子區、5’-UTR或先導子序列、及一內含子。於一實施例中,一構成體包括一基因表現匣,包含得自茂密玉米Ubi-1基因之一啟動子多核苷酸序列融合至得自水母(Phialidium)種屬(PhiYFP)之編碼黃螢光蛋白之基因的一內含子。於一實施例中,一構成體包括一基因表現匣,包含得自茂密玉米Ubi-1基因之一啟動子多核苷酸序列融合至得自水母(Phialidium)種屬(PhiYFP)之編碼黃螢光蛋白之基因的一內含子,接著為得自玉米(Z.may)過氧化酶5基因(ZmPer5)之3’-非轉譯區(3’-UTR)。所得多核苷酸序列包含一新穎啟動子基因調節元體。
於一實施例中,一基因表現匣包括一基因啟動子調節元體操作式鏈接至一轉殖基因或一異源編碼序列。於一實施例中,一基因表現匣包括至少1、2、3、4、5、6、7、8、9、10或以上轉殖基因。
此處揭示使用新穎基因啟動子調節元體(例如一上游啟動子、5’-UTR、及內含子)生長表現一轉殖基因之植物之方法。此處也揭示培養使用該新穎基因啟動子調節元體表現一轉殖基因之植物組織及細胞之方法。於一實施例中,如此處揭示之方法包括於植物葉、根、癒傷組織、及花粉中的構成基因表現。此處也揭示揭化包含該新穎基因啟動子調節元體之一多核苷酸序列之方法。
圖1顯示包含玉米c.v.B73 Ubi-1基因之一示意新穎啟動子。該啟動子包含一上游元體、一5’-UTR或先導子序列、及一內含子。該上游元體係位在該轉錄起始位置(TSS)5’上游,以長箭頭指示。該上游元體係包含以短箭頭指示之調節元體諸如一TATA框,及以星號指示之一熱震元體。
圖2顯示包含茂密玉米(Zea luxurians)v1 Ubi-1基因之該PCR擴增啟動子序列之載體pDAB105710之該質體拼圖。
圖3顯示具有該上游啟動子區下方畫線、該5’-UTR/先導子序列加陰影、及該內含子小寫的玉米c.v.B73 Ubi-1對照啟動子(SEQ ID NO:1)之該多核苷酸序列。
圖4顯示具有該上游啟動子區下方畫線、該5’-UTR/先導子序列加陰影、及該內含子區小寫的茂密玉米v1 Ubi-1對照啟動子(SEQ ID NO:2)之該多核苷酸序列。
圖5顯示茂密玉米v1之該等上游啟動子區(SEQ ID NO:4)比較玉米c.v.B73對照上游啟動子序列(SEQ ID NO:3)之該多核苷酸序列對齊。
圖6顯示茂密玉米v1之該等5’-UTR/先導子區(SEQ ID NO:6)比較玉米c.v.B73對照5’-UTR/先導子序列(SEQ ID NO:5)之該多核苷酸序列對齊。
圖7顯示茂密玉米v1之該等內含子區(SEQ ID NO:8)比較玉米c.v.B73對照內含子序列(SEQ ID NO:7)之
該多核苷酸序列對齊。
圖8顯示包含該對照輸入載體pDAB105742(玉米c.v.B73)插入目的地載體pDAB10197之二元表現構成體pDAB105748之一載體拼圖。
圖9顯示包含該輸入載體pDAB105737(茂密玉米v1)插入目的地載體pDAB10197之二元表現構成體pDAB105743之一載體拼圖。
圖10顯示針對二元表現構成體pDAB105748(玉米c.v.B73)及pDAB105743(茂密玉米v1)在T0植物癒傷組織之該PhiYFP基因表現。
圖11顯示針對二元表現構成體pDAB105748(玉米c.v.B73)、pDAB105743(茂密玉米v1)、及一陰性對照在T1植物花粉之該PhiYFP基因表現。
圖12顯示包含由一ZmUbi-1啟動子v2驅動之該PhiYFP通報子基因及該ZmPer5 3’-UTR,及由一茂密玉米v1驅動之該AAD-1 v3基因及ZmLip 3’-UTR v1之二元表現構成體pDAB112853之一載體拼圖。
如此處使用,除非上下文另行清楚不含混地陳述,否則冠詞「一(a)」、「一(an)」及「該」包括複數形。
如此處使用,「回交」一詞係指一育種者將雜交體後代回交配至親代中之一者之過程,例如,第一代雜交
體F1與該F1雜交體之親代基因型中之一者交配。
如此處使用,「內含子」一詞係指包含於一基因(或關注之表現核苷酸序列)的經轉錄但未經轉譯的任何核酸序列。內含子包括於DNA之一表現序列內部之非轉譯核酸序列,以及於從此處轉錄之RNA分子中之一相對應序列。
此處描述之一構成體也可含有促進轉譯及/或mRNA安定性之序列,諸如內含子。此種內含子之一實施例為擬南芥(Arabidopsis thaliana)之組織腖H3變異體之基因II之第一內含子或任何其它一般已知之內含子。內含子可組合一啟動子序列用以促進轉譯及/或mRNA安定性。
如此處使用,「5’-非轉譯區」或「5’-UTR」等詞係指於前mRNA或成熟mRNA之5’端的一非轉譯節段。舉例言之,於成熟mRNA上,5’-UTR典型地在其5’端帶有一7-甲基鳥苷端帽基,及涉及許多處理程序,諸如剪接、多腺苷酸化、mRNA朝向胞質輸出、藉轉譯機構識別該mRNA之5’端、及保護mRNA免於分解。
如此處使用,「3’-非轉譯區」或「3’-UTR」等詞係指於前mRNA或成熟mRNA之3’端的一非轉譯節段。舉例言之,於成熟mRNA上,此區帶有poly-(A)尾且已知在mRNA安定性、轉譯起始、及mRNA輸出扮演許多角色。
如此處使用,「多腺苷酸化信號」一詞係指存在於mRNA轉錄本之核酸序列,其於poly-(A)聚合酶之存在下許可轉錄本在多腺苷酸化位置上被多腺苷酸化,例如位在poly-(A)信號下游的10至30鹼基。技藝界已知許多多腺苷酸
化信號且於本發明是有用的。序列之一實施例包括AAUAAA及其變異體,如Loke J.等人,(2005)植物生理學138(3);1457-1468描述。
如此處使用,「分離」一詞係指一生物組分(包括一核酸或蛋白質)其已經與該組分天然出現於其中的該有機體之細胞的其它生物組分(亦即其它染色體及染色體外DNA)分離。
如此處使用,「純化」一詞述及核酸分子並不要求絕對純度(諸如均質製備)。取而代之,「純化」表示指示該序列比在其天然細胞環境中相對更為純質。舉例言之,核酸之「純化」位準就其濃度或基因表現程度而言,比起其天然位準須至少高2-5倍。
本案所請DNA分子可直接得自總DNA或得自總RNA。此外,cDNA純株並非天然出現,反而較佳地係透過經部分純化的天然出現物質(信使RNA)之操控獲得。自mRNA之cDNA存庫的構成涉及產生合成物質(cDNA)。個別cDNA純株可藉攜帶該cDNA存庫的細胞之選殖選擇而純化自該合成存庫。如此,包括自mRNA之cDNA存庫的構成及分開cDNA純株之純化獲得了約106倍之天然信使之純化。同理,一啟動子DNA序列可被選殖入一質體。此種純株並非天然出現,反而較佳地係透過經部分純化的天然出現物質諸如基因體DNA存庫之操控獲得。如此,於此等技術中,至少1次冪幅度,較佳地2或3次冪幅度,及更佳地4或5次冪幅度之純化為有利。
同理,純化表示指示在成分DNA序列中已經出現化學改變或官能基改變。已經「純化」的核酸分子及蛋白質包括藉標準純化方法純化之核酸分子及蛋白質。「純化」一詞也涵蓋藉重組DNA方法於一宿主細胞(例如植物細胞)以及化學合成核酸分子、蛋白質、及胜肽所製備的核酸分子及蛋白質。
「重組」一詞表示其中已經發生基因重組之一細胞或有機體。也包括已藉人為介入經人工變更或合成(亦即非自然)變更之一分子(例如一載體、一質體、一核酸、一多肽、或一小RNA)。該項變更可在其自然環境或自然狀態內部或在從其中移出的該分子上進行。
如此處使用,「表現」一詞係指一多核苷酸藉此轉錄成mRNA(包括小RNA分子)之過程及/或該轉錄mRNA(又稱「轉錄本」)隨後藉此轉譯成胜肽、多肽、或蛋白質之過程。基因表現可受外部信號影響,細胞、組織或有機體暴露於增減基因表現的作用劑。基因表現也可在自DNA至RNA至蛋白質的路徑中之任何位置調節。基因表現之調節例如,經由作用在轉錄、轉譯、RNA傳送及處理、中間分子諸如mRNA之降解上的控制發生;或經由在特定蛋白質分子已經製造之後的活化、失活化、分室化或降解發生;或經由其組合發生。基因表現可藉技藝界已知之任何方法測量RNA位準或蛋白質位準度量,該等方法包括,但非限制性,北方墨點、RT-PCR、西方墨點、或試管內、原位、或活體內蛋白質活性檢定分析。
如此處使用,「以同源性為基礎之基因靜默」或「HBGS」等詞為遺傳學術語,包括轉錄基因靜默及後轉錄基因靜默。一目標基因座藉一未鏈接靜默基因座而靜默化可能因轉錄抑制(例如轉錄基因靜默;TGS)或mRNA降解(例如後轉錄基因靜默;PTGS)所致,分別係由於製造啟動子序列或轉錄序列相對應的雙股RNA(dsRNA)之故。分開細胞成分之涉及各項過程提示dsRNA誘導TGS及PTGS可能係因一古老共通機轉之多樣化所致。但因通常仰賴分開靜默基因座之分析,故難以達成TGS與PTGS之嚴謹比較。由於製造啟動子序列或轉錄序列相對應的雙股RNA之故,單一轉殖基因座可被描述為觸發TGS及PTGS兩者。
如此處使用,「核酸分子」、「核酸」或「多核苷酸」(全部三個術語彼此為同義詞)等詞係指核苷酸之聚合形式,其可包括RNA、cDNA、基因體DNA、及合成形式之訊息股及反訊息股兩者,及其混合聚合物。一「核苷酸」可指核糖核苷酸、去氧核糖核苷酸、或任一型核苷酸之改性形式。除非另行載明否則一核酸分子通常至少長10鹼基。該等術語可指不確定長度之RNA或DNA分子。該等術語包括DNA之單股及雙股形式。一核酸分子可包括藉天然及/或非天然核苷酸鍵結而鍵聯在一起的天然核苷酸及改性核苷酸中之任一者或兩者。
如熟諳技藝人士容易瞭解,核酸分子可經化學改性或經生化改性,或可含有非天然的或衍生的核苷酸鹼基。此等改性包括例如,標記、甲基化、以類似物取代天
然核苷酸中之一或多者、核苷酸間改性(例如非帶電鍵結,諸如甲基膦酸酯類、磷酸三酯類、磷醯胺酸酯類、胺基甲酸酯類等;帶電鍵結,諸如硫代磷酸酯類、二硫代磷酸酯類等;旁懸部分,諸如胜肽類;嵌入劑,諸如吖啶、補骨脂素(psoralen)等;螯合劑;烷化劑;及改性鍵結,諸如α異位性(anomeric)核酸等)。「核酸分子」一詞也包括任何拓樸結構構象,包括單股、雙股、部分雙聯化、三聯化、髮夾化、環狀、及掛鎖化構象。
沿一DNA股,轉錄於5’至3’方式前進。如此表示RNA之製造係藉循序地添加核糖核苷酸-5’-三磷酸至生長中之鏈的3’端,伴以必需去除焦磷酸根。於線性或環狀核酸分子中之任一者,分開元體(例如特別為核苷酸序列)若係鍵結至或將鍵結至在該元體之5’方向的相同核酸,則將稱作為相對於又一元體的「上游」。同理,分開元體若係鍵結至或將鍵結至在該元體之3’方向的相同核酸,則將稱作為相對於又一元體的「下游」。
如此處使用,「鹼基位置」一詞係指一給定鹼基或核苷酸殘基在一指定核酸內部之位置。一指定核酸可經由與一參考核酸對齊定義。
如此處使用,「雜交」一詞係指寡核苷酸及其類似物藉互補股間之氫鍵結雜交之過程,該等氫鍵結包括華生-克李克、虎格史汀、或反向虎格史汀氫鍵結。概略言之,核酸分子係由含氮鹼基組成,含氮鹼基為嘧啶類諸如胞嘧啶(C)、尿嘧啶(U)及胸腺嘧啶(T),或嘌呤類諸如腺嘌呤(A)
及鳥嘌呤(G)。含氮鹼基生成一嘧啶與一嘌呤間之氫鍵,及嘧啶鍵結至嘌呤稱作為「鹼基配對」。更明確言之,A將與T或U形成特定氫鍵,及G將特定鍵結至C。「互補」係指在兩個分開核酸序列或同一個核酸序列之兩個分開區間出現鹼基配對。
如此處使用,「可特異性雜交」及「特異性互補」等詞係指具有充分的互補程度,使得在一寡核苷酸與一DNA或RNA目標間出現穩定之特定結合。寡核苷酸無需與該目標序列100%互補以特異性雜交。一寡核苷酸稱作為可特異性雜交,係當該寡核苷酸結合至該目標DNA或RNA分子干擾該目標DNA或RNA分子的正常功能時,及例如於活體內檢定分析或系統之情況下,於生理條件下當期望特定結合時,有充分的互補程度可避免一寡核苷酸與非目標序列間出現非特異性結合。此種結合稱作為特異性雜交。結果導致特定苛刻度的雜交條件將取決於所選雜交方法及該雜交核酸序列之組成及長度而異。概略言之,雜交溫度及一雜交緩衝液之離子強度(特別Na+及/或Mg2+濃度)將促成雜交的苛刻度,但洗滌時間也影響苛刻度。達成特定苛刻度要求的有關雜交條件之計算係討論於Sambrook等人(編輯),分子選殖:實驗室手冊,第二版,1-3卷,冷泉港實驗室出版社,冷泉港,紐約,1989。
如此處使用,「苛刻條件」一詞涵蓋唯有在雜交分子與DNA目標間有少於50%不匹配時才出現雜交的條件。「苛刻條件」包括額外特定苛刻度。如此,如此處使用,
「中苛刻度」之條件為具有多於50%序列不匹配的分子將不雜交之該等條件;「高苛刻度」之條件為具有多於20%序列不匹配的分子將不雜交之該等條件;及「極高苛刻度」之條件為具有多於10%序列不匹配的分子將不雜交之該等條件。於特定實施例中,苛刻條件包括於65℃雜交,接著於65℃以0.1x SSC/0.1% SDS洗滌40分鐘。後述為代表性非限制性雜交條件:
●極高苛刻度:於65℃於5x SSC緩衝液雜交16小時;於室溫於2x SSC緩衝液洗滌兩次各15分鐘;及於65℃於0.5x SSC緩衝液洗滌兩次各20分鐘。
●高苛刻度:於65-70℃於5-6x SSC緩衝液雜交16-20小時;於室溫於2x SSC緩衝液洗滌兩次各5-20分鐘;及於55-70℃於1x SSC緩衝液洗滌兩次各30分鐘。
●中苛刻度:於室溫至55℃於6x SSC緩衝液雜交16-20小時;於室溫至55℃於2-3x SSC緩衝液洗滌至少兩次各20-30分鐘。
於一實施例中,可特異性雜交核酸分子於極高苛刻度雜交條件下可維持結合。於一實施例中,可特異性雜交核酸分子於高苛刻度雜交條件下可維持結合。於一實施例中,可特異性雜交核酸分子於中苛刻度雜交條件下可維持結合。
如此處使用,「寡核苷酸」一詞係指一短核酸聚合物。寡核苷酸可經由較長的核酸節段裂解生成,或藉聚合個別核苷酸前驅物生成。自動化合成儀許可合成長度高
達數百鹼基對之寡核苷酸。因寡核苷酸可結合至一互補核苷酸序列,其可用作為檢測DNA或RNA之探針。由DNA所組成之寡核苷酸(寡去氧核糖核苷酸)可用於聚合酶連鎖反應,此乃用於小型DNA序列之擴增技術。於聚合酶連鎖反應中,一寡核苷酸典型地稱作為一「引子」,其許可一DNA聚合酶延長該寡核苷酸及複製該互補股。
如此處使用,「聚合酶連鎖反應」或「PCR」等詞係指微小量之核酸、RNA及/或DNA如美國專利案第4,683,195號之描述擴增之一程序或一技術。概略言之,需要可得關注區或超越該區末端之序列資訊,使得可設計寡核苷酸引子。PCR引子將與欲擴增之核酸樣板的相對股之序列相同或相似。二引子之5’端核苷酸可重合已擴增材料之末端。PCR可用以擴增自總細胞RNA、噬菌體、或質體序列等轉錄所得的總基因體DNA及cDNA獲得的特定RNA序列或DNA序列。大致上參考Mullis等人,冷泉港Symp.Quant.Biol.,51:263(1987);Erlich編輯,PCR技術(Stockton出版社,NY,1989)。
如此處使用,「引子」一詞係指當條件適合一引子延長產物之合成時能夠用作為沿一互補股合成之一起點的一寡核苷酸。該等合成條件包括存在有四個不同去氧核糖核苷酸三磷酸(亦即A、T、G及C)及至少一個聚合誘生劑或酶,諸如反錄酶或DNA聚合酶。此等作用劑典型地係存在於一合宜緩衝液,該緩衝液可包括組成分,該等組成分為輔因子或影響條件,諸如於各種合宜溫度之pH等。一引
子較佳地為單股序列,使得擴增效果為最佳化,但可利用雙股序列。
如此處使用,「探針」一詞係指雜交至一目標序列之一寡核苷酸或多核苷酸序列。於TaqMan®或TaqMan®型檢定分析程序中,探針雜交至位在該等兩個引子之煉合位置間之該目標的一部分。一探針包括約8個核苷酸、約10個核苷酸、約15個核苷酸、約20個核苷酸、約30個核苷酸、約40個核苷酸、或約50個核苷酸。於若干實施例中,一探針可包括約8個核苷酸至約15個核苷酸。
於該南方墨點檢定分析程序中,該探針雜交至附接至一膜的一DNA節段。一探針包括約100個核苷酸、約250個核苷酸、約500個核苷酸、約1,000個核苷酸、約2,500個核苷酸、或約5,000個核苷酸。於若干實施例中,一探針可包括約500個核苷酸至約2,500個核苷酸。
一探針可進一步包括一可檢測標記,諸如一放射性標記、一生物素化標記、一螢光基團(例如德州紅®、螢光素異硫氰酸酯等)。該可檢測標記可直接共價附接至該探針寡核苷酸,使得該標記係位在該探針之5’端或3’端。包含一螢光基團之一探針也可進一步包括一淬熄劑染料(例如黑孔淬熄劑TM、愛荷華黑TM等)。
如此處使用,「序列相同度」或「相同度」等詞可互換使用,且係指當對齊以獲得在一特定比較窗上之最大對應度時為相同的二序列中之核酸殘基。
如此處使用,「序列相同度百分比」或「序列同
源性百分比」一詞係指藉由比較在一比較窗上之最佳對齊的序列(例如核酸序列或胺基酸序列)所決定之一值,其中於該比較窗之一序列之一部分可包含,比較一參考序列,加成、取代、不匹配、及/或刪除(亦即間隙)以獲得該等兩個序列間之最大對齊。一百分比係經由決定出現在二序列的一相同核酸或胺基酸的位置數目計算,以獲得匹配位置數目,該匹配位置數目除以在該比較窗之位置總數,及將所得結果乘以100,以獲得序列相同度百分比。對齊序列用於比較之方法為眾所周知。各種生物資訊學或電腦程式及對齊演算法,諸如ClustalW及序列剪接軟體(Sequencher)也是技藝界眾所周知及/或描述於例如:Smith及Waterman(1981)Adv.Appl.Math.2:482;Needleman及Wunsch(1970)J.Mol.Biol.48:443;Pearson及Lipman(1988)Proc.Natl.Acad.Sci.U.S.A.85:2444;Higgins及Sharp(1988)基因73:237-44;Higgins及Sharp(1989)CABIOS 5:151-3;Corpet等人(1988)核酸研究16:10881-90;Huang等人(1992)Comp.Appl.Biosci.8”155-65;Pearson等人(1994)分子生物學方法24:307-31;Tatiana等人(1999)FEMS Microbiol.Lett.174:247-50。
國家生技資訊中心(NCBI)基礎局部對齊研究工具(BLASTTM;Altschul等人(1990)J.Mol.Biol.215:403-10)可得自數個來源,包括國家生技資訊中心(美國馬里蘭州貝色拉)及網際網路,用以連結數個序列分析程式使用。如何使用本程式決定序列相同度之描述在網際網路上BLASTTM
之「小幫手」章節下可得。為了比較核酸序列,BLASTTM(Blastn)程式之「Blast 2序列」函數可使用內設參數採用。與參考序列具有甚至更高相似度的核酸序列當藉本方法評估時將顯示增加的百分比相同度。
如此處使用,「操作式鏈接」一詞係指一核酸位在與另一核酸之功能關係。概略言之,「操作式鏈接」可表示鏈接的核酸為連續。鏈接可藉於方便限剪位置接合達成。若不存在有此等位置,則合成寡核苷酸配接子或鍵聯子係接合至或煉合至核酸,及用以鏈接該連續多核苷酸序列片段。但欲操作式鏈接的元體無需為連續。
如此處使用,「啟動子」一詞係指通常位在一基因上游(亦即朝向一基因之5’端)且為起始及驅動該基因之轉錄所需的DNA一區。一啟動子許可其控制一基因之適當活化或阻遏。一啟動子可含有由轉錄因子辨識的特定序列。此等因子可結合至一啟動子DNA序列,其導致RNA聚合酶之動員,該酶為自基因之編碼區合成RNA之酶。該啟動子通常係指位在該基因上游的全部基因調節元體,包括5’-UTR、內含子、及先導子序列。
如此處使用,「上游啟動子」一詞係指足夠指導轉錄起始之一多核苷酸序列。如此處使用,一上游啟動子涵蓋具有數個序列部分之轉錄起始位置,其包括一TATA框、起始子(Intr)序列、TFIIB辨識元體(BRE)、及其它啟動子部分(Jennifer,E.F.等人(2002)基因及衍生,16:2583-2592)。上游啟動子提供作用部位給RNA聚合酶II,
該酶為具有基本或通用轉錄因子例如TFIIA、B、D、E、F、及H之多子單位酶。此等因子組裝成一轉錄起始前複體(PIC)其催化RNA自一DNA樣板之合成。
上游啟動子之活化方式係經由添加各種蛋白質結合其上之調節DNA序列元體,及隨後與轉錄起始複體互動以活化基因表現。此等基因調節元體序列與特定DNA結合因子互動。此等序列部分偶爾稱作為順式-元體。組織特異性或發育特異性轉錄因子結合其上的此等順式-元體個別地或組合地,可決定在該轉錄層級一啟動子之空間樣板表現樣式。此等順式-元體就其施加於操作式鏈接基因上的控制型別而言有寬廣變化。有些元體應答於環境響應(例如溫度、濕度、及傷害)而作用以增加操作式鏈接基因的轉錄。其它順式-元體可應答於發育線索(例如發芽、種子成熟、及開花)或應答於空間資訊(例如組織特異性)。例如參考Langridge等人(1989)Proc.Natl.Acad.Sci.USA 86:3219-23。此等順式-元體位在距轉錄起點之不等距離。有些順式-元體(稱作近端元體)係鄰近一最低核心啟動子區,而其它元體可位在該啟動子(增強子)5’上游或3’下游數個千鹼基位置。
如此處使用,「轉形」一詞涵蓋一核酸分子可被導入一細胞內之全部技術。實施例包括,但非限制性:以病毒性載體轉染;以質體載體轉形;電穿孔;脂質轉染;微注射(Mueller等人(1978)細胞15:579-85);土壤桿菌屬(Agrobacterium)媒介之轉移;直接DNA攝取;WHISKERSTM
媒介轉形;及微粒子撞擊。此等技術可用於一植物細胞之穩定轉形及暫時轉形。「穩定轉形」係指一核酸片段導入一宿主有機體之一基因體內,結果導致遺傳上的穩定繼承。一旦經穩定轉形,該核酸片段穩定整合入該宿主有機體及任何接續世代之該基因體。含有該已轉形核酸片段之宿主有機體稱作為「轉殖基因」有機體。。「暫時轉形」係指一核酸片段導入一宿主有機體之該細胞核或含DNA小器官內,結果導致基因表現但無遺傳上的穩定繼承。
如此處使用,「轉導」一詞係指一病毒將核酸轉移入一細胞內之過程。
如此處使用,「轉殖基因」一詞係指一外源性核酸序列。。於一個實施例中,一轉殖基因為一基因序列(例如抗除草劑基因)、編碼工業上或藥學上有用化合物之一基因、或編碼期望的農業性狀之一基因。於又另一個實施例中,一轉殖基因為一反訊息核酸序列,其中該反訊息核酸序列之表現抑制一目標核酸序列的表現。一轉殖基因可含有操作式鏈接至該轉殖基因的調節序列(例如啟動子、內含子、5’-UTR、或3’-UTR)。於若干實施例中,關注之一核酸為一轉殖基因。但於其它實施例中,關注之一核酸為一內生性核酸,其中期望該內生性核酸之額外基因體複本,或相對於在一宿主有機體之一目標核酸序列係在該反訊息方向的一核酸。
如此處使用,「載體」一詞係指一核酸分子導入一細胞內,藉此產生一轉形細胞。一載體可包括核酸序列
許可其在宿主細胞內複製,諸如複製起點。實施例包括,但非限制性,攜載外源性DNA進入一細胞的一質體、質粒、噬菌體、細菌人工染色體(BAC)、或病毒。一載體也可包括技藝界已知之一或多個基因、反訊息分子、可選擇標記基因、及其它遺傳元體。一載體可轉導、轉形、或感染一細胞,藉此造成該細胞表現由該載體編碼之該等核酸分子及/或蛋白質。一載體可選擇性地包括輔助達成該核酸分子進入細胞之材料(例如微脂粒)。
如此處使用,「匣」、「表現匣」、及「基因表現匣」等詞係指可被插入一核酸或多核苷酸在特定限剪位置或藉同源性重組的DNA之一節段。DNA之一節段包含一多核苷酸含有一關注基因其編碼關注之一小型RNA或一多胜肽,及該匣及限剪位置係經設計以確保該匣插入該適當讀取框用於轉錄及轉譯。於一實施例中,一表現匣可包括一多核苷酸其編碼關注之一小型RNA或一多胜肽,及除了該多核苷酸之外,可具有方便一特定宿主細胞轉形的元體。於一實施例中,一基因表現匣也可包括許可編碼一關注多胜肽的一小型RNA或一多核苷酸在一宿主細胞內增進表現的元體。此等元體可包括,但非限制性:一啟動子、一最低啟動子、一增強子、一應答元體、一內含子、一5’-UTR、一3’-UTR、一終結子序列、一多腺苷酸化序列等。
如此處使用,「異源編碼序列」一詞係用以指示任何多核苷酸,其編碼或最終編碼一胜肽或蛋白質或其相當胺基酸序列,例如一酶,其正常不存在於該宿主有機體
內,而於適當條件下可於該宿主細胞表現。如此,「異源編碼序列」可包括正常不存在於該宿主細胞的編碼序列之一個或額外複本,使得該細胞表現正常不存在於該等細胞的一編碼序列之額外複本。該等異源編碼序列可為RNA或其任一型(例如mRNA)、DNA或其任一型(例如cDNA)或RNA/DNA之雜交體。編碼序列之實施例包括,但非限制性,全長轉錄單元其包含內含子、啟動子區、5’-UTR、3’-UTR、及增強子區等性狀作為該編碼序列。
「異源編碼序列」也包括胜肽或酶之編碼部分(亦即cDNA或mRNA序列)、全長轉錄單元之編碼部分(亦即包含內含子及外顯子)、「密碼子優化」序列、截頭序列或編碼該酶或編碼其相當胺基酸序列之已變更序列之其它形式,但限制條件為該相當胺基酸序列產生一功能性蛋白質。此等相當胺基酸序列可具有一或多個胺基酸之刪除,刪除N端、C端、或內部。涵蓋截頭形式,只要其具有此處指示的催化能力即可。
如此處使用,「對照」一詞係指用於比較目的之分析程序中之一樣本。對照可為「陽性」或「陰性」。舉例言之,當一分析程序之目的係檢測差異表現於細胞或組織中之轉錄本或多胜肽時,通常較佳係包括一陽性對照,諸如得自具有期望表現的一已知植物之一樣本;及一陰性對照,諸如得自缺乏期望表現的一已知植物之一樣本。
如此處使用,「植物」一詞包括植物及植物部分包括,但非限制性,植物細胞及植物組織諸如葉、癒傷組
織、莖、根、花、花粉、及種子。可用在本發明之一類植物通常廣達適用於突變發生之較高等及低等植物類別,包括被子植物類、裸子植物類、蕨類、及多細胞藻類。如此,「植物」包括雙子葉及單子葉植物。雙子葉植物之實施例包括菸草、擬南芥(Arabidopsis)、大豆、番茄、木瓜、芥花、葵花、棉、苜蓿、馬鈴薯、葡萄、木豆、豌豆、蕓薹、鷹嘴豆、甜菜、油菜籽、西瓜、香瓜、胡椒、花生、南瓜、白蘿蔔、菠菜、西葫蘆、綠花椰菜、甘藍、胡蘿蔔、白花椰菜、芹、大白菜、黃瓜、茄、及萵苣。單子葉植物之實施例包括玉米、稻米、小麥、甘蔗、大麥、黑麥、高粱、蘭、竹、香蕉、香蒲、百合、燕麥、洋葱、粟、及黑小麥。
如此處使用,「植物材料」一詞係指葉、癒傷組織、莖、根、花或花部分、果、花粉、卵細胞、合子、種子、插枝、細胞或組織培養、或一植物之任何其它部分或產物。於一實施例中,植物材料包括子葉及葉。於一實施例中,植物材料包括根組織及位在地下的其它植物組織。
如此處使用,「可選擇標記基因」一詞係指一基因其選擇性地用在植物轉形以例如保護植物細胞免受選擇因子之害,或提供對一選擇因子之抗性/耐受性。此外,「可選擇標記基因」表示涵蓋通報子基因。只有接受一功能性可選擇標記的該等細胞或植物能夠在具有一選擇因子之條件下分裂或生長。選擇因子之實施例包括例如,抗生素類,包括觀黴素(sepctinomycin)、新黴素(neomycin)、康黴素(kanamycin)、巴龍黴素(paromomycin)、健它黴素
(gentamicin)、及吸濕黴素(hygromycin)。此等可選擇標記包括新黴素磷酸轉移酶(npt II),其表現賦與對抗生素康黴素之抗性的酶;及相關抗生素新黴素、巴龍黴素、健它黴素及G418之基因;或吸濕黴素磷酸轉移酶(hpt)之基因,其表現賦與對抗生素吸濕黴素之抗性的酶。其它可選擇標記基因可包括編碼下列之基因:除草劑抗性包括bar或pat(對草胺膦(glufosinate)銨或膦絲菌素(phosphinothricin)之抗性)、乙醯乳酸合成酶(ALS,對下列抑制劑之抗性:諸如磺醯脲類(SU)、咪唑啉酮類(IMI)、三唑並嘧啶類(TP)、嘧啶基氧基苯甲酸酯類(POB)、及阻止支鏈胺基酸之合成中之第一步驟的磺醯基胺基甲醯基三唑啉酮類)、草甘膦(glyphosate)、2,4-D、及金屬抗性或敏感度。可用作為可選擇標記基因之「通報子基因」之實施例包括所表現之通報子基因蛋白質之目測觀察,諸如編碼β-葡萄糖醛酸酶(GUS)、蟲螢光素酶、綠螢光蛋白(GFP)、黃螢光蛋白(YFP)、DsRed、β-半乳糖苷酶、氯黴素(chloramphenicol)乙醯基轉移酶(CAT)、鹼性磷酸酶等。「標記陽性」一詞表示植物已經轉形而包括一可選擇標記基因。
如此處使用,「可檢測標記」一詞係指能夠檢測之一標記,諸如放射性同位素、螢光化合物、生物光化合物、化學光化合物、金屬螯合劑、或酶。可檢測標記之實施例包括但非僅限於下列:螢光標記(例如FITC、若丹明、鑭系磷光體)、酶標記(例如辣根過氧化酶、β-半乳糖苷酶、蟲螢光素酶、鹼性磷酸酶)、化學光、生物素基團、藉二次
通報子辨識之預定多肽抗原決定部位(例如白胺酸拉鏈對序列、二次抗體之結合位置、金屬結合域、抗原決定部位標籤)。於一實施例中,一可檢測標記可藉各種長度之間隔臂附接以減少潛在立體障礙。
如此處使用,「檢測」一詞係以最廣義意義使用包括一特定分子之定性及定量度量,例如特定多肽之度量。
除非另行特別解釋,否則此處使用的全部技術及科學術語具有與熟諳本揭示文所屬技藝人士尋常瞭解的相同意義。分子生物學中常用術語之定義可參考例如:Lewin,基因V,牛津大學出版社,1994;Kendrew等人(編輯),分子生物學百科,黑井科學公司,1994;及Meyers(編輯),分子生物學及生技:綜合桌面參考書,VCH出版公司,1995。
用於基礎研究或生技應用之植物啟動子通常為單向,指示已經融合至其3’端(下游)的一轉殖基因的構成表現。經常需要在植物內部穩健地表現轉殖基因用於代謝工程及性狀堆疊。此外,轉殖基因作物典型地要求多個新穎啟動子以驅動多個基因之表現。此處揭示一構成性啟動子,其可指示已經融合至其3’端的一轉殖基因的表現。
轉殖基因產物的發展變得益發複雜,要求穩健地表現轉殖基因及堆疊多個轉殖基因至單一基因座。傳統上,各個轉殖基因要求一獨特啟動子以供表現,其中要求多個啟動子以表現在一個基因堆疊內部的不同轉殖基因。
隨著基因堆疊之大小的增加,此種方法頻繁地導致重複使用相同啟動子,以獲得不同轉殖基因之相似表現樣式程度用以表現單一多基因性狀。
由相同啟動子驅動的多基因構成體已知會造成基因靜默而導致在田間較為無效的轉殖基因產物。因啟動子重複表現轉錄因子(TF)結合位置,可能造成內生性轉錄因子(TF)的耗盡,結果導致轉錄失活化。轉殖基因的靜默可能非期望地影響所產生的一轉殖基因植物表現轉殖基因的性能。在一轉殖基因內部的重複序列可能導致基因座內部基因的同源重組,結果導致多核苷酸重排。
除了構成性啟動子之外,組織特異性或器官特異性啟動子驅動某些組織的基因表現,諸如在該植物的果仁、根、葉、癒傷組織、花粉或營養層中的組織。組織及發育階段特異性啟動子驅動基因的表現,其係於特定組織或在植物發育之特定時間週期表現。組織特異性啟動子乃轉殖基因植物產業中的某些應用所需且合乎所需,原因在於其許可異源基因在一組織及/或在一選定發育階段特定表現,指示該異源基因在各種器官、組織、及/或在不同時間差異表現,但非其它者。
舉例言之,增加一植物對受土壤媒介病原感染之抗性可藉使用一抗病原基因轉形該植物基因體達成,使得抗原病蛋白在該植物體內穩健地表現。另外,可能期望在一特定生長或發育期,例如細胞分裂或伸長期在一植物組織表現一轉殖基因。另一項應用為期望使用組織特異性啟
動子,使得該等啟動子將限制編碼一農學性狀的該等轉殖基因在發育中的植物部分(亦即根、葉、癒傷組織或花粉)表現。
此處描述之啟動子乃用以製造含有多個基因之轉殖基因構成體之有展望的工具。此等啟動子也在細菌宿主提供結構安定性,及在植物細胞提供功能安定性,諸如減少轉殖基因靜默以許可轉殖基因表現。具有不等表現範圍之啟動子也可經由採用此處描述之方法獲得。比較使用單一啟動子多次的轉殖基因構成體,本案中描述的多樣化啟動子構成體將與轉殖基因事件下游之分子分析更為可相容。使用此處描述之多樣化啟動子也可緩和於使用鋅手指技術靶定目標期間在轉殖基因多基因座中的重排(SHUKLA等人2009)。
玉米Ubi-1啟動子已經成為生技產業標準,主要用於玉米的穩定轉殖基因表現(CHRISTENSEN及QUAIL 1996;CHRISTENSEN等人1992;TOKI等人1992)。各個轉殖基因通常要求一特定啟動子以獲得足夠表現。典型地要求多個啟動子以在一個基因堆疊內部表現不同轉殖基因。此種範例模型頻繁地導致玉米Ubi-1啟動子之重複使用,原因在於其具有期望的高位準蛋白質表現及構成性表現樣式。
但將重複序列蓄意地導入轉殖基因座,也可能對轉殖基因表現及安定性上造成非期望的負面效應
(FLADUNG及KUMAR 2002;KUMAR及FLADUNG 2000a;KUMAR及FLADUNG 2000b;KUMAR及FLADUNG 2001a;KUMAR及FLADUNG 2001b;KUMAR及FLADUNG 2002;METTE等人1999;MOURRAIN等人2007)。多重配位轉殖基因表現之挑戰也可使用啟動子多樣化辦法解決,於該處使用不同啟動子以驅動具有相同表現輪廓的不同轉殖基因(PEREMARTI等人2010)。本案描述經由識別及純化得自不同玉米種屬之新穎啟動子所得的多樣化泛素-1啟動子。
於植物基因內之基因表現的轉錄起始及調變係由多種DNA序列元體指示,該等DNA序列元體集合排列於稱作為啟動子的一較大型序列。真核啟動子典型地係由一最低核心啟動子與上游調節序列組成。該核心啟動子為連續DNA序列之最低伸展,其係足夠指導轉錄之正確起始。植物體的核心啟動子通常包含與轉錄起始相聯結的經典區,諸如CAAT及TATA框(同位序列TATAWAW)。該TATA框元體通常位在轉錄起始位置(TSS)上游約20至35鹼基對(bp)。該核心啟動子之活化係藉各種蛋白質與其結合的上游調節序列達成,及隨後與轉錄起始複體交互作用以活化基因表現。此等調節元體包含DNA序列,其決定一啟動子之時空表現樣式。
參考圖1,玉米Ubi-1基因啟動子係衍生自玉米自交細胞系B73。該玉米Ubi-1啟動子包含位在該TSS之5’上游約895bp之DNA序列(亦即上游元體)。此外,該玉米Ubi-1
啟動子包含位在該TSS之3’下游約1093bp之DNA序列(參考美國專利案第5,510,474號)。如此,該玉米Ubi-1啟動子包含約2千鹼基對(kb)之總DNA序列。
該玉米Ubi-1啟動子之上游元體包含位在該TSS之5’上游約30bp之一TATA框(圖1及圖3)。此外,該上游元體包含位在該TSS之緊接5’上游的兩個重疊熱震同位元體。82bp 5’-UTR或先導子序列係位在該TSS之緊接3’下游,及緊接著自鹼基83至鹼基1093延伸的一內含子(圖1及圖3)。
先前研究工作已經描述受玉米Ubi-1啟動子調節的基因及/或轉殖基因之基因表現增加。舉例言之,氯黴素乙醯基轉移酶(CAT)基因之轉錄融合至玉米Ubi-1啟動子,於玉米原生質體獲得比較藉花椰菜嵌紋病毒35S啟動子驅動的表現更高10倍以上的CAT活性(CHRISTENSEN及QUAIL 1996;CHRISTENSEN等人1992)。
除了對照玉米Ubi-1啟動子之外,本案描述一種新穎玉米Ubi-1啟動子。不似得自玉米基因型c.v.B73之Ubi-1啟動子,該新穎泛素-1啟動子係衍生自不同的玉米種屬茂密玉米(Zea luxurians)。此處使用的茂密玉米Ubi-1啟動子具有版本1(v1)基因型。此處提供使用包含一多核苷酸序列之玉米或茂密玉米Ubi-1啟動子之構成體及方法。於一實施例中,一啟動子可包含得自玉米c.v.B73 Ubi-1基因之一多核苷酸序列如下:
(SEQ ID NO:1)
於另一實施例中,一啟動子可包含得自茂密玉米v1 Ubi-1基因之一多核苷酸序列如下:
(SEQ ID NO:2)
此處描述之啟動子係藉選殖及隨後DNA序列同源性分析加以特徵化以識別啟動子之特定區域(亦即上游啟動子、5’-UTR、及內含子區)。提供使用構成性玉米或茂密玉米Ubi-1啟動子包含一上游啟動子區、5’-UTR或先導子區、及一內含子以於植物體表現轉殖基因之構成體及方法。於一實施例中,一啟動子可包含得自玉米c.v.B73 Ubi-1基因之一上游啟動子多核苷酸序列如下:
(SEQ ID NO:3)
於另一實施例中,一啟動子可包含得自茂密玉米v1 Ubi-1基因之一上游啟動子多核苷酸序列如下:
(SEQ ID NO:4)
轉殖基因表現也可藉位在該上游啟動子序列之3’下游的一5’-UTR及/或內含子區調節。包含操作式鏈接至一5’-UTR及/或內含子的一上游啟動子區的一啟動子可調節轉殖基因表現。雖然需要一上游啟動子以驅動轉錄,但一5’-UTR及/或內含子之存在可提高表現程度,結果導致製造更多的mRNA轉錄本用於轉譯及蛋白質合成。添加一5’-UTR及/或內含子至一上游啟動子多核苷酸序列可協助一轉殖基因之穩定表現。
此外,包含一上游啟動子多核苷酸序列之一構成性啟動子可接著一5’-UTR或先導子區以輔助轉殖基因於植物體的表現。於一實施例中,一啟動子可包含得自玉米c.v.B73 Ubi-1基因之一5’-UTR或先導子多核苷酸序列如下:
(SEQ ID NO:5)
於另一實施例中,一啟動子可包含得自茂密玉米v1 Ubi-1基因之一5’-UTR或先導子多核苷酸序列如下:
(SEQ ID NO:6)
又復,包含一上游啟動子多核苷酸序列之一構成性啟動子接著一5’-UTR或先導子區也可接著一內含子以輔助轉殖基因於植物體的表現。於一實施例中,一啟動子可包含得自玉米c.v.B73 Ubi-1基因之一內含子多核苷酸序列如下:
(SEQ ID NO:7)
於另一實施例中,一啟動子可包含得自茂密玉米v1 Ubi-1基因之一內含子多核苷酸序列如下:
(SEQ ID NO:8)
轉殖基因表現也可藉一基因表現匣調節。於一實施例中,一基因表現匣包含一啟動子。於一實施例中,一基因表現匣包含一Ubi-1啟動子。於一實施例中,一基因表現匣包含得自一植物之一Ubi-1啟動子。於一實施例中,一基因表現匣包含得自茂密玉米v1之一Ubi-1啟動子。
於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1啟動子,其中該啟動子係與SEQ ID NO:2至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一基因表現匣包含一構成性啟動子,諸如茂密玉米v1之一Ubi-1啟動子,其係操作式鏈接至一通報子基因或一轉殖基因。於一實施例中,一基因表現匣包含一構成性啟動子,其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效
率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。於一實施例中,包含該構成性啟動子之一基因表現匣可驅動一或多個轉殖基因或通報子基因的表現。於一實施例中,包含該構成性啟動子之一基因表現匣可驅動二或多個轉殖基因或通報子基因的表現。
於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1啟動子,其中該上游啟動子序列係與SEQ ID NO:4至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一基因表現匣包含一構成性啟動子,諸如茂密玉米v1之一Ubi-1上游啟動子,其係操作式鏈接至一通報子基因或一轉殖基因。於一實施例中,一基因表現匣包含一構成性上游啟動子,其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。於一實施例中,包含該構成性上游啟動子之一基因表現匣可驅動一或多個轉殖基因或通報子基因的表現。於一實施例中,包含該構成性上游啟動子之一基因表現匣可驅動二或多個轉殖基因或通報子基因的表現。於又一實施例中,該上游啟動子可包含一內含子。於一實施例中,該上游啟動子可包含操作式鏈接至一通報子基因或一轉殖基因的一內含子序列。於另一個實施例
中,該上游啟動子可包含一5’-UTR或先導子序列。於一實施例中,該上游啟動子可包含操作式鏈接至一通報子基因或一轉殖基因的一5’-UTR或先導子序列。於又另一個實施例中,該上游啟動子可包含一5’-UTR或先導子序列及一內含子序列。於一實施例中,該上游啟動子可包含操作式鏈接至一通報子基因或一轉殖基因的一5’-UTR或先導子序列及一內含子序列。
於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1啟動子,其中該5’-UTR或先導子序列係與SEQ ID NO:6至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一基因表現匣包含得自一編碼泛素-1蛋白質之玉米基因之一5’-UTR或先導子,其係操作式鏈接至一啟動子,其中該啟動子為一茂密玉米v1 Ubi-1啟動子或源自於植物之啟動子(例如玉米或茂密玉米泛素-1啟動子)、或源自於病毒之啟動子(例如木薯葉脈嵌紋病毒啟動子)、或源自於細菌之啟動子(例如根瘤土壤桿菌(Agrobacterium tumefaciens)delta mas)。於一具體實施例中,一基因表現匣包含得自一編碼泛素蛋白質之玉米基因之一茂密玉米v1 5’-UTR或先導子序列,其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1啟動子,其中該內含子序列係與SEQ ID NO:8至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一基因表現匣包含得自一編碼泛素-1蛋白質之玉米基因之一內含子,其係操作式鏈接至一啟動子,其中該啟動子為一茂密玉米v1 Ubi-1啟動子或源自於植物之啟動子(例如玉米或茂密玉米泛素-1啟動子)、或源自於病毒之啟動子(例如木薯葉脈嵌紋病毒啟動子)、或源自於細菌之啟動子(例如根瘤土壤桿菌(Agrobacterium tumefaciens)delta mas)。於一具體實施例中,一基因表現匣包含得自一編碼泛素蛋白質之玉米基因之一內含子,其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一載體可包含如此處描述之一基因表現匣。於一實施例中,一載體可為一質體、一質粒、一細菌人工染色體(BAC)、一噬菌體、一病毒、或一切下的多核苷酸片段用於直接轉形或基因靶定目標,諸如捐贈者DNA。
於一實施例中,一細胞或植物包含如此處描述之一基因表現匣。於一實施例中,一細胞或植物包含一載體其包含如本案揭示之一基因表現匣。於一實施例中,一載
體可為一質體、一質粒、一細菌人工染色體(BAC)、一噬菌體、或一病毒。因此,包含一基因表現匣之一細胞或植物分別為一轉殖基因細胞或轉殖基因植物。
於一實施例中,一轉殖基因植物可為單子葉或雙子葉植物。轉殖基因單子葉植物之一實施例可為,但非僅限於玉米、小麥、稻米、高梁、燕麥、黑麥、香蕉、甘蔗、及粟。轉殖基因雙子葉植物之一實施例可為,但非僅限於大豆、棉、葵花、或油菜。一實施例也包括得自如此處描述之轉殖基因植物之轉殖基因種籽。
各種可選擇標記,又稱通報子基因,可結合入一所選表現載體以許可已轉形植物(「轉形株」)之識別及選擇。有許多方法可用以確認可選擇標記於轉形植物體之表現,包括例如DNA定序及聚合酶連鎖反應(PCR)、南方墨點、RNA墨點、用以檢測自該載體表現之一蛋白質之免疫學方法,諸如媒介磷絲菌素抗性的沈澱蛋白質,或其它蛋白質之目測觀察,諸如編碼下列之通報子基因:β-葡萄糖醛酸酶(GUS)、蟲螢光素酶、綠螢光蛋白(GFP)、黃螢光蛋白(YFP)、DsRed、β-半乳糖苷酶、氯黴素(chloramphenicol)乙醯基轉移酶(CAT)、鹼性磷酸酶等(參考Sambrook等人,分子選殖:實驗室手冊,第三版,冷泉港實驗室出版社,冷泉港,紐約,2001,其全文內容係爰引於此並融入本說明書之揭示)。
可選擇標記基因係運用於轉形細胞或組織之選
擇。可選擇標記基因編碼抗生素抗藥性之基因,諸如編碼新黴素磷酸轉移酶II(NEO)及吸濕黴素磷酸轉移酶(HPT)之基因以及賦與對除草化合物之耐受性之基因。耐除草劑基因通常編碼對除草劑不敏化之一改性標靶蛋白質,或編碼在植物體內除草劑可作用之前降解或解除該除草劑之酶。舉例言之,藉使用編碼突變株標靶酶亦即5-烯醇丙酮醯基莽草酸-3-磷酸合成酶(EPSPS)已經獲得對草甘膦(glyphosate)之耐受性。EPSPS之基因及突變株為眾所周知,容後詳述。對草銨膦(glufosinate)銅、溴苯腈(bromoxynil)、及2,4-二氯苯氧基乙酸酯(2,4-D)之耐受性可藉使用編碼解毒個別除草劑的pat或DSM-2、腈酶、aad-1或aad-12基因之細菌性基因獲得。
於一實施例中,除草劑可抑制生長點或分生組織,包括咪唑啉酮或磺醯脲、及編碼乙醯羥基酸合成酶(AHAS)及乙醯乳酸合成酶(ALS)之抗性/耐受性之基因。草甘膦耐受性基因包括突變株5-烯醇丙酮醯基莽草酸-3-磷酸合成酶(EPSPs)及透過重組核酸之導入之dgt-28基因及/或天然EPSPs基因、aroA基因、及草甘膦乙醯基轉移醇(GAT)基因分別之活體內突變發生之各種形式。其它膦基化合物之抗藥性基因包括得自鏈絲菌(Streptomyces)種屬之BAR基因,包括吸濕鏈絲菌(Streptomyces hygroscopicus)及鏈絲菌(Streptomyces viridichromogenes)、及吡啶基氧基或苯氧基丙酸及環己酮(ACCase抑制劑編碼基因)。賦與對環己二酮類及/或芳基氧基苯氧基丙酸(包括氟吡禾靈(Haloxyfop)、禾
草靈(Diclofop)、涕丙酸(Fenoxyprop)、穩殺得(Fluazifop)、喹禾靈(Quizalofop))之抗性的基因實施例包括乙醯輔酶A羧基酶(ACCase)亦即Acc1-S1、Acc1-S2及Acc1-S3之基因。於一實施例中,除草劑可抑制光合成,包括三TM(psbA及1s+基因)或苯腈(腈基酶基因)。
於一實施例中,可選擇標記基因包括,但非限制性編碼下列之基因:新黴素磷酸轉移酶II;氰醯胺水合酶;天冬酸激酶;二氫二吡啶甲酸合成酶;色胺酸去羧基酶;二氫二吡啶甲酸合成酶及去敏化天冬酸激酶;bar基因;色胺酸去羧基酶;新黴素磷酸轉移酶(NEO);吸濕黴素磷酸轉移酶(HPT或HYG);二氫葉酸還原酶(DHFR);磷絲菌素乙醯基轉移酶;2,2-二氯丙酸去鹵化酶;乙醯羥基酸合成酶;5-烯醇丙酮醯基莽草酸-磷酸合成酶(aroA);鹵芳基腈基酶;乙醯輔酶A羧基酶;二氫喋啶酸合成酶(sul I);及32kD光系統II多肽(psbA)。
一實施例也包括編碼對下列之抗性之基因:氯黴素;甲胺喋呤;吸濕黴素;觀黴素;溴苯腈;草甘膦;及磷絲菌素。
以上可選擇標記基因之列表並非表示限制性。任何通報子基因或可選擇標記基因皆係涵蓋於本發明之範圍。
可選擇標記基因係經合成用以於植物體獲得最佳表現。舉例言之,於一個實施例中,一基因之編碼序列已經藉密碼子優化以提升於植物體之表現。一可選擇標記
基因可經優化用以於一特定植物體種屬表現,或另外,可經改性用以於雙子葉或單子葉植物體獲得最佳表現。植物較佳密碼子可以在關注之特定植物體種屬以最大量表現之蛋白質中具有最高頻率之密碼子決定。於一實施例中,一可選擇標記基因係經設計以在植物體以較高位準表現,結果導致較高轉形效率。基因之植物優化方法為眾所周知。有關合成多核苷酸序列之優化及製造的指南可參考例如WO 2013/016546、WO 2011/146524、WO 1997/013402、美國專利案第6,166,302號、及美國專利案第5,380,831號,爰引於此並融入本說明書之揭示。
本案揭示之方法及組成物可用以於植物基因體表現多核苷酸基因序列。因此,編碼耐除草劑性、抗蟲害性、營養、抗生素、或治療分子之基因可藉該新穎啟動子表現。
於一個實施例中,本文揭示之構成性啟動子調節元體係組合或操作式鏈接至編碼多核苷酸序列的一或多個基因其提供對草甘膦、2,4-D、草銨膦、或其它除草劑之抗性或耐受性;提供對選擇性地昆蟲或疾病及/或營養提升之抗性;改良農學特性、蛋白質、或於飼料、食物、工業、醫藥或其它用途上有用的其它產品。該等轉殖基因可堆疊一植物基因體內部關注之二或多個核酸序列。堆疊例如可透過下列方式達成:習知植物育種使用二或多個事件;使用含有關注序列之一構成體轉形一植物;一轉殖基因植物
之再轉形;經由靶定整合透過同源重組而添加新性狀。
此等關注之多核苷酸序列包括,但非限制性,後文提供之該等實施例:
1.賦與對害蟲或疾病之抗性之基因或編碼序列(例如iRNA)
(A)植物抗病性基因。植物防禦通常係由植物體的一抗病基因(R)產物與病原體的一相對應無毒力(Avr)基因產物間之交互作用而活化。一種植物可以選殖抗性基因轉形以基因改造對特定病原種系有抗性的植物。此等基因之實施例包括:對番茄葉霉菌(Cladosporium fulvum)抗性之番茄Cf-9基因(Jones等人,1994科學266:789),對丁香假單胞桿菌(Pseudomonas syringae)pv.番茄抗性之編碼一蛋白激酶之番茄Pto基因(Martin等人,1993科學262:1432),及對丁香假單胞桿菌抗性之擬南芥(Arabidopsis)RSSP2基因(Mindrinos等人,1994細胞78:1089)。
(B)蘇雲金桿菌(Bacillus thuringiensis)蛋白質、其衍生物或於其上模型化之一合成多肽,諸如,一Bt δ-內毒素基因之一核苷酸序列(Geiser等人,1986基因48:109),及一植物殺蟲(VIP)基因(例如參見Estruch等人(1996)Proc.Natl.Acad.Sci.93:5389-94)。再者,編碼δ-內毒素基因之DNA分子可以ATCC存取號碼40098、67136、31995及31998購自美國種型培養收集所(馬里蘭州洛克維)。
(C)一植物凝集素,諸如數種君子蘭(Clivia miniata)甘露糖結合植物凝集素基因(Van Damme等人,1994植物分子生
物學24:825)。
(D)一維生素結合蛋白質,諸如抗生物素及抗生物素同系物其可用作為對抗害蟲之殺幼蟲劑。參考美國專利案第5,659,026號。
(E)一酶抑制劑,例如蛋白酶抑制劑或澱粉酶抑制劑。此等基因之實施例包括稻米半胱胺酸蛋白酶抑制劑(Abe等人,1987 J.Biol.Chem.262:16793),番茄蛋白酶抑制劑(Huub等人,1993植物分子生物學21:985),及α-澱粉酶抑制劑(Sumitani等人,1993生科生技生化57:1243)。
(F)一昆蟲特異性激素或費洛蒙,諸如蛻皮激素及保幼激素、其變異體、以其為基礎之模擬物、或其拮抗劑或促效劑,諸如選殖保幼激素酯酶亦即保幼激素之去活化劑之棒狀病毒表現(Hammock等人,1990自然344:458)。
(G)一昆蟲特異性胜肽或神經胜肽,其當表現時催毀感染病蟲害之生理學(J.Biol.Chem.269:9)。此等基因之實施例包括昆蟲利尿激素受體(Regan,1994),於太平洋折翅蠊(Diploptera punctata)識別的異靜止素(allostatin)(Pratt,1989),及昆蟲特異性麻痺神經毒素(美國專利案第5,266,361號)。
(H)自然界由蛇、胡蜂等產生的昆蟲特異性毒液,諸如蠍昆蟲毒性胜肽(Pang,1992基因116:165)。
(I)造成一萜烯、倍半萜烯、類固醇、羥肟酸、苯基類丙酸衍生物或其它具有殺蟲活性之非蛋白質分子過度積聚之酶。
(J)涉及生物活性分子改造,包括轉譯後改造之酶;例如,糖解酶、蛋白解酶、脂解酶、核酸酶、環化酶、轉胺酶、酯酶、水解酶、磷酸酶、激酶、磷解酶、聚合酶、彈力蛋白酶、幾丁質酶及葡聚糖酶,包括天然及合成兩者。此等基因之實施例包括卡拉斯(callas)基因(PCT公開申請案WO 93/02197),幾丁質酶編碼序列(其係例如以存取號碼3999637及67152得自ATCC),番茄鉤蟲幾丁質酶(Kramer等人,1993昆虫分子生物學23:691),香芹ubi4-2多泛素基因(Kawalleck等人,1993植物分子生物學21:673)。
(K)刺激信號轉導之一分子。此等分子之實施例包括綠豆調鈣素(calmodulin)cDNA純株之核苷酸序列(Botella等人,1994植物分子生物學24:757)及玉米調鈣素(calmodulin)cDNA純株之核苷酸序列(Griess等人,1994植物生理104:1467)。
(L)斥水矩胜肽。參考美國專利案第5,659,026及5,607,914號;後案教示賦與抗病性之合成抗微生物胜肽。
(M)膜通透酶、通道形成劑或通道阻斷劑,諸如,天蠶素(cecropin)-β分解作用胜肽類似物(Jaynes等人,1993植物科學89:43)其使得轉殖基因番茄植株具有青枯假單胞菌(Pseudomonas solanacearum)抗性。
(N)一病毒侵入性蛋白質或衍生自其中之一複合毒素。舉例言之,病毒衣殼蛋白於轉形植物細胞之積聚賦與對於受該衣殼蛋白基因衍生自其中的該病毒以及相關病毒之病毒感染及/或發病之抗性。衣殼蛋白媒介抗性已經賦與轉形
植物對抗苜蓿嵌紋病毒、黃瓜嵌紋病毒、菸草條紋病毒、馬鈴薯病毒X、馬鈴薯病毒Y、菸草溶蝕病毒、菸草咔嗒病毒、及菸草嵌紋病毒。例如參考Beachy等人(1990)Ann.Rev.Phytopathol.28:451。
(O)一昆蟲特異性抗體或衍生自其中之一免疫毒素。如此,靶定於昆蟲腸之關鍵代謝功能之抗體將失活化受影響的酶而殺死昆蟲。舉例言之,Taylor等人(1994)第七屆國際分子植物-微生物交互作用研討會#497摘要,顯示於轉殖基因菸草透過單鍵抗體片段的製造成酶失活化。
(P)一病毒特異性抗體。例如參考Tavladoraki等人(1993)自然266:469,表現重組抗體基因之轉殖基因植物被保護不受病毒攻擊。
(Q)自然界由病原或寄生蟲製造的發育停止蛋白質。如此,真菌α-1,4-D多半乳糖醛酸內切酶輔助真菌之群落化,藉溶解植物細胞壁同質-1,4-D-半乳糖醛酸釋出植物營養素(Lamb等人,1992)生技10:1436。編碼豆多半乳糖醛酸內切酶抑制蛋白質之一基因的選殖及特徵化係由Toubart等人描述(1992植物期刊2:367)。
(R)自然界由植物製造的發育停止蛋白質,諸如大麥核糖體失活化基因,其提供對真菌病之抗性(Longemann等人,1992)生技10:3305。
(S)RNA干擾,其中一RNA分子用以抑制一標靶基因的表現。於一個實施例中,一RNA分子為部分或全雙股,其觸發靜默反應,導致dsRNA裂解成小干擾RNA,其然後結
合入一標靶複體其催毀同源mRNA。例如參考Fire等人美國專利案第6,506,559號;Graham等人美國專利案第6,573,099號。
2.賦與對除草劑之抗性之基因
(A)編碼對抑制生長點或分生組織之除草劑之抗性或耐受性的基因,諸如咪唑啉酮、磺醯苯胺或磺醯脲除草劑。此類別之基因實施例編碼突變株乙醯乳酸合成酶(ALS)(Lee等人,1988 EMBOJ.7:1241)又稱乙醯羥基酸合成酶(AHAS)酵素(Miki等人,1990 Theor.Appl.Genet.80:449)。
(B)對草甘膦之抗性或耐受性之編碼一或多個額外基因係由突變株EPSP合成酶及aroA基因賦與,或經由藉基因之代謝失活化賦與諸如DGT-28、2mEPSPS、草甘膦乙醯基轉移酶(GAT)或草甘膦氧化酶(GOX)及其它膦基化合物諸如草銨膦(pat、bar、及dsm-2基因)、及芳基氧基苯氧基丙酸類及環己烷二酮類(ACCase抑制劑編碼基因)。例如參考美國專利案第4,940,835號,其揭示可賦與草甘膦抗性的一種EPSP形式之核苷酸序列。一突變株aroA基因之編碼DNA分子可以ATCC存取號碼39256獲得,及該突變株基因之核苷酸序列係揭示於美國專利案第4,769,061號。歐洲專利申請案第0 333 033號及美國專利案第4,975,374號揭示賦與對除草劑諸如L-磷絲菌素抗性之麩胺合成酶基因之核苷酸序列。磷絲菌素乙醯基轉移酶基因之核苷酸序列係提供於歐洲專利申請案第0 242 246號。De Greef等人(1989)生技7:61
描述表現磷絲菌素乙醯基轉移酶活性之編碼嵌合體bar基因的轉殖基因植物之生產。賦與對芳基氧基苯氧基丙酸類及環己烷二酮類諸如稀禾定(sethoxydim)及氟吡禾靈(haloxyfop)之抗性的基因之實施例為Acc1-S1、Acc1-S2及Acc1-S3基因,描述於Marshall等人(1992)Theor.Appl.Genet.83:435。
(C)對抑制光合成之除草劑之抗性或耐受性之編碼基因,諸如三TM(psbA及gs+基因)及苯甲腈(腈酶基因)。Przibilla等人(1991)植物細胞3:169描述使用編碼突變株psbA基因之質體以轉形衣藻(Chlamydomonas)。腈酶基因之核苷酸序列係揭示於美國專利案第4,810,648號,及含有此等基因之DNA分子可以ATCC存取號碼53435、67441及67442獲得。麩胱甘肽S-轉移酶之編碼DNA的選殖及表現係描述於Hayes等人(1992)生化期刊285:173。
(D)對結合至羥基苯基丙酮酸二氧基酶(HPPD)之除草劑之抗性或耐受性之編碼基因,該酶係催化其中對-羥基苯基丙酮酸(HPP)被轉換成尿黑酸鹽(homogentisate)之該反應。此種除草劑諸如異唑類(EP418175、EP470856、EP487352、EP527036、EP560482、EP682659、美國專利案第5,424,276號),特別異惡唑草酮(isoxaflutole)其乃玉米用之選擇性除草劑;二酮基腈類(EP496630、EP496631),特別2-氰基-3-環丙基-1-(2-SO2CH3-4-CF3苯基)丙烷-1,3-二酮及2-氰基-3-環丙基-1-(2-SO2CH3-4-2,3Cl2苯基)丙烷-1,3-二酮;三酮類(EP625505、EP625508、美國專利案第5,506,195
號),特別磺草酮(sulcotrione);及吡唑啉酸類。於植物體製造過量HPPD之一基因可提供對此等除草劑之耐性或抗性,包括例如美國專利案第6,268,549及6,245,968號及美國專利申請案第2003/0066102號描述之基因。
(E)對苯氧基植物生長素除草劑之抗性或耐受性之編碼基因,諸如2,4-二氯苯氧基乙酸酯(2,4-D)及其也賦與對芳基氧基苯氧基丙酸酯(AOPP)除草劑之抗性或耐受性。此等基因之實施例包括α-酮基戊二酸相依性二氧基酶(aad-1)基因,描述於美國專利案第7,838,733號。
(F)對苯氧基植物生長素除草劑之抗性或耐受性之編碼基因,諸如2,4-二氯苯氧基乙酸酯(2,4-D)及其也賦與對吡啶基植物生長素除草劑之抗性或耐受性,諸如氟草煙(fluroxypyr)或綠草定(triclopyr)。此等基因之實施例包括α-酮基戊二酸相依性二氧基酶基因(aad-12),描述於WO 2007/053482 A2。
(G)對麥草畏(dicamba)之抗性或耐受性之編碼基因(例如參考美國專利公告案第20030135879號)。
(H)提供對抑制初卟啉原氧化酶(PPO)之除草劑之抗性或耐受性之基因(參考美國專利案第5,767,373號)。
(I)提供對結合至光系統II反應中心(PS II)之核心蛋白質的三TM除草劑(諸如莠去津(atrazine))及尿素衍生物(諸如敵草隆(diuron))除草劑之抗性或耐受性之基因(參考Brussian等人,(1989)EMBO J.1989〔8(4):1237-1245。
3.賦與或提供附加價值性狀之基因
(A)改性脂肪酸代謝,例如藉以一反訊息基因或硬脂醯基-ACP去飽和酶轉形玉米或蕓薹以增加該植物之硬脂酸含量(Knultzon等人,1992)Proc.Natl.Acad.Sci.USA 89:2624。
(B)減低植酸酶含量
(1)導入一植酸酶編碼基因,諸如黑麴菌(Aspergillus niger)植酸酶基因(Van Hartingsveldt等人,1993基因127:87)促進植酸酶之分解,增加更多自由態磷酸根至該轉形植物。
(2)可導入一基因減少植酸鹽含量。於玉米,如此例如可藉選殖及然後重新導入與該單一同位基因相聯結的DNA達成,該同位基因負責以低含量植酸為特徵之玉米突變株(Raboy等人,1990 Maydica 35:383)。
(C)改性碳水化合物組成例如受具有編碼一酶其變更澱粉分支樣式之一基因的轉形植物影響。此等酶之實施例包括:鏈球菌(Streptococcus mucus)果糖基轉移酶基因(Shiroza等人,1988 J.Bacteriol.170:810),枯草桿菌(Bacillus subtilis)果聚糖蔗糖酶基因(Steinmetz等人,1985 Mol.Gen.Genel.200:220),地衣芽胞桿菌(Bacillus licheniformis)α-澱粉酶(Pen等人,1992生技10:292),番茄反錄酶基因(Elliot等人,1993),大麥澱粉酶基因(Sogaard等人,1993 J.Biol.Chem.268:22480),及玉米胚乳澱粉分支酶II(Fisher等人,1993植物生理學102:10450)。
植物之合宜轉形方法包括於該處DNA可被導入
一細胞內之任何方法,例如但非受此所限:電穿孔(例如參考美國專利案第5,384,253號);微粒撞擊(例如參考美國專利案第5,015,580;5,550,318;5,538,880;6,160,208;6,399,861;及6,403,865號);土壤桿菌媒介之轉形(例如參考美國專利案第5,635,055;5,824,877;5,591,616;5,981,840;及6,384,301號);及原生質體轉形(例如參考美國專利案第5,508,184號)。此等方法可用以穩定地轉形或過渡轉形一植物。
一DNA構成體可使用諸如以碳化矽纖維攪動之技術而直接導入該植物細胞之基因體DNA內(例如參考美國專利案第5,302,523及5,464765號)。一DNA構成體可使用諸如基因槍方法諸如DNA粒子撞擊而直接導入該植物組織內(例如參考Klein等人,(1987)自然327:70-73)。另外,DNA構成體可可透過奈米粒子轉形而導入該植物細胞內(例如參考美國專利公告案第2009/0104700號,全文爰引於此並融入本說明書之揭示)。
此外,基因轉移可使用非土壤桿菌細菌或病毒達成,諸如根瘤菌(Rhizobium)sp.NGR234、苜蓿中華根瘤菌(Sinorhizobium meliloti)、百脈根根瘤菌(Mesorhizobium loti)、馬鈴薯病毒X、花椰菜嵌紋病毒、木薯葉脈嵌紋病毒、及/或菸草嵌紋病毒,參考例如Chung等人(2006)植物科學趨勢11(1):1-4。
透過施用轉形技術,實質上任何植物種屬之細胞可被穩定地轉形,及此等細胞可藉眾所周知之技術發育成轉殖基因植物。舉例言之,於棉轉形脈絡中特別有用的技
術係說明於美國專利案第5,846,797;5,159,135;5,004,863;及6,624,344號;用以轉形蕓薹植物之技術特別說明於例如美國專利案第5,750,871號;用以轉形大豆之技術特別說明於例如美國專利案第6,384,301號;及用以轉形玉米之技術特別說明於例如美國專利案第7,060,876及5,591,616號及國際PCT公告案WO 95/06722。
執行傳遞外源核酸給一受贈者細胞之後,通常識別一轉形細胞用於進一步培養及植物再生。為了改良識別轉形株之能力,可能期望採用具有該轉形載體之一可選擇標記基因以產生該轉形株。於一具體實施例中,一轉形細胞族群可藉將該等細胞暴露於一選擇因子或多選擇因子檢定分析,或該等細胞可篩選期望的標記基因性狀。
暴露於一選擇因子存活的細胞或在一篩選檢定分析中被評分為陽性的細胞可在支援植物再生之培養基內培養。於一實施例中,任何合宜植物組織培養基可藉含括額外物質諸如生長調節因子而予改性。植物組織可維持於含生長調節因子之一基本培養基上,直到有足量組織可用以開始植物再生為止。另外,於手動選擇之重複回合之後,直到該組織之形態適合再生為止(例如至少2週),然後該組織可轉移至有助於幼苗生成的培養基。培養定期轉移直到已有足量幼苗生成。一旦生成幼苗,幼苗被轉移至有助於根生成的培養基。一旦有足量根生成,植物可轉移至土壤以供進一步生長與成熟。
為了驗證包含構成體提供於再生植物的期望核
酸之存在,可進行多項檢定分析。此等檢定分析可包括:分子生物學檢定分析,諸如南方墨點及北方墨點及PCR;生物檢定分析,諸如藉免疫學手段檢測一蛋白質產物之存在,諸如ELISA、西方墨點及/或LC-MS MS分光光度檢測法,或藉酶學功能諸如藉植物部分檢定分析,諸如葉、癒傷組織、或花粉檢定分析;及/或全株再生植物表現型之分析。
轉殖基因事件例如可使用針對關注核酸分子之特異性寡核苷酸引子藉PCR擴增篩檢。須瞭解PCR決定基因型包括,但非限制性,預測含有關注核酸分子整合入基因體內之經分離的及/或經純化的宿主植物組織所衍生得之基因體DNA進行PCR擴增,接著為標準選殖,及PCR擴增產物之序列分析。PCR決定基因型之方法已經徹底描述(例如參考Rios等人(2002)植物期刊32:243-53),及可施加至衍生自任何植物物種或組織型別包括細胞培養的基因體DNA。
結合至標靶序列及導入序列之寡核苷酸引子的組合可循序地或多工用於PCR擴增反應。可製造設計以煉合至該標靶位置、導入核酸序列的寡核苷酸引子,及/或兩型核酸序列之組合。如此,PCR決定基因型策略可包括例如但非限制性:特異性序列於植物基因體中之擴增;多重特異性序列於植物基因體中之擴增;非特異性序列於植物基因體中之擴增;及前述中任一者之組合。熟諳技藝人士可設計引子與擴增反應之額外組合以查詢該基因體。舉例
言之,正及反寡核苷酸引子之一集合可經設計以煉合至在該導入核酸序列的邊界外部的目標之特異性核酸序列。
正及反寡核苷酸引子可經設計以特異性煉合至一所導入核酸分子,例如在相對應於其中包含的關注之一核苷酸序列內部之一編碼區的一序列,或該核酸分子之其它部分。引子可用以結合此處描述之引子。寡核苷酸引子可根據一期望序列合成且為市面上可得(例如得自整合DNA技術公司,美國愛荷華州珊瑚堡)。擴增之後可接著選殖及定序,或接著擴增產物之直接序列分析。於一實施例中,該基因目標之特異性寡核苷酸引子採用於PCR擴增。
於一實施例中,一種於一植物體表現至少一個轉殖基因之方法包含生長一植物包含一茂密玉米v1 Ubi-1啟動子(SEQ ID NO:2)操作式鏈接至至少一個轉殖基因。於一實施例中,一種於一植物組織或植物細胞表現至少一個轉殖基因之方法包含培養一植物組織或植物細胞包含一茂密玉米v1 Ubi-1啟動子(SEQ ID NO:2)操作式鏈接至至少一個轉殖基因。
於一實施例中,一種於一植物體表現至少一個轉殖基因之方法包含生長包含一基因表現匣之一植物,該匣包含一茂密玉米v1 Ubi-1啟動子(SEQ ID NO:2)操作式鏈接至至少一個轉殖基因。於一實施例中,一種於一植物組織或植物細胞表現至少一個轉殖基因之方法包含生長包含一基因表現匣之一植物組織或植物細胞,該匣包含一茂密玉
米v1 Ubi-1啟動子(SEQ ID NO:2)操作式鏈接至至少一個轉殖基因。
於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1啟動子(SEQ ID NO:2)操作式鏈接至一轉殖基因。其中該茂密玉米v1 Ubi-1啟動子(SEQ ID NO:2)係包含一上游啟動子(SEQ ID NO:4)、5’-UTR(SEQ ID NO:6)、及一內含子(SEQ ID NO:8)。於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1上游啟動子(SEQ ID NO:4)、5’-UTR(SEQ ID NO:6)、及一內含子(SEQ ID NO:8)。於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1上游啟動子(SEQ ID NO:4)、5’-UTR(SEQ ID NO:6)、及一茂密玉米v1 Ubi-1基因之一內含子(SEQ ID NO:8)。於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1上游啟動子(SEQ ID NO:4)、5’-UTR(SEQ ID NO:6)、及一茂密玉米v1 Ubi-1基因之一內含子(SEQ ID NO:8)。
於一實施例中,一植物、植物組織、或植物細胞包含一茂密玉米v1 Ubi-1啟動子。於一實施例中,一茂密玉米v1 Ubi-1啟動子可為SEQ ID NO:2。於一實施例中,一植物、植物組織、或植物細胞包含一啟動子,其中該啟動子係與SEQ ID NO:2至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一植物、植物組織、或植物細
胞包含一基因表現匣包含一茂密玉米v1 Ubi-1啟動子其係操作式鏈接至一轉殖基因。於一具體實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1啟動子其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一植物、植物組織、或植物細胞包含一茂密玉米v1 Ubi-1上游啟動子。於一實施例中,一茂密玉米v1 Ubi-1上游啟動子可為SEQ ID NO:4。於一實施例中,一植物、植物組織、或植物細胞包含一上游啟動子,其中該上游啟動子係與SEQ ID NO:4至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1上游啟動子其係操作式鏈接至一轉殖基因。於一具體實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1上游啟動子其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一植物、植物組織、或植物細胞
包含一茂密玉米v1 Ubi-1 5’-UTR或先導子序列。於一實施例中,一茂密玉米v1 Ubi-1 5’-UTR或先導子序列可為SEQ ID NO:6。於一實施例中,一植物、植物組織、或植物細胞包含一5’-UTR或先導子序列,其中該5’-UTR或先導子序列係與SEQ ID NO:6至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1 5’-UTR或先導子其係操作式鏈接至一啟動子,其中該啟動子為一泛素啟動子,或源自於植物(例如玉米或茂密玉米泛素-1啟動子)、病毒(例如木薯葉脈嵌紋病毒啟動子)、或細菌(例如根瘤土壤桿菌delta mas)之一啟動子。於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1 5’-UTR或先導子其係操作式鏈接至一轉殖基因。於一具體實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1 5’-UTR或先導子其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一植物、植物組織、或植物細胞包含一Ubi-1內含子。於一實施例中,一植物、植物組織、或植物細胞包含一茂密玉米v1 Ubi-1內含子。於一實施例中,一茂密玉米v1 Ubi-1內含子序列可為SEQ ID NO:8。於
一實施例中,一植物、植物組織、或植物細胞包含一內含子,其中該內含子係與SEQ ID NO:8至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%、或100%相同。於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1內含子其係操作式鏈接至一啟動子,其中該啟動子為一泛素啟動子,或源自於植物(例如玉米或茂密玉米泛素-1啟動子)、病毒(例如木薯葉脈嵌紋病毒啟動子)、或細菌(例如根瘤土壤桿菌delta mas)之一啟動子。於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1內含子其係操作式鏈接至一轉殖基因。於一具體實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1內含子其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一植物、植物組織、或植物細胞包含一基因表現匣包含一茂密玉米v1 Ubi-1上游啟動子、一Ubi-1內含子、及一Ubi-1 5’-UTR其係操作式鏈接至一轉殖基因。當一基因表現匣包括二或多個轉殖基因時,該茂密玉米v1 Ubi-1上游啟動子、Ubi-1內含子、及Ubi-1 5’-UTR可操作式鏈接至在一基因表現匣內的不同轉殖基因。於一具體實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1啟動
子其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。於一具體實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1內含子其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。於一實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1內含子其係操作式鏈接至一啟動子,其中該啟動子為一泛素啟動子,或源自於植物(例如玉米或茂密玉米泛素-1啟動子)、病毒(例如木薯葉脈嵌紋病毒啟動子)、或細菌(例如根瘤土壤桿菌delta mas)之一啟動子。於一具體實施例中,一基因表現匣包含一茂密玉米v1 Ubi-1 5’-UTR其係操作式鏈接至一轉殖基因,其中該轉殖基因可為一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、一可選擇標記轉殖基因、或其組合。
於一實施例中,一植物、植物組織、或植物細胞包含一載體包含如此處揭示之一構成性基因啟動子調節元體。於一實施例中,一植物、植物組織、或植物細胞包含一載體包含如此處揭示之一構成性基因啟動子調節元體操
作式鏈接至一轉殖基因。於一實施例中,一植物、植物組織、或植物細胞包含一載體包含如此處揭示之一基因表現匣。於一實施例中,一載體可為一質體、一質粒、一細菌人工染色體(BAC)、一噬菌體、或一病毒片段。
於一實施例中,依據如此處揭示之方法,一植物、植物組織、或植物細胞可為單子葉。該單子葉植物、植物組織、或植物細胞可為但非僅限於玉米、稻米、小麥、甘蔗、大麥、黑麥、高粱、蘭、竹、香蕉、香蒲、百合、燕麥、洋葱、粟、及黑小麥。於一實施例中,依據如此處揭示之方法,一植物、植物組織、或植物細胞可為雙子葉。該雙子葉植物、植物組織、或植物細胞可為但非僅限於油菜籽、芥花、印度芥、衣索匹亞芥、大豆、葵花、及棉。
至於基因改造植物之產生,植物之基因工程方法為業界眾所周知。例如,已經發展出無數植物轉形方法,包括針對雙子葉植物及單子葉植物之生物及物理轉形方案(例如Goto-Fumiyuki等人,自然生技17:282-286(1999);Miki等人,植物分子生物學及生技方法,Glick,B.R.及Thompsom,J.E.編輯,CRC出版公司,波卡雷頓,67-88頁(1993))。此外,植物細胞或組織轉形及植物再生之載體及試管內培養方法例如可得自Gruber等人,植物分子生物學及生技方法,Glick,B.R.及Thompsom,J.E.編輯,CRC出版公司,波卡雷頓,89-119頁(1993)。
熟諳技藝人士將瞭解在該外源序列穩定地結合入轉殖基因植物且確證為可操作之後,可藉性交叉而被導
入其它植物體內。取決於欲交叉的物種,可採用多種標準育種技術中之任一者。
一轉形植物細胞、根、葉、癒傷組織、花粉、或組織、或植物可藉由存在於該轉形DNA上之該等標記基因所編碼的性狀而選擇或篩選該經基因改造植物材料加以識別及分離。舉例言之,選擇可藉在含有抑制量之該轉形基因構成體賦與對其之抗性的一抗生素或一除草劑的培養基上藉生長該經基因改造植物材料進行。又,轉形細胞也可藉篩選可能存在於重組核酸構成體上的任何可見標記基因(例如YFP、GFP、β-葡萄糖醛酸酶、蟲螢光素酶、B或C1基因)之活性加以識別。此種選擇及篩選方法為熟諳技藝人士眾所周知。
物理及生化方法也可用以識別含有插入基因構成體之植物或植物細胞轉形株。此等方法包括,但非限制性:1)南方分析或PCR擴增用於檢測及決定該重組DNA插子之結構;2)北方墨點、S1 RNA保護、引子伸長、或反錄酶-PCR擴增用於檢測及檢驗該基因構成體之RNA轉錄本;3)酶學檢定分析用於檢測酶或核糖酶活性,於該處此等基因產物係由該基因構成體編碼;4)下一代定序(NGS)分析;或5)蛋白質凝膠電泳、西方墨點技術、免疫沈澱、或酶聯結免疫吸附檢定分析(ELISA),於該處該等基因構成體產物為蛋白質。額外技術諸如原位雜交、酶染色、及免疫染色也可用以檢測在特定植物器官及組織的該重組構成體之存在或表現。進行全部此等檢定分析之方法皆為熟諳技藝人
士眾所周知。
使用此處揭示之該等方法之基因操控效果可藉例如分離自關注組織的RNA(例如mRNA)之北方墨點觀察。典型地,若該mRNA係存在或mRNA含量增加,則可推定表現相對應轉殖基因。可使用測量基因及/或編碼多肽活性之其它方法。取決於使用的酶基質及檢測一反應產物或副產物增減之方法,可使用不同類型的酶學檢定分析。此外,多肽之表現位準可藉免疫化學測量,藉採用熟諳技藝人士眾所周知之ELISA、RIA、EIA、及其它以抗體為基礎之檢定分析,諸如藉電泳檢測分析(使用染色或西方墨點)測量。至於一個非限制性實施例,使用ELISA檢定分析檢測AAD-1(芳基氧基烷酸二氧基酶;參考WO 2005/107437)及PAT(磷絲菌素-N-乙醯基轉移酶)蛋白質係說明於美國專利公告案第20090093366號,全文爰引於此並融入本說明書之揭示。該轉殖基因也可選擇性地在某型植物細胞或組織或在某些發育階段表現。該轉殖基因也可在全部植物組織及順著整個生命週期實質上表現。但任何綜合表現模式也適用。
本文揭示也含括前述轉殖基因植物之種子,其中該種子包含該通報子基因、轉殖基因、或基因表現匣。本文揭示進一步含括前述轉殖基因植物之子代、純株、細胞系、或細胞,其中該子代、純株、細胞系、或細胞包含該通報子基因、轉殖基因、或基因表現匣。
雖然已經參考特定方法及實施例說明本發明,但
須瞭解可不背離此處描述之本發明做出各種修改及變化。
得自茂密玉米v1之該Ubi-1基因的一新穎啟動子序列使用聚合酶連鎖反應(PCR)擴增。設計以擴增該新穎啟動子茂密玉米v1之寡核苷酸(表1)係衍生自用作為對照的玉米c.v.B73 Ubi-1啟動子序列之保留區。一PCR產物得自茂密玉米v1且經決定特徵。
包含該新穎啟動子之該PCR產物係使用英維仇貞(Invitrogen)零鈍(Zero Blunt®)TOPO® PCR選殖套組根據製造商指示而選殖入TopoTM載體內。提供顯示包含該新穎啟動子PCR產物之選殖質體的一載體拼圖。質體pDAB105710係相對應於茂密玉米v1(圖2)。
選殖之後,含有該PCR產物之該啟動子插子係使用熟諳技藝人士眾所周知之方法定序。茂密玉米v1之啟動子多核苷酸序列(圖4)係經計算對齊及隨後分析與玉米c.v.B73 Ubi-1對照序列(圖3)之同源序列。熟諳技藝人士已知之
生物資訊學方法及/或軟體程式諸如,ClustalW或定序儀用以執行該序列同源性分析。
序列同源性分析(圖3-7)包括序列對齊及與玉米c.v.B73 Ubi-1對照序列(SEQ ID NO:1;圖3)作比較,顯示用於進一步決定特徵的一新穎Ubi-1啟動子。也觀察得得自茂密玉米v1之該新穎Ubi-1啟動子序列(SEQ ID NO:2;圖4)包含三個分開區的多核苷酸序列:1)一上游啟動子區(SEQ ID NO:4);2)一5’-UTR(SEQ ID NO:6);及3)一內含子(SEQ ID NO:8)。得自茂密玉米v1之啟動子區及特定啟動子元體係經分析與玉米c.v.B73 Ubi-1對照序列(圖5-7)之序列同源性。更明確言之,進行序列對齊以獨立地比較該茂密玉米v1啟動子之該上游啟動子、5’-UTR、及內含子區、以及該TATA框及熱震元體(HSE)調節元體與該玉米c.v.B73 Ubi-1對照序列之相對應區(圖5-7,表2)。
圖5顯示該茂密玉米v1啟動子之該上游啟動子區比較該玉米c.v.B73 Ubi-1對照啟動子序列之該上游啟動子區之序列對齊。圖6示該茂密玉米v1啟動子之該5’-UTR或先導子序列該玉米c.v.B73 Ubi-1對照啟動子序列之該5’-UTR或先導子序列之序列對齊。圖7顯示該茂密玉米v1啟動子之
該內含子區比較該玉米c.v.B73 Ubi-1對照啟動子序列之該內含子區之序列對齊。
得自茂密玉米v1之該等啟動子元體顯示與玉米c.v.B73 Ubi-1序列之90.4%總序列相同度(表2)。決定得自茂密玉米v1之該新穎啟動子序列之特徵證實典型地出現在一功能啟動子的大部該等啟動子調節元體(亦即一TATA框及熱震元體)也高度保留在該茂密玉米v1 Ubi-1基因之核心啟動子區內部(表2)。舉例言之,圖5顯示一高度保留TATA框(鹼基對869-876顯示下方畫線)其經識別且發現係位在該新穎茂密玉米v1 Ubi-1啟動子之上游啟動子區中的該TSS之5’上游約50bp。雖然在該新穎茂密玉米v1 Ubi-1啟動子之該5’-UTR或先導子序列(圖4)只觀察得小量變化程度,其具有與玉米c.v.B73 Ubi-1對照序列(圖6)之98.8%序列同源性,但在上游啟動子區(圖5)及內含子區(圖7)也識別較低序列保留性之區域。
茂密玉米v1 Ubi-1啟動子之上游啟動子區顯示與玉米c.v.B73 Ubi-1上游子變異,只有87.8%序列同源性(表2)。在茂密玉米v1上游啟動子區識別之大部分差異包含核苷酸刪除、取代、及/或不匹配(圖5)。更明確言之,在該TATA框啟動子元體之5’上游100bp內部的一12-13bp刪除係出現在茂密玉米v1 Ubi-1啟動子(鹼基對773-784顯示被框出)。同理,圖5顯示在本研究分析的該新穎茂密玉米v1 Ubi-1啟動子中不保留的兩個重疊熱震元體(HSE)序列(分別為鹼基對457-481及482-500,顯示被圈出)。
此外,存在於該Ubi-1上游啟動子區的額外調節基序延伸該TSS之5’上游100-200bp。此等基序結合轉錄因子,該等轉錄因子與該轉錄起始複體交互作用及輔助其組裝,改進其穩定性,或一旦該轉錄機器啟動提高啟動子逃逸效果(PEREMARTI等人2010)。如此,於此調節區內部的刪除、取代、及不匹配,諸如於茂密玉米v1 Ubi-1啟動子觀察得者(圖5),可能潛在地影響啟動子強度及特異性兩者。
在茂密玉米v1 Ubi-1啟動子之內含子區也識別序列變異。雖然該新穎茂密玉米v1 Ubi-1啟動子與玉米c.v.B73 Ubi-1對照啟動子序列(表2)分享相當程度的序列相同度之保留性(亦即91.7%),但茂密玉米v1內含子啟動子序列也含有在該對照序列中未經識別的分別約17bp及8bp之兩個顯著刪除(圖7)。該17bp刪除係位在該TSS之3’下游約195bp(鹼基對120-136,顯示被框出),及該8bp刪除係位在該TSS之3’下游約710bp(鹼基對626-633,顯示下方畫線)。
除非另行指示否則本實施例及後續實施例中描述的分子生物學及生化操控係藉如下列揭示之標準方法進行,例如Ausubel等人(1995),及Sambrook等人(1989)及其更新。實驗中使用的構成體容後詳述(表3)。
如先前描述,包含該等上游啟動子、5’-UTR、及內含子區之茂密玉米啟動子係萃取自該茂密玉米種屬之Ubi-1基因,及PCR擴增子係使用奎快凝膠萃取套組(QIAquick Gel Extraction Kit®)(奎金(Qiagen),美國加州卡
斯伯)凝膠純化。然後啟動子多核苷酸序列使用業界已知之標準選殖技術選殖入一閘道輸入載體®(英維仇貞)。包含針對茂密玉米v1之該Ubi-1啟動子序列的該所得閘道輸入載體®係透過限剪消化及定序驗證。包含該茂密玉米v1 Ubi-1啟動子序列之一對照輸入載體也使用業界已知之標準選殖技術選殖入一閘道輸入載體。
除了該等Ubi-1啟動子序列之外,該輸入載體也包含得自水母(Phialidium)種屬之黃螢光蛋白通報子基因(PhiYFP;Shagin,D.A.,(2004)Mol Biol Evol.21:841-50)具有一ST-LS1內含子結合入該玉米過氧化酶5基因(ZmPer5;美國專利案第6,699,984號)之該序列(Vancanneyt,G.,(1990)Mol Gen Genet.220:245-50)及該3’-UTR區。提供顯示包含該等啟動子序列各自的選殖輸入載體。構成體pDAB105742係相對應於包含該玉米c.v.B73 Ubi-1啟動子序列之該對照輸入載體。構成體pDAB105737係相對應於包含該茂密玉米v1啟動子序列之該對照輸入載體。如此,建立輸入載體包含基因表現匣其包含一玉米種屬Ubi-1啟動子、該PhiYFP基因、及該ZmPer5 3’-UTR。
如於表3中描述,構成包含由該新穎啟動子序列驅動的該PhiYFP通報子基因及以該ZmPer5 3’-UTR為端基之一二元表現載體構成體。土壤桿菌媒介之玉米胚轉形係透過使用如前文描述之標準選殖方法及閘道®重組反應採用標準目的地二元載體pDAB101917,及包含該等基因表現匣之輸入載體構成。
二元目的地載體pDAB101917包含一耐除草劑基因磷絲菌素乙醯基轉移酶(PAT;Wehrmann等人,1996,自然生技14:1274-1278)。於該pDAB101917載體中,PAT基因表現係在玉米Ubi-1啟動子、5’-UTR、及內含子之控制之下。該pDAB101917載體也包含得自該玉米脂解酶基因(ZmLip;美國專利案第7,179,902號)之一3’-UTR區。該ZmLip 3’-UTR係用以結束該PAT mRNA之轉錄。該閘道®重組反應許可包含該基因表現匣(亦即茂密玉米v1或玉米c.v.B73 Ubi-1啟動子、該PhiYFP基因、及該ZmPer5 3’-UTR)之各個輸入載體的插入該目的地二元載體pDAB101917。該等輸入載體係插入該pDAB101917目的地載體在T-DNA邊界A及B間,及PAT表現匣上游。
提供載體拼圖顯示該二元表現構成體pDAB101917具有該等基因表現匣包含結合入一玉米或茂密玉米Ubi-1啟動子、該PhiYFP基因、及該ZmPer5 3’-UTR。對照構成體pDAB105748相對應於該基因表現匣包含該玉米c.v.B73 Ubi-1啟動子(圖8)。此外,構成體pDAB105743
相對應於該基因表現匣包含該茂密玉米v1 Ubi-1啟動子序列(圖9)。
二元載體構成體pDAB105748(玉米c.v.B73)及pDAB105743(茂密玉米v1)係使用業界已知之標準轉形技術各自轉形入根瘤土壤桿菌種系EHA101。細菌菌落經分離,及二元質體DNA係經萃取、純化、及透過限剪酶消化確證。
玉米植物之轉形係根據Vega等人,2008,植物細胞繁殖27:297-305描述的協定進行,其採用土壤桿菌媒介之轉形及磷絲菌素乙醯基轉移酶基因(PAT;Wehrmann等人,1996,自然生技14:1274-1278)作為可選擇植物標記。包含該等二元載體構成體(如前述)之根瘤土壤桿菌培養係用以轉形玉米c.v.Hi-II植物及產生第一回合T0轉殖基因玉米事件(表4)。不成熟合子胚係經產生、製備、及於轉形後之2.5個月收穫。
針對個別基因表現構成體之轉形結果係進一步描述於表4。揭示產生的胚總數、於癒傷組織階段觀察得的轉殖基因事件總數、以及總轉形效率百分比。因許多實驗中胚之活力不佳故,該等二元載體構成體之總轉形效率係低於先前報導(Vega等人,2008)。
該PhiYFP基因之穩定整合入轉殖基因玉米植株之基因體內係透過一水解探針檢定分析確證。自該癒傷組織發育成的穩定轉形轉殖基因玉米小植株係經獲得及分析以識別含有低套數(亦即1-2套)全長T-股插子的事件。
羅氏輕循環器480(Roche Light Cycler 480TM)系統用以根據製造商之指示決定轉殖基因複本數。該方法運用一雙工塔克曼(TaqMan®)PCR反應,其於單一檢定分析採用該PhiYFP基因之特異性寡核苷酸及內生性參考基因玉米反錄酶(ZmInv;基因存庫存取號碼:U16123.1)之特異性寡核苷酸。複本數目及合子狀況係藉度量相對於ZmInv特異性螢光之PhiYFP特異性螢光強度且與已知複本數目標準作比較決定。
一PhiYFP基因特異性DNA片段係使用含有以FAMTM螢光染料之一探針的一個塔克曼引子/探針集合擴增,及ZmInv係使用含有以HEXTM螢光(表5)之一探針的一第二塔克曼引子/探針集合擴增。用於複本數目分析之引子及探針係藉整合DNA技術(美國愛荷華州珊瑚堡)商業合成。該FAMTM螢光部分係在465/510奈米光強度激光,及該
HEXTM螢光部分係在533/580奈米光強度激光。
PCR反應係如表6描述使用反應劑於終10微升反應體積製備。基因特異性DNA片段係根據表7列舉之熱循環條件擴增。複本數目及合子狀況係藉度量針對通報子基因PhiYFP特異性螢光強度對參考基因ZmInv特異性螢光之相對強度,且與已知複本數目標準作比較決定。
複本數目標準之產生方式係藉將載體pDAB108706稀釋入玉米c.v.B104基因體DNA(gDNA)以獲得具有pDAB108706:gDNA之已知比的標準獲得。舉例言之,製備每個玉米c.v.B104 gDNA複本有1、2、及4套載體DNA複本的樣本。該pDAB108706混合玉米c.v.B104 gDNA標準之1及2複本稀釋係對下列事件做驗證:一對照玉米事件其已知為半合子,及一對照玉米事件其已知為純合子(亦即玉米事件278;參考PCT國際專利公告案WO 2011/022469A2)。
進行一塔克曼雙工PCR擴增反應,利用PAT基因特異性寡核苷酸及內生性ZmInv參考基因。採用PCR擴增以檢測具有一個塔克曼引子集合之一基因特異性DNA片段及以FAMTM螢光染料標記的一探針(表5)。一第二引子集合及以HEXTM螢光染料標記的一探針也用以擴增及檢測該ZmInv內生性參考/對照基因(表5)。該PAT塔克曼反應混合物係如表6中之列舉製備,及特異性片段係根據表7列舉之條件擴增。
透過使用不同引子構成體轉形獲得的轉殖基因
植物之轉殖基因複本數目分析結果顯示於表8。只有1-2套PhiYFP轉殖基因之植株轉移至溫室及生長以供進行進一步表現分析。
植株係在V4-5發育期使用葉ELISA檢定分析採樣。樣本係收集於96孔收集管孔板內,及針對各樣本採4葉圓錠(紙孔打孔大小)。兩個4.5毫米BB(黛西公司(Daisy corporation),美國亞利桑那州羅傑)及200微升萃取緩衝液[1x PBS補充以0.05%吐溫(Tween®)-20及0.05%BSA(毫孔普
明(Millipore Probumin®),EMD毫孔公司,美國麻州必德利卡)]添加至各試管。額外200微升萃取緩衝液添加至各試管,接著翻轉混合。孔板以3000rpm離心5分鐘。上清液轉移至儲存於冰上的深96孔孔板之相對應孔。努克(Nunc®)96孔最大吸附孔板(奢摩費雪科學公司(Thermo Fisher Scientific Inc.),美國伊利諾州洛克福)用於ELISA。孔板經塗覆以小鼠單株抗YFP捕獲抗體(奧利吉技術公司(OriGene Technologies Inc.),馬里蘭州洛克維)。該抗體於PBS中稀釋(1微克/毫升),及每孔添加150微升稀PBS。孔板於4℃培養隔夜。在以350微升洗滌緩衝液[1x PBS補充以0.05%吐溫(Tween®)-20(西格瑪-亞利胥(Sigma-Aldrich),密蘇里聖路易)]洗滌4次之前,隔夜孔板保持於室溫歷時20-30分鐘。
孔板使用每孔200微升封阻緩衝液[1x PBS補充以0.05%吐溫(Tween®)-20及0.05%BSA(毫孔普明(Millipore Probumin®)]於+37℃封阻至少歷時1小時,接著以350微升洗滌緩衝液(湯德克奎拉洗液(Tomtec QuadraWashTM)2,湯德克公司,美國康州漢稜)洗滌4次。
用於YFP ELISA,使用伊弗羅君(Evrogen)重組Phi-YFP 1毫克/毫升(艾索拉公司(Axxora LLC),紐約州伐明戴爾)作為標準。5-參數匹配標準曲線(1奈克/毫升與0.125奈克/毫升標準間)用以確保全部資料皆係落入該曲線之線性部分。添加100微升標準或樣本至該孔。使用樣本於檢定分析緩衝液之至少1:4稀釋液。孔板係在孔板振搖器(250rpm;滴定孔板振搖器)上於室溫培養1小時,接著以350微
升洗滌緩衝液(湯德克奎拉洗液(Tomtec QuadraWashTM)2)洗滌4次。約100微升之1微克/毫升伊弗羅君(Evrogen)兔多株抗-PhiYFP抗體(艾索拉)添加至各孔。孔板係在孔板振搖器上以250rpm於室溫培養1小時,接著以350微升洗滌緩衝液(湯德克奎拉洗液(Tomtec QuadraWashTM)2)洗滌4次。其次,100微升抗兔IgG HRP二次抗體(奢摩科學公司)於封阻/檢定分析緩衝液內稀釋1:5000,該PAT蛋白質使用得自英維羅吉(Envirologix)(緬因州波特蘭)之套組定量。ELISA係使用植物萃取物之多重稀釋進行,及反應試劑及指示大致上係如供應商所提供。
蛋白質之表現係於轉殖基因植物組織觀察。舉例言之,PhiYFP表現係在藉與土壤桿菌共同培養而穩定轉形的T0植物之癒傷組織觀察。該等轉殖基因植物係從玉米胚生長而該玉米胚係使用包含新穎啟動子pDAB105743(茂密玉米v1,圖9)及對照啟動子pDAB105748(玉米c.v.B73,圖8)轉形。該植物癒傷組織係使用一YFP過濾器及一500奈米光源在立體顯微鏡(萊卡微系統(Leica Microsystems),美國伊利諾州水牛林)下觀察。在包含pDAB105743之轉殖基因T0玉米植株之癒傷組織觀察得PhiYFP之穩定表現,與對照pDAB105748比較之代表性實施例顯示於圖10。如此處描述,該資料確證包含pDAB105743(茂密玉米v1)之新穎啟動子能夠驅動在T0轉殖基因植株之癒傷組織中該PhiYFP基因
之穩健表現。
如表8描述,含有低套數(亦即1-2套)PhiYFP轉殖基因的全植物於溫室生長。一般而言,針對T1表現分析使用每個構成體約5至約10事件及每事件約5植株。ELISA資料顯示使用包含新穎啟動子之載體構成體pDAB105743(茂密玉米v1)比較對照構成體pDAB105748(玉米c.v.B73),在T1玉米植株葉部的PhiYFP基因之一致表現。
針對包含該新穎啟動子構成體pDAB105743(茂密玉米v1,圖9)之該等T1植株觀察得平均PhiYFP基因表現約142.5奈克/毫克(±35.9奈克/毫克),比較由包含對照構成體pDAB105748(玉米c.v.B73,圖8)之對照植株產生約285.3奈克/毫克(±22.7奈克/毫克)PhiYFP蛋白質。此等結果確證如此處揭示,得自茂密玉米v1之新穎啟動子用在以高度蛋白質製造位準產生轉殖基因性狀是有用的。
此外,針對包含pDAB105743(茂密玉米v1)之全部T1植株的平均PAT表現為約59.0奈克/毫克(±11.6奈克/毫克),比較由包含得自玉米c.v.B73啟動子之pDAB105748的對照植株製造的PAT蛋白質約為105.8奈克/毫克(±7.4奈克/毫克)。總體而言,針對全部玉米植株之PAT蛋白質之表現係顯著低於針對在玉米植株中之PhiYFP基因觀察得的表現。
PhiYFP蛋白質表現也係於表示此處描述之新穎啟動子構成體各自的該經擇定的T1轉殖基因植物之雄穗所衍生的花粉測量。如圖11顯示,如於本案中描述,轉殖基
因花粉之影像分析證實pDAB105743(茂密玉米v1)的新穎啟動子驅動在花粉中PhiYFP蛋白質之高度表現。
二元表現載體構成體pDAB112853係顯示於圖12。pDAB112853構成體包含由ZmUbi-1啟動子v2所驅動的該PhiYFP通報子基因及該ZmPer5 3’-UTR。pDAB112853構成體也包含由茂密玉米v1所驅動的該AAD-1 V3基因及該ZmLip 3’-UTR v1。
pDAB112853構成體係使用揭示於例如Ausubel等人(1995)、Sambrook等人(1989)及其更新之標準方法產生。如前文描述,土壤桿菌媒介玉米胚轉形之轉形載體或表現載體係透過使用標準選殖方法及閘道重組反應,採用標準目的地二元載體及包含基因表現匣之輸入載體構成。
含有低複本套數(亦即1-2套)PhiYFP轉殖基因之全株生長於溫室。針對T0表現分析使用19事件,如表9顯示(如下)。自全部分析事件獲得穩健AAD1蛋白質表現(參見表9)。
T0單一轉殖基因複本植物回交至野生型B104玉米植株以獲得T1種子。半合子T1植物用於分析。針對R3葉表現分析每個構成體三個(3)事件及每個事件五株(5)植物。針對其它型組織表現採用每個事件三個(3)事件。
得自包含新穎啟動子構成體之T1轉殖基因植物之葉組織的AAD1蛋白質之定量度量係顯示於表10(如
下)。表10之資料證實T0葉表現結果(參見表9),及進一步顯示在得自含有此處描述之新穎啟動子之植物之R3葉及其它組織有一致的AAD1蛋白質之高度表現。
<110> 陶氏農業科學公司
<120> 新穎玉米泛素啟動子(一)
<130> DAS-75665
<140>
<141>
<150> 61/922,529
<151> 2013-12-31
<160> 19
<170> PatentIn version 3.5
<210> 1
<211> 1993
<212> DNA
<213> 玉米
<400> 1
<210> 2
<211> 1900
<212> DNA
<213> 茂密玉米
<400> 2
<210> 3
<211> 896
<212> DNA
<213> 玉米
<400> 3
<210> 4
<211> 831
<212> DNA
<213> 茂密玉米
<400> 4
<210> 5
<211> 82
<212> DNA
<213> 玉米
<400> 5
<210> 6
<211> 83
<212> DNA
<213> 茂密玉米
<400> 6
<210> 7
<211> 1015
<212> DNA
<213> 玉米
<400> 7
<210> 8
<211> 986
<212> DNA
<213> 茂密玉米
<400> 8
<210> 9
<211> 40
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 9
<210> 10
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 10
<210> 11
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 11
<210> 12
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 12
<210> 13
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成探針
<220>
<223> 5'FAM
<400> 13
<210> 14
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 14
<210> 15
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 15
<210> 16
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成探針
<220>
<223> 5'HEX
<400> 16
<210> 17
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 17
<210> 18
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成引子
<400> 18
<210> 19
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 人工序列之描述:合成探針
<220>
<223> 5'FAM
<400> 19
Claims (50)
- 一種包含一啟動子操作式鏈接至一轉殖基因的基因表現匣,其中該啟動子包含與SEQ ID NO:2具有至少90%序列相同度之一多核苷酸。
- 如請求項1之基因表現匣,其中該啟動子在苛刻條件下雜交至包含與SEQ ID NO:2之一補體具有至少90%之一序列相同度之一多核苷酸探針。
- 如請求項1之基因表現匣,其中該操作式鏈接之轉殖基因編碼一多胜肽或小RNA。
- 如請求項1之基因表現匣,其中該轉殖基因係選自於由一殺蟲劑抗性轉殖基因、一除草劑耐性轉殖基因、一氮利用效率轉殖基因、一水利用效率轉殖基因、一營養品質轉殖基因、一DNA結合轉殖基因、及一可選擇標記轉殖基因所組成之該組群。
- 如請求項1之基因表現匣,其進一步包含一3’-非轉譯區。
- 一種重組載體,其包含如請求項1之基因表現匣。
- 如請求項6之重組載體,其中該載體係選自於由一質體、一質粒、一細菌人工染色體、一病毒、及一噬菌體所組成之該組群。
- 一種轉殖基因細胞,其包含如請求項1之基因表現匣。
- 如請求項8之轉殖基因細胞,其中該轉殖基因細胞為一轉殖基因植物細胞。
- 一種轉殖基因植物,其包含如請求項9之轉殖基因植物 細胞。
- 如請求項10之轉殖基因植物,其中該轉殖基因植物為一單子葉或一雙子葉植物。
- 如請求項11之轉殖基因植物,其中該單子葉植物係選自於由一玉米植物、一稻米植物、及一小麥植物所組成之該組群。
- 一種轉殖基因種子,其係得自如請求項10之轉殖基因植物。
- 一種轉殖基因細胞,其包含與SEQ ID NO:2具有至少90%序列相同度之一合成多核苷酸。
- 如請求項14之轉殖基因細胞,其中該合成多核苷酸在苛刻條件下雜交至包含與SEQ ID NO:2之一補體具有至少90%之一序列相同度之一多核苷酸探針。
- 如請求項14之轉殖基因細胞,其中該轉殖基因細胞為一轉殖基因植物細胞。
- 如請求項16之轉殖基因細胞,其中該轉殖基因植物細胞係藉一植物轉形方法產生。
- 如請求項17之轉殖基因細胞,其中該植物轉形方法係選自於由一土壤桿菌(Agrobacterium)媒介的轉形方法、一基因槍轉形方法、一碳化矽轉形方法、一原生質體轉形方法、及一微脂粒轉形方法所組成之該組群。
- 一種轉殖基因植物,其包含如請求項14之轉殖基因植物細胞。
- 如請求項19之轉殖基因植物,其中該轉殖基因植物為一 單子葉植物。
- 如請求項20之轉殖基因植物,其中該單子葉植物係選自於由一玉米植物、一稻米植物、及一小麥植物所組成之該組群。
- 一種轉殖基因種子,其係得自如請求項21之轉殖基因植物。
- 一種重組載體,其包含如請求項14之基因表現匣。
- 如請求項23之重組載體,其中該載體係選自於由一質體、一質粒、一細菌人工染色體、一病毒、及一噬菌體所組成之該組群。
- 一種於一轉殖基因植物表現一異源編碼序列之方法,該方法包含:a)使用一基因表現匣轉形一植物細胞,該匣包含一多核苷酸序列其包含SEQ ID NO:2操作式鏈接至一異源編碼序列,其係操作式鏈接至一3’-非轉譯區;b)分離包含該基因表現匣之該轉形植物細胞;c)將該轉形植物細胞再生成一轉殖基因植物;及d)獲得該轉殖基因植物,其中該轉殖基因植物包含含一多核苷酸序列含有SEQ ID NO:2的該基因表現匣。
- 如請求項25之方法,其中該異源編碼序列係選自於由一殺蟲劑抗性編碼序列、一除草劑耐性編碼序列、一氮利用效率編碼序列、一水利用效率編碼序列、一營養品質編碼序列、一DNA結合編碼序列、及一可選擇標記編碼序列所組成之該組群。
- 如請求項25之方法,其中轉形一植物細胞為一植物轉形方法。
- 如請求項27之方法,其中該植物轉形方法係選自於由一土壤桿菌(Agrobacterium)媒介的轉形方法、一基因槍轉形方法、一碳化矽轉形方法、一原生質體轉形方法、及一微脂粒轉形方法所組成之該組群。
- 如請求項25之方法,其中該轉殖基因植物為一單子葉或雙子葉轉殖基因植物。
- 如請求項29之方法,其中該單子葉轉殖基因植物係選自於由一玉米植物、一稻米植物、及一小麥植物所組成之該組群。
- 一種得自如請求項25之轉殖基因植物之轉殖基因種子。
- 如請求項25之方法,其中該異源編碼序列係在一轉殖基因植物組織中表現。
- 如請求項25之方法,其中該轉殖基因植物組織為一轉殖基因植物根、枝、莖、或花粉組織。
- 一種分離包含與SEQ ID NO:2具有至少90%之一序列相同度之一多核苷酸序列之方法,該方法包含:a)識別包含與SEQ ID具有至少90%之一序列相同度之該多核苷酸序列;b)產生多個寡核苷酸引子序列,其中該等寡核苷酸引子序列結合至包含與SEQ ID具有至少90%之一序列相同度之該多核苷酸序列;c)使用選自於該等多個寡核苷酸引子序列之寡核 苷酸引子序列擴增包含與得自一DNA樣本之SEQ ID具有至少90%之一序列相同度之該多核苷酸序列;及d)分離包含與SEQ ID具有至少90%之一序列相同度之該多核苷酸序列。
- 如請求項34之方法,其中包含與SEQ ID NO:2具有至少90%之一序列相同度之該分離多核苷酸序列係操作式鏈接至一轉殖基因。
- 如請求項35之方法,其中該操作式鏈接轉殖基因編碼一多胜肽或一小RNA。
- 一種包含與SEQ ID NO:2具有至少90%序列相同度之一純化多核苷酸序列,其中該純化多核苷酸序列提升一轉殖基因之表現。
- 如請求項37之純化多核苷酸序列,其中包含與SEQ ID NO:2之該補體具有至少90%之一序列相同度之一多核苷酸探針序列在苛刻條件下雜交至如請求項37之該純化多核苷酸序列。
- 如請求項37之純化多核苷酸序列,其中該純化多核苷酸序列係操作式鏈接至一轉殖基因。
- 如請求項39之操作式鏈接轉殖基因,其中該操作式鏈接轉殖基因編碼一多胜肽。
- 一種包含如請求項37之操作式鏈接至該轉殖基因之該純化多核苷酸序列的基因表現匣,其係操作式鏈接至一3’-非轉譯區。
- 如請求項41之基因表現匣,其中該轉殖基因係選自於由 殺蟲劑抗性轉殖基因、除草劑耐性轉殖基因、氮利用效率轉殖基因、水利用效率轉殖基因、營養品質轉殖基因、DNA結合轉殖基因、及可選擇標記轉殖基因所組成之該組群。
- 一種包含如請求項41之基因表現匣之重組載體。
- 如請求項43之重組載體,其中該載體係選自於由一質體載體、一質粒載體、及一BAC載體所組成之該組群。
- 一種包含如請求項37之純化多核苷酸序列之轉殖基因細胞。
- 如請求項45之轉殖基因細胞,其中該轉殖基因細胞為一轉殖基因植物細胞。
- 一種包含如請求項46之轉殖基因植物細胞之轉殖基因植物。
- 如請求項47之轉殖基因植物,其中該轉殖基因植物為一單子葉植物。
- 如請求項48之轉殖基因植物,其中該單子葉植物係選自於由一玉米植物、一小麥植物、及一稻米植物所組成之該組群。
- 一種得自如請求項49之轉殖基因植物之轉殖基因種子。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361922529P | 2013-12-31 | 2013-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201527312A true TW201527312A (zh) | 2015-07-16 |
Family
ID=53481052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103144942A TW201527312A (zh) | 2013-12-31 | 2014-12-23 | 新穎玉米泛素啓動子(一) |
Country Status (18)
Country | Link |
---|---|
US (1) | US10036028B2 (zh) |
EP (1) | EP3090056A4 (zh) |
JP (1) | JP2017500877A (zh) |
KR (1) | KR20160099105A (zh) |
CN (1) | CN106062198A (zh) |
AP (1) | AP2016009336A0 (zh) |
AR (1) | AR099011A1 (zh) |
AU (1) | AU2014373772B2 (zh) |
BR (1) | BR102014032957A2 (zh) |
CA (1) | CA2935384A1 (zh) |
CL (1) | CL2016001674A1 (zh) |
IL (1) | IL246513A0 (zh) |
MX (1) | MX2016008755A (zh) |
PH (1) | PH12016501295A1 (zh) |
RU (1) | RU2016131282A (zh) |
TW (1) | TW201527312A (zh) |
UY (1) | UY35925A (zh) |
WO (1) | WO2015103354A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201527315A (zh) * | 2013-12-31 | 2015-07-16 | Dow Agrosciences Llc | 新穎玉米泛素啓動子(四) |
US12031140B2 (en) * | 2019-11-25 | 2024-07-09 | Syngenta Crop Protection Ag | Glycine regulatory elements and uses thereof |
Family Cites Families (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4940835A (en) | 1985-10-29 | 1990-07-10 | Monsanto Company | Glyphosate-resistant plants |
US4810648A (en) | 1986-01-08 | 1989-03-07 | Rhone Poulenc Agrochimie | Haloarylnitrile degrading gene, its use, and cells containing the gene |
DE3765449D1 (de) | 1986-03-11 | 1990-11-15 | Plant Genetic Systems Nv | Durch gentechnologie erhaltene und gegen glutaminsynthetase-inhibitoren resistente pflanzenzellen. |
US4975374A (en) | 1986-03-18 | 1990-12-04 | The General Hospital Corporation | Expression of wild type and mutant glutamine synthetase in foreign hosts |
US5750871A (en) | 1986-05-29 | 1998-05-12 | Calgene, Inc. | Transformation and foreign gene expression in Brassica species |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
ES2039474T3 (es) | 1986-12-05 | 1993-10-01 | Ciba-Geigy Ag | Procedimineto mejorado para la transformacion de protoplastos vegetales. |
US5015580A (en) | 1987-07-29 | 1991-05-14 | Agracetus | Particle-mediated transformation of soybean plants and lines |
US5244802A (en) | 1987-11-18 | 1993-09-14 | Phytogen | Regeneration of cotton |
EP0333033A1 (en) | 1988-03-09 | 1989-09-20 | Meiji Seika Kaisha Ltd. | Glutamine synthesis gene and glutamine synthetase |
ATE112314T1 (de) | 1988-05-17 | 1994-10-15 | Lubrizol Genetics Inc | Pflanzliches ubiquitinpromotorsystem. |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
DE3834738A1 (de) | 1988-10-12 | 1990-04-19 | Basf Lacke & Farben | Verfahren zur herstellung eines mehrschichtigen ueberzuges, waessrige beschichtungszusammensetzungen, wasserverduennbare polyacrylatharze und verfahren zur herstellung von wasserverduennbaren polyacrylatharzen |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
US7705215B1 (en) | 1990-04-17 | 2010-04-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
GB9017539D0 (en) | 1990-08-10 | 1990-09-26 | Rhone Poulenc Agriculture | New compositions of matter |
GB8920519D0 (en) | 1989-09-11 | 1989-10-25 | Rhone Poulenc Ltd | New compositions of matter |
JP3209744B2 (ja) | 1990-01-22 | 2001-09-17 | デカルブ・ジェネティクス・コーポレーション | 結実能力のある遺伝子変換コーン |
US5484956A (en) | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
JP2859427B2 (ja) | 1990-11-21 | 1999-02-17 | 株式会社東芝 | 超電導コイル装置 |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
GB9101660D0 (en) | 1991-01-25 | 1991-03-06 | Rhone Poulenc Agriculture | New compositions of matter |
GB9101659D0 (en) | 1991-01-25 | 1991-03-06 | Rhone Poulenc Agriculture | Compositions of matter |
GB9310203D0 (en) | 1993-05-18 | 1993-06-30 | Rhone Poulenc Agriculture | Compositions of new matter |
GB9115377D0 (en) | 1991-07-17 | 1991-09-04 | Rhone Poulenc Agriculture | New compositions of matter |
GB9115909D0 (en) | 1991-07-23 | 1991-09-04 | Nickerson Int Seed | Recombinant dna |
GB9116834D0 (en) | 1991-08-05 | 1991-09-18 | Rhone Poulenc Agriculture | Compositions of new matter |
US5334753A (en) | 1992-03-12 | 1994-08-02 | Rhone-Poulenc Agriculture Ltd | Processes for preparing ortho-substituted benzoic acids |
US7060876B2 (en) | 1992-07-07 | 2006-06-13 | Japan Tobacco Inc. | Method for transforming monocotyledons |
EP1983056A1 (en) | 1992-07-07 | 2008-10-22 | Japan Tobacco Inc. | Method for transforming monocotyledons |
US5607914A (en) | 1993-01-13 | 1997-03-04 | Pioneer Hi-Bred International, Inc. | Synthetic antimicrobial peptides |
GB9302071D0 (en) | 1993-02-03 | 1993-03-24 | Rhone Poulenc Agriculture | Compositions of matter |
ATE189212T1 (de) | 1993-05-18 | 2000-02-15 | Rhone Poulenc Agriculture | 2-cyan-1-sulfonamidophenyl-1,3-dion-derivate und deren verwendung als herbizide |
WO1995006722A1 (fr) | 1993-09-03 | 1995-03-09 | Japan Tobacco Inc. | Procede permettant de transformer une monocotyledone avec un scutellum d'embryon immature |
US5767373A (en) | 1994-06-16 | 1998-06-16 | Novartis Finance Corporation | Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms |
US5635055A (en) | 1994-07-19 | 1997-06-03 | Exxon Research & Engineering Company | Membrane process for increasing conversion of catalytic cracking or thermal cracking units (law011) |
US5506195A (en) | 1994-11-01 | 1996-04-09 | Zeneca Limited | Selective 1,3-cyclohexanedione corn herbicide |
US5659026A (en) | 1995-03-24 | 1997-08-19 | Pioneer Hi-Bred International | ALS3 promoter |
FR2734842B1 (fr) | 1995-06-02 | 1998-02-27 | Rhone Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides |
US5846797A (en) | 1995-10-04 | 1998-12-08 | Calgene, Inc. | Cotton transformation |
DE69638032D1 (de) | 1995-10-13 | 2009-11-05 | Dow Agrosciences Llc | Modifiziertes bacillus thuringiensis gen zur kontrolle von lepidoptera in pflanzen |
BR9710855A (pt) | 1996-06-27 | 1999-08-17 | Du Pont | Fragmento de cido nucl-ico isolado gene quim-rico vetor de plasmideo c-lula hospedeira transformada planta transformada m-todo para identifica-Æo de um composto composto m-todo para conferir toler-ncia a uma planta m-todo para a produ-Æo microbiana e m-todo para sobreexpressar enzima de p-hidroxifenilpiruvato dioxigenase em uma planta |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
US7105724B2 (en) | 1997-04-04 | 2006-09-12 | Board Of Regents Of University Of Nebraska | Methods and materials for making and using transgenic dicamba-degrading organisms |
EP0991764B1 (en) | 1997-06-12 | 2006-07-12 | Dow AgroSciences LLC | Regulatory sequences for transgenic plants |
US6245968B1 (en) | 1997-11-07 | 2001-06-12 | Aventis Cropscience S.A. | Mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which contain such a gene and which are tolerant to herbicides |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
AUPP249298A0 (en) | 1998-03-20 | 1998-04-23 | Ag-Gene Australia Limited | Synthetic genes and genetic constructs comprising same I |
WO2000042207A2 (en) | 1999-01-14 | 2000-07-20 | Monsanto Technology Llc | Soybean transformation method |
AU2001275433A1 (en) * | 2000-06-09 | 2001-12-17 | Prodigene, Inc. | Plant ubiquitin promoter sequences and methods of use |
PL2319932T5 (pl) | 2004-04-30 | 2017-09-29 | Dow Agrosciences Llc | Nowe geny odporności na herbicydy |
WO2007014844A2 (en) | 2005-07-27 | 2007-02-08 | Basf Plant Science Gmbh | Selection system for maize transformation |
EA201000757A1 (ru) * | 2005-08-24 | 2010-12-30 | Пайонир Хай-Бред Интернэшнл, Инк. | Способы борьбы с сорными растениями на возделываемой посевной площади |
CA2628263C (en) | 2005-10-28 | 2016-12-13 | Dow Agrosciences Llc | Aryloxyalkanoate auxin herbicide resistance genes and uses thereof |
WO2008140766A2 (en) * | 2007-05-08 | 2008-11-20 | The Ohio State University | Highly active soybean promoters and uses thereof |
WO2009046384A1 (en) | 2007-10-05 | 2009-04-09 | Dow Agrosciences Llc | Methods for transferring molecular substances into plant cells |
MX354857B (es) * | 2009-06-11 | 2018-03-23 | Syngenta Participations Ag | Metodo para la expresion transitoria de acidos nucleicos en las plantas. |
US9204599B2 (en) * | 2009-08-19 | 2015-12-08 | Dow Agrosciences Llc | Detection of AAD1 event DAS-40278-9 |
TW201144442A (en) | 2010-05-17 | 2011-12-16 | Dow Agrosciences Llc | Production of DHA and other LC-PUFAs in plants |
EP2611924B1 (en) * | 2010-08-30 | 2019-03-06 | Dow Agrosciences LLC | Activation tagging platform for maize, and resultant tagged population and plants |
CA3004033C (en) * | 2011-03-25 | 2020-08-18 | Monsanto Technology Llc | Plant regulatory elements and uses thereof |
TW201307553A (zh) | 2011-07-26 | 2013-02-16 | Dow Agrosciences Llc | 在植物中生產二十二碳六烯酸(dha)及其他長鏈多元不飽和脂肪酸(lc-pufa)之技術 |
WO2013101343A1 (en) * | 2011-12-30 | 2013-07-04 | Dow Agrosciences Llc | Construct and method for synthetic bidirectional plant promoter ubi1 |
TW201527313A (zh) * | 2013-12-31 | 2015-07-16 | Dow Agrosciences Llc | 新穎玉米泛素啓動子(二) |
-
2014
- 2014-12-23 TW TW103144942A patent/TW201527312A/zh unknown
- 2014-12-29 UY UY0001035925A patent/UY35925A/es not_active Application Discontinuation
- 2014-12-30 BR BR102014032957A patent/BR102014032957A2/pt not_active Application Discontinuation
- 2014-12-30 AR ARP140104971A patent/AR099011A1/es unknown
- 2014-12-31 CN CN201480076568.XA patent/CN106062198A/zh active Pending
- 2014-12-31 US US14/587,757 patent/US10036028B2/en active Active
- 2014-12-31 EP EP14877214.8A patent/EP3090056A4/en not_active Withdrawn
- 2014-12-31 JP JP2016543701A patent/JP2017500877A/ja not_active Withdrawn
- 2014-12-31 CA CA2935384A patent/CA2935384A1/en not_active Abandoned
- 2014-12-31 KR KR1020167020573A patent/KR20160099105A/ko not_active Application Discontinuation
- 2014-12-31 AU AU2014373772A patent/AU2014373772B2/en not_active Ceased
- 2014-12-31 MX MX2016008755A patent/MX2016008755A/es unknown
- 2014-12-31 RU RU2016131282A patent/RU2016131282A/ru not_active Application Discontinuation
- 2014-12-31 WO PCT/US2014/072921 patent/WO2015103354A1/en active Application Filing
- 2014-12-31 AP AP2016009336A patent/AP2016009336A0/en unknown
-
2016
- 2016-06-28 IL IL246513A patent/IL246513A0/en unknown
- 2016-06-29 CL CL2016001674A patent/CL2016001674A1/es unknown
- 2016-06-30 PH PH12016501295A patent/PH12016501295A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
RU2016131282A (ru) | 2018-02-08 |
RU2016131282A3 (zh) | 2018-07-03 |
WO2015103354A1 (en) | 2015-07-09 |
MX2016008755A (es) | 2016-10-26 |
EP3090056A1 (en) | 2016-11-09 |
AP2016009336A0 (en) | 2016-07-31 |
PH12016501295A1 (en) | 2016-08-15 |
CN106062198A (zh) | 2016-10-26 |
AU2014373772A1 (en) | 2016-07-14 |
CL2016001674A1 (es) | 2017-05-05 |
JP2017500877A (ja) | 2017-01-12 |
CA2935384A1 (en) | 2015-07-09 |
EP3090056A4 (en) | 2017-06-21 |
BR102014032957A2 (pt) | 2018-07-17 |
US20150184182A1 (en) | 2015-07-02 |
US10036028B2 (en) | 2018-07-31 |
IL246513A0 (en) | 2016-08-31 |
KR20160099105A (ko) | 2016-08-19 |
AU2014373772B2 (en) | 2017-12-07 |
AR099011A1 (es) | 2016-06-22 |
UY35925A (es) | 2015-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9885054B2 (en) | Maize ubiquitin promoters | |
TW201527312A (zh) | 新穎玉米泛素啓動子(一) | |
US10030246B2 (en) | Maize ubiquitin promoters | |
US10030247B2 (en) | Maize ubiquitin promoters | |
TW201527315A (zh) | 新穎玉米泛素啓動子(四) |